Science.gov

Sample records for high pathogenicity avian

  1. 76 FR 24793 - Highly Pathogenic Avian Influenza

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-03

    ... Inspection Service 9 CFR Parts 93, 94, and 95 RIN 0579-AC36 Highly Pathogenic Avian Influenza AGENCY: Animal... products from regions where any subtype of highly pathogenic avian influenza is considered to exist. The... vaccinated for certain types of avian influenza, or that have moved through regions where any subtype...

  2. 77 FR 34783 - Highly Pathogenic Avian Influenza

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-12

    ... avian influenza (HPAI). On January 24, 2011, we published in the Federal Register (76 FR 4046-4056... Avian Influenza AGENCY: Animal and Plant Health Inspection Service, USDA. ACTION: Interim rule... importation of bird and poultry products from regions where any subtype of highly pathogenic avian...

  3. 76 FR 4046 - Highly Pathogenic Avian Influenza

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-24

    ...We are amending the regulations concerning the importation of animals and animal products to prohibit or restrict the importation of bird and poultry products from regions where any subtype of highly pathogenic avian influenza is considered to exist. We are also adding restrictions concerning importation of live poultry and birds that have been vaccinated for certain types of avian influenza,......

  4. USGS highly pathogenic avian influenza research strategy

    USGS Publications Warehouse

    Harris, M. Camille; Miles, A. Keith; Pearce, John M.; Prosser, Diann J.; Sleeman, Jonathan M.; Whalen, Mary E.

    2015-01-01

    Avian influenza viruses are naturally occurring in wild birds such as ducks, geese, swans, and gulls. These viruses generally do not cause illness in wild birds, however, when spread to poultry they can be highly pathogenic and cause illness and death in backyard and commercial farms. Outbreaks may cause devastating agricultural economic losses and some viral strains have the potential to infect people directly. Furthermore, the combination of avian influenza viruses with mammalian viruses can result in strains with the ability to transmit from person to person, possibly leading to viruses with pandemic potential. All known pandemic influenza viruses have had some genetic material of avian origin. Since 1996, a strain of highly pathogenic avian influenza (HPAI) virus, H5N1, has caused infection in wild birds, losses to poultry farms in Eurasia and North Africa, and led to the deaths of several hundred people. Spread of the H5N1 virus and other influenza strains from China was likely facilitated by migratory birds. In December 2014, HPAI was detected in poultry in Canada and migratory birds in the United States. Since then, HPAI viruses have spread to large parts of the United States and will likely continue to spread through migratory bird flyways and other mechanisms throughout North America. In the United States, HPAI viruses have severely affected the poultry industry with millions of domestic birds dead or culled. These strains of HPAI are not known to cause disease in humans; however, the Centers for Disease Control and Prevention (CDC) advise caution when in close contact with infected birds. Experts agree that HPAI strains currently circulating in wild birds of North America will likely persist for the next few years. This unprecedented situation presents risks to the poultry industry, natural resource management, and potentially human health. Scientific knowledge and decision support tools are urgently needed to understand factors affecting the persistence

  5. Rapidly Expanding Range of Highly Pathogenic Avian Influenza Viruses

    PubMed Central

    Dusek, Robert J.; Spackman, Erica

    2015-01-01

    The movement of highly pathogenic avian influenza (H5N8) virus across Eurasia and into North America and the virus’ propensity to reassort with co-circulating low pathogenicity viruses raise concerns among poultry producers, wildlife biologists, aviculturists, and public health personnel worldwide. Surveillance, modeling, and experimental research will provide the knowledge required for intelligent policy and management decisions. PMID:26079209

  6. Rapidly expanding range of highly pathogenic avian influenza viruses

    USGS Publications Warehouse

    Hall, Jeffrey S.; Dusek, Robert J.; Spackman, Erica

    2015-01-01

    The movement of highly pathogenic avian influenza (H5N8) virus across Eurasia and into North America and the virus’ propensity to reassort with co-circulating low pathogenicity viruses raise concerns among poultry producers, wildlife biologists, aviculturists, and public health personnel worldwide. Surveillance, modeling, and experimental research will provide the knowledge required for intelligent policy and management decisions.

  7. Highly pathogenic avian influenza virus among wild birds in Mongolia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The central Asian country of Mongolia supports large populations of migratory water birds that migrate across much of Asia where highly pathogenic avian influenza (HPAI) virus subtype H5N1 is endemic. This, together with the near absence of domestic poultry, makes Mongolia an ideal location to unde...

  8. Highly Pathogenic Avian Influenza: Intersecting Humans, Animals, and the Environment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Eurasian-African H5N1 highly pathogenic avian influenza (HPAI) virus has caused an unprecedented epizootic affecting mainly poultry, but has crossed multiple species barriers to infect captive and wild birds, carnivorous mammals and humans. There is still great concern over the continued infecti...

  9. Rapidly expanding range of highly pathogenic avian influenza viruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The recent introduction of highly pathogenic avian influenza virus (HPAIV) H5N8 into Europe and North America poses significant risks to poultry industries and wildlife populations and warrants continued and heightened vigilance. First discovered in South Korean poultry and wild birds in early 2014...

  10. Persistence of Highly Pathogenic Avian Influenza Viruses in Natural Ecosystems

    PubMed Central

    Feare, Chris J.; Renaud, François; Thomas, Frédéric; Gauthier-Clerc, Michel

    2010-01-01

    Understanding of ecologic factors favoring emergence and maintenance of highly pathogenic avian influenza (HPAI) viruses is limited. Although low pathogenic avian influenza viruses persist and evolve in wild populations, HPAI viruses evolve in domestic birds and cause economically serious epizootics that only occasionally infect wild populations. We propose that evolutionary ecology considerations can explain this apparent paradox. Host structure and transmission possibilities differ considerably between wild and domestic birds and are likely to be major determinants of virulence. Because viral fitness is highly dependent on host survival and dispersal in nature, virulent forms are unlikely to persist in wild populations if they kill hosts quickly or affect predation risk or migratory performance. Interhost transmission in water has evolved in low pathogenic influenza viruses in wild waterfowl populations. However, oropharyngeal shedding and transmission by aerosols appear more efficient for HPAI viruses among domestic birds. PMID:20587174

  11. Determinants of pathogenicity of H5N1 highly pathogenic avian influenza viruses in ducks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ducks have been implicated in the dissemination and evolution of the H5N1 highly pathogenic avian influenza (HPAI) viruses. The pathogenicity of H5N1 HPAI viruses in domestic ducks has increased over time with some viruses producing 100% mortality in very short time. The determinants of pathogenic...

  12. Pathogenicity of reassortant H5N1 highly pathogenic avian influenza viruses in domestic ducks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The pathogenicity of H5N1 highly pathogenic avian influenza (HPAI) viruses in domestic ducks has increased over time. These changes in virulence have been reported with viruses from countries with high population of domestic ducks, including Egypt. In order to understand which viral genes are contri...

  13. Immediate early responses of avian tracheal epithelial cells to infection with highly pathogenic avian influenza

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Highly pathogenic (HP) avian influenza viruses (AIV) present an on going threat to the U.S. poultry industry. In order to develop new AIV control strategies it is necessary to understand the underlying mechanism of viral infection. Because the early events of AIV infection can occur on tracheal ep...

  14. Immediate early responses of avian tracheal epithelial cells to infection with highly pathogenic avian invluenza virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Highly pathogenic (HP) avian influenza viruses (AIV) present an ongoing threat to the world poultry industry. In order to develop new AIV control strategies it is necessary to understand the underlying mechanism of viral infection at mucosal respiratory sites. Chicken and duck tracheal epithelial ...

  15. Pathogenicity of two Egyptian H5N1 highly pathogenic avian influenza viruses in domestic ducks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Domestic ducks have been implicated in the dissemination and evolution of H5N1 highly pathogenic avian influenza (HPAI) viruses. Interestingly, the pathogenicity of H5N1 HPAI viruses in domestic ducks has increased over time with some viruses producing 100% mortality in ducks. These changes in vir...

  16. Outbreak of H7N8 Low Pathogenic Avian Influenza in Commercial Turkeys with Spontaneous Mutation to Highly Pathogenic Avian Influenza.

    PubMed

    Killian, Mary Lea; Kim-Torchetti, Mia; Hines, Nichole; Yingst, Sam; DeLiberto, Thomas; Lee, Dong-Hun

    2016-01-01

    Highly pathogenic avian influenza (HPAI) subtype H7N8 was detected in commercial turkeys in January 2016. Control zone surveillance discovered a progenitor low pathogenic avian influenza (LPAI) virus in surrounding turkey flocks. Data analysis supports a single LPAI virus introduction followed by spontaneous mutation to HPAI on a single premises. PMID:27313288

  17. Outbreak of H7N8 Low Pathogenic Avian Influenza in Commercial Turkeys with Spontaneous Mutation to Highly Pathogenic Avian Influenza

    PubMed Central

    Killian, Mary Lea; Hines, Nichole; Yingst, Sam; DeLiberto, Thomas; Lee, Dong-Hun

    2016-01-01

    Highly pathogenic avian influenza (HPAI) subtype H7N8 was detected in commercial turkeys in January 2016. Control zone surveillance discovered a progenitor low pathogenic avian influenza (LPAI) virus in surrounding turkey flocks. Data analysis supports a single LPAI virus introduction followed by spontaneous mutation to HPAI on a single premises. PMID:27313288

  18. USGS role and response to highly pathogenic avian influenza

    USGS Publications Warehouse

    Harris, M. Camille; Miles, A. Keith; Pearce, John M.; Prosser, Diann J.; Sleeman, Jonathan M.; Whalen, Mary E.

    2015-01-01

    Avian influenza viruses are naturally occurring in wild birds such as ducks, geese, swans, and gulls. These viruses generally do not cause illness in wild birds, however, when spread to poultry they can be highly pathogenic and cause illness and death in backyard and commercial farms. Outbreaks may cause devastating agricultural economic losses and some viral strains have the potential to infect people directly. Furthermore, the combination of avian influenza viruses with mammalian viruses can result in strains with the ability to transmit from person to person, possibly leading to viruses with pandemic potential. All known pandemic influenza viruses have had some genetic material of avian origin. Since 1996, a strain of highly pathogenic avian influenza (HPAI) virus, H5N1, has caused infection in wild birds, losses to poultry farms in Eurasia and North Africa, and led to the deaths of several hundred people. Spread of the H5N1 virus and other influenza strains from China was likely facilitated by migratory birds. In December 2014, HPAI was detected in poultry in Canada and migratory birds in the United States. Since then, HPAI viruses have spread to large parts of the United States and will likely continue to spread through migratory bird flyways and other mechanisms throughout North America. In the United States, HPAI viruses have severely affected the poultry industry with millions of domestic birds dead or culled. These strains of HPAI are not known to cause disease in humans; however, the Centers for Disease Control and Prevention (CDC) advise caution when in close contact with infected birds. Experts agree that HPAI strains currently circulating in wild birds of North America will likely persist for the next few years. This unprecedented situation presents risks to the poultry industry, natural resource management, and potentially human health. Scientific knowledge and decision support tools are urgently needed to understand factors affecting the persistence

  19. Susceptibility of selected wild avian species to experimental infection with H5N1 high pathogenicity avian influenza virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Since 2002, H5N1 highly pathogenic avian influenza (HPAI) viruses have caused mortality in wide diversity of wild avian species but, to date, the role that different species play in the transmission and maintenance of H5N1 HPAI viruses is poorly understood. To begin to address these uncertainties a...

  20. Free-grazing Ducks and Highly Pathogenic Avian Influenza, Thailand

    PubMed Central

    Chaitaweesub, Prasit; Parakamawongsa, Tippawon; Premashthira, Sith; Tiensin, Thanawat; Kalpravidh, Wantanee; Wagner, Hans; Slingenbergh, Jan

    2006-01-01

    Thailand has recently had 3 epidemic waves of highly pathogenic avian influenza (HPAI); virus was again detected in July 2005. Risk factors need to be identified to better understand disease ecology and assist HPAI surveillance and detection. This study analyzed the spatial distribution of HPAI outbreaks in relation to poultry, land use, and other anthropogenic variables from the start of the second epidemic wave (July 2004–May 2005). Results demonstrate a strong association between H5N1 virus in Thailand and abundance of free-grazing ducks and, to a lesser extent, native chickens, cocks, wetlands, and humans. Wetlands used for double-crop rice production, where free-grazing duck feed year round in rice paddies, appear to be a critical factor in HPAI persistence and spread. This finding could be important for other duck-producing regions in eastern and southeastern Asian countries affected by HPAI. PMID:16494747

  1. Highly Pathogenic Avian Influenza H5N1, Thailand, 2004

    PubMed Central

    Chaitaweesub, Prasit; Songserm, Thaweesak; Chaisingh, Arunee; Hoonsuwan, Wirongrong; Buranathai, Chantanee; Parakamawongsa, Tippawon; Premashthira, Sith; Amonsin, Alongkorn; Gilbert, Marius; Nielen, Mirjam; Stegeman, Arjan

    2005-01-01

    In January 2004, highly pathogenic avian influenza (HPAI) virus of the H5N1 subtype was first confirmed in poultry and humans in Thailand. Control measures, e.g., culling poultry flocks, restricting poultry movement, and improving hygiene, were implemented. Poultry populations in 1,417 villages in 60 of 76 provinces were affected in 2004. A total of 83% of infected flocks confirmed by laboratories were backyard chickens (56%) or ducks (27%). Outbreaks were concentrated in the Central, the southern part of the Northern, and Eastern Regions of Thailand, which are wetlands, water reservoirs, and dense poultry areas. More than 62 million birds were either killed by HPAI viruses or culled. H5N1 virus from poultry caused 17 human cases and 12 deaths in Thailand; a number of domestic cats, captive tigers, and leopards also died of the H5N1 virus. In 2005, the epidemic is ongoing in Thailand. PMID:16318716

  2. Helping poultry and people through research on high pathogenicity avian influenza

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza (AI) viruses are a diverse group divided into 144 different subtypes based on different combinations of the 16 hemagglutinin and 9 neuraminidase subtypes, and two different pathotypes (low [LP] and high pathogenicity [HP]). Low pathogenicity avian influenza (LPAI) viruses are maintai...

  3. Highly Pathogenic Avian Influenza Virus among Wild Birds in Mongolia

    PubMed Central

    Gilbert, Martin; Jambal, Losolmaa; Karesh, William B.; Fine, Amanda; Shiilegdamba, Enkhtuvshin; Dulam, Purevtseren; Sodnomdarjaa, Ruuragchaa; Ganzorig, Khuukhenbaatar; Batchuluun, Damdinjav; Tseveenmyadag, Natsagdorj; Bolortuya, Purevsuren; Cardona, Carol J.; Leung, Connie Y. H.; Peiris, J. S. Malik; Spackman, Erica; Swayne, David E.; Joly, Damien O.

    2012-01-01

    Mongolia combines a near absence of domestic poultry, with an abundance of migratory waterbirds, to create an ideal location to study the epidemiology of highly pathogenic avian influenza virus (HPAIV) in a purely wild bird system. Here we present the findings of active and passive surveillance for HPAIV subtype H5N1 in Mongolia from 2005–2011, together with the results of five outbreak investigations. In total eight HPAIV outbreaks were confirmed in Mongolia during this period. Of these, one was detected during active surveillance employed by this project, three by active surveillance performed by Mongolian government agencies, and four through passive surveillance. A further three outbreaks were recorded in the neighbouring Tyva Republic of Russia on a lake that bisects the international border. No HPAIV was isolated (cultured) from 7,855 environmental fecal samples (primarily from ducks), or from 2,765 live, clinically healthy birds captured during active surveillance (primarily shelducks, geese and swans), while four HPAIVs were isolated from 141 clinically ill or dead birds located through active surveillance. Two low pathogenic avian influenza viruses (LPAIV) were cultured from ill or dead birds during active surveillance, while environmental feces and live healthy birds yielded 56 and 1 LPAIV respectively. All Mongolian outbreaks occurred in 2005 and 2006 (clade 2.2), or 2009 and 2010 (clade 2.3.2.1); all years in which spring HPAIV outbreaks were reported in Tibet and/or Qinghai provinces in China. The occurrence of outbreaks in areas deficient in domestic poultry is strong evidence that wild birds can carry HPAIV over at least moderate distances. However, failure to detect further outbreaks of clade 2.2 after June 2006, and clade 2.3.2.1 after June 2010 suggests that wild birds migrating to and from Mongolia may not be competent as indefinite reservoirs of HPAIV, or that HPAIV did not reach susceptible populations during our study. PMID:22984464

  4. Pathogenicity, Transmission and Antigenic Variation of H5N1 Highly Pathogenic Avian Influenza Viruses

    PubMed Central

    Jiao, Peirong; Song, Hui; Liu, Xiaoke; Song, Yafen; Cui, Jin; Wu, Siyu; Ye, Jiaqi; Qu, Nanan; Zhang, Tiemin; Liao, Ming

    2016-01-01

    H5N1 highly pathogenic avian influenza (HPAI) was one of the most important avian diseases in poultry production of China, especially in Guangdong province. In recent years, new H5N1 highly pathogenic avian influenza viruses (HPAIV) still emerged constantly, although all poultry in China were immunized with H5N1 vaccinations compulsorily. To better understand the pathogenicity and transmission of dominant clades of the H5N1 HPAIVs in chicken from Guangdong in 2012, we chose a clade 7.2 avian influenza virus named A/Chicken/China/G2/2012(H5N1) (G2) and a clade 2.3.2.1 avian influenza virus named A/Duck/China/G3/2012(H5N1) (G3) in our study. Our results showed that the chickens inoculated with 103 EID50 of G2 or G3 viruses all died, and the titers of virus replication detected in several visceral organs were high but different. In the naive contact groups, virus shedding was not detected in G2 group and all chickens survived, but virus shedding was detected in G3 group and all chickens died. These results showed that the two clades of H5N1 HPAIVs had high pathogenicity in chickens and the contact transmission of them was different in chickens. The results of cross reactive HI assay showed that antigens of G2 and G3 were very different from those of current commercial vaccines isolates (Re-4, Re-6, and D7). And to evaluate the protective efficacy of three vaccines against most isolates form Guangdong belonging to clade 2.3.2.1 in 2012, G3 was chosen to challenge the three vaccines such as Re-4, Re-6, and D7. First, chickens were immunized with 0.3 ml Re-4, Re-6, and D7 inactivated vaccines by intramuscular injection, respectively, and then challenged with 106 EID50 of G3 on day 28 post-vaccination. The D7 vaccine had 100% protection against G3 for chickens, the Re-6 vaccine had 88.9%, and the Re-4 vaccine only had 66.7%. Our results suggested that the D7 vaccine could prevent and control H5N1 virus outbreaks more effectively in Guangdong. From the above, it was

  5. Control strategies for highly pathogenic avian influenza: a global perspective.

    PubMed

    Lubroth, J

    2007-01-01

    Comprehensive programmes for the prevention, detection and control of highly pathogenic avian influenza (HPAI) require a national dimension and relevant national legislation in which veterinary services can conduct surveillance, competent diagnosis and rapid response. Avian influenza was controlled and prevented by vaccination long before the current H5N1 crisis. The use of vaccine cannot be separated from other essential elements of a vaccination campaign, which include education in poultry production practices, such as hygiene, all in-all out production concepts, separation of species, biosecurity (bio-exclusion to keep the disease out and biocontainment to keep the disease from spreading once suspected or detected), competence in giving the vaccine and the role of vaccination teams, post-vaccination monitoring to ensure efficacy and to detect the circulation of wild-type virus, surveillance and buffer zones in outbreak areas, and performance indicators to determine when vaccination can cease. Reporting of disease can be improved through well-structured, adequately financed veterinary services and also by fair compensation for producers who suffer financial loss. A rapid response to suspected cases of HPAI should be ensured in simulation exercises involving various sectors of the food production and marketing chain, policy-makers, official veterinary structures and other government personnel. As for other transboundary animal diseases, national approaches must be part of a regional strategy and regional networks for cooperation and information sharing, which in turn reflect global policies and international standards, such as the quality of vaccines, reporting obligations, humane interventions, cleaning and disinfection methods, restocking times, monitoring and safe trade. PMID:18411931

  6. Domestic pigs have low susceptibility to H5N1 highly pathogenic avian influenza viruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background. Genetic reassortment of H5N1 highly pathogenic avian influenza viruses (HPAI) with currently circulating human influenza A strains is one possibility that could lead to efficient human-to-human transmissibility. Domestic pigs which are susceptible to infection with both human and avian ...

  7. Current status and future needs in diagnostics and vaccines for high pathogenicity avian influenza

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Since 1959, 31 epizootics of high pathogenicity avian influenza (HPAI) have occurred in birds. Rapid detection and accurate identification of HPAI has been critical to controlling such epizootics in poultry. Specific paradigms for the detection and diagnosis of avian influenza virus (AIV) in poultry...

  8. Susceptibility of wood ducks to H5N1 highly pathogenic avian influenza virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Since 2002, H5N1 highly pathogenic avian influenza (HPAI) viruses have caused mortality in numerous species of wild birds; this is atypical for avian influenza virus (AIV) infections in wild birds, especially for species in the Order Anseriformes. Although these infections document the susceptibili...

  9. Impact of poultry vaccines on control of H5N1 high pathogenicity avian influenza

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Use of vaccines against avian influenza (AI) have been sporadic in poultry until 2002 when the H5N1 high pathogenicity avian influenza (HPAI) spread from China to Hong Kong, and then multiple southeast Asian countries in 2003-2004, and to Europe in 2005, and Africa in 2006. Over the past 40 years, ...

  10. The avian and mammalian host range of highly pathogenic avian H5N1 influenza

    PubMed Central

    Kaplan, Bryan S.; Webby, Richard J.

    2013-01-01

    Highly pathogenic H5N1 influenza viruses have been isolated from a number of avian and mammalian species. Despite intensive control measures the number of human and animal cases continues to increase. A more complete understanding of susceptible species and of contributing environmental and molecular factors is crucial if we are to slow the rate of new cases. H5N1 is currently endemic in domestic poultry in only a handful of countries with sporadic and unpredictable spread to other countries. Close contact of terrestrial bird or mammalian species with infected poultry/waterfowl or their biological products is the major route for interspecies transmission. Intra-species transmission of H5N1 in mammals, including humans, has taken place on a limited scale though it remains to be seen if this will change; recent laboratory studies suggest that it is indeed possible. Here we review the avian and mammalian species that are naturally susceptible to H5N1 infection and the molecular factors associated with its expanded host range. PMID:24025480

  11. Highly pathogenic avian influenza viruses and generation of novel reassortants,United States, 2014–2015

    USGS Publications Warehouse

    Dong-Hun Lee; Justin Bahl; Mia Kim Torchetti; Mary Lea Killian; Ip, Hon S.; David E Swayne

    2016-01-01

    Asian highly pathogenic avian influenza A(H5N8) viruses spread into North America in 2014 during autumn bird migration. Complete genome sequencing and phylogenetic analysis of 32 H5 viruses identified novel H5N1, H5N2, and H5N8 viruses that emerged in late 2014 through reassortment with North American low-pathogenicity avian influenza viruses.

  12. Highly Pathogenic Avian Influenza Viruses and Generation of Novel Reassortants, United States, 2014–2015

    PubMed Central

    Lee, Dong-Hun; Bahl, Justin; Torchetti, Mia Kim; Killian, Mary Lea; Ip, Hon S.; DeLiberto, Thomas J.

    2016-01-01

    Asian highly pathogenic avian influenza A(H5N8) viruses spread into North America in 2014 during autumn bird migration. Complete genome sequencing and phylogenetic analysis of 32 H5 viruses identified novel H5N1, H5N2, and H5N8 viruses that emerged in late 2014 through reassortment with North American low-pathogenicity avian influenza viruses. PMID:27314845

  13. Highly Pathogenic Avian Influenza Viruses and Generation of Novel Reassortants, United States, 2014-2015.

    PubMed

    Lee, Dong-Hun; Bahl, Justin; Torchetti, Mia Kim; Killian, Mary Lea; Ip, Hon S; DeLiberto, Thomas J; Swayne, David E

    2016-07-01

    Asian highly pathogenic avian influenza A(H5N8) viruses spread into North America in 2014 during autumn bird migration. Complete genome sequencing and phylogenetic analysis of 32 H5 viruses identified novel H5N1, H5N2, and H5N8 viruses that emerged in late 2014 through reassortment with North American low-pathogenicity avian influenza viruses. PMID:27314845

  14. High doses of highly pathogenic avian influenza virus in chicken meat are required to infect ferrets

    Technology Transfer Automated Retrieval System (TEKTRAN)

    H5N1 high pathogenicity avian influenza viruses (HPAIV) have caused natural and experimental infections in various animals through consumption of infected bird carcasses and meat. However, little is known about the quantity of virus required and if all HPAIV subtypes can cause infections following c...

  15. Increased virulence in ducks of H5N1 highly pathogenic avian influenza viruses from Egypt

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The pathogenicity of H5N1 highly pathogenic avian influenza (HPAI) viruses in domestic ducks has increased over time. These changes in virulence have been reported with viruses from countries with high population of domestic ducks. Since 2006, H5N1 HPAI outbreaks in Egypt have been occurring in po...

  16. Quantifying Transmission of Highly Pathogenic and Low Pathogenicity H7N1 Avian Influenza in Turkeys

    PubMed Central

    Saenz, Roberto A.; Essen, Steve C.; Brookes, Sharon M.; Iqbal, Munir; Wood, James L. N.; Grenfell, Bryan T.; McCauley, John W.; Brown, Ian H.; Gog, Julia R.

    2012-01-01

    Outbreaks of avian influenza in poultry can be devastating, yet many of the basic epidemiological parameters have not been accurately characterised. In 1999–2000 in Northern Italy, outbreaks of H7N1 low pathogenicity avian influenza virus (LPAI) were followed by the emergence of H7N1 highly pathogenic avian influenza virus (HPAI). This study investigates the transmission dynamics in turkeys of representative HPAI and LPAI H7N1 virus strains from this outbreak in an experimental setting, allowing direct comparison of the two strains. The fitted transmission rates for the two strains are similar: 2.04 (1.5–2.7) per day for HPAI, 2.01 (1.6–2.5) per day for LPAI. However, the mean infectious period is far shorter for HPAI (1.47 (1.3–1.7) days) than for LPAI (7.65 (7.0–8.3) days), due to the rapid death of infected turkeys. Hence the basic reproductive ratio, is significantly lower for HPAI (3.01 (2.2–4.0)) than for LPAI (15.3 (11.8–19.7)). The comparison of transmission rates and are critically important in relation to understanding how HPAI might emerge from LPAI. Two competing hypotheses for how transmission rates vary with population size are tested by fitting competing models to experiments with differing numbers of turkeys. A model with frequency-dependent transmission gives a significantly better fit to experimental data than density-dependent transmission. This has important implications for extrapolating experimental results from relatively small numbers of birds to the commercial poultry flock size, and for how control, including vaccination, might scale with flock size. PMID:23028760

  17. Highly Pathogenic Avian Influenza Virus Infection of Mallards with Homo- and Heterosubtypic Immunity Induced by Low Pathogenic Avian Influenza Viruses

    PubMed Central

    Fereidouni, Sasan R.; Starick, Elke; Beer, Martin; Wilking, Hendrik; Kalthoff, Donata; Grund, Christian; Häuslaigner, Rafaela; Breithaupt, Angele; Lange, Elke; Harder, Timm C.

    2009-01-01

    The potential role of wild birds as carriers of highly pathogenic avian influenza virus (HPAIV) subtype H5N1 is still a matter of debate. Consecutive or simultaneous infections with different subtypes of influenza viruses of low pathogenicity (LPAIV) are very common in wild duck populations. To better understand the epidemiology and pathogenesis of HPAIV H5N1 infections in natural ecosystems, we investigated the influence of prior infection of mallards with homo- (H5N2) and heterosubtypic (H4N6) LPAIV on exposure to HPAIV H5N1. In mallards with homosubtypic immunity induced by LPAIV infection, clinical disease was absent and shedding of HPAIV from respiratory and intestinal tracts was grossly reduced compared to the heterosubtypic and control groups (mean GEC/100 µl at 3 dpi: 3.0×102 vs. 2.3×104 vs. 8.7×104; p<0.05). Heterosubtypic immunity induced by an H4N6 infection mediated a similar but less pronounced effect. We conclude that the epidemiology of HPAIV H5N1 in mallards and probably other aquatic wild bird species is massively influenced by interfering immunity induced by prior homo- and heterosubtypic LPAIV infections. PMID:19693268

  18. Highly pathogenic avian influenza virus (H5N1) in experimentally infected adult mute swans.

    PubMed

    Kalthoff, Donata; Breithaupt, Angele; Teifke, Jens P; Globig, Anja; Harder, Timm; Mettenleiter, Thomas C; Beer, Martin

    2008-08-01

    Adult, healthy mute swans were experimentally infected with highly pathogenic avian influenza virus A/Cygnus cygnus/Germany/R65/2006 subtype H5N1. Immunologically naive birds died, whereas animals with preexisting, naturally acquired avian influenza virus-specific antibodies became infected asymptomatically and shed virus. Adult mute swans are highly susceptible, excrete virus, and can be clinically protected by preexposure immunity. PMID:18680652

  19. Emergence of a Highly Pathogenic Avian Influenza Virus from a Low-Pathogenic Progenitor

    PubMed Central

    Fusaro, Alice; Nelson, Martha I.; Bonfanti, Lebana; Mulatti, Paolo; Hughes, Joseph; Murcia, Pablo R.; Schivo, Alessia; Valastro, Viviana; Moreno, Ana; Holmes, Edward C.; Cattoli, Giovanni

    2014-01-01

    ABSTRACT Avian influenza (AI) viruses of the H7 subtype have the potential to evolve into highly pathogenic (HP) viruses that represent a major economic problem for the poultry industry and a threat to global health. However, the emergence of HPAI viruses from low-pathogenic (LPAI) progenitor viruses currently is poorly understood. To investigate the origin and evolution of one of the most important avian influenza epidemics described in Europe, we investigated the evolutionary and spatial dynamics of the entire genome of 109 H7N1 (46 LPAI and 63 HPAI) viruses collected during Italian H7N1 outbreaks between March 1999 and February 2001. Phylogenetic analysis revealed that the LPAI and HPAI epidemics shared a single ancestor, that the HPAI strains evolved from the LPAI viruses in the absence of reassortment, and that there was a parallel emergence of mutations among HPAI and later LPAI lineages. Notably, an ultradeep-sequencing analysis demonstrated that some of the amino acid changes characterizing the HPAI virus cluster were already present with low frequency within several individual viral populations from the beginning of the LPAI H7N1 epidemic. A Bayesian phylogeographic analysis revealed stronger spatial structure during the LPAI outbreak, reflecting the more rapid spread of the virus following the emergence of HPAI. The data generated in this study provide the most complete evolutionary and phylogeographic analysis of epidemiologically intertwined high- and low-pathogenicity viruses undertaken to date and highlight the importance of implementing prompt eradication measures against LPAI to prevent the appearance of viruses with fitness advantages and unpredictable pathogenic properties. IMPORTANCE The Italian H7 AI epidemic of 1999 to 2001 was one of the most important AI outbreaks described in Europe. H7 viruses have the ability to evolve into HP forms from LP precursors, although the mechanisms underlying this evolutionary transition are only poorly

  20. Thermal inactivation of high pathogenicity avian influenza viruses in chicken meat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High pathogenicity avian influenza (HPAI) viruses cause severe disease with high mortality in chickens and related gallinaceous poultry. Some HPAI viruses cause systemic infections and replicate to high titers in skeletal muscle fibers. To prevent transmission of these viruses through contaminate...

  1. Assessment of national strategies for control of high pathogenicity avian influenza and low pathogenicity notifiable avian influenza in poultry, with emphasis on vaccines and vaccination

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Twenty-nine distinct epizootics of highly pathogenic avian influenza (HPAI) have occurred since 1959. The H5N1 HPAI panzootic affecting Asia, Africa and Eastern Europe has been the largest among these, affecting poultry and/or wild birds in 63 countries. Historically, control strategies have focus...

  2. Single vaccination provides limited protection to ducks and geese against H5N1 high pathogenicity avian influenza virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Since 2002, high pathogenicity avian influenza has spread from Asia to Europe and into Africa causing the largest epizootic of high pathogenicity avian influenza (HPAI) of the last 50 years including infecting domestic and wild waterfowl. Our study was conducted to investigate whether single vaccina...

  3. Survivability of Eurasian H5N1 highly pathogenic avian influenza viruses in water varies between strains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aquatic habitats play critical role in the transmission and maintenance of low pathogenic avian influenza (LPAI) viruses in wild waterfowl; however the importance of these environments in the ecology of H5N1 highly pathogenic avian influenza (HPAI) viruses is unknown. In laboratory-based studies, L...

  4. Experimental infection of mallard ducks with different subtype H5 and H7 highly pathogenic avian influenza viruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Highly pathogenic avian influenza viruses (HPAIV’s) remain a threat to poultry worldwide. Avian influenza viruses, including HPAIV, are usually non-pathogenic for ducks and other wild aquatic birds, with the exception of some Asian lineage H5N1 HPAIVs which can cause severe disease in ducks. With ...

  5. The role of vaccines and vaccination in high pathogenicity avian influenza control and eradication

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thirty epizootics of high pathogenicity avian influenza (HPAI) have occurred in the world since influenza was identified as the etiology in 1955. Twenty-four of the epizootics were eradicated by using stamping-out programs composed of education, biosecurity, rapid diagnostics and surveillance, and ...

  6. Airborne transmission of H5N1 high pathogenicity avian influenza viruses during simulated home slaughter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Most H5N1 human infections have occurred following exposure to H5N1 high pathogenicity avian influenza (HPAI) virus-infected poultry, especially when poultry are home slaughtered or slaughtered in live poultry markets. Previous studies have demonstrated that slaughter of clade 1 isolate A/Vietnam/1...

  7. Global expansion of high pathogenicity avian influenza: implications on prevention and control programs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The H5N1 high pathogenicity avian influenza (HPAI) virus emerged in China during 1996 and has spread to infect poultry and/or wild birds in 63 countries during the past 18 years. The majority of the recent outbreaks of H5N1 HPAI have occurred in Indonesia, Egypt, Vietnam, and Bangladesh, in decreas...

  8. Global expansion of high pathogenicity avian influenza: implications on prevention and control programs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The H5N1 high pathogenicity avian influenza (HPAI) virus emerged in China during 1996 and has spread to infect poultry and/or wild birds in 63 countries during the past 18 years. The majority of the recent outbreaks of H5N1 HPAI have occurred in Indonesia, Egypt, Vietnam, and Bangladesh, in decreasi...

  9. Chlorine inactivation of H5N1 highly pathogenic avian influenza virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two Asian strains of H5N1 highly pathogenic avian influenza virus were studied to determine their resistance to chlorination. Experiments were conducted at two pH levels (pH 7 and 8) at 5 C. CT (chlorine concentration x exposure time) values were calculated for different levels of inactivation. R...

  10. Evolution of highly pathogenic avian influenza H5N1 viruses in Egypt indicating progressive adaptation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Highly pathogenic avian influenza (HPAI) virus of the H5N1 subtype was first diagnosed in poultry in Egypt in 2006, and since then the disease became enzootic in poultry throughout the country affecting the poultry industry and village poultry as well as infecting humans. Vaccination has been used ...

  11. Global assessments of high pathogenicity avian influenza control, including vaccination programs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There have been 32 epizootics of H5 or H7 high pathogenicity avian influenza (HPAI) from 1959 to early 2013. The largest has been the H5N1 HPAI which began in Guangdong China in 1996, and has affected over 250 million poultry and/or wild birds in 63 countries. For most countries, stamping-out progra...

  12. Highly pathogenic avian influenza virus and generation of novel reassortants, United States, 2014-2015

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Asian highly pathogenic avian influenza A(H5N8) viruses spread into North America in 2014 during autumn bird migration. Complete genome sequencing and phylogenetic analysis of 32 H5 viruses identified novel H5N1, H5N2, and H5N8 viruses that emerged in late 2014 through reassortment with North Americ...

  13. Susceptibility of wood ducks (Aix sponsa) to H5N1 highly pathogenic avian influenza virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Since 2002, H5N1 highly pathogenic avian influenza (HPAI) viruses have caused mortality in numerous species of wild birds. Although these infections document the susceptibility of wild birds to H5N1 HPAI viruses and the spillover of these viruses from infected domestic birds to wild birds, it is un...

  14. Update on H7N3 highly pathogenic avian influenza in Mexico

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In June of 2012, an H7N3 highly pathogenic avian influenza (HPAI) virus was identified as the cause of a severe disease outbreak in commercial laying chicken farms in Jalisco, Mexico. This region is responsible for approximately 55% of the eggs produced in Mexico, and infection with this virus seve...

  15. Human Infection with Highly Pathogenic A(H7N7) Avian Influenza Virus, Italy, 2013

    PubMed Central

    Rossini, Giada; Facchini, Marzia; Vaccari, Gabriele; Di Trani, Livia; Di Martino, Angela; Gaibani, Paolo; Vocale, Caterina; Cattoli, Giovanni; Bennett, Michael; McCauley, John W.; Rezza, Giovanni; Moro, Maria Luisa; Rangoni, Roberto; Finarelli, Alba Carola; Landini, Maria Paola; Castrucci, Maria Rita; Donatelli, Isabella

    2014-01-01

    During an influenza A(H7N7) virus outbreak among poultry in Italy during August–September 2013, infection with a highly pathogenic A(H7N7) avian influenza virus was diagnosed for 3 poultry workers with conjunctivitis. Genetic analyses revealed that the viruses from the humans were closely related to those from chickens on affected farms. PMID:25271444

  16. High pathogenicity avian influenza virus in the reproductive tract of chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Infection with high pathogenicity avian influenza virus (HPAIV) has been associated with a wide range of clinical manifestations in poultry including severe depression in egg production and isolation of HPAIV from eggs laid by infected hens. To evaluate the pathobiology in the reproductive tract of...

  17. Novel Eurasian Highly Pathogenic Avian Influenza A H5 Viruses in Wild Birds, Washington, USA, 2014

    PubMed Central

    Ip, Hon S.; Crespo, Rocio; Kohrs, Paul; DeBruyn, Paul; Mansfield, Kristin G.; Baszler, Timothy; Badcoe, Lyndon; Bodenstein, Barbara; Shearn-Bochsler, Valerie; Killian, Mary Lea; Pedersen, Janice C.; Hines, Nichole; Gidlewski, Thomas; DeLiberto, Thomas; Sleeman, Jonathan M.

    2015-01-01

    Novel Eurasian lineage avian influenza A(H5N8) virus has spread rapidly and globally since January 2014. In December 2014, H5N8 and reassortant H5N2 viruses were detected in wild birds in Washington, USA, and subsequently in backyard birds. When they infect commercial poultry, these highly pathogenic viruses pose substantial trade issues. PMID:25898265

  18. Detection and prevention of highly pathogenic avian influenza in communities with high poultry disease burdens.

    PubMed

    Cardona, Carol J; Byarugaba, Denis; Mbuthia, Paul; Aning, George; Sourou, Sabi; Bunn, David A; Msoffe, Peter L

    2010-03-01

    The implementation of strategies to detect, prevent, and control highly pathogenic avian influenza (HPAI) in developing countries presents several challenges, one of which is the presence of other diseases in poultry populations. Training workshops in developing countries using the Avian Flu School have revealed that in areas with heavy Newcastle disease burdens, smallholder poultry keepers do not recognize HPAI as an immediate threat. We have developed a strategy to address the more proximal needs and priorities of communities with free-ranging poultry flocks as a means to create value in poultry, and thus to improve disease detection and prevention overall. To this end, we have created the Poultry Health and Well-Being for Development project, which trains graduate veterinarians and paraprofessionals in poultry disease diagnosis, control, and treatment. These trainees then serve their local communities to improve poultry health and to implement disease detection and management programs. PMID:20521727

  19. Highly pathogenic H5N1 avian influenza viruses differentially affect gene expression in primary chicken embryo fibroblasts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Highly pathogenic avian influenza viruses cause severe clinical disease associated with high mortality in chickens and other gallinaceous species. However, the mechanism by which different strains of avian influenza viruses overcome host response in birds is still unclear. In the present study, ch...

  20. Wild bird surveillance for highly pathogenic avian influenza H5 in North America

    USGS Publications Warehouse

    Flint, Paul L.; Pearce, John M.; Franson, J. Christian; Derksen, Dirk V.

    2015-01-01

    It is unknown how the current Asian origin highly pathogenic avian influenza H5 viruses arrived, but these viruses are now poised to become endemic in North America. Wild birds harbor these viruses and have dispersed them at regional scales. What is unclear is how the viruses may be moving from the wild bird reservoir into poultry holdings. Active surveillance of live wild birds is likely the best way to determine the true distribution of these viruses. We also suggest that sampling be focused on regions with the greatest risk for poultry losses and attempt to define the mechanisms of transfer to enhance biosecurity. Responding to the recent outbreaks of highly pathogenic avian influenza in North America requires an efficient plan with clear objectives and potential management outcomes.

  1. Microarray analysis following infection with highly pathogenic avian influenza H5N1 virus in naive and vaccinated SPF chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza (AI) is a viral disease of poultry that remains a constant threat to commercial poultry throughout the world. Within the last few years, outbreaks of highly pathogenic avian influenza (HPAI) H5N1 have originated in Southeast Asia and spread to several European, Middle Eastern, and A...

  2. Evolution of highly pathogenic avian H5N1 influenza viruses

    SciTech Connect

    Macken, Catherine A; Green, Margaret A

    2009-01-01

    Highly pathogenic avian H5N1 viruses have circulated in Southeast Asia for more than a decade, are now endemic in parts of this region, and have also spread to more than 60 countries on three continents. The evolution of these viruses is characterized by frequent reassortment events that have created a significant number of different genotypes, both transient and longer lasting. However, fundamental questions remain about the generation and perpetuation of this substantial genetic diversity. These gaps in understanding may, in part, be due to the difficulties of genotyping closely related viruses, and limitations in the size of the data sets used in analysis. Using our recently published novel genotyping procedure ('two-time test'), which is amenable to high throughput analysis and provides an increased level of resolution relative to previous analyses, we propose a detailed model for the evolution and diversification of avian H5N1 viruses. Our analysis suggests that (i) all current H5N1 genotypes are derived from a single, clearly defined sequence of initial reassortment events; (ii) reassortment of the polymerase and NP genes may have played an important role in avian H5N1 virus evolution; (iii) the current genotype Z viruses have diverged into three distinguishable sub-genotypes in the absence of reassortment; (iv) some potentially significant molecular changes appear to be correlated with particular genotypes (for example, reassortment of the internal genes is often paralleled by a change in the HA clade); and (v) as noted in earlier studies of avian influenza A virus evolution, novel segments are typically derived from different donors (i.e., there is no obvious pattern of gene linkage in reassortment). The model of avian H5N1 viral evolution by reassortment and mutation that emerges from our study provides a context within which significant amino acid changes may be revealed; it also may help in predicting the 'success' of newly emerging avian H5N1 viruses.

  3. Survey for Highly Pathogenic Avian Influenza from Poultry in Two Northeastern States, Nigeria

    PubMed Central

    Musa, Ibrahim Waziri; Abdu, Paul Ayuba; Sackey, Anthony Kojo Bedu; Oladele, Sunday Blessing

    2013-01-01

    Highly pathogenic avian influenza (HPAI) is a major global zoonosis. It has a complex ecological distribution with almost unpredictable epidemiological features thus placing it topmost in the World Organization for Animal Health list A poultry diseases. Structured questionnaire survey of poultry farmer's knowledge, attitudes, and practices (KAP) in two Nigerian states revealed the presence of risk farming practices that may enable avian influenza high chance of introduction/reintroduction. There existed significant statistical association between farmer's educational levels and AI awareness and zoonotic awareness (P < 0.005). Poultry rearing of multiage and species (81%), multiple sources of stock (62%), inadequate dead-bird disposal (71%), and access to live bird markets (LBMs) (62%) constituted major biosecurity threats in these poultry farming communities. Haemagglutination inhibition (HI) test detected antibodies against H5 avian influenza (AI) in 8 of the 400 sera samples; rapid antigen detection test kit (RADTK) was negative for all the 400 cloaca and trachea swabs. These results and other poultry diseases similar to AI observed in this study could invariably affect avian influenza early detection, reporting, and control. We recommend strong policy initiatives towards poultry farmers' attitudinal change and increasing efforts on awareness of the implications of future HPAI outbreaks in Nigeria. PMID:23936731

  4. The influence of economic indicators, poultry density and the performance of Veterinary Services on the control of high-pathogenicity avian influenza in poultry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High pathogenicity avian influenza (HPAI) and low pathogenicity notifiable avian influenza (LPNAI) in poultry are notifiable to World Organisation for Animal Health (OIE) by its member countries. There may be variation between countries’ responses to avian influenza (AI) outbreak situations based o...

  5. Homo- and Heterosubtypic Low Pathogenic Avian Influenza Exposure on H5N1 Highly Pathogenic Avian Influenza Virus Infection in Wood Ducks (Aix sponsa)

    PubMed Central

    Costa, Taiana P.; Brown, Justin D.; Howerth, Elizabeth W.; Stallknecht, David E.; Swayne, David E.

    2011-01-01

    Wild birds in the Orders Anseriformes and Charadriiformes are the natural reservoirs for avian influenza (AI) viruses. Although they are often infected with multiple AI viruses, the significance and extent of acquired immunity in these populations is not understood. Pre-existing immunity to AI virus has been shown to modulate the outcome of a highly pathogenic avian influenza (HPAI) virus infection in multiple domestic avian species, but few studies have addressed this effect in wild birds. In this study, the effect of pre-exposure to homosubtypic (homologous hemagglutinin) and heterosubtypic (heterologous hemagglutinin) low pathogenic avian influenza (LPAI) viruses on the outcome of a H5N1 HPAI virus infection in wood ducks (Aix sponsa) was evaluated. Pre-exposure of wood ducks to different LPAI viruses did not prevent infection with H5N1 HPAI virus, but did increase survival associated with H5N1 HPAI virus infection. The magnitude of this effect on the outcome of the H5N1 HPAI virus infection varied between different LPAI viruses, and was associated both with efficiency of LPAI viral replication in wood ducks and the development of a detectable humoral immune response. These observations suggest that in naturally occurring outbreaks of H5N1 HPAI, birds with pre-existing immunity to homologous hemagglutinin or neuraminidase subtypes of AI virus may either survive H5N1 HPAI virus infection or live longer than naïve birds and, consequently, could pose a greater risk for contributing to viral transmission and dissemination. The mechanisms responsible for this protection and/or the duration of this immunity remain unknown. The results of this study are important for surveillance efforts and help clarify epidemiological data from outbreaks of H5N1 HPAI virus in wild bird populations. PMID:21253608

  6. Living with avian FLU--Persistence of the H5N1 highly pathogenic avian influenza virus in Egypt.

    PubMed

    Njabo, Kevin Yana; Zanontian, Linda; Sheta, Basma N; Samy, Ahmed; Galal, Shereen; Schoenberg, Frederic Paik; Smith, Thomas B

    2016-05-01

    H5N1 highly pathogenic avian influenza virus (HPAIV) continues to cause mortality in poultry and threaten human health at a panzootic scale in Egypt since it was reported in 2006. While the early focus has been in Asia, recent evidence suggests that Egypt is an emerging epicenter for the disease. Despite control measures, epizootic transmission of the disease continues. Here, we investigate the persistence of HPAIV across wild passerine birds and domestic poultry between 2009 and 2012 and the potential risk for continuous viral transmission in Egypt. We use a new weighted cross J-function to investigate the degree and spatial temporal nature of the clustering between sightings of infected birds of different types, and the risk of infection associated with direct contact with infected birds. While we found no infection in wild birds, outbreaks occurred year round between 2009 and 2012, with a positive interaction between chickens and ducks. The disease was more present in the years 2010 and 2011 coinciding with the political unrest in the country. Egypt thus continues to experience endemic outbreaks of avian influenza HPAIV in poultry and an increased potential risk of infection to other species including humans. With the current trends, the elimination of the HPAIV infection is highly unlikely without a complete revamp of current policies. The application of spatial statistics techniques to these types of data may help us to understand the characteristics of the disease and may subsequently allow practitioners to explore possible preventive solutions. PMID:27066713

  7. Dynamics of low and high pathogenic avian influenza in wild and domestic bird populations.

    PubMed

    Tuncer, Necibe; Torres, Juan; Martcheva, Maia; Barfield, Michael; Holt, Robert D

    2016-01-01

    This paper introduces a time-since-recovery structured, multi-strain, multi-population model of avian influenza. Influenza A viruses infect many species of wild and domestic birds and are classified into two groups based on their ability to cause disease: low pathogenic avian influenza (LPAI) and high pathogenic avian influenza (HPAI). Prior infection with LPAI provides partial immunity towards HPAI. The model introduced in this paper structures LPAI-recovered birds (wild and domestic) with time-since-recovery and includes cross-immunity towards HPAI that can fade with time. The model has a unique disease-free equilibrium (DFE), unique LPAI-only and HPAI-only equilibria and at least one coexistence equilibrium. We compute the reproduction numbers of LPAI ([Formula: see text]) and HPAI ([Formula: see text]) and show that the DFE is locally asymptotically stable when [Formula: see text] and [Formula: see text]. A unique LPAI-only (HPAI-only) equilibrium exists when [Formula: see text] ([Formula: see text]) and it is locally asymptotically stable if HPAI (LPAI) cannot invade the equilibrium, that is, if the invasion number [Formula: see text] ([Formula: see text]). We show using numerical simulations that the ODE version of the model, which is obtained by discarding the time-since-recovery structures (making cross-immunity constant), can exhibit oscillations, and also that the pathogens LPAI and HPAI can coexist with sustained oscillations in both populations. Through simulations, we show that even if both populations (wild and domestic) are sinks when alone, LPAI and HPAI can persist in both populations combined. Thus, reducing the reproduction numbers of LPAI and HPAI in each population to below unity is not enough to eradicate the disease. The pathogens can continue to coexist in both populations unless transmission between the populations is reduced. PMID:26667351

  8. Isolation and characterization of highly pathogenic avian influenza virus subtype H5N1 from donkeys

    PubMed Central

    2010-01-01

    Background The highly pathogenic H5N1 is a major avian pathogen that crosses species barriers and seriously affects humans as well as some mammals. It mutates in an intensified manner and is considered a potential candidate for the possible next pandemic with all the catastrophic consequences. Methods Nasal swabs were collected from donkeys suffered from respiratory distress. The virus was isolated from the pooled nasal swabs in specific pathogen free embryonated chicken eggs (SPF-ECE). Reverse transcriptase polymerase chain reaction (RT-PCR) and sequencing of both haemagglutingin and neuraminidase were performed. H5 seroconversion was screened using haemagglutination inhibition (HI) assay on 105 donkey serum samples. Results We demonstrated that H5N1 jumped from poultry to another mammalian host; donkeys. Phylogenetic analysis showed that the virus clustered within the lineage of H5N1 from Egypt, closely related to 2009 isolates. It harboured few genetic changes compared to the closely related viruses from avian and humans. The neuraminidase lacks oseltamivir resistant mutations. Interestingly, HI screening for antibodies to H5 haemagglutinins in donkeys revealed high exposure rate. Conclusions These findings extend the host range of the H5N1 influenza virus, possess implications for influenza virus epidemiology and highlight the need for the systematic surveillance of H5N1 in animals in the vicinity of backyard poultry units especially in endemic areas. PMID:20398268

  9. Characaterization of H5N1 highly pathogenic avian influenza viruses isolated from poultry in Pakistan 2006-2008

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nine avian influenza viruses (AIV), H5N1 subtype, were isolated from dead poultry in the Karachi region of Pakistan from 2006-2008. The intravenous pathogenicity indices and HA protein cleavage sites of all nine viruses were consistent with highly pathogenic AIV. Based on phylogenetic analysis of ...

  10. Innate immune responses to infection with H5N1 highly pathogenic avian influenza virus in different duck species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ducks have been implicated in the dissemination and evolution of H5N1 highly pathogenic avian influenza (HPAI) viruses. Differences in pathogenicity and response to vaccination have been observed between different duck species. The innate immune system is responsible for controlling viruses during t...

  11. 2.1 Natural History of Highly Pathogenic Avian Influenza H5N1

    PubMed Central

    Sonnberg, Stephanie; Webby, Richard J.; Webster, Robert G.

    2013-01-01

    The ecology of highly pathogenic avian influenza (HPAI) H5N1 has significantly changed from sporadic outbreaks in terrestrial poultry to persistent circulation in terrestrial and aquatic poultry and potentially in wild waterfowl. A novel genotype of HPAI H5N1 arose in 1996 in southern China and through ongoing mutation, reassortment, and natural selection, has diverged into distinct lineages and expanded into multiple reservoir hosts. The evolution of Goose/Guangdong-lineage highly pathogenic H5N1 viruses is ongoing: while stable interactions exist with some reservoir hosts, these viruses are continuing to evolve and adapt to others, and pose an un-calculable risk to sporadic hosts, including humans. PMID:23735535

  12. Models of highly pathogenic avian influenza epidemics in commercial poultry flocks in Nigeria and Ghana

    PubMed Central

    Pelletier, Sky T. K.; Rorres, Chris; Macko, Peter C.; Peters, Sarah

    2013-01-01

    State-scale and premises-scale gravity models for the spread of highly pathogenic avian influenza (H5N1) in Nigeria and Ghana were used to provide a basis for risk maps for future epidemics and to compare and rank plausible culling and vaccination strategies for control. Maximum likelihood methods were used to fit the models to the 2006–2007 outbreaks. The sensitivity and specificity of the state-scale model-generated probabilities that any given state would be involved in an epidemic were each 57 %. The premises-based model indicated that reactive, countrywide vaccination strategies, in which the order in which flocks are vaccinated was strictly determined by known risk factors for infection, were more effective in reducing the final size of the epidemic and the epidemic impact than vaccinating flocks at random or ring vaccination. The model suggests that an introduction of highly pathogenic avian influenza (H5N1) into Ghana had a high chance (84 %) of causing a major outbreak. That this did not happen was most probably a result of the very swift Ghanaian response to news of the first introductions. PMID:22476732

  13. Variation in infectivity and adaptation of wild duck- and poultry-origin high pathogenicity and low pathogenicity avian influenza viruses for poultry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza (AI) viruses vary in their adaptation which impacts transmission between and infection of different bird species. We determine the intranasal mean bird infectious doses (BID50) for 11 high pathogenicity (HP) AI viruses for layer type chickens (LC), and three low pathogenicity (LP) A...

  14. Highly Pathogenic Avian Influenza H5N8 in Germany: Outbreak Investigations.

    PubMed

    Conraths, F J; Sauter-Louis, C; Globig, A; Dietze, K; Pannwitz, G; Albrecht, K; Höreth-Böntgen, D; Beer, M; Staubach, C; Homeier-Bachmann, T

    2016-02-01

    Epidemiological outbreak investigations were conducted in highly pathogenic avian influenza virus of the subtype H5N8 (HPAIV H5N8)-affected poultry holdings and a zoo to identify potential routes of entry of the pathogen via water, feedstuffs, animals, people, bedding material, other fomites (equipment, vehicles etc.) and the presence of wild birds near affected holdings. Indirect introduction of HPAIV H5N8 via material contaminated by infected wild bird seems the most reasonable explanation for the observed outbreak series in three commercial holdings in Mecklenburg-Western Pomerania and Lower Saxony, while direct contact to infected wild birds may have led to outbreaks in a zoo in Rostock and in two small free-range holdings in Anklam, Mecklenburg-Western Pomerania. PMID:26519355

  15. Assessment of reduced vaccine dose on efficacy of an inactivated avian influenza vaccine against an H5N1 high pathogenicity avian influenza virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza (AI) vaccines have emerged to be a viable emergency tool for use in a comprehensive strategy for dealing with high pathogenicity (HP) AI in developed countries. However, the available doses of inactivated AI vaccine are limited to national vaccine banks and inventory stocks of some ...

  16. Lemna (duckweed) expressed hemagglutinin from avian influenza H5N1 protects chickens against H5N1 high pathogenicity avian influenza virus challenge

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the last two decades, transgenic plants have been explored as safe and cost effective alternative expression platforms for producing recombinant proteins. In this study, a synthetic hemagglutinin (HA) gene from the high pathogenicity avian influenza (HPAI) virus A/chicken/Indonesia/7/2003 (H5N1)...

  17. Potency, efficacy, and antigenic mapping of H7 avian influenza virus vaccines against the 2012 H7N3 highly pathogenic avian influenza virus from Mexico

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the spring of 2012 an outbreak of H7N3 highly pathogenic (HP) avian influenza virus (AIV) occurred in poultry in Mexico. Vaccination was implemented as a control measure along with increased biosecurity and surveillance. At that time there was no commercially available H7 AIV vaccine in North Ame...

  18. Protection against H7N3 high pathogenicity avian influenza in chickens immunized with a recombinant fowlpox and an inactivated avian influenza vaccines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Beginning on June 2012, an H7N3 highly pathogenic avian influenza (HPAI) epizootic was reported in the State of Jalisco (Mexico), with some 22.4 million chickens that died, were slaughtered on affected farms or were preemptively culled on neighboring farms. In the current study, layer chickens were ...

  19. Reduction of high pathogenicity avian influenza virus in eggs from chickens once or twice vaccinated with an oil-emulsified inactivated H5 avian influenza vaccine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The negative impact of high pathogenicity avian influenza virus (HPAIV) infection on egg production and deposition of virus in eggs, as well as any protective effect of vaccination, is unknown. Individually housed non-vaccinated, sham-vaccinated and inactivated H5N9 vaccinated once or twice adult Wh...

  20. Protection of poultry against the 2012 Mexican H7N3 highly pathogenic avian influenza virus with inactivated H7 avian influenza vaccines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In June of 2012, an outbreak of highly pathogenic avian influenza (HPAI) H7N3 was reported poultry in Jalisco, Mexico. Since that time the virus has spread to the surrounding States of Guanajuato and Aguascalientes and new outbreaks continue to be reported. To date more than 25 million birds have di...

  1. Vaccine protection of turkeys against H5N1 highly pathogenic avian influenza virus with a recombinant HVT expressing the hemagglutinin gene of avian influenza

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Outbreaks of H5 highly pathogenic avian influenza (HPAI) in commercial poultry are a constant threat to animal health and food supplies. While vaccination can enhance protection and reduce the spread of disease, there is considerable evidence that the level of immunity required for protection varies...

  2. Modelling the wind-borne spread of highly pathogenic avian influenza virus between farms.

    PubMed

    Ssematimba, Amos; Hagenaars, Thomas J; de Jong, Mart C M

    2012-01-01

    A quantitative understanding of the spread of contaminated farm dust between locations is a prerequisite for obtaining much-needed insight into one of the possible mechanisms of disease spread between farms. Here, we develop a model to calculate the quantity of contaminated farm-dust particles deposited at various locations downwind of a source farm and apply the model to assess the possible contribution of the wind-borne route to the transmission of Highly Pathogenic Avian Influenza virus (HPAI) during the 2003 epidemic in the Netherlands. The model is obtained from a Gaussian Plume Model by incorporating the dust deposition process, pathogen decay, and a model for the infection process on exposed farms. Using poultry- and avian influenza-specific parameter values we calculate the distance-dependent probability of between-farm transmission by this route. A comparison between the transmission risk pattern predicted by the model and the pattern observed during the 2003 epidemic reveals that the wind-borne route alone is insufficient to explain the observations although it could contribute substantially to the spread over short distance ranges, for example, explaining 24% of the transmission over distances up to 25 km. PMID:22348042

  3. Newly Emergent Highly Pathogenic H5N9 Subtype Avian Influenza A Virus

    PubMed Central

    Yu, Yang; Wang, Xingbo; Jin, Tao; Wang, Hailong; Si, Weiying; Yang, Hui; Wu, Jiusheng; Yan, Yan; Liu, Guang; Sang, Xiaoyu; Wu, Xiaopeng; Gao, Yuwei; Xia, Xianzhu; Yu, Xinfen; Pan, Jingcao; Gao, George F.

    2015-01-01

    ABSTRACT The novel H7N9 avian influenza virus (AIV) was demonstrated to cause severe human respiratory infections in China. Here, we examined poultry specimens from live bird markets linked to human H7N9 infection in Hangzhou, China. Metagenomic sequencing revealed mixed subtypes (H5, H7, H9, N1, N2, and N9). Subsequently, AIV subtypes H5N9, H7N9, and H9N2 were isolated. Evolutionary analysis showed that the hemagglutinin gene of the novel H5N9 virus originated from A/Muscovy duck/Vietnam/LBM227/2012 (H5N1), which belongs to clade 2.3.2.1. The neuraminidase gene of the novel H5N9 virus originated from human-infective A/Hangzhou/1/2013 (H7N9). The six internal genes were similar to those of other H5N1, H7N9, and H9N2 virus strains. The virus harbored the PQRERRRKR/GL motif characteristic of highly pathogenic AIVs at the HA cleavage site. Receptor-binding experiments demonstrated that the virus binds α-2,3 sialic acid but not α-2,6 sialic acid. Identically, pathogenicity experiments also showed that the virus caused low mortality rates in mice. This newly isolated H5N9 virus is a highly pathogenic reassortant virus originating from H5N1, H7N9, and H9N2 subtypes. Live bird markets represent a potential transmission risk to public health and the poultry industry. IMPORTANCE This investigation confirms that the novel H5N9 subtype avian influenza A virus is a reassortant strain originating from H5N1, H7N9, and H9N2 subtypes and is totally different from the H5N9 viruses reported before. The novel H5N9 virus acquired a highly pathogenic H5 gene and an N9 gene from human-infecting subtype H7N9 but caused low mortality rates in mice. Whether this novel H5N9 virus will cause human infections from its avian host and become a pandemic subtype is not known yet. It is therefore imperative to assess the risk of emergence of this novel reassortant virus with potential transmissibility to public health. PMID:26085150

  4. Alterations in Hemagglutinin Receptor-Binding Specificity Accompany the Emergence of Highly Pathogenic Avian Influenza Viruses

    PubMed Central

    Mochalova, Larisa; Harder, Timm; Tuzikov, Alexander; Bovin, Nicolai; Wolff, Thorsten; Matrosovich, Mikhail; Schweiger, Brunhilde

    2015-01-01

    ABSTRACT Highly pathogenic avian influenza viruses (HPAIVs) of hemagglutinin H5 and H7 subtypes emerge after introduction of low-pathogenic avian influenza viruses (LPAIVs) from wild birds into poultry flocks, followed by subsequent circulation and evolution. The acquisition of multiple basic amino acids at the endoproteolytical cleavage site of the hemagglutinin (HA) is a molecular indicator for high pathogenicity, at least for infections of gallinaceous poultry. Apart from the well-studied significance of the multibasic HA cleavage site, there is only limited knowledge on other alterations in the HA and neuraminidase (NA) molecules associated with changes in tropism during the emergence of HPAIVs from LPAIVs. We hypothesized that changes in tropism may require alterations of the sialyloligosaccharide specificities of HA and NA. To test this hypothesis, we compared a number of LPAIVs and HPAIVs for their HA-mediated binding and NA-mediated desialylation of a set of synthetic receptor analogs, namely, α2-3-sialylated oligosaccharides. NA substrate specificity correlated with structural groups of NAs and did not correlate with pathogenic potential of the virus. In contrast, all HPAIVs differed from LPAIVs by a higher HA receptor-binding affinity toward the trisaccharides Neu5Acα2-3Galβ1-4GlcNAcβ (3′SLN) and Neu5Acα2-3Galβ1-3GlcNAcβ (SiaLec) and by the ability to discriminate between the nonfucosylated and fucosylated sialyloligosaccharides 3′SLN and Neu5Acα2-3Galβ1-4(Fucα1-3)GlcNAcβ (SiaLex), respectively. These results suggest that alteration of the receptor-binding specificity accompanies emergence of the HPAIVs from their low-pathogenic precursors. IMPORTANCE Here, we have found for the first time correlations of receptor-binding properties of the HA with a highly pathogenic phenotype of poultry viruses. Our study suggests that enhanced receptor-binding affinity of HPAIVs for a typical “poultry-like” receptor, 3′SLN, is provided by

  5. Characterization of a novel highly pathogenic H5N2 avian influenza virus isolated from a duck in eastern China.

    PubMed

    Wu, Haibo; Peng, Xiaorong; Xu, Lihua; Jin, Changzhong; Cheng, Linfang; Lu, Xiangyun; Xie, Tiansheng; Yao, Hangping; Wu, Nanping

    2014-12-01

    During surveillance for avian influenza viruses (AIVs) in live-poultry markets (LPMs) in eastern China in 2013, one H5N2 AIV was isolated from a duck. Phylogenetic analysis showed that the hemagglutinin of this strain belongs to clade 2.3.4 and received its genes from H5, H3 and H6 AIVs of poultry in China. The virulence of this strain was examined in chickens and mice, and it was found to be highly pathogenic in chickens but demonstrated moderate pathogenicity in mice. These results suggest that active surveillance of AIVs in LPMs should be used in an early warning system for avian influenza outbreaks. PMID:25091744

  6. Detection of H5N1 high pathogenicity avian influenza virus in meat and tracheal samples from experimentally infected chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Asian H5N1 highly pathogenic avian influenza (HPAI) virus causes a systemic disease with high mortality of poultry and is potentially zoonotic. In both chickens and ducks, the virus has been demonstrated to replicate in both cardiac and skeletal muscle cells. Experimentally, H5N1 HPAI virus ha...

  7. Distribution and dynamics of risk factors associated with highly pathogenic avian influenza H5N1

    PubMed Central

    Zhang, L.; Guo, Z. W.; Bridge, E. S.; Li, Y. M.; Xiao, X. M.

    2016-01-01

    SUMMARY Within China’s Poyang Lake region, close interactions between wild migratory birds and domestic poultry are common and provide an opportunity for the transmission and subsequent outbreaks of highly pathogenic avian influenza (HPAI) virus. We overlaid a series of ecological factors associated with HPAI to map the risk of HPAI in relation to natural and anthropogenic variables, and we identified two hotspots for potential HPAI outbreaks in the Poyang Lake region as well as three corridors connecting the two hotspot areas. In hotspot I, there is potential for migratory birds to bring new avian influenza (AI) strains that can reassort with existing strains to form new AI viruses. Hotspot II features high-density poultry production where outbreaks of endemic AI viruses are likely. The three communication corridors that link the two hotspots further promote HPAI H5N1 transmission and outbreaks and lead to the persistence of AI viruses in the Poyang Lake region. We speculate that the region’s unevenly distributed poultry supply-and-demand system might be a key factor inducing HPAI H5N1 transmission and outbreaks in the Poyang Lake region. PMID:23398949

  8. Distribution and dynamics of risk factors associated with highly pathogenic avian influenza H5N1.

    PubMed

    Zhang, L; Guo, Z W; Bridge, E S; Li, Y M; Xiao, X M

    2013-11-01

    Within China's Poyang Lake region, close interactions between wild migratory birds and domestic poultry are common and provide an opportunity for the transmission and subsequent outbreaks of highly pathogenic avian influenza (HPAI) virus. We overlaid a series of ecological factors associated with HPAI to map the risk of HPAI in relation to natural and anthropogenic variables, and we identified two hotspots for potential HPAI outbreaks in the Poyang Lake region as well as three corridors connecting the two hotspot areas. In hotspot I, there is potential for migratory birds to bring new avian influenza (AI) strains that can reassort with existing strains to form new AI viruses. Hotspot II features high-density poultry production where outbreaks of endemic AI viruses are likely. The three communication corridors that link the two hotspots further promote HPAI H5N1 transmission and outbreaks and lead to the persistence of AI viruses in the Poyang Lake region. We speculate that the region's unevenly distributed poultry supply-and-demand system might be a key factor inducing HPAI H5N1 transmission and outbreaks in the Poyang Lake region. PMID:23398949

  9. Pathogenicity of the Korean H5N8 highly pathogenic avian influenza virus in commercial domestic poultry species.

    PubMed

    Lee, Dong-Hun; Kwon, Jung-Hoon; Noh, Jin-Yong; Park, Jae-Keun; Yuk, Seong-Su; Erdene-Ochir, Tseren-Ochir; Lee, Joong-Bok; Park, Seung-Yong; Choi, In-Soo; Lee, Sang-Won; Song, Chang-Seon

    2016-01-01

    In 2014, the highly pathogenic avian influenza (HPAI) virus H5N8 triggered outbreaks in wild birds and poultry farms in South Korea. In the present study, we investigated the pathogenicity of the H5N8 HPAI virus, belonging to the clade 2.3.4.4, in different species of poultry. For this, we examined clinical signs and viral shedding levels following intranasal inoculation of the virus in 3-week-old commercial layer chickens and quails, 10-week-old Korean native chickens, and 8-week-old Muscovy ducks. Intranasal inoculation with 10(6.0) viruses at 50% egg-infective dose resulted in 100% mortality in the layer chickens (8/8) and quails (4/4), but 60% and 0% deaths in the Korean native chickens (3/5) and Muscovy ducks (0/4), respectively. In addition, transmission of the inoculated virus to contact-exposed birds was evident in all the species used in this study. Based on our results, we conclude that the H5N8 HPAI virus has lower pathogenicity and transmissibility in poultry species compared with previously reported H5N1 HPAI viruses. PMID:26814367

  10. Age at infection affects the pathogenicity of Asian highly pathogenic avian influenza H5N1 viruses in ducks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Asian H5N1 avian influenza (AI) viruses have changed from producing no disease or mild respiratory infections in ducks to some strains causing systemic disease and death. Differences in pathogenicity between four of these viruses as well as the effect of host age on the outcome of infection were...

  11. Controlling highly pathogenic avian influenza outbreaks: An epidemiological and economic model analysis.

    PubMed

    Backer, J A; van Roermund, H J W; Fischer, E A J; van Asseldonk, M A P M; Bergevoet, R H M

    2015-09-01

    Outbreaks of highly pathogenic avian influenza (HPAI) can cause large losses for the poultry sector and for animal disease controlling authorities, as well as risks for animal and human welfare. In the current simulation approach epidemiological and economic models are combined to compare different strategies to control highly pathogenic avian influenza in Dutch poultry flocks. Evaluated control strategies are the minimum EU strategy (i.e., culling of infected flocks, transport regulations, tracing and screening of contact flocks, establishment of protection and surveillance zones), and additional control strategies comprising pre-emptive culling of all susceptible poultry flocks in an area around infected flocks (1 km, 3 km and 10 km) and emergency vaccination of all flocks except broilers around infected flocks (3 km). Simulation results indicate that the EU strategy is not sufficient to eradicate an epidemic in high density poultry areas. From an epidemiological point of view, this strategy is the least effective, while pre-emptive culling in 10 km radius is the most effective of the studied strategies. But these two strategies incur the highest costs due to long duration (EU strategy) and large-scale culling (pre-emptive culling in 10 km radius). Other analysed pre-emptive culling strategies (i.e., in 1 km and 3 km radius) are more effective than the analysed emergency vaccination strategy (in 3 km radius) in terms of duration and size of the epidemics, despite the assumed optimistic vaccination capacity of 20 farms per day. However, the total costs of these strategies differ only marginally. Extending the capacity for culling substantially reduces the duration, size and costs of the epidemic. This study demonstrates the strength of combining epidemiological and economic model analysis to gain insight in a range of consequences and thus to serve as a decision support tool in the control of HPAI epidemics. PMID:26087887

  12. New reassortant H5N8 highly pathogenic avian influenza virus from waterfowl in Southern China

    PubMed Central

    Song, Yafen; Cui, Jin; Song, Hui; Ye, Jiaqi; Zhao, Zhishan; Wu, Siyu; Xu, Chenggang; Jiao, Peirong; Liao, Ming

    2015-01-01

    New reassortant H5N8 highly pathogenic avian influenza viruses were isolated from waterfowl in Southern China. Blast analysis demonstrated that the PB2 gene in these viruses were most closely related to A/wild duck/Shangdong/628/2011 (H5N1), while their NP genes were both more closely related to A/wild duck/Shandong/1/2011 (H5N1) and A/duck/Jiangsu/k1203/2010 (H5N8). However, the HA, NA, PB1, PA, M, and NS genes had the highest identity with A/duck/Jiangsu/k1203/2010 (H5N8). Phylogenetic analysis revealed that their HA genes belonged to the same GsGd H5 clade 2.3.4.4 detected in China in 2010. Therefore, we supposed that these H5N8 viruses might be novel reassortant viruses that have a H5N8 backbone while acquiring PB2 and NP genes from H5N1 viruses. This study is useful for better understanding the genetic and antigenic evolution of H5 avian influenza viruses in Southern China. PMID:26557113

  13. The Transmissibility of Highly Pathogenic Avian Influenza in Commercial Poultry in Industrialised Countries

    PubMed Central

    Garske, Tini; Clarke, Paul; Ghani, Azra C.

    2007-01-01

    Background With the increased occurrence of outbreaks of H5N1 worldwide there is concern that the virus could enter commercial poultry farms with severe economic consequences. Methodology/Principal Findings We analyse data from four recent outbreaks of highly pathogenic avian influenza (HPAI) in commercial poultry to estimate the farm-to-farm reproductive number for HPAI. The reproductive number is a key measure of the transmissibility of HPAI at the farm level because it can be used to evaluate the effectiveness of the control measures. In these outbreaks the mean farm-to-farm reproductive number prior to controls ranged from 1.1 to 2.4, with the maximum farm-based reproductive number in the range 2.2 to 3.2. Enhanced bio-security, movement restrictions and prompt isolation of the infected farms in all four outbreaks substantially reduced the reproductive number, but it remained close to the threshold value 1 necessary to ensure the disease will be eradicated. Conclusions/Significance Our results show that depending on the particular situation in which an outbreak of avian influenza occurs, current controls might not be enough to eradicate the disease, and therefore a close monitoring of the outbreak is required. The method we used for estimating the reproductive number is straightforward to implement and can be used in real-time. It therefore can be a useful tool to inform policy decisions. PMID:17406673

  14. Poultry raising systems and highly pathogenic avian influenza outbreaks in Thailand: the situation, associations, and impacts.

    PubMed

    Chantong, Wasan; Kaneene, John B

    2011-05-01

    Highly pathogenic avian influenza (HPAI), caused by the virus strain H5N1, currently occurs worldwide with the greatest burden in Southeast Asia where the disease was first reported. In Thailand where the disease was first confirmed in January 2004, the virus had been persistent as a major threat to the poultry industry and human health over the past several years. It was generally hypothesized that the main reason for the disease to circulate in Thailand was the existence of traditional backyard chickens and free-range ducks raising systems. Consequently, this study reviewed the structure of poultry raising systems, the recent outbreaks of HPAI H5N1, the disease association to the backyard and free-grazing poultry production, and consequences of the outbreaks in Thailand. Although the major outbreaks in the country had declined, the sustaining disease surveillance and prevention are still strongly recommended. PMID:21706938

  15. Emergence of H5N1 high pathogenicity avian influenza strains in Indonesia that are resistant to vaccines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vaccines have been used to protect poultry in Asia against H5N1 high pathogenicity avian influenza (HPAI) since 2002. Reports of vaccine “failures” began to emerge in 2006 in Indonesia, with identification of clinical disease consistent with HPAI or isolation of H5N1 HPAIV in vaccinated flocks or in...

  16. What are the possible transmission methods for H5N1 high pathogenicity avian influenza viruses to people

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The H5N1 high pathogenicity avian influenza (HPAI) virus has caused an unprecedented epizootic affecting poultry in Asia, Africa and parts of Europe, but has crossed multiple species barriers to infect captive and wild birds, carnivorous mammals and humans. Human infections (391 infections with 247...

  17. Bronchointerstitial pneumonia in guinea pigs following inoculation with H5N1 high pathogenicity avian influenza virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The H5N1 high pathogenicity avian influenza (HPAI) viruses have caused widespread disease of poultry in Asia, Africa and the Middle East, and sporadic human infections. The guinea pig model has been used to study human H3N2 and H1N1 influenza viruses, but knowledge is lacking on H5N1 HPAI virus inf...

  18. Mechanisms of transmission and spread of H5N1 high pathogenicity avian influenza virus in birds and mammals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Eurasian-African H5N1 high pathogenicity avian influenza (HPAI) virus has crossed multiple species barriers to infect poultry, captive and wild birds, carnivorous mammals and humans. The specific transmission mechanisms are unclear in most cases, but experimental studies and field data sug...

  19. The pathobiology of highly pathogenic H5N2 avian influenza virus in Ruddy ducks and Lesser Scaup

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The susceptibility and pathogenesis of avian influenza virus (AIV) has not been characterized in numerous duck species, especially diving ducks, some of which migrate across the continental U.S. The pathobiology of highly pathogenic (HP) H5N2 AIV was characterized in two diving duck species, Ruddy ...

  20. Early responses of chicken lungs and spleens to infection with highly pathogenic avian influenza virus using microarray analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Within the last few years, outbreaks of highly pathogenic avian influenza (HPAI) have originated in Asia and spread through several Middle Eastern, African and European countries, resulting in one of the most serious animal disease incident in recent history. These outbreaks were characterized by t...

  1. THERMAL INACTIVATION OF H5N1 HIGH PATHOGENICITY AVIAN INFLUENZA VIRUS IN NATURALLY INFECTED CHICKEN MEAT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thermal inactivation of the H5N1 high pathogenicity avian influenza (HPAI) virus strain A/chicken/Korea/ES/2003 (Korea/03) was quantitatively measured in thigh and breast meat harvested from infected chickens. The average Korea/03 titers in uncooked meat samples were 8.0 log 10 EID50/g (thigh) and 7...

  2. Efficacy of commercial vaccines in chickens and ducks against H5N1 highly pathogenic avian influenza viruses from Vietnam

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Highly pathogenic (HP) H5N1 avian influenza (AI) viruses continue to circulate in Asia and have spread to other regions of the world. Though attempts at eradication of the viruses during various outbreaks have been successful for short periods of time, new strains of H5N1 viruses continue to emerge...

  3. 75 FR 17368 - Notice of Availability of an Evaluation of the Highly Pathogenic Avian Influenza Status of Czech...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-06

    ... additional risk factors that would indicate that domestic poultry in the Czech Republic and Sweden continue... introduction of diseases and pests into the U.S. livestock and poultry populations. Highly pathogenic avian influenza (HPAI) is a zoonotic disease of poultry. The H5N1 subtype of HPAI is an extremely infectious...

  4. Surveillance for Highly Pathogenic Avian Influenza Virus in Wild Birds during Outbreaks in Domestic Poultry, Minnesota, 2015.

    PubMed

    Jennelle, Christopher S; Carstensen, Michelle; Hildebrand, Erik C; Cornicelli, Louis; Wolf, Paul; Grear, Daniel A; Ip, Hon S; Vandalen, Kaci K; Minicucci, Larissa A

    2016-07-01

    In 2015, a major outbreak of highly pathogenic avian influenza virus (HPAIV) infection devastated poultry facilities in Minnesota, USA. To understand the potential role of wild birds, we tested 3,139 waterfowl fecal samples and 104 sick and dead birds during March 9-June 4, 2015. HPAIV was isolated from a Cooper's hawk but not from waterfowl fecal samples. PMID:27064759

  5. Surveillance for highly pathogenic avian influenza virus in wild birds during outbreaks in domestic poultry, Minnesota, 2015

    USGS Publications Warehouse

    Jennelle, Christopher S.; Carstensen, Michelle; Hildebrand, Erik C.; Cornicelli, Louis; Wolf, Paul C.; Grear, Daniel; Ip, Hon S.; VanDalen, Kaci K.; Minicucci, Larissa A.

    2016-01-01

    In 2015, a major outbreak of highly pathogenic avian influenza virus (HPAIV) infection devastated poultry facilities in Minnesota, USA. To clarify the role of wild birds, we tested 3,139 waterfowl fecal samples and 104 sick and dead birds during March 9–June 4, 2015. HPAIV was isolated from a Cooper’s hawk but not from waterfowl.

  6. Outbreaks of highly pathogenic Eurasian H5N8 avian influenza in two commercial poultry flocks in California

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In January 2015, a highly pathogenic Eurasian lineage H5N8 avian influenza (AI) virus was detected in a commercial meat turkey flock in Stanislaus County, California. Approximately 3 weeks later, a similar case was diagnosed in commercial chickens from a different company located in Kings County, C...

  7. NS1 gene truncations partially attenuate H5N1 highly pathogenic avian influenza viruses in chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The polybasic amino acid sequence in the hemagglutinin (HA) protein of H5 and H7 avian influenza (AI) viruses determines the high pathogenicity (HP) phenotype in chickens. The NS1 protein plays an important role in blocking the induction of antiviral defenses and other regulatory functions and thus...

  8. Differences in pathogenicity of A/Duck/Vietnam/201/05 H5N1 highly pathogenic avian influenza virus reassortants in ducks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In order to understand which viral genes contribute to the high virulence of A/Dk/Vietnam/201/05 H5N1 highly pathogenic avian influenza (HPAI) virus in ducks, we used reverse genetics to generate single-gene reassortant viruses with genes from A/Ck/Indonesia/7/03, a virus that produces mild disease ...

  9. Gene expression responses to highly pathogenic avian influenza H5N1 virus infections in ducks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Differences in host response to infection with avian influenza (AI) viruses were investigated by identifying genes differentially expressed in tissues of infected ducks. Clear differences in pathogenicity were observed among ducks inoculated with five H5N1 HPAI viruses. Virus titers in tissues cor...

  10. Comparison of molecular classification and experimental pathogenicity for classification of low and high pathogenicity H5 and H7 avian influenza viruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Highly pathogenic avian influenza (HPAI) viruses, which have been restricted to H5 and H7 subtypes, have caused continuous outbreaks in the poultry industry with devastating economic losses and is a severe threat to public health. Genetic features and severity of the disease in poultry determine wh...

  11. Epidemiology and ecology of highly pathogenic avian influenza with particular emphasis on South East Asia.

    PubMed

    Martin, V; Sims, L; Lubroth, J; Pfeiffer, D; Slingenbergh, J; Domenech, J

    2006-01-01

    Highly pathogenic avian influenza (HPAI) has been recognised as a serious viral disease of poultry since 1878. The number of recorded outbreaks of HPAI has increased globally in the past 10 years culminating in 2004 with the unprecedented outbreaks of H5N1 HPAI involving at least nine countries in East and South-East Asia. Apart from the geographical extent of these outbreaks and apparent rapid spread, this epidemic has a number of unique features, among which is the role that asymptomatic domestic waterfowl and more particularly free-ranging ducks play in the transmission of highly pathogenic H5N1. Field epidemiological studies have been conducted by the Food and Agriculture Organization and several collaborative centres to explore the factors that could have led to a change from infection to the emergence of widespread disease in 2003-2004 and 2005. Domestic waterfowl, specific farming practices and agro-ecological environments have been identified to play a key role in the occurrence, maintenance and spread of HPAI. Although there are some questions that remain unanswered regarding the origins of the 2004 outbreaks, the current understanding of the ecology and epidemiology of the disease should now lead to the development of adapted targeted surveillance studies and control strategies. PMID:16447491

  12. Evolutionary Analysis of Inter-Farm Transmission Dynamics in a Highly Pathogenic Avian Influenza Epidemic

    PubMed Central

    Bataille, Arnaud; van der Meer, Frank; Stegeman, Arjan; Koch, Guus

    2011-01-01

    Phylogenetic studies have largely contributed to better understand the emergence, spread and evolution of highly pathogenic avian influenza during epidemics, but sampling of genetic data has never been detailed enough to allow mapping of the spatiotemporal spread of avian influenza viruses during a single epidemic. Here, we present genetic data of H7N7 viruses produced from 72% of the poultry farms infected during the 2003 epidemic in the Netherlands. We use phylogenetic analyses to unravel the pathways of virus transmission between farms and between infected areas. In addition, we investigated the evolutionary processes shaping viral genetic diversity, and assess how they could have affected our phylogenetic analyses. Our results show that the H7N7 virus was characterized by a high level of genetic diversity driven mainly by a high neutral substitution rate, purifying selection and limited positive selection. We also identified potential reassortment in the three genes that we have tested, but they had only a limited effect on the resolution of the inter-farm transmission network. Clonal sequencing analyses performed on six farm samples showed that at least one farm sample presented very complex virus diversity and was probably at the origin of chronological anomalies in the transmission network. However, most virus sequences could be grouped within clearly defined and chronologically sound clusters of infection and some likely transmission events between farms located 0.8–13 Km apart were identified. In addition, three farms were found as most likely source of virus introduction in distantly located new areas. These long distance transmission events were likely facilitated by human-mediated transport, underlining the need for strict enforcement of biosafety measures during outbreaks. This study shows that in-depth genetic analysis of virus outbreaks at multiple scales can provide critical information on virus transmission dynamics and can be used to increase

  13. Intersubtype Reassortments of H5N1 Highly Pathogenic Avian Influenza Viruses Isolated from Quail.

    PubMed

    Nguyen, Tinh Huu; Than, Van Thai; Thanh, Hien Dang; Hung, Vu-Khac; Nguyen, Duc Tan; Kim, Wonyong

    2016-01-01

    H5N1 highly pathogenic avian influenza (HPAI) viruses are considered a threat to national animal industries, causing production losses and high mortality in domestic poultry. In recent years, quail has become a popular terrestrial poultry species raised for production of meat and eggs in Asia. In this study, to better understand the roles of quail in H5N1 viral evolution, two H5N1-positive samples, designated A/quail/Vietnam/CVVI-49/2010 (CVVI-49/2010) and A/quail/Vietnam/CVVI-50/2014 (CVVI-50/2014), were isolated from quail during H5N1 outbreaks in Vietnam, and their whole genome were analyzed. The phylogenetic analysis reveals new evolutionary variation in the worldwide H5N1 viruses. The quail HA genes were clustered into clades 1.1.1 (CVVI-49/2010) and clade 2.3.2.1c (CVVI-50/2014), which may have evolved from viruses circulating from chickens and/or ducks in Cambodia, mainland of China, Taiwan, Indonesia, and South Korea in recent years. Interestingly, the M2 gene of the CVVI-49/2010 strain contained amino acid substitutions at position 26L-I and 31S-N that are related to amantadine-resistance. In particular, the CVVI-50/2014 strain revealed evidence of multiple intersubtype reassortment events between virus clades 2.3.2.1c, 2.3.2.1b, and 2.3.2.1a. Data from this study supports the possible role of quail as an important intermediate host in avian influenza virus evolution. Therefore, additional surveillance is needed to monitor these HPAI viruses both serologically and virologically in quail. PMID:26900963

  14. Intersubtype Reassortments of H5N1 Highly Pathogenic Avian Influenza Viruses Isolated from Quail

    PubMed Central

    Nguyen, Tinh Huu; Than, Van Thai; Thanh, Hien Dang; Hung, Vu-Khac; Nguyen, Duc Tan; Kim, Wonyong

    2016-01-01

    H5N1 highly pathogenic avian influenza (HPAI) viruses are considered a threat to national animal industries, causing production losses and high mortality in domestic poultry. In recent years, quail has become a popular terrestrial poultry species raised for production of meat and eggs in Asia. In this study, to better understand the roles of quail in H5N1 viral evolution, two H5N1-positive samples, designated A/quail/Vietnam/CVVI-49/2010 (CVVI-49/2010) and A/quail/Vietnam/CVVI-50/2014 (CVVI-50/2014), were isolated from quail during H5N1 outbreaks in Vietnam, and their whole genome were analyzed. The phylogenetic analysis reveals new evolutionary variation in the worldwide H5N1 viruses. The quail HA genes were clustered into clades 1.1.1 (CVVI-49/2010) and clade 2.3.2.1c (CVVI-50/2014), which may have evolved from viruses circulating from chickens and/or ducks in Cambodia, mainland of China, Taiwan, Indonesia, and South Korea in recent years. Interestingly, the M2 gene of the CVVI-49/2010 strain contained amino acid substitutions at position 26L-I and 31S-N that are related to amantadine-resistance. In particular, the CVVI-50/2014 strain revealed evidence of multiple intersubtype reassortment events between virus clades 2.3.2.1c, 2.3.2.1b, and 2.3.2.1a. Data from this study supports the possible role of quail as an important intermediate host in avian influenza virus evolution. Therefore, additional surveillance is needed to monitor these HPAI viruses both serologically and virologically in quail. PMID:26900963

  15. Model-based evaluation of highly and low pathogenic avian influenza dynamics in wild birds

    USGS Publications Warehouse

    Hénaux, Viviane; Samuel, Michael D.; Bunck, Christine M.

    2010-01-01

    There is growing interest in avian influenza (AI) epidemiology to predict disease risk in wild and domestic birds, and prevent transmission to humans. However, understanding the epidemic dynamics of highly pathogenic (HPAI) viruses remains challenging because they have rarely been detected in wild birds. We used modeling to integrate available scientific information from laboratory and field studies, evaluate AI dynamics in individual hosts and waterfowl populations, and identify key areas for future research. We developed a Susceptible-Exposed-Infectious-Recovered (SEIR) model and used published laboratory challenge studies to estimate epidemiological parameters (rate of infection, latency period, recovery and mortality rates), considering the importance of age classes, and virus pathogenicity. Infectious contact leads to infection and virus shedding within 1–2 days, followed by relatively slower period for recovery or mortality. We found a shorter infectious period for HPAI than low pathogenic (LP) AI, which may explain that HPAI has been much harder to detect than LPAI during surveillance programs. Our model predicted a rapid LPAI epidemic curve, with a median duration of infection of 50–60 days and no fatalities. In contrast, HPAI dynamics had lower prevalence and higher mortality, especially in young birds. Based on field data from LPAI studies, our model suggests to increase surveillance for HPAI in post-breeding areas, because the presence of immunologically naïve young birds is predicted to cause higher HPAI prevalence and bird losses during this season. Our results indicate a better understanding of the transmission, infection, and immunity-related processes is required to refine predictions of AI risk and spread, improve surveillance for HPAI in wild birds, and develop disease control strategies to reduce potential transmission to domestic birds and/or humans.

  16. Current status and future needs in diagnostics and vaccines for high pathogenicity avian influenza.

    PubMed

    Swayne, D E; Spackman, E

    2013-01-01

    Since 1959, 32 epizootics of high pathogenicity avian influenza (HPAI) have occurred in birds. Rapid detection and accurate identification of HPAI has been critical to controlling such epizootics in poultry. Specific paradigms for the detection and diagnosis of avian influenza virus (AIV) in poultry vary somewhat among different countries and industry compartments depending on specific needs and resources. Importantly, since HPAI and low pathogenicity (LP) AI of the H5 and H7 subtypes are reportable to the World Organization for Animal Health (OIE), diagnostic procedures are implemented for regulatory purposes and are harmonized to some degree. Most current tests are adequate and have been in use for some time, therefore they have been well validated and presently there is no reported new technology that will completely replace the current tests. However, some modifications, updates or additional tests could be beneficial. The element of AIV diagnostics that is most in need of improvement is in determining the hemagglutinin and neuraminidase subtype specificity of antibody to AIV. Most HPAI epizootics have been eradicated using traditional stamping-out programs, but beginning in 1995, five epizootics have added vaccination as an additional, interim control tool. From 2002-2010, >113 billion doses of AI vaccine have been used in poultry; 95.5% as oil-emulsified, inactivated whole AIV vaccines and 4.5% as live vectored vaccines. The majority of vaccine has been used in the four H5N1 HPAI enzootic countries (China [91%], Egypt [4.7%], Indonesia [2.3%], and Vietnam [1.4%]) where vaccination programs are directed to all poultry. The 10 other countries/regions have used less than 1% of the vaccine, administered in a focused, risk- based approach. Some vaccine "failures" have resulted from antigenic drift of field viruses away from the vaccine viruses, but most have resulted from failures in the vaccination process; i.e. failure to adequately administer the vaccine to at

  17. Evidence of infection by H5N2 highly pathogenic avian influenza viruses in healthy wild waterfowl

    USGS Publications Warehouse

    Gaidet, N.; Cattoli, G.; Hammoumi, S.; Newman, S.H.; Hagemeijer, W.; Takekawa, J.Y.; Cappelle, J.; Dodman, T.; Joannis, T.; Gil, P.; Monne, I.; Fusaro, A.; Capua, I.; Manu, S.; Micheloni, P.; Ottosson, U.; Mshelbwala, J.H.; Lubroth, J.; Domenech, J.; Monicat, F.

    2008-01-01

    The potential existence of a wild bird reservoir for highly pathogenic avian influenza (HPAI) has been recently questioned by the spread and the persisting circulation of H5N1 HPAI viruses, responsible for concurrent outbreaks in migratory and domestic birds over Asia, Europe, and Africa. During a large-scale surveillance programme over Eastern Europe, the Middle East, and Africa, we detected avian influenza viruses of H5N2 subtype with a highly pathogenic (HP) viral genotype in healthy birds of two wild waterfowl species sampled in Nigeria. We monitored the survival and regional movements of one of the infected birds through satellite telemetry, providing a rare evidence of a non-lethal natural infection by an HP viral genotype in wild birds. Phylogenetic analysis of the H5N2 viruses revealed close genetic relationships with H5 viruses of low pathogenicity circulating in Eurasian wild and domestic ducks. In addition, genetic analysis did not reveal known gallinaceous poultry adaptive mutations, suggesting that the emergence of HP strains could have taken place in either wild or domestic ducks or in non-gallinaceous species. The presence of coexisting but genetically distinguishable avian influenza viruses with an HP viral genotype in two cohabiting species of wild waterfowl, with evidence of non-lethal infection at least in one species and without evidence of prior extensive circulation of the virus in domestic poultry, suggest that some strains with a potential high pathogenicity for poultry could be maintained in a community of wild waterfowl.

  18. Evidence of Infection by H5N2 Highly Pathogenic Avian Influenza Viruses in Healthy Wild Waterfowl

    PubMed Central

    Hammoumi, Saliha; Newman, Scott H.; Hagemeijer, Ward; Takekawa, John Y.; Cappelle, Julien; Dodman, Tim; Joannis, Tony; Gil, Patricia; Monne, Isabella; Fusaro, Alice; Capua, Ilaria; Manu, Shiiwuua; Micheloni, Pierfrancesco; Ottosson, Ulf; Mshelbwala, John H.; Lubroth, Juan; Domenech, Joseph; Monicat, François

    2008-01-01

    The potential existence of a wild bird reservoir for highly pathogenic avian influenza (HPAI) has been recently questioned by the spread and the persisting circulation of H5N1 HPAI viruses, responsible for concurrent outbreaks in migratory and domestic birds over Asia, Europe, and Africa. During a large-scale surveillance programme over Eastern Europe, the Middle East, and Africa, we detected avian influenza viruses of H5N2 subtype with a highly pathogenic (HP) viral genotype in healthy birds of two wild waterfowl species sampled in Nigeria. We monitored the survival and regional movements of one of the infected birds through satellite telemetry, providing a rare evidence of a non-lethal natural infection by an HP viral genotype in wild birds. Phylogenetic analysis of the H5N2 viruses revealed close genetic relationships with H5 viruses of low pathogenicity circulating in Eurasian wild and domestic ducks. In addition, genetic analysis did not reveal known gallinaceous poultry adaptive mutations, suggesting that the emergence of HP strains could have taken place in either wild or domestic ducks or in non-gallinaceous species. The presence of coexisting but genetically distinguishable avian influenza viruses with an HP viral genotype in two cohabiting species of wild waterfowl, with evidence of non-lethal infection at least in one species and without evidence of prior extensive circulation of the virus in domestic poultry, suggest that some strains with a potential high pathogenicity for poultry could be maintained in a community of wild waterfowl. PMID:18704172

  19. Antiviral activity of crude extracts of Eugenia jambolana Lam. against highly pathogenic avian influenza (H5N1) virus.

    PubMed

    Sood, Richa; Swarup, D; Bhatia, S; Kulkarni, D D; Dey, S; Saini, M; Dubey, S C

    2012-03-01

    Crude extracts of leaves and bark of E. jambolana were tested for antiviral activity against highly pathogenic avian influenza virus (H5N1) by CPE reduction assay in three different layouts to elucidate virucidal, post-exposure and preexposure antiviral activity of the extracts. The cold and hot aqueous extracts of bark and hot aqueous extract of leaves of E. jambolana showed significant virucidal activity (100% inhibition) which was further confirmed in virus yield reduction assay (-98 to 99% reduction) and by egg based in ovo assay. The selective index (CC50/EC50) of hot aqueous extract (248) and cold aqueous extract (43.5) of bark of E. jambolana showed their antiviral potential against H5N1 virus. The significant virucidal activity of leaves and bark of E. jambolana merits further investigation as it may provide alternative antiviral agent for managing avian influenza infections in poultry farms and potential avian-human transmission. PMID:22439432

  20. New approach to delist highly pathogenic avian influenza viruses from BSL3+ select agents to BSL2 non-select status for diagnostics and vaccines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Highly pathogenic avian influenza viruses (AIV) are Select Agents in the United States and are required to be handled in bio-containment level 3 enhanced (BSL3+) facilities. Using a reverse genetics system, we attenuated a highly pathogenic virus with the goal of making it low pathogenic and having...

  1. New Reassortant H5N6 Highly Pathogenic Avian Influenza Viruses in Southern China, 2014.

    PubMed

    Jiao, Peirong; Cui, Jin; Song, Yafen; Song, Hui; Zhao, Zhishan; Wu, Siyu; Qu, Nannan; Wang, Nianchen; Ouyang, Guowen; Liao, Ming

    2016-01-01

    New reassortant H5N6 highly pathogenic avian influenza viruses (AIVs) were isolated from apparently healthy domestic ducks in Southern China in 2014. Our results show that the viruses grew efficiently in eggs and replicated systemically in chickens. They were completely lethal in chicken (100% mortality), and the mean death time was 6 to 7 days post-inoculation. The viruses could transmit in chickens by naïve contact. BLAST analysis revealed that their HA gene was most closely related to A/wild duck/Shangdong/628/2011 (H5N1), and their NA genes were most closely related to A/swine/Guangdong/K6/2010 (H6N6). The other genes had the highest identity with A/wild duck/Fujian/1/2011(H5N1). The results of phylogenetic analysis showed that their HA genes clustered into clade 2.3.4.4 of the H5N1 viruses and all genes derived from H5 were Mix-like or H6-like viruses. Thus, the new H5N6 viruses were reassortmented of H5N1 and H6N6 virus. Therefore, the circulation of the new H5N6 AIVs may become a threat to poultry and human health. PMID:27242767

  2. Risk factors and clusters of Highly Pathogenic Avian Influenza H5N1 outbreaks in Bangladesh

    PubMed Central

    Loth, Leo; Gilbert, Marius; Osmani, Mozaffar G.; Kalam, Abul M.; Xiao, Xiangming

    2016-01-01

    Between March 2007 and July 2009, 325 Highly Pathogenic Avian Influenza (HPAI, subtype H5N1) outbreaks in poultry were reported in 154 out of a total of 486 sub-districts in Bangladesh. This study analyzed the temporal and spatial patterns of HPAI H5N1 outbreaks and quantified the relationship between several spatial risk factors and HPAI outbreaks in sub-districts in Bangladesh. We assessed spatial autocorrelation and spatial dependence, and identified clustering sub-districts with disease statistically similar to or dissimilar from their neighbors. Three significant risk factors associated to HPAI H5N1 virus outbreaks were identified; the quadratic log-transformation of human population density [humans per square kilometer, P = 0.01, OR 1.15 (95% CI: 1.03–1.28)], the log-transformation of the total commercial poultry population [number of commercial poultry per sub-district, P < 0.002, OR 1.40 (95% CI: 1.12–1.74)], and the number of roads per sub-district [P = 0.02, OR 1.07 (95% CI: 1.01–1.14)]. The distinct clusters of HPAI outbreaks and risk factors identified could assist the Government of Bangladesh to target surveillance and to concentrate response efforts in areas where disease is likely to occur. Concentrating response efforts may help to combat HPAI more effectively, reducing the environmental viral load and so reducing the number of disease incidents. PMID:20554337

  3. Identifying risk factors of highly pathogenic avian influenza (H5N1 subtype) in Indonesia

    PubMed Central

    Leo, Loth; Marius, Gilbert; Jianmei, Wu; Christina, Czarnecki; Muhammad, Hidayat; Xiangming, Xiao

    2016-01-01

    Highly pathogenic avian influenza (HPAI), subtype H5N1, was first officially reported in Indonesia in 2004. Since then the disease has spread and is now endemic in large parts of the country. This study investigated the statistical relationship between a set of risk factors and the presence or absence of HPAI in Indonesia during 2006 and 2007. HPAI was evaluated through participatory disease surveillance (PDS) in backyard village chickens (the study population), and risk factors included descriptors of people and poultry distribution (separating chickens, ducks and production sectors), poultry movement patterns and agro-ecological conditions. The study showed that the risk factors “elevation”, “human population density” and “rice cropping” were significant in accounting for the spatial variation of the PDS-defined HPAI cases. These findings were consistent with earlier studies in Thailand and Vietnam. In addition “commercial poultry population”, and two indicators of market locations and transport; “human settlements” and “road length”, were identified as significant risk factors in the models. In contrast to several previous studies carried out in Southeast Asia, domestic backyard ducks were not found to be a significant risk factor in Indonesia. The study used surrogate estimates of market locations and marketing chains and further work should focus on the actual location of the live bird markets, and on the flow of live poultry and poultry products between them, so that patterns of possible transmission, and regions of particular risk could be better inferred. PMID:21813198

  4. Assessment of the Potential Distance of Dispersal of High Pathogenicity Avian Influenza Virus by Wild Mallards.

    PubMed

    Śmietanka, Krzysztof; Bocian, Łukasz; Meissner, Włodzimierz; Ziętek-Barszcz, Anna; Żółkoś, Katarzyna

    2016-05-01

    This work presents the results of studies aimed at assessing the median and maximum distances covered by wild mallards (Anas platyrhynchos; n = 38), hypothetically infected with the high pathogenicity avian influenza virus (HPAIV) during spring migrations, using GPS-GSM tracking and published data on the susceptibility to HPAIV infection and duration of shedding. The model was based on the assumptions that the birds shed virus in the absence of clinical signs during infectious periods (IP) that were assumed to last 1 day (IP1), 4 days (IP4), and 8 days (IP8) and that each day of migration is a hypothetical day of the onset of IP. Using the haversine formula over a sliding timeframe corresponding to each IP, distances were estimated for each duck that undertook migration and then the maximum distance (Dmax) was selected. Ten mallards undertook spring migrations but, due to the loss of signal in the GPS-GSM devices, only three ducks were observed during autumn migrations. The following ranges of Dmax values were calculated for spring migrations: 124-382 km for IP1 (median 210 km), 208-632 km for IP4 (median 342 km), and 213-687 km for IP8 (median 370 km). The present study provides information that can be used as a data source to perform risk assessment related to the contribution of wild mallards in the dispersal of HPAIV over considerable distances. PMID:27309073

  5. New Reassortant H5N6 Highly Pathogenic Avian Influenza Viruses in Southern China, 2014

    PubMed Central

    Jiao, Peirong; Cui, Jin; Song, Yafen; Song, Hui; Zhao, Zhishan; Wu, Siyu; Qu, Nannan; Wang, Nianchen; Ouyang, Guowen; Liao, Ming

    2016-01-01

    New reassortant H5N6 highly pathogenic avian influenza viruses (AIVs) were isolated from apparently healthy domestic ducks in Southern China in 2014. Our results show that the viruses grew efficiently in eggs and replicated systemically in chickens. They were completely lethal in chicken (100% mortality), and the mean death time was 6 to 7 days post-inoculation. The viruses could transmit in chickens by naïve contact. BLAST analysis revealed that their HA gene was most closely related to A/wild duck/Shangdong/628/2011 (H5N1), and their NA genes were most closely related to A/swine/Guangdong/K6/2010 (H6N6). The other genes had the highest identity with A/wild duck/Fujian/1/2011(H5N1). The results of phylogenetic analysis showed that their HA genes clustered into clade 2.3.4.4 of the H5N1 viruses and all genes derived from H5 were Mix-like or H6-like viruses. Thus, the new H5N6 viruses were reassortmented of H5N1 and H6N6 virus. Therefore, the circulation of the new H5N6 AIVs may become a threat to poultry and human health. PMID:27242767

  6. Identifying risk factors of highly pathogenic avian influenza (H5N1 subtype) in Indonesia.

    PubMed

    Loth, Leo; Gilbert, Marius; Wu, Jianmei; Czarnecki, Christina; Hidayat, Muhammad; Xiao, Xiangming

    2011-10-01

    Highly pathogenic avian influenza (HPAI), subtype H5N1, was first officially reported in Indonesia in 2004. Since then the disease has spread and is now endemic in large parts of the country. This study investigated the statistical relationship between a set of risk factors and the presence or absence of HPAI in Indonesia during 2006 and 2007. HPAI was evaluated through participatory disease surveillance (PDS) in backyard village chickens (the study population), and risk factors included descriptors of people and poultry distribution (separating chickens, ducks and production sectors), poultry movement patterns and agro-ecological conditions. The study showed that the risk factors "elevation", "human population density" and "rice cropping" were significant in accounting for the spatial variation of the PDS-defined HPAI cases. These findings were consistent with earlier studies in Thailand and Vietnam. In addition "commercial poultry population", and two indicators of market locations and transport; "human settlements" and "road length", were identified as significant risk factors in the models. In contrast to several previous studies carried out in Southeast Asia, domestic backyard ducks were not found to be a significant risk factor in Indonesia. The study used surrogate estimates of market locations and marketing chains and further work should focus on the actual location of the live bird markets, and on the flow of live poultry and poultry products between them, so that patterns of possible transmission, and regions of particular risk could be better inferred. PMID:21813198

  7. Pathogenicity of Highly Pathogenic Avian Influenza Virus H5N1 in Naturally Infected Poultry in Egypt

    PubMed Central

    Hagag, Ibrahim Thabet; Mansour, Shimaa M. G.; Zhang, Zerui; Ali, Ahmed A. H.; Ismaiel, El-Bakry M.; Salama, Ali A.; Cardona, Carol J.; Collins, James; Xing, Zheng

    2015-01-01

    Highly pathogenic avian influenza virus (HPAIV) H5N1 has been endemic in Egypt since 2006, and there is increasing concern for its potential to become highly transmissible among humans. Infection by HPAIV H5N1 has been described in experimentally challenged birds. However, the pathogenicity of the H5N1 isolated in Egypt has never been reported in naturally infected chickens and ducks. Here we report a 2013 outbreak of HPAIV H5N1 in commercial poultry farms and backyards in Sharkia Province, Egypt. The main symptoms were ecchymosis on the shanks and feet, cyanosis of the comb and wattles, subcutaneous edema of the head and neck for chickens, and nervous signs (torticollis) for ducks. Within 48-72 hrs of the onset of illness, the average mortality rates were 22.8-30% and 28.5-40% in vaccinated chickens and non-vaccinated ducks, respectively. Tissue samples of chickens and ducks were collected for analyses with cross-section immunohistochemistry and real-time RT-PCR for specific viral RNA transcripts. While viral RNA was detected in nearly all tissues and sera collected, viral nucleoprotein was detected almost ubiquitously in all tissues, including testis. Interestingly, viral antigen was also observed in endothelial cells of most organs in chickens, and clearly detected in the trachea and brain in particular. Viral nucleoprotein was also detected in mononuclear cells of various organs, especially pulmonary tissue. We performed phylogenetic analyses and compared the genomic sequences of the hemagglutinin (HA) and nonstructural proteins (NS) among the isolated viruses, the HPAIV circulated in Egypt in the past and currently, and some available vaccine strains. Further analysis of deduced amino acids of both HA and NS1 revealed that our isolates carried molecular determinants of HPAIV, including the multibasic amino acids (PQGERRRK/KR*GLF) in the cleavage site in HA and glutamate at position 92 (D92E) in NS1. This is the first report of the pathogenicity of the HPAIVH5N

  8. Novel Highly Pathogenic Avian H5 Influenza A Viruses in Live Poultry Markets, Wuxi City, China, 2013−2014

    PubMed Central

    Ma, Mai-Juan; Chen, Shan-Hui; Wang, Guo-Lin; Zhao, Teng; Qian, Yan-Hua; Wu, Meng-Na; Liu, Ying; Gray, Gregory C.; Lu, Bing; Cao, Wu-Chun

    2016-01-01

    During 12 recent months of periodic influenza virus surveillance at 9 live poultry markets in Wuxi City China, we identified multiple highly pathogenic H5N6, H5N8, H5N2, and H5N1 avian influenza viruses. The variety of potentially pandemic viruses in this low-risk area is disconcerting and portends an increased pandemic threat. PMID:27186580

  9. Surveillance for Highly Pathogenic Avian Influenza Virus in Wild Birds during Outbreaks in Domestic Poultry, Minnesota, 2015

    PubMed Central

    Carstensen, Michelle; Hildebrand, Erik C.; Cornicelli, Louis; Wolf, Paul; Grear, Daniel A.; Ip, Hon S.; Vandalen, Kaci K.; Minicucci, Larissa A.

    2016-01-01

    In 2015, a major outbreak of highly pathogenic avian influenza virus (HPAIV) infection devastated poultry facilities in Minnesota, USA. To understand the potential role of wild birds, we tested 3,139 waterfowl fecal samples and 104 sick and dead birds during March 9–June 4, 2015. HPAIV was isolated from a Cooper’s hawk but not from waterfowl fecal samples. PMID:27064759

  10. Neuropathogenesis of a highly pathogenic avian influenza virus (H7N1) in experimentally infected chickens

    PubMed Central

    2011-01-01

    In order to understand the mechanism of neuroinvasion of a highly pathogenic avian influenza virus (HPAIV) into the central nervous system (CNS) of chickens, specific pathogen free chickens were inoculated with a H7N1 HPAIV. Blood, cerebrospinal fluid (CSF), nasal cavity and brain tissue samples were obtained from 1 to 4 days post-inoculation (dpi) of infected and control chickens. Viral antigen topographical distribution, presence of influenza A virus receptors in the brain, as well as, the role of the olfactory route in virus CNS invasion were studied using different immunohistochemistry techniques. Besides, viral RNA load in CSF and blood was quantified by means of a quantitative real-time reverse transcription-polymerase chain reaction. Viral antigen was observed widely distributed in the CNS, showing bilateral and symmetrical distribution in the nuclei of the diencephalon, mesencephalon and rhombencephalon. Viral RNA was detected in blood and CSF at one dpi, indicating that the virus crosses the blood-CSF-barrier early during infection. This early dissemination is possibly favoured by the presence of Siaα2,3 Gal and Siaα2,6 Gal receptors in brain vascular endothelial cells, and Siaα2,3 Gal receptors in ependymal and choroid plexus cells. No viral antigen was observed in olfactory sensory neurons, while the olfactory bulb showed only weak staining, suggesting that the virus did not use this pathway to enter into the brain. The sequence of virus appearance and the topographical distribution of this H7N1 HPAIV indicate that the viral entry occurs via the haematogenous route, with early and generalized spreading through the CSF. PMID:21982125

  11. H5N1 highly pathogenic avian influenza virus experimental infection trials in wild birds: what have we learned and what questions remain

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Prior to 2002, there were very few reports of highly pathogenic avian influenza (HPAI) virus infections in wild birds. Since 2002; however, a variety of wild avian species have died from infection with Asian lineage H5N1 HPAI viruses and a growing body of evidence suggests migratory waterfowl may h...

  12. A High Diversity of Eurasian Lineage Low Pathogenicity Avian Influenza A Viruses Circulate among Wild Birds Sampled in Egypt

    PubMed Central

    Gerloff, Nancy A.; Jones, Joyce; Simpson, Natosha; Balish, Amanda; ElBadry, Maha Adel; Baghat, Verina; Rusev, Ivan; de Mattos, Cecilia C.; de Mattos, Carlos A.; Zonkle, Luay Elsayed Ahmed; Kis, Zoltan; Davis, C. Todd; Yingst, Sam; Cornelius, Claire; Soliman, Atef; Mohareb, Emad; Klimov, Alexander; Donis, Ruben O.

    2013-01-01

    Surveillance for influenza A viruses in wild birds has increased substantially as part of efforts to control the global movement of highly pathogenic avian influenza A (H5N1) virus. Studies conducted in Egypt from 2003 to 2007 to monitor birds for H5N1 identified multiple subtypes of low pathogenicity avian influenza A viruses isolated primarily from migratory waterfowl collected in the Nile Delta. Phylogenetic analysis of 28 viral genomes was performed to estimate their nearest ancestors and identify possible reassortants. Migratory flyway patterns were included in the analysis to assess gene flow between overlapping flyways. Overall, the viruses were most closely related to Eurasian, African and/or Central Asian lineage low pathogenicity viruses and belonged to 15 different subtypes. A subset of the internal genes seemed to originate from specific flyways (Black Sea-Mediterranean, East African-West Asian). The remaining genes were derived from a mixture of viruses broadly distributed across as many as 4 different flyways suggesting the importance of the Nile Delta for virus dispersal. Molecular clock date estimates suggested that the time to the nearest common ancestor of all viruses analyzed ranged from 5 to 10 years, indicating frequent genetic exchange with viruses sampled elsewhere. The intersection of multiple migratory bird flyways and the resulting diversity of influenza virus gene lineages in the Nile Delta create conditions favoring reassortment, as evident from the gene constellations identified by this study. In conclusion, we present for the first time a comprehensive phylogenetic analysis of full genome sequences from low pathogenic avian influenza viruses circulating in Egypt, underscoring the significance of the region for viral reassortment and the potential emergence of novel avian influenza A viruses, as well as representing a highly diverse influenza A virus gene pool that merits continued monitoring. PMID:23874653

  13. Differences in innate immune responses to H5N1 highly pathogenic avian influenza virus infection between Pekin, Muscovy and Mallard ducks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ducks have been implicated in the dissemination and evolution of H5N1 highly pathogenic avian influenza (HPAI) viruses. However, differences in pathogenicity and response to vaccination have been observed between different duck species. In this study we examined the pathogenicity of H5N1 HPAI viru...

  14. The performance characteristics of lateral flow devices with 2 strains of highly pathogenic avian influenza virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lateral flow devices (LFD) are commercially available and provide a fast, highly specific, on-site test for avian influenza. Because of the low analytic sensitivity of LFD tests at low virus concentrations, targeted sampling of sick and dead birds has been proposed in order to increase detection pr...

  15. Avian influenza virus hemagglutinins H2, H4, H8, and H14 support a highly pathogenic phenotype

    PubMed Central

    Veits, Jutta; Weber, Siegfried; Stech, Olga; Breithaupt, Angele; Gräber, Marcus; Gohrbandt, Sandra; Bogs, Jessica; Hundt, Jana; Teifke, Jens P.; Mettenleiter, Thomas C.; Stech, Jürgen

    2012-01-01

    High-pathogenic avian influenza viruses (HPAIVs) evolve from low-pathogenic precursors specifying the HA serotypes H5 or H7 by acquisition of a polybasic HA cleavage site. As the reason for this serotype restriction has remained unclear, we aimed to distinguish between compatibility of a polybasic cleavage site with H5/H7 HA only and unique predisposition of these two serotypes for insertion mutations. To this end, we introduced a polybasic cleavage site into the HA of several low-pathogenic avian strains with serotypes H1, H2, H3, H4, H6, H8, H10, H11, H14, or H15, and rescued HA reassortants after cotransfection with the genes from either a low-pathogenic H9N2 or high-pathogenic H5N1 strain. Oculonasal inoculation with those reassortants resulted in varying pathogenicity in chicken. Recombinants containing the engineered H2, H4, H8, or H14 in the HPAIV background were lethal and exhibited i.v. pathogenicity indices of 2.79, 2.37, 2.85, and 2.61, respectively, equivalent to naturally occurring H5 or H7 HPAIV. Moreover, the H2, H4, and H8 reassortants were transmitted to some contact chickens. The H2 reassortant gained two mutations in the M2 proton channel gate region, which is affected in some HPAIVs of various origins. Taken together, in the presence of a polybasic HA cleavage site, non-H5/H7 HA can support a highly pathogenic phenotype in the appropriate viral background, indicating requirement for further adaptation. Therefore, the restriction of natural HPAIV to serotypes H5 and H7 is likely a result of their unique predisposition for acquisition of a polybasic HA cleavage site. PMID:22308331

  16. Evolution of highly pathogenic avian influenza H5N1 viruses in Egypt indicating progressive adaptation.

    PubMed

    Arafa, A; Suarez, D; Kholosy, S G; Hassan, M K; Nasef, S; Selim, A; Dauphin, G; Kim, M; Yilma, J; Swayne, D; Aly, M M

    2012-10-01

    Highly pathogenic avian influenza (HPAI) virus of the H5N1 subtype was first diagnosed in poultry in Egypt in 2006, and since then the disease became enzootic in poultry throughout the country, affecting the poultry industry and village poultry as well as infecting humans. Vaccination has been used as a part of the control strategy to help to control the disease. Epidemiological data with sequence analysis of H5N1 viruses is important to link the mechanism of virus evolution in Egypt. This study describes the evolutionary pattern of Egyptian H5N1 viruses based on molecular characterization for the isolates collected from commercial poultry farms and village poultry from 2006 to 2011. Genetic analysis of the hemagglutinin (HA) gene was done by sequencing of the full-length H5 gene. The epidemiological pattern of disease outbreaks in Egyptian poultry farms seems to be seasonal with no specific geographic distribution across the country. The molecular epidemiological data revealed that there are two major groups of viruses: the classic group of subclade 2.2.1 and a variant group of 2.2.1.1. The classic group is prevailing mainly in village poultry and had fewer mutations compared to the originally introduced virus in 2006. Since 2009, this group has started to be transmitted back to commercial sectors. The variant group emerged by late 2007, was prevalent mainly in vaccinated commercial poultry, mutated continuously at a higher rate until 2010, and started to decline in 2011. Genetic analysis of the neuraminidase (NA) gene and the other six internal genes indicates a grouping of the Egyptian viruses similar to that obtained using the HA gene, with no obvious reassortments. The results of this study indicate that HPAI-H5N1 viruses are progressively evolving and adapting in Egypt and continue to acquire new mutations every season. PMID:22760662

  17. Continuing Reassortant of H5N6 Subtype Highly Pathogenic Avian Influenza Virus in Guangdong.

    PubMed

    Yuan, Runyu; Wang, Zheng; Kang, Yinfeng; Wu, Jie; Zou, Lirong; Liang, Lijun; Song, Yingchao; Zhang, Xin; Ni, Hanzhong; Lin, Jinyan; Ke, Changwen

    2016-01-01

    First identified in May 2014 in China's Sichuan Province, initial cases of H5N6 avian influenza virus (AIV) infection in humans raised great concerns about the virus's prevalence, origin, and development. To evaluate both AIV contamination in live poultry markets (LPMs) and the risk of AIV infection in humans, we have conducted surveillance of LPMs in Guangdong Province since 2013 as part of environmental sampling programs. With environmental samples associated with these LPMs, we performed genetic and phylogenetic analyses of 10 H5N6 AIVs isolated from different cities of Guangdong Province from different years. Results revealed that the H5N6 viruses were reassortants with hemagglutinin (HA) genes derived from clade 2.3.4.4 of H5-subtype AIV, yet neuraminidase (NA) genes derived from H6N6 AIV. Unlike the other seven H5N6 viruses isolated in first 7 months of 2014, all of which shared remarkable sequence similarity with the H5N1 AIV in all internal genes, the PB2 genes of GZ693, GZ670, and ZS558 more closely related to H6N6 AIV and the PB1 gene of GZ693 to the H3-subtype AIV. Phylogenetic analyses revealed that the environmental H5N6 AIV related closely to human H5N6 AIVs isolated in Guangdong. These results thus suggest that continued reassortment has enabled the emergence of a novel H5N6 virus in Guangdong, as well as highlight the potential risk of highly pathogenic H5N6 AIVs in the province. PMID:27148209

  18. Continuing Reassortant of H5N6 Subtype Highly Pathogenic Avian Influenza Virus in Guangdong

    PubMed Central

    Yuan, Runyu; Wang, Zheng; Kang, Yinfeng; Wu, Jie; Zou, Lirong; Liang, Lijun; Song, Yingchao; Zhang, Xin; Ni, Hanzhong; Lin, Jinyan; Ke, Changwen

    2016-01-01

    First identified in May 2014 in China's Sichuan Province, initial cases of H5N6 avian influenza virus (AIV) infection in humans raised great concerns about the virus's prevalence, origin, and development. To evaluate both AIV contamination in live poultry markets (LPMs) and the risk of AIV infection in humans, we have conducted surveillance of LPMs in Guangdong Province since 2013 as part of environmental sampling programs. With environmental samples associated with these LPMs, we performed genetic and phylogenetic analyses of 10 H5N6 AIVs isolated from different cities of Guangdong Province from different years. Results revealed that the H5N6 viruses were reassortants with hemagglutinin (HA) genes derived from clade 2.3.4.4 of H5-subtype AIV, yet neuraminidase (NA) genes derived from H6N6 AIV. Unlike the other seven H5N6 viruses isolated in first 7 months of 2014, all of which shared remarkable sequence similarity with the H5N1 AIV in all internal genes, the PB2 genes of GZ693, GZ670, and ZS558 more closely related to H6N6 AIV and the PB1 gene of GZ693 to the H3-subtype AIV. Phylogenetic analyses revealed that the environmental H5N6 AIV related closely to human H5N6 AIVs isolated in Guangdong. These results thus suggest that continued reassortment has enabled the emergence of a novel H5N6 virus in Guangdong, as well as highlight the potential risk of highly pathogenic H5N6 AIVs in the province. PMID:27148209

  19. Highly Pathogenic Avian Influenza H5N1 in Mainland China

    PubMed Central

    Li, Xin-Lou; Liu, Kun; Yao, Hong-Wu; Sun, Ye; Chen, Wan-Jun; Sun, Ruo-Xi; de Vlas, Sake J.; Fang, Li-Qun; Cao, Wu-Chun

    2015-01-01

    Highly pathogenic avian influenza (HPAI) H5N1 has posed a significant threat to both humans and birds, and it has spanned large geographic areas and various ecological systems throughout Asia, Europe and Africa, but especially in mainland China. Great efforts in control and prevention of the disease, including universal vaccination campaigns in poultry and active serological and virological surveillance, have been undertaken in mainland China since the beginning of 2006. In this study, we aim to characterize the spatial and temporal patterns of HPAI H5N1, and identify influencing factors favoring the occurrence of HPAI H5N1 outbreaks in poultry in mainland China. Our study shows that HPAI H5N1 outbreaks took place sporadically after vaccination campaigns in poultry, and mostly occurred in the cold season. The positive tests in routine virological surveillance of HPAI H5N1 virus in chicken, duck, goose as well as environmental samples were mapped to display the potential risk distribution of the virus. Southern China had a higher positive rate than northern China, and positive samples were mostly detected from chickens in the north, while the majority were from duck in the south, and a negative correlation with monthly vaccination rates in domestic poultry was found (R = −0.19, p value = 0.005). Multivariate panel logistic regression identified vaccination rate, interaction between distance to the nearest city and national highway, interaction between distance to the nearest lake and wetland, and density of human population, as well as the autoregressive term in space and time as independent risk factors in the occurrence of HPAI H5N1 outbreaks, based on which a predicted risk map of the disease was derived. Our findings could provide new understanding of the distribution and transmission of HPAI H5N1 in mainland China and could be used to inform targeted surveillance and control efforts in both human and poultry populations to reduce the risk of future infections

  20. Growth and Pathogenic Potential of Naturally Selected Reassortants after Coinfection with Pandemic H1N1 and Highly Pathogenic Avian Influenza H5N1 Viruses

    PubMed Central

    Song, Min-Suk; Baek, Yun Hee; Pascua, Philippe Noriel Q.; Kwon, Hyeok-il; Kim, Eun-Ha; Park, Su-Jin; Kim, Se Mi; Kim, Young-Il; Choi, Won-Suk; Kim, Eung-Gook; Kim, Chul-Joong

    2015-01-01

    Coinfection of ferrets with H5N1 and pH1N1 viruses resulted in two predominate genotypes in the lungs containing surface genes of highly pathogenic avian influenza H5N1 virus in the backbone of pandemic H1N1 2009 (pH1N1). Compared to parental strains, these reassortants exhibited increased growth and virulence in vitro and in mice but failed to be transmitted indirectly to naive contact ferrets. Thus, this demonstrates a possible natural reassortment following coinfection as well as the pathogenicity of the potential reassortants. PMID:26491154

  1. Growth and Pathogenic Potential of Naturally Selected Reassortants after Coinfection with Pandemic H1N1 and Highly Pathogenic Avian Influenza H5N1 Viruses.

    PubMed

    Song, Min-Suk; Baek, Yun Hee; Pascua, Philippe Noriel Q; Kwon, Hyeok-Il; Kim, Eun-Ha; Park, Su-Jin; Kim, Se Mi; Kim, Young-Il; Choi, Won-Suk; Kim, Eung-Gook; Kim, Chul-Joong; Choi, Young Ki

    2016-01-01

    Coinfection of ferrets with H5N1 and pH1N1 viruses resulted in two predominate genotypes in the lungs containing surface genes of highly pathogenic avian influenza H5N1 virus in the backbone of pandemic H1N1 2009 (pH1N1). Compared to parental strains, these reassortants exhibited increased growth and virulence in vitro and in mice but failed to be transmitted indirectly to naive contact ferrets. Thus, this demonstrates a possible natural reassortment following coinfection as well as the pathogenicity of the potential reassortants. PMID:26491154

  2. Characterizing wild bird contact and seropositivity to highly pathogenic avian influenza A (H5N1) virus in Alaskan residents

    PubMed Central

    Reed, Carrie; Bruden, Dana; Byrd, Kathy K; Veguilla, Vic; Bruce, Michael; Hurlburt, Debby; Wang, David; Holiday, Crystal; Hancock, Kathy; Ortiz, Justin R; Klejka, Joe; Katz, Jacqueline M; Uyeki, Timothy M

    2014-01-01

    Background Highly pathogenic avian influenza A (HPAI) H5N1 viruses have infected poultry and wild birds on three continents with more than 600 reported human cases (59% mortality) since 2003. Wild aquatic birds are the natural reservoir for avian influenza A viruses, and migratory birds have been documented with HPAI H5N1 virus infection. Since 2005, clade 2.2 HPAI H5N1 viruses have spread from Asia to many countries. Objectives We conducted a cross-sectional seroepidemiological survey in Anchorage and western Alaska to identify possible behaviors associated with migratory bird exposure and measure seropositivity to HPAI H5N1. Methods We enrolled rural subsistence bird hunters and their families, urban sport hunters, wildlife biologists, and a comparison group without bird contact. We interviewed participants regarding their exposures to wild birds and collected blood to perform serologic testing for antibodies against a clade 2.2 HPAI H5N1 virus strain. Results Hunters and wildlife biologists reported exposures to wild migratory birds that may confer risk of infection with avian influenza A viruses, although none of the 916 participants had evidence of seropositivity to HPAI H5N1. Conclusions We characterized wild bird contact among Alaskans and behaviors that may influence risk of infection with avian influenza A viruses. Such knowledge can inform surveillance and risk communication surrounding HPAI H5N1 and other influenza viruses in a population with exposure to wild birds at a crossroads of intercontinental migratory flyways. PMID:24828535

  3. Insight into Alternative Approaches for Control of Avian Influenza in Poultry, with Emphasis on Highly Pathogenic H5N1

    PubMed Central

    Abdelwhab, E. M.; Hafez, Hafez M.

    2012-01-01

    Highly pathogenic avian influenza virus (HPAIV) of subtype H5N1 causes a devastating disease in poultry but when it accidentally infects humans it can cause death. Therefore, decrease the incidence of H5N1 in humans needs to focus on prevention and control of poultry infections. Conventional control strategies in poultry based on surveillance, stamping out, movement restriction and enforcement of biosecurity measures did not prevent the virus spreading, particularly in developing countries. Several challenges limit efficiency of the vaccines to prevent outbreaks of HPAIV H5N1 in endemic countries. Alternative and complementary approaches to reduce the current burden of H5N1 epidemics in poultry should be encouraged. The use of antiviral chemotherapy and natural compounds, avian-cytokines, RNA interference, genetic breeding and/or development of transgenic poultry warrant further evaluation as integrated intervention strategies for control of HPAIV H5N1 in poultry. PMID:23202521

  4. Differences in pathogenicity, response to vaccination, and innate immune responses in different types of ducks infected with a virulent H5N1 highly pathogenic avian influenza virus from Vietnam

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wild ducks are reservoirs of avian influenza viruses in nature, and usually don’t show signs of disease. However, some Asian lineage H5N1 highly pathogenic avian influenza (HPAI) viruses can cause disease and death in both wild and domestic ducks. The objective of this study was to compare the cli...

  5. Broadly protective adenovirus-based multivalent vaccines against highly pathogenic avian influenza viruses for pandemic preparedness.

    PubMed

    Vemula, Sai V; Ahi, Yadvinder S; Swaim, Anne-Marie; Katz, Jacqueline M; Donis, Ruben; Sambhara, Suryaprakash; Mittal, Suresh K

    2013-01-01

    Recurrent outbreaks of H5, H7 and H9 avian influenza viruses in domestic poultry accompanied by their occasional transmission to humans have highlighted the public health threat posed by these viruses. Newer vaccine approaches for pandemic preparedness against these viruses are needed, given the limitations of vaccines currently approved for H5N1 viruses in terms of their production timelines and the ability to induce protective immune responses in the absence of adjuvants. In this study, we evaluated the feasibility of an adenovirus (AdV)-based multivalent vaccine approach for pandemic preparedness against H5, H7 and H9 avian influenza viruses in a mouse model. Replication-defective AdV vectors expressing hemagglutinin (HA) from different subtypes and nucleoprotein (NP) from one subtype induced high levels of humoral and cellular immune responses and conferred protection against virus replication following challenge with H5, H7 and H9 avian influenza virus subtypes. Inclusion of HA from the 2009 H1N1 pandemic virus in the vaccine formulation further broadened the vaccine coverage. Significantly high levels of HA stalk-specific antibodies were observed following immunization with the multivalent vaccine. Inclusion of NP into the multivalent HA vaccine formulation resulted in the induction of CD8 T cell responses. These results suggest that a multivalent vaccine strategy may provide reasonable protection in the event of a pandemic caused by H5, H7, or H9 avian influenza virus before a strain-matched vaccine can be produced. PMID:23638099

  6. Ecological Determinants of Highly Pathogenic Avian Influenza (H5N1) Outbreaks in Bangladesh

    PubMed Central

    Ahmed, Syed S. U.; Ersbøll, Annette K.; Biswas, Paritosh K.; Christensen, Jens P.; Hannan, Abu S. M. A.; Toft, Nils

    2012-01-01

    Background The agro-ecology and poultry husbandry of the south Asian and south-east Asian countries share common features, however, with noticeable differences. Hence, the ecological determinants associated with risk of highly pathogenic avian influenza (HPAI-H5N1) outbreaks are expected to differ between Bangladesh and e.g., Thailand and Vietnam. The primary aim of the current study was to establish ecological determinants associated with the risk of HPAI-H5N1 outbreaks at subdistrict level in Bangladesh. The secondary aim was to explore the performance of two different statistical modeling approaches for unmeasured spatially correlated variation. Methodology/Principal Findings An ecological study at subdistrict level in Bangladesh was performed with 138 subdistricts with HPAI-H5N1 outbreaks during 2007–2008, and 326 subdistricts with no outbreaks. The association between ecological determinants and HPAI-H5N1 outbreaks was examined using a generalized linear mixed model. Spatial clustering of the ecological data was modeled using 1) an intrinsic conditional autoregressive (ICAR) model at subdistrict level considering their first order neighbors, and 2) a multilevel (ML) model with subdistricts nested within districts. Ecological determinants significantly associated with risk of HPAI-H5N1 outbreaks at subdistrict level were migratory birds' staging areas, river network, household density, literacy rate, poultry density, live bird markets, and highway network. Predictive risk maps were derived based on the resulting models. The resulting models indicate that the ML model absorbed some of the covariate effect of the ICAR model because of the neighbor structure implied in the two different models. Conclusions/Significance The study identified a new set of ecological determinants related to river networks, migratory birds' staging areas and literacy rate in addition to already known risk factors, and clarified that the generalized concept of free grazing duck and

  7. Expression of H5 hemagglutinin vaccine antigen in common duckweed (Lemna minor) protects against H5N1 high pathogenicity avian influenza virus challenge in immunized chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A synthetic hemagglutinin (HA) gene from the highly pathogenic avian influenza (HPAI) virus A/chicken/Indonesia/7/2003 (H5N1) (Indo/03) was expressed in aquatic plant Lemna minor (rLemna-HA). In Experiment 1, efficacy of rLemna-HA was tested on specific pathogen free (SPF) birds immunized with 0.2 ...

  8. Effect of age on pathogenesis and innate immune responses in Pekin ducks infected with different H5N1 highly pathogenic avian influenza viruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The pathogenicity of H5N1 highly pathogenic avian influenza (HPAI) viruses in domestic ducks varies between different viruses and is affected by the age of the ducks, with younger ducks presenting more severe disease. In order to better understand the pathobiology of H5N1 HPAI in ducks, including t...

  9. Determining the Phylogenetic and Phylogeographic Origin of Highly Pathogenic Avian Influenza (H7N3) in Mexico

    PubMed Central

    Lu, Lu; Lycett, Samantha J.; Leigh Brown, Andrew J.

    2014-01-01

    Highly pathogenic (HP) avian influenza virus (AIV) H7N3 outbreaks occurred 3 times in the Americas in the past 10 years and caused severe economic loss in the affected regions. In June/July 2012, new HP H7N3 outbreaks occurred at commercial farms in Jalisco, Mexico. Outbreaks continued to be identified in neighbouring states in Mexico till August 2013. To explore the origin of this outbreak, time resolved phylogenetic trees were generated from the eight segments of full-length AIV sequences in North America using BEAST. Location, subtype, avian host species and pathogenicity were modelled as discrete traits upon the trees using continuous time Markov chains. A further joint analysis among segments was performed using a hierarchical phylogenetic model (HPM) which allowed trait rates (location, subtype, host species) to be jointly inferred across different segments. The complete spatial diffusion process was visualised through virtual globe software. Our result indicated the Mexico HP H7N3 originated from the large North America low pathogenicity AIV pool through complicated reassortment events. Different segments were contributed by wild waterfowl from different N. American flyways. Five of the eight segments (HA, NA, NP, M, NS) were introduced from wild birds migrating along the central North American flyway, and PB2, PB1 and PA were introduced via the western North American flyway. These results highlight a potential role for Mexico as a hotspot of virus reassortment as it is where wild birds from different migration routes mix during the winter. PMID:25226523

  10. Description of an outbreak of highly pathogenic avian influenza in domestic ostriches (Struthio camelus) in South Africa in 2011.

    PubMed

    van Helden, L S; Sinclair, M; Koen, P; Grewar, J D

    2016-06-01

    In 2011, the commercial ostrich production industry of South Africa experienced an outbreak of highly pathogenic avian influenza (HPAI), subtype H5N2. Surveillance using antibody and antigen detection revealed 42 infected farms with a between-farm prevalence in the affected area of 16%. The outbreak was controlled using depopulation of infected farms, resulting in the direct loss of 10% of the country's domestic ostrich population. Various factors in the ostrich production system were observed that could have contributed to the spread of the virus between farms, including the large number of legal movements of ostriches between farms, access of wild birds to ostrich camps and delays in depopulation of infected farms. Negative effects on the ostrich industry and the local economy of the ostrich-producing area were observed as a result of the outbreak and the disease control measures applied. Prevention and control measures applied as a result of avian influenza in South Africa were informed by this large outbreak and the insights into epidemiology of avian influenza in ostriches that it provided, resulting in stricter biosecurity measures required on every registered ostrich farm in the country. PMID:27237385

  11. Experimental infection of SPF and Korean native chickens with highly pathogenic avian influenza virus (H5N8).

    PubMed

    Lee, Eun-Kyoung; Song, Byung-Min; Kang, Hyun-Mi; Woo, Sang-Hee; Heo, Gyeong-Beom; Jung, Suk Chan; Park, Yong Ho; Lee, Youn-Jeong; Kim, Jae-Hong

    2016-05-01

    In 2014, an H5N8 outbreak of highly pathogenic avian influenza (HPAI) occurred in South Korea. The H5N8 strain produced mild to moderate clinical signs and mortality rates in commercial chicken farms, especially Korean native chicken farms. To understand the differences between their pathogenicity in SPF chicken and Korean native chicken., we evaluated the mean bird lethal doses (BLD50) of the Korean representative H5N8 virus (A/broiler duck/Korea/Buan2/2014) The BLD50values of the H5N8 virus were 10(5.3)EID50and 10(6.7)EID50in SPF and Korean native chickens, respectively. In addition, the mean death time was much longer, and the viral titers in tissues of H5N8-infected chickens were significantly lower, in the Korean group than in the SPF group. These features of the H5N8 virus likely account for its mild-to-moderate pathogenicity in commercial chicken farms, especially Korean native chicken flocks, despite the fact that it is a highly pathogenic virus according to the OIE criteria. To improve current understanding and management of HPAI, pathogenic characterization of novel emerging viruses should be performed by natural route in major poultry species in each country. PMID:26933235

  12. Practices associated with Highly Pathogenic Avian Influenza spread in traditional poultry marketing chains: Social and economic perspectives.

    PubMed

    Paul, Mathilde; Baritaux, Virginie; Wongnarkpet, Sirichai; Poolkhet, Chaithep; Thanapongtharm, Weerapong; Roger, François; Bonnet, Pascal; Ducrot, Christian

    2013-04-01

    In developing countries, smallholder poultry production contributes to food security and poverty alleviation in rural areas. However, traditional poultry marketing chains have been threatened by the epidemics caused by the Highly Pathogenic Avian Influenza (H5N1) virus. The article presents a value chain analysis conducted on the traditional poultry marketing chain in the rural province of Phitsanulok, Thailand. The analysis is based on quantitative data collected on 470 backyard chicken farms, and on qualitative data collected on 28 poultry collectors, slaughterhouses and market retailers, using semi-structured interviews. The article examines the organization of poultry marketing chains in time and space, and shows how this may contribute to the spread of Highly Pathogenic Avian Influenza H5N1 in the small-scale poultry sector. The article also discusses the practices and strategies developed by value chain actors facing poultry mortality, with their economic and social determinants. More broadly, this study also illustrates how value chain analysis can contribute to a better understanding of the complex mechanisms associated with the spread of epidemics in rural communities. PMID:23337390

  13. EFFICACY OF A FOWLPOX-VECTORED AVIAN INFLUENZA H5 VACCINE AGAINST ASIAN H5N1 HIGHLY PATHOGENIC AVIAN INFLUENZA VIRUS CHALLENGE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A recombinant fowlpox-avian influenza (AI) H5 vaccine (rFP-AIV-H5) expressing the hemagglutinin of the A/turkey/Ireland/1378/83 H5N8 AI isolate has been used in Central America since 1998 to control H5N2 low pathogenicity (LP) AI. Previously, this vaccine was shown to induce full protection against...

  14. Pathobiology and transmission of highly and low pathogenic avian influenza viruses in European quail (Coturnix c. coturnix)

    PubMed Central

    2013-01-01

    European quail (Coturnix c. coturnix) may share with Japanese quail (Coturnix c. japonica) its potential as an intermediate host and reservoir of avian influenza viruses (AIV). To elucidate this question, European quail were experimentally challenged with two highly pathogenic AIV (HPAIV) (H7N1/HP and H5N1/HP) and one low pathogenic AIV (LPAIV) (H7N2/LP). Contact animals were also used to assess the viral transmission among birds. Severe neurological signs and mortality rates of 67% (H7N1/HP) and 92% (H5N1/HP) were observed. Although histopathological findings were present in both HPAIV-infected groups, H5N1/HP-quail displayed a broader viral antigen distribution and extent of microscopic lesions. Neither clinical nor pathological involvement was observed in LPAIV-infected quail. Consistent long-term viral shedding and effective transmission to naive quail was demonstrated for the three studied AIV. Drinking water arose as a possible transmission route and feathers as a potential origin of HPAIV dissemination. The present study demonstrates that European quail may play a major role in AI epidemiology, highlighting the need to further understand its putative role as an intermediate host for avian/mammalian reassortant viruses. PMID:23537387

  15. Isolation and identification of highly pathogenic avian influenza virus subtype H5N1 in peafowl (Pavo cristatus).

    PubMed

    Ismail, Mahmoud Moussa; Khan, Owais Ahmed; Cattoli, Giovanni; Lu, Huaguang

    2010-03-01

    An outbreak of highly pathogenic avian influenza (HPAI) virus subtype H5N1 was first diagnosed in a "backyard" flock of peafowl (Pavo cristatus) raised on palace premises in the Kingdom of Saudi Arabia in December 3, 2007. The flock consisted of 40 peafowl, and their ages ranged from 3 to 5 years old. Affected birds suffered from depression, anorexia, and white diarrhea. Four dead birds were submitted for HPAI diagnosis at the Central Veterinary Diagnostic Laboratory in Riyadh. Brain and liver tissues and tracheal and cloacal swabs were taken from the dead birds and processed for a real-time reverse transcriptase (RT)-PCR test and virus isolation in specific-pathogen-free embryonating chicken eggs. The H5N1 subtype of avian influenza virus was isolated from the four dead birds and identified by a real-time RT-PCR before and after egg inoculation. The virus isolates were characterized as HPAI H5N1 virus by sequencing analysis. Phylogenetic comparisons revealed that the H5N1 viruses isolated from peafowl belong to the genetic clade 2.2 according to the World Health Organization nomenclature. The peafowl H5N1 virus falls into 2.2.2 sublineage II and clusters with the H5N1 viruses isolated from poultry in Saudi Arabia in 2007-08. PMID:20521659

  16. Vaccination with Recombinant RNA Replicon Particles Protects Chickens from H5N1 Highly Pathogenic Avian Influenza Virus

    PubMed Central

    Halbherr, Stefan J.; Brostoff, Terza; Tippenhauer, Merve; Locher, Samira; Berger Rentsch, Marianne; Zimmer, Gert

    2013-01-01

    Highly pathogenic avian influenza viruses (HPAIV) of subtype H5N1 not only cause a devastating disease in domestic chickens and turkeys but also pose a continuous threat to public health. In some countries, H5N1 viruses continue to circulate and evolve into new clades and subclades. The rapid evolution of these viruses represents a problem for virus diagnosis and control. In this work, recombinant vesicular stomatitis virus (VSV) vectors expressing HA of subtype H5 were generated. To comply with biosafety issues the G gene was deleted from the VSV genome. The resulting vaccine vector VSV*ΔG(HA) was propagated on helper cells providing the VSV G protein in trans. Vaccination of chickens with a single intramuscular dose of 2×108 infectious replicon particles without adjuvant conferred complete protection from lethal H5N1 infection. Subsequent application of the same vaccine strongly boosted the humoral immune response and completely prevented shedding of challenge virus and transmission to sentinel birds. The vaccine allowed serological differentiation of infected from vaccinated animals (DIVA) by employing a commercially available ELISA. Immunized chickens produced antibodies with neutralizing activity against multiple H5 viruses representing clades 1, 2.2, 2.5, and low-pathogenic avian influenza viruses (classical clade). Studies using chimeric H1/H5 hemagglutinins showed that the neutralizing activity was predominantly directed against the globular head domain. In summary, these results suggest that VSV replicon particles are safe and potent DIVA vaccines that may help to control avian influenza viruses in domestic poultry. PMID:23762463

  17. Spatial Modeling of Wild Bird Risk Factors for Highly Pathogenic A(H5N1) Avian Influenza Virus Transmission.

    PubMed

    Prosser, Diann J; Hungerford, Laura L; Erwin, R Michael; Ottinger, Mary Ann; Takekawa, John Y; Newman, Scott H; Xiao, Xiangming; Ellis, Erle C

    2016-05-01

    One of the longest-persisting avian influenza viruses in history, highly pathogenic avian influenza virus (HPAIV) A(H5N1), continues to evolve after 18 yr, advancing the threat of a global pandemic. Wild waterfowl (family Anatidae) are reported as secondary transmitters of HPAIV and primary reservoirs for low-pathogenic avian influenza viruses, yet spatial inputs for disease risk modeling for this group have been lacking. Using geographic information software and Monte Carlo simulations, we developed geospatial indices of waterfowl abundance at 1 and 30 km resolutions and for the breeding and wintering seasons for China, the epicenter of H5N1. Two spatial layers were developed: cumulative waterfowl abundance (WAB), a measure of predicted abundance across species, and cumulative abundance weighted by H5N1 prevalence (WPR), whereby abundance for each species was adjusted based on prevalence values and then totaled across species. Spatial patterns of the model output differed between seasons, with higher WAB and WPR in the northern and western regions of China for the breeding season and in the southeast for the wintering season. Uncertainty measures indicated highest error in southeastern China for both WAB and WPR. We also explored the effect of resampling waterfowl layers from 1 to 30 km resolution for multiscale risk modeling. Results indicated low average difference (less than 0.16 and 0.01 standard deviations for WAB and WPR, respectively), with greatest differences in the north for the breeding season and southeast for the wintering season. This work provides the first geospatial models of waterfowl abundance available for China. The indices provide important inputs for modeling disease transmission risk at the interface of poultry and wild birds. These models are easily adaptable, have broad utility to both disease and conservation needs, and will be available to the scientific community for advanced modeling applications. PMID:27309075

  18. Molecular pathogenesis of H5 highly pathogenic avian influenza: the role of the haemagglutinin cleavage site motif.

    PubMed

    Luczo, Jasmina M; Stambas, John; Durr, Peter A; Michalski, Wojtek P; Bingham, John

    2015-11-01

    The emergence of H5N1 highly pathogenic avian influenza has caused a heavy socio-economic burden through culling of poultry to minimise human and livestock infection. Although human infections with H5N1 have to date been limited, concerns for the pandemic potential of this zoonotic virus have been greatly intensified following experimental evidence of aerosol transmission of H5N1 viruses in a mammalian infection model. In this review, we discuss the dominance of the haemagglutinin cleavage site motif as a pathogenicity determinant, the host-pathogen molecular interactions driving cleavage activation, reverse genetics manipulations and identification of residues key to haemagglutinin cleavage site functionality and the mechanisms of cell and tissue damage during H5N1 infection. We specifically focus on the disease in chickens, as it is in this species that high pathogenicity frequently evolves and from which transmission to the human population occurs. With >75% of emerging infectious diseases being of zoonotic origin, it is necessary to understand pathogenesis in the primary host to explain spillover events into the human population. PMID:26467906

  19. H5N1 Highly pathogenic avian influenza virus in wild birds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The existing H5N1 HPAI experimental infection data in wild avian species has validated observations made from field data and provided useful objective data on susceptibility, viral shedding, and pathobiology in different avian species. However, a complete understanding of the H5N1 HPAI virus epidem...

  20. Comparative susceptibility of waterfowl and gulls to highly pathogenic avian influenza H5N1 virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wild avian species in the Orders Anseriformes (ducks, geese, swans) and Charadriiformes (gulls, terns, shorebirds) have traditionally been considered the natural reservoirs for avian influenza viruses (AIV) and morbidity or mortality is rarely associated with AIV infection in these hosts. However, ...

  1. Thermal inactivation of H5N2 high pathogenicity avian influenza virus in dried egg white with 7.5% moisture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High pathogenicity avian influenza viruses (HPAIV) cause severe systemic disease with high mortality in chickens. Isolation of HPAIV from the internal contents of chicken eggs has been reported, and this is cause for concern because HPAIV can be spread by movement of poultry products during marketi...

  2. IMPACT OF DIFFERENT HUSBANDRY CONDITIONS ON CONTACT AND AIRBORNE TRANSMISSION OF H5N1 HIGHLY PATHOGENIC AVIAN INFLUENZA VIRUS TO CHICKENS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Typically highly pathogenic avian influenza (HPAI) viruses spread very rapidly among chickens within sheds. However, the spread was slower than expected for the initial 10 days of the index farm in Japan during 2004. This slow spread as well as the lack of gross lesions, clinical signs or high morta...

  3. Detection of H5 and H7 highly pathogenic avian influenza virus with lateral flow devices: performance with healthy, sick and dead chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rapid detection of highly pathogenic avian influenza virus (HPAIV) in the field is critical for effective disease control and to differentiate it from other diseases, such as Newcastle disease. Lateral flow devices (LFD) are commercially available and provide a fast, highly specific, on-site test fo...

  4. Targeted surveillance for highly pathogenic avian influenza in migratory waterfowl across the conterminous United States: chapter 12

    USGS Publications Warehouse

    Farnsworth, Matthew L.; Kendall, William L.; Doherty, Paul F., Jr.; Miller, Ryan S.; White, Gary C.; Nichols, James D.; Burnham, Kenneth P.; Franklin, Alan B.

    2011-01-01

    Introduction of Asian strain H5N1 Highly Pathogenic avian influenca via waterfowl migration is one potential route of entry into the United States. In conjunction with state, tribe, and laboratory partners, the United States Department of Agriculture collected and tested 124,603 wild bird samples in 2006 as part of a national surveillance effort. A sampling plan was devised to increase the probability fo detecting Asian strain H5N1 at a national scale. Band recovery data were used to identify and prioritize sampling for wild migratory waterfowl, resulting in spatially targeted sampling recommendations focused on reads with high numbers of recoveries. We also compared the spatial and temporal distribution of the 2006 cloacal and fecal waterfowl sampling effort to the bird banding recovery data and found concordance between the two .Finally, we present improvements made to the 2007 fecal sampling component of the surveillance plan and suggest further improvements for future sampling.

  5. Antigenic and genetic diversity of highly pathogenic avian influenza A (H5N1) viruses isolated in Egypt.

    PubMed

    Balish, Amanda L; Davis, C Todd; Saad, Magdi D; El-Sayed, Nasr; Esmat, Hala; Tjaden, Jeffrey A; Earhart, Kenneth C; Ahmed, Lu'ay E; Abd El-Halem, Mohamed; Ali, Abdel Hakem M; Nassif, Samir A; El-Ebiary, Elham A; Taha, M; Aly, Mona M; Arafa, Abdelstattar; O'Neill, Eduardo; Xiyan, Xu; Cox, Nancy J; Donis, Ruben O; Klimov, Alexander I

    2010-03-01

    Highly pathogenic avian influenza A virus (H5N1) has diverged antigenically and genetically since its initial detection in Asia in 1997. Viruses belonging to clade 2.2 in particular have been reported in numerous countries with the majority occurring in Egypt. Previous reports identified antigenic similarities between viruses belonging to clade 2.2. However, poultry and human viruses isolated in northern Egypt during 2007 and 2008 were found to be antigenically distinct from other clade 2.2 viruses from this country. Genetic analysis of the hemagglutinin revealed a high degree of nucleotide and amino acid divergence. The antigenic changes in Egyptian viruses isolated during 2007-08 necessitated that two of these strains be considered as potential H5N1 pre-pandemic vaccine candidates. PMID:20521654

  6. The space-time clustering of highly pathogenic avian influenza (HPAI) H5N1 outbreaks in Bangladesh.

    PubMed

    Ahmed, S S U; Ersbøll, A K; Biswas, P K; Christensen, J P

    2010-06-01

    Bangladesh faced two epidemic waves of highly pathogenic avian influenza (HPAI) H5N1 in two consecutive years. The peaks of the waves were observed in February-July 2007 and January-April 2008, respectively. We examined the spatial and temporal patterns of the 293 outbreaks in 143 subdistricts in 2007 and 2008. Global clustering assessed by K-function was seen at distances 150-300 km between subdistricts. Significant local clusters were detected by space-time scan statistics. In both waves, significant primary clusters of HPAI outbreaks were identified in the central part of the country dominated by commercial production systems and in the northwestern part primarily in backyard production systems. Secondary clusters varied from the northwestern part in 2007 and the southern part in 2008. The findings are highly relevant for the successful planning and implementation of control, prevention and surveillance strategies by highlighting areas where detailed investigations should be initiated. PMID:20109257

  7. Pathogenicity and tissue tropism of currently circulating highly pathogenic avian influenza A virus (H5N1; clade 2.3.2) in tufted ducks (Aythya fuligula).

    PubMed

    Bröjer, Caroline; van Amerongen, Geert; van de Bildt, Marco; van Run, Peter; Osterhaus, Albert; Gavier-Widén, Dolores; Kuiken, Thijs

    2015-11-18

    Reports describing the isolation of highly pathogenic avian influenza (HPAI) virus (H5N1) clade 2.3.2 in feces from apparently healthy wild birds and the seemingly lower pathogenicity of this clade compared to clade 2.2 in several experimentally infected species, caused concern that the new clade might be maintained in the wild bird population. To investigate whether the pathogenicity of a clade 2.3.2 virus was lower than that of clades previously occurring in free-living wild birds in Europe, four tufted ducks were inoculated with influenza A/duck/HongKong/1091/2011 (H5N1) clade 2.3.2 virus. The ducks were monitored and sampled for virus excretion daily during 4 days, followed by pathologic, immunohistochemical, and virological investigations. The virus produced severe disease as evidenced by clinical signs, presence of marked lesions and abundant viral antigen in several tissues, especially the central nervous system. The study shows that HPAI-H5N1 virus clade 2.3.2 is highly pathogenic for tufted ducks and thus, they are unlikely to maintain this clade in the free-living population or serve as long-distance vectors. PMID:26441012

  8. Multiple introductions of highly pathogenic avian influenza H5N1 viruses into Bangladesh

    PubMed Central

    Marinova-Petkova, Atanaska; Feeroz, Mohammed M; Rabiul Alam, SM; Kamrul Hasan, M; Akhtar, Sharmin; Jones-Engel, Lisa; Walker, David; McClenaghan, Laura; Rubrum, Adam; Franks, John; Seiler, Patrick; Jeevan, Trushar; McKenzie, Pamela; Krauss, Scott; Webby, Richard J; Webster, Robert G

    2014-01-01

    Highly pathogenic H5N1 and low pathogenic H9N2 influenza viruses are endemic to poultry markets in Bangladesh and have cocirculated since 2008. H9N2 influenza viruses circulated constantly in the poultry markets, whereas highly pathogenic H5N1 viruses occurred sporadically, with peaks of activity in cooler months. Thirty highly pathogenic H5N1 influenza viruses isolated from poultry were characterized by antigenic, molecular, and phylogenetic analyses. Highly pathogenic H5N1 influenza viruses from clades 2.2.2 and 2.3.2.1 were isolated from live bird markets only. Phylogenetic analysis of the 30 H5N1 isolates revealed multiple introductions of H5N1 influenza viruses in Bangladesh. There was no reassortment between the local H9N2 influenza viruses and H5N1 genotype, despite their prolonged cocirculation. However, we detected two reassortant H5N1 viruses, carrying the M gene from the Chinese H9N2 lineage, which briefly circulated in the Bangladesh poultry markets and then disappeared. On the other hand, interclade reassortment occurred within H5N1 lineages and played a role in the genesis of the currently dominant H5N1 viruses in Bangladesh. Few ‘human-like' mutations in H5N1 may account for the limited number of human cases. Antigenically, clade 2.3.2.1 H5N1 viruses in Bangladesh have evolved since their introduction and are currently mainly homogenous, and show evidence of recent antigenic drift. Although reassortants containing H9N2 genes were detected in live poultry markets in Bangladesh, these reassortants failed to supplant the dominant H5N1 lineage. PMID:26038508

  9. U.S. Geological Survey science strategy for highly pathogenic avian influenza in wildlife and the environment (2016–2020)

    USGS Publications Warehouse

    Harris, M. Camille; Pearce, John M.; Prosser, Diann J.; White, C. LeAnn; Miles, A. Keith; Sleeman, Jonathan M.; Brand, Christopher J.; Cronin, James P.; De La Cruz, Susan; Densmore, Christine L.; Doyle, Thomas W.; Dusek, Robert J.; Fleskes, Joseph P.; Flint, Paul L.; Guala, Gerald F.; Hall, Jeffrey S.; Hubbard, Laura E.; Hunt, Randall J.; Ip, Hon S.; Katz, Rachel A.; Laurent, Kevin W.; Miller, Mark P.; Munn, Mark D.; Ramey, Andy M.; Richards, Kevin D.; Russell, Robin E.; Stokdyk, Joel P.; Takekawa, John Y.; Walsh, Daniel P.

    2016-01-01

    IntroductionThrough the Science Strategy for Highly Pathogenic Avian Influenza (HPAI) in Wildlife and the Environment, the USGS will assess avian influenza (AI) dynamics in an ecological context to inform decisions made by resource managers and policymakers from the local to national level. Through collection of unbiased scientific information on the ecology of AI viruses and wildlife hosts in a changing world, the U.S. Geological Survey (USGS) will enhance the development of AI forecasting tools and ensure this information is integrated with a quality decision process for managing HPAI.The overall goal of this USGS Science Strategy for HPAI in Wildlife and the Environment goes beyond document­ing the occurrence and distribution of AI viruses in wild birds. The USGS aims to understand the epidemiological processes and environmental factors that influence HPAI distribution and describe the mechanisms of transmission between wild birds and poultry. USGS scientists developed a conceptual model describing the process linking HPAI dispersal in wild waterfowl to the outbreaks in poul­try. This strategy focuses on five long-term science goals, which include:Science Goal 1—Augment the National HPAI Surveillance Plan;Science Goal 2—Determine mechanisms of HPAI disease spread in wildlife and the environment;Science Goal 3—Characterize HPAI viruses circulating in wildlife;Science Goal 4—Understand implications of avian ecol­ogy on HPAI spread; andScience Goal 5—Develop HPAI forecasting and decision-making tools.These goals will help define and describe the processes outlined in the conceptual model with the ultimate goal of facilitating biosecurity and minimizing transfer of diseases across the wildlife-poultry interface. The first four science goals are focused on scientific discovery and the fifth goal is application-based. Decision analyses in the fifth goal will guide prioritization of proposed actions in the first four goals.

  10. Human infection with a highly pathogenic avian influenza A (H5N6) virus in Yunnan province, China.

    PubMed

    Xu, Wen; Li, Hong; Jiang, Li

    2016-01-01

    Highly pathogenic avian influenza A H5N6 virus has caused four human infections in China. This study reports the preliminary findings of the first known human case of H5N6 in Yunnan province. The patient initially developed symptoms of sore throat and coughing on 27 January 2015. The disease rapidly progressed to severe pneumonia, multiple organ dysfunctions and acute respiratory distress syndrome and the patient died on 6 February. Virological analysis determined that the virus belonged to H5 clade 2.3.4.4 and it has obtained partial ability for mammalian adaptation and amantadine resistance. Environmental investigation found H5 in 63% of the samples including poultry faeces, tissues, cage surface swabs and sewage from local live poultry markets by real-time RT-PCR. These findings suggest that the expanding and enhancing of surveillance in both avian and humans are necessary to monitor the evolution of H5 influenza virus and to facilitate early detection of suspected cases. PMID:27030920

  11. Susceptibility of North American Ducks and Gulls to H5N1 Highly Pathogenic Avian Influenza Viruses

    PubMed Central

    Stallknecht, David E.; Beck, Joan R.; Suarez, David L.; Swayne, David E.

    2006-01-01

    Since 2002, H5N1 highly pathogenic avian influenza (HPAI) viruses have been associated with deaths in numerous wild avian species throughout Eurasia. We assessed the clinical response and extent and duration of viral shedding in 5 species of North American ducks and laughing gulls (Larus atricilla) after intranasal challenge with 2 Asian H5N1 HPAI viruses. Birds were challenged at ≈10 to 16 weeks of age, consistent with temporal peaks in virus prevalence and fall migration. All species were infected, but only wood ducks (Aix sponsa) and laughing gulls exhibited illness or died. Viral titers were higher in oropharyngeal swabs than in cloacal swabs. Duration of viral shedding (1–10 days) increased with severity of clinical disease. Both the hemagglutination-inhibition (HI) and agar gel precipitin (AGP) tests were able to detect postinoculation antibodies in surviving wood ducks and laughing gulls; the HI test was more sensitive than the AGP in the remaining 4 species PMID:17283615

  12. Wild Birds and Increased Transmission of Highly Pathogenic Avian Influenza (H5N1) among Poultry, Thailand

    PubMed Central

    Keawcharoen, Juthatip; van den Broek, Jan; Bouma, Annemarie; Tiensin, Thanawat; Osterhaus, Albert D.M.E

    2011-01-01

    Since the outbreaks of highly pathogenic avian influenza (HPAI) subtype H5N1 virus, wild birds have been suspected of transmitting this virus to poultry. On January 23, 2004, the Ministry of Public Health in Thailand informed the World Health Organization of an avian influenza A (H5N1) outbreak. To determine the epidemiology of this viral infection and its relation to poultry outbreaks in Thailand from 2004 through 2007, we investigated how wild birds play a role in transmission. A total of 24,712 serum samples were collected from migratory and resident wild birds. Reverse transcription PCR showed a 0.7% HPAI (H5N1) prevalence. The highest prevalence was observed during January–February 2004 and March–June 2004, predominantly in central Thailand, which harbors most of the country’s poultry flocks. Analysis of the relationship between poultry and wild bird outbreaks was done by using a nonhomogeneous birth and death statistical model. Transmission efficiency among poultry flocks was 1.7× higher in regions with infected wild birds in the given or preceding month. The joint presence of wild birds and poultry is associated with increased spread among poultry flocks. PMID:21749762

  13. When private actors matter: Information-sharing network and surveillance of Highly Pathogenic Avian Influenza in Vietnam.

    PubMed

    Delabouglise, A; Dao, T H; Truong, D B; Nguyen, T T; Nguyen, N T X; Duboz, R; Fournié, G; Antoine-Moussiaux, N; Grosbois, V; Vu, D T; Le, T H; Nguyen, V K; Salem, G; Peyre, M

    2015-07-01

    The effectiveness of animal health surveillance systems depends on their capacity to gather sanitary information from the animal production sector. In order to assess this capacity we analyzed the flow of sanitary information regarding Highly Pathogenic Avian Influenza (HPAI) suspicions in poultry in Vietnam. Participatory methods were applied to assess the type of actors and likelihood of information sharing between actors in case of HPAI suspicion in poultry. While the reporting of HPAI suspicions is mandatory, private actors had more access to information than public actors. Actors of the upstream sector (medicine and feed sellers) played a key role in the diffusion of information. The central role of these actors and the influence of the information flow on the adoption by poultry production stakeholders of behaviors limiting (e.g. prevention measures) or promoting disease transmission (e.g. increased animal movements) should be accounted for in the design of surveillance and control programs. PMID:25847263

  14. Anatidae Migration in the Western Palearctic and Spread of Highly Pathogenic Avian Influenza H5N1 Virus

    PubMed Central

    Xiao, Xiangming; Domenech, Joseph; Lubroth, Juan; Martin, Vincent; Slingenbergh, Jan

    2006-01-01

    During the second half of 2005, highly pathogenic avian influenza (HPAI) H5N1 virus spread rapidly from central Asia to eastern Europe. The relative roles of wild migratory birds and the poultry trade are still unclear, given that little is yet known about the range of virus hosts, precise movements of migratory birds, or routes of illegal poultry trade. We document and discuss the spread of the HPAI H5N1 virus in relation to species-specific flyways of Anatidae species (ducks, geese, and swans) and climate. We conclude that the spread of HPAI H5N1 virus from Russia and Kazakhstan to the Black Sea basin is consistent in space and time with the hypothesis that birds in the Anatidae family have seeded the virus along their autumn migration routes. PMID:17283613

  15. Transmission of an H5N8-Subtype Highly Pathogenic Avian Influenza Virus from Infected Hens to Laid Eggs.

    PubMed

    Uchida, Yuko; Takemae, Nobuhiro; Tanikawa, Taichiro; Kanehira, Katsushi; Saito, Takehiko

    2016-06-01

    We showed here that an H5N8-subtype highly pathogenic avian influenza virus (HPAIV) was transmitted to both the internal contents and shells of eggs laid by white leghorn hens experimentally infected with the virus. Seven of eight HPAIV-infected hens laid eggs until 4 days postinoculation (dpi). The mean number of eggs laid per head daily decreased significantly from 0.58 before inoculation to 0.18 after viral inoculation. The virus was detected in the eggs laid by three of the seven hens. Viral transmission was detectable beginning on 3 dpi, and virus titers in tracheal and cloacal swabs from the hens that laid the contaminated eggs exceeded 2.9 log10 EID50. The level of viral replication and its timing when virus replicates enough to be detected in oviduct after virus inoculation appear to be key factors in the transmission of H5N8 HPAIV from infected hens to laid eggs. PMID:27309286

  16. Epidemiological consequences of an incursion of highly pathogenic H5N1 avian influenza into the British poultry flock

    PubMed Central

    Sharkey, Kieran J; Bowers, Roger G; Morgan, Kenton L; Robinson, Susan E; Christley, Robert M

    2007-01-01

    Highly pathogenic avian influenza and in particular the H5N1 strain has resulted in the culling of millions of birds and continues to pose a threat to poultry industries worldwide. The recent outbreak of H5N1 in the UK highlights the need for detailed assessment of the consequences of an incursion and of the efficacy of control strategies. Here, we present results from a model of H5N1 propagation within the British poultry industry. We find that although the majority of randomly seeded incursions do not spread beyond the initial infected premises, there is significant potential for widespread infection. The efficacy of the European Union strategy for disease control is evaluated and our simulations emphasize the pivotal role of duck farms in spreading H5N1. PMID:17956849

  17. Effect of homosubtypic and heterosubtypic low pathogenic avian influenza exposure on H5N1 highly pathogenic avian influenza virus infection in wood ducks (Aix sponsa)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wild birds in the Orders Anseriformes and Charadriiformes are the natural reservoirs for avian influenza (AI) viruses. Although they are often infected with multiple AI viruses, the significance and extent of acquired immunity in these populations is not understood. Pre-existing immunity to AI virus...

  18. Pathogenicity of H5N8 highly pathogenic avian influenza viruses isolated from a wild bird fecal specimen and a chicken in Japan in 2014.

    PubMed

    Tanikawa, Taichiro; Kanehira, Katsushi; Tsunekuni, Ryota; Uchida, Yuko; Takemae, Nobuhiro; Saito, Takehiko

    2016-04-01

    Poultry outbreaks caused by H5N8 highly pathogenic avian influenza viruses (HPAIVs) occurred in Japan between December 2014 and January 2015. During the same period; H5N8 HPAIVs were isolated from wild birds and the environment in Japan. The hemagglutinin (HA) genes of these isolates were found to belong to clade 2.3.4.4 and three sub-groups were distinguishable within this clade. All of the Japanese isolates from poultry outbreaks belonged to the same sub-group; whereas wild bird isolates belonged to the other sub-groups. To examine whether the difference in pathogenicity to chickens between isolates of different HA sub-groups of clade 2.3.4.4 could explain why the Japanese poultry outbreaks were only caused by a particular sub-group; pathogenicities of A/chicken/Miyazaki/7/2014 (Miyazaki2014; sub-group C) and A/duck/Chiba/26-372-48/2014 (Chiba2014; sub-group A) to chickens were compared and it was found that the lethality of Miyazaki2014 in chickens was lower than that of Chiba2014; according to the 50% chicken lethal dose. This indicated that differences in pathogenicity may not explain why the Japanese poultry outbreaks only involved group C isolates. PMID:26916882

  19. Pathogenesis and transmission of H7 and H5 highly pathogenic avian influenza viruses in mallards including the recent intercontinental H5 viruses (H5N8 and H5N2)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Highly pathogenic avian influenza viruses (HPAIV’s) remain a threat to poultry worldwide. Avian influenza viruses, including HPAIV, are usually non-pathogenic for ducks and other wild aquatic birds, with the exception of Asian lineage H5N1, and recently H5N8, HPAIVs, which can cause moderate to sev...

  20. Protective efficacy of recombinant and inactivated H5 avian influenza vaccines against challenge from the 2014 intercontinental H5 highly pathogenic avian influenza viruses (H5N8 and H5N2)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Protective immunity against highly pathogenic avian influenza (HPAI) largely depends on the development of an antibody response against a specific subtype of challenge virus. Historically, the use of antigenically closely matched isolates has proven efficacious when used as inactivated vaccines. M...

  1. Protective efficacy of reverse genetics based on inactivated American and Asian neuraminidase DIVA marker vaccines against highly pathogenic H5N1 avian influenza viruses in chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Asian H5N1 highly pathogenic avian influenza has become endemic in several countries, and vaccination is commonly being used. Vaccination can affect surveillance, and therefore there is considerable interest in DIVA (differentiate infected from vaccinated animals) vaccine strategies. Using reverse...

  2. A computationally optimized broadly reactive H5 hemagglutinin vaccine provides protection against homologous and heterologous H5N1 highly pathogenic avian influenza virus infection in chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Since its emergence in 1996 in China, H5N1 highly pathogenic avian influenza (HPAI) virus has continuously evolved into different genetic clades that have created challenges to maintaining antigenically relevant H5N1 vaccine seeds. Therefore, a universal (multi-hemagglutinin [HA] subtype) or more c...

  3. Suboptimal protection against H5N1 highly pathogenic avian influenza viruses from Vietnam in ducks vaccinated with commercial poultry vaccines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Highly pathogenic (HP) H5N1 avian influenza (AI) viruses continue to circulate in Asia and other regions of the world. Vaccination is used as part of H5N1 HPAI control programs in many countries; however, eradication of the disease has not been possible due to the emergence and spread of new viruses...

  4. Impact of vaccination on infection with Vietnam H5N1 high pathogenicity avian influenza virus in hens and the eggs they lay

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High pathogenicity avian influenza virus (HPAIV) infections in chickens decrease egg production and eggs that are laid contain HPAIV. Vaccination once or twice was examined as a way to protect chickens from Vietnamese H5N1 HPAIV. Eighty-three percent of hens without vaccination died within 3 days ...

  5. Impact of vaccination on infection with Vietnam H5N1 high pathogenicity avian influenza virus in hens and the eggs they lay

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Highly pathogenic avian influenza virus (HPAIV) infections in chickens produce a negative impact on egg production, and virus is deposited on surface and internal contents of eggs. Previously, vaccination maintained egg production and reduced egg contamination when challenged with a North American H...

  6. Highly Pathogenic Avian Influenza A(H5N8) Viruses Reintroduced into South Korea by Migratory Waterfowl, 2014–2015

    PubMed Central

    Kwon, Jung-Hoon; Lee, Dong-Hun; Swayne, David E.; Noh, Jin-Yong; Yuk, Seong-Su; Erdene-Ochir, Tseren-Ochir; Hong, Woo-Tack; Jeong, Jei-Hyun; Jeong, Sol; Gwon, Gyeong-Bin

    2016-01-01

    Highly pathogenic avian influenza A(H5N8) viruses were isolated from migratory waterfowl in South Korea during fall 2014–winter 2015, a recurrence after initial introduction in winter 2014. These reappeared viruses were phylogenetically distinct from isolates circulating in poultry farms in South Korea. PMID:26890406

  7. Determination of efficacious vaccine seed strains for use against Egyptian H5N1 highly pathogenic avian influenza viruses through antigenic cartography and in vivo challenge studies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Since 2006, there have been reported outbreaks of H5N1 highly pathogenic avian influenza (HPAI) in vaccinated chickens in Africa and Asia. This study provides experimental data for selection of efficacious H5N1 vaccine seed strains against recently circulating strains of H5N1 HPAI viruses in Egypt....

  8. Experimental infection with low and high pathogenicity H7N3 Chilean avian influenza viruses in Chiloe Wigeon (Anas sibilatrix) and Cinnamon Teal (Anas cyanoptera)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Since 2002, H5N1 high pathogenicity avian influenza (HPAI) viruses have been associated with natural, lethal infections in wild aquatic birds which have been reproduced experimentally. Some aquatic bird species have been suggested as potential transporters of H5N1 HPAI virus via migration. However, ...

  9. Risk reduction modeling of high pathogenicity avian influenza virus titers in non-pasteurized liquid egg obtained from infected but undetected chicken flocks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Control of highly pathogenic avian influenza (HPAI) has traditionally involved the establishment of disease containment zones, where poultry products are only permitted to move from within a containment area under permit. Non-pasteurized liquid egg (NPLE) is one such commodity for which movements ma...

  10. Mucosal vaccination with a codon-optimized hemagglutinin gene expressed by attenuated Salmonella elicits a protective immune response in chickens against highly pathogenic avian influenza

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The purpose of this study was to evaluate the protection of two attenuated Salmonella enteria serovar typhimurium strains expressing the hemagglutinin (HA) gene from a highly pathogenic avian influenza (HPAI) H5N1 (A/whooper swan/Mongolia/3/2005), under control of the anaerobically inducible nir15 p...

  11. Susceptibility of five migratory aquatic birds to H5N1 highly pathogenic avian influenza virus (A/Chicken/Korea/IS/06)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It is not known which migratory aquatic species are important in spreading H5N1 highly pathogenic avian influenza (HPAI) viruses, and the pathobiology of infections by such viruses. The objective of this investigation was to assess the susceptibility of Mute swans (Cygnus olor), Greylag geese (Anse...

  12. Variability in pathobiology of South Korean H5N1 high-pathogenicity avian influenza virus infection for 5 species of migratory waterfowl

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The biological outcome of H5N1 high pathogenicity avian influenza (HPAI) virus infection in wild waterfowl is poorly understood. This study examined infectivity and pathobiology of A/chicken/Korea/IS/06 (H5N1) HPAI virus infection in Mute swans (Cygnus olor), Greylag geese (Anser anser), Ruddy Sheld...

  13. Highly pathogenic avian influenza A(H5N8) viruses reintroduced into South Korea by migratory waterfowl, 2014–2015

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Highly pathogenic avian influenza A(H5N8) viruses were isolated from migratory waterfowl in South Korea during all 2014–winter 2015, a recurrence after initial introduction in winter 2014. These reappeared viruses were phylogenetically distinct from isolates circulating in poultry farms in South Kor...

  14. Role of immune-related host gene responses in the pathobiology of H5N1 highly pathogenic avian influenza in ducks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Asian highly pathogenic avian influenza (HPAI) H5N1 viruses have changed from producing mild respiratory infections in ducks to some strains causing severe disease and mortality. In this study we examined host response to infection with HPAI H5N1 viruses in ducks. With the use of a whole genom...

  15. Efficacy of commercial vaccines in protecting chickens and ducks against H5N1 highly pathogenic avian influenza viruses from Vietnam

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Highly pathogenic (HP) H5N1 avian influenza (AI) viruses continue to circulate in Asia and have spread to other regions of the world. Though attempts at eradication of the viruses during various outbreaks have been successful for short periods of time, new strains of H5N1 viruses continue to emerge...

  16. Pekin and Muscovy ducks respond differently to vaccination with a H5N1 highly pathogenic avian influenza (HPAI) commercial inactivated vaccine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Domestic ducks are key intermediates in the transmission of H5N1 highly pathogenic avian influenza (HPAI) viruses, and therefore are included in vaccination programs to control H5N1 HPAI. Although vaccination has proven effective in protecting ducks against disease, different species of domestic duc...

  17. Comparison of pig and ferret models for evaluation of respiratory versus alimentary transmission of H5N1 high pathogenicity avian influenza virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: H5N1 high pathogenicity avian influenza viruses (HPAIV) have caused over 300 human infections and over 200 deaths since 2003. The majority of the cases have involved close direct or indirect contact with infected poultry but a few cases have incriminated consumption of uncooked poultry p...

  18. Infectious and lethal doses of H5N1 highly pathogenic avian influenza virus for house sparrows (Passer domesticus) and rock pigeons (Columbia livia)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Terrestrial wild birds commonly associated with poultry farms have the potential to contribute to the spread of H5N1 highly pathogenic avian influenza virus within or between poultry facilities or between domesticated and wild bird populations. This potential, however, varies between species and is...

  19. Characterization of 10 adjuvants for inactivated avian influenza virus (AIV) vaccines against challenge with highly pathogenic AIV in chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Inactivated vaccines comprise 95% of all vaccine used for avian influenza virus (AIV) by dose. Optimizing the adjuvant is one way to improve vaccine efficacy. Inactivated vaccines were produced with beta-propiolactone inactivated A/chicken/BC/314514-1/2004 H7N3 low pathogenicity AIV and standardiz...

  20. Highly Pathogenic Avian Influenza A(H5N1) Virus Struck Migratory Birds in China in 2015

    PubMed Central

    Bi, Yuhai; Zhang, Zhenjie; Liu, Wenjun; Yin, Yanbo; Hong, Jianmin; Li, Xiangdong; Wang, Haiming; Wong, Gary; Chen, Jianjun; Li, Yunfeng; Ru, Wendong; Gao, Ruyi; Liu, Di; Liu, Yingxia; Zhou, Boping; Gao, George F.; Shi, Weifeng; Lei, Fumin

    2015-01-01

    Approximately 100 migratory birds, including whooper swans and pochards, were found dead in the Sanmenxia Reservoir Area of China during January 2015. The causative agent behind this outbreak was identified as H5N1 highly pathogenic avian influenza virus (HPAIV). Genetic and phylogenetic analyses revealed that this Sanmenxia H5N1 virus was a novel reassortant, possessing a Clade 2.3.2.1c HA gene and a H9N2-derived PB2 gene. Sanmenxia Clade 2.3.2.1c-like H5N1 viruses possess the closest genetic identity to A/Alberta/01/2014 (H5N1), which recently caused a fatal respiratory infection in Canada with signs of meningoencephalitis, a highly unusual symptom with influenza infections in humans. Furthermore, this virus was shown to be highly pathogenic to both birds and mammals, and demonstrate tropism for the nervous system. Due to the geographical location of Sanmenxia, these novel H5N1 viruses also have the potential to be imported to other regions through the migration of wild birds, similar to the H5N1 outbreak amongst migratory birds in Qinghai Lake during 2005. Therefore, further investigation and monitoring is required to prevent this novel reassortant virus from becoming a new threat to public health. PMID:26259704

  1. Victims and vectors: highly pathogenic avian influenza H5N1 and the ecology of wild birds

    USGS Publications Warehouse

    Takekawa, John Y.; Prosser, Diann J.; Newman, Scott H.; Muzaffar, Sabir Bin; Hill, Nichola J.; Yan, Baoping; Xiao, Xiangming; Lei, Fumin; Li, Tianxian; Schwarzbach, Steven E.; Howell, Judd A.

    2010-01-01

    The emergence of highly pathogenic avian influenza (HPAI) viruses has raised concerns about the role of wild birds in the spread and persistence of the disease. In 2005, an outbreak of the highly pathogenic subtype H5N1 killed more than 6,000 wild waterbirds at Qinghai Lake, China. Outbreaks have continued to periodically occur in wild birds at Qinghai Lake and elsewhere in Central China and Mongolia. This region has few poultry but is a major migration and breeding area for waterbirds in the Central Asian Flyway, although relatively little is known about migratory movements of different species and connectivity of their wetland habitats. The scientific debate has focused on the role of waterbirds in the epidemiology, maintenance and spread of HPAI H5N1: to what extent are they victims affected by the disease, or vectors that have a role in disease transmission? In this review, we summarise the current knowledge of wild bird involvement in the ecology of HPAI H5N1. Specifically, we present details on: (1) origin of HPAI H5N1; (2) waterbirds as LPAI reservoirs and evolution into HPAI; (3) the role of waterbirds in virus spread and persistence; (4) key biogeographic regions of outbreak; and (5) applying an ecological research perspective to studying AIVs in wild waterbirds and their ecosystems.

  2. Pathobiology of Asian highly pathogenic avian influenza H5N1 virus infection in ducks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ducks and other wild aquatic birds are the natural reservoir of influenza type A viruses which normally are nonpathogenic in these birds. However, the Asian H5N1 avian influenza (AI) viruses have evolved from producing no disease or mild respiratory infections in ducks, to some strains producing se...

  3. Use of interferon treatment to protect chickens against highly pathogenic avian influenza

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza (AI) is a significant public health concern and serious economic threat to the commercial poultry industry worldwide. While properly matched vaccines can be effective at limiting morbidity and mortality, the use of therapeutics in veterinary animals to combat this disease are relativ...

  4. Pathogenicity of Genetically Similar, H5N1 Highly Pathogenic Avian Influenza Virus Strains in Chicken and the Differences in Sensitivity among Different Chicken Breeds

    PubMed Central

    Matsuu, Aya; Kobayashi, Tomoko; Patchimasiri, Tuangthong; Shiina, Takashi; Suzuki, Shingo; Chaichoune, Kridsada; Ratanakorn, Parntep; Hiromoto, Yasuaki; Abe, Haruka; Parchariyanon, Sujira; Saito, Takehiko

    2016-01-01

    Differences in the pathogenicity of genetically closely related H5N1 highly pathogenic avian influenza viruses (HPAIVs) were evaluated in White Leghorn chickens. These viruses varied in the clinical symptoms they induced, including lethality, virus shedding, and replication in host tissues. A comparison of the host responses in the lung, brain, and spleen suggested that the differences in viral replication efficiency were related to the host cytokine response at the early phase of infection, especially variations in the proinflammatory cytokine IL-6. Based on these findings, we inoculated the virus that showed the mildest pathogenicity among the five tested, A/pigeon/Thailand/VSMU-7-NPT/2004, into four breeds of Thai indigenous chicken, Phadu-Hung-Dang (PHD), Chee, Dang, and Luang-Hung-Khao (LHK), to explore effects of genetic background on host response. Among these breeds, Chee, Dang, and LHK showed significantly longer survival times than White Leghorns. Virus shedding from dead Thai indigenous chickens was significantly lower than that from White Leghorns. Although polymorphisms were observed in the Mx and MHC class I genes, there was no significant association between the polymorphisms in these loci and resistance to HPAIV. PMID:27078641

  5. Vaccine Protection of Turkeys Against H5N1 Highly Pathogenic Avian Influenza Virus with a Recombinant Turkey Herpesvirus Expressing the Hemagglutinin Gene of Avian Influenza.

    PubMed

    Kapczynski, Darrell R; Dorsey, Kristi; Chrzastek, Klaudia; Moraes, Mauro; Jackwood, Mark; Hilt, Debra; Gardin, Yannick

    2016-06-01

    Outbreaks of H5 highly pathogenic avian influenza (HPAI) in commercial poultry are a constant threat to animal health and food supplies. While vaccination can enhance protection and reduce the spread of disease, there is considerable evidence that the level of immunity required for protection varies by subtype and virulence of field virus. In this study, the efficacy of a recombinant turkey herpesvirus (rHVT) vector vaccine expressing the hemagglutinin gene from a clade 2.2 AI virus (A/Swan/Hungary/4999/2006) was evaluated in turkeys for protection against challenge with A/Whooper Swan/Mongolia/L244/2005 H5N1 HPAI clade 2.2. One-day-old turkeys received a single vaccination and were challenged at 4 wk postvaccination with 2 × 10(6) 50% embryo infectious dose per bird. The results demonstrate that following H5N1 HPAI challenge 96% protection was observed in rHVT-AI vaccinated turkeys. The oral and cloacal swabs taken from challenged birds demonstrated that vaccinated birds had lower incidence and titers of viral shedding compared with sham-vaccinated birds. From respiratory and gastrointestinal tracts, there was a greater than 6 log10 reduction in shedding in vaccinated birds as compared with the controls. This study provides support for the use of a commercially available rHVT-AI vaccine to protect turkeys against H5N1 HPAI. PMID:27309280

  6. Host Regulatory Network Response to Infection with Highly Pathogenic H5N1 Avian Influenza Virus ▿ †

    PubMed Central

    Li, Chengjun; Bankhead, Armand; Eisfeld, Amie J.; Hatta, Yasuko; Jeng, Sophia; Chang, Jean H.; Aicher, Lauri D.; Proll, Sean; Ellis, Amy L.; Law, G. Lynn; Waters, Katrina M.; Neumann, Gabriele; Katze, Michael G.; McWeeney, Shannon; Kawaoka, Yoshihiro

    2011-01-01

    During the last decade, more than half of humans infected with highly pathogenic avian influenza (HPAI) H5N1 viruses have died, yet virus-induced host signaling has yet to be clearly elucidated. Airway epithelia are known to produce inflammatory mediators that contribute to HPAI H5N1-mediated pathogenicity, but a comprehensive analysis of the host response in this cell type is lacking. Here, we leveraged a system approach to identify and statistically validate signaling subnetworks that define the dynamic transcriptional response of human bronchial epithelial cells after infection with influenza A/Vietnam/1203/2004 (H5N1, VN1203). Importantly, we validated a subset of transcripts from one subnetwork in both Calu-3 cells and mice. A more detailed examination of two subnetworks involved in the immune response and keratinization processes revealed potential novel mediators of HPAI H5N1 pathogenesis and host response signaling. Finally, we show how these results compare to those for a less virulent strain of influenza virus. Using emergent network properties, we provide fresh insight into the host response to HPAI H5N1 virus infection and identify novel avenues for perturbation studies and potential therapeutic interventions for fatal HPAI H5N1 disease. PMID:21865398

  7. Highly pathogenic avian influenza H5N1 virus delays apoptotic responses via activation of STAT3.

    PubMed

    Hui, Kenrie P Y; Li, Hung Sing; Cheung, Man Chun; Chan, Renee W Y; Yuen, Kit M; Mok, Chris K P; Nicholls, John M; Peiris, J S Malik; Chan, Michael C W

    2016-01-01

    Highly pathogenic avian influenza (HPAI) H5N1 virus continues to pose pandemic threat, but there is a lack of understanding of its pathogenesis. We compared the apoptotic responses triggered by HPAI H5N1 and low pathogenic H1N1 viruses using physiologically relevant respiratory epithelial cells. We demonstrated that H5N1 viruses delayed apoptosis in primary human bronchial and alveolar epithelial cells (AECs) compared to H1N1 virus. Both caspase-8 and -9 were activated by H5N1 and H1N1 viruses in AECs, while H5N1 differentially up-regulated TRAIL. H5N1-induced apoptosis was reduced by TRAIL receptor silencing. More importantly, STAT3 knock-down increased apoptosis by H5N1 infection suggesting that H5N1 virus delays apoptosis through activation of STAT3. Taken together, we demonstrate that STAT3 is involved in H5N1-delayed apoptosis compared to H1N1. Since delay in apoptosis prolongs the duration of virus replication and production of pro-inflammatory cytokines and TRAIL from H5N1-infected cells, which contribute to orchestrate cytokine storm and tissue damage, our results suggest that STAT3 may play a previously unsuspected role in H5N1 pathogenesis. PMID:27344974

  8. Highly pathogenic avian influenza H5N1 virus delays apoptotic responses via activation of STAT3

    PubMed Central

    Hui, Kenrie P. Y.; Li, Hung Sing; Cheung, Man Chun; Chan, Renee W. Y.; Yuen, Kit M.; Mok, Chris K. P.; Nicholls, John M.; Peiris, J. S. Malik; Chan, Michael C. W.

    2016-01-01

    Highly pathogenic avian influenza (HPAI) H5N1 virus continues to pose pandemic threat, but there is a lack of understanding of its pathogenesis. We compared the apoptotic responses triggered by HPAI H5N1 and low pathogenic H1N1 viruses using physiologically relevant respiratory epithelial cells. We demonstrated that H5N1 viruses delayed apoptosis in primary human bronchial and alveolar epithelial cells (AECs) compared to H1N1 virus. Both caspase-8 and -9 were activated by H5N1 and H1N1 viruses in AECs, while H5N1 differentially up-regulated TRAIL. H5N1-induced apoptosis was reduced by TRAIL receptor silencing. More importantly, STAT3 knock-down increased apoptosis by H5N1 infection suggesting that H5N1 virus delays apoptosis through activation of STAT3. Taken together, we demonstrate that STAT3 is involved in H5N1-delayed apoptosis compared to H1N1. Since delay in apoptosis prolongs the duration of virus replication and production of pro-inflammatory cytokines and TRAIL from H5N1-infected cells, which contribute to orchestrate cytokine storm and tissue damage, our results suggest that STAT3 may play a previously unsuspected role in H5N1 pathogenesis. PMID:27344974

  9. REMOTE SENSING, ECOLOGICAL VARIABLES, AND WILD BIRD MIGRATION RELATED TO OUTBREAKS OF HIGHLY PATHOGENIC H5N1 AVIAN INFLUENZA1

    PubMed Central

    Xiao, Xiangming; Gilbert, Marius; Slingenbergh, Jan; Lei, Fumin; Boles, Stephen

    2008-01-01

    Outbreaks of highly pathogenic avian influenza (HPAI) H5N1 subtype have occurred in many countries across Asia, Europe, and Africa since 2003. Better understanding of the ecology and risk factors of HPAI is critical for surveillance, risk assessment, and public health policy. We introduce satellite remote sensing as one important tool, and highlight the potential of using satellite images to monitor dynamics of climate and landscapes that are related to wild bird migration and agriculture in the context of avian influenza transmission. PMID:17347392

  10. Determinants of Knowledge and Biosecurity Preventive Behaviors for Highly Pathogenic Avian Influenza Risk Among Chinese Poultry Farmers.

    PubMed

    Cui, Bin; Liu, Zong Ping

    2016-06-01

    Biosecurity measures are the first line of defense against highly pathogenic avian influenza (HPAI) on farms. It is generally recognized that an individual's behavior can be influenced by the knowledge they possess. However, empirical study has not reported an association between poultry producers' awareness of HPAI symptoms and their actual biosecurity actions. The aim of this study is to classify knowledge items of HPAI by exploratory factor analysis (EFA) and to examine the determinants of different types of knowledge and the effect of different types of knowledge on biosecurity preventive behaviors (BPBs). The survey (n = 297) was conducted using a questionnaire to measure the level of awareness of items related to HPAI and the actual adoption of BPBs among poultry farmers in the Chinese province of Jiangsu. The EFA revealed three main types of knowledge, which were categorized as avian influenza (AI) epidemic characteristics, primary biosecurity preventive knowledge (basic biosecurity preventive knowledge against AI), and essential biosecurity preventive knowledge (crucial biosecurity preventive knowledge against infection of AI). Multivariate regression showed that only poultry farmers' awareness of essential biosecurity preventive knowledge was positively associated with their actual BPBs. Additionally, educational attainment, number of years of experience raising poultry, farming operation size, and training were associated both with BPB and most of the knowledge factors or knowledge items. Training of existing poultry farmers is probably a feasible scheme; furthermore, the training should focus on the essential biosecurity preventive knowledge. On the other hand, policy initiatives to encourage large-scale poultry farming while discouraging small-scale backyard poultry husbandry would be an effective method of improving the management standards of rural poultry farming. PMID:27309291

  11. Analysis of spatial distribution and transmission characters for highly pathogenic avian influenza in Chinese mainland in 2004

    NASA Astrophysics Data System (ADS)

    Liu, Y. L.; Wei, C. J.; Yan, L.; Chi, T. H.; Wu, X. B.; Xiao, C. S.

    2006-03-01

    After the outbreak of highly pathogenic Avian Influenza (HPAI) in South Korea in the end of year 2003, estimates of the impact of HPAI in affected countries vary greatly, the total direct losses are about 3 billion US dollars, and it caused 15 million birds and poultry flocks death. It is significant to understand the spatial distribution and transmission characters of HPAI for its prevention and control. According to 50 outbreak cases for HPAI in Chinese mainland during 2004, this paper introduces the approach of spatial distribution and transmission characters for HPAI and its results. Its approach is based on remote sensing and GIS techniques. Its supporting data set involves normalized difference vegetation index (NDVI) and land surface temperature (Ts) derived from a time-series of remote sensing data of 1 kilometer-resolution NOAA/AVHRR, birds' migration routes, topology geographic map, lake and wetland maps, and meteorological observation data. In order to analyze synthetically using these data, a supporting platform for analysis Avian Influenza epidemic situation (SPAS/AI) was developed. Supporting by SPAS/AI, the integrated information from multi-sources can be easily used to the analysis of the spatial distribution and transmission character of HPAI. The results show that the range of spatial distribution and transmission of HPAI in China during 2004 connected to environment factors NDVI, Ts and the distributions of lake and wetland, and especially to bird migration routes. To some extent, the results provide some suggestions for the macro-decision making for the prevention and control of HPAI in the areas of potential risk and reoccurrence.

  12. Systemic virus distribution and host responses in brain and intestine of chickens infected with low pathogenic or high pathogenic avian influenza virus

    PubMed Central

    2012-01-01

    Background Avian influenza virus (AIV) is classified into two pathotypes, low pathogenic (LP) and high pathogenic (HP), based on virulence in chickens. Differences in pathogenicity between HPAIV and LPAIV might eventually be related to specific characteristics of strains, tissue tropism and host responses. Methods To study differences in disease development between HPAIV and LPAIV, we examined the first appearance and eventual load of viral RNA in multiple organs as well as host responses in brain and intestine of chickens infected with two closely related H7N1 HPAIV or LPAIV strains. Results Both H7N1 HPAIV and LPAIV spread systemically in chickens after a combined intranasal/intratracheal inoculation. In brain, large differences in viral RNA load and host gene expression were found between H7N1 HPAIV and LPAIV infected chickens. Chicken embryo brain cell culture studies revealed that both HPAIV and LPAIV could infect cultivated embryonic brain cells, but in accordance with the absence of the necessary proteases, replication of LPAIV was limited. Furthermore, TUNEL assay indicated apoptosis in brain of HPAIV infected chickens only. In intestine, where endoproteases that cleave HA of LPAIV are available, we found minimal differences in the amount of viral RNA and a large overlap in the transcriptional responses between HPAIV and LPAIV infected chickens. Interestingly, brain and ileum differed clearly in the cellular pathways that were regulated upon an AI infection. Conclusions Although both H7N1 HPAIV and LPAIV RNA was detected in a broad range of tissues beyond the respiratory and gastrointestinal tract, our observations indicate that differences in pathogenicity and mortality between HPAIV and LPAIV could originate from differences in virus replication and the resulting host responses in vital organs like the brain. PMID:22390870

  13. Evidence for the Convergence Model: The Emergence of Highly Pathogenic Avian Influenza (H5N1) in Viet Nam

    PubMed Central

    Saksena, Sumeet; Fox, Jefferson; Epprecht, Michael; Tran, Chinh C.; Nong, Duong H.; Spencer, James H.; Nguyen, Lam; Finucane, Melissa L.; Tran, Vien D.; Wilcox, Bruce A.

    2015-01-01

    Building on a series of ground breaking reviews that first defined and drew attention to emerging infectious diseases (EID), the ‘convergence model’ was proposed to explain the multifactorial causality of disease emergence. The model broadly hypothesizes disease emergence is driven by the co-incidence of genetic, physical environmental, ecological, and social factors. We developed and tested a model of the emergence of highly pathogenic avian influenza (HPAI) H5N1 based on suspected convergence factors that are mainly associated with land-use change. Building on previous geospatial statistical studies that identified natural and human risk factors associated with urbanization, we added new factors to test whether causal mechanisms and pathogenic landscapes could be more specifically identified. Our findings suggest that urbanization spatially combines risk factors to produce particular types of peri-urban landscapes with significantly higher HPAI H5N1 emergence risk. The work highlights that peri-urban areas of Viet Nam have higher levels of chicken densities, duck and geese flock size diversities, and fraction of land under rice or aquaculture than rural and urban areas. We also found that land-use diversity, a surrogate measure for potential mixing of host populations and other factors that likely influence viral transmission, significantly improves the model’s predictability. Similarly, landscapes where intensive and extensive forms of poultry production overlap were found at greater risk. These results support the convergence hypothesis in general and demonstrate the potential to improve EID prevention and control by combing geospatial monitoring of these factors along with pathogen surveillance programs. PMID:26398118

  14. Evidence for the Convergence Model: The Emergence of Highly Pathogenic Avian Influenza (H5N1) in Viet Nam.

    PubMed

    Saksena, Sumeet; Fox, Jefferson; Epprecht, Michael; Tran, Chinh C; Nong, Duong H; Spencer, James H; Nguyen, Lam; Finucane, Melissa L; Tran, Vien D; Wilcox, Bruce A

    2015-01-01

    Building on a series of ground breaking reviews that first defined and drew attention to emerging infectious diseases (EID), the 'convergence model' was proposed to explain the multifactorial causality of disease emergence. The model broadly hypothesizes disease emergence is driven by the co-incidence of genetic, physical environmental, ecological, and social factors. We developed and tested a model of the emergence of highly pathogenic avian influenza (HPAI) H5N1 based on suspected convergence factors that are mainly associated with land-use change. Building on previous geospatial statistical studies that identified natural and human risk factors associated with urbanization, we added new factors to test whether causal mechanisms and pathogenic landscapes could be more specifically identified. Our findings suggest that urbanization spatially combines risk factors to produce particular types of peri-urban landscapes with significantly higher HPAI H5N1 emergence risk. The work highlights that peri-urban areas of Viet Nam have higher levels of chicken densities, duck and geese flock size diversities, and fraction of land under rice or aquaculture than rural and urban areas. We also found that land-use diversity, a surrogate measure for potential mixing of host populations and other factors that likely influence viral transmission, significantly improves the model's predictability. Similarly, landscapes where intensive and extensive forms of poultry production overlap were found at greater risk. These results support the convergence hypothesis in general and demonstrate the potential to improve EID prevention and control by combing geospatial monitoring of these factors along with pathogen surveillance programs. PMID:26398118

  15. Protective immunity against H7N3 highly pathogenic avian influenza induced following inoculation of chickens with H7 low pathogenic avian influenza virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the poultry industry, live virus vaccines are used to induce immunity against numerous respiratory pathogens. These are typically lower virulent forms of virus which are limited in replication and pathology, but induce mucosal, humoral, and cellular immunity. Because of the potential for revers...

  16. Assessing the risk of highly pathogenic avian influenza H5N1 transmission through poultry movements in Bali, Indonesia.

    PubMed

    Roche, Sharon E; Cogger, Naomi; Garner, M Graeme; Putra, Anak Agung Gde; Toribio, Jenny-Ann L M L

    2014-03-01

    Indonesia continues to report the highest number of human and poultry cases of highly pathogenic avian influenza H5N1. The disease is considered to be endemic on the island of Bali. Live bird markets are integral in the poultry supply chain on Bali and are important, nutritionally and culturally, for the rural and urban human populations. Due to the lack of biosecurity practiced along the supply chain from producer to live bird markets, there is a need to understand the risks associated with the spread of H5N1 through live bird movements for effective control. Resources to control H5N1 in Indonesia are very limited and cost effective strategies are needed. We assessed the probability a live bird market is infected through live poultry movements and assessed the effects of implementing two simple and low cost control measures on this risk. Results suggest there is a high risk a live bird market is infected (0.78), and risk mitigation strategies such as detecting and removing infected poultry from markets reduce this risk somewhat (range 0.67-0.76). The study demonstrates the key role live poultry movements play in transmitting H5N1 and the need to implement a variety of control measures to reduce disease spread. PMID:24439035

  17. Amantadine resistance among highly pathogenic avian influenza viruses (H5N1) isolated from India.

    PubMed

    Jacob, Aron; Sood, Richa; Chanu, Kh Victoria; Bhatia, Sandeep; Khandia, Rekha; Pateriya, A K; Nagarajan, S; Dimri, U; Kulkarni, D D

    2016-02-01

    Emergence of antiviral resistance among H5N1 avian influenza viruses is the major challenge in the control of pandemic influenza. Matrix 2 (M2) inhibitors (amantadine and rimantadine) and neuraminidase inhibitors (oseltamivir and zanamivir) are the two classes of antiviral agents that are specifically active against influenza viruses and are used for both treatment and prophylaxis of influenza infections. Amantadine targets the M2 ion channel of influenza A virus and interrupts virus life cycle through blockade of hydrogen ion influx. This prevents uncoating of the virus in infected host cells which impedes the release of ribonucleoprotein required for transcription and replication of virion in the nucleus. The present study was carried out to review the status of amantadine resistance in H5N1 viruses isolated from India and to study their replicative capability. Results of the study revealed resistance to amantadine in antiviral assay among four H5N1 viruses out of which two viruses had Serine 31 Asparagine (AGT-AAT i.e., S31N) mutation and two had Valine 27 Alanine (GTT-GCT i.e., V27A) mutation. The four resistant viruses not only exhibited significant difference in effective concentration 50% (EC50) values of amantadine hydrochloride from that of susceptible viruses (P < 0.0001) but also showed significant difference between two different types (S31N and V27A) of mutant viruses (P < 0.05). Resistance to amantadine could also be demonstrated in a simple HA test after replication of the viruses in MDCK cells in presence of amantadine. The study identifies the correlation between in vitro antiviral assay and presence of established molecular markers of resistance, the retention of replicative capacity in the presence of amantadine hydrochloride by the resistant viruses and the emergence of resistant mutations against amantadine among avian influenza viruses (H5N1) without selective drug pressure. PMID:26639679

  18. Contact between bird species of different lifespans can promote the emergence of highly pathogenic avian influenza strains

    PubMed Central

    Wikramaratna, Paul S.; Pybus, Oliver G.; Gupta, Sunetra

    2014-01-01

    Outbreaks of highly pathogenic strains of avian influenza viruses (AIVs) cause considerable economic losses to the poultry industry and also pose a threat to human life. The possibility that one of these strains will evolve to become transmissible between humans, sparking a major influenza pandemic, is a matter of great concern. Most studies so far have focused on assessing these odds from the perspective of the intrinsic mutability of AIV rather than the ecological constraints to invasion faced by the virus population. Here we present an alternative multihost model for the evolution of AIV in which the mode and tempo of mutation play a limited role, with the emergence of strains being determined instead principally by the prevailing profile of population-level immunity. We show that (i) many of the observed differences in influenza virus dynamics among species can be captured by our model by simply varying host lifespan and (ii) increased contact between species of different lifespans can promote the emergence of potentially more virulent strains that were hitherto suppressed in one of the species. PMID:24958867

  19. Comprehensive analysis of antibody recognition in convalescent humans from highly pathogenic avian influenza H5N1 infection

    PubMed Central

    Zuo, Teng; Sun, Jianfeng; Wang, Guiqin; Jiang, Liwei; Zuo, Yanan; Li, Danyang; Shi, Xuanling; Liu, Xi; Fan, Shilong; Ren, Huanhuan; Hu, Hongxing; Sun, Lina; Zhou, Boping; Liang, Mifang; Zhou, Paul; Wang, Xinquan; Zhang, Linqi

    2015-01-01

    Understanding the mechanism of protective antibody recognition against highly pathogenic avian influenza A virus H5N1 in humans is critical for the development of effective therapies and vaccines. Here we report the crystal structure of three H5-specific human monoclonal antibodies bound to the globular head of hemagglutinin (HA) with distinct epitope specificities, neutralization potencies and breadth. A structural and functional analysis of these epitopes combined with those reported elsewhere identifies four major vulnerable sites on the globular head of H5N1 HA. Chimeric and vulnerable site-specific mutant pseudoviruses are generated to delineate broad neutralization specificities of convalescent sera from two individuals who recovered from the infection with H5N1 virus. Our results show that the four vulnerable sites on the globular head rather than the stem region are the major neutralizing targets, suggesting that during natural H5N1 infection neutralizing antibodies against the globular head work in concert to provide protective antibody-mediated immunity. PMID:26635249

  20. Spatio-Temporal Data Comparisons for Global Highly Pathogenic Avian Influenza (HPAI) H5N1 Outbreaks

    PubMed Central

    Chen, Dongmei; Chen, Yue; Wang, Lei; Zhao, Fei; Yao, Baodong

    2010-01-01

    Highly pathogenic avian influenza subtype H5N1 is a zoonotic disease and control of the disease is one of the highest priority in global health. Disease surveillance systems are valuable data sources for various researches and management projects, but the data quality has not been paid much attention in previous studies. Based on data from two commonly used databases (Office International des Epizooties (OIE) and Food and Agriculture Organization of the United Nations (FAO)) of global HPAI H5N1 outbreaks during the period of 2003–2009, we examined and compared their patterns of temporal, spatial and spatio-temporal distributions for the first time. OIE and FAO data showed similar trends in temporal and spatial distributions if they were considered separately. However, more advanced approaches detected a significant difference in joint spatio-temporal distribution. Because of incompleteness for both OIE and FAO data, an integrated dataset would provide a more complete picture of global HPAI H5N1 outbreaks. We also displayed a mismatching profile of global HPAI H5N1 outbreaks and found that the degree of mismatching was related to the epidemic severity. The ideas and approaches used here to assess spatio-temporal data on the same disease from different sources are useful for other similar studies. PMID:21187964

  1. Microevolution of Highly Pathogenic Avian Influenza A(H5N1) Viruses Isolated from Humans, Egypt, 2007–2011

    PubMed Central

    Younan, Mary; Poh, Mee Kian; Elassal, Emad; Davis, Todd; Rivailler, Pierre; Balish, Amanda L.; Simpson, Natosha; Jones, Joyce; Deyde, Varough; Loughlin, Rosette; Perry, Ije; Gubareva, Larisa; ElBadry, Maha A.; Truelove, Shaun; Gaynor, Anne M.; Mohareb, Emad; Amin, Magdy; Cornelius, Claire; Pimentel, Guillermo; Earhart, Kenneth; Naguib, Amel; Abdelghani, Ahmed S.; Refaey, Samir; Klimov, Alexander I.; Kandeel, Amr

    2013-01-01

    We analyzed highly pathogenic avian influenza A(H5N1) viruses isolated from humans infected in Egypt during 2007–2011. All analyzed viruses evolved from the lineage of subtype H5N1 viruses introduced into Egypt in 2006; we found minimal evidence of reassortment and no exotic introductions. The hemagglutinin genes of the viruses from 2011 formed a monophyletic group within clade 2.2.1 that also included human viruses from 2009 and 2010 and contemporary viruses from poultry; this finding is consistent with zoonotic transmission. Although molecular markers suggestive of decreased susceptibility to antiviral drugs were detected sporadically in the neuraminidase and matrix 2 proteins, functional neuraminidase inhibition assays did not identify resistant viruses. No other mutations suggesting a change in the threat to public health were detected in the viral proteomes. However, a comparison of representative subtype H5N1 viruses from 2011 with older subtype H5N1 viruses from Egypt revealed substantial antigenic drift. PMID:23260983

  2. No evidence of infection or exposure to Highly Pathogenic Avian Influenzas in peridomestic wildlife on an affected poultry facility

    USGS Publications Warehouse

    Grear, Daniel; Dusek, Robert J.; Walsh, Daniel P.; Hall, Jeffrey S.

    2016-01-01

    We evaluated the potential transmission of avian influenza viruses (AIV) in wildlife species in three settings in association with an outbreak at a poultry facility: 1) small birds and small mammals on a poultry facility that was affected with highly pathogenic AIV (HPAIV) in April 2015; 2) small birds and small mammals on a nearby poultry facility that was unaffected by HPAIV; and 3) small birds, small mammals, and waterfowl in a nearby natural area. We live-captured small birds and small mammals and collected samples from hunter-harvested waterfowl to test for active viral shedding and evidence of exposure (serum antibody) to AIV and the H5N2 HPAIV that affected the poultry facility. We detected no evidence of shedding or specific antibody to AIV in small mammals and small birds 5 mo after depopulation of the poultry. We detected viral shedding and exposure to AIV in waterfowl and estimated approximately 15% viral shedding and 60% antibody prevalence. In waterfowl, we did not detect shedding or exposure to the HPAIV that affected the poultry facility. We also conducted camera trapping around poultry carcass depopulation composting barns and found regular visitation by four species of medium-sized mammals. We provide preliminary data suggesting that peridomestic wildlife were not an important factor in the transmission of AIV during the poultry outbreak, nor did small birds and mammals in natural wetland settings show wide evidence of AIV shedding or exposure, despite the opportunity for exposure.

  3. Comprehensive analysis of antibody recognition in convalescent humans from highly pathogenic avian influenza H5N1 infection.

    PubMed

    Zuo, Teng; Sun, Jianfeng; Wang, Guiqin; Jiang, Liwei; Zuo, Yanan; Li, Danyang; Shi, Xuanling; Liu, Xi; Fan, Shilong; Ren, Huanhuan; Hu, Hongxing; Sun, Lina; Zhou, Boping; Liang, Mifang; Zhou, Paul; Wang, Xinquan; Zhang, Linqi

    2015-01-01

    Understanding the mechanism of protective antibody recognition against highly pathogenic avian influenza A virus H5N1 in humans is critical for the development of effective therapies and vaccines. Here we report the crystal structure of three H5-specific human monoclonal antibodies bound to the globular head of hemagglutinin (HA) with distinct epitope specificities, neutralization potencies and breadth. A structural and functional analysis of these epitopes combined with those reported elsewhere identifies four major vulnerable sites on the globular head of H5N1 HA. Chimeric and vulnerable site-specific mutant pseudoviruses are generated to delineate broad neutralization specificities of convalescent sera from two individuals who recovered from the infection with H5N1 virus. Our results show that the four vulnerable sites on the globular head rather than the stem region are the major neutralizing targets, suggesting that during natural H5N1 infection neutralizing antibodies against the globular head work in concert to provide protective antibody-mediated immunity. PMID:26635249

  4. Ostrich ( Struthio camelus ) Infected with H5N8 Highly Pathogenic Avian Influenza Virus in South Korea in 2014.

    PubMed

    Kim, Hye-Ryoung; Kwon, Yong-Kuk; Lee, Youn-Jeong; Kang, Hyun-Mi; Lee, Eun-Kyoung; Song, Byung-Min; Jung, Suk-Chan; Lee, Kyung-Hyun; Lee, Hyun-Kyoung; Baek, Kang-Hyun; Bae, You-Chan

    2016-06-01

    Highly pathogenic avian influenza (HPAI) virus of the H5N8 subtype was isolated from a young ostrich in South Korea in March 2014. Clinical signs characterized by anorexia, depression, and signs of nervousness were observed. The isolated A/ostrich/Korea/H829/2014 (H5N8) virus had a cleavage site motif containing multiple basic amino acids, typical of HPAI virus. The phylogenetic tree of the hemagglutinin gene of the H5 HPAI virus showed that this ostrich H5N8 virus belongs to clade 2.3.4.4 viruses together with H5N8 strains isolated from ducks and wild birds in South Korea in 2014. Pathologically, redness of pancreas, enlargement and hemorrhage of spleen, friability of brain, and hydropericardium were prominently found. Histologic legions were observed in pancreas, spleen, liver, lung, heart, and brain, and influenza A nucleoproteins were detected in the same organs by immunohistochemistry. Other ostriches farmed together in open camps were not infected with HPAI virus based on the serologic and virologic tests. The findings indicate that ostriches are susceptible to H5N8 HPAI virus, but this virus does not spread efficiently among ratites. PMID:27309301

  5. Major Histocompatibility Complex and Background Genes in Chickens Influence Susceptibility to High Pathogenicity Avian Influenza Virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The chicken’s major histocompatibility complex (MHC) haplotype has profound influence on the resistance or susceptibility to certain pathogens such as B21 MHC haplotype confers resistance to Marek’s disease (MD). However, non-MHC genes are also important in disease resistance. For example, both line...

  6. Distinct Pathogenesis of Hong Kong-Origin H5N1 Viruses in Mice Compared to That of Other Highly Pathogenic H5 Avian Influenza Viruses

    PubMed Central

    Dybing, Jody K.; Schultz-Cherry, Stacey; Swayne, David E.; Suarez, David L.; Perdue, Michael L.

    2000-01-01

    In 1997, an outbreak of virulent H5N1 avian influenza virus occurred in poultry in Hong Kong (HK) and was linked to a direct transmission to humans. The factors associated with transmission of avian influenza virus to mammals are not fully understood, and the potential risk of other highly virulent avian influenza A viruses infecting and causing disease in mammals is not known. In this study, two avian and one human HK-origin H5N1 virus along with four additional highly pathogenic H5 avian influenza viruses were analyzed for their pathogenicity in 6- to 8-week-old BALB/c mice. Both the avian and human HK H5 influenza virus isolates caused severe disease in mice, characterized by induced hypothermia, clinical signs, rapid weight loss, and 75 to 100% mortality by 6 to 8 days postinfection. Three of the non-HK-origin isolates caused no detectable clinical signs. One isolate, A/tk/England/91 (H5N1), induced measurable disease, and all but one of the animals recovered. Infections resulted in mild to severe lesions in both the upper and lower respiratory tracts. Most consistently, the viruses caused necrosis in respiratory epithelium of the nasal cavity, trachea, bronchi, and bronchioles with accompanying inflammation. The most severe and widespread lesions were observed in the lungs of HK avian influenza virus-infected mice, while no lesions or only mild lesions were evident with A/ck/Scotland/59 (H5N1) and A/ck/Queretaro/95 (H5N2). The A/ck/Italy/97 (H5N2) and the A/tk/England/91 (H5N1) viruses exhibited intermediate pathogenicity, producing mild to moderate respiratory tract lesions. In addition, infection by the different isolates could be further distinguished by the mouse immune response. The non-HK-origin isolates all induced production of increased levels of active transforming growth factor β following infection, while the HK-origin isolates did not. PMID:10627555

  7. Susceptibility of pigeons to clade 1 and 2.2 high pathogenicity avian influenza H5N1 virus.

    PubMed

    Smietanka, Krzysztof; Minta, Zenon; Wyrostek, Krzysztof; Jóźwiak, Michal; Olszewska, Monika; Domańska-Blicharz, A Katarzyna; Reichert, A Michał; Pikuła, Anna; Habyarimana, Adelite; van den Berg, Thierry

    2011-03-01

    To assess the susceptibility of pigeons (Columba livia) to infection with H5N1 high pathogenicity avian influenza virus (HPAIV), four groups of 1-yr-old and 4-wk-old racing pigeons (10 birds in each group) were inoculated oculonasally with 106 50% egg infectious dose (EID50) of A/crested eagle/Belgium/01/2004 (clade 1) or A/swan/Poland/305-135V08/2006 (clade 2.2). Contact specific-pathogen-free (SPF) chickens were kept in the same isolators as young pigeons (two chickens per group). At 3, 5, 7, 10, and 14 days postinfection (PI) two pigeons from each infected group were selected randomly, and oropharyngeal and cloacal swabs (pigeons and contact chickens) as well as a number of internal organs (pigeons) were collected for viral RNA detection in real-time reverse transcription PCR (RRT-PCR) and histopathology. At the end of the experiment (14 days PI) blood samples from two pigeons in each group and from contact SPF chickens were also collected, and sera were tested using hemagglutination inhibition (HI) test and blocking enzyme-linked immunosorbent assay (bELISA). During the observation period all pigeons remained clinically healthy, and no gross lesions were observed in any of the infected groups. SPF contact chickens were also healthy and negative in RRT-PCR and HI tests. However, the clade 1 H5N1 virus produced more sustained infection manifested by the presence of histopathologic changes (consisting mainly of mild to moderate hemorrhagic and inflammatory lesions), prolonged persistence of viral RNA (detectable between 3 and 10 days PI) in a variety of tissues of both adult and juvenile birds (with highest RNA load in lungs and brain) as well as slight viral shedding from the trachea and cloaca, but without transmission to SPF contact chickens. Additionally, two clade 1-infected adult pigeons sacrificed at the end of experiment showed seroconversion in bELISA and HI test (using homologous virus as antigen). The viral RNA was found only at day 3 PI in one adult

  8. Evolutionary dynamics of highly pathogenic avian influenza A/H5N1 HA clades and vaccine implementation in Vietnam

    PubMed Central

    Nguyen, Nga Thi Bich

    2014-01-01

    Based on hemagglutinin (HA) and neuraminidase (NA), influenza A virus is divided into 18 different HA (H1 to H18) and 11 NA types (N1 to N11), opening the possibility for reassortment between the HA and NA genes to generate new HxNy subtypes (where x could be any HA and y is any NA, possibly). In recent four years, since 2010, highly pathogenic avian influenza (HPAI) viruses of H5N1 subtype (HPAI A/H5N1) have become highly enzootic and dynamically evolved to form multiple H5 HA clades, particularly in China, Vietnam, Indonesia, Egypt, Cambodia, and Bangladesh. So far, after more than 10 years emerged in Vietnam (since late 2003), HPAI A/H5N1 is still posing a potential risk of causing outbreaks in poultry, with high frequency of annual endemics. Intragenic variation (referred to as antigenic drift) in HA (e.g., H5) has given rise to form numerous clades, typically marking the major timelines of the evolutionary status and vaccine application in each period. The dominance of genetically and antigenically diversified clade 2.3.2.1 (of subgroups a, b, c), clade 1.1 (1.1.1/1.1.2) and re-emergence of clade 7.1/7.2 at present, has urged Vietnam to the need for dynamically applied antigenicity-matching vaccines, i.e., the plan of importing Re-6 vaccine for use in 2014, in parallel use of Re-1/Re-5 since 2006. In this review, we summarize evolutionary features of HPAI A/H5N1 viruses and clade formation during recent 10 years (2004-2014). Dynamic of vaccine implementation in Vienam is also remarked. PMID:25003084

  9. Analysis of the crow lung transcriptome in response to infection with highly pathogenic H5N1 avian influenza virus.

    PubMed

    Vijayakumar, Periyasamy; Mishra, Anamika; Ranaware, Pradip B; Kolte, Atul P; Kulkarni, Diwakar D; Burt, David W; Raut, Ashwin Ashok

    2015-03-15

    The highly pathogenic avian influenza (HPAI) H5N1 virus, currently circulating in Asia, causes severe disease in domestic poultry as well as wild birds like crow. However, the molecular pathogenesis of HPAIV infection in crows and other wild birds is not well known. Thus, as a step to explore it, a comprehensive global gene expression analysis was performed on crow lungs, infected with HPAI H5N1 crow isolate (A/Crow/India/11TI11/2011) using high throughput next generation sequencing (NGS) (GS FLX Titanium XLR70). The reference genome of crow is not available, so RNA seq analysis was performed on the basis of a de novo assembled transcriptome. The RNA seq result shows, 4052 genes were expressed uniquely in noninfected, 6277 genes were expressed uniquely in HPAIV infected sample and of the 6814 genes expressed in both samples, 2279 genes were significantly differentially expressed. Our transcriptome profile data allows for the ability to understand the molecular mechanism behind the recent lethal HPAIV outbreak in crows which was, until recently, thought to cause lethal infections only in gallinaceous birds such as chickens, but not in wild birds. The pattern of differentially expressed genes suggest that this isolate of H5N1 virus evades the host innate immune response by attenuating interferon (IFN)-inducible signalling possibly by down regulating the signalling from type I IFN (IFNAR1 and IFNAR2) and type II IFN receptors, upregulation of the signalling inhibitors suppressor of cytokine signalling 1 (SOCS1) and SOCS3 and altering the expression of toll-like receptors (TLRs). This may be the reason for disease and mortality in crows. PMID:25592823

  10. Migration of whooper swans and outbreaks of highly pathogenic avian influenza H5N1 virus in eastern asia

    USGS Publications Warehouse

    Newman, S.H.; Iverson, S.A.; Takekawa, J.Y.; Gilbert, M.; Prosser, D.J.; Batbayar, N.; Natsagdorj, T.; Douglas, D.C.

    2009-01-01

    Evaluating the potential involvement of wild avifauna in the emergence of highly pathogenic avian influenza H5N1 (hereafter H5N1) requires detailed analyses of temporal and spatial relationships between wild bird movements and disease emergence. The death of wild swans (Cygnus spp.) has been the first indicator of the presence of H5N1 in various Asian and European countries; however their role in the geographic spread of the disease remains poorly understood. We marked 10 whooper swans (Cygnus cygnus) with GPS transmitters in northeastern Mongolia during autumn 2006 and tracked their migratory movements in relation to H5N1 outbreaks. The prevalence of H5N1 outbreaks among poultry in eastern Asia during 2003-2007 peaked during winter, concurrent with whooper swan movements into regions of high poultry density. However outbreaks involving poultry were detected year round, indicating disease perpetuation independent of migratory waterbird presence. In contrast, H5N1 outbreaks involving whooper swans, as well as other migratory waterbirds that succumbed to the disease in eastern Asia, tended to occur during seasons (late spring and summer) and in habitats (areas of natural vegetation) where their potential for contact with poultry is very low to nonexistent. Given what is known about the susceptibility of swans to H5N1, and on the basis of the chronology and rates of whooper swan migration movements, we conclude that although there is broad spatial overlap between whooper swan distributions and H5N1 outbreak locations in eastern Asia, the likelihood of direct transmission between these groups is extremely low. Thus, our data support the hypothesis that swans are best viewed as sentinel species, and moreover, that in eastern Asia, it is most likely that their infections occurred through contact with asymptomatic migratory hosts (e.g., wild ducks) at or near their breeding grounds.

  11. Migration of whooper swans and outbreaks of highly pathogenic avian influenza H5N1 virus in Eastern Asia

    USGS Publications Warehouse

    Newman, Scott H.; Iverson, Samuel A.; Takekawa, John Y.; Gilbert, Martin; Prosser, Diann J.; Batbayar, Nyambyar; Natsagdorj, Tseveenmyadag; Douglas, David C.

    2009-01-01

    Evaluating the potential involvement of wild avifauna in the emergence of highly pathogenic avian influenza H5N1 (hereafter H5N1) requires detailed analyses of temporal and spatial relationships between wild bird movements and disease emergence. The death of wild swans (Cygnus spp.) has been the first indicator of the presence of H5N1 in various Asian and European countries; however their role in the geographic spread of the disease remains poorly understood. We marked 10 whooper swans (Cygnus cygnus) with GPS transmitters in northeastern Mongolia during autumn 2006 and tracked their migratory movements in relation to H5N1 outbreaks. The prevalence of H5N1 outbreaks among poultry in eastern Asia during 2003-2007 peaked during winter, concurrent with whooper swan movements into regions of high poultry density. However outbreaks involving poultry were detected year round, indicating disease perpetuation independent of migratory waterbird presence. In contrast, H5N1 outbreaks involving whooper swans, as well as other migratory waterbirds that succumbed to the disease in eastern Asia, tended to occur during seasons (late spring and summer) and in habitats (areas of natural vegetation) where their potential for contact with poultry is very low to nonexistent. Given what is known about the susceptibility of swans to H5N1, and on the basis of the chronology and rates of whooper swan migration movements, we conclude that although there is broad spatial overlap between whooper swan distributions and H5N1 outbreak locations in eastern Asia, the likelihood of direct transmission between these groups is extremely low. Thus, our data support the hypothesis that swans are best viewed as sentinel species, and moreover, that in eastern Asia, it is most likely that their infections occurred through contact with asymptomatic migratory hosts (e.g., wild ducks) at or near their breeding grounds.

  12. Highly Pathogenic Eurasian H5N8 Avian Influenza Outbreaks in Two Commercial Poultry Flocks in California.

    PubMed

    Stoute, Simone; Chin, Richard; Crossley, Beate; Gabriel Sentíes-Cué, C; Bickford, Arthur; Pantin-Jackwood, Mary; Breitmeyer, Richard; Jones, Annette; Carnaccini, Silvia; Shivaprasad, H L

    2016-09-01

    In January 2015, a highly pathogenic Eurasian lineage H5N8 avian influenza (AI) virus (AIV) was detected in a commercial meat turkey flock in Stanislaus County, CA. Approximately 3 wk later, a similar case was diagnosed in commercial brown layers from a different company located in Kings County, CA. Five 14-wk-old turkey hens were submitted to the California Animal Health and Food Safety Laboratory System (CAHFS), Turlock, and eleven 12-wk-old chickens were submitted to CAHFS, Tulare laboratory due to an acute increase in flock mortality. Gross lesions included enlarged and mottled pale spleens and pancreas in turkeys and chickens. Histologically, the major lesions observed in turkeys and chickens were splenitis, pancreatitis, encephalitis, and pneumonia. In both cases, diagnosis was based on real-time reverse transcriptase PCR (RRT-PCR), sequencing, and virus isolation from oropharyngeal and cloacal swabs. Confirmatory diagnosis and AIV characterization was done at the National Veterinary Services Laboratory, Ames, IA. The sequence of the AIV from both cases was 99% identical to an H5N8 AI virus (A/gyrfalcon/Washington/41088-6/2014) isolated from a captive gyrfalcon (Falco rusticolus) from Washington State in December 2014. Immunohistochemistry (IHC) performed on various tissues from both cases indicated a widespread AIV tissue distribution. Except for minor variations, the tissue distribution of the AI antigen was similar in the chickens and turkeys. There was positive IHC staining in the brain, spleen, pancreas, larynx, trachea, and lungs in both chickens and turkeys. Hearts, ovaries, and air sacs from the turkeys were also positive for the AI antigen. The liver sections from the chickens had occasional AI-positive staining in mononuclear cells, but the IHC on liver sections from the turkeys were negative. The bursa of Fabricius, small intestine, kidney, and skeletal muscle sections were negative for the AI antigen in both chickens and turkeys. PMID:27610732

  13. Risk factors and characteristics of H5N1 Highly Pathogenic Avian Influenza (HPAI) post-vaccination outbreaks

    PubMed Central

    Henning, Joerg; Pfeiffer, Dirk U.; Vu, Le Tri

    2009-01-01

    Highly pathogenic avian influenza (HPAI) virus H5N1 is now endemic in South-East Asia but HPAI control methods differ between countries. A widespread HPAI vaccination campaign that started at the end of 2005 in Viet Nam resulted in the cessation of poultry and human cases, but in 2006/2007 severe HPAI outbreaks re-emerged. In this study we investigated the pattern of this first post-vaccination epidemic in southern Viet Nam identifying a spatio-temporal cluster of outbreak occurrence and estimating spatially smoothed incidence rates of HPAI. Spatial risk factors associated with HPAI occurrence were identified. Medium-level poultry density resulted in an increased outbreak risk (Odds ratio (OR) = 5.4, 95% confidence interval (CI): 1.6–18.9) but also climate-vegetation factors played an important role: medium-level normalised difference vegetation indices during the rainy season from May to October were associated with higher risk of HPAI outbreaks (OR = 3.7, 95% CI: 1.7–8.1), probably because temporal flooding might have provided suitable conditions for the re-emergence of HPAI by expanding the virus distribution in the environment and by enlarging areas of possible contacts between domestic waterfowl and wild birds. On the other hand, several agricultural production factors, such as sweet potatoes yield, increased buffalo density, as well as increased electricity supply were associated with decreased risk of HPAI outbreaks. This illustrates that preventive control measures for HPAI should include a promotion of low-risk agricultural management practices as well as improvement of the infrastructure in village households. Improved HPAI vaccination efforts and coverage should focus on medium poultry density areas and on the pre-monsoon time period. PMID:19081006

  14. Risk Assessment of High Pathogenicity Avian Influenza Virus Introduction into Poland via Legal Importation of Live Poultry.

    PubMed

    Gierak, Anna; Bocian, Łukasz; Śmietanka, Krzysztof

    2016-05-01

    The risk of highly pathogenic avian influenza (HPAI) virus introduction via import of live poultry results from the probability that infected birds are exported from apparently HPAI-free areas during the silent phase of the epidemic, i.e., the period between an incursion of the virus into a susceptible population and a report on the outbreak by an exporting country. In our study we adapted a stochastic model, previously published in 2010 by Sánchez-Vizcaíno et al., with our own modifications in which the probability of HPAI introduction was assessed as the sum of the probabilities of entry of at least one infected bird from each susceptible species exported from each country into each Polish region (county). The mean annual probability of HPAI introduction into Poland via legal trade of live poultry was very low (3.07 × 10(-3), which corresponds to 1 outbreak every 326 yr). The highest risk was associated with the import of turkeys (62%) and chickens (33%). The exporting countries that contributed the most to the overall risk were Italy (31%), the Netherlands (24%), and the Czech Republic (17%). The risk was not evenly distributed across the country and it seemed higher in western, north-central, and eastern Poland while several counties of the north-west, central, or south-east parts of the country were at negligible risk. The applied model provides quantitative evidence that the risk of HPAI introduction through legal trade of poultry does not play a major role and that other paths, such as wild birds migrations or illegal trade, should be considered as the most-likely routes along which the virus can be introduced. PMID:27309053

  15. Persistence of Highly Pathogenic Avian Influenza H5N1 Virus Defined by Agro-Ecological Niche

    PubMed Central

    Hogerwerf, Lenny; Wallace, Rob G.; Ottaviani, Daniela; Slingenbergh, Jan; Prosser, Diann; Bergmann, Luc

    2010-01-01

    The highly pathogenic avian influenza (HPAI) H5N1 virus has spread across Eurasia and into Africa. Its persistence in a number of countries continues to disrupt poultry production, impairs smallholder livelihoods, and raises the risk a genotype adapted to human-to-human transmission may emerge. While previous studies identified domestic duck reservoirs as a primary risk factor associated with HPAI H5N1 persistence in poultry in Southeast Asia, little is known of such factors in countries with different agro-ecological conditions, and no study has investigated the impact of such conditions on HPAI H5N1 epidemiology at the global scale. This study explores the patterns of HPAI H5N1 persistence worldwide, and for China, Indonesia, and India includes individual provinces that have reported HPAI H5N1 presence during the 2004–2008 period. Multivariate analysis of a set of 14 agricultural, environmental, climatic, and socio-economic factors demonstrates in quantitative terms that a combination of six variables discriminates the areas with human cases and persistence: agricultural population density, duck density, duck by chicken density, chicken density, the product of agricultural population density and chicken output/input ratio, and purchasing power per capita. The analysis identifies five agro-ecological clusters, or niches, representing varying degrees of disease persistence. The agro-ecological distances of all study areas to the medoid of the niche with the greatest number of human cases are used to map HPAI H5N1 risk globally. The results indicate that few countries remain where HPAI H5N1 would likely persist should it be introduced. Electronic supplementary material The online version of this article (doi:10.1007/s10393-010-0324-z) contains supplementary material, which is available to authorized users. PMID:20585972

  16. The Perceived Value of Passive Animal Health Surveillance: The Case of Highly Pathogenic Avian Influenza in Vietnam.

    PubMed

    Delabouglise, A; Antoine-Moussiaux, N; Phan, T D; Dao, D C; Nguyen, T T; Truong, B D; Nguyen, X N T; Vu, T D; Nguyen, K V; Le, H T; Salem, G; Peyre, M

    2016-03-01

    Economic evaluations are critical for the assessment of the efficiency and sustainability of animal health surveillance systems and the improvement of their efficiency. Methods identifying and quantifying costs and benefits incurred by public and private actors of passive surveillance systems (i.e. actors of veterinary authorities and private actors who may report clinical signs) are needed. This study presents the evaluation of perceived costs and benefits of highly pathogenic avian influenza (HPAI) passive surveillance in Vietnam. Surveys based on participatory epidemiology methods were conducted in three provinces in Vietnam to collect data on costs and benefits resulting from the reporting of HPAI suspicions to veterinary authorities. A quantitative tool based on stated preference methods and participatory techniques was developed and applied to assess the non-monetary costs and benefits. The study showed that poultry farmers are facing several options regarding the management of HPAI suspicions, besides reporting the following: treatment, sale or destruction of animals. The option of reporting was associated with uncertain outcome and transaction costs. Besides, actors anticipated the release of health information to cause a drop of markets prices. This cost was relevant at all levels, including farmers, veterinary authorities and private actors of the upstream sector (feed, chicks and medicine supply). One benefit associated with passive surveillance was the intervention of public services to clean farms and the environment to limit the disease spread. Private actors of the poultry sector valued information on HPAI suspicions (perceived as a non-monetary benefit) which was mainly obtained from other private actors and media. PMID:26146982

  17. Persistence of highly pathogenic avian influenza H5N1 virus defined by agro-ecological niche.

    PubMed

    Hogerwerf, Lenny; Wallace, Rob G; Ottaviani, Daniela; Slingenbergh, Jan; Prosser, Diann; Bergmann, Luc; Gilbert, Marius

    2010-06-01

    The highly pathogenic avian influenza (HPAI) H5N1 virus has spread across Eurasia and into Africa. Its persistence in a number of countries continues to disrupt poultry production, impairs smallholder livelihoods, and raises the risk a genotype adapted to human-to-human transmission may emerge. While previous studies identified domestic duck reservoirs as a primary risk factor associated with HPAI H5N1 persistence in poultry in Southeast Asia, little is known of such factors in countries with different agro-ecological conditions, and no study has investigated the impact of such conditions on HPAI H5N1 epidemiology at the global scale. This study explores the patterns of HPAI H5N1 persistence worldwide, and for China, Indonesia, and India includes individual provinces that have reported HPAI H5N1 presence during the 2004-2008 period. Multivariate analysis of a set of 14 agricultural, environmental, climatic, and socio-economic factors demonstrates in quantitative terms that a combination of six variables discriminates the areas with human cases and persistence: agricultural population density, duck density, duck by chicken density, chicken density, the product of agricultural population density and chicken output/input ratio, and purchasing power per capita. The analysis identifies five agro-ecological clusters, or niches, representing varying degrees of disease persistence. The agro-ecological distances of all study areas to the medoid of the niche with the greatest number of human cases are used to map HPAI H5N1 risk globally. The results indicate that few countries remain where HPAI H5N1 would likely persist should it be introduced. PMID:20585972

  18. Persistence of highly pathogenic avian influenza H5N1 virus defined by agro-ecological niche

    USGS Publications Warehouse

    Hogerwerf, Lenny; Wallace, Rob G.; Ottaviani, Daniela; Slingenbergh, Jan; Prosser, Diann; Bergmann, Luc; Gilbert, Marius

    2010-01-01

    The highly pathogenic avian influenza (HPAI) H5N1 virus has spread across Eurasia and into Africa. Its persistence in a number of countries continues to disrupt poultry production, impairs smallholder livelihoods, and raises the risk a genotype adapted to human-to-human transmission may emerge. While previous studies identified domestic duck reservoirs as a primary risk factor associated with HPAI H5N1 persistence in poultry in Southeast Asia, little is known of such factors in countries with different agro-ecological conditions, and no study has investigated the impact of such conditions on HPAI H5N1 epidemiology at the global scale. This study explores the patterns of HPAI H5N1 persistence worldwide, and for China, Indonesia, and India includes individual provinces that have reported HPAI H5N1 presence during the 2004–2008 period. Multivariate analysis of a set of 14 agricultural, environmental, climatic, and socio-economic factors demonstrates in quantitative terms that a combination of six variables discriminates the areas with human cases and persistence: agricultural population density, duck density, duck by chicken density, chicken density, the product of agricultural population density and chicken output/input ratio, and purchasing power per capita. The analysis identifies five agro-ecological clusters, or niches, representing varying degrees of disease persistence. The agro-ecological distances of all study areas to the medoid of the niche with the greatest number of human cases are used to map HPAI H5N1 risk globally. The results indicate that few countries remain where HPAI H5N1 would likely persist should it be introduced.

  19. Molecular and antigenic evolution and geographical spread of H5N1 highly pathogenic avian influenza viruses in western Africa.

    PubMed

    Ducatez, M F; Olinger, C M; Owoade, A A; Tarnagda, Z; Tahita, M C; Sow, A; De Landtsheer, S; Ammerlaan, W; Ouedraogo, J B; Osterhaus, A D M E; Fouchier, R A M; Muller, C P

    2007-08-01

    In Africa, highly pathogenic avian influenza H5N1 virus was first detected in northern Nigeria and later also in other regions of the country. Since then, seven other African countries have reported H5N1 infections. This study reports a comparison of full-length genomic sequences of H5N1 isolates from seven chicken farms in Nigeria and chicken and hooded vultures in Burkina Faso with earlier H5N1 outbreaks worldwide. In addition, the antigenicity of Nigerian H5N1 isolates was compared with earlier strains. All African strains clustered within three sublineages denominated A (south-west Nigeria, Niger), B (south-west Nigeria, Egypt, Djibouti) and C (northern Nigeria, Burkina Faso, Sudan, Côte d'Ivoire), with distinct nucleotide and amino acid signatures and distinct geographical distributions within Africa. Probable non-African ancestors within the west Asian/Russian/European lineage distinct from the south-east Asian lineages were identified for each sublineage. All reported human cases in Africa were caused by sublineage B. Substitution rates were calculated on the basis of sequences from 11 strains from a single farm in south-west Nigeria. As H5N1 emerged essentially at the same time in the north and south-west of Nigeria, the substitution rates confirmed that the virus probably did not spread from the north to the south, given the observed sequence diversity, but that it entered the country via three independent introductions. The strains from Burkina Faso seemed to originate from northern Nigeria. At least two of the sublineages also circulated in Europe in 2006 as seen in Germany, further suggesting that the sublineages had already emerged outside of Africa and seemed to have followed the east African/west Asian and Black Sea/Mediterranean flyways of migratory birds. PMID:17622635

  20. Surveillance plan for the early detection of H5N1 highly pathogenic avian influenza virus in migratory birds in the United States: surveillance year 2009

    USGS Publications Warehouse

    Brand, Christopher J.

    2009-01-01

    Executive Summary: This Surveillance Plan (Plan) describes plans for conducting surveillance of wild birds in the United States and its Territories and Freely-Associated States to provide for early detection of the introduction of the H5N1 Highly Pathogenic Avian Influenza (HPAI) subtype of the influenza A virus by migratory birds during the 2009 surveillance year, spanning the period of April 1, 2009 - March 31, 2010. The Plan represents a continuation of surveillance efforts begun in 2006 under the Interagency Strategic Plan for the Early Detection of H5N1 Highly Pathogenic Avian Influenza in Wild Migratory Birds (U.S. Department of Agriculture and U.S. Department of the Interior, 2006). The Plan sets forth sampling plans by: region, target species or species groups to be sampled, locations of sampling, sample sizes, and sampling approaches and methods. This Plan will be reviewed annually and modified as appropriate for subsequent surveillance years based on evaluation of information from previous years of surveillance, changing patterns and threats of H5N1 HPAI, and changes in funding availability for avian influenza surveillance. Specific sampling strategies will be developed accordingly within each of six regions, defined here as Alaska, Hawaiian/Pacific Islands, Lower Pacific Flyway (Washington, Oregon, California, Idaho, Nevada, Arizona), Central Flyway, Mississippi Flyway, and Atlantic Flyway.

  1. High-yield production of a stable Vero cell-based vaccine candidate against the highly pathogenic avian influenza virus H5N1

    SciTech Connect

    Zhou, Fangye; Zhou, Jian; Ma, Lei; Song, Shaohui; Zhang, Xinwen; Li, Weidong; Jiang, Shude; Wang, Yue; Liao, Guoyang

    2012-05-18

    Highlights: Black-Right-Pointing-Pointer Vero cell-based HPAI H5N1 vaccine with stable high yield. Black-Right-Pointing-Pointer Stable high yield derived from the YNVa H3N2 backbone. Black-Right-Pointing-Pointer H5N1/YNVa has a similar safety and immunogenicity to H5N1delta. -- Abstract: Highly pathogenic avian influenza (HPAI) viruses pose a global pandemic threat, for which rapid large-scale vaccine production technology is critical for prevention and control. Because chickens are highly susceptible to HPAI viruses, the supply of chicken embryos for vaccine production might be depleted during a virus outbreak. Therefore, developing HPAI virus vaccines using other technologies is critical. Meeting vaccine demand using the Vero cell-based fermentation process has been hindered by low stability and yield. In this study, a Vero cell-based HPAI H5N1 vaccine candidate (H5N1/YNVa) with stable high yield was achieved by reassortment of the Vero-adapted (Va) high growth A/Yunnan/1/2005(H3N2) (YNVa) virus with the A/Anhui/1/2005(H5N1) attenuated influenza vaccine strain (H5N1delta) using the 6/2 method. The reassorted H5N1/YNVa vaccine maintained a high hemagglutination (HA) titer of 1024. Furthermore, H5N1/YNVa displayed low pathogenicity and uniform immunogenicity compared to that of the parent virus.

  2. Spatial distribution and risk factors of highly pathogenic avian influenza (HPAI) H5N1 in China

    USGS Publications Warehouse

    Martin, V.; Pfeiffer, D.U.; Zhou, X.; Xiao, X.; Prosser, D.J.; Guo, F.; Gilbert, M.

    2011-01-01

    Highly pathogenic avian influenza (HPAI) H5N1 was first encountered in 1996 in Guangdong province (China) and started spreading throughout Asia and the western Palearctic in 2004-2006. Compared to several other countries where the HPAI H5N1 distribution has been studied in some detail, little is known about the environmental correlates of the HPAI H5N1 distribution in China. HPAI H5N1 clinical disease outbreaks, and HPAI virus (HPAIV) H5N1 isolated from active risk-based surveillance sampling of domestic poultry (referred to as HPAIV H5N1 surveillance positives in this manuscript) were modeled separately using seven risk variables: chicken, domestic waterfowl population density, proportion of land covered by rice or surface water, cropping intensity, elevation, and human population density. We used bootstrapped logistic regression and boosted regression trees (BRT) with cross-validation to identify the weight of each variable, to assess the predictive power of the models, and to map the distribution of HPAI H5N1 risk. HPAI H5N1 clinical disease outbreak occurrence in domestic poultry was mainly associated with chicken density, human population density, and elevation. In contrast, HPAIV H5N1 infection identified by risk-based surveillance was associated with domestic waterfowl density, human population density, and the proportion of land covered by surface water. Both models had a high explanatory power (mean AUC ranging from 0.864 to 0.967). The map of HPAIV H5N1 risk distribution based on active surveillance data emphasized areas south of the Yangtze River, while the distribution of reported outbreak risk extended further North, where the density of poultry and humans is higher. We quantified the statistical association between HPAI H5N1 outbreak, HPAIV distribution and post-vaccination levels of seropositivity (percentage of effective post-vaccination seroconversion in vaccinated birds) and found that provinces with either outbreaks or HPAIV H5N1 surveillance

  3. Spatial distribution and risk factors of highly pathogenic avian influenza (HPAI) H5N1 in China

    USGS Publications Warehouse

    Martin, Vincent; Pfeiffer, Dirk U.; Zhou, Xiaoyan; Xiao, Xiangming; Prosser, Diann J.; Guo, Fusheng; Gilbert, Marius

    2011-01-01

    Highly pathogenic avian influenza (HPAI) H5N1 was first encountered in 1996 in Guangdong province (China) and started spreading throughout Asia and the western Palearctic in 2004–2006. Compared to several other countries where the HPAI H5N1 distribution has been studied in some detail, little is known about the environmental correlates of the HPAI H5N1 distribution in China. HPAI H5N1 clinical disease outbreaks, and HPAI virus (HPAIV) H5N1 isolated from active risk-based surveillance sampling of domestic poultry (referred to as HPAIV H5N1 surveillance positives in this manuscript) were modeled separately using seven risk variables: chicken, domestic waterfowl population density, proportion of land covered by rice or surface water, cropping intensity, elevation, and human population density. We used bootstrapped logistic regression and boosted regression trees (BRT) with cross-validation to identify the weight of each variable, to assess the predictive power of the models, and to map the distribution of HPAI H5N1 risk. HPAI H5N1 clinical disease outbreak occurrence in domestic poultry was mainly associated with chicken density, human population density, and elevation. In contrast, HPAIV H5N1 infection identified by risk-based surveillance was associated with domestic waterfowl density, human population density, and the proportion of land covered by surface water. Both models had a high explanatory power (mean AUC ranging from 0.864 to 0.967). The map of HPAIV H5N1 risk distribution based on active surveillance data emphasized areas south of the Yangtze River, while the distribution of reported outbreak risk extended further North, where the density of poultry and humans is higher. We quantified the statistical association between HPAI H5N1 outbreak, HPAIV distribution and post-vaccination levels of seropositivity (percentage of effective post-vaccination seroconversion in vaccinated birds) and found that provinces with either outbreaks or HPAIV H5N1 surveillance

  4. Spatial Distribution and Risk Factors of Highly Pathogenic Avian Influenza (HPAI) H5N1 in China

    PubMed Central

    Martin, Vincent; Pfeiffer, Dirk U.; Zhou, Xiaoyan; Xiao, Xiangming; Prosser, Diann J.; Guo, Fusheng; Gilbert, Marius

    2011-01-01

    Highly pathogenic avian influenza (HPAI) H5N1 was first encountered in 1996 in Guangdong province (China) and started spreading throughout Asia and the western Palearctic in 2004–2006. Compared to several other countries where the HPAI H5N1 distribution has been studied in some detail, little is known about the environmental correlates of the HPAI H5N1 distribution in China. HPAI H5N1 clinical disease outbreaks, and HPAI virus (HPAIV) H5N1 isolated from active risk-based surveillance sampling of domestic poultry (referred to as HPAIV H5N1 surveillance positives in this manuscript) were modeled separately using seven risk variables: chicken, domestic waterfowl population density, proportion of land covered by rice or surface water, cropping intensity, elevation, and human population density. We used bootstrapped logistic regression and boosted regression trees (BRT) with cross-validation to identify the weight of each variable, to assess the predictive power of the models, and to map the distribution of HPAI H5N1 risk. HPAI H5N1 clinical disease outbreak occurrence in domestic poultry was mainly associated with chicken density, human population density, and elevation. In contrast, HPAIV H5N1 infection identified by risk-based surveillance was associated with domestic waterfowl density, human population density, and the proportion of land covered by surface water. Both models had a high explanatory power (mean AUC ranging from 0.864 to 0.967). The map of HPAIV H5N1 risk distribution based on active surveillance data emphasized areas south of the Yangtze River, while the distribution of reported outbreak risk extended further North, where the density of poultry and humans is higher. We quantified the statistical association between HPAI H5N1 outbreak, HPAIV distribution and post-vaccination levels of seropositivity (percentage of effective post-vaccination seroconversion in vaccinated birds) and found that provinces with either outbreaks or HPAIV H5N1 surveillance

  5. Rapid emergence of a virulent PB2 E627K variant during adaptation of highly pathogenic avian influenza H7N7 virus to mice

    PubMed Central

    2013-01-01

    Background Highly pathogenic avian influenza (HPAI) viruses pose a potential human health threat as they can be transmitted directly from infected poultry to humans. During a large outbreak of HPAI H7N7 virus among poultry in The Netherlands in 2003, bird to human transmission was confirmed in 89 cases, of which one had a fatal outcome. Methods To identify genetic determinants of virulence in a mammalian host, we passaged an avian H7N7/03 outbreak isolate in mouse lungs and evaluated the phenotype of the mouse-adapted variant in animal models and in vitro. Results Three passages in mouse lungs were sufficient to select a variant that was highly virulent in mice. The virus had a MLD50 that was >4.3 logs lower than that of its non-lethal parental virus. Sequence analysis revealed a single mutation at position 627 in PB2, where the glutamic acid was changed to a lysine (E627K). The mouse-adapted virus has this mutation in common with the fatal human case isolate. The virus remained highly pathogenic for chickens after its passage in mice. In ferrets, the mouse-adapted virus induced more severe disease, replicated to higher titers in the lower respiratory tract and spread more efficiently to systemic organs compared with the parental virus. In vitro, the PB2 E627K mutation had a promoting effect on virus propagation in mammalian, but not in avian cells. Conclusions Our results show that the E627K mutation in PB2 alone can be sufficient to convert an HPAI H7N7 virus of low virulence to a variant causing severe disease in mice and ferrets. The rapid emergence of the PB2 E627K mutant during mouse adaptation and its pathogenicity in ferrets emphasize the potential risk of HPAI H7N7 viruses for human health. PMID:24007444

  6. Clinical Characteristics of 26 Human Cases of Highly Pathogenic Avian Influenza A (H5N1) Virus Infection in China

    PubMed Central

    Xiang, Nijuan; Zhou, Lei; Huai, Yang; Feng, Luzhao; Peng, Zhibin; Li, Zhongjie; Xu, Cuiling; Li, Junhua; Hu, Chengping; Li, Qun; Xu, Xiaoling; Liu, Xuecheng; Liu, Zigui; Xu, Longshan; Chen, Yusheng; Luo, Huiming; Wei, Liping; Zhang, Xianfeng; Xin, Jianbao; Guo, Junqiao; Wang, Qiuyue; Yuan, Zhengan; Zhou, Longnv; Zhang, Kunzhao; Zhang, Wei; Yang, Jinye; Zhong, Xiaoning; Xia, Shichang; Li, Lanjuan; Cheng, Jinquan; Ma, Erdang; He, Pingping; Lee, Shui Shan; Wang, Yu; Uyeki, Timothy M.; Yang, Weizhong

    2008-01-01

    Background While human cases of highly pathogenic avian influenza A (H5N1) virus infection continue to increase globally, available clinical data on H5N1 cases are limited. We conducted a retrospective study of 26 confirmed human H5N1 cases identified through surveillance in China from October 2005 through April 2008. Methodology/Principal Findings Data were collected from hospital medical records of H5N1 cases and analyzed. The median age was 29 years (range 6–62) and 58% were female. Many H5N1 cases reported fever (92%) and cough (58%) at illness onset, and had lower respiratory findings of tachypnea and dyspnea at admission. All cases progressed rapidly to bilateral pneumonia. Clinical complications included acute respiratory distress syndrome (ARDS, 81%), cardiac failure (50%), elevated aminotransaminases (43%), and renal dysfunction (17%). Fatal cases had a lower median nadir platelet count (64.5×109 cells/L vs 93.0×109 cells/L, p = 0.02), higher median peak lactic dehydrogenase (LDH) level (1982.5 U/L vs 1230.0 U/L, p = 0.001), higher percentage of ARDS (94% [n = 16] vs 56% [n = 5], p = 0.034) and more frequent cardiac failure (71% [n = 12] vs 11% [n = 1], p = 0.011) than nonfatal cases. A higher proportion of patients who received antiviral drugs survived compared to untreated (67% [8/12] vs 7% [1/14], p = 0.003). Conclusions/Significance The clinical course of Chinese H5N1 cases is characterized by fever and cough initially, with rapid progression to lower respiratory disease. Decreased platelet count, elevated LDH level, ARDS and cardiac failure were associated with fatal outcomes. Clinical management of H5N1 cases should be standardized in China to include early antiviral treatment for suspected H5N1 cases. PMID:18716658

  7. Protective efficacy of stockpiled vaccine against H5N8 highly pathogenic avian influenza virus isolated from a chicken in Kumamoto prefecture, Japan, in 2014

    PubMed Central

    GAMOH, Koichiro; NAKAMIZO, Mari; OKAMATSU, Masatoshi; SAKODA, Yoshihiro; KIDA, Hiroshi; SUZUKI, Shoko

    2015-01-01

    H5 highly pathogenic avian influenza (HPAI) viruses have spread worldwide, and antigenic variants of different clades have been selected. In this study, the national stockpiled vaccine prepared from A/duck/Hokkaido/Vac-1/2004 (H5N1) strain was evaluated for the protective efficacy against H5N8 HPAI virus isolated in Kumamoto prefecture, Japan, in April 2014. In the challenge test, all of the vaccinated chickens survived without showing any clinical signs and reduced virus shedding. It was concluded that the present stockpiled vaccine was effective against the H5N8 HPAI virus. PMID:26290130

  8. Low Virulence and Lack of Airborne Transmission of the Dutch Highly Pathogenic Avian Influenza Virus H5N8 in Ferrets

    PubMed Central

    van den Brand, Judith M. A.; Lexmond, Pascal; Bestebroer, Theo M.; Rimmelzwaan, Guus F.; Koopmans, Marion; Kuiken, Thijs; Fouchier, Ron A. M.

    2015-01-01

    Highly pathogenic avian influenza (HPAI) H5N8 viruses that emerged in poultry in East Asia spread to Europe and North America by late 2014. Here we show that the European HPAI H5N8 viruses differ from the Korean and Japanese HPAI H5N8 viruses by several amino acids and that a Dutch HPAI H5N8 virus had low virulence and was not transmitted via the airborne route in ferrets. The virus did not cross-react with sera raised against pre-pandemic H5 vaccine strains. This data is useful for public health risk assessments. PMID:26090682

  9. Comparative pathology of H5N1 highly pathogenic avian influenza virus infection in avian species in the Orders Anseriformes and Charadriiformes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thirteen species of ducks, geese, swans and gulls present in the North American wild bird populations were inoculated intranasally with A/Whooper Swan/Mongolia/244/05 (H5N1) avian influenza virus to evaluate the range of viral shedding and pathology within these two avian orders. Based on mortality...

  10. Experimental challenge and pathology of highly pathogenic avian influenza virus H5N1 in dunlin (Calidris alpina), an intercontinental migrant shorebird species

    PubMed Central

    Hall, Jeffrey S.; Franson, J. Christian; Gill, Robert E.; Meteyer, Carol U.; TeSlaa, Joshua L.; Nashold, Sean; Dusek, Robert J.; Ip, Hon S.

    2011-01-01

    Please cite this paper as: Hall et al. (2011). Experimental challenge and pathology of highly pathogenic avian influenza virus H5N1 in dunlin (Calidris alpina), an intercontinental migrant shorebird species. Influenza and Other Respiratory Viruses 5(5), 365–372. Background  Shorebirds (Charadriiformes) are considered one of the primary reservoirs of avian influenza. Because these species are highly migratory, there is concern that infected shorebirds may be a mechanism by which highly pathogenic avian influenza virus (HPAIV) H5N1 could be introduced into North America from Asia. Large numbers of dunlin (Calidris alpina) migrate from wintering areas in central and eastern Asia, where HPAIV H5N1 is endemic, across the Bering Sea to breeding areas in Alaska. Low pathogenic avian influenza virus has been previously detected in dunlin, and thus, dunlin represent a potential risk to transport HPAIV to North America. To date no experimental challenge studies have been performed in shorebirds. Methods  Wild dunlin were inoculated intranasally and intrachoanally various doses of HPAIV H5N1. The birds were monitored daily for virus excretion, disease signs, morbidity, and mortality. Results  The infectious dose of HPAIV H5N1 in dunlin was determined to be 101.7 EID50/100 μl and that the lethal dose was 101.83 EID50/100 μl. Clinical signs were consistent with neurotropic disease, and histochemical analyses revealed that infection was systemic with viral antigen and RNA most consistently found in brain tissues. Infected birds excreted relatively large amounts of virus orally (104 EID50) and smaller amounts cloacally. Conclusions  Dunlin are highly susceptible to infection with HPAIV H5N1. They become infected after exposure to relatively small doses of the virus and if they become infected, they are most likely to suffer mortality within 3–5 days. These results have important implications regarding the risks of transport and transmission of HPAIV H5N1 to North

  11. Experimental challenge and pathology of highly pathogenic avian influenza virus H5N1 in dunlin (Calidris alpina), an intercontinental migrant shorebird species

    USGS Publications Warehouse

    Hall, J.S.; Franson, J.C.; Gill, R.E.; Meteyer, C.U.; Teslaa, J.L.; Nashold, S.; Dusek, R.J.; Ip, H.S.

    2011-01-01

    Background Shorebirds (Charadriiformes) are considered one of the primary reservoirs of avian influenza. Because these species are highly migratory, there is concern that infected shorebirds may be a mechanism by which highly pathogenic avian influenza virus (HPAIV) H5N1 could be introduced into North America from Asia. Large numbers of dunlin (Calidris alpina) migrate from wintering areas in central and eastern Asia, where HPAIV H5N1 is endemic, across the Bering Sea to breeding areas in Alaska. Low pathogenic avian influenza virus has been previously detected in dunlin, and thus, dunlin represent a potential risk to transport HPAIV to North America. To date no experimental challenge studies have been performed in shorebirds. Methods Wild dunlin were inoculated intranasally and intrachoanally various doses of HPAIV H5N1. The birds were monitored daily for virus excretion, disease signs, morbidity, and mortality. Results The infectious dose of HPAIV H5N1 in dunlin was determined to be 101.7 EID50/100 ??l and that the lethal dose was 101.83 EID50/100 ??l. Clinical signs were consistent with neurotropic disease, and histochemical analyses revealed that infection was systemic with viral antigen and RNA most consistently found in brain tissues. Infected birds excreted relatively large amounts of virus orally (104 EID50) and smaller amounts cloacally. Conclusions Dunlin are highly susceptible to infection with HPAIV H5N1. They become infected after exposure to relatively small doses of the virus and if they become infected, they are most likely to suffer mortality within 3-5days. These results have important implications regarding the risks of transport and transmission of HPAIV H5N1 to North America by this species and raises questions for further investigation. Published 2011. This article is a US Government work and is in the public domain in the USA.

  12. Surveillance for high pathogenicity avian influenza virus in wild birds in the Pacific Flyway of the United States, 2006-2007

    USGS Publications Warehouse

    Dusek, R.J.; Bortner, J.B.; DeLiberto, T.J.; Hoskins, J.; Franson, J. Christian; Bales, B.D.; Yparraguirre, D.; Swafford, S.R.; Ip, H.S.

    2009-01-01

    In 2006 the U.S. Department of Agriculture, U.S. Department of Interior, and cooperating state fish and wildlife agencies began surveillance for high-pathogenicity avian influenza (HPAI) H5N1 virus in wild birds in the Pacific Flyway of the United States. This surveillance effort was highly integrated in California, Oregon, Washington, Idaho, Nevada, Arizona, Utah, and western Montana, with collection of samples coordinated with state agencies. Sampling focused on live wild birds, hunterkilled waterfowl during state hunting seasons, and wild bird mortality events. Of 20,888 samples collected, 18,139 were from order Anseriformes (waterfowl) and 2010 were from order Charadriiformes (shorebirds), representing the two groups of birds regarded to be the primary reservoirs of avian influenza viruses. Although 83 birds were positive by H5 real-time reverse transcription polymerase chain reaction (rRT-PCR), no HPAI H5N1 virus was found. Thirty-two virus isolates were obtained from the H5- positive samples, including low-pathogenicity H5 viruses identified as H5N2, H5N3, and H5N9.

  13. Pathogenesis and transmissibility of highly (H7N1) and low (H7N9) pathogenic avian influenza virus infection in red-legged partridge (Alectoris rufa)

    PubMed Central

    2011-01-01

    An experimental infection with highly pathogenic avian influenza virus (HPAIV) and low pathogenic avian influenza virus (LPAIV) was carried out in red-legged partridges (Alectoris rufa) in order to study clinical signs, gross and microscopic lesions, and viral distribution in tissues and viral shedding. Birds were infected with a HPAIV subtype H7N1 (A/Chicken/Italy/5093/1999) and a LPAIV subtype H7N9 (A/Anas crecca/Spain/1460/2008). Uninoculated birds were included as contacts in both groups. In HPAIV infected birds, the first clinical signs were observed at 3 dpi, and mortality started at 4 dpi, reaching 100% at 8 dpi. The presence of viral antigen in tissues and viral shedding were confirmed by immunohistochemistry and quantitative real time RT-PCR (qRRT-PCR), respectively, in all birds infected with HPAIV. However, neither clinical signs nor histopathological findings were observed in LPAIV infected partridges. In addition, only short-term viral shedding together with seroconversion was detected in some LPAIV inoculated animals. The present study demonstrates that the red-legged partridge is highly susceptible to the H7N1 HPAIV strain, causing severe disease, mortality and abundant viral shedding and thus contributing to the spread of a potential local outbreak of this virus. In contrast, our results concerning H7N9 LPAIV suggest that the red-legged partridge is not a reservoir species for this virus. PMID:21314907

  14. Comparison of pathogenicities of H7 avian influenza viruses via intranasal and conjunctival inoculation in cynomolgus macaques.

    PubMed

    Shichinohe, Shintaro; Itoh, Yasushi; Nakayama, Misako; Ozaki, Hiroichi; Soda, Kosuke; Ishigaki, Hirohito; Okamatsu, Masatoshi; Sakoda, Yoshihiro; Kida, Hiroshi; Ogasawara, Kazumasa

    2016-06-01

    The outbreak of H7N9 low pathogenic avian influenza viruses in China has attracted attention to H7 influenza virus infection in humans. Since we have shown that the pathogenicity of H1N1 and H5N1 influenza viruses in macaques was almost the same as that in humans, we compared the pathogenicities of H7 avian influenza viruses in cynomolgus macaques via intranasal and conjunctival inoculation, which mimics natural infection in humans. H7N9 virus, as well as H7N7 highly pathogenic avian influenza virus, showed more efficient replication and higher pathogenicity in macaques than did H7N1 and H7N3 highly pathogenic avian influenza viruses. These results are different from pathogenicity in chickens as reported previously. Therefore, our results obtained in macaques help to estimate the pathogenicity of H7 avian influenza viruses in humans. PMID:26994587

  15. Testing of human specimens for the presence of highly pathogenic zoonotic avian influenza virus A(H5N1) in Poland in 2006-2008 - justified or unnecessary steps?

    PubMed

    Romanowska, Magdalena; Nowak, Iwona; Brydak, Lidia; Wojtyla, Andrzej

    2009-01-01

    Since 1997, human infections with highly pathogenic zoonotic avian influenza viruses have shown that the risk of influenza pandemic is significant. In Europe, infections caused by the highly pathogenic avian influenza A(H7N7) virus were confirmed in the human population in 2003 in the Netherlands. Moreover, outbreaks of A(H5N1) infections were observed in wild and farm birds in different European regions, including Poland in 2006-2008. This study presents 16 patients in Poland from whom clinical specimens were collected and tested for A(H5N1) highly pathogenic avian influenza. This article shows the results of laboratory tests and discusses the legitimacy of the collection and testing of the specimens. All patients were negative for A(H5N1) infection. Nevertheless, only two patients met clinical and epidemiological criteria from the avian influenza case definition. The conclusion is that there is still a strong necessity for increasing the awareness of medical and laboratory staff, as well as the awareness of some occupational groups about human infections with avian influenza viruses, including the importance of seasonal influenza vaccination. It should also be emphasized that in the case of patients suspected of being infected with avian influenza, the information about clinical symptoms is insufficient and must be accompanied by a wide epidemiological investigation. PMID:20047257

  16. Highly (H5N1) and low (H7N2) pathogenic avian influenza virus infection in falcons via nasochoanal route and ingestion of experimentally infected prey.

    PubMed

    Bertran, Kateri; Busquets, Núria; Abad, Francesc Xavier; García de la Fuente, Jorge; Solanes, David; Cordón, Iván; Costa, Taiana; Dolz, Roser; Majó, Natàlia

    2012-01-01

    An experimental infection with highly pathogenic avian influenza (HPAI) and low pathogenic avian influenza (LPAI) viruses was carried out on falcons in order to examine the effects of these viruses in terms of pathogenesis, viral distribution in tissues and viral shedding. The distribution pattern of influenza virus receptors was also assessed. Captive-reared gyr-saker (Falco rusticolus x Falco cherrug) hybrid falcons were challenged with a HPAI H5N1 virus (A/Great crested grebe/Basque Country/06.03249/2006) or a LPAI H7N2 virus (A/Anas plathyrhynchos/Spain/1877/2009), both via the nasochoanal route and by ingestion of previously infected specific pathogen free chicks. Infected falcons exhibited similar infection dynamics despite the different routes of exposure, demonstrating the effectiveness of in vivo feeding route. H5N1 infected falcons died, or were euthanized, between 5-7 days post-infection (dpi) after showing acute severe neurological signs. Presence of viral antigen in several tissues was confirmed by immunohistochemistry and real time RT-PCR (RRT-PCR), which were generally associated with significant microscopical lesions, mostly in the brain. Neither clinical signs, nor histopathological findings were observed in any of the H7N2 LPAI infected falcons, although all of them had seroconverted by 11 dpi. Avian receptors were strongly present in the upper respiratory tract of the falcons, in accordance with the consistent oral viral shedding detected by RRT-PCR in both H5N1 HPAI and H7N2 LPAI infected falcons. The present study demonstrates that gyr-saker hybrid falcons are highly susceptible to H5N1 HPAI virus infection, as previously observed, and that they may play a major role in the spreading of both HPAI and LPAI viruses. For the first time in raptors, natural infection by feeding on infected prey was successfully reproduced. The use of avian prey species in falconry husbandry and wildlife rehabilitation facilities could put valuable birds of prey and

  17. Movements of wild ruddy shelducks in the Central Asian Flyway and their spatial relationship to outbreaks of highly pathogenic avian influenza H5N1.

    PubMed

    Takekawa, John Y; Prosser, Diann J; Collins, Bridget M; Douglas, David C; Perry, William M; Yan, Baoping; Ze, Luo; Hou, Yuansheng; Lei, Fumin; Li, Tianxian; Li, Yongdong; Newman, Scott H

    2013-09-01

    Highly pathogenic avian influenza H5N1 remains a serious concern for both poultry and human health. Wild waterfowl are considered to be the reservoir for low pathogenic avian influenza viruses; however, relatively little is known about their movement ecology in regions where HPAI H5N1 outbreaks regularly occur. We studied movements of the ruddy shelduck (Tadorna ferruginea), a wild migratory waterfowl species that was infected in the 2005 Qinghai Lake outbreak. We defined their migration with Brownian Bridge utilization distribution models and their breeding and wintering grounds with fixed kernel home ranges. We correlated their movements with HPAI H5N1 outbreaks, poultry density, land cover, and latitude in the Central Asian Flyway. Our Akaike Information Criterion analysis indicated that outbreaks were correlated with land cover, latitude, and poultry density. Although shelduck movements were included in the top two models, they were not a top parameter selected in AICc stepwise regression results. However, timing of outbreaks suggested that outbreaks in the flyway began during the winter in poultry with spillover to wild birds during the spring migration. Thus, studies of the movement ecology of wild birds in areas with persistent HPAI H5N1 outbreaks may contribute to understanding their role in transmission of this disease. PMID:24022072

  18. Movements of wild ruddy shelducks in the Central Asian Flyway and their spatial relationship to outbreaks of highly pathogenic avian influenza H5N1

    USGS Publications Warehouse

    Takekawa, John Y.; Prosser, Diann J.; Collins, Bridget M.; Douglas, David C.; Perry, William M.; Baoping, Yan; Luo, Ze; Hou, Yuansheng; Lei, Fumin; Li, Tianxian; Li, Yongdong; Newman, Scott H.

    2013-01-01

    Highly pathogenic avian influenza H5N1 remains a serious concern for both poultry and human health. Wild waterfowl are considered to be the reservoir for low pathogenic avian influenza viruses; however, relatively little is known about their movement ecology in regions where HPAI H5N1 outbreaks regularly occur. We studied movements of the ruddy shelduck (Tadorna ferruginea), a wild migratory waterfowl species that was infected in the 2005 Qinghai Lake outbreak. We defined their migration with Brownian Bridge utilization distribution models and their breeding and wintering grounds with fixed kernel home ranges. We correlated their movements with HPAI H5N1 outbreaks, poultry density, land cover, and latitude in the Central Asian Flyway. Our Akaike Information Criterion analysis indicated that outbreaks were correlated with land cover, latitude, and poultry density. Although shelduck movements were included in the top two models, they were not a top parameter selected in AICc stepwise regression results. However, timing of outbreaks suggested that outbreaks in the flyway began during the winter in poultry with spillover to wild birds during the spring migration. Thus, studies of the movement ecology of wild birds in areas with persistent HPAI H5N1 outbreaks may contribute to understanding their role in transmission of this disease.

  19. Movements of Wild Ruddy Shelducks in the Central Asian Flyway and Their Spatial Relationship to Outbreaks of Highly Pathogenic Avian Influenza H5N1

    PubMed Central

    Takekawa, John Y.; Prosser, Diann J.; Collins, Bridget M.; Douglas, David C.; Perry, William M.; Yan, Baoping; Ze, Luo; Hou, Yuansheng; Lei, Fumin; Li, Tianxian; Li, Yongdong; Newman, Scott H.

    2013-01-01

    Highly pathogenic avian influenza H5N1 remains a serious concern for both poultry and human health. Wild waterfowl are considered to be the reservoir for low pathogenic avian influenza viruses; however, relatively little is known about their movement ecology in regions where HPAI H5N1 outbreaks regularly occur. We studied movements of the ruddy shelduck (Tadorna ferruginea), a wild migratory waterfowl species that was infected in the 2005 Qinghai Lake outbreak. We defined their migration with Brownian Bridge utilization distribution models and their breeding and wintering grounds with fixed kernel home ranges. We correlated their movements with HPAI H5N1 outbreaks, poultry density, land cover, and latitude in the Central Asian Flyway. Our Akaike Information Criterion analysis indicated that outbreaks were correlated with land cover, latitude, and poultry density. Although shelduck movements were included in the top two models, they were not a top parameter selected in AICc stepwise regression results. However, timing of outbreaks suggested that outbreaks in the flyway began during the winter in poultry with spillover to wild birds during the spring migration. Thus, studies of the movement ecology of wild birds in areas with persistent HPAI H5N1 outbreaks may contribute to understanding their role in transmission of this disease. PMID:24022072

  20. Spatial modeling of wild bird risk factors to investigate highly pathogenic A(H5N1) avian influenza virus transmission

    USGS Publications Warehouse

    Prosser, Diann J.; Hungerford, Laura L.; Erwin, R. Michael; Ottinger, Mary Ann; Takekawa, John Y.; Newman, Scott H.; Xiao, Xianming; Ellis, Erie C.

    2016-01-01

    One of the longest-persisting avian influenza viruses in history, highly pathogenic avian influenza virus (HPAIV) A(H5N1), continues to evolve after 18 years, advancing the threat of a global pandemic. Wild waterfowl (family Anatidae), are reported as secondary transmitters of HPAIV, and primary reservoirs for low-pathogenic avian influenza viruses, yet spatial inputs for disease risk modeling for this group have been lacking. Using GIS and Monte Carlo simulations, we developed geospatial indices of waterfowl abundance at 1 and 30 km resolutions and for the breeding and wintering seasons for China, the epicenter of H5N1. Two spatial layers were developed: cumulative waterfowl abundance (WAB), a measure of predicted abundance across species, and cumulative abundance weighted by H5N1 prevalence (WPR), whereby abundance for each species was adjusted based on prevalence values then totaled across species. Spatial patterns of the model output differed between seasons, with higher WAB and WPR in the northern and western regions of China for the breeding season and in the southeast for the wintering season. Uncertainty measures indicated highest error in southeastern China for both WAB and WPR. We also explored the effect of resampling waterfowl layers from 1 km to 30 km resolution for multi-scale risk modeling. Results indicated low average difference (less than 0.16 and 0.01 standard deviations for WAB and WPR, respectively), with greatest differences in the north for the breeding season and southeast for the wintering season. This work provides the first geospatial models of waterfowl abundance available for China. The indices provide important inputs for modeling disease transmission risk at the interface of poultry and wild birds. These models are easily adaptable, have broad utility to both disease and conservation needs, and will be available to the scientific community for advanced modeling applications.

  1. Immunization with Plant-Expressed Hemagglutinin Protects Chickens from Lethal Highly Pathogenic Avian Influenza Virus H5N1 Challenge Infection▿

    PubMed Central

    Kalthoff, Donata; Giritch, Anatoli; Geisler, Katharina; Bettmann, Ulrike; Klimyuk, Victor; Hehnen, Hans-Robert; Gleba, Yuri; Beer, Martin

    2010-01-01

    Highly pathogenic avian influenza (HPAI) is a striking disease in susceptible poultry, which leads to severe economic losses. Inactivated vaccines are the most widely used vaccines in avian influenza virus (AIV) vaccination programs. However, these vaccines interfere with the serological detection of wild-type AIV infections in immunized populations. The use of vaccines that allow differentiation between infected and vaccinated animals (DIVA strategy) would stop current stamping-out policies. Therefore, novel vaccination strategies are needed to allow improved protection of animals and humans against HPAI virus (HPAIV) infection. The presented study analyzed for the first time the immunogenic capacity of plant-expressed full-length hemagglutinin (rHA0) of HPAIV H5N1 in several vaccine formulations within the highly relevant host species chicken. We were able to express plant-expressed rHA0 at high levels and could show that, when administered with potent adjuvants, it is highly immunogenic and can fully protect chicken against lethal challenge infection. Real-time reverse transcription (RT)-PCR and serological tests demonstrated only marginally increased virus replication in animals vaccinated with plant-derived rHA0 compared to animals immunized with an inactivated reference vaccine. In addition, the use of plant-expressed rHA0 also allowed an easy serological differentiation of vaccinated from AIV-infected animals based on antibodies against the influenza virus NP protein. PMID:20810729

  2. The contribution of PA-X to the virulence of pandemic 2009 H1N1 and highly pathogenic H5N1 avian influenza viruses

    PubMed Central

    Gao, Huijie; Sun, Yipeng; Hu, Jiao; Qi, Lu; Wang, Jinliang; Xiong, Xin; Wang, Yu; He, Qiming; Lin, Yang; Kong, Weili; Seng, Lai-Giea; Sun, Honglei; Pu, Juan; Chang, Kin-Chow; Liu, Xiufan; Liu, Jinhua

    2015-01-01

    PA-X is a novel protein encoded by PA mRNA and is found to decrease the pathogenicity of pandemic 1918 H1N1 virus in mice. However, the importance of PA-X proteins in current epidemiologically important influenza A virus strains is not known. In this study, we report on the pathogenicity and pathological effects of PA-X deficient 2009 pandemic H1N1 (pH1N1) and highly pathogenic avian influenza H5N1 viruses. We found that loss of PA-X expression in pH1N1 and H5N1 viruses increased viral replication and apoptosis in A549 cells and increased virulence and host inflammatory response in mice. In addition, PA-X deficient pH1N1 and H5N1 viruses up-regulated PA mRNA and protein synthesis and increased viral polymerase activity. Loss of PA-X was also accompanied by accelerated nuclear accumulation of PA protein and reduced suppression of PA on non-viral protein expression. Our study highlights the effects of PA-X on the moderation of viral pathogenesis and pathogenicity. PMID:25652161

  3. Newcastle Disease Virus-Vectored Vaccines Expressing the Hemagglutinin or Neuraminidase Protein of H5N1 Highly Pathogenic Avian Influenza Virus Protect against Virus Challenge in Monkeys▿

    PubMed Central

    DiNapoli, Joshua M.; Nayak, Baibaswata; Yang, Lijuan; Finneyfrock, Brad W.; Cook, Anthony; Andersen, Hanne; Torres-Velez, Fernando; Murphy, Brian R.; Samal, Siba K.; Collins, Peter L.; Bukreyev, Alexander

    2010-01-01

    H5N1 highly pathogenic avian influenza virus (HPAIV) causes periodic outbreaks in humans, resulting in severe infections with a high (60%) incidence of mortality. The circulating strains have low human-to-human transmissibility; however, widespread concerns exist that enhanced transmission due to mutations could lead to a global pandemic. We previously engineered Newcastle disease virus (NDV), an avian paramyxovirus, as a vector to express the HPAIV hemagglutinin (HA) protein, and we showed that this vaccine (NDV/HA) induced a high level of HPAIV-specific mucosal and serum antibodies in primates when administered through the respiratory tract. Here we developed additional NDV-vectored vaccines expressing either HPAIV HA in which the polybasic cleavage site was replaced with that from a low-pathogenicity strain of influenza virus [HA(RV)], in order to address concerns of enhanced vector replication or genetic exchange, or HPAIV neuraminidase (NA). The three vaccine viruses [NDV/HA, NDV/HA(RV), and NDV/NA] were administered separately to groups of African green monkeys by the intranasal/intratracheal route. An additional group of animals received NDV/HA by aerosol administration. Each of the vaccine constructs was highly restricted for replication, with only low levels of virus shedding detected in respiratory secretions. All groups developed high levels of neutralizing antibodies against homologous and heterologous strains of HPAIV and were protected against challenge with 2 × 107 PFU of homologous HPAIV. Thus, needle-free, highly attenuated NDV-vectored vaccines expressing either HPAIV HA, HA(RV), or NA have been developed and demonstrated to be individually immunogenic and protective in a primate model of HPAIV infection. The finding that HA(RV) was protective indicates that it would be preferred for inclusion in a vaccine. The study also identified NA as an independent protective HPAIV antigen in primates. Furthermore, we demonstrated the feasibility of aerosol

  4. An overview of the epidemic of highly pathogenic H5N1 avian influenza virus in Egypt: epidemiology and control challenges.

    PubMed

    Abdelwhab, E M; Hafez, H M

    2011-05-01

    Emergence of the highly pathogenic avian influenza (HPAI) H5N1 virus in Egypt in mid-February 2006 caused significant losses for the poultry industry and constituted a potential threat to public health. Since late 2007, there has been increasing evidence that stable lineages of H5N1 viruses are being established in chickens and humans in Egypt. The virus has been detected in wild, feral and zoo birds and recently was found in donkeys and pigs. Most of the outbreaks in poultry and humans occurred in the highly populated Nile delta. The temporal pattern of the virus has changed since 2009 with outbreaks now occurring in the warmer months of the year. Challenges to control of endemic disease in Egypt are discussed. For the foreseeable future, unless a global collaboration exists, HPAI H5N1 virus in Egypt will continue to compromise the poultry industry, endanger public health and pose a serious pandemic threat. PMID:21281550

  5. Highly Pathogenic Avian Influenza Virus (H5N1) Outbreak in Captive Wild Birds and Cats, Cambodia

    PubMed Central

    Marx, Nick; Ong, Sivuth; Gaidet, Nicolas; Hunt, Matt; Manuguerra, Jean-Claude; Sorn, San; Peiris, Malik; Van der Werf, Sylvie; Reynes, Jean-Marc

    2009-01-01

    From December 2003 through January 2004, the Phnom Tamao Wildlife Rescue Centre, Cambodia, was affected by the highly pathogenic influenza virus (H5N1). Birds from 26 species died. Influenza virus subtype H5N1 was detected in 6 of 7 species tested. Cats from 5 of 7 species were probably infected; none died. PMID:19239769

  6. Mucosal administration of raccoonpox virus expressing highly pathogenic avian H5N1 influenza neuraminidase is highly protective against H5N1 and seasonal influenza virus challenge.

    PubMed

    Kingstad-Bakke, Brock; Kamlangdee, Attapon; Osorio, Jorge E

    2015-09-22

    We previously generated recombinant poxviruses expressing influenza antigens and studied their efficacy as potential highly pathogenic avian influenza (HPAI) vaccines in mice. While both modified vaccinia Ankara (MVA) and raccoon poxvirus (RCN) expressing hemagglutinin (HA) provided strong protection when administered by parenteral routes, only RCN-neuraminidase (NA) showed promise as a mucosal vaccine. In the present study we evaluated the efficacy of RCN-NA constructs by both intradermal (ID) and intranasal (IN) routes. Surprisingly, while RCN-NA completely protected mice when administered by the IN route, it failed to protect mice when administered by the ID route. After challenge, significantly less virus induced pathology was observed in the lungs of mice vaccinated with RCN-NA by the IN route as compared to the ID route. Furthermore, IN administration of RCN-NA elicited neutralizing antibodies detected in bronchoalveolar lavage (BAL) samples. We also determined the role of cellular immune responses in protection elicited by RCN-NA by depleting CD4 and CD8 T cells prior to challenge. Finally, we demonstrated for the first time that antibodies against NA can block viral entry in addition to viral spread in vitro. These studies demonstrate the importance of mucosal administration of RCN viral vectors for eliciting protective immune responses against the NA antigen. PMID:26271828

  7. Intranasal immunization with live recombinant Lactococcus lactis combined with heat-labile toxin B subunit protects chickens from highly pathogenic avian influenza H5N1 virus.

    PubMed

    Lei, Han; Peng, Xiaojue; Shu, Handing; Zhao, Daxian

    2015-01-01

    Development of safe and effective vaccines to prevent highly pathogenic avian influenza H5N1 virus infection is a challenging goal. Lactococcus lactis (L. lactis) is an ideal delivery vector for vaccine development, and it has been shown previously that oral immunization of encapsulated secretory L. lactis-hemagglutinin (HA) could provide complete protection against homologous H5N1 virus challenge in the mice model. While intranasal immunization is an appealing approach, it is now reported that secretory L. lactis-HA combined with mucosal adjuvant heat-labile toxin B subunit (LTB) could provide protective immunity in the chicken model. As compared to intranasal immunization with L. lactis-HA alone, L. lactis-HA combined with LTB (L. lactis-HA + LTB) could elicit robust neutralizing antibody responses and mucosal IgA responses, as well as strong cellular immune responses in the vaccinated chickens. Importantly, intranasal immunization with L. lactis-HA + LTB could provide 100% protection against H5N1 virus challenge. Taken together, these results suggest that intranasal immunization with L. lactis-HA + LTB can be considered as an effective approach for preventing and controlling infection of H5N1 virus in poultry during an avian influenza A/H5N1 pandemic. PMID:24861477

  8. Reduced experimental infectivity and transmissibility of intercontinental H5 (H5N8 and H5N2) compared to Eurasian H5N1 highly pathogenic avian influenza viruses for chickens, turkeys, and Japanese quail

    Technology Transfer Automated Retrieval System (TEKTRAN)

    H5N1 high pathogenicity avian influenza (HPAI) virus (HPAIV) emerged in 1996 in Guangdong China and has since spread to infect and cause deaths in wild birds, poultry and humans in over 63 countries in Asia, Europe and Africa; and more recently a reassortant H5N8 clade 2.3.4.4 HPAI virus has spread ...

  9. Evaluation of the U.S. Department of Agriculture's egg pasteurization processes on the inactivation of high pathogenicity avian influenza virus and velogenic Newcastle disease virus in processed egg products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High pathogenicity avian influenza virus (HPAIV) A/chicken/Pennsylvania/1370/1983 (H5N2), and velogenic Newcastle disease virus (vNDV) AMPV-1/California/212676/2002 were inoculated into various egg products then heat treated at various temperatures for 0 to 30 min to determine thermal inactivation p...

  10. Phylogenetic analysis of hemagglutinin and neuraminidase genes of highly pathogenic avian influenza H5N1 Egyptian strains isolated from 2006 to 2008 indicates heterogeneity with multiple distinct sublineages

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Eurasian lineage H5N1 Highly pathogenic avian influenza (HPAI) virus caused widespread outbreaks in Egypt in 2006 and eventually become enzootic in poultry. Although outbreaks have a seasonal pattern with most occurring during the cooler winter months, it remains unclear if this seasonality ref...

  11. Variation in protection of four divergent avian influenza virus vaccine seed strains against eight clade 2.2.1 and 2.2.1.1. Egyptian H5N1 high pathogenicity variants in poultry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Highly pathogenic (HP) H5N1 avian influenza virus (AIV) was introduced to Egyptian poultry in 2006 and has since become enzootic. Vaccination has been utilized as a control tool, but for a variety of reasons the disease has not been eradicated. In 2007, an antigenically divergent hemagglutinin sub-c...

  12. Antibody titer has positive predictive value for vaccine protection against challenge with natural antigenic-drift variants of H5N1 high-pathogenicity avian influenza viruses from Indonesia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Beginning with Hong Kong in 2002, vaccines have been used as part of an integrated control strategy in 14 countries/regions to protect poultry against H5N1 high pathogenicity avian influenza (HPAI). H5N1 HPAI was first reported in Indonesia in 2003 and vaccination was initiated the following year. ...

  13. Comparative efficacy of North American and antigenically matched reverse genetics derived H5N9 DIVA marker vaccines against highly pathogenic Asian H5N1 avian influenza in chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Highly pathogenic (HP) H5N1 avian influenza has become endemic in several countries in Asia and Africa, and vaccination is being widely used as a control tool. However, there is a need for efficacious vaccines preferably utilizing a DIVA (differentiate infected from vaccinated animals) marker strat...

  14. Efficacy of a recombinant turkey herpesvirus H5 vaccine against challenge with H5N1 clades 1.1.2 and 2.3.2.1 highly pathogenic avian influenza viruses in domestic ducks (Anas platyrhynchos domesticus)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Goose/Guangdong (Gs/GD)-lineage H5N1 highly pathogenic avian influenza (HPAI) viruses continue to circulate and cause great economic losses in poultry in Asia, the Middle East, and Africa. Recently, the Gs/GD-lineage H5N8 HPAI virus belonging to clade 2.3.4.4 and its reassortants have caused out...

  15. Transmission of H5N1 high pathogenicity avian influenza virus to Herring gulls (Larus argentatus) through intranasal inoculation of virus and ingestion of virus-infected chicken meat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In order to evaluate the susceptibility of herring gulls (Larus argentatus) to H5N1 highly pathogenic avian influenza (HPAI) virus under natural routes of infection, we exposed gulls to two Asian lineage H5N1 HPAI viruses (A/whooper swan/Mongolia/244/05 and A/duck meat/Anyang/AVL-1/01) via intranasa...

  16. Experimental infection of bar-headed geese (Anser indicus) and ruddy shelducks (Tadorna ferruginea) with a clade 2.3.2 H5N1 highly pathogenic avian influenza virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Since 2005, clade 2.2 H5N1 highly pathogenic avian influenza (HPAI) viruses have caused infections and disease involving numerous species of wild waterfowl in Eurasia and Africa. However, outbreaks associated with clade 2.3.2 viruses have increased since 2009, and viruses within this clade have beco...

  17. Range-wide genetic population structure of common pochard (Aythya ferina): a potentially important vector of highly pathogenic avian influenza viruses

    PubMed Central

    Liu, Yang; Keller, Irene; Heckel, Gerald

    2011-01-01

    An understanding of the distribution and spatial structure of the natural vectors of zoonothic pathogens is of interest for effective disease control and prevention. Here, we investigate the range-wide population genetic structure of common pochard (Aythya ferina), a long-distance migratory duck and potential vector of highly pathogenic avian influenza. We collected several hundred samples from breeding and wintering grounds across Eurasia including some H5N1-positive individuals and generated partial sequences of the mitochondrial control region and multilocus microsatellite genotypes. Genetic differentiation among breeding populations was significant for both marker types but higher for maternally inherited mtDNA than for biparentally inherited nuclear markers. There was only weak genetic divergence between ducks sampled in Europe and East Asia, and genetic differentiation between populations was not generally associated with geographical distance. No evidence of genetic substructure was detected for ducks sampled on the European wintering grounds. Our results suggest limited breeding-site fidelity, especially in females, but extensive population admixture on the wintering grounds. The specific role of pochards as natural vectors of zoonotic pathogens and in particular H5N1 remains to be clarified but our results point to wintering grounds as potential hotspots for disease transmission. PMID:22393520

  18. Range-wide genetic population structure of common pochard (Aythya ferina): a potentially important vector of highly pathogenic avian influenza viruses.

    PubMed

    Liu, Yang; Keller, Irene; Heckel, Gerald

    2011-12-01

    An understanding of the distribution and spatial structure of the natural vectors of zoonothic pathogens is of interest for effective disease control and prevention. Here, we investigate the range-wide population genetic structure of common pochard (Aythya ferina), a long-distance migratory duck and potential vector of highly pathogenic avian influenza. We collected several hundred samples from breeding and wintering grounds across Eurasia including some H5N1-positive individuals and generated partial sequences of the mitochondrial control region and multilocus microsatellite genotypes. Genetic differentiation among breeding populations was significant for both marker types but higher for maternally inherited mtDNA than for biparentally inherited nuclear markers. There was only weak genetic divergence between ducks sampled in Europe and East Asia, and genetic differentiation between populations was not generally associated with geographical distance. No evidence of genetic substructure was detected for ducks sampled on the European wintering grounds. Our results suggest limited breeding-site fidelity, especially in females, but extensive population admixture on the wintering grounds. The specific role of pochards as natural vectors of zoonotic pathogens and in particular H5N1 remains to be clarified but our results point to wintering grounds as potential hotspots for disease transmission. PMID:22393520

  19. Immunization of Chickens with Newcastle Disease Virus Expressing H5 Hemagglutinin Protects against Highly Pathogenic H5N1 Avian Influenza Viruses

    PubMed Central

    Nayak, Baibaswata; Rout, Subrat N.; Kumar, Sachin; Khalil, Mohammed S.; Fouda, Moustafa M.; Ahmed, Luay E.; Earhart, Kenneth C.; Perez, Daniel R.; Collins, Peter L.; Samal, Siba K.

    2009-01-01

    Background Highly-pathogenic avian influenza virus (HPAIV) and Newcastle disease virus (NDV) are the two most important poultry viruses in the world. Natural low-virulence NDV strains have been used as vaccines over the past 70 years with proven track records. We have previously developed a reverse genetics system to produce low-virulent NDV vaccine strain LaSota from cloned cDNA. This system allows us to use NDV as a vaccine vector for other avian pathogens. Methodology/Principal Finding Here, we constructed two recombinant NDVs (rNDVs) each of which expresses the hemagglutinin (HA) gene of HPAIV H5N1strain A/Vietnam/1203/2004 from an added gene. In one, rNDV (rNDV-HA), the open reading frame (ORF) of HA gene was expressed without modification. In the second, rNDV (rNDV-HAF), the ORF was modified so that the transmembrane and cytoplasmic domains of the encoded HA gene were replaced with those of the NDV F protein. The insertion of either version of the HA ORF did not increase the virulence of the rNDV vector. The HA protein was found to be incorporated into the envelopes of both rNDV-HA and rNDV-HAF. However, there was an enhanced incorporation of the HA protein in rNDV-HAF. Chickens immunized with a single dose of either rNDV-HA or rNDV-HAF induced a high titer of HPAIV H5-specific antibodies and were completely protected against challenge with NDV as well as lethal challenges of both homologous and heterologous HPAIV H5N1. Conclusion and Significance Our results suggest that these chimeric viruses have potential as safe and effective bivalent vaccines against NDV and. HPAIV. These vaccines will be convenient and affordable, which will be highly beneficial to the poultry industry. Furthermore, immunization with these vaccines will permit serological differentiation of vaccinated and avian influenza field virus infected animals. PMID:19654873

  20. The Neuraminidase Stalk Deletion Serves as Major Virulence Determinant of H5N1 Highly Pathogenic Avian Influenza Viruses in Chicken.

    PubMed

    Stech, Olga; Veits, Jutta; Abdelwhab, El-Sayed M; Wessels, Ute; Mettenleiter, Thomas C; Stech, Jürgen

    2015-01-01

    Highly pathogenic avian influenza viruses (HPAIV) cause devastating losses in gallinaceous poultry world-wide and raised concerns of a novel pandemic. HPAIV develop from low-pathogenic precursors by acquisition of a polybasic HA cleavage site (HACS), the prime virulence determinant. Beside that HACS, other adaptive changes accumulate in those precursors prior to transformation into an HPAIV. Here, we aimed to unravel such virulence determinants in addition to the HA gene. Stepwise reduction of HPAIV genes revealed that the HPAIV HA and NA form a minimum set of virulence determinants, sufficient for a lethal phenotype in chicken. Abolishing the NA stalk deletion considerably reduced lethality and prevented transmission. Conversely, the analogous stalk deletion reconstructed in the NA of an LPAIV reassortant carrying only the HPAIV HA resulted in 100% lethality both after primary and contact infection. Remarkably, the unmodified LPAIV NA with its long stalk, when exclusively introduced into the H5N1 HPAIV, still enabled high virulence and efficient transmission. Therefore, irrespective of an NA stalk deletion, minor virulence determinants in addition to the essential polybasic HACS contribute to high virulence, whereas the NA stalk deletion alone may serve as major virulence determinant. PMID:26306544

  1. The Neuraminidase Stalk Deletion Serves as Major Virulence Determinant of H5N1 Highly Pathogenic Avian Influenza Viruses in Chicken

    PubMed Central

    Stech, Olga; Veits, Jutta; Abdelwhab, El-Sayed M.; Wessels, Ute; Mettenleiter, Thomas C.; Stech, Jürgen

    2015-01-01

    Highly pathogenic avian influenza viruses (HPAIV) cause devastating losses in gallinaceous poultry world-wide and raised concerns of a novel pandemic. HPAIV develop from low-pathogenic precursors by acquisition of a polybasic HA cleavage site (HACS), the prime virulence determinant. Beside that HACS, other adaptive changes accumulate in those precursors prior to transformation into an HPAIV. Here, we aimed to unravel such virulence determinants in addition to the HA gene. Stepwise reduction of HPAIV genes revealed that the HPAIV HA and NA form a minimum set of virulence determinants, sufficient for a lethal phenotype in chicken. Abolishing the NA stalk deletion considerably reduced lethality and prevented transmission. Conversely, the analogous stalk deletion reconstructed in the NA of an LPAIV reassortant carrying only the HPAIV HA resulted in 100% lethality both after primary and contact infection. Remarkably, the unmodified LPAIV NA with its long stalk, when exclusively introduced into the H5N1 HPAIV, still enabled high virulence and efficient transmission. Therefore, irrespective of an NA stalk deletion, minor virulence determinants in addition to the essential polybasic HACS contribute to high virulence, whereas the NA stalk deletion alone may serve as major virulence determinant. PMID:26306544

  2. Previous infection with a mesogenic strain of Newcastle disease virus affects infection with highly pathogenic avian influenza viruses in chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza virus (AIV) and Newcastle disease virus (NDV) are two of the most important viruses affecting poultry worldwide, but little is known on the interactions between these two viruses when infecting birds. In a previous study we found that infection of chickens with a mesogenic strain of...

  3. Characterization of low pathogenicity H5N1 avian influenza viruses from North America

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wild bird surveillance in North America for avian influenza (AI) viruses with a goal of early identification of the Asian H5N1 highly pathogenic AI virus has identified at least six low pathogenic H5N1 AI viruses between 2004 and 2006. The hemagglutinin (HA) and neuraminidase (NA) genes from all 6 ...

  4. Pathogenesis and Transmission of Novel Highly Pathogenic Avian Influenza H5N2 and H5N8 Viruses in Ferrets and Mice

    PubMed Central

    Pulit-Penaloza, Joanna A.; Sun, Xiangjie; Creager, Hannah M.; Zeng, Hui; Belser, Jessica A.; Maines, Taronna R.

    2015-01-01

    ABSTRACT A novel highly pathogenic avian influenza (HPAI) H5N8 virus, first detected in January 2014 in poultry and wild birds in South Korea, has spread throughout Asia and Europe and caused outbreaks in Canada and the United States by the end of the year. The spread of H5N8 and the novel reassortant viruses, H5N2 and H5N1 (H5Nx), in domestic poultry across multiple states in the United States pose a potential public health risk. To evaluate the potential of cross-species infection, we determined the pathogenicity and transmissibility of two Asian-origin H5Nx viruses in mammalian animal models. The newly isolated H5N2 and H5N8 viruses were able to cause severe disease in mice only at high doses. Both viruses replicated efficiently in the upper and lower respiratory tracts of ferrets; however, the clinical symptoms were generally mild, and there was no evidence of systemic dissemination of virus to multiple organs. Moreover, these influenza H5Nx viruses lacked the ability to transmit between ferrets in a direct contact setting. We further assessed viral replication kinetics of the novel H5Nx viruses in a human bronchial epithelium cell line, Calu-3. Both H5Nx viruses replicated to a level comparable to a human seasonal H1N1 virus, but significantly lower than a virulent Asian-lineage H5N1 HPAI virus. Although the recently isolated H5N2 and H5N8 viruses displayed moderate pathogenicity in mammalian models, their ability to rapidly spread among avian species, reassort, and generate novel strains underscores the need for continued risk assessment in mammals. IMPORTANCE In 2015, highly pathogenic avian influenza (HPAI) H5 viruses have caused outbreaks in domestic poultry in multiple U.S. states. The economic losses incurred with H5N8 and H5N2 subtype virus infection have raised serious concerns for the poultry industry and the general public due to the potential risk of human infection. This recent outbreak underscores the need to better understand the pathogenesis and

  5. Experimental infection with low and high pathogenicity H7N3 Chilean avian influenza viruses in Chiloe wigeon (Anas sibilatrix) and cinnamon teal (Anas cyanoptera).

    PubMed

    Sá e Silva, Mariana; Mathieu-Benson, Christian; Kwon, Yong-Kuk; Pantin-Jackwood, Mary; Swayne, David E

    2011-09-01

    Two different wild duck species common in Chile and neighboring countries, Chiloe wigeon (Anas sibilatrix) and cinnamon teal (Anas cyanoptera), were intranasally inoculated with 10(6) mean embryo infective dose (EID50) of the H7N3 low pathogenicity (LP) avian influenza virus (AIV) (A/chicken/Chile/176822/02) or high pathogenicity (HP) AIV (A/chicken/Chile/ 184240-1/02), in order to study the infectivity and pathobiology of these viruses. None of the virus-inoculated ducks had clinical signs or died, but most seroconverted by 14 days postinoculation (DPI), indicating a productive virus infection. Both LPAIV and HPAIV were isolated from oral swabs from two of six Chiloe wigeons and from oral and/or cloacal swabs from all five of the cinnamon teal at 2 DPI. Both LPAIV and HPAIV were efficiently transmitted to cinnamon teal contacts but not to Chiloe wigeon contacts. This study demonstrates that the cinnamon teal and Chiloe wigeons were susceptible to infection with both Chilean H7N3 LPAIV and HPAIV, but only the cinnamon teal showed contact transmission of the virus between birds, suggesting that the cinnamon teal has the potential to be a reservoir for these viruses, especially the LPAIV, as was demonstrated in 2001 with isolation of a genetically related H7N3 LPAIV strain in a cinnamon teal in Bolivia. However, the definitive source of the H7N3 Chilean LPAIV still remains unknown. PMID:22017047

  6. Susceptibility to and transmission of H5N1 and H7N1 highly pathogenic avian influenza viruses in bank voles (Myodes glareolus).

    PubMed

    Romero Tejeda, Aurora; Aiello, Roberta; Salomoni, Angela; Berton, Valeria; Vascellari, Marta; Cattoli, Giovanni

    2015-01-01

    The study of influenza type A (IA) infections in wild mammals populations is a critical gap in our knowledge of how IA viruses evolve in novel hosts that could be in close contact with avian reservoir species and other wild animals. The aim of this study was to evaluate the susceptibility to infection, the nasal shedding and the transmissibility of the H7N1 and H5N1 highly pathogenic avian influenza (HPAI) viruses in the bank vole (Myodes glareolus), a wild rodent common throughout Europe and Asia. Two out of 24 H5N1-infected voles displayed evident respiratory distress, while H7N1-infected voles remained asymptomatic. Viable virus was isolated from nasal washes collected from animals infected with both HPAI viruses, and extra-pulmonary infection was confirmed in both experimental groups. Histopathological lesions were evident in the respiratory tract of infected animals, although immunohistochemistry positivity was only detected in lungs and trachea of two H7N1-infected voles. Both HPAI viruses were transmitted by direct contact, and seroconversion was confirmed in 50% and 12.5% of the asymptomatic sentinels in the H7N1 and H5N1 groups, respectively. Interestingly, viable virus was isolated from lungs and nasal washes collected from contact sentinels of both groups. The present study demonstrated that two non-rodent adapted HPAI viruses caused asymptomatic infection in bank voles, which shed high amounts of the viruses and were able to infect contact voles. Further investigations are needed to determine whether bank voles could be involved as silent hosts in the transmission of HPAI viruses to other mammals and domestic poultry. PMID:25963535

  7. Neuroinvasion of the Highly Pathogenic Influenza Virus H7N1 Is Caused by Disruption of the Blood Brain Barrier in an Avian Model

    PubMed Central

    Chaves, Aida J.; Vergara-Alert, Júlia; Busquets, Núria; Valle, Rosa; Rivas, Raquel; Ramis, Antonio; Darji, Ayub; Majó, Natàlia

    2014-01-01

    Influenza A virus (IAV) causes central nervous system (CNS) lesions in avian and mammalian species, including humans. However, the mechanism used by IAV to invade the brain has not been determined. In the current work, we used chickens infected with a highly pathogenic avian influenza (HPAI) virus as a model to elucidate the mechanism of entry of IAV into the brain. The permeability of the BBB was evaluated in fifteen-day-old H7N1-infected and non-infected chickens using three different methods: (i) detecting Evans blue (EB) extravasation into the brain, (ii) determining the leakage of the serum protein immunoglobulin Y (IgY) into the brain and (iii) assessing the stability of the tight-junction (TJ) proteins zonula occludens-1 and claudin-1 in the chicken brain at 6, 12, 18, 24, 36 and 48 hours post-inoculation (hpi). The onset of the induced viremia was evaluated by quantitative real time RT-PCR (RT-qPCR) at the same time points. Viral RNA was detected from 18 hpi onward in blood samples, whereas IAV antigen was detected at 24 hpi in brain tissue samples. EB and IgY extravasation and loss of integrity of the TJs associated with the presence of viral antigen was first observed at 36 and 48 hpi in the telencephalic pallium and cerebellum. Our data suggest that the mechanism of entry of the H7N1 HPAI into the brain includes infection of the endothelial cells at early stages (24 hpi) with subsequent disruption of the TJs of the BBB and leakage of virus and serum proteins into the adjacent neuroparenchyma. PMID:25506836

  8. Serological Evidence for Non-Lethal Exposures of Mongolian Wild Birds to Highly Pathogenic Avian Influenza H5N1 Virus

    PubMed Central

    Gilbert, Martin; Koel, Björn F.; Bestebroer, Theo M.; Lewis, Nicola S.; Smith, Derek J.; Fouchier, Ron A. M.

    2014-01-01

    Surveillance for highly pathogenic avian influenza viruses (HPAIV) in wild birds is logistically demanding due to the very low rates of virus detection. Serological approaches may be more cost effective as they require smaller sample sizes to identify exposed populations. We hypothesized that antigenic differences between classical Eurasian H5 subtype viruses (which have low pathogenicity in chickens) and H5N1 viruses of the Goose/Guangdong/96 H5 lineage (which are HPAIV) may be used to differentiate populations where HPAIVs have been circulating, from those where they have not. To test this we performed hemagglutination inhibition assays to compare the reactivity of serum samples from wild birds in Mongolia (where HPAIV has been circulating, n = 1,832) and Europe (where HPAIV has been rare or absent, n = 497) to a panel of reference viruses including classical Eurasian H5 (of low pathogenicity), and five HPAIV H5N1 antigens of the Asian lineage A/Goose/Guangdong/1/96. Antibody titres were detected against at least one of the test antigens for 182 Mongolian serum samples (total seroprevalence of 0.10, n = 1,832, 95% adjusted Wald confidence limits of 0.09–0.11) and 25 of the European sera tested (total seroprevalence of 0.05, n = 497, 95% adjusted Wald confidence limits of 0.03–0.07). A bias in antibody titres to HPAIV antigens was found in the Mongolian sample set (22/182) that was absent in the European sera (0/25). Although the interpretation of serological data from wild birds is complicated by the possibility of exposure to multiple strains, and variability in the timing of exposure, these findings suggest that a proportion of the Mongolian population had survived exposure to HPAIV, and that serological assays may enhance the targeting of traditional HPAIV surveillance toward populations where isolation of HPAIV is more likely. PMID:25502318

  9. PDlim2 Selectively Interacts with the PDZ Binding Motif of Highly Pathogenic Avian H5N1 Influenza A Virus NS1

    PubMed Central

    Wang, Yu; Li, Bo; Li, Hongyue; Li, Yapeng; Zhou, Weihong; Zhang, Cuizhu; Wang, Yingying; Rao, Zihe; Bartlam, Mark; Cao, Youjia

    2011-01-01

    The multi-functional NS1 protein of influenza A virus is a viral virulence determining factor. The last four residues at the C-terminus of NS1 constitute a type I PDZ domain binding motif (PBM). Avian influenza viruses currently in circulation carry an NS1 PBM with consensus sequence ESEV, whereas human influenza viruses bear an NS1 PBM with consensus sequence RSKV or RSEV. The PBM sequence of the influenza A virus NS1 is reported to contribute to high viral pathogenicity in animal studies. Here, we report the identification of PDlim2 as a novel binding target of the highly pathogenic avian influenza virus H5N1 strain with an NS1 PBM of ESEV (A/Chicken/Henan/12/2004/H5N1, HN12-NS1) by yeast two-hybrid screening. The interaction was confirmed by in vitro GST pull-down assays, as well as by in vivo mammalian two-hybrid assays and bimolecular fluorescence complementation assays. The binding was also confirmed to be mediated by the interaction of the PDlim2 PDZ domain with the NS1 PBM motif. Interestingly, our assays showed that PDlim2 bound specifically with HN12-NS1, but exhibited no binding to NS1 from a human influenza H1N1 virus bearing an RSEV PBM (A/Puerto Rico/8/34/H1N1, PR8-NS1). A crystal structure of the PDlim2 PDZ domain fused with the C-terminal hexapeptide from HN12-NS1, together with GST pull-down assays on PDlim2 mutants, reveals that residues Arg16 and Lys31 of PDlim2 are critical for the binding between PDlim2 and HN12-NS1. The identification of a selective binding target of HN12-NS1 (ESEV), but not PR8-NS1 (RSEV), enables us to propose a structural mechanism for the interaction between NS1 PBM and PDlim2 or other PDZ-containing proteins. PMID:21625420

  10. Short-Term Heat Shock Affects Host–Virus Interaction in Mice Infected with Highly Pathogenic Avian Influenza Virus H5N1

    PubMed Central

    Xue, Jia; Fan, Xiaoxu; Yu, Jing; Zhang, Shouping; Xiao, Jin; Hu, Yanxin; Wang, Ming

    2016-01-01

    Highly pathogenic avian influenza virus (HPAIV) H5N1 is a highly contagious virus that can cause acute respiratory infections and high human fatality ratio due to excessive inflammatory response. Short-term heat shock, as a stressful condition, could induce the expression of heat shock proteins that function as molecular chaperones to protect cells against multiple stresses. However, the protective effect of short-term heat shock in influenza infection is far from being understood. In this study, mice were treated at 39°C for 4 h before being infected with HPAIV H5N1. Interestingly, short-term heat shock significantly increased the levels of HSP70 and pro-inflammatory cytokines IL-6, TNF-α, IFN-β, and IFN-γ in the lung tissues of mice. Following HPAIV H5N1 infection, short-term heat shock alleviated immunopathology and viral replication in lung tissue and repressed the weight loss and increased the survival rate of H5N1-infected mice. Our data reported that short-term heat shock provided beneficial anti-HPAIV H5N1 properties in mice model, which offers an alternative strategy for non-drug prevention for influenza infection. PMID:27379054

  11. A human antibody recognizing a conserved epitope of H5 hemagglutinin broadly neutralizes highly pathogenic avian influenza H5N1 viruses.

    PubMed

    Hu, Hongxing; Voss, Jarrod; Zhang, Guoliang; Buchy, Philippi; Zuo, Teng; Wang, Lulan; Wang, Feng; Zhou, Fan; Wang, Guiqing; Tsai, Cheguo; Calder, Lesley; Gamblin, Steve J; Zhang, Linqi; Deubel, Vincent; Zhou, Boping; Skehel, John J; Zhou, Paul

    2012-03-01

    Influenza A virus infection is a persistent threat to public health worldwide due to its ability to evade immune surveillance through rapid genetic drift and shift. Current vaccines against influenza A virus provide immunity to viral isolates that are similar to vaccine strains. High-affinity neutralizing antibodies against conserved epitopes could provide immunity to diverse influenza virus strains and protection against future pandemic viruses. In this study, by using a highly sensitive H5N1 pseudotype-based neutralization assay to screen human monoclonal antibodies produced by memory B cells from an H5N1-infected individual and molecular cloning techniques, we developed three fully human monoclonal antibodies. Among them, antibody 65C6 exhibited potent neutralization activity against all H5 clades and subclades except for subclade 7.2 and prophylactic and therapeutic efficacy against highly pathogenic avian influenza H5N1 viruses in mice. Studies on hemagglutinin (HA)-antibody complexes by electron microscopy and epitope mapping indicate that antibody 65C6 binds to a conformational epitope comprising amino acid residues at positions 118, 121, 161, 164, and 167 (according to mature H5 numbering) on the tip of the membrane-distal globular domain of HA. Thus, we conclude that antibody 65C6 recognizes a neutralization epitope in the globular head of HA that is conserved among almost all divergent H5N1 influenza stains. PMID:22238297

  12. Potential spread of highly pathogenic avian influenza H5N1 by wildfowl: dispersal ranges and rates determined from large-scale satellite telemetry

    USGS Publications Warehouse

    Gaidet, Nicolas; Cappelle, Julien; Takekawa, John Y.; Prosser, Diann J.; Iverson, Samuel A.; Douglas, David C.; Perry, William M.; Mundkur, Taej; Newman, Scott H.

    2010-01-01

    1. Migratory birds are major candidates for long-distance dispersal of zoonotic pathogens. In recent years, wildfowl have been suspected of contributing to the rapid geographic spread of the highly pathogenic avian influenza (HPAI) H5N1 virus. Experimental infection studies reveal that some wild ducks, geese and swans shed this virus asymptomatically and hence have the potential to spread it as they move. 2. We evaluate the dispersive potential of HPAI H5N1 viruses by wildfowl through an analysis of the movement range and movement rate of birds monitored by satellite telemetry in relation to the apparent asymptomatic infection duration (AID) measured in experimental studies. We analysed the first large-scale data set of wildfowl movements, including 228 birds from 19 species monitored by satellite telemetry in 2006–2009, over HPAI H5N1 affected regions of Asia, Europe and Africa. 3. Our results indicate that individual migratory wildfowl have the potential to disperse HPAI H5N1 over extensive distances, being able to perform movements of up to 2900 km within timeframes compatible with the duration of asymptomatic infection. 4. However, the likelihood of such virus dispersal over long distances by individual wildfowl is low: we estimate that for an individual migratory bird there are, on average, only 5–15 days per year when infection could result in the dispersal of HPAI H5N1 virus over 500 km. 5. Staging at stopover sites during migration is typically longer than the period of infection and viral shedding, preventing birds from dispersing a virus over several consecutive but interrupted long-distance movements. Intercontinental virus dispersion would therefore probably require relay transmission between a series of successively infected migratory birds. 6. Synthesis and applications. Our results provide a detailed quantitative assessment of the dispersive potential of HPAI H5N1 virus by selected migratory birds. Such dispersive potential rests on the

  13. Quantitative Estimation of the Number of Contaminated Hatching Eggs Released from an Infected, Undetected Turkey Breeder Hen Flock During a Highly Pathogenic Avian Influenza Outbreak.

    PubMed

    Malladi, Sasidhar; Weaver, J Todd; Alexander, Catherine Y; Middleton, Jamie L; Goldsmith, Timothy J; Snider, Timothy; Tilley, Becky J; Gonder, Eric; Hermes, David R; Halvorson, David A

    2015-09-01

    The regulatory response to an outbreak of highly pathogenic avian influenza (HPAI) in the United States may involve quarantine and stop movement orders that have the potential to disrupt continuity of operations in the U.S. turkey industry--particularly in the event that an uninfected breeder flock is located within an HPAI Control Area. A group of government-academic-industry leaders developed an approach to minimize the unintended consequences associated with outbreak response, which incorporates HPAI control measures to be implemented prior to moving hatching eggs off of the farm. Quantitative simulation models were used to evaluate the movement of potentially contaminated hatching eggs from a breeder henhouse located in an HPAI Control Area, given that active surveillance testing, elevated biosecurity, and a 2-day on-farm holding period were employed. The risk analysis included scenarios of HPAI viruses differing in characteristics as well as scenarios in which infection resulted from artificial insemination. The mean model-predicted number of internally contaminated hatching eggs released per movement from an HPAI-infected turkey breeder henhouse ranged from 0 to 0.008 under the four scenarios evaluated. The results indicate a 95% chance of no internally contaminated eggs being present per movement from an infected house before detection. Sensitivity analysis indicates that these results are robust to variation in key transmission model parameters within the range of their estimates from available literature. Infectious birds at the time of egg collection are a potential pathway of external contamination for eggs stored and then moved off of the farm; the predicted number of such infectious birds was estimated to be low. To date, there has been no evidence of vertical transmission of HPAI virus or low pathogenic avian influenza virus to day-old poults from hatching eggs originating from infected breeders. The application of risk analysis methods was beneficial

  14. Southward autumn migration of waterfowl facilitates cross-continental transmission of the highly pathogenic avian influenza H5N1 virus.

    PubMed

    Xu, Yanjie; Gong, Peng; Wielstra, Ben; Si, Yali

    2016-01-01

    The highly pathogenic avian influenza subtype H5N1 (HPAI H5N1) is a worldwide zoonotic infectious disease, threatening humans, poultry and wild birds. The role of wild birds in the spread of HPAI H5N1 has previously been investigated by comparing disease spread patterns with bird migration routes. However, the different roles that the southward autumn and northward spring migration might play in virus transmission have hardly been explored. Using direction analysis, we analyze HPAI H5N1 transmission directions and angular concentration of currently circulating viral clades, and compare these with waterfowl seasonal migration directions along major waterfowl flyways. Out of 22 HPAI H5N1 transmission directions, 18 had both a southward direction and a relatively high concentration. Differences between disease transmission and waterfowl migration directions were significantly smaller for autumn than for spring migration. The four northward transmission directions were found along Asian flyways, where the initial epicenter of the virus was located. We suggest waterfowl first picked up the virus from East Asia, then brought it to the north via spring migration, and then spread it to other parts of world mainly by autumn migration. We emphasize waterfowl autumn migration plays a relatively important role in HPAI H5N1 transmission compared to spring migration. PMID:27507581

  15. Quantitative assessment of a spatial multicriteria model for highly pathogenic avian influenza H5N1 in Thailand, and application in Cambodia

    PubMed Central

    Paul, Mathilde C.; Goutard, Flavie L.; Roulleau, Floriane; Holl, Davun; Thanapongtharm, Weerapong; Roger, François L.; Tran, Annelise

    2016-01-01

    The Highly Pathogenic Avian Influenza H5N1 (HPAI) virus is now considered endemic in several Asian countries. In Cambodia, the virus has been circulating in the poultry population since 2004, with a dramatic effect on farmers’ livelihoods and public health. In Thailand, surveillance and control are still important to prevent any new H5N1 incursion. Risk mapping can contribute effectively to disease surveillance and control systems, but is a very challenging task in the absence of reliable disease data. In this work, we used spatial multicriteria decision analysis (MCDA) to produce risk maps for HPAI H5N1 in poultry. We aimed to i) evaluate the performance of the MCDA approach to predict areas suitable for H5N1 based on a dataset from Thailand, comparing the predictive capacities of two sources of a priori knowledge (literature and experts), and ii) apply the best method to produce a risk map for H5N1 in poultry in Cambodia. Our results showed that the expert-based model had a very high predictive capacity in Thailand (AUC = 0.97). Applied in Cambodia, MCDA mapping made it possible to identify hotspots suitable for HPAI H5N1 in the Tonlé Sap watershed, around the cities of Battambang and Kampong Cham, and along the Vietnamese border. PMID:27489997

  16. Role of vaccination-induced immunity and antigenic distance in the transmission dynamics of highly pathogenic avian influenza H5N1.

    PubMed

    Sitaras, Ioannis; Rousou, Xanthoula; Kalthoff, Donata; Beer, Martin; Peeters, Ben; de Jong, Mart C M

    2016-01-01

    Highly pathogenic avian influenza (HPAI) H5N1 epidemics in poultry cause huge economic losses as well as sporadic human morbidity and mortality. Vaccination in poultry has often been reported as being ineffective in preventing transmission and as a potential driving force in the selection of immune escape mutants. We conducted transmission experiments to evaluate the transmission dynamics of HPAI H5N1 strains in chickens vaccinated with high and low doses of immune escape mutants we have previously selected, and analysed the data using mathematical models. Remarkably, we demonstrate that the effect of antigenic distances between the vaccine and challenge strains used in this study is too small to influence the transmission dynamics of the strains used. This is because the effect of a sufficient vaccine dose on antibody levels against the challenge viruses is large enough to compensate for any decrease in antibody titres due to antigenic differences between vaccine and challenge strains. Our results show that at least under experimental conditions, vaccination will remain effective even after antigenic changes as may be caused by the initial selection in vaccinated birds. PMID:26763336

  17. Quantitative assessment of a spatial multicriteria model for highly pathogenic avian influenza H5N1 in Thailand, and application in Cambodia.

    PubMed

    Paul, Mathilde C; Goutard, Flavie L; Roulleau, Floriane; Holl, Davun; Thanapongtharm, Weerapong; Roger, François L; Tran, Annelise

    2016-01-01

    The Highly Pathogenic Avian Influenza H5N1 (HPAI) virus is now considered endemic in several Asian countries. In Cambodia, the virus has been circulating in the poultry population since 2004, with a dramatic effect on farmers' livelihoods and public health. In Thailand, surveillance and control are still important to prevent any new H5N1 incursion. Risk mapping can contribute effectively to disease surveillance and control systems, but is a very challenging task in the absence of reliable disease data. In this work, we used spatial multicriteria decision analysis (MCDA) to produce risk maps for HPAI H5N1 in poultry. We aimed to i) evaluate the performance of the MCDA approach to predict areas suitable for H5N1 based on a dataset from Thailand, comparing the predictive capacities of two sources of a priori knowledge (literature and experts), and ii) apply the best method to produce a risk map for H5N1 in poultry in Cambodia. Our results showed that the expert-based model had a very high predictive capacity in Thailand (AUC = 0.97). Applied in Cambodia, MCDA mapping made it possible to identify hotspots suitable for HPAI H5N1 in the Tonlé Sap watershed, around the cities of Battambang and Kampong Cham, and along the Vietnamese border. PMID:27489997

  18. Southward autumn migration of waterfowl facilitates cross-continental transmission of the highly pathogenic avian influenza H5N1 virus

    NASA Astrophysics Data System (ADS)

    Xu, Yanjie; Gong, Peng; Wielstra, Ben; Si, Yali

    2016-08-01

    The highly pathogenic avian influenza subtype H5N1 (HPAI H5N1) is a worldwide zoonotic infectious disease, threatening humans, poultry and wild birds. The role of wild birds in the spread of HPAI H5N1 has previously been investigated by comparing disease spread patterns with bird migration routes. However, the different roles that the southward autumn and northward spring migration might play in virus transmission have hardly been explored. Using direction analysis, we analyze HPAI H5N1 transmission directions and angular concentration of currently circulating viral clades, and compare these with waterfowl seasonal migration directions along major waterfowl flyways. Out of 22 HPAI H5N1 transmission directions, 18 had both a southward direction and a relatively high concentration. Differences between disease transmission and waterfowl migration directions were significantly smaller for autumn than for spring migration. The four northward transmission directions were found along Asian flyways, where the initial epicenter of the virus was located. We suggest waterfowl first picked up the virus from East Asia, then brought it to the north via spring migration, and then spread it to other parts of world mainly by autumn migration. We emphasize waterfowl autumn migration plays a relatively important role in HPAI H5N1 transmission compared to spring migration.

  19. Southward autumn migration of waterfowl facilitates cross-continental transmission of the highly pathogenic avian influenza H5N1 virus

    PubMed Central

    Xu, Yanjie; Gong, Peng; Wielstra, Ben; Si, Yali

    2016-01-01

    The highly pathogenic avian influenza subtype H5N1 (HPAI H5N1) is a worldwide zoonotic infectious disease, threatening humans, poultry and wild birds. The role of wild birds in the spread of HPAI H5N1 has previously been investigated by comparing disease spread patterns with bird migration routes. However, the different roles that the southward autumn and northward spring migration might play in virus transmission have hardly been explored. Using direction analysis, we analyze HPAI H5N1 transmission directions and angular concentration of currently circulating viral clades, and compare these with waterfowl seasonal migration directions along major waterfowl flyways. Out of 22 HPAI H5N1 transmission directions, 18 had both a southward direction and a relatively high concentration. Differences between disease transmission and waterfowl migration directions were significantly smaller for autumn than for spring migration. The four northward transmission directions were found along Asian flyways, where the initial epicenter of the virus was located. We suggest waterfowl first picked up the virus from East Asia, then brought it to the north via spring migration, and then spread it to other parts of world mainly by autumn migration. We emphasize waterfowl autumn migration plays a relatively important role in HPAI H5N1 transmission compared to spring migration. PMID:27507581

  20. Chances and Limitations of Wild Bird Monitoring for the Avian Influenza Virus H5N1 — Detection of Pathogens Highly Mobile in Time and Space

    PubMed Central

    Wilking, Hendrik; Ziller, Mario; Staubach, Christoph; Globig, Anja; Harder, Timm C.; Conraths, Franz J.

    2009-01-01

    Highly pathogenic influenza virus (HPAIV) H5N1 proved to be remarkably mobile in migratory bird populations where it has led to extensive outbreaks for which the true number of affected birds usually cannot be determined. For the evaluation of avian influenza monitoring and HPAIV early warning systems, we propose a time-series analysis that includes the estimation of confidence intervals for (i) the prevalence in outbreak situations or (ii) in the apparent absence of disease in time intervals for specified regional units. For the German outbreak regions in 2006 and 2007, the upper 95% confidence limit allowed the detection of prevalences below 1% only for certain time intervals. Although more than 25,000 birds were sampled in Germany per year, the upper 95% confidence limit did not fall below 5% in the outbreak regions for most of the time. The proposed analysis can be used to monitor water bodies and high risk areas, also as part of an early-warning system. Chances for an improved targeting of the monitoring system as part of a risk-based approach are discussed with the perspective of reducing sample sizes. PMID:19680560

  1. Experimental infection of a North American raptor, American kestrel (Falco sparverius), with highly pathogenic avian influenza virus (H5N1)

    USGS Publications Warehouse

    Hall, J.S.; Ip, H.S.; Franson, J.C.; Meteyer, C.; Nashold, S.; Teslaa, J.L.; French, J.; Redig, P.; Brand, C.

    2009-01-01

    Several species of wild raptors have been found in Eurasia infected with highly pathogenic avian influenza virus (HPAIV) subtype H5N1. Should HPAIV (H5N1) reach North America in migratory birds, species of raptors are at risk not only from environmental exposure, but also from consuming infected birds and carcasses. In this study we used American kestrels as a representative species of a North American raptor to examine the effects of HPAIV (H5N1) infection in terms of dose response, viral shedding, pathology, and survival. Our data showed that kestrels are highly susceptible to HPAIV (H5N1). All birds typically died or were euthanized due to severe neurologic disease within 4-5 days of inoculation and shed significant amounts of virus both orally and cloacally, regardless of dose administered. The most consistent microscopic lesions were necrosis in the brain and pancreas. This is the first experimental study of HPAIV infection in a North American raptor and highlights the potential risks to birds of prey if HPAIV (H5N1) is introduced into North America.

  2. Investigation into the Airborne Dissemination of H5N2 Highly Pathogenic Avian Influenza Virus During the 2015 Spring Outbreaks in the Midwestern United States.

    PubMed

    Torremorell, Montserrat; Alonso, Carmen; Davies, Peter R; Raynor, Peter C; Patnayak, Devi; Torchetti, Mia; McCluskey, Brian

    2016-09-01

    We investigated the plausibility of aerosol transmission of H5N2 highly pathogenic avian influenza (HPAI) virus during the 2015 spring outbreaks that occurred in the U.S. midwest. Air samples were collected inside and outside of infected turkey and layer facilities. Samples were tested to assess HPAI virus concentration (RNA copies/m(3) of air), virus viability, and virus distribution by particle size. HPAI virus RNA was detected inside and up to 1000 m from infected facilities. HPAI virus was isolated from air samples collected inside, immediately outside, up to 70 m from infected facilities, and in aerosol particles larger than 2.1 μm. Direct exposure to exhausted aerosols proved to be a significant source of environmental contamination. These findings demonstrate HPAI virus aerosolization from infected flocks, and that both the transport of infectious aerosolized particles and the deposition of particles on surfaces around infected premises represent a potential risk for the spread of HPAI. PMID:27610723

  3. Incursion and spread of H5N1 highly pathogenic avian influenza viruses among wild birds in 2010-11 winter in Japan.

    PubMed

    Soda, Kosuke; Ito, Hiroshi; Usui, Tatsufumi; Nagai, Yasuko; Ozaki, Hiroichi; Yamaguchi, Tsuyoshi; Ito, Toshihiro

    2013-01-01

    Many highly pathogenic avian influenza (HPAI) outbreaks occurred in Japan during the 2010-11 winter. H5N1 HPAI viruses were isolated from 63 wild birds including migrating and resident birds, and caused HPAI outbreaks in 24 chicken farms by the end of March. In the present study, all virus strains isolated from wild birds in western Japan together with the viruses in the preceding works were phylogenetically and epidemiologically analyzed. Furthermore, the virus distributions in the raptors that died of H5N1 HPAI virus infection were assessed. The virus isolates in Japan were classified into three groups by phylogenic analysis of their hemagglutinins, supporting the previous report (Sakoda et al., 2012). The viruses in each group were continuously isolated in respective limited areas, indicating that viruses were maintained in local bird populations throughout the outbreak periods. Some viruses were genetically closely related to the Korean isolates around the same periods, suggesting that migratory birds were suspected of contributing to transportation of the viruses across the sea. Viruses were recovered from systemic tissues including digestive organs of the deceased raptors, indicating that they were infected with HPAI viruses by their predatory behavior, eating infected birds or carrion in the environment. PMID:23292107

  4. Phylodynamics of H5N1 Highly Pathogenic Avian Influenza in Europe, 2005-2010: Potential for Molecular Surveillance of New Outbreaks.

    PubMed

    Alkhamis, Mohammad A; Moore, Brian R; Perez, Andres M

    2015-06-01

    Previous Bayesian phylogeographic studies of H5N1 highly pathogenic avian influenza viruses (HPAIVs) explored the origin and spread of the epidemic from China into Russia, indicating that HPAIV circulated in Russia prior to its detection there in 2005. In this study, we extend this research to explore the evolution and spread of HPAIV within Europe during the 2005-2010 epidemic, using all available sequences of the hemagglutinin (HA) and neuraminidase (NA) gene regions that were collected in Europe and Russia during the outbreak. We use discrete-trait phylodynamic models within a Bayesian statistical framework to explore the evolution of HPAIV. Our results indicate that the genetic diversity and effective population size of HPAIV peaked between mid-2005 and early 2006, followed by drastic decline in 2007, which coincides with the end of the epidemic in Europe. Our results also suggest that domestic birds were the most likely source of the spread of the virus from Russia into Europe. Additionally, estimates of viral dispersal routes indicate that Russia, Romania, and Germany were key epicenters of these outbreaks. Our study quantifies the dynamics of a major European HPAIV pandemic and substantiates the ability of phylodynamic models to improve molecular surveillance of novel AIVs. PMID:26110587

  5. Highly Pathogenic Avian Influenza Virus A/H5N1 Infection in Vaccinated Meat Duck Flocks in the Mekong Delta of Vietnam.

    PubMed

    Cuong, N V; Truc, V N T; Nhung, N T; Thanh, T T; Chieu, T T B; Hieu, T Q; Men, N T; Mai, H H; Chi, H T; Boni, M F; van Doorn, H R; Thwaites, G E; Carrique-Mas, J J; Hoa, N T

    2016-04-01

    We investigated episodes of suspected highly pathogenic avian influenza (HPAI)-like illness among 12 meat duck flocks in two districts in Tien Giang province (Mekong Delta, Vietnam) in November 2013. In total, duck samples from 8 of 12 farms tested positive for HPAI virus subtype A/haemagglutinin 5 and neuraminidase 1 (H5N1) by real-time RT-PCR. Sequencing results confirmed clade of 2.3.2.1.c as the cause of the outbreaks. Most (7/8) laboratory-confirmed positive flocks had been vaccinated with inactivated HPAI H5N1 clade 2.3.4 vaccines <6 days prior to onset of clinical signs. A review of vaccination data in relation to estimated production in the area suggested that vaccination efforts were biased towards larger flocks and that vaccination coverage was low [21.2% ducks vaccinated with two shots (range by district 7.4-34.9%)]. The low-coverage data, the experimental evidence of lack of cross-protection conferred by the currently used vaccines based on clade 2.3.4 together with the short lifespan of meat duck flocks (60-70 days), suggest that vaccination is not likely to be effective as a tool for control of H5N1 infection in meat duck flocks in the area. PMID:26748550

  6. Epidemiological and Evolutionary Inference of the Transmission Network of the 2014 Highly Pathogenic Avian Influenza H5N2 Outbreak in British Columbia, Canada

    PubMed Central

    Xu, Wanhong; Berhane, Yohannes; Dubé, Caroline; Liang, Binhua; Pasick, John; VanDomselaar, Gary; Alexandersen, Soren

    2016-01-01

    The first North American outbreak of highly pathogenic avian influenza (HPAI) involving a virus of Eurasian A/goose/Guangdong/1/1996 (H5N1) lineage began in the Fraser Valley of British Columbia, Canada in late November 2014. A total of 11 commercial and 1 non-commercial (backyard) operations were infected before the outbreak was terminated. Control measures included movement restrictions that were placed on a total of 404 individual premises, 150 of which were located within a 3 km radius of an infected premise(s) (IP). A complete epidemiological investigation revealed that the source of this HPAI H5N2 virus for 4 of the commercial IPs and the single non-commercial IP likely involved indirect contact with wild birds. Three IPs were associated with the movement of birds or service providers and localized/environmental spread was suspected as the source of infection for the remaining 4 IPs. Viral phylogenies, as determined by Bayesian Inference and Maximum Likelihood methods, were used to validate the epidemiologically inferred transmission network. The phylogenetic clustering of concatenated viral genomes and the median-joining phylogenetic network of the viruses supported, for the most part, the transmission network that was inferred by the epidemiologic analysis. PMID:27489095

  7. Flying over an infected landscape: distribution of highly pathogenic avian influenza H5N1 risk in South Asia and satellite tracking of wild waterfowl

    USGS Publications Warehouse

    Gilbert, Marius; Newman, Scott H.; Takekawa, John Y.; Loth, Leo; Biradar, Chandrashekhar; Prosser, Diann J.; Balachandran, Sivananinthaperumal; Rao, Mandava Venkata Subba; Mundkur, Taej; Yan, Baoping; Xing, Zhi; Hou, Yuansheng; Batbayar, Nyambayar; Tseveenmayadag, Natsagdorj; Hogerwerf, Lenny; Slingenbergh, Jan; Xiao, Xiangming

    2010-01-01

    Highly pathogenic avian influenza (HPAI) H5N1 virus persists in Asia, posing a threat to poultry, wild birds, and humans. Previous work in Southeast Asia demonstrated that HPAI H5N1 risk is related to domestic ducks and people. Other studies discussed the role of migratory birds in the long distance spread of HPAI H5N1. However, the interplay between local persistence and long-distance dispersal has never been studied. We expand previous geospatial risk analysis to include South and Southeast Asia, and integrate the analysis with migration data of satellite-tracked wild waterfowl along the Central Asia flyway. We find that the population of domestic duck is the main factor delineating areas at risk of HPAI H5N1 spread in domestic poultry in South Asia, and that other risk factors, such as human population and chicken density, are associated with HPAI H5N1 risk within those areas. We also find that satellite tracked birds (Ruddy Shelduck and two Bar-headed Geese) reveal a direct spatio-temporal link between the HPAI H5N1 hot-spots identified in India and Bangladesh through our risk model, and the wild bird outbreaks in May,June,July 2009 in China(Qinghai Lake), Mongolia, and Russia. This suggests that the continental-scale dynamics of HPAI H5N1 are structured as a number of persistence areas delineated by domestic ducks, connected by rare transmission through migratory waterfowl.

  8. Phylodynamics of H5N1 Highly Pathogenic Avian Influenza in Europe, 2005–2010: Potential for Molecular Surveillance of New Outbreaks

    PubMed Central

    Alkhamis, Mohammad A.; Moore, Brian R.; Perez, Andres M.

    2015-01-01

    Previous Bayesian phylogeographic studies of H5N1 highly pathogenic avian influenza viruses (HPAIVs) explored the origin and spread of the epidemic from China into Russia, indicating that HPAIV circulated in Russia prior to its detection there in 2005. In this study, we extend this research to explore the evolution and spread of HPAIV within Europe during the 2005–2010 epidemic, using all available sequences of the hemagglutinin (HA) and neuraminidase (NA) gene regions that were collected in Europe and Russia during the outbreak. We use discrete-trait phylodynamic models within a Bayesian statistical framework to explore the evolution of HPAIV. Our results indicate that the genetic diversity and effective population size of HPAIV peaked between mid-2005 and early 2006, followed by drastic decline in 2007, which coincides with the end of the epidemic in Europe. Our results also suggest that domestic birds were the most likely source of the spread of the virus from Russia into Europe. Additionally, estimates of viral dispersal routes indicate that Russia, Romania, and Germany were key epicenters of these outbreaks. Our study quantifies the dynamics of a major European HPAIV pandemic and substantiates the ability of phylodynamic models to improve molecular surveillance of novel AIVs. PMID:26110587

  9. Epidemiological and Evolutionary Inference of the Transmission Network of the 2014 Highly Pathogenic Avian Influenza H5N2 Outbreak in British Columbia, Canada.

    PubMed

    Xu, Wanhong; Berhane, Yohannes; Dubé, Caroline; Liang, Binhua; Pasick, John; VanDomselaar, Gary; Alexandersen, Soren

    2016-01-01

    The first North American outbreak of highly pathogenic avian influenza (HPAI) involving a virus of Eurasian A/goose/Guangdong/1/1996 (H5N1) lineage began in the Fraser Valley of British Columbia, Canada in late November 2014. A total of 11 commercial and 1 non-commercial (backyard) operations were infected before the outbreak was terminated. Control measures included movement restrictions that were placed on a total of 404 individual premises, 150 of which were located within a 3 km radius of an infected premise(s) (IP). A complete epidemiological investigation revealed that the source of this HPAI H5N2 virus for 4 of the commercial IPs and the single non-commercial IP likely involved indirect contact with wild birds. Three IPs were associated with the movement of birds or service providers and localized/environmental spread was suspected as the source of infection for the remaining 4 IPs. Viral phylogenies, as determined by Bayesian Inference and Maximum Likelihood methods, were used to validate the epidemiologically inferred transmission network. The phylogenetic clustering of concatenated viral genomes and the median-joining phylogenetic network of the viruses supported, for the most part, the transmission network that was inferred by the epidemiologic analysis. PMID:27489095

  10. Flying over an infected landscape: distribution of highly pathogenic avian influenza H5N1 risk in South Asia and satellite tracking of wild waterfowl.

    PubMed

    Gilbert, Marius; Newman, Scott H; Takekawa, John Y; Loth, Leo; Biradar, Chandrashekhar; Prosser, Diann J; Balachandran, Sivananinthaperumal; Subba Rao, Mandava Venkata; Mundkur, Taej; Yan, Baoping; Xing, Zhi; Hou, Yuansheng; Batbayar, Nyambayar; Natsagdorj, Tseveenmayadag; Hogerwerf, Lenny; Slingenbergh, Jan; Xiao, Xiangming

    2010-12-01

    Highly pathogenic avian influenza (HPAI) H5N1 virus persists in Asia, posing a threat to poultry, wild birds, and humans. Previous work in Southeast Asia demonstrated that HPAI H5N1 risk is related to domestic ducks and people. Other studies discussed the role of migratory birds in the long distance spread of HPAI H5N1. However, the interplay between local persistence and long-distance dispersal has never been studied. We expand previous geospatial risk analysis to include South and Southeast Asia, and integrate the analysis with migration data of satellite-tracked wild waterfowl along the Central Asia flyway. We find that the population of domestic duck is the main factor delineating areas at risk of HPAI H5N1 spread in domestic poultry in South Asia, and that other risk factors, such as human population and chicken density, are associated with HPAI H5N1 risk within those areas. We also find that satellite tracked birds (Ruddy Shelduck and two Bar-headed Geese) reveal a direct spatio-temporal link between the HPAI H5N1 hot-spots identified in India and Bangladesh through our risk model, and the wild bird outbreaks in May-June-July 2009 in China (Qinghai Lake), Mongolia, and Russia. This suggests that the continental-scale dynamics of HPAI H5N1 are structured as a number of persistence areas delineated by domestic ducks, connected by rare transmission through migratory waterfowl. PMID:21267626

  11. Infection Risk for Persons Exposed to Highly Pathogenic Avian Influenza A H5 Virus–Infected Birds, United States, December 2014–March 2015

    PubMed Central

    Nelson, Deborah I.; Deliberto, Thomas J.; Blanton, Lenee; Kniss, Krista; Levine, Min Z.; Trock, Susan C.; Finelli, Lyn; Jhung, Michael A.

    2015-01-01

    Newly emerged highly pathogenic avian influenza (HPAI) A H5 viruses have caused outbreaks among birds in the United States. These viruses differ genetically from HPAI H5 viruses that previously caused human illness, most notably in Asia and Africa. To assess the risk for animal-to-human HPAI H5 virus transmission in the United States, we determined the number of persons with self-reported exposure to infected birds, the number with an acute respiratory infection (ARI) during a 10-day postexposure period, and the number with ARI who tested positive for influenza by real-time reverse transcription PCR or serologic testing for each outbreak during December 15, 2014–March 31, 2015. During 60 outbreaks in 13 states, a total of 164 persons were exposed to infected birds. ARI developed in 5 of these persons within 10 days of exposure. H5 influenza virus infection was not identified in any persons with ARI, suggesting a low risk for animal-to-human HPAI H5 virus transmission. PMID:26583382

  12. Risk factor modelling of the spatio-temporal patterns of highly pathogenic avian influenza (HPAIV) H5N1: a review

    PubMed Central

    Gilbert, Marius; Pfeiffer, Dirk U.

    2012-01-01

    Highly pathogenic avian influenza virus (HPAIV) H5N1 continues to impact on smallholder livelihoods, to constrain development of the poultry production sector, and to cause occasional human fatalities. HPAI H5N1 outbreaks have occurred in a variety of ecological systems with economic, agricultural and environmental differences. This review aimed to identify common risk factors amongst spatial modelling studies conducted in these different agro-ecological systems, and to identify gaps in our understanding of the disease’s spatial epidemiology. Three types of variables with similar statistical association with HPAI H5N1 presence across studies and regions were identified: domestic waterfowl, several anthropogenic variables (human population density, distance to roads) and indicators of water presence. Variables on socio-economic conditions, poultry trade, wild bird distribution and movements were comparatively rarely considered. Few studies have analysed the HPAI H5N1 distribution in countries such as Egypt and Indonesia, where HPAIV H5N1 continues to circulate extensively. PMID:22749203

  13. Infection Risk for Persons Exposed to Highly Pathogenic Avian Influenza A H5 Virus-Infected Birds, United States, December 2014-March 2015.

    PubMed

    Arriola, Carmen S; Nelson, Deborah I; Deliberto, Thomas J; Blanton, Lenee; Kniss, Krista; Levine, Min Z; Trock, Susan C; Finelli, Lyn; Jhung, Michael A

    2015-12-01

    Newly emerged highly pathogenic avian influenza (HPAI) A H5 viruses have caused outbreaks among birds in the United States. These viruses differ genetically from HPAI H5 viruses that previously caused human illness, most notably in Asia and Africa. To assess the risk for animal-to-human HPAI H5 virus transmission in the United States, we determined the number of persons with self-reported exposure to infected birds, the number with an acute respiratory infection (ARI) during a 10-day postexposure period, and the number with ARI who tested positive for influenza by real-time reverse transcription PCR or serologic testing for each outbreak during December 15, 2014-March 31, 2015. During 60 outbreaks in 13 states, a total of 164 persons were exposed to infected birds. ARI developed in 5 of these persons within 10 days of exposure. H5 influenza virus infection was not identified in any persons with ARI, suggesting a low risk for animal-to-human HPAI H5 virus transmission. PMID:26583382

  14. Antibody response and risk factors for seropositivity in backyard poultry following mass vaccination against highly pathogenic avian influenza and Newcastle disease in Indonesia.

    PubMed

    McLAWS, M; Priyono, W; Bett, B; Al-Qamar, S; Claassen, I; Widiastuti, T; Poole, J; Schoonman, L; Jost, C; Mariner, J

    2015-06-01

    A large-scale mass vaccination campaign was carried out in Java, Indonesia in an attempt to control outbreaks of highly pathogenic avian influenza (HPAI) in backyard flocks and commercial smallholder poultry. Sero-monitoring was conducted in mass vaccination and control areas to assess the proportion of the target population with antibodies against HPAI and Newcastle disease (ND). There were four rounds of vaccination, and samples were collected after each round resulting in a total of 27 293 samples. Sampling was performed irrespective of vaccination status. In the mass vaccination areas, 20-45% of poultry sampled had a positive titre to H5 after each round of vaccination, compared to 2-3% in the control group. In the HPAI + ND vaccination group, 12-25% of the population had positive ND titres, compared to 5-13% in the areas without ND vaccination. The level of seropositivity varied by district, age of the bird, and species (ducks vs. chickens). PMID:25316261

  15. Agro-ecological features of the introduction and spread of the highly pathogenic avian influenza (HPAI) H5N1 in northern Nigeria.

    PubMed

    Cecchi, Giuliano; Ilemobade, Albert; Le Brun, Yvon; Hogerwerf, Lenny; Slingenbergh, Jan

    2008-11-01

    Nigeria was the first African country to report highly pathogenic avian influenza (HPAI) H5N1 virus outbreaks in February 2006 and has since been the most severely hit country in sub-Saharan Africa. A retrospective survey carried out towards the end of 2007, coupled with follow-up spatial analysis, support the notion that the H5N1 virus may have spread from rural areas of northern Nigeria near wetlands frequented by palaearctic migratory birds. Possibly, this could have happened already during November to December 2005, one or two months prior to the first officially reported outbreak in a commercial poultry farm (Kaduna state). It is plausible that backyard poultry played a more important role in the H5N1 propagation than thought previously. Farming landscapes with significant numbers of domestic ducks may have helped to bridge the geographical and ecological gap between the waterfowl in the wetlands and the densely populated poultry rich states in north-central Nigeria, where the virus had more sizeable, visible impact. PMID:19021104

  16. Factors Associated with Highly Pathogenic Avian Influenza H5N2 Infection on Table-Egg Layer Farms in the Midwestern United States, 2015.

    PubMed

    Garber, Lindsey; Bjork, Kathe; Patyk, Kelly; Rawdon, Thomas; Antognoli, Maria; Delgado, Amy; Ahola, Sara; McCluskey, Brian

    2016-06-01

    A case-control study was conducted among commercial table-egg layer and pullet operations in Iowa and Nebraska, United States, to investigate potential risk factors for infection with highly pathogenic avian influenza (HPAI) H5N2. A questionnaire was developed and administered to 28 case farms and 31 control farms. Data were collected at the farm and barn levels, enabling two separate analyses to be performed-the first a farm-level comparison of case farms vs. control farms, and the second a barn-level comparison between case barns on case farms and control barns on control farms. Multivariable logistic regression models were fit using a forward-selection procedure. Key risk factors identified were farm location in an existing control zone, rendering and garbage trucks coming near barns, dead-bird disposal located near barns, and visits by a company service person. Variables associated with a decreased risk of infection included visitors changing clothing, cleaning and disinfecting a hard-surface barn entryway, and ceiling/eaves ventilation in barns. PMID:27309288

  17. Flying over an infected landscape: Distribution of highly pathogenic avian influenza H5N1 risk in South Asia and satellite tracking of wild waterfowl

    USGS Publications Warehouse

    Gilbert, M.; Newman, S.H.; Takekawa, J.Y.; Loth, L.; Biradar, C.; Prosser, D.J.; Balachandran, S.; Subba, Rao M.V.; Mundkur, T.; Yan, B.; Xing, Z.; Hou, Y.; Batbayar, N.; Natsagdorj, T.; Hogerwerf, L.; Slingenbergh, J.; Xiao, X.

    2010-01-01

    Highly pathogenic avian influenza (HPAI) H5N1 virus persists in Asia, posing a threat to poultry, wild birds, and humans. Previous work in Southeast Asia demonstrated that HPAI H5N1 risk is related to domestic ducks and people. Other studies discussed the role of migratory birds in the long distance spread of HPAI H5N1. However, the interplay between local persistence and long-distance dispersal has never been studied. We expand previous geospatial risk analysis to include South and Southeast Asia, and integrate the analysis with migration data of satellite-tracked wild waterfowl along the Central Asia flyway. We find that the population of domestic duck is the main factor delineating areas at risk of HPAI H5N1 spread in domestic poultry in South Asia, and that other risk factors, such as human population and chicken density, are associated with HPAI H5N1 risk within those areas. We also find that satellite tracked birds (Ruddy Shelduck and two Bar-headed Geese) reveal a direct spatio-temporal link between the HPAI H5N1 hot-spots identified in India and Bangladesh through our risk model, and the wild bird outbreaks in May-June-July 2009 in China (Qinghai Lake), Mongolia, and Russia. This suggests that the continental-scale dynamics of HPAI H5N1 are structured as a number of persistence areas delineated by domestic ducks, connected by rare transmission through migratory waterfowl. ?? 2011 The Author(s).

  18. Genetic characteristics of highly pathogenic H5N8 avian influenza viruses isolated from migratory wild birds in South Korea during 2014-2015.

    PubMed

    Si, Young-Jae; Choi, Won Suk; Kim, Young-Il; Lee, In-Won; Kwon, Hyeok-Il; Park, Su-Jin; Kim, Eun-Ha; Kim, Se Mi; Kwon, Jin-Jung; Song, Min-Suk; Kim, Chul-Joong; Choi, Young-Ki

    2016-10-01

    The continuous worldwide spread of highly pathogenic avian influenza (HPAI) H5N8 viruses among wild birds and poultry is a potential threat to public health. In the present study, we investigated the genetic characteristics of recent H5N8 viruses continuously isolated from migratory birds over two winters (2013-2014 and 2014-2015) in South Korea. Genetic and phylogenetic analysis demonstrated that the 2014-2015 HPAI H5N8 viruses are closely related to the 2013-2014 viruses, including virulence markers; however, all eight gene segments of 2014-2015 H5N8 viruses clustered in different phylogenetic branches from 2013-2014 H5N8 viruses, except the A/Em/Korea/W492/2015 virus. The H5N8 viruses of Europe and North America belong to sublineages of the 2013-2014 Korean H5N8 viruses but differ from the 2014-2015 Korean H5N8 viruses. Further hemagglutination inhibition (HI) assay results showed that there were 2-to-4 fold differences in HI titer between 2013-2014 and 2014-2015 H5N8 viruses. Taken together, our results suggested that the 2014-2015 Korean H5N8 viruses were genetically and serologically different from those of 2013-2014 winter season H5N8 viruses, including those from Europe and North America. PMID:27424028

  19. Impact of the implementation of rest days in live bird markets on the dynamics of H5N1 highly pathogenic avian influenza

    PubMed Central

    Fournié, G.; Guitian, F. J.; Mangtani, P.; Ghani, A. C.

    2011-01-01

    Live bird markets (LBMs) act as a network ‘hub’ and potential reservoir of infection for domestic poultry. They may therefore be responsible for sustaining H5N1 highly pathogenic avian influenza (HPAI) virus circulation within the poultry sector, and thus a suitable target for implementing control strategies. We developed a stochastic transmission model to understand how market functioning impacts on the transmission dynamics. We then investigated the potential for rest days—periods during which markets are emptied and disinfected—to modulate the dynamics of H5N1 HPAI within the poultry sector using a stochastic meta-population model. Our results suggest that under plausible parameter scenarios, HPAI H5N1 could be sustained silently within LBMs with the time spent by poultry in markets and the frequency of introduction of new susceptible birds' dominant factors determining sustained silent spread. Compared with interventions applied in farms (i.e. stamping out, vaccination), our model shows that frequent rest days are an effective means to reduce HPAI transmission. Furthermore, our model predicts that full market closure would be only slightly more effective than rest days to reduce transmission. Strategies applied within markets could thus help to control transmission of the disease. PMID:21131332

  20. Outbreak of H5N2 highly pathogenic avian Influenza A virus infection in two commercial layer facilities: lesions and viral antigen distribution.

    PubMed

    Arruda, Paulo H E; Stevenson, Gregory W; Killian, Mary L; Burrough, Eric R; Gauger, Phillip C; Harmon, Karen M; Magstadt, Drew R; Yoon, Kyoung-Jin; Zhang, Jianqiang; Madson, Darin M; Piñeyro, Pablo; Derscheid, Rachel J; Schwartz, Kent J; Cooper, Vickie L; Halbur, Patrick G; Main, Rodger G; Sato, Yuko; Arruda, Bailey L

    2016-09-01

    The largest outbreak of highly pathogenic avian Influenza A virus (HPAIV) infection in U.S. history began in December 2014 resulting in the euthanasia of millions of birds and collateral economic consequences to the U.S. poultry industry. We describe 2 cases of H5N2 HPAIV infection in laying hens in Iowa. Following a sharp increase in mortality with minimal clinical signs, 15 dead birds, from 2 unrelated farms, were submitted to the Iowa State University Veterinary Diagnostic Laboratory. Common lesions included diffuse edema and multifocal hemorrhage of the comb, catarrhal exudate in the oropharynx, and multifocal tracheal hemorrhage. Less common lesions included epicardial petechiae, splenic hemorrhage, and pancreatic necrosis. Influenza A virus nucleoprotein was detected by immunohistochemistry in multiple cell types including ependymal cells, the choroid plexus, neurons, respiratory epithelium and macrophages in the lung, cardiac myocytes, endothelial cells, necrotic foci in the spleen, Kupffer cells in the liver, and necrotic acinar cells in the pancreas. Real-time polymerase chain reaction and sequencing confirmed H5N2 HPAIV with molecular characteristics similar to other contemporary U.S. H5N2 HPAIVs in both cases. PMID:27423731

  1. Protection Afforded by a Recombinant Turkey Herpesvirus-H5 Vaccine Against the 2014 European Highly Pathogenic H5N8 Avian Influenza Strain.

    PubMed

    Steensels, M; Rauw, F; van den Berg, Th; Marché, S; Gardin, Y; Palya, V; Lambrecht, B

    2016-05-01

    A highly pathogenic avian influenza (HPAI) H5N8 (clade 2.3.4.4) virus, circulating in Asia (South Korea, Japan, and southern China) since the beginning of 2014, reached the European continent in November 2014. Germany, the Netherlands, the United Kingdom, Italy, and Hungary confirmed H5N8 infection of poultry farms of different species and of several wild bird species. Unlike the Asian highly pathogenic (HP) H5N1, this HP H5N8 also went transatlantic and reached the American West Coast by the end of 2014, affecting wild birds as well as backyard and commercial poultry. This strain induces high mortality and morbidity in Galliformes, whereas wild birds seem only moderately affected. A recombinant turkey herpesvirus (rHVT) vector vaccine expressing the H5 gene of a clade 2.2 H5N1 strain (rHVT-H5) previously demonstrated a highly efficient clinical protection and reduced viral excretion against challenge with Asian HP H5N1 strains of various clades (2.2, 2.2.1, 2.2.1.1, 2.1.3, 2.1.3.2, and 2.3.2.1) and was made commercially available in various countries where the disease is endemic. To evaluate the protective efficacy of the rHVT-H5 vaccine against the first German H5N8 turkey isolate (H5N8 GE), a challenge experiment was set up in specific-pathogen-free (SPF) chickens, and the clinical and excretional protection was evaluated. SPF chickens were vaccinated subcutaneously at 1 day old and challenged oculonasally at 4 wk of age with two viral dosages, 10(5) and 10(6) 50% egg infective doses. Morbidity and mortality were monitored daily in unvaccinated and vaccinated groups, whereas viral shedding by oropharyngeal and cloacal routes was evaluated at 2, 5, 9, and 14 days postinoculation (dpi). Serologic monitoring after vaccination and challenge was also carried out. Despite its high antigenic divergence of the challenge H5N8 strain, a single rHVT-H5 vaccine administration at 1 day old resulted in a full clinical protection against challenge and a significant reduction

  2. Epidemic outbreaks, diagnostics, and control measures of the H5N1 highly pathogenic avian influenza in the Kingdom of Saudi Arabia, 2007-08.

    PubMed

    Lu, Huaguang; Ismail, Mahmoud Moussa; Khan, Owais Ahmed; Al Hammad, Yousef; Abdel Rhman, Salah Shaban; Al-Blowi, Mohamed Hamad

    2010-03-01

    The first outbreak of H5N1 highly pathogenic avian influenza (HPAI) in the Kingdom of Saudi Arabia (KSA) occurred in two "backyard" flocks of Houbara bustards and falcons in February 2007. Subsequent outbreaks were seen through the end of 2007 in "backyard" birds including native chickens, ostriches, turkeys, ducks, and peacocks. From November 2007 through January 2008, H5N1 HPAI outbreaks occurred in 19 commercial poultry premises, including two broiler breeder farms, one layer breeder farm, one ostrich farm, and 15 commercial layer farms, with approximately 4.75 million birds affected. Laboratory diagnosis of all H5N1-positive cases was conducted at the Central Veterinary Diagnostic Laboratory (CVDL) in Riyadh, Saudi Arabia. A combination of diagnostic tests was used to confirm the laboratory diagnosis. A rapid antigen-capture test and real-time reverse transcriptase-PCR (rtRT-PCR) assay on clinical and field specimens were conducted initially. Meanwhile, virus isolation in specific-pathogen-free embryonating chicken eggs was performed and was followed by hemagglutinin (HA) and hemagglutination inhibition tests, then rapid antigen-capture and rtRT-PCR tests on HA-positive allantoic fluid samples. In most HPAI cases, a complete laboratory diagnosis was made within 24-48 hr at the CVDL. Saudi Arabian government officials made immediate decisions to depopulate all H5N1-affected and nonaffected flocks within a 5-km radius area and applied quarantine zones to prevent the virus from spreading to other areas. Other control measures, such as closure of live bird markets and intensive surveillance tests on all poultry species within quarantine zones, were in place during the outbreaks. As a result, the HPAI outbreaks were quickly controlled, and no positive cases were detected after January 29, 2008. The KSA was declared free of HPAI on April 30, 2008, by the World Animal Health Organization. PMID:20521658

  3. Major histocompatibility complex and host background genes in chickens influence resistance to high pathogenicity avian influenza virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The chicken’s major histocompatibility complex (MHC) haplotype has a profound influence on the resistance or susceptibility to certain pathogens such as B21 MHC haplotype confers resistance to Marek’s disease (MD). However, non-MHC genes are also important in disease resistance. For example, both li...

  4. Sequence and phylogenetic analysis of highly pathogenic avian influenza H5N1 viruses isolated during 2006–2008 outbreaks in Pakistan reveals genetic diversity

    PubMed Central

    2012-01-01

    Background Since the first outbreak recorded in northern areas of Pakistan in early 2006, highly pathogenic avian influenza H5N1 viruses were isolated from commercial poultry and wild/domestic birds from different areas of Pakistan up to July 2008. Different isolates of H5N1 were sequenced to explore the genetic diversity of these viruses. Results Phylogenetic analysis revealed close clustering and highest sequence identity in all 8 genes to HPAI H5N1 isolates belonging to unified H5 clade 2.2, sub-lineage EMA-3 recovered from Afghanistan during the same time period. Two subgroups within Pakistani H5N1 viruses, from domestic and wild birds, were observed on the basis of their sequence homology and mutations. HPAI motif, preferred receptor specificity for α-(2, 3) linkages, potential N-linked glycosylation sites and an additional glycosylation site at the globular head of HA protein of four Pakistani H5N1 isolates. While, the amino acids associated with sensitivities to various antiviral drugs (Oseltamivir, Zanamivir, Amantadine) were found conserved for the Pakistani H5N1 isolates. Conspicuously, some important mutations observed at critical positions of antigenic sites (S141P, D155S, R162I & P181S) and at receptor binding pocket (A185T, R189K & S217P) of HA-1. A high sequence similarity between Pakistani HP H5N1 and LP H9N2 viruses was also observed. Avian like host specific markers with the exception of E627K in PB2, K356R in PA, V33I in NP, I28V in M2 and L107F in NS2 proteins were also observed. Conclusions Various point mutations in different genes of H5 viruses from Pakistan were observed during its circulation in the field. The outbreaks started in Khyber Pakhtoon Khawa (North West) province in 2006 and spread to the Southern regions over a period of time. Though migratory birds may have a role for this continued endemicity of clade 2.2 H5N1 viruses during 2006–2008 in Pakistan, the possibility of their transmission through legal or illegal poultry trade

  5. Characteristics of diagnostic tests used in the 2002 low pathogenicity avian influenza H7N2 outbreak in Virginia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An outbreak of low pathogenicity avian influenza (LPAI) H7N2 occurred in 2002 in the Shenandoah Valley, Virginia, a high density poultry production region. A combination of clinical signs, and laboratory diagnostic tests designed to detect avian influenza (AI) antibodies, virus, or H7 specific RNA ...

  6. Novel Highly Pathogenic Avian A(H5N2) and A(H5N8) Influenza Viruses of Clade 2.3.4.4 from North America Have Limited Capacity for Replication and Transmission in Mammals

    PubMed Central

    Kaplan, Bryan S.; Russier, Marion; Jeevan, Trushar; Marathe, Bindumadhav; Govorkova, Elena A.; Russell, Charles J.; Kim-Torchetti, Mia; Choi, Young Ki; Brown, Ian; Saito, Takehiko; Stallknecht, David E.; Krauss, Scott

    2016-01-01

    ABSTRACT Highly pathogenic influenza A(H5N8) viruses from clade 2.3.4.4 were introduced to North America by migratory birds in the fall of 2014. Reassortment of A(H5N8) viruses with avian viruses of North American lineage resulted in the generation of novel A(H5N2) viruses with novel genotypes. Through sequencing of recent avian influenza viruses, we identified PB1 and NP gene segments very similar to those in the viruses isolated from North American waterfowl prior to the introduction of A(H5N8) to North America, highlighting these bird species in the origin of reassortant A(H5N2) viruses. While they were highly virulent and transmissible in poultry, we found A(H5N2) viruses to be low pathogenic in mice and ferrets, and replication was limited in both hosts compared with those of recent highly pathogenic avian influenza (HPAI) H5N1 viruses. Molecular characterization of the hemagglutinin protein from A(H5N2) viruses showed that the receptor binding preference, cleavage, and pH of activation were highly adapted for replication in avian species and similar to those of other 2.3.4.4 viruses. In addition, North American and Eurasian clade 2.3.4.4 H5NX viruses replicated to significantly lower titers in differentiated normal human bronchial epithelial cells than did seasonal human A(H1N1) and highly pathogenic A(H5N1) viruses isolated from a human case. Thus, despite their having a high impact on poultry, our findings suggest that the recently emerging North American A(H5N2) viruses are not expected to pose a substantial threat to humans and other mammals without further reassortment and/or adaptation and that reassortment with North American viruses has not had a major impact on viral phenotype. IMPORTANCE Highly pathogenic H5 influenza viruses have been introduced into North America from Asia, causing extensive morbidity and mortality in domestic poultry. The introduced viruses have reassorted with North American avian influenza viruses, generating viral genotypes

  7. Novel Highly Pathogenic Avian A(H5N2) and A(H5N8) Influenza Viruses of Clade 2.3.4.4 from North America Have Limited Capacity for Replication and Transmission in Mammals.

    PubMed

    Kaplan, Bryan S; Russier, Marion; Jeevan, Trushar; Marathe, Bindumadhav; Govorkova, Elena A; Russell, Charles J; Kim-Torchetti, Mia; Choi, Young Ki; Brown, Ian; Saito, Takehiko; Stallknecht, David E; Krauss, Scott; Webby, Richard J

    2016-01-01

    Highly pathogenic influenza A(H5N8) viruses from clade 2.3.4.4 were introduced to North America by migratory birds in the fall of 2014. Reassortment of A(H5N8) viruses with avian viruses of North American lineage resulted in the generation of novel A(H5N2) viruses with novel genotypes. Through sequencing of recent avian influenza viruses, we identified PB1 and NP gene segments very similar to those in the viruses isolated from North American waterfowl prior to the introduction of A(H5N8) to North America, highlighting these bird species in the origin of reassortant A(H5N2) viruses. While they were highly virulent and transmissible in poultry, we found A(H5N2) viruses to be low pathogenic in mice and ferrets, and replication was limited in both hosts compared with those of recent highly pathogenic avian influenza (HPAI) H5N1 viruses. Molecular characterization of the hemagglutinin protein from A(H5N2) viruses showed that the receptor binding preference, cleavage, and pH of activation were highly adapted for replication in avian species and similar to those of other 2.3.4.4 viruses. In addition, North American and Eurasian clade 2.3.4.4 H5NX viruses replicated to significantly lower titers in differentiated normal human bronchial epithelial cells than did seasonal human A(H1N1) and highly pathogenic A(H5N1) viruses isolated from a human case. Thus, despite their having a high impact on poultry, our findings suggest that the recently emerging North American A(H5N2) viruses are not expected to pose a substantial threat to humans and other mammals without further reassortment and/or adaptation and that reassortment with North American viruses has not had a major impact on viral phenotype. IMPORTANCE Highly pathogenic H5 influenza viruses have been introduced into North America from Asia, causing extensive morbidity and mortality in domestic poultry. The introduced viruses have reassorted with North American avian influenza viruses, generating viral genotypes not seen on

  8. Transmission rate and reproductive number of the H5N1 highly pathogenic avian influenza virus during the December 2005-July 2008 epidemic in Nigeria.

    PubMed

    Bett, B; Henning, J; Abdu, P; Okike, I; Poole, J; Young, J; Randolph, T F; Perry, B D

    2014-02-01

    We quantified the between-village transmission rate, β (the rate of transmission of H5N1 HPAI virus per effective contact), and the reproductive number, Re (the average number of outbreaks caused by one infectious village during its entire infectious period), of H5N1 highly pathogenic avian influenza (HPAI) virus in Nigeria using outbreak data collected between December 2005 and July 2008. We classified the outbreaks into two phases to assess the effectiveness of the control measures implemented. Phase 1 (December 2005-October 2006) represents the period when the Federal Government of Nigeria managed the HPAI surveillance and response measures, while Phase 2 (November 2006-July 2008) represents the time during which the Nigeria Avian Influenza Control and Human Pandemic Preparedness project (NAICP), funded by a World Bank credit of US$ 50 million, had taken over the management of most of the interventions. We used a total of 204 outbreaks from 176 villages that occurred in 78 local government areas of 25 states. The compartmental susceptible-infectious model was used as the analytical tool. Means and 95% percentile confidence intervals were obtained using bootstrapping techniques. The overall mean β (assuming a duration of infectiousness, T, of 12 days) was 0.07/day (95% percentile confidence interval: 0.06-0.09). The first and second phases of the epidemic had comparable β estimates of 0.06/day (0.04-0.09) and 0.08/day (0.06-0.10), respectively. The Re of the virus associated with these β and T estimates was 0.9 (0.7-1.1); the first and second phases of the epidemic had Re of 0.84 (0.5-1.2) and 0.9 (0.6-1.2), respectively. We conclude that the intervention measures implemented in the second phase of the epidemic had comparable effects to those implemented during the first phase and that the Re of the epidemic was low, indicating that the Nigeria H5N1 HPAI epidemic was unstable. PMID:22925404

  9. Susceptibility of avian species to north american H13 low pathogenic avian influenza viruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gulls are widely recognized reservoirs for low pathogenic avian influenza (LPAI) viruses; however, the subtypes maintained in these populations and/or the transmission mechanisms involved are poorly understood. Although, a wide diversity of influenza viruses have been isolated from gulls, two hemag...

  10. Comparative susceptibility of avian species to low pathogenic avian influenza viruses of the H13 subtype

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gulls are widely recognized reservoirs for low pathogenic avian influenza (LPAI) viruses; however, the subtypes maintained in these populations and/or the transmission mechanisms involved are poorly understood. Although, a wide diversity of influenza viruses have been isolated from gulls, two hemag...

  11. The Use of Spatial and Spatiotemporal Modeling for Surveillance of H5N1 Highly Pathogenic Avian Influenza in Poultry in the Middle East.

    PubMed

    Alkhamis, Mohammad; Hijmans, Robert J; Al-Enezi, Abdullah; Martínez-López, Beatriz; Perea, Andres M

    2016-05-01

    Since 2005, H5N1 highly pathogenic avian influenza virus (HPAIV) has severely impacted the economy and public health in the Middle East (ME) with Egypt as the most affected country. Understanding the high-risk areas and spatiotemporal distribution of the H5N1 HPAIV in poultry is prerequisite for establishing risk-based surveillance activities at a regional level in the ME. Here, we aimed to predict the geographic range of H5N1 HPAIV outbreaks in poultry in the ME using a set of environmental variables and to investigate the spatiotemporal clustering of outbreaks in the region. Data from the ME for the period 2005-14 were analyzed using maximum entropy ecological niche modeling and the permutation model of the scan statistics. The predicted range of high-risk areas (P > 0.60) for H5N1 HPAIV in poultry included parts of the ME northeastern countries, whereas the Egyptian Nile delta and valley were estimated to be the most suitable locations for occurrence of H5N1 HPAIV outbreaks. The most important environmental predictor that contributed to risk for H5N1 HPAIV was the precipitation of the warmest quarter (47.2%), followed by the type of global livestock production system (18.1%). Most significant spatiotemporal clusters (P < 0.001) were detected in Egypt, Turkey, Kuwait, Saudi Arabia, and Sudan. Results suggest that more information related to poultry holding demographics is needed to further improve prediction of risk for H5N1 HPAIV in the ME, whereas the methodology presented here may be useful in guiding the design of surveillance programs and in identifying areas in which underreporting may have occurred. PMID:27309050

  12. Rivers and flooded areas identified by medium-resolution remote sensing improve risk prediction of the highly pathogenic avian influenza H5N1 in Thailand.

    PubMed

    Thanapongtharm, Weerapong; Van Boeckel, Thomas P; Biradar, Chandrashekhar; Xiao, Xiang-Ming; Gilbert, Marius

    2013-11-01

    Thailand experienced several epidemic waves of the highly pathogenic avian influenza (HPAI) H5N1 between 2004 and 2005. This study investigated the role of water in the landscape, which has not been previously assessed because of a lack of high-resolution information on the distribution of flooded land at the time of the epidemic. Nine Landsat 7 - Enhanced Thematic Mapper Plus scenes covering 174,610 km(2) were processed using k-means unsupervised classification to map the distribution of flooded areas as well as permanent lakes and reservoirs at the time of the main epidemic HPAI H5N1 wave of October 2004. These variables, together with other factors previously identified as significantly associated with risk, were entered into an autologistic regression model in order to quantify the gain in risk explanation over previously published models. We found that, in addition to other factors previously identified as associated with risk, the proportion of land covered by flooding along with expansion of rivers and streams, derived from an existing, sub-district level (administrative level no. 3) geographical information system database, was a highly significant risk factor in this 2004 HPAI epidemic. These results suggest that water-borne transmission could have partly contributed to the spread of HPAI H5N1 during the epidemic. Future work stemming from these results should involve studies where the actual distribution of small canals, rivers, ponds, rice paddy fields and farms are mapped and tested against farm-level data with respect to HPAI H5N1. PMID:24258895

  13. Rivers and flooded areas identified by medium-resolution remote sensing improve risk prediction of the highly pathogenic avian influenza H5N1 in Thailand

    PubMed Central

    Thanapongtharm, Weerapong; Van Boeckel, Thomas P.; Biradar, Chandrashekhar; Xiao, Xiangming; Gilbert, Marius

    2016-01-01

    Thailand experienced several epidemic waves of the highly pathogenic avian influenza (HPAI) H5N1 between 2004 and 2005. This study investigated the role of water in the landscape, which has not been previously assessed because of a lack of high-resolution information on the distribution of flooded land at the time of the epidemic. Nine Landsat 7-Enhanced Thematic Mapper Plus scenes covering 174,610 km2 were processed using k-means unsupervised classification to map the distribution of flooded areas as well as permanent lakes and reservoirs at the time of the main epidemic HPAI H5N1 wave of October 2004. These variables, together with other factors previously identified as significantly associated with risk, were entered into an autologistic regression model in order to quantify the gain in risk explanation over previously published models. We found that, in addition to other factors previously identified as associated with risk, the proportion of land covered by flooding along with expansion of rivers and streams, derived from an existing, sub-district level (administrative level no. 3) geographical information system database, was a highly significant risk factor in this 2004 HPAI epidemic. These results suggest that water-borne transmission could have partly contributed to the spread of HPAI H5N1 during the epidemic. Future work stemming from these results should involve studies where the actual distribution of small canals, rivers, ponds, rice paddy fields and farms are mapped and tested against farm-level data with respect to HPAI H5N1. PMID:24258895

  14. Previous infection with virulent strains of Newcastle disease virus reduces highly pathogenic avian influenza virus replication, disease, and mortality in chickens.

    PubMed

    Costa-Hurtado, Mar; Afonso, Claudio L; Miller, Patti J; Shepherd, Eric; Cha, Ra Mi; Smith, Diane; Spackman, Erica; Kapczynski, Darrell R; Suarez, David L; Swayne, David E; Pantin-Jackwood, Mary J

    2015-01-01

    Highly pathogenic avian influenza virus (HPAIV) and Newcastle disease virus (NDV) are two of the most important viruses affecting poultry worldwide and produce co-infections especially in areas of the world where both viruses are endemic; but little is known about the interactions between these two viruses. The objective of this study was to determine if co-infection with NDV affects HPAIV replication in chickens. Only infections with virulent NDV strains (mesogenic Pigeon/1984 or velogenic CA/2002), and not a lentogenic NDV strain (LaSota), interfered with the replication of HPAIV A/chicken/Queretaro/14588-19/95 (H5N2) when the H5N2 was given at a high dose (10(6.9) EID50) two days after the NDV inoculation, but despite this interference, mortality was still observed. However, chickens infected with the less virulent mesogenic NDV Pigeon/1984 strain three days prior to being infected with a lower dose (10(5.3-5.5) EID50) of the same or a different HPAIV, A/chicken/Jalisco/CPA-12283-12/2012 (H7N3), had reduced HPAIV replication and increased survival rates. In conclusion, previous infection of chickens with virulent NDV strains can reduce HPAIV replication, and consequently disease and mortality. This interference depends on the titer of the viruses used, the virulence of the NDV, and the timing of the infections. The information obtained from these studies helps to understand the possible interactions and outcomes of infection (disease and virus shedding) when HPAIV and NDV co-infect chickens in the field. PMID:26394750

  15. Anthropogenic factors and the risk of highly pathogenic avian influenza H5N1: prospects from a spatial-based model

    PubMed Central

    Paul, Mathilde; Tavornpanich, Saraya; Abrial, David; Gasqui, Patrick; Charras-Garrido, Myriam; Thanapongtharm, Weerapong; Xiao, Xiangming; Gilbert, Marius; Roger, Francois; Ducrot, Christian

    2009-01-01

    Beginning in 2003, highly pathogenic avian influenza (HPAI) H5N1 virus spread across Southeast Asia, causing unprecedented epidemics. Thailand was massively infected in 2004 and 2005 and continues today to experience sporadic outbreaks. While research findings suggest that the spread of HPAI H5N1 is influenced primarily by trade patterns, identifying the anthropogenic risk factors involved remains a challenge. In this study, we investigated which anthropogenic factors played a role in the risk of HPAI in Thailand using outbreak data from the “second wave” of the epidemic (3 July 2004 to 5 May 2005) in the country. We first performed a spatial analysis of the relative risk of HPAI H5N1 at the subdistrict level based on a hierarchical Bayesian model. We observed a strong spatial heterogeneity of the relative risk. We then tested a set of potential risk factors in a multivariable linear model. The results confirmed the role of free-grazing ducks and rice-cropping intensity but showed a weak association with fighting cock density. The results also revealed a set of anthropogenic factors significantly linked with the risk of HPAI. High risk was associated strongly with densely populated areas, short distances to a highway junction, and short distances to large cities. These findings highlight a new explanatory pattern for the risk of HPAI and indicate that, in addition to agro-environmental factors, anthropogenic factors play an important role in the spread of H5N1. To limit the spread of future outbreaks, efforts to control the movement of poultry products must be sustained. PMID:20003910

  16. The evolutionary dynamics of highly pathogenic avian influenza H5N1 in south-central Vietnam reveals multiple clades evolving from Chinese and Cambodian viruses.

    PubMed

    Nguyen, Tinh Huu; Than, Van Thai; Thanh, Hien Dang; Nguyen, Van Quang; Nguyen, Kim Hue; Nguyen, Duc Tan; Park, Jong-Hwa; Chung, In Sik; Jeong, Dae Gwin; Chang, Kyu-Tae; Oh, Tae Kwang; Kim, Wonyong

    2015-10-01

    In Vietnam, highly pathogenic avian influenza (HPAI), such as that caused by H5N1 viruses, is the most highly contagious infectious disease that has been affecting domestic poultry in recent years. Vietnam might be an evolutionary hotspot and a potential source of globally pandemic strains. However, few studies have reported viruses circulating in the south-central region of Vietnam. In the present study, 47 H5N1-positive samples were collected from both vaccinated and unvaccinated poultry farms in the South Central Coast region of Vietnam during 2013-2014, and their genetic diversity was analyzed. A common sequence motif for HPAI virus was identified at HA-cleavage sites in all samples: either RERRRKR/G (clades 2.3.2.1c and 2.3.2.1a) or REGRRKKR/G (clade 1.1.2). Phylogenetic analysis of HA genes identified three clades of HPAI H5N1: 1.1.2 (n=1), 2.3.2.1a (n=1), and 2.3.2.1c (n=45). The phylogenetic analysis indicated that these Vietnamese clades may have evolved from Chinese and Cambodian virus clades isolated in 2012-2013 but are less closely related to the clades detected from the Tyva Republic, Bulgaria, Mongolia, Japan, and Korea in 2009-2011. Detection of the coexistence of virus clades 2.3.2.1 and the very virulent 1.1.2 in the south-central regions suggests their local importance and highlights concerns regarding their spread, both northwards and southwards, as well as the potential for reassortment. The obtained data highlight the importance of regular identification of viral evolution and the development and use of region-specific vaccines. PMID:26577194

  17. Risk Reduction Modeling of High Pathogenicity Avian Influenza Virus Titers in Nonpasteurized Liquid Egg Obtained from Infected but Undetected Chicken Flocks.

    PubMed

    Weaver, J Todd; Malladi, Sasidhar; Spackman, Erica; Swayne, David E

    2015-11-01

    Control of highly pathogenic avian influenza (HPAI) outbreaks in poultry has traditionally involved the establishment of disease containment zones, where poultry products are only permitted to move from within a zone under permit. Nonpasteurized liquid egg (NPLE) is one such commodity for which movements may be permitted, considering inactivation of HPAI virus via pasteurization. Active surveillance testing at the flock level, using targeted matrix gene real-time reversed transcriptase-polymerase chain reaction testing (RRT-PCR) has been incorporated into HPAI emergency response plans as the primary on-farm diagnostic test procedure to detect HPAI in poultry and is considered to be a key risk mitigation measure. To inform decisions regarding the potential movement of NPLE to a pasteurization facility, average HPAI virus concentrations in NPLE produced from a HPAI virus infected, but undetected, commercial table-egg-layer flock were estimated for three HPAI virus strains using quantitative simulation models. Pasteurization under newly proposed international design standards (5 log10 reduction) is predicted to inactivate HPAI virus in NPLE to a very low concentration of less than 1 embryo infectious dose (EID)50 /mL, considering the predicted virus titers in NPLE from a table-egg flock under active surveillance. Dilution of HPAI virus from contaminated eggs in eggs from the same flock, and in a 40,000 lb tanker-truck load of NPLE containing eggs from disease-free flocks was also considered. Risk assessment can be useful in the evaluation of commodity-specific risk mitigation measures to facilitate safe trade in animal products from countries experiencing outbreaks of highly transmissible animal diseases. PMID:25867713

  18. Low pathogenicity notifiable avian influenza (LPNAI) with an emphasis on vaccination programs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There have been 30 epizootics of H5 or H7 high pathogenicity avian influenza (HPAI) from 1959 to early 2012. The largest has been the H5N1 HPAI which began in Guangdong China in 1996, and has affected over 250 million poultry and/or wild birds in 63 countries. For most countries, stamping-out prog...

  19. Neurotropism in blackcaps (Sylvia atricapilla) and red-billed queleas (Quelea quelea) after highly pathogenic avian influenza virus H5N1 infection.

    PubMed

    Breithaupt, A; Kalthoff, D; Dale, J; Bairlein, F; Beer, M; Teifke, J P

    2011-09-01

    The epidemiologic role of passerine birds in the spread of highly pathogenic avian influenza virus (HPAIV) remains controversial. However, confirmed natural infections with HPAIV in Passeriformes, their close contact to poultry and humans, and their role as a human food source indicate a need for increased research on passerines. To date, there are only a few studies on viral shedding and pathomorphologic changes in songbirds infected with HPAIV. To investigate susceptibility, clinical outcome, virus spread, and pathomorphology, the authors inoculated oculo-oronasally 22 red-billed queleas (Quelea quelea) and 11 blackcaps (Sylvia atricapilla) with A/Cygnus cygnus/Germany/R65/2006 (H5N1) using 2 different doses of either 10(4) EID50 (50% egg infective dose) or 10(6) EID50 per animal. They monitored all birds for clinical signs and oropharyngeal and cloacal virus shedding. They also performed immunohistochemistry and obtained molecular virologic data by real-time reverse transcription polymerase chain reaction in tissue samples. In contrast to blackcaps, where 100% of the infected individuals died, queleas were much less susceptible, with a mortality of 82% and 18%, depending on the doses applied. In both species, the virus was shed within 3 to 6 days postinfection, mainly via the respiratory tract. Viral antigen was detected in 100% of the succumbed birds, particularly in the central nervous system. In blackcaps, the heart, lungs, and pancreas were mainly infected. In contrast, the pancreas was predominantly affected in queleas, whereas the heart and the lower respiratory tract were of minor relevance. The authors hypothesize that neurotropism should be considered a main factor for the fatal course of disease in Passeriformes after infection with HPAIV. PMID:20974871

  20. Live vaccination with an H5-hemagglutinin-expressing infectious laryngotracheitis virus recombinant protects chickens against different highly pathogenic avian influenza viruses of the H5 subtype.

    PubMed

    Pavlova, Sophia P; Veits, Jutta; Mettenleiter, Thomas C; Fuchs, Walter

    2009-08-13

    Recently, we described an infectious laryngotracheitis virus (ILTV, gallid herpesvirus 1) recombinant, which had been attenuated by deletion of the viral dUTPase gene UL50, and abundantly expressed the hemagglutinin (HA) gene of a H5N1 type highly pathogenic avian influenza virus (HPAIV) of Vietnamese origin. In the present study, efficacy of this vectored vaccine (ILTV-DeltaUL50IH5V) against different H5 HPAIV was evaluated in 6-week-old chickens. After a single ocular immunization all animals developed HA-specific antibodies, and were protected against lethal infection not only with the homologous HPAIV isolate A/duck/Vietnam/TG24-01/2005 (H5N1, clade 1, hemagglutinin amino acid sequence identity 100%), but also with heterologous HPAIV A/swan/Germany/R65/2006 (H5N1, clade 2.2, identity 96.1%) or HPAIV A/chicken/Italy/8/98 (H5N2, identity 93.8%). No symptoms of disease were observed after challenge with the H5N1 viruses, and only 20% of H5N2 challenged animals developed minimal clinical signs. Real-time RT-PCR analyses of oropharyngeal swabs revealed limited challenge virus replication, but the almost complete absence of HPAIV RNA from cloacal swabs indicated that no generalized infections occurred. Thus, unlike several previous vectors, ILTV-DeltaUL50IH5V was able to protect chickens against different HPAIV isolates of the H5 subtype. Vaccination with HA-expressing ILTV also allowed differentiation of immunized from AIV-infected animals by serological tests for antibodies against influenza virus nucleoprotein. PMID:19573638

  1. The effect of age on the pathogenesis of a highly pathogenic avian influenza (HPAI) H5N1 virus in Pekin ducks (Anas platyrhynchos) infected experimentally

    PubMed Central

    Löndt, Brandon Z.; Núñez, Alejandro.; Banks, Jill; Alexander, Dennis J.; Russell, Christine; Richard‐ Löndt, Angela C.; Brown, Ian H.

    2009-01-01

    Background  Highly pathogenic avian influenza (HPAI) H5N1 viruses have recently displayed increased virulence for wild waterfowl. Objectives  To study the effect of host age on the shedding and tissue dissemination of a HPAI H5N1 virus in infected Pekin ducks. Methods  Pekin ducks in two age‐matched groups (n = 18), 8 and 12 weeks old (wo) were each infected with 106 EID50/0·1 ml of HPAI A/turkey/Turkey/1/05 (H5N1, clade 2·2). Each day for 5 days, birds were monitored clinically, and cloacal and oropharyngeal swabs collected, before three birds from each group were selected randomly for post‐mortem examination. Tissue samples were collected for examination by real‐time RT‐PCR, histopathology and immunohistochemistry (IHC). Results  Severe clinical signs, including incoordination and torticollis were observed in the 8 wo group resulting in 100% mortality by 4 dpi. Mild clinical signs were observed in the 12 wo group with no mortality. Real‐time RT‐PCR and IHC results demonstrated the systemic spread of H5N1 virus in birds of both age groups. Higher levels of virus shedding were detected in oropharyngeal swabs than in cloacal swabs, with similar levels of shedding detected in both age groups. Variations in level and temporal dissemination of virus within tissues of older ducks, and the presence of the virus in brain and heart were observed, which coincided with the appearance of clinical signs preceding death in younger birds. Conclusions  These results are consistent with reports of natural infections of wild waterfowl and poultry possibly indicating an age‐related association with dissemination and clinical outcome in ducks following infection with H5N1 HPAI virus. PMID:20021503

  2. New outbreaks of H5N1 highly pathogenic avian influenza in domestic poultry and wild birds in Cambodia in 2011.

    PubMed

    Theary, Ren; San, Sorn; Davun, Holl; Allal, Lotfi; Lu, Huaguang

    2012-12-01

    Five outbreaks of H5N1 highly pathogenic avian influenza (HPAI) have been diagnosed in domestic poultry and wild birds in Cambodia from January to November of 2011. Of the five outbreaks, one occurred in a village backyard flock in Kandal province in January; two occurred in native Cambodian chickens and ducks in Banteay Meanchey province in July and August, respectively; one was seen in wild birds in Phnom Tamao Zoo in Kandal Province in July; and one outbreak occurred in commercial broilers at Opong Moan in Battambang province in northwestern Cambodia in early November. Clinically, HPAI-infected broilers and native chickens showed sudden death, severe depression, ruffled feathers, edema of heads and necks, swollen and cyanotic combs and wattles, and swollen and congested conjunctiva, with occasional hemorrhage, paralysis, and other neurologic signs. In ducks, significantly swollen sinuses and eyes, cloudy corneas, difficulty standing, or paralysis were commonly seen. Some affected ducks showed sudden death without obvious clinical symptoms. Necropsy lesions showed congestion and necrotic debris within sinuses and severe hemorrhages in gizzards, livers, and lungs in both affected native chickens and ducks during the new outbreaks in 2011. All five outbreaks were diagnosed as H5N1 HPAI by virus isolation and real-time reverse transcription-PCR tests. Once a backyard flock in a village or a poultry farm was diagnosed as positive for H5N1 HPAI; the whole village backyard poultry and all farm flocks were culled immediately by Cambodian provincial and central authorities as per the strategies adopted for the control of HPAI. PMID:23402105

  3. Wild bird surveillance around outbreaks of highly pathogenic avian influenza A(H5N8) virus in the Netherlands, 2014, within the context of global flyways.

    PubMed

    Verhagen, J H; van der Jeugd, H P; Nolet, B A; Slaterus, R; Kharitonov, S P; de Vries, P P; Vuong, O; Majoor, F; Kuiken, T; Fouchier, R A

    2015-01-01

    Highly pathogenic avian influenza (HPAI) A(H5N8) viruses that emerged in poultry in east Asia since 2010 spread to Europe and North America by late 2014. Despite detections in migrating birds, the role of free-living wild birds in the global dispersal of H5N8 virus is unclear. Here, wild bird sampling activities in response to the H5N8 virus outbreaks in poultry in the Netherlands are summarised along with a review on ring recoveries. HPAI H5N8 virus was detected exclusively in two samples from ducks of the Eurasian wigeon species, among 4,018 birds sampled within a three months period from mid-November 2014. The H5N8 viruses isolated from wild birds in the Netherlands were genetically closely related to and had the same gene constellation as H5N8 viruses detected elsewhere in Europe, in Asia and in North America, suggesting a common origin. Ring recoveries of migratory duck species from which H5N8 viruses have been isolated overall provide evidence for indirect migratory connections between East Asia and Western Europe and between East Asia and North America. This study is useful for better understanding the role of wild birds in the global epidemiology of H5N8 viruses. The need for sampling large numbers of wild birds for the detection of H5N8 virus and H5N8-virus-specific antibodies in a variety of species globally is highlighted, with specific emphasis in north-eastern Europe, Russia and northern China. PMID:25846491

  4. Intranasal vaccination with a plant-derived H5 HA vaccine protects mice and ferrets against highly pathogenic avian influenza virus challenge.

    PubMed

    Major, Diane; Chichester, Jessica A; Pathirana, Rishi D; Guilfoyle, Kate; Shoji, Yoko; Guzman, Carlos A; Yusibov, Vidadi; Cox, Rebecca J

    2015-01-01

    Highly pathogenic avian influenza H5N1 infection remains a public health threat and vaccination is the best measure of limiting the impact of a potential pandemic. Mucosal vaccines have the advantage of eliciting immune responses at the site of viral entry, thereby preventing infection as well as further viral transmission. In this study, we assessed the protective efficacy of hemagglutinin (HA) from the A/Indonesia/05/05 (H5N1) strain of influenza virus that was produced by transient expression in plants. The plant-derived vaccine, in combination with the mucosal adjuvant (3',5')-cyclic dimeric guanylic acid (c-di-GMP) was used for intranasal immunization of mice and ferrets, before challenge with a lethal dose of the A/Indonesia/05/05 (H5N1) virus. Mice vaccinated with 15 μg or 5 μg of adjuvanted HA survived the viral challenge, while all control mice died within 10 d of challenge. Vaccinated animals elicited serum hemagglutination inhibition, IgG and IgA antibody titers. In the ferret challenge study, all animals vaccinated with the adjuvanted plant vaccine survived the lethal viral challenge, while 50% of the control animals died. In both the mouse and ferret models, the vaccinated animals were better protected from weight loss and body temperature changes associated with H5N1 infection compared with the non-vaccinated controls. Furthermore, the systemic spread of the virus was lower in the vaccinated animals compared with the controls. Results presented here suggest that the plant-produced HA-based influenza vaccine adjuvanted with c-di-GMP is a promising vaccine/adjuvant combination for the development of new mucosal influenza vaccines. PMID:25714901

  5. Geographic information systems applied to the international surveillance and control of transboundary animal diseases, a focus on highly pathogenic avian influenza.

    PubMed

    Martin, Vincent; De Simone, Lorenzo; Lubroth, Juan

    2007-01-01

    To respond to the lack of early warning in dealing with livestock diseases, the Food and Agriculture Organization (FAO) developed and launched the Emergency Prevention System for Transboundary Animal and Plant Pests and Diseases (EMPRES) programme in 1994. Emphasis was placed on the prevention of emergencies due to transboundary epidemic diseases of livestock of significant economic, trade and/or food security importance. EMPRES early warning activities, mainly based on disease surveillance, reporting and epidemiological analysis are supported by the EMPRES-i information system which enables integration, analysis and sharing of animal health data, combined with relevant layers of information, such as socio-economic, production and climatic data. Indeed, data integration, analysis and mapping represent a key step towards a better understanding of the distribution and behaviour, source and evolution of a disease (or infection) for the definition of appropriate cost-effective disease control strategies. With the emergence of highly pathogenic avian influenza (HPAI) H5N1 in South-East Asia and its rapid spread beyond its known original distribution range, through its EMPRES programme the FAO has invested time and resources in the implementation of several studies to reveal HPAI epidemiological features in specific ecosystems of Asia and advise member countries accordingly on the best disease control options. Some of the key findings are presented in this paper and illustrate the incredible potential of using geographic information systems as part of international early warning systems and their multiple applications in the surveillance and control of infectious diseases, such as HPAI. PMID:20422520

  6. Satellite Tracking on the Flyways of Brown-Headed Gulls and Their Potential Role in the Spread of Highly Pathogenic Avian Influenza H5N1 Virus

    PubMed Central

    Ratanakorn, Parntep; Wiratsudakul, Anuwat; Wiriyarat, Witthawat; Eiamampai, Krairat; Farmer, Adrian H.; Webster, Robert G.; Chaichoune, Kridsada; Suwanpakdee, Sarin; Pothieng, Duangrat; Puthavathana, Pilaipan

    2012-01-01

    Brown-headed gulls (Larus brunnicephalus), winter visitors of Thailand, were tracked by satellite telemetry during 2008–2011 for investigating their roles in the highly pathogenic avian influenza (HPAI) H5N1 virus spread. Eight gulls negative for influenza virus infection were marked with solar-powered satellite platform transmitters at Bang Poo study site in Samut Prakarn province, Thailand; their movements were monitored by the Argos satellite tracking system, and locations were mapped. Five gulls completed their migratory cycles, which spanned 7 countries (China, Bangladesh, India, Myanmar, Thailand, Cambodia, and Vietnam) affected by the HPAI H5N1 virus. Gulls migrated from their breeding grounds in China to stay overwinter in Thailand and Cambodia; while Bangladesh, India, Myanmar, and Vietnam were the places of stopovers during migration. Gulls traveled an average distance of about 2400 km between Thailand and China and spent 1–2 weeks on migration. Although AI surveillance among gulls was conducted at the study site, no AI virus was isolated and no H5N1 viral genome or specific antibody was detected in the 75 gulls tested, but 6.6% of blood samples were positive for pan-influenza A antibody. No AI outbreaks were reported in areas along flyways of gulls in Thailand during the study period. Distance and duration of migration, tolerability of the captive gulls to survive the HPAI H5N1 virus challenge and days at viral shedding after the virus challenging suggested that the Brown-headed gull could be a potential species for AI spread, especially among Southeast Asian countries, the epicenter of H5N1 AI outbreak. PMID:23209623

  7. Highly Pathogenic Avian Influenza Virus Subtype H5N1 in Africa: A Comprehensive Phylogenetic Analysis and Molecular Characterization of Isolates

    PubMed Central

    Cattoli, Giovanni; Monne, Isabella; Fusaro, Alice; Joannis, Tony M.; Lombin, Lami H.; Aly, Mona M.; Arafa, Abdel S.; Sturm-Ramirez, Katharine M.; Couacy-Hymann, Emmanuel; Awuni, Joseph A.; Batawui, Komla B.; Awoume, Kodzo A.; Aplogan, Gilbert L.; Sow, Adama; Ngangnou, Andrè C.; El Nasri Hamza, Iman M.; Gamatié, Djibo; Dauphin, Gwenaelle; Domenech, Joseph M.; Capua, Ilaria

    2009-01-01

    Highly pathogenic avian influenza virus A/H5N1 was first officially reported in Africa in early 2006. Since the first outbreak in Nigeria, this virus spread rapidly to other African countries. From its emergence to early 2008, 11 African countries experienced A/H5N1 outbreaks in poultry and human cases were also reported in three of these countries. At present, little is known of the epidemiology and molecular evolution of A/H5N1 viruses in Africa. We have generated 494 full gene sequences from 67 African isolates and applied molecular analysis tools to a total of 1,152 A/H5N1 sequences obtained from viruses isolated in Africa, Europe and the Middle East between 2006 and early 2008. Detailed phylogenetic analyses of the 8 gene viral segments confirmed that 3 distinct sublineages were introduced, which have persisted and spread across the continent over this 2-year period. Additionally, our molecular epidemiological studies highlighted the association between genetic clustering and area of origin in a majority of cases. Molecular signatures unique to strains isolated in selected areas also gave us a clearer picture of the spread of A/H5N1 viruses across the continent. Mutations described as typical of human influenza viruses in the genes coding for internal proteins or associated with host adaptation and increased resistance to antiviral drugs have also been detected in the genes coding for transmembrane proteins. These findings raise concern for the possible human health risk presented by viruses with these genetic properties and highlight the need for increased efforts to monitor the evolution of A/H5N1 viruses across the African continent. They further stress how imperative it is to implement sustainable control strategies to improve animal and public health at a global level. PMID:19290041

  8. Experimental co-infections of domestic ducks with a virulent Newcastle disease virus and low or highly pathogenic avian influenza viruses

    PubMed Central

    Pantin-Jackwood, Mary; Costa-Hurtado, Mar; Miller, Patti J.; Afonso, Claudio L.; Spackman, Erica; Kapczynski, Darrell; Shepherd, Eric; Smith, Diane; Swayne, David

    2015-01-01

    Infections with avian influenza viruses (AIV) of low and high pathogenicity (LP and HP) and Newcastle disease virus (NDV) are commonly reported in domestic ducks in many parts of the world. However, it’s not clear if co-infections with these viruses affect the severity of the diseases they produce, the amount of virus shed, and transmission of the viruses. In this study we infected domestic ducks with a virulent NDV virus (vNDV) and either a LPAIV or a HPAIV by giving the viruses individually, simultaneously, or sequentially two days apart. No clinical signs were observed in ducks infected or co-infected with vNDV and LPAIV, but co-infection decreased the number of ducks shedding vNDV and the amount of virus shed (P <0.01) at 4 days post inoculation (dpi). Co-infection didn’t affect the number of birds shedding LPAIV, but more LPAIV was shed at 2 dpi (P <0.0001) from ducks inoculated with only LPAIV compared to ducks co-infected with vNDV. Ducks that received the HPAIV with the vNDV simultaneously survived fewer days (P <0.05) compared to the ducks that received the vNDV two days before the HPAIV. Co-infection also reduced transmission of vNDV to naïve contact ducks housed with the inoculated ducks. In conclusion, domestic ducks can become co-infected with vNDV and LPAIV with no effect on clinical signs but with reduction of virus shedding and transmission. These findings indicate that infection with one virus can interfere with replication of another, modifying the pathogenesis and transmission of the viruses. PMID:25759292

  9. Host-specific exposure and fatal neurologic disease in wild raptors from highly pathogenic avian influenza virus H5N1 during the 2006 outbreak in Germany.

    PubMed

    van den Brand, Judith Ma; Krone, Oliver; Wolf, Peter U; van de Bildt, Marco W G; van Amerongen, Geert; Osterhaus, Albert D M E; Kuiken, Thijs

    2015-01-01

    Raptors may contract highly pathogenic avian influenza virus H5N1 by hunting or scavenging infected prey. However, natural H5N1 infection in raptors is rarely reported. Therefore, we tested raptors found dead during an H5N1 outbreak in wild waterbirds in Mecklenburg-Western Pomerania, Germany, in 2006 for H5N1-associated disease. We tested 624 raptors of nine species-common buzzard (385), Eurasian sparrowhawk (111), common kestrel (38), undetermined species of buzzard (36), white-tailed sea eagle (19), undetermined species of raptor (12), northern goshawk (10), peregrine falcon (6), red kite (3), rough-legged buzzard (3), and western marsh-harrier (1)-for H5N1 infection in tracheal or combined tracheal/cloacal swabs of all birds, and on major tissues of all white-tailed sea eagles. H5N1 infection was detected in two species: common buzzard (12 positive, 3.1%) and peregrine falcon (2 positive, 33.3%). In all necropsied birds (both peregrine falcons and the six freshest common buzzards), H5N1 was found most consistently and at the highest concentration in the brain, and the main H5N1-associated lesion was marked non-suppurative encephalitis. Other H5N1-associated lesions occurred in air sac, lung, oviduct, heart, pancreas, coelomic ganglion, and adrenal gland. Our results show that the main cause of death in H5N1-positive raptors was encephalitis. Our results imply that H5N1 outbreaks in wild waterbirds are more likely to lead to exposure to and mortality from H5N1 in raptors that hunt or scavenge medium-sized birds, such as common buzzards and peregrine falcons, than in raptors that hunt small birds and do not scavenge, such as Eurasian sparrowhawks and common kestrels. PMID:25879698

  10. The application of GIS and RS for epidemics: a case study of the spread of highly pathogenic avian influenza in China in 2004-2005

    NASA Astrophysics Data System (ADS)

    Zhong, Shaobo; Lan, Guiwen; Zhu, Haiguo; Wen, Renqiang; Zhao, Qiansheng; Huang, Quanyi

    2008-12-01

    Because of their inherent advantages, Geographic Information System (GIS) and Remote Sensing (RS) are extremely useful for dealing with geographically referenced information. In the study of epidemics, most data are geographically referenced, which makes GIS and RS the perfect even necessary tools for processing, analysis, representation of epidemic data. Comprehensively considering the data requirements in the study of highly pathogenic avian influenza (HPAI) coupled with the quality of the existing remotely sensed data in terms of the resolution of space, time and spectra, the data sensed by MODIS are chosen and the relevant methods and procedures of data processing from RS and GIS for some environmental factors are proposed. Through using spatial analysis functions and Exploratory Spatial Data Analysis (ESDA) of GIS, some results of relationship between HPAI occurrences and these potential factors are presented. The role played by bird migration is also preliminarily illustrated with some operations such as visualization, overlapping etc. provided by GIS. Through the work of this paper, we conclude: Firstly, the migration of birds causes the spread of HPAI all over the country in 2004-2005. Secondly, the migration of birds is the reason why the spread of HPAI is perturbed. That is, for some classic communicable diseases, their spread exhibits obvious spatial diffusion process. However, the spread of HPAI breaks this general rule. We think leap diffusion and time lag are the probable reasons for this kind of phenomena. Potential distribution of HPAI viruses (corresponding to the distribution of flyways and putative risk sources) is not completely consistent with the occurrences of HPAI. For this phenomenon, we think, in addition to the flyways of birds, all kinds of geographical, climatic factors also have important effect on the occurrences of HPAI. Through the case study of HPAI, we can see that GIS and RS can play very important roles in the study of epidemics.

  11. Highly pathogenic avian influenza virus H5N1 infection in a long-distance migrant shorebird under migratory and non-migratory states.

    PubMed

    Reperant, Leslie A; van de Bildt, Marco W G; van Amerongen, Geert; Buehler, Debbie M; Osterhaus, Albert D M E; Jenni-Eiermann, Susi; Piersma, Theunis; Kuiken, Thijs

    2011-01-01

    Corticosterone regulates physiological changes preparing wild birds for migration. It also modulates the immune system and may lead to increased susceptibility to infection, with implications for the spread of pathogens, including highly pathogenic avian influenza virus (HPAIV) H5N1. The red knot (Calidris canutus islandica) displays migratory changes in captivity and was used as a model to assess the effect of high plasma concentration of corticosterone on HPAIV H5N1 infection. We inoculated knots during pre-migration (N = 6), fueling (N = 5), migration (N = 9) and post-migration periods (N = 6). Knots from all groups shed similar viral titers for up to 5 days post-inoculation (dpi), peaking at 1 to 3 dpi. Lesions of acute encephalitis, associated with virus replication in neurons, were seen in 1 to 2 knots per group, leading to neurological disease and death at 5 to 11 dpi. Therefore, the risk of HPAIV H5N1 infection in wild birds and of potential transmission between wild birds and poultry may be similar at different times of the year, irrespective of wild birds' migratory status. However, in knots inoculated during the migration period, viral shedding levels positively correlated with pre-inoculation plasma concentration of corticosterone. Of these, knots that did not become productively infected had lower plasma concentration of corticosterone. Conversely, elevated plasma concentration of corticosterone did not result in an increased probability to develop clinical disease. These results suggest that birds with elevated plasma concentration of corticosterone at the time of migration (ready to migrate) may be more susceptible to acquisition of infection and shed higher viral titers--before the onset of clinical disease--than birds with low concentration of corticosterone (not ready for take-off). Yet, they may not be more prone to the development of clinical disease. Therefore, assuming no effect of sub-clinical infection on the likelihood of

  12. Experimental infection of highly and low pathogenic avian influenza viruses to chickens, ducks, tree sparrows, jungle crows, and black rats for the evaluation of their roles in virus transmission.

    PubMed

    Hiono, Takahiro; Okamatsu, Masatoshi; Yamamoto, Naoki; Ogasawara, Kohei; Endo, Mayumi; Kuribayashi, Saya; Shichinohe, Shintaro; Motohashi, Yurie; Chu, Duc-Huy; Suzuki, Mizuho; Ichikawa, Takaya; Nishi, Tatsuya; Abe, Yuri; Matsuno, Keita; Tanaka, Kazuyuki; Tanigawa, Tsutomu; Kida, Hiroshi; Sakoda, Yoshihiro

    2016-01-15

    Highly pathogenic avian influenza viruses (HPAIVs) have spread in both poultry and wild birds. Determining transmission routes of these viruses during an outbreak is essential for the control of avian influenza. It has been widely postulated that migratory ducks play crucial roles in the widespread dissemination of HPAIVs in poultry by carrying viruses along with their migrations; however close contacts between wild migratory ducks and poultry are less likely in modern industrial poultry farming settings. Therefore, we conducted experimental infections of HPAIVs and low pathogenic avian influenza viruses (LPAIVs) to chickens, domestic ducks, tree sparrows, jungle crows, and black rats to evaluate their roles in virus transmission. The results showed that chickens, ducks, sparrows, and crows were highly susceptible to HPAIV infection. Significant titers of virus were recovered from the sparrows and crows infected with HPAIVs, which suggests that they potentially play roles of transmission of HPAIVs to poultry. In contrast, the growth of LPAIVs was limited in each of the animals tested compared with that of HPAIVs. The present results indicate that these common synanthropes play some roles in influenza virus transmission from wild birds to poultry. PMID:26711036

  13. Highly Pathogenic Avian Influenza H5N8 Clade 2.3.4.4 Virus: Equivocal Pathogenicity and Implications for Surveillance Following Natural Infection in Breeder Ducks in the United Kingdom.

    PubMed

    Núñez, A; Brookes, S M; Reid, S M; Garcia-Rueda, C; Hicks, D J; Seekings, J M; Spencer, Y I; Brown, I H

    2016-02-01

    Since early 2014, several outbreaks involving novel reassortant highly pathogenic avian influenza (HPAI) A(H5N8) viruses have been detected in poultry and wild bird species in Asia, Europe and North America. These viruses have been detected in apparently healthy and dead wild migratory birds, as well as in domestic chickens, turkeys, geese and ducks. In this study, we describe the pathology of an outbreak of H5N8 HPAIV in breeder ducks in the UK. A holding with approximately 6000 breeder ducks, aged approximately 60 weeks, showed a gradual reduction in egg production and increased mortality over a 7-day period. Post-mortem examination revealed frequent fibrinous peritonitis, with severely haemorrhagic ovarian follicles and occasional splenic and pancreatic necrosis and high incidence of mycotic granulomas in the air sacs and lung. Low-to-moderate levels of HPAI H5N8 virus were detected mainly in respiratory and digestive tract, with minor involvement of other organs. Although histopathological examination confirmed the gross pathology findings, intralesional viral antigen detection by immunohistochemistry was not observed. Immunolabelled cells were rarely only present in inflamed air sacs and serosa, usually superficial to granulomatous inflammation. Abundant bacterial microcolonies were observed in haemorrhagic ovaries and oviduct. The limited viral tissue distribution and presence of inter-current fungal and bacterial infections suggest a minor role for HPAIV H5N8 in clinical disease in layer ducks. PMID:26519234

  14. Simultaneous typing of nine avian respiratory pathogens using a novel GeXP analyzer-based multiplex PCR assay.

    PubMed

    Xie, Zhixun; Luo, Sisi; Xie, Liji; Liu, Jiabo; Pang, Yaoshan; Deng, Xianwen; Xie, Zhiqin; Fan, Qing; Khan, Mazhar I

    2014-10-01

    A new, rapid, and high-throughput GenomeLab Gene Expression Profiler (GeXP) analyzer-based multiplex PCR method was developed for simultaneous detection and differentiation of nine avian respiratory pathogens. The respiratory pathogens included in this study were avian influenza subtypes H5, H7, and H9, infectious bronchitis virus (IBV), Newcastle disease virus (NDV), infectious laryngotracheitis virus (ILTV), Mycoplasma gallisepticum (MG), Mycoplasma synoviae (MS) and Haemophilus paragallinarum (HPG). Ten pairs of primers were designed using conserved and specific sequence genes of AIV subtypes and respiratory pathogens from GenBank. Single and mixed pathogen cDNA/DNA templates were used to evaluate the specificity of the GeXP-multiplex assay. The corresponding specific DNA products were amplified for each pathogen. The specific DNA product amplification peaks of nine respiratory pathogens were observed on the GeXP analyzer. Non-respiratory avian pathogens, including chicken infectious anemia virus, fowl adenovirus, avian reovirus and infectious bursal disease virus, did not produce DNA products. The detection limit for the GeXP-multiplex assay was determined to be 100 copies/μl using various pre-mixed plasmids/ssRNAs containing known target genes of the respiratory pathogens. Further, GeXP-multiplex PCR assay was 100% specific when 24 clinical samples with respiratory infections were tested in comparison with conventional PCR method. The GeXP-multiplex PCR assay provides a novel tool for simultaneous detection and differentiation of nine avian respiratory pathogens. PMID:25025815

  15. Transcriptional analysis of the innate immune response of ducks to different species-of-origin low pathogenic H7 avian influenza viruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Ducks represent an important reservoir for avian influenza (AI) viruses and are partly responsible for the worldwide dissemination of AI. Due to the ability of some low pathogenicity avian influenza viruses (LPAIV) of the hemagglutinin H7 subtype to mutate into a highly pathogenic form o...

  16. Expression of H5 hemagglutinin vaccine antigen in common duckweed (Lemna minor) protects against H5N1 high pathogenicity avian influenza virus challenge in immunized chickens.

    PubMed

    Bertran, Kateri; Thomas, Colleen; Guo, Xuan; Bublot, Michel; Pritchard, Nikki; Regan, Jeffrey T; Cox, Kevin M; Gasdaska, John R; Dickey, Lynn F; Kapczynski, Darrell R; Swayne, David E

    2015-07-01

    A synthetic hemagglutinin (HA) gene from the highly pathogenic avian influenza (HPAI) virus A/chicken/Indonesia/7/2003 (H5N1) (Indo/03) was expressed in aquatic plant Lemna minor (rLemna-HA). In Experiment 1, efficacy of rLemna-HA was tested on birds immunized with 0.2μg or 2.3 μg HA and challenged with 10(6) mean chicken embryo infectious doses (EID50) of homologous virus strain. Both dosages of rLemna-HA conferred clinical protection and dramatically reduced viral shedding. Almost all the birds immunized with either dosage of rLemna-HA elicited HA antibody titers against Indo/03 antigen, suggesting an association between levels of anti-Indo/03 antibodies and protection. In Experiment 2, efficacy of rLemna-HA was tested on birds immunized with 0.9 μg or 2.2 μg HA and challenged with 10(6) EID50 of heterologous H5N1 virus strains A/chicken/Vietnam/NCVD-421/2010 (VN/10) or A/chicken/West Java/PWT-WIJ/2006 (PWT/06). Birds challenged with VN/10 exhibited 100% survival regardless of immunization dosage, while birds challenged with PWT/06 had 50% and 30% mortality at 0.9 μg HA and 2.2 μg HA, respectively. For each challenge virus, viral shedding titers from 2.2 μg HA vaccinated birds were significantly lower than those from 0.9μg HA vaccinated birds, and titers from both immunized groups were in turn significantly lower than those from sham vaccinated birds. Even if immunized birds elicited HA titers against the vaccine antigen Indo/03, only the groups challenged with VN/10 developed humoral immunity against the challenge antigen. None (rLemna-HA 0.9 μg HA) and 40% (rLemna-HA 2.2 μg HA) of the immunized birds challenged with PWT/06 elicited pre-challenge antibody titers, respectively. In conclusion, Lemna-expressed HA demonstrated complete protective immunity against homologous challenge and suboptimal protection against heterologous challenge, the latter being similar to results from inactivated whole virus vaccines. Transgenic duckweed-derived HA could be a

  17. Knowledge and Perceptions of Highly Pathogenic Avian Influenza (HPAI) among Poultry Traders in Live Bird Markets in Bali and Lombok, Indonesia.

    PubMed

    Kurscheid, Johanna; Millar, Joanne; Abdurrahman, Muktasam; Ambarawati, I Gusti Agung Ayu; Suadnya, Wayan; Yusuf, Ria Puspa; Fenwick, Stanley; Toribio, Jenny-Ann L M L

    2015-01-01

    Highly Pathogenic Avian Influenza (HPAI) has been prevalent in Indonesia since 2003 causing major losses to poultry production and human deaths. Live bird markets are considered high risk areas due to the density of large numbers of mixed poultry species of unknown disease status. Understanding trader knowledge and perceptions of HPAI and biosecurity is critical to reducing transmission risk and controlling the disease. An interview-administered survey was conducted at 17 live bird markets on the islands of Bali and Lombok in 2008 and 2009. A total of 413 live poultry traders were interviewed. Respondents were mostly male (89%) with a mean age of 45 years (range: 19-81). The main source of AI information was TV (78%), although personal communication was also identified to be an important source, particularly among female traders (60%) and respondents from Bali (43%). More than half (58%) of live poultry traders interviewed knew that infected birds can transmit HPAI viruses but were generally unaware that viruses can be introduced to markets by fomites. Cleaning cages and disposing of sick and dead birds were recognized as the most important steps to prevent the spread of disease by respondents. Two thirds (n = 277) of respondents were unwilling to report sudden or suspicious bird deaths to authorities. Bali vendors perceive biosecurity to be of higher importance than Lombok vendors and are more willing to improve biosecurity within markets than traders in Lombok. Collectors and traders selling large numbers (>214) of poultry, or selling both chickens and ducks, have better knowledge of HPAI transmission and prevention than vendors or traders selling smaller quantities or only one species of poultry. Education was strongly associated with better knowledge but did not influence positive reporting behavior. Our study reveals that most live poultry traders have limited knowledge of HPAI transmission and prevention and are generally reluctant to report bird deaths

  18. Effect of Infection with a Mesogenic Strain of Newcastle Disease Virus on Infection with Highly Pathogenic Avian Influenza Virus in Chickens.

    PubMed

    Costa-Hurtado, Mar; Afonso, Claudio L; Miller, Patti J; Shepherd, Eric; DeJesus, Eric; Smith, Diane; Pantin-Jackwood, Mary J

    2016-05-01

    Little is known on the interactions between avian influenza virus (AIV) and Newcastle disease virus (NDV) when coinfecting the same poultry host. In a previous study we found that infection of chickens with a mesogenic strain of NDV (mNDV) can reduce highly pathogenic AIV (HPAIV) replication, clinical disease, and mortality. This interaction depended on the titer of the viruses used and the timing of the infections. To further explore the effect of mNDV infectious dose in protecting chickens against HPAIV infection, 2-wk-old birds were inoculated with different doses of mNDV (10(4), 10(6), or 10(7) 50% embryo infective dose [EID50]) 3 days before inoculation with a HPAIV (10(5) or 10(6) EID50). Although birds coinfected with the higher mNDV doses (10(6) or 10(7)) survived for longer than birds inoculated only with HPAIV (10(5)), we did not observe the same protection with the lower dose of mNDV (10(4)) or when given the higher dose of HPAIV (10(6)), indicating that the relation between the titer of the two coinfecting viruses is determinant in the outcome. In a similar experiment, a higher number of 4-wk-old birds survived, and for longer, even when given higher HPAIV doses (10(6.3) and 10(7.3) EID50). In addition, we also examined the duration of protection provided by mNDV (10(7) EID50) on a HPAIV infection. Five-week-old chickens were inoculated with mNDV followed by inoculation with 10(6) EID50 of an HPAIV given at 2, 4, 6, or 9 days after the mNDV. HPAIV replication was affected and an increase in survival was found in all coinfected groups when compared to the HPAIV single-inoculated group, but the mortality in coinfected groups was high. In conclusion, previous inoculation with mNDV can affect HPAIV replication in chickens for at least 9 days, but this viral interference is titer dependent. PMID:27309067

  19. Knowledge and Perceptions of Highly Pathogenic Avian Influenza (HPAI) among Poultry Traders in Live Bird Markets in Bali and Lombok, Indonesia

    PubMed Central

    Kurscheid, Johanna; Millar, Joanne; Abdurrahman, Muktasam; Ambarawati, I Gusti Agung Ayu; Suadnya, Wayan; Yusuf, Ria Puspa; Fenwick, Stanley; Toribio, Jenny-Ann L. M. L

    2015-01-01

    Highly Pathogenic Avian Influenza (HPAI) has been prevalent in Indonesia since 2003 causing major losses to poultry production and human deaths. Live bird markets are considered high risk areas due to the density of large numbers of mixed poultry species of unknown disease status. Understanding trader knowledge and perceptions of HPAI and biosecurity is critical to reducing transmission risk and controlling the disease. An interview-administered survey was conducted at 17 live bird markets on the islands of Bali and Lombok in 2008 and 2009. A total of 413 live poultry traders were interviewed. Respondents were mostly male (89%) with a mean age of 45 years (range: 19–81). The main source of AI information was TV (78%), although personal communication was also identified to be an important source, particularly among female traders (60%) and respondents from Bali (43%). More than half (58%) of live poultry traders interviewed knew that infected birds can transmit HPAI viruses but were generally unaware that viruses can be introduced to markets by fomites. Cleaning cages and disposing of sick and dead birds were recognized as the most important steps to prevent the spread of disease by respondents. Two thirds (n = 277) of respondents were unwilling to report sudden or suspicious bird deaths to authorities. Bali vendors perceive biosecurity to be of higher importance than Lombok vendors and are more willing to improve biosecurity within markets than traders in Lombok. Collectors and traders selling large numbers (>214) of poultry, or selling both chickens and ducks, have better knowledge of HPAI transmission and prevention than vendors or traders selling smaller quantities or only one species of poultry. Education was strongly associated with better knowledge but did not influence positive reporting behavior. Our study reveals that most live poultry traders have limited knowledge of HPAI transmission and prevention and are generally reluctant to report bird deaths

  20. Risk factors of highly pathogenic avian influenza H5N1 occurrence at the village and farm levels in the Red River Delta Region in Vietnam.

    PubMed

    Desvaux, S; Grosbois, V; Pham, T T H; Fenwick, S; Tollis, S; Pham, N H; Tran, A; Roger, F

    2011-12-01

    A case-control study at both village and farm levels was designed to investigate risk factors for highly pathogenic avian influenza H5N1 during the 2007 outbreaks in one province of Northern Vietnam. Data related to human and natural environments, and poultry production systems were collected for 19 case and 38 unmatched control villages and 19 pairs of matched farms. Our results confirmed the role of poultry movements and trading activities. In particular, our models found that higher number of broiler flocks in the village increased the risk (OR = 1.49, 95% CI: 1.12-1.96), as well as the village having at least one poultry trader (OR = 11.53, 95% CI: 1.34-98.86). To a lesser extent, in one of our two models, we also identified that increased density of ponds and streams, commonly used for waterfowl production, and greater number of duck flocks in the village also increased the risk. The higher percentage of households keeping poultry, as an indicator of households keeping backyard poultry in our study population, was a protective factor (OR = 0.95, 95% CI: 0.91-0.98). At the farm level, three risk factors at the 5% level of type I error were identified by univariate analysis: a greater total number of birds (P = 0.006), increase in the number of flocks having access to water (P = 0.027) and a greater number of broiler flocks in the farm (P = 0.049). Effect of vaccination implementation (date and doses) was difficult to investigate because of a poor recording system. Some protective or risk factors with limited effect may not have been identified owing to our limited sample size. Nevertheless, our results provide a better understanding of local transmission mechanisms of HPAI H5N1 in one province of the Red River Delta region in Vietnam and highlight the need to reduce at-risk trading and production practices. PMID:21545692

  1. Genetic relationships among pathogenic strains of avian Escherichia coli.

    PubMed Central

    Whittam, T S; Wilson, R A

    1988-01-01

    Genetic relationships among 79 strains of Escherichia coli, isolated mostly from diseased chickens, were estimated on the basis of allelic variation at 15 enzyme-encoding loci, determined by multilocus enzyme electrophoresis. All 15 loci were polymorphic, with an average of 4.1 allelic states per locus. Comparisons of the observed combinations of alleles among strains revealed 37 distinct multilocus genotypes that were used to define naturally occurring cell lineages or clones. Two-thirds of the isolates were classified into 10 clones, including a single multilocus genotype that accounted for about a third of all isolates. For isolates of these clones, there was a high concordance (76%) between identity in multilocus genotype, O:K:H serotype, and pattern of resistance to five antibiotics. Cluster analysis disclosed two major complexes of closely related clones, in which more than 50% of the isolates were associated with localized infections (airsacculitis and pericarditis). Both complexes contained isolates with serotype O2:K1, indicating that this serotype can occur on diverse chromosomal backgrounds. The results suggest that colibacillosis within avian populations is caused by a relatively limited number of pathogenic clones representing at least two distinct clone complexes. PMID:3045001

  2. Characterization and phylogenetic analysis of a highly pathogenic avian influenza H5N1 virus isolated from diseased ostriches (Struthio camelus) in the Kingdom of Saudi Arabia.

    PubMed

    Ismail, Mahmoud Moussa; El-Sabagh, I M; Al-Ankari, Abdul-Rahman

    2014-06-01

    During 2007, two outbreaks of avian influenza virus (AIV) in backyard and commercial ostrich flocks were first reported in the Kingdom of Saudi Arabia (KSA). The infected ostriches suffered from depression, anorexia, and diarrhea and some exhibited sudden death. A rapid AIV-group antigen detection and real-time reverse-transcription PCR (rtRT-PCR) were initially performed on cloacal and tracheal swabs collected from diseased birds. Pools from positive-tested swabs for each flock were utilized for virus isolation in specific-pathogen-free embryonating chicken eggs. H5N1 AIV was identified in the harvested allantoic fluids by hemagglutination followed by hemagglutination inhibition and rtRT-PCR. The viruses responsible for these two outbreaks were sequenced and characterized as HPAIV H5N1 (A/ostrich/Saudi Arabia/6732-3/2007 and A/ostrich/Saudi Arabia/3489-73VIR08/ 2007) from backyard and commercial flocks, respectively. Phylogenetic analysis of both isolates revealed that the two viruses belong to clade 2.2 sublineage II and cluster with the HPAIV H5N1 isolated from falcons and turkeys during 2007 in KSA. PMID:25055639

  3. Replication and Adaptive Mutations of Low Pathogenic Avian Influenza Viruses in Tracheal Organ Cultures of Different Avian Species

    PubMed Central

    Petersen, Henning; Matrosovich, Mikhail; Pleschka, Stephan; Rautenschlein, Silke

    2012-01-01

    Transmission of avian influenza viruses (AIV) between different avian species may require genome mutations that allow efficient virus replication in a new species and could increase virulence. To study the role of domestic poultry in the evolution of AIV we compared replication of low pathogenic (LP) AIV of subtypes H9N2, H7N7 and H6N8 in tracheal organ cultures (TOC) and primary embryo fibroblast cultures of chicken, turkey, Pekin duck and homing pigeon. Virus strain-dependent and avian species-related differences between LPAIV were observed in growth kinetics and induction of ciliostasis in TOC. In particular, our data demonstrate high susceptibility to LPAIV of turkey TOC contrasted with low susceptibility of homing pigeon TOC. Serial virus passages in the cells of heterologous host species resulted in adaptive mutations in the AIV genome, especially in the receptor-binding site and protease cleavage site of the hemagglutinin. Our data highlight differences in susceptibility of different birds to AIV viruses and emphasizes potential role of poultry in the emergence of new virus variants. PMID:22912693

  4. Antibody Titer Has Positive Predictive Value for Vaccine Protection against Challenge with Natural Antigenic-Drift Variants of H5N1 High-Pathogenicity Avian Influenza Viruses from Indonesia

    PubMed Central

    Suarez, David L.; Spackman, Erica; Jadhao, Samadhan; Dauphin, Gwenaelle; Kim-Torchetti, Mia; McGrane, James; Weaver, John; Daniels, Peter; Wong, Frank; Selleck, Paul; Wiyono, Agus; Indriani, Risa; Yupiana, Yuni; Sawitri Siregar, Elly; Prajitno, Teguh; Smith, Derek; Fouchier, Ron

    2015-01-01

    ABSTRACT Vaccines are used in integrated control strategies to protect poultry against H5N1 high-pathogenicity avian influenza (HPAI). H5N1 HPAI was first reported in Indonesia in 2003, and vaccination was initiated in 2004, but reports of vaccine failures began to emerge in mid-2005. This study investigated the role of Indonesian licensed vaccines, specific vaccine seed strains, and emerging variant field viruses as causes of vaccine failures. Eleven of 14 licensed vaccines contained the manufacturer's listed vaccine seed strains, but 3 vaccines contained a seed strain different from that listed on the label. Vaccines containing A/turkey/Wisconsin/1968 (WI/68), A/chicken/Mexico/28159-232/1994 (Mex/94), and A/turkey/England/N28/1973 seed strains had high serological potency in chickens (geometric mean hemagglutination inhibition [HI] titers, ≥1:169), but vaccines containing strain A/chicken/Guangdong/1/1996 generated by reverse genetics (rg; rgGD/96), A/chicken/Legok/2003 (Legok/03), A/chicken/Vietnam/C57/2004 generated by rg (rgVN/04), or A/chicken/Legok/2003 generated by rg (rgLegok/03) had lower serological potency (geometric mean HI titers, ≤1:95). In challenge studies, chickens immunized with any of the H5 avian influenza vaccines were protected against A/chicken/West Java/SMI-HAMD/2006 (SMI-HAMD/06) and were partially protected against A/chicken/Papua/TA5/2006 (Papua/06) but were not protected against A/chicken/West Java/PWT-WIJ/2006 (PWT/06). Experimental inactivated vaccines made with PWT/06 HPAI virus or rg-generated PWT/06 low-pathogenicity avian influenza (LPAI) virus seed strains protected chickens from lethal challenge, as did a combination of a commercially available live fowl poxvirus vaccine expressing the H5 influenza virus gene and inactivated Legok/03 vaccine. These studies indicate that antigenic variants did emerge in Indonesia following widespread H5 avian influenza vaccine usage, and efficacious inactivated vaccines can be developed using

  5. Lack of chicken adaptation of newly emergent Eurasian H5N8 and reassortant H5N2 high pathogenicity avian influenza viruses in the U.S. is consistent with restricted poultry outbreaks in the Pacific flyway during 2014-2015

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In 2014-2015, the U.S. experienced an unprecedented outbreak of Eurasian clade 2.3.4.4 H5 highly pathogenic avian influenza (HPAI) virus, initially affecting mainly wild birds and few backyard and commercial poultry premises. To better model the outbreak, the pathogenesis and transmission dynamics o...

  6. High rates of detection of Clade 2.3.4.4 Highly Pathogenic Avian Influenza H5 viruses in wild birds in the Pacific Northwest during the winter of 2014/2015

    USGS Publications Warehouse

    Ip, Hon S.; Dusek, Robert J.; Bodenstein, Barbara L.; Torchetti, Mia Kim; DeBruyn, Paul; Mansfield, Kristin G.; DeLiberto, Thomas; Sleeman, Jonathan M.

    2016-01-01

    In 2014, Clade 2.3.4.4 H5N8 highly pathogenic avian influenza (HPAI) viruses spread across the Republic of Korea and ultimately were reported in China, Japan, Russia and Europe. Mortality associated with a reassortant HPAI H5N2 virus was detected in poultry farms in Western Canada at the end of November. The same strain (with identical genetic structure) was then detected in free-living wild birds that had died prior to December 8 of unrelated causes in Whatcom County, Washington, USA in an area contiguous with the index Canadian location. A gyrfalcon (Falco rusticolus) that had hunted and fed on an American wigeon (Anas americana) on December 6 in the same area and died two days later, tested positive for the Eurasian origin HPAI H5N8. Subsequently, an Active Surveillance Program using hunter-harvest waterfowl in Washington and Oregon detected ten HPAI H5 viruses, of three different subtypes (four H5N2, three H5N8 and three H5N1) with 4 segments in common (HA, PB2, NP and MA). In addition, a mortality-based Passive Surveillance Program detected 18 HPAI (14 H5N2 and four H5N8) cases from Idaho, Kansas, Oregon, Minnesota, Montana, Washington and Wisconsin. Comparatively, mortality-based passive surveillance appears to be detecting these HPAI infections at a higher rate than active surveillance during the period following initial introduction into the US.

  7. Development of FPV140 antigen-specific ELISA differentiating fowlpox virus isolates from all other viral pathogens of avian origin.

    PubMed

    Li, G; Hong, Q; Ren, Y; Lillehoj, H S; He, C; Ren, X

    2012-10-01

    The FPV140 gene encodes an envelope protein of fowlpox virus (FPV). In this study, the FPV140 gene of FPV Chinese isolate HH2008 was cloned and the comparison of its sequence with other FPV isolates showed it to be highly conserved across all FPV isolates. A recombinant plasmid pET-FPV140 carrying FPV140 gene was constructed and transformed into Escherichia coli. The optimal expression condition for the FPV140 gene was developed and purified FPV140 recombinant protein was used to produce rabbit polyclonal antibody. An indirect ELISA using this anti-FPV140 polyclonal antibody was capable of distinguishing avian FPV isolates from other common avian pathogens such as mycoplasma gallisepticum, infectious laryngotracheitis virus, avian influenza virus, infectious bursal disease virus, and avian infectious bronchitis virus. This ELISA will serve as a useful diagnostic tool for the detection of FPV in clinical samples. PMID:22991535

  8. Disease Severity Is Associated with Differential Gene Expression at the Early and Late Phases of Infection in Nonhuman Primates Infected with Different H5N1 Highly Pathogenic Avian Influenza Viruses

    PubMed Central

    Muramoto, Yukiko; Shoemaker, Jason E.; Le, Mai Quynh; Itoh, Yasushi; Tamura, Daisuke; Sakai-Tagawa, Yuko; Imai, Hirotaka; Uraki, Ryuta; Takano, Ryo; Kawakami, Eiryo; Ito, Mutsumi; Okamoto, Kiyoko; Ishigaki, Hirohito; Mimuro, Hitomi; Sasakawa, Chihiro; Matsuoka, Yukiko; Noda, Takeshi; Fukuyama, Satoshi; Ogasawara, Kazumasa; Kitano, Hiroaki

    2014-01-01

    ABSTRACT Occasional transmission of highly pathogenic avian H5N1 influenza viruses to humans causes severe pneumonia with high mortality. To better understand the mechanisms via which H5N1 viruses induce severe disease in humans, we infected cynomolgus macaques with six different H5N1 strains isolated from human patients and compared their pathogenicity and the global host responses to the virus infection. Although all H5N1 viruses replicated in the respiratory tract, there was substantial heterogeneity in their replicative ability and in the disease severity induced, which ranged from asymptomatic to fatal. A comparison of global gene expression between severe and mild disease cases indicated that interferon-induced upregulation of genes related to innate immunity, apoptosis, and antigen processing/presentation in the early phase of infection was limited in severe disease cases, although interferon expression was upregulated in both severe and mild cases. Furthermore, coexpression analysis of microarray data, which reveals the dynamics of host responses during the infection, demonstrated that the limited expression of these genes early in infection led to a failure to suppress virus replication and to the hyperinduction of genes related to immunity, inflammation, coagulation, and homeostasis in the late phase of infection, resulting in a more severe disease. Our data suggest that the attenuated interferon-induced activation of innate immunity, apoptosis, and antigen presentation in the early phase of H5N1 virus infection leads to subsequent severe disease outcome. IMPORTANCE Highly pathogenic avian H5N1 influenza viruses sometimes transmit to humans and cause severe pneumonia with ca. 60% lethality. The continued circulation of these viruses poses a pandemic threat; however, their pathogenesis in mammals is not fully understood. We, therefore, investigated the pathogenicity of six H5N1 viruses and compared the host responses of cynomolgus macaques to the virus

  9. Pathogenicity of recombinant H5N1 avian influenza viruses with truncated NS1 gene in chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The NS1 protein of influenza A virus plays an important role in blocking the induction of type I interferon and other regulatory functions in infected cells. However, differences in length of the NS1 protein has been observed in highly pathogenic H5N1, H5N2, and H7N1 subtype avian influenza viruses...

  10. The pathogenicity of H7 subtype avian influenza viruses in chickens, turkeys and ducks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza (AI) viruses infect numerous avian species, and low pathogenicity (LP) AI viruses of the H7 subtype are typically reported to produce mild or subclinical infections in both wild aquatic birds and domestic poultry. However relatively little work has been done to compare LPAI viruses ...

  11. Susceptibility of swine to H5 and H7 low pathogenic avian influenza viruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ability of pigs to become infected with low pathogenic avian influenza (LPAI) viruses from an avian reservoir, and then generate mammalian adaptable influenza A viruses (IAVs) is difficult to determine. Yet, it is an important link to understanding any relationship between LPAI virus ecology and...

  12. Highly pathogenic avian influenza viruses H5N2, H5N3, and H5N8 in Taiwan in 2015.

    PubMed

    Lee, Ming-Shiuh; Chen, Li-Hsuan; Chen, Yen-Ping; Liu, Yu-Pin; Li, Wan-Chen; Lin, Yeou-Liang; Lee, Fan

    2016-05-01

    A severe epidemic, affecting mainly goose populations, broke out in early January 2015. The causative agents were identified as novel H5 avian influenza viruses carrying N2, N3, and N8 subtypes of the neuraminidase gene. From January 8 to February 11, 766 waterfowl and poultry farms were invaded by the H5 viruses, and more than 2.2 million geese died or were culled. Phylogenetic analysis suggested that these avian influenza viruses derived from the H5 viruses of clade 2.3.4.4 which were emerging in 2014 in East Asia, West Europe, and North America. PMID:27066708

  13. Experimental co-infection of chickens with lentogenic, mesogenic and velogenic strains of Newcastle disease viruses and highly pathogenic avian influenza viruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Avian influenza virus (AIV) and Newcastle disease virus (NDV) are two of the most economically important viruses affecting poultry worldwide. Co-infections of poultry with AIV and NDV are a problem from the clinical point of view and diagnosis of these viruses, but little is known on t...

  14. Host antiviral defenses induced by a mesogenic strain of Newcastle disease virus prevents infection with a highly pathogenic avian influenza virus in chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza virus (AIV) and Newcastle disease virus (NDV) are two of the most important viruses affecting poultry worldwide. Co-infections of poultry with AIV and NDV are a problem from both the clinical point of view and the diagnosis of these viruses. To evaluate the dynamics of AIV-NDV co-i...

  15. Using mean infectious dose of wild duck-and poultry-origin high and low pathogenicity avian influenza viruses as one measure of infectivity and adaptation to poultry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The mean infectious doses of selected avian influenza virus (AIV) isolates, determined in domestic poultry under experimental conditions, were shown to be both host and virus dependent and could be considered one measure of the infectivity and adaptation to a specific host. As such, the mean infect...

  16. Previous infection with a mesogenic strain of newcastle disease virus prevents infection with a highly pathogenic avian influenza virus in chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza virus (AIV) and Newcastle disease virus (NDV) are two of the most important viruses affecting poultry worldwide. Co-infections of poultry with AIV and NDV are a problem from both the clinical point of view and the diagnosis of these viruses, but little is known on the interactions b...

  17. Phylogenetic and biological characterization of highly pathogenic H5N1 avian influenza viruses (Vietnam 2005) in chickens and ducks virus research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Analysis of Asian H5N1 avian influenza (AI) virus hemagglutinin (HA) genes shows a common origin, but the virus has evolved into at least three major clades (clades 0, 1, and 2) over the last 11 years. Previous reports of Vietnam viruses have documented predominantly clade 1 viruses. Unexpectedly,...

  18. Evaluation of a conserved HA274-288 epitope to detect antibodies to highly pathogenic avian influenza virus H5N1 in Indonesian commercial poultry.

    PubMed

    Wawegama, Nadeeka K; Tarigan, Simson; Indriani, Risa; Selleck, Paul; Adjid, Rm Abdul; Syafriati, Tati; Hardiman; Durr, Peter A; Ignjatovic, Jagoda

    2016-08-01

    A peptide enzyme linked immunosorbent assay (ELISA) based on an epitope in the haemagglutinin (HA) of avian influenza virus H5N1, amino acid positions 274-288 (HA274-288) was evaluated for detection of H5N1-specific antibodies. An optimized ELISA based on the tetrameric form of the HA274-288 epitope designated MP15 gave low background with non-immune chicken sera and detected vaccinated and infected birds. The HA274-288 epitope was highly conserved in Indonesian H5N1 strains and antibody responses were detected in the majority of the vaccinated chickens regardless of the H5N1 strain used for vaccination. The HA274-288 epitope was also conserved in the majority of H5N1 strains from the neighbouring Asian region, and other H5 subtypes potentially allowing for a wider use of the MP15 ELISA in H5N1 vaccinated and infected flocks. The MP15 ELISA results correlated significantly with haemagglutination inhibition (HI) test results and test sensitivity and specificity were 87% and 92%, respectively. The MP15 ELISA titres were significantly higher than the HI titres in all immune sera allowing for sera to be tested at a single dilution of 1:400 which is of advantage in routine surveillance. The study indicated that the MP15 ELISA is potentially useful for serological detection of H5N1 vaccinated or infected poultry and to have some advantages over the standard HI test for routine monitoring of flocks' immunity after vaccination. PMID:27009612

  19. Pathogenicity of avian malaria in experimentally-infected Hawaii Amakihi

    USGS Publications Warehouse

    Atkinson, Carter T.; Dusek, Robert J.; Woods, K.L.; Iko, W.M.

    2000-01-01

    The introduction of avian malaria (Plasmodium relictum) and mosquitoes (Culex quinquefasciatus) to the Hawaiian Islands (USA) is believed to have played a major role in the decline and extinction of native Hawaiian honeycreepers (Drepanidinae). This introduced disease is thought to be one of the primary factors limiting recovery of honeycreepers at elevations below 1,200 m where native forest habitats are still relatively intact. One of the few remaining species of honeycreepers with a wide elevational distribution is the Hawaii Amakihi (Hernignathus virens). We measured morbidity and mortality in experimentally-infected Hawaii Amakihi that were captured in a high elevation, xeric habitat that is above the current range of the mosquito vector. Mortality among amakihi exposed to a single infective mosquito bite was 65% (13/20). All infected birds had significant declines in food consumption and a corresponding loss in body weight over the 60 day course of the experiment. Gross and microscopic lesions in birds that succumbed to malaria included enlargement and discoloration of the spleen and liver and parasitemias as high as 50% of circulating erythrocytes. Mortality in experimentally-infected amakihi was similar to that observed in Apapane (Himnatione sanguinea) and lower than that observed in Iiwi (Vestiaria coccinea) infected under similar conditions with the same parasite isolate. We conclude that the current elevational and geographic distribution of Hawaiian honeycreepers is determined by relative susceptibility to avian malaria.

  20. Immune response in domestic ducks following intradermal delivery of inactivated vaccine against H5N1 highly pathogenic avian influenza virus adjuvanted with oligodeoxynucleotides containing CpG motifs.

    PubMed

    Yuk, Seong-Su; Lee, Dong-Hun; Park, Jae-Keun; To, Eredene-Ochir; Kwon, Jung-Hoon; Noh, Jin-Yong; Gomis, Susantha; Song, Chang-Seon

    2015-08-01

    Ducks are a natural reservoir for H5N1 highly pathogenic avian influenza (HPAI) viruses, which produces a range of clinical outcomes from asymptomatic infections to severe disease with mortality. Vaccination against HPAI is one of the few methods available for controlling avian influenza virus (AIV) infection in domestic ducks; therefore, it is necessary to improve vaccine efficacy against HPAI in domestic ducks. However, few studies have focused on enhancing the immune response by testing alternative administration routes and adjuvants. While attempting to maximize the efficacy of a vaccine, it is important to select an appropriate vaccine delivery route and adjuvant to elicit an enhanced immune response. Although several studies have indicated that the vaccination of ducks against HPAI viruses has offered protection against lethal virus challenge, the immunogenicity of the vaccine still requires improvement. In this study, we characterized the immune response following a novel vaccination strategy against H5N1 HPAI virus in domestic ducks. Our novel intradermal delivery system and the application of the cytosine-phosphodiester-guanine (CpG) oligodeoxynucleotide (ODN) adjuvant allowed us to obtain information regarding the sustained vaccine immunity. Compared with the intramuscular route of vaccination, the intradermal route resulted in higher antibody titer as well as lower antibody deviation following secondary vaccination. In addition, the use of a CpG-ODN adjuvant had a dose-sparing effect on antibody titer. Furthermore, when a high dose of antigen was used, the CpG-ODN-adjuvanted vaccine maintained a high mean antibody titer. This data demonstrates that intradermal immunization combined with administration of CpG-ODN as an adjuvant may be a promising strategy for improving vaccine efficacy in domestic ducks. PMID:26069254

  1. Antimicrobial resistance selection in avian pathogenic E. coli during treatment.

    PubMed

    Dheilly, Alexandra; Le Devendec, Laetitia; Mourand, Gwenaëlle; Jouy, Eric; Kempf, Isabelle

    2013-10-25

    An experiment was performed to compare the microbiological efficacy of four treatments (oxytetracycline, trimethoprim-sulphonamide, amoxicillin (AMX) or enrofloxacin (ENR)) to control experimental colibacillosis induced by an avian pathogenic Escherichia coli (APEC) with reduced susceptibility to fluoroquinolones. The protocol was also developed in order to study resistance gene transfer. Broilers were first orally inoculated with multiresistant E. coli bearing plasmid genes conferring resistance to fluoroquinolones (qnr), cephalosporins (blaCTX-M or blaFOX), tetracycline or trimethoprim-sulphonamide. They were then inoculated in their air sacs with the APEC and treated as soon as symptoms appeared. Internal organs from dead or sacrificed birds were cultivated on non-supplemented or supplemented media. The inoculated O78 APEC was recovered significantly less frequently in ENR treated group (26%) compared to untreated group (47%). This was not true for other treated groups. Isolates obtained on non-supplemented media had the same susceptibility profile as the inoculated APEC. However, one isolate from the AMX-treated group obtained on AMX-supplemented media was resistant to AMX only, and one isolate from the same group obtained on ENR-supplemented media, showed a resistance profile suggesting acquisition of one of the multiresistance plasmids present in the intestinal microbiota. Molecular analysis performed on this multiresistant isolate confirmed the presence of a conjugative plasmid with qnr and blaCTX-M resistance genes. Thus, the experiment illustrated the emergence of resistant isolates in internal organs, probably via acquisition of a plasmid from the intestinal microbiota. PMID:23867084

  2. Characterization of avian pathogenic Escherichia coli isolated in eastern China.

    PubMed

    Dou, Xinhong; Gong, Jiansen; Han, Xiangan; Xu, Ming; Shen, Haiyu; Zhang, Di; Zhuang, Linlin; Liu, Jiasheng; Zou, Jianmin

    2016-01-15

    In order to investigate the biological characteristics of avian pathogenic Escherichia coli (APEC) isolated in eastern China, a total of 243 isolates were isolated from diseased poultry on different farms during the period from 2007 to 2014. These isolates were characterized for serogroups (polymerase chain reaction and agglutination), the presence of virulence-associated genes (fimC, iss, ompA, fyuA, stx2f, iroC, iucD, hlyE, tsh, cvaC, irp2, and papC) and class I integrons (polymerase chain reaction), drug susceptibilities (disk diffusion method) and the biofilm-forming abilities (semi-quantitative method). The results showed that the most predominant serogroups were O78 (87 isolates, 35.8%) and O2 (35 isolates, 14.4%). Gene profiling found that fimC and ompA were frequently distributed among the isolates and that 77.4% of the isolates were positive for class 1 integrons. Overall, isolates displayed resistance to tetracycline (97.5%), nalidixic acid (82.3%), ampicillin (81.1%), sulphafurazole (80.7%), streptomycin (79.0%), trimethoprim (78.2%) and cotrimoxazole (78.2%). Multiple-drug resistance was exhibited in 80.3% of the isolates, and the presence of class 1 integrons is associated with multidrug resistance. Finally, 151 isolates had the ability to form biofilms in vitro, and drug resistance seemed relative to biofilm-forming abilities. PMID:26475938

  3. Outbreaks of highly pathogenic avian influenza H5N1 clade 2.3.2.1c in hunting falcons and kept wild birds in Dubai implicate intercontinental virus spread.

    PubMed

    Naguib, Mahmoud M; Kinne, Jörg; Chen, Honglin; Chan, Kwok-Hung; Joseph, Sunitha; Wong, Po-Chun; Woo, Patrick C Y; Wernery, Renate; Beer, Martin; Wernery, Ulrich; Harder, Timm C

    2015-11-01

    Highly pathogenic avian influenza viruses (HPAIVs) of subtype H5N1 have continued to perpetuate with divergent genetic variants in poultry within Asia since 2003. Further dissemination of Asian-derived H5 HPAIVs to Europe, Africa and, most recently, to the North American continent has occurred. We report an outbreak of HPAIV H5N1 among falcons kept for hunting and other wild bird species bred as falcon prey in Dubai, United Arab Emirates, during the autumn of 2014. The causative agent was identified as avian influenza virus subtype H5N1, clade 2.3.2.1c, by genetic and phylogenetic analyses. High mortality in infected birds was in accordance with systemic pathomorphological and histological alterations in affected falcons. Genetic analysis showed the HPAIV H5N1 of clade 2.3.2.1c is a reassortant in which the PB2 segment was derived from an Asian-origin H9N2 virus lineage. The Dubai H5N1 viruses were closely related to contemporary H5N1 HPAIVs from Nigeria, Burkina-Faso, Romania and Bulgaria. Median-joining network analysis of 2.3.2.1c viruses revealed that the Dubai outbreak was an episode of a westward spread of these viruses on a larger scale from unidentified Asian sources. The incursion into Dubai, possibly via infected captive hunting falcons returning from hunting trips to central Asian countries, preceded outbreaks in Nigeria and other West African countries. The alarmingly enhanced geographical mobility of clade 2.3.2.1.c and clade 2.3.4.4 viruses may represent another wave of transcontinental dissemination of Asian-origin HPAIV H5 viruses, such as the outbreak at Qinghai Lake caused by clade 2.2 (‘Qinghai’ lineage) in 2005. PMID:26350163

  4. EFFICACY OF TWO H5N9 INACTIVATED VACCINES AGAINST CHALLENGE WITH A RECENT H5N1 HIGHLY PATHOGENIC AVIAN INFLUENZA ISOLATED FROM A CHICKEN IN THAILAND

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of the study was to compare the efficacy of two avian influenza (AI) H5 inactivated vaccines containing either an American (A/turkey/Wisconsin/68 H5N9, H5N9-WI) or a Eurasian isolate (A/chicken/Italy/22A/98 H5N9 or H5N9-It). Three-week-old SPF chickens were vaccinated once and challeng...

  5. High Rates of Detection of Clade 2.3.4.4 Highly Pathogenic Avian Influenza H5 Viruses in Wild Birds in the Pacific Northwest During the Winter of 2014-15.

    PubMed

    Ip, Hon S; Dusek, Robert J; Bodenstein, Barbara; Torchetti, Mia Kim; DeBruyn, Paul; Mansfield, Kristin G; DeLiberto, Thomas; Sleeman, Jonathan M

    2016-05-01

    In 2014, clade 2.3.4.4 H5N8 highly pathogenic avian influenza (HPAI) viruses spread across the Republic of Korea and ultimately were reported in China, Japan, Russia, and Europe. Mortality associated with a reassortant HPAI H5N2 virus was detected in poultry farms in western Canada at the end of November. The same strain (with identical genetic structure) was then detected in free-living wild birds that had died prior to December 8, 2014, of unrelated causes in Whatcom County, Washington, U. S. A., in an area contiguous with the index Canadian location. A gyrfalcon (Falco rusticolus) that had hunted and fed on an American wigeon (Anas americana) on December 6, 2014, in the same area, and died 2 days later, tested positive for the Eurasian-origin HPAI H5N8. Subsequently, an active surveillance program using hunter-harvested waterfowl in Washington and Oregon detected 10 HPAI H5 viruses, of three different subtypes (four H5N2, three H5N8, and three H5N1) with four segments in common (HA, PB2, NP, and MA). In addition, a mortality-based passive surveillance program detected 18 HPAI (14 H5N2 and four H5N8) cases from Idaho, Kansas, Oregon, Minnesota, Montana, Washington, and Wisconsin. Comparatively, mortality-based passive surveillance appears to have detected these HPAI infections at a higher rate than active surveillance during the period following initial introduction into the United States. PMID:27309079

  6. IbeR facilitates stress-resistance, invasion and pathogenicity of avian pathogenic Escherichia coli.

    PubMed

    Wang, Shaohui; Bao, Yinli; Meng, Qingmei; Xia, Yongjie; Zhao, Yichao; Wang, Yang; Tang, Fang; ZhuGe, Xiangkai; Yu, Shengqing; Han, Xiangan; Dai, Jianjun; Lu, Chengping

    2015-01-01

    Systemic infections by avian pathogenic Escherichia coli (APEC) are economically devastating to poultry industries worldwide. IbeR, located on genomic island GimA, was shown to serve as an RpoS-like regulator in rpoS gene mutation neonatal meningitis E. coli (NMEC) RS218. However, the role of IbeR in pathogenicity of APEC carrying active RpoS has not yet been investigated. We showed that the APEC IbeR could elicit antibodies in infected ducks, suggesting that IbeR might be involved in APEC pathogenicity. To investigate the function of IbeR in APEC pathogenesis, mutant and complementation strains were constructed and characterized. Inactivation of ibeR led to attenuated virulence and reduced invasion capacity towards DF-1 cells, brains and cerebrospinal fluid (CSF) in vitro and in vivo. Bactericidal assays demonstrated that the mutant strain had impaired resistance to environmental stress and specific pathogen-free (SPF) chicken serum. These virulence-related phenotypes were restored by genetic complementation. Quantitative real-time reverse transcription PCR revealed that IbeR controlled expression of stress-resistance genes and virulence genes, which might led to the associated virulence phenotype. PMID:25768126

  7. Differential Effects of NS1 Proteins of Human Pandemic H1N1/2009, Avian Highly Pathogenic H5N1, and Low Pathogenic H5N2 Influenza A Viruses on Cellular Pre-mRNA Polyadenylation and mRNA Translation*

    PubMed Central

    Kainov, Denis E.; Müller, Konstantin H.; Theisen, Linda L.; Anastasina, Maria; Kaloinen, Minttu; Muller, Claude P.

    2011-01-01

    The nonstructural protein NS1 of influenza A virus blocks the development of host antiviral responses by inhibiting polyadenylation of cellular pre-mRNA. NS1 also promotes the synthesis of viral proteins by stimulating mRNA translation. Here, we show that recombinant NS1 proteins of human pandemic H1N1/2009, avian highly pathogenic H5N1, and low pathogenic H5N2 influenza strains differentially affected these two cellular processes: NS1 of the two avian strains, in contrast to NS1 of H1N1/2009, stimulated translation of reporter mRNA in cell-free translation system; NS1 of H5N1 was an effective inhibitor of cellular pre-mRNA polyadenylation in A549 cells, unlike NS1 of H5N2 and H1N1/2009. We identified key amino acids in NS1 that contribute to its activity in these two basic cellular processes. Thus, we identified strain-specific differences between influenza virus NS1 proteins in pre-mRNA polyadenylation and mRNA translation. PMID:21163951

  8. Infections with Avian Pathogenic and Fecal Escherichia coli Strains Display Similar Lung Histopathology and Macrophage Apoptosis

    PubMed Central

    Horn, Fabiana; Corrêa, André Mendes Ribeiro; Barbieri, Nicolle Lima; Glodde, Susanne; Weyrauch, Karl Dietrich; Kaspers, Bernd; Driemeier, David; Ewers, Christa; Wieler, Lothar H.

    2012-01-01

    The purpose of this study was to compare histopathological changes in the lungs of chickens infected with avian pathogenic (APEC) and avian fecal (Afecal) Escherichia coli strains, and to analyze how the interaction of the bacteria with avian macrophages relates to the outcome of the infection. Chickens were infected intratracheally with three APEC strains, MT78, IMT5155, and UEL17, and one non-pathogenic Afecal strain, IMT5104. The pathogenicity of the strains was assessed by isolating bacteria from lungs, kidneys, and spleens at 24 h post-infection (p.i.). Lungs were examined for histopathological changes at 12, 18, and 24 h p.i. Serial lung sections were stained with hematoxylin and eosin (HE), terminal deoxynucleotidyl dUTP nick end labeling (TUNEL) for detection of apoptotic cells, and an anti-O2 antibody for detection of MT78 and IMT5155. UEL17 and IMT5104 did not cause systemic infections and the extents of lung colonization were two orders of magnitude lower than for the septicemic strains MT78 and IMT5155, yet all four strains caused the same extent of inflammation in the lungs. The inflammation was localized; there were some congested areas next to unaffected areas. Only the inflamed regions became labeled with anti-O2 antibody. TUNEL labeling revealed the presence of apoptotic cells at 12 h p.i in the inflamed regions only, and before any necrotic foci could be seen. The TUNEL-positive cells were very likely dying heterophils, as evidenced by the purulent inflammation. Some of the dying cells observed in avian lungs in situ may also be macrophages, since all four avian E. coli induced caspase 3/7 activation in monolayers of HD11 avian macrophages. In summary, both pathogenic and non-pathogenic fecal strains of avian E. coli produce focal infections in the avian lung, and these are accompanied by inflammation and cell death in the infected areas. PMID:22848424

  9. Pathotyping avian pathogenic Escherichia coli strains in Korea

    PubMed Central

    Jeong, Yong-Wun; Kim, Tae-Eun

    2012-01-01

    To examine the genetic background of avian pathogenic Escherichia coli (APEC) that affects virulence of this microorganism, we characterized the virulence genes of 101 APEC strains isolated from infected chickens between 1985~2005. Serotypes were determined with available anti-sera and median lethal doses were determined in subcutaneously inoculated chicks. The virulence genes we tested included ones encoding type 1 fimbriae (fimC), iron uptake-related (iroN, irp2, iucD, and fyuA), toxins (lt, st, stx1, stx2, and vat), and other factors (tsh, hlyF, ompT, and iss). Twenty-eight strains were found to be O1 (2.0%), O18 (3.0%), O20 (1.0%), O78 (19.8%), and O115 (2.0%) serotypes. The iroN (100%) gene was observed most frequently followed by ompT (94.1%), fimC (90.1%), hlyF (87.1%), iss (78.2%), iucD (73.3%), tsh (61.4%), fyuA (44.6%), and irp2 (43.6%). The strains were negative for all toxin genes except for vat (10.9%). All the strains were classified into 27 molecular pathotypes (MPs). The MP25, MP19, and MP10 pathotypes possessing iroN-fimC-ompT-hlyF-iucD-tsh-iss-irp2-fyuA (22.8%), iroN-fimC-ompT-hlyF-iucD-tsh-iss (21.8%), and iroN-fimC-ompT-hlyF-iss (11.9%) genotypes, respectively, were predominant. Redundancy of iron uptake-related genes was clearly observed and some strains were associated with higher mortality than others. Therefore, strains with the predominant genotypes can be used for diagnosis and vaccine. PMID:22705736

  10. An epidemiologic simulation model of the spread and control of highly pathogenic avian influenza (H5N1) among commercial and backyard poultry flocks in South Carolina, United States.

    PubMed

    Patyk, Kelly A; Helm, Julie; Martin, Michael K; Forde-Folle, Kimberly N; Olea-Popelka, Francisco J; Hokanson, John E; Fingerlin, Tasha; Reeves, Aaron

    2013-07-01

    Epidemiologic simulation modeling of highly pathogenic avian influenza (HPAI) outbreaks provides a useful conceptual framework with which to estimate the consequences of HPAI outbreaks and to evaluate disease control strategies. The purposes of this study were to establish detailed and informed input parameters for an epidemiologic simulation model of the H5N1 strain of HPAI among commercial and backyard poultry in the state of South Carolina in the United States using a highly realistic representation of this poultry population; to estimate the consequences of an outbreak of HPAI in this population with a model constructed from these parameters; and to briefly evaluate the sensitivity of model outcomes to several parameters. Parameters describing disease state durations; disease transmission via direct contact, indirect contact, and local-area spread; and disease detection, surveillance, and control were established through consultation with subject matter experts, a review of the current literature, and the use of several computational tools. The stochastic model constructed from these parameters produced simulated outbreaks ranging from 2 to 111 days in duration (median 25 days), during which 1 to 514 flocks were infected (median 28 flocks). Model results were particularly sensitive to the rate of indirect contact that occurs among flocks. The baseline model established in this study can be used in the future to evaluate various control strategies, as a tool for emergency preparedness and response planning, and to assess the costs associated with disease control and the economic consequences of a disease outbreak. PMID:23398856

  11. Population structure and virulence content of avian pathogenic Escherichia coli isolated from outbreaks in Sri Lanka.

    PubMed

    Dissanayake, D R A; Octavia, Sophie; Lan, Ruiting

    2014-01-31

    Avian pathogenic Escherichia coli (APEC) causes economically significant infections in poultry. The genetic diversity of APEC and phylogenetic relationships within and between APEC and other pathogenic E. coli are not yet well understood. We used multilocus sequence typing (MLST), PCR-based phylogrouping and virulence genotyping to analyse 75 avian E. coli strains, including 55 isolated from outbreaks of colisepticaemia and 20 from healthy chickens. Isolates were collected from 42 commercial layer and broiler chicken farms in Sri Lanka. MLST identified 61 sequence types (ST) with 44 being novel. The most frequent ST, ST48, was represented by only six isolates followed by ST117 with four isolates. Phylogenetic clusters based on MLST sequences were mostly comparable to phylogrouping by PCR and MLST further differentiated phylogroups B1 and D into two subgroups. Genotyping of 16 APEC associated virulence genes found that 27 of the clinical isolates and one isolate from a healthy chicken belonged to highly virulent genotype according to previously established classification schemes. We found that a combination of four genes, ompT, hlyF, iroN and papC, gave a comparable prediction to that of using five and nine genes by other studies. Four STs (ST10, ST48, ST117 and ST2016) contained APEC isolates from this study and human UPEC isolates reported by others, suggesting that these STs are potentially zoonotic. Our results enhanced the understanding of APEC population structure and virulence association. PMID:24388626

  12. Ferrets develop fatal influenza after inhaling small particle aerosols of highly pathogenic avian influenza virus A/Vietnam/1203/2004 (H5N1)

    PubMed Central

    2010-01-01

    Background There is limited knowledge about the potential routes for H5N1 influenza virus transmission to and between humans, and it is not clear whether humans can be infected through inhalation of aerosolized H5N1 virus particles. Ferrets are often used as a animal model for humans in influenza pathogenicity and transmissibility studies. In this manuscript, a nose-only bioaerosol inhalation exposure system that was recently developed and validated was used in an inhalation exposure study of aerosolized A/Vietnam/1203/2004 (H5N1) virus in ferrets. The clinical spectrum of influenza resulting from exposure to A/Vietnam/1203/2004 (H5N1) through intranasal verses inhalation routes was analyzed. Results Ferrets were successfully infected through intranasal instillation or through inhalation of small particle aerosols with four different doses of Influenza virus A/Vietnam/1203/2004 (H5N1). The animals developed severe influenza encephalomyelitis following intranasal or inhalation exposure to 101, 102, 103, or 104 infectious virus particles per ferret. Conclusions Aerosolized Influenza virus A/Vietnam/1203/2004 (H5N1) is highly infectious and lethal in ferrets. Clinical signs appeared earlier in animals infected through inhalation of aerosolized virus compared to those infected through intranasal instillation. PMID:20843329

  13. Phylogenetic Analysis and Pathogenicity Assessment of Two Strains of Avian Influenza Virus Subtype H9N2 Isolated from Migratory Birds: High Homology of Internal Genes with Human H10N8 Virus.

    PubMed

    Ye, Ge; Liang, Chai Hong; Hua, Deng Guo; Song, Lei Yong; Xiang, Yang Guo; Guang, Chen; Lan, Chen Hua; Ping, Hua Yu

    2016-01-01

    Two human-infecting avian influenza viruses (AIVs), H7N9 and H10N8, have emerged in China, which further indicate that the H9N2 subtype of AIVs, as an internal gene donor, may have an important role in the generation of new viruses with cross-species transmissibility and pathogenicity. H9N2 viruses that contain such internal genes widely exist in poultry but are rarely reported in migratory birds. In this study, two strains of the H9N2 virus were isolated from fecal samples of migratory birds in 2014: one strain from Caizi Lake in Anhui Province and one from Chen Lake in Hubei Province of China. Nucleotide sequence analysis revealed high homology of all six internal genes of these two strains with the internal genes of the human H10N8 virus in Jiangxi Province, as well as with the human H7N9 virus. Phylogenetic analysis indicated a possible origin of these two strains from poultry in South China. Both of the two viruses tested could replicated in respiratory organs of infective mice without adaption, by both strains of the H9N2 AIVs from wild birds, suggesting their potential capacity for directly infecting mammals. Our findings indicate the existence of H9N2 viruses that contain internal genes highly homologous with human H10N8 or H7N9 viruses. Wild birds can contribute to the spread of the H9N2 virus that contains the "harmful" internal gene complex, leading to gene rearrangement with other influenza viruses and to the generation of new pathogenic viruses. Therefore, strengthening AIV surveillance in wild birds can promote an understanding of the presence and prevalence of viruses and provide scientific evidence for the prevention and control of AIVs and human-infecting AIVs. PMID:26973600

  14. Phylogenetic Analysis and Pathogenicity Assessment of Two Strains of Avian Influenza Virus Subtype H9N2 Isolated from Migratory Birds: High Homology of Internal Genes with Human H10N8 Virus

    PubMed Central

    Ye, Ge; Liang, Chai Hong; Hua, Deng Guo; Song, Lei Yong; Xiang, Yang Guo; Guang, Chen; Lan, Chen Hua; Ping, Hua Yu

    2016-01-01

    Two human-infecting avian influenza viruses (AIVs), H7N9 and H10N8, have emerged in China, which further indicate that the H9N2 subtype of AIVs, as an internal gene donor, may have an important role in the generation of new viruses with cross-species transmissibility and pathogenicity. H9N2 viruses that contain such internal genes widely exist in poultry but are rarely reported in migratory birds. In this study, two strains of the H9N2 virus were isolated from fecal samples of migratory birds in 2014: one strain from Caizi Lake in Anhui Province and one from Chen Lake in Hubei Province of China. Nucleotide sequence analysis revealed high homology of all six internal genes of these two strains with the internal genes of the human H10N8 virus in Jiangxi Province, as well as with the human H7N9 virus. Phylogenetic analysis indicated a possible origin of these two strains from poultry in South China. Both of the two viruses tested could replicated in respiratory organs of infective mice without adaption, by both strains of the H9N2 AIVs from wild birds, suggesting their potential capacity for directly infecting mammals. Our findings indicate the existence of H9N2 viruses that contain internal genes highly homologous with human H10N8 or H7N9 viruses. Wild birds can contribute to the spread of the H9N2 virus that contains the “harmful” internal gene complex, leading to gene rearrangement with other influenza viruses and to the generation of new pathogenic viruses. Therefore, strengthening AIV surveillance in wild birds can promote an understanding of the presence and prevalence of viruses and provide scientific evidence for the prevention and control of AIVs and human-infecting AIVs. PMID:26973600

  15. The East Jakarta Project: surveillance for highly pathogenic avian influenza A(H5N1) and seasonal influenza viruses in patients seeking care for respiratory disease, Jakarta, Indonesia, October 2011-September 2012.

    PubMed

    Storms, A D; Kusriastuti, R; Misriyah, S; Praptiningsih, C Y; Amalya, M; Lafond, K E; Samaan, G; Triada, R; Iuliano, A D; Ester, M; Sidjabat, R; Chittenden, K; Vogel, R; Widdowson, M A; Mahoney, F; Uyeki, T M

    2015-12-01

    Indonesia has reported the most human infections with highly pathogenic avian influenza (HPAI) A(H5N1) virus worldwide. We implemented enhanced surveillance in four outpatient clinics and six hospitals for HPAI H5N1 and seasonal influenza viruses in East Jakarta district to assess the public health impact of influenza in Indonesia. Epidemiological and clinical data were collected from outpatients with influenza-like illness (ILI) and hospitalized patients with severe acute respiratory infection (SARI); respiratory specimens were obtained for influenza testing by real-time reverse transcription-polymerase chain reaction. During October 2011-September 2012, 1131/3278 specimens from ILI cases (34·5%) and 276/1787 specimens from SARI cases (15·4%) tested positive for seasonal influenza viruses. The prevalence of influenza virus infections was highest during December-May and the proportion testing positive was 76% for ILI and 36% for SARI during their respective weeks of peak activity. No HPAI H5N1 virus infections were identified, including hundreds of ILI and SARI patients with recent poultry exposures, whereas seasonal influenza was an important contributor to acute respiratory disease in East Jakarta. Overall, 668 (47%) of influenza viruses were influenza B, 384 (27%) were A(H1N1)pdm09, and 359 (25%) were H3. While additional data over multiple years are needed, our findings suggest that seasonal influenza prevention efforts, including influenza vaccination, should target the months preceding the rainy season. PMID:25912029

  16. The multibasic cleavage site of the hemagglutinin of highly pathogenic A/Vietnam/1203/2004 (H5N1) avian influenza virus acts as a virulence factor in a host-specific manner in mammals.

    PubMed

    Suguitan, Amorsolo L; Matsuoka, Yumiko; Lau, Yuk-Fai; Santos, Celia P; Vogel, Leatrice; Cheng, Lily I; Orandle, Marlene; Subbarao, Kanta

    2012-03-01

    Highly pathogenic avian influenza (HPAI) viruses of the H5 and H7 subtypes typically possess multiple basic amino acids around the cleavage site (MBS) of their hemagglutinin (HA) protein, a recognized virulence motif in poultry. To determine the importance of the H5 HA MBS as a virulence factor in mammals, recombinant wild-type HPAI A/Vietnam/1203/2004 (H5N1) viruses that possessed (H5N1) or lacked (ΔH5N1) the H5 HA MBS were generated and evaluated for their virulence in BALB/c mice, ferrets, and African green monkeys (AGMs) (Chlorocebus aethiops). The presence of the H5 HA MBS was associated with lethality, significantly higher virus titers in the respiratory tract, virus dissemination to extrapulmonary organs, lymphopenia, significantly elevated levels of proinflammatory cytokines and chemokines, and inflammation in the lungs of mice and ferrets. In AGMs, neither H5N1 nor ΔH5N1 virus was lethal and neither caused clinical symptoms. The H5 HA MBS was associated with mild enhancement of replication and delayed virus clearance. Thus, the contribution of H5 HA MBS to the virulence of the HPAI H5N1 virus varies among mammalian hosts and is most significant in mice and ferrets and less remarkable in nonhuman primates. PMID:22205751

  17. Tropism and Induction of Cytokines in Human Embryonic-Stem Cells-Derived Neural Progenitors upon Inoculation with Highly- Pathogenic Avian H5N1 Influenza Virus

    PubMed Central

    Pringproa, Kidsadagon; Rungsiwiwut, Ruttachuk; Tantilertcharoen, Rachod; Praphet, Reunkeaw; Pruksananonda, Kamthorn; Baumgärtner, Wolfgang; Thanawongnuwech, Roongroje

    2015-01-01

    Central nervous system (CNS) dysfunction caused by neurovirulent influenza viruses is a dreaded complication of infection, and may play a role in some neurodegenerative conditions, such as Parkinson-like diseases and encephalitis lethargica. Although CNS infection by highly pathogenic H5N1 virus has been demonstrated, it is unknown whether H5N1 infects neural progenitor cells, nor whether such infection plays a role in the neuroinflammation and neurodegeneration. To pursue this question, we infected human neural progenitor cells (hNPCs) differentiated from human embryonic stem cells in vitro with H5N1 virus, and studied the resulting cytopathology, cytokine expression, and genes involved in the differentiation. Human embryonic stem cells (BG01) were maintained and differentiated into the neural progenitors, and then infected by H5N1 virus (A/Chicken/Thailand/CUK2/04) at a multiplicity of infection of 1. At 6, 24, 48, and 72 hours post-infection (hpi), cytopathic effects were observed. Then cells were characterized by immunofluorescence and electron microscopy, supernatants quantified for virus titers, and sampled cells studied for candidate genes.The hNPCs were susceptible to H5N1 virus infection as determined by morphological observation and immunofluorescence. The infection was characterized by a significant up-regulation of TNF-α gene expression, while expressions of IFN-α2, IFN-β1, IFN-γ and IL-6 remained unchanged compared to mock-infected controls. Moreover, H5N1 infection did not appear to alter expression of neuronal and astrocytic markers of hNPCs, such as β-III tubulin and GFAP, respectively. The results indicate that hNPCs support H5N1 virus infection and may play a role in the neuroinflammation during acute viral encephalitis. PMID:26274828

  18. PA-X-associated early alleviation of the acute lung injury contributes to the attenuation of a highly pathogenic H5N1 avian influenza virus in mice.

    PubMed

    Hu, Jiao; Mo, Yiqun; Gao, Zhao; Wang, Xiaoquan; Gu, Min; Liang, Yanyan; Cheng, Xin; Hu, Shunlin; Liu, Wenbo; Liu, Huimou; Chen, Sujuan; Liu, Xiaowen; Peng, Daxing; Liu, Xiufan

    2016-08-01

    PA-X is a novel discovered accessory protein encoded by the PA mRNA. Our previous study demonstrated that PA-X decreases the virulence of a highly pathogenic H5N1 strain A/Chicken/Jiangsu/k0402/2010 in mice. However, the underlying mechanism of virulence attenuation associated with PA-X is still unknown. In this study, we compared two PA-X-deficient mutant viruses and the parental virus in terms of induction of pathology and manipulation of host response in the mouse lung, stimulation of cell death and PA nuclear accumulation. We first found that down-regulated PA-X expression markedly aggravated the acute lung injury of the infected mice early on day 1 post-infection (p.i.). We then determined that loss of PA-X expression induced higher levels of cytokines, chemokines and complement-derived peptides (C3a and C5a) in the lung, especially at early time point's p.i. In addition, in vitro assays showed that the PA-X-deficient viruses enhanced cell death and increased expression of reactive oxygen species (ROS) in mammalian cells. Moreover, we also found that PA nuclear accumulation of the PA-X-null viruses accelerated in MDCK cells. These results demonstrate that PA-X decreases the level of complement components, ROS, cell death and inflammatory response, which may together contribute to the alleviated lung injury and the attenuation of the virulence of H5N1 virus in mice. PMID:27289459

  19. Ferrets develop fatal influenza after inhaling small particle aerosols of highly pathogenic avian influenza virus A/Vietnam/1203/2004 (H5N1)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is limited knowledge about the potential routes for H5N1 influenza virus transmission to and between humans, and it is not clear whether humans can be infected through inhalation of aerosolized H5N1 virus particles. Ferrets are often used as a surrogate for humans in influenza pathogenicity a...

  20. The presence of monocytes enhances the susceptibility of B cells to highly pathogenic avian influenza (HPAI) H5N1 virus possibly through the increased expression of α2,3 SA receptor.

    PubMed

    Lersritwimanmaen, Patharapan; Na-Ek, Prasit; Thanunchai, Maytawan; Thewsoongnoen, Jutarat; Sa-Ard-Iam, Noppadol; Wiboon-ut, Suwimon; Mahanonda, Rangsini; Thitithanyanont, Arunee

    2015-08-28

    The highly pathogenic avian influenza (HPAI) H5N1 virus causes severe systemic infection in avian and mammalian species, including humans by first targeting immune cells. This subsequently renders the innate and adaptive immune responses less active, thus allowing dissemination of the virus to systemic organs. To gain insight into the pathogenesis of H5N1, this study aims to determine the susceptibility of human PBMCs to the H5N1 virus and explore the factors which influence this susceptibility. We found that PBMCs were a target of H5N1 infection, and that monocytes and B cells were populations which were clearly the most susceptible. Analysis of PBMC subpopulations showed that isolated monocytes and monocytes residing in whole PBMCs had comparable percentages of infection (28.97 ± 5.54% vs 22.23 ± 5.14%). In contrast, isolated B cells were infected to a much lower degree than B cells residing in a mixture of whole PBMCs (0.88 ± 0.34% vs 34.87 ± 4.63%). Different susceptibility levels of B cells for these tested conditions spurred us to explore the B cell-H5N1 interaction mechanisms. Here, we first demonstrated that monocytes play a crucial role in the enhancement of B cell susceptibility to H5N1 infection. Although the actual mechanism by which this enhancement occurs remains in question, α2,3-linked sialic acid (SA), known for influenza virus receptors, could be a responsible factor for the greater susceptibility of B cells, as it was highly expressed on the surface of B cells upon H5N1 infection of B cell/monocyte co-cultures. Our findings reveal some of the factors involved with the permissiveness of human immune cells to H5N1 virus and provide a better understanding of the tropism of H5N1 in immune cells. PMID:26187669

  1. Chronic heat stress weakened the innate immunity and increased the virulence of highly pathogenic avian influenza virus H5N1 in mice.

    PubMed

    Jin, Yi; Hu, Yanxin; Han, Deping; Wang, Ming

    2011-01-01

    Chronic heat stress (CHS) can negatively affect immune response in animals. In this study we assessed the effects of CHS on host innate immunity and avian influenza virus H5N1 infection in mice. Mice were divided into two groups: CHS and thermally neutral (TN). The CHS treatment group exhibited reduced local immunity in the respiratory tract, including the number of pulmonary alveolar macrophages and lesions in the nasal mucosa, trachea, and lungs. Meanwhile, CHS retarded dendritic cells (DCs) maturation and reduced the mRNA levels of IL-6 and IFN-β significantly (P < .05). After the CHS treatment, mice were infected with H5N1 virus. The mortality rate and viral load in the lungs of CHS group were higher than those of TN group. The results suggest that the CHS treatment could suppress local immunity in the respiratory tract and innate host immunity in mice significantly and moderately increased the virulence in H5N1-infected mice. PMID:21687549

  2. A novel eight amino acid insertion contributes to the hemagglutinin cleavability and the virulence of a highly pathogenic avian influenza A (H7N3) virus in mice.

    PubMed

    Sun, Xiangjie; Belser, Jessica A; Tumpey, Terrence M

    2016-01-15

    In 2012, an avian influenza A H7N3 (A/Mexico/InDRE7218/2012; Mx/7218) virus was responsible for two confirmed cases of human infection and led to the death or culling of more than 22 million chickens in Jalisco, Mexico. Interestingly, this virus acquired an 8-amino acid (aa)-insertion (..PENPK-DRKSRHRR-TR/GLF) near the hemagglutinin (HA) cleavage site by nonhomologous recombination with host rRNA. It remains unclear which specific residues at the cleavage site contribute to the virulence of H7N3 viruses in mammals. Using loss-of-function approaches, we generated a series of cleavage site mutant viruses by reverse genetics and characterized the viruses in vitro and in vivo. We found that the 8-aa insertion and the arginine at position P4 of the Mx/7218 HA cleavage site are essential for intracellular HA cleavage in 293T cells, but have no effect on the pH of membrane fusion. However, we identified a role for the histidine residue at P5 position in viral fusion pH. In mice, the 8-aa insertion is required for Mx/7218 virus virulence; however, the basic residues upstream of the P4 position are dispensable for virulence. Overall, our study provides the first line of evidence that the insertion in the Mx/7218 virus HA cleavage site confers its intracellular cleavability, and consequently contributes to enhanced virulence in mice. PMID:26629952

  3. Eutrophication and bacterial pathogens as risk factors for avian botulism outbreaks in wetlands receiving effluents from urban wastewater treatment plants.

    PubMed

    Anza, Ibone; Vidal, Dolors; Laguna, Celia; Díaz-Sánchez, Sandra; Sánchez, Sergio; Chicote, Alvaro; Florín, Máximo; Mateo, Rafael

    2014-07-01

    Due to the scarcity of water resources in the "Mancha Húmeda" Biosphere Reserve, the use of treated wastewater has been proposed as a solution for the conservation of natural threatened floodplain wetlands. In addition, wastewater treatment plants of many villages pour their effluent into nearby natural lakes. We hypothesized that certain avian pathogens present in wastewater may cause avian mortalities which would trigger avian botulism outbreaks. With the aim of testing our hypothesis, 24 locations distributed in three wetlands, two that receive wastewater effluents and one serving as a control, were monitored during a year. Sediment, water, water bird feces, and invertebrates were collected for the detection of putative avian pathogenic Escherichia coli (APEC), Salmonella spp., Clostridium perfringens type A, and Clostridium botulinum type C/D. Also, water and sediment physicochemical properties were determined. Overall, APEC, C. perfringens, and C. botulinum were significantly more prevalent in samples belonging to the wetlands which receive wastewater. The occurrence of a botulism outbreak in one of the studied wetlands coincided with high water temperatures and sediment 5-day biochemical oxygen demand (BOD5), a decrease in water redox potential, chlorophyll a, and sulfate levels, and an increase in water inorganic carbon levels. The presence of C. botulinum in bird feces before the onset of the outbreak indicates that carrier birds exist and highlights the risk of botulinum toxin production in their carcasses if they die by other causes such as bacterial diseases, which are more probable in wastewater wetlands. PMID:24795377

  4. Eutrophication and Bacterial Pathogens as Risk Factors for Avian Botulism Outbreaks in Wetlands Receiving Effluents from Urban Wastewater Treatment Plants

    PubMed Central

    Vidal, Dolors; Laguna, Celia; Díaz-Sánchez, Sandra; Sánchez, Sergio; Chicote, Álvaro; Florín, Máximo; Mateo, Rafael

    2014-01-01

    Due to the scarcity of water resources in the “Mancha Húmeda” Biosphere Reserve, the use of treated wastewater has been proposed as a solution for the conservation of natural threatened floodplain wetlands. In addition, wastewater treatment plants of many villages pour their effluent into nearby natural lakes. We hypothesized that certain avian pathogens present in wastewater may cause avian mortalities which would trigger avian botulism outbreaks. With the aim of testing our hypothesis, 24 locations distributed in three wetlands, two that receive wastewater effluents and one serving as a control, were monitored during a year. Sediment, water, water bird feces, and invertebrates were collected for the detection of putative avian pathogenic Escherichia coli (APEC), Salmonella spp., Clostridium perfringens type A, and Clostridium botulinum type C/D. Also, water and sediment physicochemical properties were determined. Overall, APEC, C. perfringens, and C. botulinum were significantly more prevalent in samples belonging to the wetlands which receive wastewater. The occurrence of a botulism outbreak in one of the studied wetlands coincided with high water temperatures and sediment 5-day biochemical oxygen demand (BOD5), a decrease in water redox potential, chlorophyll a, and sulfate levels, and an increase in water inorganic carbon levels. The presence of C. botulinum in bird feces before the onset of the outbreak indicates that carrier birds exist and highlights the risk of botulinum toxin production in their carcasses if they die by other causes such as bacterial diseases, which are more probable in wastewater wetlands. PMID:24795377

  5. Gas-permeable ethylene bags for the small scale cultivation of highly pathogenic avian influenza H5N1 and other viruses in embryonated chicken eggs

    PubMed Central

    2010-01-01

    Background Embryonated chicken eggs (ECE) are sometimes used for the primary isolation or passage of influenza viruses, other viruses, and certain bacteria. For small-scale experiments with pathogens that must be studied in biosafety level three (BSL3) facilities, inoculated ECE are sometimes manipulated and maintained in small egg incubators within a biosafety cabinet (BSC). To simplify the clean up and decontamination of an egg incubator in case of egg breakage, we explored whether ethylene breather bags could be used to encase ECE inoculated with pathogens. This concept was tested by determining embryo survival and examining virus yields in bagged ECE. Results Virus yields acceptable for many applications were attained when influenza-, alpha-, flavi-, canine distemper-, and mousepox viruses were propagated in ECE sealed within ethylene breather bags. Conclusions For many small-scale applications, ethylene breather bags can be used to encase ECE inoculated with various viruses. PMID:20109234

  6. Complete genome sequence and characterization of avian pathogenic Escherichia coli field isolate ACN001.

    PubMed

    Wang, Xiangru; Wei, Liuya; Wang, Bin; Zhang, Ruixuan; Liu, Canying; Bi, Dingren; Chen, Huanchun; Tan, Chen

    2016-01-01

    Avian pathogenic Escherichia coli is an important etiological agent of avian colibacillosis, which manifests as respiratory, hematogenous, meningitic, and enteric infections in poultry. It is also a potential zoonotic threat to human health. The diverse genomes of APEC strains largely hinder disease prevention and control measures. In the current study, pyrosequencing was used to analyze and characterize APEC strain ACN001 (= CCTCC 2015182(T) = DSMZ 29979(T)), which was isolated from the liver of a diseased chicken in China in 2010. Strain ACN001 belongs to extraintestinal pathogenic E. coli phylogenetic group B1, and was highly virulent in chicken and mouse models. Whole genome analysis showed that it consists of six different plasmids along with a circular chromosome of 4,936,576 bp, comprising 4,794 protein-coding genes, 108 RNA genes, and 51 pseudogenes, with an average G + C content of 50.56 %. As well as 237 coding sequences, we identified 39 insertion sequences, 12 predicated genomic islands, 8 prophage-related sequences, and 2 clustered regularly interspaced short palindromic repeats regions on the chromosome, suggesting the possible occurrence of horizontal gene transfer in this strain. In addition, most of the virulence and antibiotic resistance genes were located on the plasmids, which would assist in the distribution of pathogenicity and multidrug resistance elements among E. coli populations. Together, the information provided here on APEC isolate ACN001 will assist in future study of APEC strains, and aid in the development of control measures. PMID:26823959

  7. Protection of chickens against H5N1 highly pathogenic avian influenza virus infection by live vaccination with infectious laryngotracheitis virus recombinants expressing H5 hemagglutinin and N1 neuraminidase.

    PubMed

    Pavlova, Sophia P; Veits, Jutta; Keil, Günther M; Mettenleiter, Thomas C; Fuchs, Walter

    2009-01-29

    Attenuated vaccine strains of the alphaherpesvirus causing infectious laryngotracheitis of chickens (ILTV, gallid herpesvirus 1) can be used for mass application. Previously, we showed that live virus vaccination with recombinant ILTV expressing hemagglutinin of highly pathogenic avian influenza viruses (HPAIV) protected chickens against ILT and fowl plague caused by HPAIV carrying the corresponding hemagglutinin subtypes [Lüschow D, Werner O, Mettenleiter TC, Fuchs W. Protection of chickens from lethal avian influenza A virus infection by live-virus vaccination with infectious laryngotracheitis virus recombinants expressing the hemagglutinin (H5) gene. Vaccine 2001;19(30):4249-59; Veits J, Lüschow D, Kindermann K, Werner O, Teifke JP, Mettenleiter TC, et al. Deletion of the non-essential UL0 gene of infectious laryngotracheitis (ILT) virus leads to attenuation in chickens, and UL0 mutants expressing influenza virus haemagglutinin (H7) protect against ILT and fowl plague. J Gen Virol 2003;84(12):3343-52]. However, protection against H5N1 HPAIV was not satisfactory. Therefore, a newly designed dUTPase-negative ILTV vector was used for rapid insertion of the H5-hemagglutinin, or N1-neuraminidase genes of a recent H5N1 HPAIV isolate. Compared to our previous constructs, protein expression was considerably enhanced by insertion of synthetic introns downstream of the human cytomegalovirus immediate-early promoter within the 5'-nontranslated region of the transgenes. Deletion of the viral dUTPase gene did not affect in vitro replication of the ILTV recombinants, but led to sufficient attenuation in vivo. After a single ocular immunization, all chickens developed H5- or N1-specific serum antibodies. Nevertheless, animals immunized with N1-ILTV died after subsequent H5N1 HPAIV challenge, although survival times were prolonged compared to non-vaccinated controls. In contrast, all chickens vaccinated with either H5-ILTV alone, or H5- and N1-ILTV simultaneously, survived

  8. Surveillance, epidemiological, and virological detection of highly pathogenic H5N1 avian influenza viruses in duck and poultry from Bangladesh.

    PubMed

    Ansari, Wahedul Karim; Parvej, Md Shafiullah; El Zowalaty, Mohamed E; Jackson, Sally; Bustin, Stephen A; Ibrahim, Adel K; El Zowalaty, Ahmed E; Rahman, Md Tanvir; Zhang, Han; Khan, Mohammad Ferdousur Rahman; Ahamed, Md Mostakin; Rahman, Md Fasiur; Rahman, Marzia; Nazir, K H M Nazmul Hussain; Ahmed, Sultan; Hossen, Md Liakot; Kafi, Md Abdul; Yamage, Mat; Debnath, Nitish C; Ahmed, Graba; Ashour, Hossam M; Masudur Rahman, Md; Noreddin, Ayman; Rahman, Md Bahanur

    2016-09-25

    Avian influenza viruses (AIVs) continue to pose a global threat. Waterfowl are the main reservoir and are responsible for the spillover of AIVs to other hosts. This study was conducted as part of routine surveillance activities in Bangladesh and it reports on the serological and molecular detection of H5N1 AIV subtype. A total of 2169 cloacal and 2191 oropharyngeal swabs as well as 1725 sera samples were collected from live birds including duck and chicken in different locations in Bangladesh between the years of 2013 and 2014. Samples were tested using virus isolation, serological tests and molecular methods of RT-PCR. Influenza A viruses were detected using reverse transcription PCR targeting the virus matrix (M) gene in 41/4360 (0.94%) samples including both cloacal and oropharyngeal swab samples, 31 of which were subtyped as H5N1 using subtype-specific primers. Twenty-one live H5N1 virus isolates were recovered from those 31 samples. Screening of 1,868 blood samples collected from the same birds using H5-specific ELISA identified 545/1603 (34%) positive samples. Disconcertingly, an analysis of 221 serum samples collected from vaccinated layer chicken in four districts revealed that only 18 samples (8.1%) were seropositive for anti H5 antibodies, compared to unvaccinated birds (n=105), where 8 samples (7.6%) were seropositive. Our result indicates that the vaccination program as currently implemented should be reviewed and updated. In addition, surveillance programs are crucial for monitoring the efficacy of the current poultry vaccinations programs, and to monitor the circulating AIV strains and emergence of AIV subtypes in Bangladesh. PMID:27599930

  9. Interspecies transmission and limited persistence of low pathogenic avian influenza genomes among Alaska dabbling ducks

    USGS Publications Warehouse

    Reeves, Andrew B.; Pearce, John M.; Ramey, Andy M.; Meixell, Brandt; Runstadler, Jonathan A.

    2011-01-01

    The reassortment and geographic distribution of low pathogenic avian influenza (LPAI) virus genes are well documented, but little is known about the persistence of intact LPAI genomes among species and locations. To examine persistence of entire LPAI genome constellations in Alaska, we calculated the genetic identities among 161 full-genome LPAI viruses isolated across 4 years from five species of duck: northern pintail (Anas acuta), mallard (Anas platyrhynchos), American green-winged teal (Anas crecca), northern shoveler (Anas clypeata) and American wigeon (Anas Americana). Based on pairwise genetic distance, highly similar LPAI genomes (>99 percent identity) were observed within and between species and across a range of geographic distances (up to and >1000 km), but most often between isolates collected 0-10 km apart. Highly similar viruses were detected between years, suggesting inter-annual persistence, but these were rare in our data set with the majority occurring within 0-9 days of sampling. These results identify LPAI transmission pathways in the context of species, space and time, an initial perspective into the extent of regional virus distribution and persistence, and insight into why no completely Eurasian genomes have ever been detected in Alaska. Such information will be useful in forecasting the movement of foreign-origin avian influenza strains should they be introduced to North America.

  10. Interspecies transmission and limited persistence of low pathogenic avian influenza genomes among Alaska dabbling ducks

    USGS Publications Warehouse

    Reeves, A.B.; Pearce, J.M.; Ramey, A.M.; Meixell, B.W.; Runstadler, J.A.

    2011-01-01

    The reassortment and geographic distribution of low pathogenic avian influenza (LPAI) virus genes are well documented, but little is known about the persistence of intact LPAI genomes among species and locations. To examine persistence of entire LPAI genome constellations in Alaska, we calculated the genetic identities among 161 full-genome LPAI viruses isolated across 4. years from five species of duck: northern pintail (Anas acuta), mallard (Anas platyrhynchos), American green-winged teal (Anas crecca), northern shoveler (Anas clypeata) and American wigeon (Anas americana). Based on pairwise genetic distance, highly similar LPAI genomes (>99% identity) were observed within and between species and across a range of geographic distances (up to and >1000 km), but most often between isolates collected 0-10. km apart. Highly similar viruses were detected between years, suggesting inter-annual persistence, but these were rare in our data set with the majority occurring within 0-9. days of sampling. These results identify LPAI transmission pathways in the context of species, space and time, an initial perspective into the extent of regional virus distribution and persistence, and insight into why no completely Eurasian genomes have ever been detected in Alaska. Such information will be useful in forecasting the movement of foreign-origin avian influenza strains should they be introduced to North America. ?? 2011.

  11. A Triclade DNA Vaccine Designed on the Basis of a Comprehensive Serologic Study Elicits Neutralizing Antibody Responses against All Clades and Subclades of Highly Pathogenic Avian Influenza H5N1 Viruses

    PubMed Central

    Zhou, Fan; Wang, Guiqin; Buchy, Philippe; Cai, Zhipeng; Chen, Honglin; Chen, Zhiwei; Cheng, Genhong; Wan, Xiu-Feng; Deubel, Vincent

    2012-01-01

    Because of their rapid evolution, genetic diversity, broad host range, ongoing circulation in birds, and potential human-to-human transmission, H5N1 influenza viruses remain a major global health concern. Their high degree of genetic diversity also poses enormous burdens and uncertainties in developing effective vaccines. To overcome this, we took a new approach, i.e., the development of immunogens based on a comprehensive serologic study. We constructed DNA plasmids encoding codon-optimized hemagglutinin (HA) from 17 representative strains covering all reported clades and subclades of highly pathogenic avian influenza H5N1 viruses. Using DNA plasmids, we generated the corresponding H5N1 pseudotypes and immune sera. We performed an across-the-board pseudotype-based neutralization assay and determined antigenic clusters by cartography. We then designed a triclade DNA vaccine and evaluated its immunogenicity and protection in mice. We report here that (sub)clades 0, 1, 3, 4, 5, 6, 7.1, and 9 were grouped into antigenic cluster 1, (sub)clades 2.1.3.2, 2.3.4, 2.4, 2.5, and 8 were grouped into another antigenic cluster, with subclade 2.2.1 loosely connected to it, and each of subclades 2.3.2.1 and 7.2 was by itself. Importantly, the triclade DNA vaccine encoding HAs of (sub)clades 0, 2.3.2.1, and 7.2 elicited broadly neutralizing antibody responses against all H5 clades and subclades and protected mice against high-lethal-dose heterologous H5N1 challenge. Thus, we conclude that broadly neutralizing antibodies against all H5 clades and subclades can indeed be elicited with immunogens on the basis of a comprehensive serologic study. Further evaluation and optimization of such an approach in ferrets and in humans is warranted. PMID:22496212

  12. A triclade DNA vaccine designed on the basis of a comprehensive serologic study elicits neutralizing antibody responses against all clades and subclades of highly pathogenic avian influenza H5N1 viruses.

    PubMed

    Zhou, Fan; Wang, Guiqin; Buchy, Philippe; Cai, Zhipeng; Chen, Honglin; Chen, Zhiwei; Cheng, Genhong; Wan, Xiu-Feng; Deubel, Vincent; Zhou, Paul

    2012-06-01

    Because of their rapid evolution, genetic diversity, broad host range, ongoing circulation in birds, and potential human-to-human transmission, H5N1 influenza viruses remain a major global health concern. Their high degree of genetic diversity also poses enormous burdens and uncertainties in developing effective vaccines. To overcome this, we took a new approach, i.e., the development of immunogens based on a comprehensive serologic study. We constructed DNA plasmids encoding codon-optimized hemagglutinin (HA) from 17 representative strains covering all reported clades and subclades of highly pathogenic avian influenza H5N1 viruses. Using DNA plasmids, we generated the corresponding H5N1 pseudotypes and immune sera. We performed an across-the-board pseudotype-based neutralization assay and determined antigenic clusters by cartography. We then designed a triclade DNA vaccine and evaluated its immunogenicity and protection in mice. We report here that (sub)clades 0, 1, 3, 4, 5, 6, 7.1, and 9 were grouped into antigenic cluster 1, (sub)clades 2.1.3.2, 2.3.4, 2.4, 2.5, and 8 were grouped into another antigenic cluster, with subclade 2.2.1 loosely connected to it, and each of subclades 2.3.2.1 and 7.2 was by itself. Importantly, the triclade DNA vaccine encoding HAs of (sub)clades 0, 2.3.2.1, and 7.2 elicited broadly neutralizing antibody responses against all H5 clades and subclades and protected mice against high-lethal-dose heterologous H5N1 challenge. Thus, we conclude that broadly neutralizing antibodies against all H5 clades and subclades can indeed be elicited with immunogens on the basis of a comprehensive serologic study. Further evaluation and optimization of such an approach in ferrets and in humans is warranted. PMID:22496212

  13. Experimental and Field Results Regarding Immunity Induced by a Recombinant Turkey Herpesvirus H5 Vector Vaccine Against H5N1 and Other H5 Highly Pathogenic Avian Influenza Virus Challenges.

    PubMed

    Gardin, Yannick; Palya, Vilmos; Dorsey, Kristi Moore; El-Attrache, John; Bonfante, Francesco; Wit, Sjaak de; Kapczynski, Darrell; Kilany, Walid Hamdy; Rauw, Fabienne; Steensels, Mieke; Soejoedono, Retno D

    2016-05-01

    Vaccination against H5N1 highly pathogenic avian influenza (AI) virus (HPAIV) is one of the possible complementary means available for affected countries to control AI when the disease has become, or with a high risk of becoming, endemic. Efficacy of the vaccination against AI relies essentially, but not exclusively, on the capacity of the vaccine to induce immunity against the targeted virus (which is prone to undergo antigenic variations), as well as its capacity to overcome interference with maternal immunity transmitted by immunized breeding hens to their progeny. This property of the vaccine is a prerequisite for its administration at the hatchery, which assures higher and more reliable vaccine coverage of the populations than vaccination at the farm. A recombinant vector vaccine (Vectormune® AI), based on turkey herpesvirus expressing the hemagglutinin gene of an H5N1 HPAIV as an insert, has been used in several experiments conducted in different research laboratories, as well as in controlled field trials. The results have demonstrated a high degree of homologous and cross protection against different genetic clades of the H5N1 HPAIV. Furthermore, vaccine-induced immunity was not impaired by the presence of passive immunity, but on the contrary, cumulated with it for improved early protection. The demonstrated levels of protection against the different challenge viruses exhibited variations in terms of postchallenge mortality, as well as challenge virus shedding. The data presented here highlight the advantages of this vaccine as a useful and reliable tool to complement biosecurity and sanitary policies for better controlling the disease due to HPAIV of H5 subtypes, when the vaccination is applied as a control measure. PMID:27309060

  14. Evaluation of two commercial lateral flow devices (LFDs) used for flockside testing of H5N1 highly-pathogenic avian influenza infections in backyard gallinaceous poultry in Egypt.

    PubMed

    Soliman, Mohammed; Selim, Abdullah; Coward, Vivien J; Hassan, Mohammed K; Aly, Mona M; Banks, Jill; Slomka, Marek J

    2010-01-01

    Quickvue and Anigen lateral flow devices (LFDs) were evaluated for detection of H5N1 highly pathogenic avian influenza (HPAI) infections in Egyptian poultry. Sixty five chickens and two turkeys were sampled in eight flocks where H5N1 HPAI infection was suspected. Swabs (tracheal and cloacal) and feathers were collected from each bird for flockside testing by the two LFDs. The same clinical specimens were transported for laboratory testing by M gene RRT PCR where a positive result by this "gold standard" test for one or both swabs from a given bird indicated infection at the bird level, showing 57 birds (including 15 carcassess) to be truly AI infected. Among these 57, similar bird-level LFD testing of swabs showed 43 and 44 to be AI infected by Quickvue and Anigen LFDs, respectively. Nine birds were AI negative by M gene RRT PCR and both LFDs, and one was M gene RRT PCR negative but positive by both LFDs, suggesting one false positive LFD result. Sensitivities of the LFDs relative to M gene RRT PCR were 77.2% for Anigen and 75.4% for Quickvue tests, with 90.0% specificity for both. By including feathers with swabs for LFD testing, the number of LFD positives among 57 infected birds increased by four to 48 by Anigen and 47 by Quickvue, increasing the sensitivity of the LFDs to 84.2% and 82.5% for Anigen and Quickvue, respectively. Although LFD sensitivity cannot compare to the high sensitivity displayed by validated AI RRT PCRs, they may be utilised for flockside testing of birds infected with HPAI at the peak of viral shedding, when birds are displaying advanced clinical signs or sampled as fresh carcasses. Swabs are classic field specimens collected from outbreaks, but inclusion of feathers from birds infected with H5N1 HPAI increased LFD sensitivity. However, the LFD false positive observation emphasises the importance of returning samples for confirmatory laboratory testing. PMID:21139668

  15. Recovery Based Nanowire Field-Effect Transistor Detection of Pathogenic Avian Influenza DNA

    NASA Astrophysics Data System (ADS)

    Lin, Chih-Heng; Chu, Chia-Jung; Teng, Kang-Ning; Su, Yi-Jr; Chen, Chii-Dong; Tsai, Li-Chu; Yang, Yuh-Shyong

    2012-02-01

    Fast and accurate diagnosis is critical in infectious disease surveillance and management. We proposed a DNA recovery system that can easily be adapted to DNA chip or DNA biosensor for fast identification and confirmation of target DNA. This method was based on the re-hybridization of DNA target with a recovery DNA to free the DNA probe. Functionalized silicon nanowire field-effect transistor (SiNW FET) was demonstrated to monitor such specific DNA-DNA interaction using high pathogenic strain virus hemagglutinin 1 (H1) DNA of avian influenza (AI) as target. Specific electric changes were observed in real-time for AI virus DNA sensing and device recovery when nanowire surface of SiNW FET was modified with complementary captured DNA probe. The recovery based SiNW FET biosensor can be further developed for fast identification and further confirmation of a variety of influenza virus strains and other infectious diseases.

  16. Characterization of low-pathogenicity H5N1 avian influenza viruses from North America

    USGS Publications Warehouse

    Spackman, Erica; Swayne, D.E.; Suarez, D.L.; Senne, D.A.; Pedersen, J.C.; Killian, M.L.; Pasick, J.; Handel, K.; Pillai, S.P.S.; Lee, C.-W.; Stallknecht, D.; Slemons, R.; Ip, H.S.; Deliberto, T.

    2007-01-01

    Wild-bird surveillance in North America for avian influenza (AI) viruses with a goal of early identification of the Asian H5N1 highly pathogenic AI virus has identified at least six low-pathogenicity H5N1 AI viruses between 2004 and 2006. The hemagglutinin (HA) and neuraminidase (NA) genes from all 6 H5N1 viruses and an additional 38 North American wild-bird-origin H5 subtype and 28 N1 subtype viruses were sequenced and compared with sequences available in GenBank by phylogenetic analysis. Both HA and NA were phylogenetically distinct from those for viruses from outside of North America and from those for viruses recovered from mammals. Four of the H5N1 AI viruses were characterized as low pathogenicity by standard in vivo pathotyping tests. One of the H5N1 viruses, A/MuteSwan/MI/451072-2/06, was shown to replicate to low titers in chickens, turkeys, and ducks. However, transmission of A/MuteSwan/MI/451072-2/06 was more efficient among ducks than among chickens or turkeys based on virus shed. The 50% chicken infectious dose for A/MuteSwan/MI/451072-2/06 and three other wild-waterfowl-origin H5 viruses were also determined and were between 10 5.3 and 107.5 50% egg infective doses. Finally, seven H5 viruses representing different phylogenetic clades were evaluated for their antigenic relatedness by hemagglutination inhibition assay, showing that the antigenic relatedness was largely associated with geographic origin. Overall, the data support the conclusion that North American H5 wild-bird-origin AI viruses are low-pathogenicity wild-bird-adapted viruses and are antigenically and genetically distinct from the highly pathogenic Asian H5N1 virus lineage. Copyright ?? 2007, American Society for Microbiology. All Rights Reserved.

  17. Characterization of low-pathogenicity H5N1 avian influenza viruses from North America

    USGS Publications Warehouse

    Spackman, Erica; Swayne, David E.; Suarez, David L.; Senne, Dennis A.; Pedersen, Janice C.; Killian, Mary Lea; Pasick, John; Handel, Katherine; Somanathan Pillai, Smitha; Lee, Chang-Won; Stallknecht, David; Slemons, Richard; Ip, Hon S.; Deliberto, Tom

    2007-01-01

    Wild-bird surveillance in North America for avian influenza (AI) viruses with a goal of early identification of the Asian H5N1 highly pathogenic AI virus has identified at least six low-pathogenicity H5N1 AI viruses between 2004 and 2006. The hemagglutinin (HA) and neuraminidase (NA) genes from all 6 H5N1 viruses and an additional 38 North American wild-bird-origin H5 subtype and 28 N1 subtype viruses were sequenced and compared with sequences available in GenBank by phylogenetic analysis. Both HA and NA were phylogenetically distinct from those for viruses from outside of North America and from those for viruses recovered from mammals. Four of the H5N1 AI viruses were characterized as low pathogenicity by standard in vivo pathotyping tests. One of the H5N1 viruses, A/MuteSwan/MI/451072-2/06, was shown to replicate to low titers in chickens, turkeys, and ducks. However, transmission of A/MuteSwan/MI/451072-2/06 was more efficient among ducks than among chickens or turkeys based on virus shed. The 50% chicken infectious dose for A/MuteSwan/MI/451072-2/06 and three other wild-waterfowl-origin H5 viruses were also determined and were between 105.3 and 107.5 50% egg infective doses. Finally, seven H5 viruses representing different phylogenetic clades were evaluated for their antigenic relatedness by hemagglutination inhibition assay, showing that the antigenic relatedness was largely associated with geographic origin. Overall, the data support the conclusion that North American H5 wild-bird-origin AI viruses are low-pathogenicity wild-bird-adapted viruses and are antigenically and genetically distinct from the highly pathogenic Asian H5N1 virus lineage.

  18. Global phylogeography of the avian malaria pathogen Plasmodium relictum based on MSP1 allelic diversity

    USGS Publications Warehouse

    Hellgren, Olof; Atkinson, Carter T.; Bensch, Staffan; Albayrak, Tamer; Dimitrov, Dimitar; Ewen, John G.; Kim, Kyeong Soon; Lima, Marcos R.; Martin, Lynn; Palinauskas, Vaidas; Ricklefs, Robert; Sehgal, Ravinder N. M.; Gediminas, Valkiunas; Tsuda, Yoshio; Marzal, Alfonso

    2015-01-01

    Knowing the genetic variation that occurs in pathogen populations and how it is distributed across geographical areas is essential to understand parasite epidemiology, local patterns of virulence, and evolution of host-resistance. In addition, it is important to identify populations of pathogens that are evolutionarily independent and thus ‘free’ to adapt to hosts and environments. Here, we investigated genetic variation in the globally distributed, highly invasive avian malaria parasite Plasmodium relictum, which has several distinctive mitochondrial haplotyps (cyt b lineages, SGS1, GRW11 and GRW4). The phylogeography of P. relictum was accessed using the highly variable nuclear gene merozoite surface protein 1 (MSP1), a gene linked to the invasion biology of the parasite. We show that the lineage GRW4 is evolutionarily independent of GRW11 and SGS1 whereas GRW11 and SGS1 share MSP1 alleles and thus suggesting the presence of two distinct species (GRW4 versus SGS1 and GRW11). Further, there were significant differences in the global distribution of MSP1 alleles with differences between GRW4 alleles in the New and the Old World. For SGS1, a lineage formerly believed to have both tropical and temperate transmission, there were clear differences in MSP1 alleles transmitted in tropical Africa compared to the temperate regions of Europe and Asia. Further, we highlight the occurrence of multiple MSP1 alleles in GRW4 isolates from the Hawaiian Islands, where the parasite has contributed to declines and extinctions of endemic forest birds since it was introduced. This study stresses the importance of multiple independent loci for understanding patterns of transmission and evolutionary independence across avian malaria parasites.

  19. Poultry vaccination directed evolution of H9N2 low pathogenicity avian influenza viruses in Korea

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Significant economic losses in the poultry industries have resulted from H9N2 low pathogenic avian influenza virus infections across North Africa, the Middle East and Asia. The present study investigated the evolutionary dynamics of H9N2 viruses circulating in Korea from 1996 to 2012. Our analysis o...

  20. 9 CFR 145.15 - Diagnostic surveillance program for low pathogenic avian influenza.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Diagnostic surveillance program for low pathogenic avian influenza. 145.15 Section 145.15 Animals and Animal Products ANIMAL AND PLANT... antigen detection test. Memoranda of understanding or other means must be used to establish testing...

  1. 9 CFR 145.15 - Diagnostic surveillance program for low pathogenic avian influenza.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Diagnostic surveillance program for low pathogenic avian influenza. 145.15 Section 145.15 Animals and Animal Products ANIMAL AND PLANT... antigen detection test. Memoranda of understanding or other means must be used to establish testing...

  2. 9 CFR 145.15 - Diagnostic surveillance program for low pathogenic avian influenza.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Diagnostic surveillance program for low pathogenic avian influenza. 145.15 Section 145.15 Animals and Animal Products ANIMAL AND PLANT... antigen detection test. Memoranda of understanding or other means must be used to establish testing...

  3. H9N2 low pathogenic avian influenza in Pakistan (2012-2015)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Significant economic losses from deaths and decreased egg production have resulted from H9N2 low pathogenic avian influenza virus (LPAIV) infections in poultry across North Africa, the Middle East and Asia. The H9N2 LPAIVs have been endemic in Pakistani poultry since 1996, but no new viruses have be...

  4. Serum and egg yolk antibody detection in chickens infected with low pathogenicity avian influenza virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Surveillance for low pathogenicity avian influenza virus (LPAIV) infections has primarily relied on labor intensive collection and serological testing of serum, but for many poultry diseases, easier to collect yolk samples have replaced serum for surveillance testing. A time course LPAIV infection s...

  5. 9 CFR 145.15 - Diagnostic surveillance program for low pathogenic avian influenza.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE LIVESTOCK IMPROVEMENT NATIONAL POULTRY IMPROVEMENT PLAN FOR BREEDING POULTRY General Provisions § 145.15 Diagnostic surveillance program for low... H5/H7 low pathogenic avian influenza for all poultry in the State. The exact provisions of...

  6. 9 CFR 145.15 - Diagnostic surveillance program for low pathogenic avian influenza.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE LIVESTOCK IMPROVEMENT NATIONAL POULTRY IMPROVEMENT PLAN FOR BREEDING POULTRY General Provisions § 145.15 Diagnostic surveillance program for low... H5/H7 low pathogenic avian influenza for all poultry in the State. The exact provisions of...

  7. Complete Genomic Sequence of an Avian Pathogenic Escherichia coli Strain of Serotype O7:HNT

    PubMed Central

    Maluta, Renato P.; Nicholson, Bryon; Logue, Catherine M.; Nolan, Lisa K.; Rojas, Thaís C. G.

    2016-01-01

    Avian pathogenic Escherichia coli (APEC) is associated with colibacillosis in poultry. Here, we present the first complete sequence of an APEC strain of the O7:HNT serotype and ST73 sequence type, isolated from a broiler with cellulitis. Complete genomes of APEC with distinct genetic backgrounds may be useful for comparative analysis. PMID:26823578

  8. A Simulation-Based Evaluation of Premovement Active Surveillance Protocol Options for the Managed Movement of Turkeys to Slaughter During an Outbreak of Highly Pathogenic Avian Influenza in the United States.

    PubMed

    Todd Weaver, J; Malladi, Sasidhar; Bonney, Peter J; Patyk, Kelly A; Bergeron, Justin G; Middleton, Jamie L; Alexander, Catherine Y; Goldsmith, Timothy J; Halvorson, David A

    2016-05-01

    Risk management decisions associated with live poultry movement during a highly pathogenic avian influenza (HPAI) outbreak should be carefully considered. Live turkey movements may pose a risk for disease spread. On the other hand, interruptions in scheduled movements can disrupt business continuity. The Secure Turkey Supply (STS) Plan was developed through an industry-government-academic collaboration to address business continuity concerns that might arise during a HPAI outbreak. STS stakeholders proposed outbreak response measure options that were evaluated through risk assessment. The developed approach relies on 1) diagnostic testing of two pooled samples of swabs taken from dead turkeys immediately before movement via the influenza A matrix gene real-time reverse transcriptase polymerase chain reaction (rRT-PCR) test; 2) enhanced biosecurity measures in combination with a premovement isolation period (PMIP), restricting movement onto the premises for a few days before movement to slaughter; and 3) incorporation of a distance factor from known infected flocks such that exposure via local area spread is unlikely. Daily exposure likelihood estimates from spatial kernels from past HPAI outbreaks were coupled with simulation models of disease spread and active surveillance to evaluate active surveillance protocol options that differ with respect to the number of swabs per pooled sample and the timing of the tests in relation to movement. Simulation model results indicate that active surveillance testing, in combination with strict biosecurity, substantially increased HPAI virus detection probability. When distance from a known infected flock was considered, the overall combined likelihood of moving an infected, undetected turkey flock to slaughter was predicted to be lower at 3 and 5 km. The analysis of different active surveillance protocol options is designed to incorporate flexibility into HPAI emergency response plans. PMID:27309049

  9. Evaluation of the U.S. Department of Agriculture's egg pasteurization processes on the inactivation of high-pathogenicity avian influenza virus and velogenic Newcastle disease virus in processed egg products.

    PubMed

    Chmielewski, Revis A; Beck, Joan R; Swayne, David E

    2013-04-01

    Globally, 230,662 metric tons of liquid egg products are marketed each year. The presence of highly pathogenic avian influenza (HPAI) or Newcastle disease in an exporting country can legitimately inhibit trade in eggs and processed egg products; development and validation of pasteurization parameters are essential for safe trade to continue. The HPAI virus (HPAIV) A/chicken/Pennsylvania/1370/1983 (H5N2) and velogenic Newcastle disease virus (vNDV) AMPV-1/chicken/California/S01212676/2002 were inoculated into five egg products and heat treated at various times and temperatures to determine thermal inactivation rates to effect a 5-log viral reduction. For HPAIV and vNDV, the pasteurization processes for fortified, sugared, plain, and salted egg yolk, and homogenized whole egg (HPAIV only) products resulted in >5-log reductions in virus at the lower temperature-longer times of U.S. Department of Agriculture (USDA)-approved Salmonella pasteurization processes. In addition, a >5-log reduction of HPAIV was also demonstrated for the five products at the higher temperatures-shorter times of USDA-approved pasteurization processes, whereas the vNDV virus was adequately inactivated in only fortified and plain egg yolk products. For the salted and sugared egg yolk products, an additional 0.65 and 1.6 min of treatment, respectively, at 63.3 °C was necessary to inactivate 5 log of vNDV. Egg substitute with fat does not have standard USDA pasteurization criteria, but the D59-value was 0.75 min, adequate to inactivate 5 log of vNDV in <4 min. PMID:23575126

  10. Prevalence of the C-terminal truncations of NS1 in avian influenza A viruses and effect on virulence and replication of a highly pathogenic H7N1 virus in chickens.

    PubMed

    Abdelwhab, El-Sayed M; Veits, Jutta; Breithaupt, Angele; Gohrbandt, Sandra; Ziller, Mario; Teifke, Jens P; Stech, Jürgen; Mettenleiter, Thomas C

    2016-07-01

    Highly pathogenic (HP) avian influenza viruses (AIV) evolve from low pathogenic (LP) precursors after circulation in poultry by reassortment and/or single mutations in different gene segments including that encoding NS1. The carboxyl terminal end (CTE) of NS1 exhibits deletions between amino acid 202 and 230 with still unknown impact on virulence of AIV in chickens. In this study, NS1 protein sequences of all AIV subtypes in birds from 1902 to 2015 were analyzed to study the prevalence and distribution of CTE truncation (ΔCTE). Thirteen different ΔCTE forms were observed in NS1 proteins from 11 HA and 8 NA subtypes with high prevalences in H9, H7, H6 and H10 and N9, N2, N6 and N1 subtypes particularly in chickens and minor poultry species. With 88% NS217 lacking amino acids 218-230 was the most common ΔCTE form followed by NS224 (3.6%). NS217 was found in 10 and 8 different HA and NA subtypes, respectively, whereas NS224 was detected exclusively in the Italian HPAIV H7N1 suggesting relevance for virulence. To test this assumption, 3 recombinant HPAIV H7N1 were constructed carrying wild-type HP NS1 (Hp-NS224), NS1 with extended CTE (Hp-NS230) or NS1 from LPAIV H7N1 (Hp-NSLp), and tested in-vitro and in-vivo. Extension of CTE in Hp NS1 significantly decreased virus replication in chicken embryo kidney cells. Truncation in the NS1 decreased the tropism of Hp-NS224 to the endothelium, central nervous system and respiratory tract epithelium without significant difference in virulence in chickens. This study described the variable forms of ΔCTE in NS1 and indicated that CTE is not an essential virulence determinant particularly for the Italian HPAIV H7N1 but may be a host-adaptation marker required for efficient virus replication. PMID:26981790

  11. Experimental challenge and pathology of highly pathogenic avian influenza virus H5N1 in dunlin (Calidris alpina), an intercontinental migrant shorebird species

    USGS Publications Warehouse

    Hall, Jeffrey S.; Franson, J. Christian; Gill, Robert E., Jr.; Meteyer, Carol U.; TeSlaa, Joshua L.; Nashold, Sean; Dusek, Robert J.; Ip, Hon S.

    2011-01-01

    Conclusions Dunlin are highly susceptible to infection with HPAIV H5N1. They become infected after exposure to relatively small doses of the virus and if they become infected, they are most likely to suffer mortality within 3–5 days. These results have important implications regarding the risks of transport and transmission of HPAIV H5N1 to North America by this species and raises questions for further investigation.

  12. Highly pathogenic avian influenza H5N1 Clade 2.3.2.1c virus in migratory birds, 2014-2015.

    PubMed

    Bi, Yuhai; Chen, Jianjun; Zhang, Zhenjie; Li, Mingxin; Cai, Tianlong; Sharshov, Kirill; Susloparov, Ivan; Shestopalov, Alexander; Wong, Gary; He, Yubang; Xing, Zhi; Sun, Jianqing; Liu, Di; Liu, Yingxia; Liu, Lei; Liu, Wenjun; Lei, Fumin; Shi, Weifeng; Gao, George F

    2016-08-01

    A novel Clade 2.3.2.1c H5N1 reassortant virus caused several outbreaks in wild birds in some regions of China from late 2014 to 2015. Based on the genetic and phylogenetic analyses, the viruses possess a stable gene constellation with a Clade 2.3.2.1c HA, a H9N2-derived PB2 gene and the other six genes of Asian H5N1-origin. The Clade 2.3.2.1c H5N1 reassortants displayed a high genetic relationship to a human H5N1 strain (A/Alberta/01/2014). Further analysis showed that similar viruses have been circulating in wild birds in China, Russia, Dubai (Western Asia), Bulgaria and Romania (Europe), as well as domestic poultry in some regions of Africa. The affected areas include the Central Asian, East Asian-Australasian, West Asian-East African, and Black Sea/Mediterranean flyways. These results show that the novel Clade 2.3.2.1c reassortant viruses are circulating worldwide and may have gained a selective advantage in migratory birds, thus posing a serious threat to wild birds and potentially humans. PMID:27405930

  13. Replication, Neurotropism, and Pathogenicity of Avian Paramyxovirus Serotypes 1–9 in Chickens and Ducks

    PubMed Central

    Kim, Shin-Hee; Xiao, Sa; Shive, Heather; Collins, Peter L.; Samal, Siba K.

    2012-01-01

    Avian paramyxovirus (APMV) serotypes 1–9 have been isolated from many different avian species. APMV-1 (Newcastle disease virus) is the only well-characterized serotype, because of the high morbidity, mortality, and economic loss caused by highly virulent strains. Very little is known about the pathogenesis, replication, virulence, and tropism of the other APMV serotypes. Here, this was evaluated for prototypes strains of APMV serotypes 2–9 in cell culture and in chickens and ducks. In cell culture, only APMV-1, -3 and -5 induced syncytium formation. In chicken DF1 cells, APMV-3 replicated with an efficiency approaching that of APMV-1, while APMV-2 and -5 replicated to lower, intermediate titers and the others were much lower. Mean death time (MDT) assay in chicken eggs and intracerebral pathogenicity index (ICPI) test in 1-day-old SPF chicks demonstrated that APMV types 2–9 were avirulent. Evaluation of replication in primary neuronal cells in vitro as well as in the brains of 1-day-old chicks showed that, among types 2–9, only APMV-3 was neurotropic, although this virus was not neurovirulent. Following intranasal infection of 1-day-old and 2-week-old chickens, replication of APMV types 2–9 was mostly restricted to the respiratory tract, although APMV-3 was neuroinvasive and neurotropic (but not neurovirulent) and also was found in the spleen. Experimental intranasal infection of 3-week-old mallard ducks with the APMVs did not produce any clinical signs (even for APMV-1) and exhibited restricted viral replication of the APMVs (including APMV-1) to the upper respiratory tract regardless of their isolation source, indicating avirulence of APMV types 1–9 in mallard ducks. The link between the presence of a furin cleavage site in the F protein, syncytium formation, systemic spread, and virulence that has been well-established with APMV-1 pathotypes was not evident with the other APMV serotypes. PMID:22558104

  14. Seroepidemiologic Survey of Potential Pathogens in Obligate and Facultative Scavenging Avian Species in California.

    PubMed

    Straub, Mary H; Kelly, Terra R; Rideout, Bruce A; Eng, Curtis; Wynne, Janna; Braun, Josephine; Johnson, Christine K

    2015-01-01

    Throughout the world, populations of scavenger birds are declining rapidly with some populations already on the brink of extinction. Much of the current research into the factors contributing to these declines has focused on exposure to drug residues, lead, and other toxins. Despite increased monitoring of these declining populations, little is known about infectious diseases affecting scavenger bird species. To assess potential infectious disease risks to both obligate and facultative scavenger bird species, we performed a serosurvey for eleven potential pathogens in three species of scavenging birds in California: the California condor (Gymnogyps californianus), turkey vulture (Cathartes aura) and golden eagle (Aquila chrysaetos). California condors were seropositive for avian adenovirus, infectious bronchitis virus, Mycoplasma gallisepticum, avian paramyxovirus-2, West Nile virus (WNV) and Toxoplasma gondii. Golden eagles were seropositive for avian adenovirus, Chlamydophila psittaci and Toxoplasma gondii, and turkey vultures were seropositive for avian adenovirus, Chlamydophila psittaci, avian paramyxovirus-1, Toxoplasma gondii and WNV. Risk factor analyses indicated that rearing site and original release location were significantly associated with a positive serologic titer to WNV among free-flying condors. This study provides preliminary baseline data on infectious disease exposure in these populations for aiding in early disease detection and provides potentially critical information for conservation of the endangered California condor as it continues to expand its range and encounter new infectious disease threats. PMID:26606755

  15. Seroepidemiologic Survey of Potential Pathogens in Obligate and Facultative Scavenging Avian Species in California

    PubMed Central

    Straub, Mary H.; Kelly, Terra R.; Rideout, Bruce A.; Eng, Curtis; Wynne, Janna; Braun, Josephine; Johnson, Christine K.

    2015-01-01

    Throughout the world, populations of scavenger birds are declining rapidly with some populations already on the brink of extinction. Much of the current research into the factors contributing to these declines has focused on exposure to drug residues, lead, and other toxins. Despite increased monitoring of these declining populations, little is known about infectious diseases affecting scavenger bird species. To assess potential infectious disease risks to both obligate and facultative scavenger bird species, we performed a serosurvey for eleven potential pathogens in three species of scavenging birds in California: the California condor (Gymnogyps californianus), turkey vulture (Cathartes aura) and golden eagle (Aquila chrysaetos). California condors were seropositive for avian adenovirus, infectious bronchitis virus, Mycoplasma gallisepticum, avian paramyxovirus-2, West Nile virus (WNV) and Toxoplasma gondii. Golden eagles were seropositive for avian adenovirus, Chlamydophila psittaci and Toxoplasma gondii, and turkey vultures were seropositive for avian adenovirus, Chlamydophila psittaci, avian paramyxovirus-1, Toxoplasma gondii and WNV. Risk factor analyses indicated that rearing site and original release location were significantly associated with a positive serologic titer to WNV among free-flying condors. This study provides preliminary baseline data on infectious disease exposure in these populations for aiding in early disease detection and provides potentially critical information for conservation of the endangered California condor as it continues to expand its range and encounter new infectious disease threats. PMID:26606755

  16. High pathogenicity avian influenza in the Americas

    Technology Transfer Automated Retrieval System (TEKTRAN)

    From 1924 to 2004, there were eight HPAI epidemics in the Americas: fowl plague in USA during 1924-25 and 1929, H5N9 HPAI in Canada during 1966, H5N2 HPAI in USA during 1983-84, H5N2 HPAI in Mexico during 1994-95, H7N3 HPAI in Chile during 2002, H7N3 HPAI in Canada during 2004, and H5N2 HPAI in USA ...

  17. Early Indicators of Disease in Ferrets Infected with a High Dose of Avian Influenza H5N1

    PubMed Central

    Long, James P.; Vela, Eric M.; Stark, Gregory V.; Jones, Kelly J.; Miller, Stephen T.; Bigger, John E.

    2012-01-01

    Avian influenza viruses are widespread in birds, contagious in humans, and are categorized as low pathogenicity avian influenza or highly pathogenic avian influenza. Ferrets are susceptible to infection with avian and human influenza A and B viruses and have been widely used as a model to study pathogenicity and vaccine efficacy. In this report, the natural history of the H5N1 influenza virus A/Vietnam/1203/04 influenza infection in ferrets was examined to determine clinical and laboratory parameters that may indicate (1) the onset of disease and (2) survival. In all, twenty of 24 animals infected with 7 × 105 TCID50 of A/Vietnam/1203/04 succumbed. A statistical analysis identified a combination of parameters including weight loss, nasal wash TCID50, eosinophils, and liver enzymes such as alanine amino transferase that might possibly serve as indicators of both disease onset and challenge survival. PMID:23240077

  18. Anti-viral properties and mode of action of standardized Echinacea purpurea extract against highly pathogenic avian Influenza virus (H5N1, H7N7) and swine-origin H1N1 (S-OIV)

    PubMed Central

    2009-01-01

    Background Influenza virus (IV) infections are a major threat to human welfare and animal health worldwide. Anti-viral therapy includes vaccines and a few anti-viral drugs. However vaccines are not always available in time, as demonstrated by the emergence of the new 2009 H1N1-type pandemic strain of swine origin (S-OIV) in April 2009, and the acquisition of resistance to neuraminidase inhibitors such as Tamiflu® (oseltamivir) is a potential problem. Therefore the prospects for the control of IV by existing anti-viral drugs are limited. As an alternative approach to the common anti-virals we studied in more detail a commercial standardized extract of the widely used herb Echinacea purpurea (Echinaforce®, EF) in order to elucidate the nature of its anti-IV activity. Results Human H1N1-type IV, highly pathogenic avian IV (HPAIV) of the H5- and H7-types, as well as swine origin IV (S-OIV, H1N1), were all inactivated in cell culture assays by the EF preparation at concentrations ranging from the recommended dose for oral consumption to several orders of magnitude lower. Detailed studies with the H5N1 HPAIV strain indicated that direct contact between EF and virus was required, prior to infection, in order to obtain maximum inhibition in virus replication. Hemagglutination assays showed that the extract inhibited the receptor binding activity of the virus, suggesting that the extract interferes with the viral entry into cells. In sequential passage studies under treatment in cell culture with the H5N1 virus no EF-resistant variants emerged, in contrast to Tamiflu®, which produced resistant viruses upon passaging. Furthermore, the Tamiflu®-resistant virus was just as susceptible to EF as the wild type virus. Conclusion As a result of these investigations, we believe that this standard Echinacea preparation, used at the recommended dose for oral consumption, could be a useful, readily available and affordable addition to existing control options for IV replication and

  19. 75 FR 10645 - Low Pathogenic Avian Influenza; Voluntary Control Program and Payment of Indemnity

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-09

    ...We are adopting as a final rule, with changes, an interim rule that amended the regulations by establishing, under the auspices of the National Poultry Improvement Plan, a voluntary program for the control of the H5/H7 subtypes of low pathogenic avian influenza in commercial poultry. As amended by this document, the rule provides that the amount of indemnity for which contract growers are......

  20. Pathogenicity and distribution of avian nephritis virus (G-4260 strain) in inoculated laying hens.

    PubMed

    Imada, T; Maeda, M; Furuta, K; Yamaguchi, S; Kawamura, H

    1983-01-01

    Specific-pathogen-free laying hens were inoculated intravenously with the G-4260 strain of avian nephritis virus (ANV). The distribution of the virus in organs, histological changes in main organs, the condition of laying, and egg transmission of the virus were examined in them. Over an experimental period of 27 days, no clinical sings were observed. In a chronological study on the distribution of the virus in organs, the virus was recovered from liver, kidney, jejunum, and rectum for 6 days postinoculation (PI). The virus titer in organ emulsion was the highest in the jejunum of all the main organs. The virus was recovered from the kidney for 8 days PI, although it was not so high in this organ. It was not recovered from the ovary or oviduct. Fluorescent antigens were not observed at all in any material. In a pathological examination, some local inflammatory changes were observed only in the kidney. There were no significant changes in the ovary, oviduct, or any other organ. Antibody appeared 10 days PI and was detectable even 27 days PI, although it was not so high in titer. There was no significant difference in the rate of egg-production between the infected and the sham inoculated groups. No virus was isolated from 111 fertile eggs laid by infected hens over a period from 2 to 27 days PI. PMID:6097821

  1. Avian influenza

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza (AI) viruses infect domestic poultry and wild birds. In domestic poultry, AI viruses are typically of low pathogenicity (LP) causing subclinical infections, respiratory disease or drops in egg production. However, a few AI viruses cause severe systemic disease with high mortality; i....

  2. AVIAN INFLUENZA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian Influenza (AI) viruses infect domestic poultry and wild birds. In domestic poultry, AI viruses are typically of low pathogenicity (LP) causing subclinical infections, respiratory disease or drops in egg production. However, a few AI viruses cause severe systemic disease with high mortality; ...

  3. Low-pathogenicity H7N2 avian influenza outbreak in Virgnia during 2002.

    PubMed

    Akey, B L

    2003-01-01

    An outbreak of low-pathogenicity H7N2 avian influenza virus (AIV) in the Shenandoah Valley of Virginia during the spring and summer of 2002 affected 197 farms and resulted in the destruction of over 4.7 million birds. The outbreak affected primarily turkey farms (28 breeders, 125 grow out) with some spillover into chicken farms (29 breeders, 13 grow out, 2 table-egg layers). Although no direct link was established, the strain of H7N2 AIV in this outbreak had a molecular fingerprint that was essentially identical to the H7N2 AIV strain that has circulated in the live bird markets of the northeastern United States for the last 8 yr. After an initial delay caused by lack of viable disposal options, depopulation and disposal, primarily in sanitary landfills, was carried out within 24 hr of detection of a positive flock. Increased surveillance efforts included once-a-week testing of the daily mortality of all poultry farms in the region, testing of all breeder farms every 2 wk, and testing of all flocks prior to movement for any reason. A statistical sampling of backyard flocks and wild birds found no evidence of the virus. The successful eradication of this outbreak was the result of the efforts of a highly effective task force of industry, state, and federal personnel. PMID:14575120

  4. Detection of virulence-associated genes in pathogenic and commensal avian Escherichia coli isolates.

    PubMed

    Paixão, A C; Ferreira, A C; Fontes, M; Themudo, P; Albuquerque, T; Soares, M C; Fevereiro, M; Martins, L; Corrêa de Sá, M I

    2016-07-01

    Poultry colibacillosis due to Avian Pathogenic Escherichia coli (APEC) is responsible for several extra-intestinal pathological conditions, leading to serious economic damage in poultry production. The most commonly associated pathologies are airsacculitis, colisepticemia, and cellulitis in broiler chickens, and salpingitis and peritonitis in broiler breeders. In this work a total of 66 strains isolated from dead broiler breeders affected with colibacillosis and 61 strains from healthy broilers were studied. Strains from broiler breeders were typified with serogroups O2, O18, and O78, which are mainly associated with disease. The serogroup O78 was the most prevalent (58%). All the strains were checked for the presence of 11 virulence genes: 1) arginine succinyltransferase A (astA); ii) E.coli hemeutilization protein A (chuA); iii) colicin V A/B (cvaA/B); iv) fimbriae mannose-binding type 1 (fimC); v) ferric yersiniabactin uptake A (fyuA); vi) iron-repressible high-molecular-weight proteins 2 (irp2); vii) increased serum survival (iss); viii) iron-uptake systems of E.coli D (iucD); ix) pielonefritis associated to pili C (papC); x) temperature sensitive haemaglutinin (tsh), and xi) vacuolating autotransporter toxin (vat), by Multiplex-PCR. The results showed that all genes are present in both commensal and pathogenic E. coli strains. The iron uptake-related genes and the serum survival gene were more prevalent among APEC. The adhesin genes, except tsh, and the toxin genes, except astA, were also more prevalent among APEC isolates. Except for astA and tsh, APEC strains harbored the majority of the virulence-associated genes studied and fimC was the most prevalent gene, detected in 96.97 and 88.52% of APEC and AFEC strains, respectively. Possession of more than one iron transport system seems to play an important role on APEC survival. PMID:26976911

  5. Molecular detection of avian pathogens in poultry red mite (Dermanyssus gallinae) collected in chicken farms.

    PubMed

    Huong, Chu Thi Thanh; Murano, Takako; Uno, Yukiko; Usui, Tatsufumi; Yamaguchi, Tsuyoshi

    2014-12-01

    Poultry red mite (PRM, Dermanyssus gallinae) is a blood-sucking ectoparasite as well as a possible vector of several avian pathogens. In this study, to define the role of PRM in the prevalence of avian infectious agents, we used polymerase chain reaction (PCR) to check for the presence of seven pathogens: Avipox virus (APV), Fowl Adenovirus (FAdV), Marek's disease virus (MDV), Erysipelothrix rhusiopathiae (ER), Salmonella enterica (SE), Mycoplasma synoviae (MS) and Mycoplasma gallisepticum (MG). A total of 159 PRM samples collected between 2004 and 2012 from 142 chicken farms in 38 prefectures in Japan were examined. APV DNA was detected in 22 samples (13.8%), 19 of which were wild-type APV. 16S ribosomal RNA (16S rRNA) of MS was detected in 15 samples (9.4%), and the mgc2 gene of MG was detected in 2 samples (1.3%). Eight of 15 MS 16S rRNA sequences differed from the vaccine sequence, indicating they were wild-type strains, while both of the MG mgc2 gene sequences detected were identical to the vaccine sequences. Of these avian pathogen-positive mite samples, three were positive for both wild-types of APV and MS. On the other hand, the DNAs of ER, SE, FAdV and MDV were not detected in any samples. These findings indicated that PRM can harbor the wild-type pathogens and might play a role as a vector in spreading these diseases in farms. PMID:25649939

  6. The live bird market system and low-pathogenic avian influenza prevention in southern California.

    PubMed

    Yee, Karen S; Carpenter, Tim E; Mize, Sarah; Cardona, Carol J

    2008-06-01

    Although live bird markets (LBMs) have been associated with outbreaks of avian influenza (AI), there are some LBM systems where AI outbreaks are extremely rare events. The California LBMs have not had any detected avian influenza viruses (AIVs) since December 2005. Responses to a detailed questionnaire on the practices and characteristics of the participants in the California low-pathogenic (LP) AI control program have been described to characterize possible reasons for the lack of AI outbreaks in LBMs. Compliance with an LPAI control program that contains active surveillance, prevention, and rapid response measures by those involved in the LBM system, rendering services to dispose of carcasses, no wholesalers, and few third-party bird deliveries was associated with the lack of LPAIV circulating in the Southern California LBM system. PMID:18646469

  7. Efficacy of a Recombinant Turkey Herpesvirus H5 Vaccine Against Challenge With H5N1 Clades 1.1.2 and 2.3.2.1 Highly Pathogenic Avian Influenza Viruses in Domestic Ducks (Anas platyrhynchos domesticus).

    PubMed

    Pantin-Jackwood, Mary J; Kapczynski, Darrell R; DeJesus, Eric; Costa-Hurtado, Mar; Dauphin, Gwenaelle; Tripodi, Astrid; Dunn, John R; Swayne, David E

    2016-03-01

    Domestic ducks are the second most abundant poultry species in many Asian countries and have played a critical role in the epizootiology of H5N1 highly pathogenic avian influenza (HPAI).In this study, the protective efficacy of a live recombinant vector vaccine based on a turkey herpesvirus (HVT) expressing the H5 gene from a clade 2.2 H5N1 HPAI strain (A/Swan/Hungary/4999/ 2006) (rHVT-H5/2.2), given at 3 days of age, was examined in Pekin ducks (Anas platyrhynchos domesticus). The vaccine was given alone or in combination with an inactivated H5N1 clade 2.3.2.1 reverse genetic (rgGD/2.3.2.1) vaccine given at 16 days of age, either as a single vaccination or in a prime-boost regime. At 30 days of age, ducks were challenged with one of two H5N1 HPAI viruses: A/duck/Vietnam/NCVD-2721/2013 (clade 1.1.2) or A/duck/Vietnam/NCVD-1584/2012 (clade 2.3.2.1.C). These viruses produced 100% mortality in less than 5 days in nonvaccinated control ducks. Ducks vaccinated with the rgGD/2.3.2.1 vaccine, with or without the rHVT-H5/2.2 vaccine, were 90%-100% protected against mortality after challenge with either of the two H5N1 HPAI viruses. The rHVT-H5/2.2 vaccine alone, however, conferred only 30% protection against mortality after challenge with either H5N1 HPAI virus; the surviving ducks from these groups shed higher amount of virus and for longer than the single-vaccinated rgGD/2.3.2.1 group. Despite low protection, ducks vaccinated with the rHVT-H5/2.2 vaccine and challenged with the clade 1.1.2 Vietnam virus had a longer mean death time than nonvaccinated controls (P = 0.02). A booster effect was found on reduction of virus shedding when using both vaccines, with lower oropharyngeal viral titers at 4 days after challenge with either HPAI virus (P < 0.05). Neither rHVT-H5/2.2 nor standard HVT vaccine could be detected in samples collected from multiple tissues at different time points, indicting minimal levels of viral replication. In conclusion, although a minor effect on

  8. Vaccination and acute phase mediator production in chickens challenged with low pathogenic avian influenza virus; novel markers for vaccine efficacy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methods to determine vaccine efficacy of low pathogenic avian influenza (LPAI) isolates are limited in poultry because experimental infections with LPAI virus in specific pathogen free chickens rarely causes clinical disease. The most commonly used method to compare LPAI vaccine efficacy is to quant...

  9. Avian Pathogenicity Genes and Antibiotic Resistance in Escherichia coli Isolates from Wild Norway Rats ( Rattus norvegicus ) in British Columbia, Canada.

    PubMed

    Himsworth, Chelsea G; Zabek, Erin; Desruisseau, Andrea; Parmley, E Jane; Reid-Smith, Richard; Leslie, Mira; Ambrose, Neil; Patrick, David M; Cox, William

    2016-04-28

    We report avian pathogenic and antibiotic resistant Escherichia coli in wild Norway rats ( Rattus norvegicus ) trapped at a commercial chicken hatchery in British Columbia, Canada, and provide evidence that rats can become colonized with, and possibly act as a source of, poultry pathogens present in their environment. PMID:27054468

  10. Diagnostic Strategy for Identifying Avian Pathogenic Escherichia coli Based on Four Patterns of Virulence Genes

    PubMed Central

    Schaeffer, Brigitte; Brée, Annie; Mora, Azucena; Dahbi, Ghizlane; Biet, François; Oswald, Eric; Mainil, Jacques; Blanco, Jorge; Moulin-Schouleur, Maryvonne

    2012-01-01

    In order to improve the identification of avian pathogenic Escherichia coli (APEC) strains, an extensive characterization of 1,491 E. coli isolates was conducted, based on serotyping, virulence genotyping, and experimental pathogenicity for chickens. The isolates originated from lesions of avian colibacillosis (n = 1,307) or from the intestines of healthy animals (n = 184) from France, Spain, and Belgium. A subset (460 isolates) of this collection was defined according to their virulence for chicks. Six serogroups (O1, O2, O5, O8, O18, and O78) accounted for 56.5% of the APEC isolates and 22.5% of the nonpathogenic isolates. Thirteen virulence genes were more frequently present in APEC isolates than in nonpathogenic isolates but, individually, none of them could allow the identification of an isolate as an APEC strain. In order to take into account the diversity of APEC strains, a statistical analysis based on a tree-modeling method was therefore conducted on the sample of 460 pathogenic and nonpathogenic isolates. This resulted in the identification of four different associations of virulence genes that enables the identification of 70.2% of the pathogenic strains. Pathogenic strains were identified with an error margin of 4.3%. The reliability of the link between these four virulence patterns and pathogenicity for chickens was validated on a sample of 395 E. coli isolates from the collection. The genotyping method described here allowed the identification of more APEC isolates with greater reliability than the classical serotyping methods currently used in veterinary laboratories. PMID:22378905

  11. Comparison of Extraintestinal Pathogenic Escherichia coli Strains from Human and Avian Sources Reveals a Mixed Subset Representing Potential Zoonotic Pathogens▿

    PubMed Central

    Johnson, Timothy J.; Wannemuehler, Yvonne; Johnson, Sara J.; Stell, Adam L.; Doetkott, Curt; Johnson, James R.; Kim, Kwang S.; Spanjaard, Lodewijk; Nolan, Lisa K.

    2008-01-01

    Since extraintestinal pathogenic Escherichia coli (ExPEC) strains from human and avian hosts encounter similar challenges in establishing infection in extraintestinal locations, they may share similar contents of virulence genes and capacities to cause disease. In the present study, 1,074 ExPEC isolates were classified by phylogenetic group and possession of 67 other traits, including virulence-associated genes and plasmid replicon types. These ExPEC isolates included 452 avian pathogenic E. coli strains from avian colibacillosis, 91 neonatal meningitis E. coli (NMEC) strains causing human neonatal meningitis, and 531 uropathogenic E. coli strains from human urinary tract infections. Cluster analysis of the data revealed that most members of each subpathotype represent a genetically distinct group and have distinguishing characteristics. However, a genotyping cluster containing 108 ExPEC isolates was identified, heavily mixed with regard to subpathotype, in which there was substantial trait overlap. Many of the isolates within this cluster belonged to the O1, O2, or O18 serogroup. Also, 58% belonged to the ST95 multilocus sequence typing group, and over 90% of them were assigned to the B2 phylogenetic group typical of human ExPEC strains. This cluster contained strains with a high number of both chromosome- and plasmid-associated ExPEC genes. Further characterization of this ExPEC subset with zoonotic potential urges future studies exploring the potential for the transmission of certain ExPEC strains between humans and animals. Also, the widespread occurrence of plasmids among NMEC strains and members of the mixed cluster suggests that plasmid-mediated virulence in these pathotypes warrants further attention. PMID:18820066

  12. Emerging infectious diseases: Focus on infection control issues for novel coronaviruses (Severe Acute Respiratory Syndrome-CoV and Middle East Respiratory Syndrome-CoV), hemorrhagic fever viruses (Lassa and Ebola), and highly pathogenic avian influenza viruses, A(H5N1) and A(H7N9).

    PubMed

    Weber, David J; Rutala, William A; Fischer, William A; Kanamori, Hajime; Sickbert-Bennett, Emily E

    2016-05-01

    Over the past several decades, we have witnessed the emergence of many new infectious agents, some of which are major public threats. New and emerging infectious diseases which are both transmissible from patient-to-patient and virulent with a high mortality include novel coronaviruses (SARS-CoV, MERS-CV), hemorrhagic fever viruses (Lassa, Ebola), and highly pathogenic avian influenza A viruses, A(H5N1) and A(H7N9). All healthcare facilities need to have policies and plans in place for early identification of patients with a highly communicable diseases which are highly virulent, ability to immediately isolate such patients, and provide proper management (e.g., training and availability of personal protective equipment) to prevent transmission to healthcare personnel, other patients and visitors to the healthcare facility. PMID:27131142

  13. Genetically Diverse Low Pathogenicity Avian Influenza A Virus Subtypes Co-Circulate among Poultry in Bangladesh.

    PubMed

    Gerloff, Nancy A; Khan, Salah Uddin; Zanders, Natosha; Balish, Amanda; Haider, Najmul; Islam, Ausraful; Chowdhury, Sukanta; Rahman, Mahmudur Ziaur; Haque, Ainul; Hosseini, Parviez; Gurley, Emily S; Luby, Stephen P; Wentworth, David E; Donis, Ruben O; Sturm-Ramirez, Katharine; Davis, C Todd

    2016-01-01

    Influenza virus surveillance, poultry outbreak investigations and genomic sequencing were assessed to understand the ecology and evolution of low pathogenicity avian influenza (LPAI) A viruses in Bangladesh from 2007 to 2013. We analyzed 506 avian specimens collected from poultry in live bird markets and backyard flocks to identify influenza A viruses. Virus isolation-positive specimens (n = 50) were subtyped and their coding-complete genomes were sequenced. The most frequently identified subtypes among LPAI isolates were H9N2, H11N3, H4N6, and H1N1. Less frequently detected subtypes included H1N3, H2N4, H3N2, H3N6, H3N8, H4N2, H5N2, H6N1, H6N7, and H7N9. Gene sequences were compared to publicly available sequences using phylogenetic inference approaches. Among the 14 subtypes identified, the majority of viral gene segments were most closely related to poultry or wild bird viruses commonly found in Southeast Asia, Europe, and/or northern Africa. LPAI subtypes were distributed over several geographic locations in Bangladesh, and surface and internal protein gene segments clustered phylogenetically with a diverse number of viral subtypes suggesting extensive reassortment among these LPAI viruses. H9N2 subtype viruses differed from other LPAI subtypes because genes from these viruses consistently clustered together, indicating this subtype is enzootic in Bangladesh. The H9N2 strains identified in Bangladesh were phylogenetically and antigenically related to previous human-derived H9N2 viruses detected in Bangladesh representing a potential source for human infection. In contrast, the circulating LPAI H5N2 and H7N9 viruses were both phylogenetically and antigenically unrelated to H5 viruses identified previously in humans in Bangladesh and H7N9 strains isolated from humans in China. In Bangladesh, domestic poultry sold in live bird markets carried a wide range of LPAI virus subtypes and a high diversity of genotypes. These findings, combined with the seven year

  14. Genetically Diverse Low Pathogenicity Avian Influenza A Virus Subtypes Co-Circulate among Poultry in Bangladesh

    PubMed Central

    Gerloff, Nancy A.; Khan, Salah Uddin; Zanders, Natosha; Balish, Amanda; Haider, Najmul; Islam, Ausraful; Chowdhury, Sukanta; Rahman, Mahmudur Ziaur; Haque, Ainul; Hosseini, Parviez; Gurley, Emily S.; Luby, Stephen P.; Wentworth, David E.; Donis, Ruben O.; Sturm-Ramirez, Katharine; Davis, C. Todd

    2016-01-01

    Influenza virus surveillance, poultry outbreak investigations and genomic sequencing were assessed to understand the ecology and evolution of low pathogenicity avian influenza (LPAI) A viruses in Bangladesh from 2007 to 2013. We analyzed 506 avian specimens collected from poultry in live bird markets and backyard flocks to identify influenza A viruses. Virus isolation-positive specimens (n = 50) were subtyped and their coding-complete genomes were sequenced. The most frequently identified subtypes among LPAI isolates were H9N2, H11N3, H4N6, and H1N1. Less frequently detected subtypes included H1N3, H2N4, H3N2, H3N6, H3N8, H4N2, H5N2, H6N1, H6N7, and H7N9. Gene sequences were compared to publicly available sequences using phylogenetic inference approaches. Among the 14 subtypes identified, the majority of viral gene segments were most closely related to poultry or wild bird viruses commonly found in Southeast Asia, Europe, and/or northern Africa. LPAI subtypes were distributed over several geographic locations in Bangladesh, and surface and internal protein gene segments clustered phylogenetically with a diverse number of viral subtypes suggesting extensive reassortment among these LPAI viruses. H9N2 subtype viruses differed from other LPAI subtypes because genes from these viruses consistently clustered together, indicating this subtype is enzootic in Bangladesh. The H9N2 strains identified in Bangladesh were phylogenetically and antigenically related to previous human-derived H9N2 viruses detected in Bangladesh representing a potential source for human infection. In contrast, the circulating LPAI H5N2 and H7N9 viruses were both phylogenetically and antigenically unrelated to H5 viruses identified previously in humans in Bangladesh and H7N9 strains isolated from humans in China. In Bangladesh, domestic poultry sold in live bird markets carried a wide range of LPAI virus subtypes and a high diversity of genotypes. These findings, combined with the seven year

  15. Andrographolide interferes quorum sensing to reduce cell damage caused by avian pathogenic Escherichia coli.

    PubMed

    Guo, Xun; Zhang, Li-Yan; Wu, Shuai-Cheng; Xia, Fang; Fu, Yun-Xing; Wu, Yong-Li; Leng, Chun-Qing; Yi, Peng-Fei; Shen, Hai-Qing; Wei, Xu-Bin; Fu, Ben-Dong

    2014-12-01

    Avian pathogenic Escherichia coli (APEC) induce septicemia in chickens by invading type II pneumocytes to breach the blood-air barrier. The virulence of APEC can be regulated by quorum sensing (QS). Andrographolide is a QS inhibitor of Pseudomonas aeruginosa (P. aeruginosa). Therefore, we investigate whether andrographolide inhibits the injury of chicken type II pneumocytes by avian pathogenic E. coli O78 (APEC-O78) by disrupting the bacterial QS system. The results showed that sub-MIC of andrographolide significantly reduced the release of lactate dehydrogenase (LDH), F-actin cytoskeleton polymerization, and the degree of the adherence to chicken type II pneumocytes induced by APEC-O78. Further, we found that andrographolide significantly decreased the autoinducer-2 (AI-2) activity and the expression of virulence factors of APEC-O78. These results suggest that andrographolide reduce the pathogenicity of APEC-O78 in chicken type II pneumocytes by interfering QS and decreasing virulence. These results provide new evidence for colibacillosis prevention methods in chickens. PMID:25448450

  16. Isolation, identification, and pathogenicity of O142 avian pathogenic Escherichia coli causing black proventriculus and septicemia in broiler breeders.

    PubMed

    Wang, Xiaobo; Cao, Chunguang; Huan, Haixia; Zhang, Liuli; Mu, Xiaohui; Gao, Qingqing; Dong, Xianglei; Gao, Song; Liu, Xiufan

    2015-06-01

    Avian colibacillosis, characterized by black proventriculus and caused by avian pathogenic Escherichia coli (APEC) with an uncommon O142 serogroup, was diagnosed in young broiler breeders. Colonization and persistence assays performed in 7-day-old broilers showed that the bacterial load of the APEC 4d/9-1 O142 proventricular isolate in the lung was about 10-fold higher than that of the APEC 4d/9-1 O142 heart blood isolate (P<0.01), and about 100-fold higher in the heart blood, livers, spleens, kidneys, and proventriculi of inoculated broilers (P<0.001). When 32 common virulence genes of APEC were tested, the two isolates had nearly identical profiles, except that only the APEC 4d/9-1 O142 proventricular isolate carried the feoB gene. Furthermore, 100% mortality was observed in both 1-day-old Arbor Acres (AA) broilers and 1-day-old specific-pathogen-free (SPF) chickens inoculated with 10(6) colony-forming units of the APEC 4d/9-1 O142 proventricular isolate. However, black proventriculus was only observed in the dead AA broilers, consistent with the clinical occurrence of the disease. This implies that the black proventriculi seen in the dead birds, caused by the APEC 4d/9-1 O142 proventricular isolate, was breed-specific. Both the APEC 4d/9-1 O142 proventricular and heart blood isolates belong to phylogroup B2. However, the former was assigned to ST131 and the latter to ST2704 with multilocus sequence typing, demonstrating the genetic heterogeneity of these two bacterial isolates, although they were derived from the same dead broiler. These results suggest that the O142 APEC isolate was the main pathogenic agent for black proventriculi in 7-day-old broiler breeders. PMID:25709068

  17. Avian Diagnostic and Therapeutic Antibodies to Viral Emerging Pathogens

    SciTech Connect

    David Bradley

    2011-03-31

    During the current period the following key objectives were achieved: demonstration of high titer antibody production by geese following immunization with inactived H1N1 virus; completion of the epitope mapping of West Nile Virus-specific goose antibodies and initiation of epitope mapping of H1N1 flu-specific goose antibodies; advancement in scalable purification of goose antibodies.

  18. Cross reactive cellular immune responses in chickens previously exposed to low pathogenic avian influenza

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza (AI) infection in poultry can result in high morbidity and mortality, and negatively affect international trade. Because most AI vaccines used for poultry are inactivated, our knowledge of immunity against AI is based largely on humoral immune responses. In fact, little is known abo...

  19. Isolation and characterization of a gene involved in hemagglutination by an avian pathogenic Escherichia coli strain.

    PubMed Central

    Provence, D L; Curtiss, R

    1994-01-01

    In this article, we report the isolation and characterization of a gene that may be important in the adherence of avian pathogenic Escherichia coli to the avian respiratory tract. The E. coli strain HB101, which is unable to agglutinate chicken erythrocytes, was transduced with cosmid libraries from the avian pathogenic E. coli strain chi 7122. Enrichment of transductants that could agglutinate chicken erythrocytes yielded 19 colonies. These isolates contained cosmids that encompassed four nonoverlapping regions of the E. coli chromosome. Only one group of cosmids, represented by pYA3104, would cause E. coli CC118 to agglutinate chicken erythrocytes. A 10-kb fragment of this cosmid was subcloned in pACYC184. Transposon mutagenesis of this fragment with Tn5seq1 indicated that a contiguous 4.4-kb region of cloned DNA was required for hemagglutination. In vitro transcription/translation assays indicated that this 4.4-kb region of DNA encoded one protein of approximately 140 kDa. The nucleotide sequence of this region was determined and found to encode one open reading frame of 4,134 nucleotides that would encode a protein of 1,377 amino acids with a deduced molecular weight of 148,226. This gene confers on E. coli K-12 a temperature-sensitive hemagglutination phenotype that is best expressed when cells are grown at 26 degrees C, and we have designated this gene tsh and the deduced gene product Tsh. Insertional mutagenesis of the chromosomal tsh gene in chi 7122 had no effect on hemagglutination titers. The deduced protein was found to contain significant homology to the Haemophilus influenzae and Neisseria gonorrhoeae immunoglobulin A1 proteases. These data indicate that (i) a single gene isolated from the avian pathogenic E. coli strain chi 7122 will confer on E. coli K-12 a hemagglutination-positive phenotype, (ii) chi 7122 contains at least two distinct mechanisms to allow hemagglutination to occur, and (iii) the hemagglutinin Tsh has homology with a class of

  20. ArcA Controls Metabolism, Chemotaxis, and Motility Contributing to the Pathogenicity of Avian Pathogenic Escherichia coli

    PubMed Central

    Jiang, Fengwei; An, Chunxia; Bao, Yinli; Zhao, Xuefeng; Jernigan, Robert L.; Lithio, Andrew; Nettleton, Dan; Li, Ling; Wurtele, Eve Syrkin; Nolan, Lisa K.; Lu, Chengping

    2015-01-01

    Avian pathogenic Escherichia coli (APEC) strains cause one of the three most significant infectious diseases in the poultry industry and are also potential food-borne pathogens threating human health. In this study, we showed that ArcA (aerobic respiratory control), a global regulator important for E. coli's adaptation from anaerobic to aerobic conditions and control of that bacterium's enzymatic defenses against reactive oxygen species (ROS), is involved in the virulence of APEC. Deletion of arcA significantly attenuates the virulence of APEC in the duck model. Transcriptome sequencing (RNA-Seq) analyses comparing the APEC wild type and the arcA mutant indicate that ArcA regulates the expression of 129 genes, including genes involved in citrate transport and metabolism, flagellum synthesis, and chemotaxis. Further investigations revealed that citCEFXG contributed to APEC's microaerobic growth at the lag and log phases when cultured in duck serum and that ArcA played a dual role in the control of citrate metabolism and transportation. In addition, deletion of flagellar genes motA and motB and chemotaxis gene cheA significantly attenuated the virulence of APEC, and ArcA was shown to directly regulate the expression of motA, motB, and cheA. The combined results indicate that ArcA controls metabolism, chemotaxis, and motility contributing to the pathogenicity of APEC. PMID:26099584

  1. Spleen transcriptome response to infection with avian pathogenic Escherichia coli in broiler chickens

    PubMed Central

    2011-01-01

    Background Avian pathogenic Escherichia coli (APEC) is detrimental to poultry health and its zoonotic potential is a food safety concern. Regulation of antimicrobials in food-production animals has put greater focus on enhancing host resistance to bacterial infections through genetics. To better define effective mechanism of host resistance, global gene expression in the spleen of chickens, harvested at two times post-infection (PI) with APEC, was measured using microarray technology, in a design that will enable investigation of effects of vaccination, challenge, and pathology level. Results There were 1,101 genes significantly differentially expressed between severely infected and non-infected groups on day 1 PI and 1,723 on day 5 PI. Very little difference was seen between mildly infected and non-infected groups on either time point. Between birds exhibiting mild and severe pathology, there were 2 significantly differentially expressed genes on day 1 PI and 799 on day 5 PI. Groups with greater pathology had more genes with increased expression than decreased expression levels. Several predominate immune pathways, Toll-like receptor, Jak-STAT, and cytokine signaling, were represented between challenged and non-challenged groups. Vaccination had, surprisingly, no detectible effect on gene expression, although it significantly protected the birds from observable gross lesions. Functional characterization of significantly expressed genes revealed unique gene ontology classifications during each time point, with many unique to a particular treatment or class contrast. Conclusions More severe pathology caused by APEC infection was associated with a high level of gene expression differences and increase in gene expression levels. Many of the significantly differentially expressed genes were unique to a particular treatment, pathology level or time point. The present study not only investigates the transcriptomic regulations of APEC infection, but also the degree of

  2. Class 1 and class 2 integrons in avian pathogenic Escherichia coli from poultry in Italy.

    PubMed

    Cavicchio, Lara; Dotto, Giorgia; Giacomelli, Martina; Giovanardi, Davide; Grilli, Guido; Franciosini, Maria Pia; Trocino, Angela; Piccirillo, Alessandra

    2015-06-01

    The aim of this study was to investigate the occurrence of class 1 and 2 integrons in avian pathogenic Escherichia coli (APEC) from poultry in northern Italy. Strains were tested for phenotypic resistance to aminoglycosides and sulphonamides, and the association between the presence of integrons and the resistance to these antimicrobials was evaluated. A total of 299 isolates (158 from turkeys, 110 from broilers, and 31 from layer hens) were collected from 200 industrial farms. Antimicrobial susceptibility test by the disk diffusion method was performed in accordance with the Clinical and Laboratory Standards Institute (CLSI) guidelines. All strains were screened for the presence of class 1 and 2 integrons by PCR and sequencing. About 55% of APEC contained integrons (class 1, 49.8%; class 2, 10.4%). Different variants of the aadA (5 variants) and the dfrA (4 variants) genes, encoding for streptomycin and trimethoprim resistance respectively, were detected in integron-positive isolates. Less common gene cassettes, such as sat, estX, and orfF, were also identified. Fifteen and 4 gene cassette arrays were found among class 1 and 2 integrons, respectively. High levels of resistance were observed for triple sulphonamides (79.3%), streptomycin (67.2%), and sulfamethoxazole combined with trimethoprim (62.2%), whereas resistance against gentamycin (16.7%), kanamycin (14.7%), and apramycin 3.0%) was low. Integron positivity was significantly higher in isolates phenotypically resistant to aminoglycosides (63.6% vs. 37.8%, P<0.001) and sulfonamides (64.1% vs. 21.1%, P<0.001) than in susceptible ones. Integron-borne aminoglycoside and sulfonamide resistance in APEC represents a concern for the poultry industry in Italy, since they are among the most commonly used antimicrobials in poultry therapy. PMID:25840964

  3. RstA is required for the virulence of an avian pathogenic Escherichia coli O2 strain E058.

    PubMed

    Gao, Qingqing; Ye, Zhengqin; Wang, Xiaobo; Mu, Xiaohui; Gao, Song; Liu, Xiufan

    2015-01-01

    Certain strains of avian pathogenic Escherichia coli (APEC) cause severe extraintestinal infections in poultry, including acute fatal septicemia, subacute pericarditis, and airsacculitis. These bacteria contain an RstA/RstB regulatory system, a two-component system that may help APEC strains adapt to the extra-intestinal environment and survive under stressful conditions. Whether RstA correlates with APEC pathogenesis or acts as an APEC virulence factor has not been established. Here we provide the first evidence for an important role of rstA in APEC virulence. We generated an rstA-deficient mutant from the highly virulent APEC strain E058. Virulence of the mutant strain was evaluated in vivo and in vitro through bird infection assays, a cytotoxicity assay on chicken macrophage cell line HD-11, and a bactericidal assay to serum complement. Based on lethality assays in 1-day-old birds, rstA deletion from APEC E058 reduced the bacterial virulence in birds. The deletion also deeply impaired the capacity of APEC E058 to colonize deeper tissues of 5-week-old specific pathogen free chickens. No obvious gross or histopathological lesions were observed in the visceral organs of chickens challenged with the rstA-deficient strain. Also, rstA inactivation reduced the survival of APEC E058 within chicken macrophages. However, no significant differences were observed between the mutant and the wild-type strain in resistance to serum. Our data collectively show that the rstA gene functions in the pathogenesis of diseases caused by avian pathogenic E. coli. PMID:25461694

  4. The Transfer-Messenger RNA-Small Protein B System Plays a Role in Avian Pathogenic Escherichia coli Pathogenicity

    PubMed Central

    Mu, Xiaohui; Huan, Haixia; Xu, Huiqing; Gao, Qingqing; Xiong, Liping; Gao, Ruxia; Liu, Xiufan

    2013-01-01

    Extraintestinal pathogenic Escherichia coli (ExPEC) is capable of colonizing outside of the intestinal tract and evolving into a systemic infection. Avian pathogenic E. coli (APEC) is a member of the ExPEC group and causes avian colibacillosis. Transfer-mRNA-small protein B (tmRNA-SmpB)-mediated trans-translation is a bacterial translational control system that directs the modification and degradation of proteins, the biosynthesis of which has stalled or has been interrupted, facilitating the rescue of ribosomes stalled at the 3′ ends of defective mRNAs that lack a stop codon. We found that disruption of one, or both, of the smpB or ssrA genes significantly decreased the virulence of the APEC strain E058, as assessed by chicken infection assays. Furthermore, the mutants were obviously attenuated in colonization and persistence assays. The results of quantitative real-time reverse transcription-PCR analysis indicated that the transcription levels of the transcriptional regulation gene rfaH and the virulence genes kpsM, chuA, and iss were significantly decreased compared to those of the wild-type strain. Macrophage infection assays showed that the mutant strains reduced the replication and/or survival ability in the macrophage HD11 cell line compared to that of the parent strain, E058. However, no significant differences were observed in ingestion by macrophages and in chicken serum resistance between the mutant and the wild-type strains. These data indicate that the tmRNA-SmpB system is important in the pathogenesis of APEC O2 strain E058. PMID:24013628

  5. The transfer-messenger RNA-small protein B system plays a role in avian pathogenic Escherichia coli pathogenicity.

    PubMed

    Mu, Xiaohui; Huan, Haixia; Xu, Huiqing; Gao, Qingqing; Xiong, Liping; Gao, Ruxia; Gao, Song; Liu, Xiufan

    2013-11-01

    Extraintestinal pathogenic Escherichia coli (ExPEC) is capable of colonizing outside of the intestinal tract and evolving into a systemic infection. Avian pathogenic E. coli (APEC) is a member of the ExPEC group and causes avian colibacillosis. Transfer-mRNA-small protein B (tmRNA-SmpB)-mediated trans-translation is a bacterial translational control system that directs the modification and degradation of proteins, the biosynthesis of which has stalled or has been interrupted, facilitating the rescue of ribosomes stalled at the 3' ends of defective mRNAs that lack a stop codon. We found that disruption of one, or both, of the smpB or ssrA genes significantly decreased the virulence of the APEC strain E058, as assessed by chicken infection assays. Furthermore, the mutants were obviously attenuated in colonization and persistence assays. The results of quantitative real-time reverse transcription-PCR analysis indicated that the transcription levels of the transcriptional regulation gene rfaH and the virulence genes kpsM, chuA, and iss were significantly decreased compared to those of the wild-type strain. Macrophage infection assays showed that the mutant strains reduced the replication and/or survival ability in the macrophage HD11 cell line compared to that of the parent strain, E058. However, no significant differences were observed in ingestion by macrophages and in chicken serum resistance between the mutant and the wild-type strains. These data indicate that the tmRNA-SmpB system is important in the pathogenesis of APEC O2 strain E058. PMID:24013628

  6. Phylogenetic analysis and pathogenicity of H3 subtype avian influenza viruses isolated from live poultry markets in China

    PubMed Central

    Cui, Hongrui; Shi, Ying; Ruan, Tao; Li, Xuesong; Teng, Qiaoyang; Chen, Hongjun; Yang, Jianmei; Liu, Qinfang; Li, Zejun

    2016-01-01

    H3 subtype influenza A virus is one of the main subtypes that threats both public and animal health. However, the evolution and pathogenicity of H3 avian influenza virus (AIV) circulating in domestic birds in China remain largely unclear. In this study, seven H3 AIVs (four H3N2 and three H3N8) were isolated from poultry in live poultry market (LPM) in China. Phylogenetic analyses of full genomes showed that all viruses were clustered into Eurasian lineage, except N8 genes of two H3N8 isolates fell into North American lineage. Intriguingly, the N8 gene of one H3N8 and PB2, PB1, NP and NS of two H3N2 isolates have close relationship with those of the highly pathogenic H5N8 viruses circulating in Korea and United States, suggesting that the H3-like AIV may contribute internal genes to the highly pathogenic H5N8 viruses. Phylogenetic tree of HA gene and antigenic cross-reactivity results indicated that two antigenically different H3 viruses are circulating in LPM in China. Most of the H3 viruses replicated in mice lung and nasal turbinate without prior adaptation, and the representative H3 viruses infected chickens without causing clinical signs. The reassortment of H3 subtype influenza viruses warrants continuous surveillance in LPM in China. PMID:27270298

  7. Phylogenetic analysis and pathogenicity of H3 subtype avian influenza viruses isolated from live poultry markets in China.

    PubMed

    Cui, Hongrui; Shi, Ying; Ruan, Tao; Li, Xuesong; Teng, Qiaoyang; Chen, Hongjun; Yang, Jianmei; Liu, Qinfang; Li, Zejun

    2016-01-01

    H3 subtype influenza A virus is one of the main subtypes that threats both public and animal health. However, the evolution and pathogenicity of H3 avian influenza virus (AIV) circulating in domestic birds in China remain largely unclear. In this study, seven H3 AIVs (four H3N2 and three H3N8) were isolated from poultry in live poultry market (LPM) in China. Phylogenetic analyses of full genomes showed that all viruses were clustered into Eurasian lineage, except N8 genes of two H3N8 isolates fell into North American lineage. Intriguingly, the N8 gene of one H3N8 and PB2, PB1, NP and NS of two H3N2 isolates have close relationship with those of the highly pathogenic H5N8 viruses circulating in Korea and United States, suggesting that the H3-like AIV may contribute internal genes to the highly pathogenic H5N8 viruses. Phylogenetic tree of HA gene and antigenic cross-reactivity results indicated that two antigenically different H3 viruses are circulating in LPM in China. Most of the H3 viruses replicated in mice lung and nasal turbinate without prior adaptation, and the representative H3 viruses infected chickens without causing clinical signs. The reassortment of H3 subtype influenza viruses warrants continuous surveillance in LPM in China. PMID:27270298

  8. Differences in pathogenicity among strains of the same or different avian leukosis virus subgroups.

    PubMed

    Průková, Dana; Vernerová, Zdenka; Pilcík, Tomás; Stepanets, Volodymir; Indrová, Marie; Geryk, Josef; Plachý, Jirí; Hejnar, Jirí; Svoboda, Jan

    2007-02-01

    An efficient induction of wasting disease in chickens by avian leukosis virus (ALV), particularly ALV subgroup C, requires >102 infectious units virus inoculated in mid embryogenesis. The most conspicuous symptoms of the disease were induced by ALV subgroup C; however, significant differences in the occurrence of wasting disease were found among individual members of this subgroup. Almost comparable pathogenicity was exhibited by ALV subgroup D, whereas viruses of subgroups B and A proved to be moderately and almost non-pathogenic, respectively. Using antibodies to cellular antigens, tissue alterations were shown clearly in ALV-C-infected chickens. An essential feature was depletion of lymphocytes in the thymus, bursa and spleen. While the number of dendritic cells in the bursa was increased, their representation in the thymus and spleen was reduced. In the spleen, however, the reduction of dendritic cells concerned only an ellipsoid compartment, which in itself was also markedly reduced. An increased number of macrophages in the thymus and spleen corresponded with the observed general activation of the monocyte-macrophage system. In the spleen, CD4+ T cells were reduced while CD8+ T cells were increased. In agreement with this finding was a failure of chickens to respond to Brucella antigen and an inability of their splenocytes to respond to Concanavalin A, both of which pointed to the damage of immune reactivity. Variation in the pathogenicity among individual ALV strains provides ground for depicting gene sequences playing an important role in ALV acute pathogenicity. PMID:17364506

  9. Avian migrants facilitate invasions of neotropical ticks and tick-borne pathogens into the United States.

    PubMed

    Cohen, Emily B; Auckland, Lisa D; Marra, Peter P; Hamer, Sarah A

    2015-12-01

    Migratory birds have the potential to transport exotic vectors and pathogens of human and animal health importance across vast distances. We systematically examined birds that recently migrated to the United States from the Neotropics for ticks. We screened both ticks and birds for tick-borne pathogens, including Rickettsia species and Borrelia burgdorferi. Over two spring seasons (2013 and 2014), 3.56% of birds (n = 3,844) representing 42.35% of the species examined (n = 85) were infested by ticks. Ground-foraging birds with reduced fuel stores were most commonly infested. Eight tick species were identified, including seven in the genus Amblyomma, of which only Amblyomma maculatum/Amblyomma triste is known to be established in the United States. Most ticks on birds (67%) were neotropical species with ranges in Central and South America. Additionally, a single Ixodes genus tick was detected. A total of 29% of the ticks (n = 137) and no avian blood samples (n = 100) were positive for infection with Rickettsia species, including Rickettsia parkeri, an emerging cause of spotted fever in humans in the southern United States, a species in the group of Rickettsia monacensis, and uncharacterized species and endosymbionts of unknown pathogenicity. No avian tick or blood samples tested positive for B. burgdorferi, the etiologic agent of Lyme disease. An extrapolation of our findings suggests that anywhere from 4 to 39 million exotic neotropical ticks are transported to the United States annually on migratory songbirds, with uncertain consequences for human and animal health if the current barriers to their establishment and spread are overcome. PMID:26431964

  10. Avian Migrants Facilitate Invasions of Neotropical Ticks and Tick-Borne Pathogens into the United States

    PubMed Central

    Auckland, Lisa D.; Marra, Peter P.

    2015-01-01

    Migratory birds have the potential to transport exotic vectors and pathogens of human and animal health importance across vast distances. We systematically examined birds that recently migrated to the United States from the Neotropics for ticks. We screened both ticks and birds for tick-borne pathogens, including Rickettsia species and Borrelia burgdorferi. Over two spring seasons (2013 and 2014), 3.56% of birds (n = 3,844) representing 42.35% of the species examined (n = 85) were infested by ticks. Ground-foraging birds with reduced fuel stores were most commonly infested. Eight tick species were identified, including seven in the genus Amblyomma, of which only Amblyomma maculatum/Amblyomma triste is known to be established in the United States. Most ticks on birds (67%) were neotropical species with ranges in Central and South America. Additionally, a single Ixodes genus tick was detected. A total of 29% of the ticks (n = 137) and no avian blood samples (n = 100) were positive for infection with Rickettsia species, including Rickettsia parkeri, an emerging cause of spotted fever in humans in the southern United States, a species in the group of Rickettsia monacensis, and uncharacterized species and endosymbionts of unknown pathogenicity. No avian tick or blood samples tested positive for B. burgdorferi, the etiologic agent of Lyme disease. An extrapolation of our findings suggests that anywhere from 4 to 39 million exotic neotropical ticks are transported to the United States annually on migratory songbirds, with uncertain consequences for human and animal health if the current barriers to their establishment and spread are overcome. PMID:26431964

  11. Shedding of a Low Pathogenic Avian Influenza Virus in a Common Synanthropic Mammal – The Cottontail Rabbit

    PubMed Central

    Root, J. Jeffrey; Shriner, Susan A.; Bentler, Kevin T.; Gidlewski, Thomas; Mooers, Nicole L.; Spraker, Terry R.; VanDalen, Kaci K.; Sullivan, Heather J.; Franklin, Alan B.

    2014-01-01

    Background Cottontails (Sylvilagus spp.) are common mammals throughout much of the U.S. and are often found in peridomestic settings, potentially interacting with livestock and poultry operations. If these animals are susceptible to avian influenza virus (AIV) infections and shed the virus in sufficient quantities they may pose a risk for movement of avian influenza viruses between wildlife and domestic animals in certain situations. Methodology/Principal Findings To assess the viral shedding potential of AIV in cottontails, we nasally inoculated fourteen cottontails with a low pathogenic AIV (H4N6). All inoculated cottontails shed relatively large quantities of viral RNA both nasally (≤106.94 PCR EID50 equivalents/mL) and orally (≤105.09 PCR EID50 equivalents/mL). However, oral shedding tended to decline more quickly than did nasal shedding. No animals showed any obvious signs of disease throughout the study. Evidence of a serological response was found in all infected rabbits at 22 days post infection in convalescent sera. Conclusions/Significance To our knowledge, cottontails have not been previously assessed for AIV shedding. However, it was obvious that they shed AIV RNA extensively via the nasal and oral routes. This is significant, as cottontails are widely distributed throughout the U.S. and elsewhere. These mammals are often found in highly peridomestic situations, such as farms, parks, and suburban neighborhoods, often becoming habituated to human activities. Thus, if infected these mammals could easily transport AIVs short distances. PMID:25111780

  12. 9 CFR 146.14 - Diagnostic surveillance program for H5/H7 low pathogenic avian influenza.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Diagnostic surveillance program for H5/H7 low pathogenic avian influenza. 146.14 Section 146.14 Animals and Animal Products ANIMAL AND PLANT... antigen detection test. Memoranda of understanding or other means must be used to establish testing...

  13. 9 CFR 146.14 - Diagnostic surveillance program for H5/H7 low pathogenic avian influenza.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Diagnostic surveillance program for H5/H7 low pathogenic avian influenza. 146.14 Section 146.14 Animals and Animal Products ANIMAL AND PLANT... antigen detection test. Memoranda of understanding or other means must be used to establish testing...

  14. 9 CFR 146.14 - Diagnostic surveillance program for H5/H7 low pathogenic avian influenza.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Diagnostic surveillance program for H5/H7 low pathogenic avian influenza. 146.14 Section 146.14 Animals and Animal Products ANIMAL AND PLANT... antigen detection test. Memoranda of understanding or other means must be used to establish testing...

  15. 9 CFR 146.14 - Diagnostic surveillance program for H5/H7 low pathogenic avian influenza.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Diagnostic surveillance program for H5/H7 low pathogenic avian influenza. 146.14 Section 146.14 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE LIVESTOCK IMPROVEMENT NATIONAL POULTRY IMPROVEMENT PLAN FOR COMMERCIAL POULTRY...

  16. Co-infection of mallards with low virulence Newcastle disease virus and low pathogenic avian influenza virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Waterfowl are considered the natural reservoirs of low pathogenic avian influenza viruses (LPAIV) and low virulence Newcastle disease viruses (loNDV). The objective of this study was to investigate the effect of co-infections with loNDV and LPAIV on the infectivity and excretion of these viruses in ...

  17. 9 CFR 146.14 - Diagnostic surveillance program for H5/H7 low pathogenic avian influenza.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Diagnostic surveillance program for H5/H7 low pathogenic avian influenza. 146.14 Section 146.14 Animals and Animal Products ANIMAL AND PLANT... antigen detection test. Memoranda of understanding or other means must be used to establish testing...

  18. Pathobiological characterization of low-pathogenicity H5 avian influenza viruses of diverse origins in chickens, ducks and turkeys

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We undertook one of the most comprehensive studies on the replication and intraspecies transmission characteristics of 20 low pathogenicity avian influenza viruses of different origins, which included 8 isolates from wild aquatic birds. We studied virus replication in infected and contact control bi...

  19. Draft Genome Sequences of Two Avian Pathogenic Escherichia coli Strains of Clinical Importance, E44 and E51

    PubMed Central

    Stegger, Marc; Andersen, Paal S.; Pedersen, Karl; Li, Lili; Thøfner, Ida C. N.; Olsen, Rikke H.

    2016-01-01

    Avian pathogenic Escherichia coli strains have remarkable impacts on animal welfare and the production economy in the poultry industry worldwide. Here, we present the draft genomes of two isolates from chickens (E44 and E51) obtained from field outbreaks and subsequently investigated for their potential for use in autogenous vaccines for broiler breeders. PMID:27491996

  20. Draft Genome Sequences of Two Avian Pathogenic Escherichia coli Strains of Clinical Importance, E44 and E51.

    PubMed

    Ronco, Troels; Stegger, Marc; Andersen, Paal S; Pedersen, Karl; Li, Lili; Thøfner, Ida C N; Olsen, Rikke H

    2016-01-01

    Avian pathogenic Escherichia coli strains have remarkable impacts on animal welfare and the production economy in the poultry industry worldwide. Here, we present the draft genomes of two isolates from chickens (E44 and E51) obtained from field outbreaks and subsequently investigated for their potential for use in autogenous vaccines for broiler breeders. PMID:27491996

  1. Biologic characterization of chicken-derived H6N2 low pathogenic avian influenza viruses in chickens and ducks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study we biologically characterized H6N2 low pathogenicity avian influenza (LPAI) viruses by infecting chickens and ducks in order to compare adaptation of these viruses in these species. We examined the clinical signs, virus shedding, and immune response to infection in 4-week old white le...

  2. DIVA vaccination strategies for avian influenza virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vaccination for both low pathogenic and highly pathogenic avian influenza is commonly used for countries that have been endemic for avian influenza influenza virus, but stamping out policies are common for countries that are normally free of the disease. Stamping out policies of euthanizing infecte...

  3. Avian influenza surveillance reveals presence of low pathogenic avian influenza viruses in poultry during 2009-2011 in the West Bengal State, India

    PubMed Central

    2012-01-01

    Introduction More than 70 outbreaks of the highly pathogenic avian influenza (HPAI) H5N1 have been reported in poultry in the western and north-eastern parts of India. Therefore, in view of the recent HPAI H5N1 outbreaks in poultry, active AI surveillance encompassing wild, resident, migratory birds and poultry was undertaken during 2009–2011 in the State of West Bengal. Methods A total of 5722 samples were collected from West Bengal; 3522 samples (2906 fecal droppings + 616 other environmental samples) were from migratory birds and 2200 samples [1604 tracheal, cloacal swabs, environmental samples, tissue samples + 596 blood (serum)] were from domestic ducks and poultry. All tracheal, cloacal and environmental samples were processed for virus isolation. Virus isolates were detected using hemagglutination assay and identified using hemagglutination inhibition (HI) and reverse transcriptase polymerase chain reaction (RT-PCR) assays. Sequencing and phylogenetic analysis of partial region of the hemagglutinin and neuraminidase genes was done. Intravenous pathogenicity index assays were performed in chickens to assess pathogenicity of AI virus isolates. Serum samples were tested for detection of antibodies against AI viruses using HI assay. Results A total of 57 AI H9N2, 15 AI H4N6 and 15 Newcastle Disease (NDV) viruses were isolated from chickens, from both backyard and wet poultry markets; AI H4N6 viruses were isolated from backyard chickens and domestic ducks. Characterization of AI H9N2 and H4N6 viruses revealed that they were of low pathogenicity. Domestic ducks were positive for antibodies against H5 and H7 viruses while chickens were positive for presence of antibodies against AI H9N2 and NDV. Conclusions In the current scenario of HPAI H5N1 outbreaks in West Bengal, this report shows presence of low pathogenic AI H9N2 and H4N6 viruses in chickens and domestic ducks during the period 2009–2011. This is the first report of isolation of H4N6 from India

  4. Expression of Immune-Related Genes of Ducks Infected with Avian Pathogenic Escherichia coli (APEC)

    PubMed Central

    Li, Rong; Li, Ning; Zhang, Jinzhou; Wang, Yao; Liu, Jiyuan; Cai, Yumei; Chai, Tongjie; Wei, Liangmeng

    2016-01-01

    Avian pathogenic Escherichia coli (APEC) can cause severe disease in ducks, characterized by perihepatitis, pericarditis, and airsacculitis. Although the studies of bacteria isolation and methods of detection have been reported, host immune responses to APEC infection remain unclear. In response, we systemically examined the expression of immune-related genes and bacteria distribution in APEC-infected ducks. Results demonstrated that APEC can quickly replicate in the liver, spleen, and brain, with the highest bacteria content at 2 days post infection. The expression of toll-like receptors (TLRs), avian β-defensins (AvBDs) and major histocompatibility complex (MHC) were tested in the liver, spleen, and brain of infected ducks. TLR2, TLR4, TLR5, and TLR15 showed different expression patterns, which indicated that they all responded to APEC infection. The expression of AvBD2 was upregulated in all tested tissues during the 3 days of testing, whereas the expression of AvBD4, AvBD5, AvBD7, and AvBD9 were downregulated, and though MHC-I was upregulated on all test days, MHC-II was dramatically downregulated. Overall, our results suggest that APEC can replicate in various tissues in a short time, and the activation of host immune responses begins at onset of infection. These findings thus clarify duck immune responses to APEC infection and offer insights into its pathogenesis. PMID:27199963

  5. Two functional type VI secretion systems in avian pathogenic Escherichia coli are involved in different pathogenic pathways.

    PubMed

    Ma, Jiale; Bao, Yinli; Sun, Min; Dong, Wenyang; Pan, Zihao; Zhang, Wei; Lu, Chengping; Yao, Huochun

    2014-09-01

    Type VI secretion systems (T6SSs) are involved in the pathogenicity of several Gram-negative bacteria. The VgrG protein, a core component and effector of T6SS, has been demonstrated to perform diverse functions. The N-terminal domain of VgrG protein is a homologue of tail fiber protein gp27 of phage T4, which performs a receptor binding function and determines the host specificity. Based on sequence analysis, we found that two putative T6SS loci exist in the genome of the avian pathogenic Escherichia coli (APEC) strain TW-XM. To assess the contribution of these two T6SSs to TW-XM pathogenesis, the crucial clpV clusters of these two T6SS loci and their vgrG genes were deleted to generate a series of mutants. Consequently, T6SS1-associated mutants presented diminished adherence to and invasion of several host cell lines cultured in vitro, decreased pathogenicity in duck and mouse infection models in vivo, and decreased biofilm formation and bacterial competitive advantage. In contrast, T6SS2-associated mutants presented a significant decrease only in the adherence to and invasion of mouse brain microvascular endothelial cell (BMEC) line bEnd.3 and brain tissue of the duck infection model. These results suggested that T6SS1 was involved in the proliferation of APEC in systemic infection, whereas VgrG-T6SS2 was responsible only for cerebral infection. Further study demonstrated that VgrG-T6SS2 was able to bind to the surface of bEnd.3 cells, whereas it did not bind to DF-1 (chicken embryo fibroblast) cells, which further proved the interaction of VgrG-T6SS2 with the surface of BMECs. PMID:24980972

  6. Complete Genomic and Lysis-Cassette Characterization of the Novel Phage, KBNP1315, which Infects Avian Pathogenic Escherichia coli (APEC).

    PubMed

    Lee, Jung Seok; Jang, Ho Bin; Kim, Ki Sei; Kim, Tae Hwan; Im, Se Pyeong; Kim, Si Won; Lazarte, Jassy Mary S; Kim, Jae Sung; Jung, Tae Sung

    2015-01-01

    Avian pathogenic Escherichia coli (APEC) is a major pathogen that causes avian colibacillosis and is associated with severe economic losses in the chicken-farming industry. Here, bacteriophage KBNP1315, infecting APEC strain KBP1315, was genomically and functionally characterized. The evolutionary relationships of KBNP1315 were analyzed at the genomic level using gene (protein)-sharing networks, the Markov clustering (MCL) algorithm, and comparative genomics. Our network analysis showed that KBNP1315 was connected to 30 members of the Autographivirinae subfamily, which comprises the SP6-, T7-, P60-, phiKMV-, GAP227- and KP34-related groups. Network decomposition suggested that KBNP1315 belongs to the SP6-like phages, but our comparison of putative encoded proteins revealed that key proteins of KBNP1315, including the tail spike protein and endolysin, had relative low levels of amino acid sequence similarity with other members of the SP6-like phages. Thus KBNP1315 may only be distantly related to the SP6-like phages, and (based on the difference in endolysin) its lysis mechanism may differ from theirs. To characterize the lytic functions of the holin and endolysin proteins from KBNP1315, we expressed these proteins individually or simultaneously in E. coli BL21 (DE3) competent cell. Interestingly, the expressed endolysin was secreted into the periplasm and caused a high degree of host cell lysis that was dose-dependently delayed/blocked by NaN3-mediated inhibition of the SecA pathway. The expressed holin triggered only a moderate inhibition of cell growth, whereas coexpression of holin and endolysin enhanced the lytic effect of endolysin. Together, these results revealed that KBNP1315 appears to use a pin-holin/signal-arrest-release (SAR) endolysin pathway to trigger host cell lysis. PMID:26555076

  7. Complete Genomic and Lysis-Cassette Characterization of the Novel Phage, KBNP1315, which Infects Avian Pathogenic Escherichia coli (APEC)

    PubMed Central

    Lee, Jung Seok; Jang, Ho Bin; Kim, Ki Sei; Kim, Tae Hwan; Im, Se Pyeong; Kim, Si Won; Lazarte, Jassy Mary S.; Kim, Jae Sung; Jung, Tae Sung

    2015-01-01

    Avian pathogenic Escherichia coli (APEC) is a major pathogen that causes avian colibacillosis and is associated with severe economic losses in the chicken-farming industry. Here, bacteriophage KBNP1315, infecting APEC strain KBP1315, was genomically and functionally characterized. The evolutionary relationships of KBNP1315 were analyzed at the genomic level using gene (protein)-sharing networks, the Markov clustering (MCL) algorithm, and comparative genomics. Our network analysis showed that KBNP1315 was connected to 30 members of the Autographivirinae subfamily, which comprises the SP6-, T7-, P60-, phiKMV-, GAP227- and KP34-related groups. Network decomposition suggested that KBNP1315 belongs to the SP6-like phages, but our comparison of putative encoded proteins revealed that key proteins of KBNP1315, including the tail spike protein and endolysin, had relative low levels of amino acid sequence similarity with other members of the SP6-like phages. Thus KBNP1315 may only be distantly related to the SP6-like phages, and (based on the difference in endolysin) its lysis mechanism may differ from theirs. To characterize the lytic functions of the holin and endolysin proteins from KBNP1315, we expressed these proteins individually or simultaneously in E. coli BL21 (DE3) competent cell. Interestingly, the expressed endolysin was secreted into the periplasm and caused a high degree of host cell lysis that was dose-dependently delayed/blocked by NaN3-mediated inhibition of the SecA pathway. The expressed holin triggered only a moderate inhibition of cell growth, whereas coexpression of holin and endolysin enhanced the lytic effect of endolysin. Together, these results revealed that KBNP1315 appears to use a pin-holin/signal-arrest-release (SAR) endolysin pathway to trigger host cell lysis. PMID:26555076

  8. First reported detection of a low pathogenicity avian influenza virus subtype H9 infection in domestic fowl in England.

    PubMed

    Parker, C D; Reid, S M; Ball, A; Cox, W J; Essen, S C; Hanna, A; Mahmood, S; Slomka, M J; Irvine, R M; Brown, I H

    2012-10-13

    In December 2010, infection with a H9N1 low pathogenicity avian influenza (LPAI) virus was detected in a broiler breeder flock in East Anglia. Disease suspicion was based on acute drops in egg production in two of four sheds on the premises, poor egg shell quality and evidence of diarrhoea. H9N1 LPAI virus infection was confirmed by real-time reverse transcription PCR. Sequencing revealed high nucleotide identity of 93.6 per cent and 97.9 per cent with contemporary North American H9 and Eurasian N1 genes, respectively. Attempted virus isolation in embryonated specific pathogen free (SPF) fowls' eggs was unsuccessful. Epidemiological investigations were conducted to identify the source of infection and any onward spread. These concluded that infection was restricted to the affected premises, and no contacts or movements of poultry, people or fomites could be attributed as the source of infection. However, the infection followed a period of extremely cold weather and snow which impacted on the biosecurity protocols on site, and also led to increased wild bird activity locally, including waterfowl and game birds around the farm buildings. Analysis of the N1 gene sequence suggested direct introduction from wild birds. Although H9 infection in poultry is not notifiable, H9N2 LPAI viruses have been associated with production and mortality episodes in poultry in many parts of Asia and the Middle East. In the present H9N1 outbreak, clinical signs were relatively mild in the poultry with no mortality, transient impact on egg production and no indication of zoonotic spread. However, this first reported detection of H9 LPAI virus in chickens in England was also the first H9 UK poultry case for 40 years, and vindicates the need for continued vigilance and surveillance of avian influenza viruses in poultry populations. PMID:22949546

  9. Detection of aac(6')-Ib-cr in avian pathogenic Escherichia coli isolates in Japan.

    PubMed

    Kawanishi, Michiko; Ozawa, Manao; Hiki, Mototaka; Abo, Hitoshi; Kojima, Akemi; Asai, Tetsuo

    2013-11-01

    We investigated the prevalence of plasmid-mediated quinolone resistance (PMQR) genes in avian pathogenic Escherichia coli (APEC) strains in Japan. A total of 117 APEC strains collected between 2004 and 2007 were examined for PMQR genes (qnrA, qnrB, qnrC, qnrD, qnrS, aac(6')-Ib-cr, qepA and oqxAB) by polymerase chain reaction. None of the APEC strains carried qnrA, qnrB, qnrC, qnrD, qnrS, qepA or oqxAB, but one of the isolates was identified as an AAC (6')-Ib-cr producer. Phylogenetic grouping, multi-locus sequence typing and serotyping showed that this isolate belonged to phylogenetic group A, sequence type 167 and untypable serogroup. To our knowledge, this is the first report of the aac (6')-Ib-cr gene in bacteria from food-producing animals in Japan. PMID:23856759

  10. Association of Mx1 Asn631 variant alleles with reductions in morbidity, early mortality, viral shedding, and cytokine responses in chickens infected with a highly pathogenic avian influenza virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Myxovirus-resistance (Mx) proteins are produced by host cells and have been shown to limit replication of influenza and other viruses. Selective breeding for the Mx polymorphism is an attractive approach to improve genetic resistance of chickens to avian influenza (AI) viruses. Following infection w...

  11. Presence of pathogenicity islands and virulence genes of extraintestinal pathogenic Escherichia coli (ExPEC) in isolates from avian organic fertilizer.

    PubMed

    Gazal, Luís Eduardo S; Puño-Sarmiento, Juan J; Medeiros, Leonardo P; Cyoia, Paula S; da Silveira, Wanderlei D; Kobayashi, Renata K T; Nakazato, Gerson

    2015-12-01

    Poultry litter is commonly used as fertilizer in agriculture. However, this poultry litter must be processed prior to use, since poultry have a large number of pathogenic microorganisms. The aims of this study were to isolate and genotypically and phenotypically characterize Escherichia coli from avian organic fertilizer. Sixty-four E. coli isolates were identified from avian organic fertilizer and characterized for ExPEC virulence factors, pathogenicity islands, phylogenetic groups, antimicrobial resistance, biofilm formation, and adhesion to HEp-2 cells. Sixty-three isolates (98.4%) showed at least one virulence gene (fimH, ecpA, sitA, traT, iutA, iroN, hlyF, ompT and iss). The predominant phylogenetic groups were groups A (59.3%) and B1 (34.3%). The pathogenicity island CFT073II (51.5%) was the most prevalent among the isolates tested. Thirty-two isolates (50%) were resistant to at least one antimicrobial agent. Approximately 90% of isolates adhered to HEp-2 cells, and the predominant pattern was aggregative adherence (74.1%). In the biofilm assay, it was observed that 75% of isolates did not produce biofilm. These results lead us to conclude that some E. coli isolates from avian organic fertilizer could be pathogenic for humans. PMID:26476087

  12. Is the optimal pH for membrane fusion in host cells by avian influenza viruses related to host range and pathogenicity?

    PubMed

    Okamatsu, Masatoshi; Motohashi, Yurie; Hiono, Takahiro; Tamura, Tomokazu; Nagaya, Kazuki; Matsuno, Keita; Sakoda, Yoshihiro; Kida, Hiroshi

    2016-08-01

    Influenza viruses isolated from wild ducks do not replicate in chickens. This fact is not explained solely by the receptor specificity of the hemagglutinin (HA) from such viruses for target host cells. To investigate this restriction in host range, the fusion activities of HA molecules from duck and chicken influenza viruses were examined. Influenza viruses A/duck/Mongolia/54/2001 (H5N2) (Dk/MNG) and A/chicken/Ibaraki/1/2005 (H5N2) (Ck/IBR), which replicate only in their primary hosts, were used. The optimal pH for membrane fusion of Ck/IBR was 5.9, higher than that of Dk/MNG at 4.9. To assess the relationship between the optimal pH for fusion and the host range of avian influenza viruses, the optimal pH for fusion of 55 influenza virus strains isolated from ducks and chickens was examined. No correlation was found between the host range and optimal pH for membrane fusion by the viruses, and this finding applied also to the H5N1 highly pathogenic avian influenza viruses. The optimal pH for membrane fusion for avian influenza viruses was shown to not necessarily be correlated with their host range or pathogenicity in ducks and chickens. PMID:27231009

  13. Efficacy of inactivated influenza vaccines for protection of poultry against the H7N9 low pathogenic avian influenza virus isolated in China during 2013

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The recent outbreak in China of avian influenza (AI) H7N9 in birds and humans underscores the interspecies movement of these viruses. Interestingly, the genetic composition of these H7N9 viruses appears to be solely of avian origin and of low pathogenicity in birds. Although few isolations of these ...

  14. Advances in vaccination against avian pathogenic Escherichia coli respiratory disease: potentials and limitations.

    PubMed

    Ghunaim, Haitham; Abu-Madi, Marwan Abdelhamid; Kariyawasam, Subhashinie

    2014-08-01

    Avian pathogenic Escherichia coli (APEC) is one of the most economically devastating pathogens affecting the poultry industry. This group of extra-intestinal E. coli causes a variety of clinical conditions including airsacculitis and cellulitis. The economic impact of APEC is mainly due to mortality, slower growth rates, and carcass downgrading. In commercial broiler operations, APEC infections are controlled indirectly by vaccination against other respiratory diseases and minimizing stress conditions, and directly by administration of antimicrobial agents to suppress the infection in already infected flocks. The fact that most APEC strains possess some common virulence factors suggests that an effective vaccine against APEC is a viable option. The most important virulence factors that have been investigated over the years include type I and P fimbriae, aerobactin iron-acquisition system, and serum resistance traits. Despite the potential for developing an efficacious vaccine to combat this economically important poultry disease, several obstacles hinder such efforts. Those obstacles include the cost, vaccine delivery method and timing of vaccination as the birds should be immune to APEC by 21 days of age. Herein, we review the various attempts to develop an effective vaccine against the respiratory form of APEC diseases in poultry. We also discuss in-depth the potentials and limitations of such vaccines. PMID:24878325

  15. Functional activities of the Tsh protein from avian pathogenic Escherichia coli (APEC) strains.

    PubMed

    Kobayashi, Renata K; Gaziri, Luis Carlos; Vidotto, Marilda C

    2010-12-01

    The temperature-sensitive hemagglutinin (Tsh) expressed by strains of avian pathogenic Escherichia (E.) coli (APEC) has both agglutinin and protease activities. Tsh is synthesized as a 140 kDa precursor protein, whose processing results in a 106 kDa passenger domain (Tsh(s)) and a 33 kDa β-domain (Tsh(β)). In this study, both recombinant Tsh (rTsh) and supernatants from APEC, which contain Tsh(s) (106 kDa), caused proteolysis of chicken tracheal mucin. Both rTsh (140 kDa) and pellets from wild-type APEC, which contain Tsh(β) (33 kDa), agglutinated chicken erythrocytes. On Western blots, the anti-rTsh antibody recognized the rTsh and 106 kDa proteins in recombinant E. coli BL21/pET 101-Tsh and in the supernatants from APEC grown at either 37°C or 42°C. Anti-rTsh also recognized a 33 kDa protein in the pellets from APEC13 cultures grown in either Luria-Bertani agar, colonization factor antigen agar, or mucin agar at either 26°C, 37°C, or 42°C, and in the extracts of outer membrane proteins of APEC. The 106 kDa protein was more evident when the bacteria were grown at 37°C in mucin agar, and it was not detected when the bacteria were grown at 26°C in any of the culture media used in this study. Chicken anti-Tsh serum inhibited hemagglutinating and mucinolytic activities of strain APEC13 and recombinant E. coli BL21/pET101-Tsh. This work suggests that the mucinolytic activity of Tsh might be important for the colonization of the avian tracheal mucous environment by APEC. PMID:21113100

  16. Unique chromosomal regions associated with virulence of an avian pathogenic Escherichia coli strain.

    PubMed Central

    Brown, P K; Curtiss, R

    1996-01-01

    The avian pathogenic Escherichia coli strain (chi)7122 (serotype O78:K80:H9) causes airsacculitis and colisepticemia in chickens. To identify genes associated with avian disease, a genomic subtraction technique was performed between strain (chi)7122 and the E. coli K-12 strain (chi)289. The DNA isolated using this method was found only in strain (chi)7122 and was used to identify cosmid clones carrying unique DNA from a library of (chi)7122 that were then used to map the position of unique DNA on the E. coli chromosome. A total of 12 unique regions were found, 5 of which correspond to previously identified positions for unique DNA sequence in E. coli strains. To assess the role each unique region plays in virulence, mutants of (chi)7122 were constructed in which a segment of unique DNA was replaced with E. coli K-12 DNA by cotransduction of linked transposon insertions in DNA flanking the unique sequence. The resulting replacement mutants were assessed for inability to colonize the air sac and cause septicemia in 2-week-old white Leghorn chickens. Two mutants were found to be avirulent when injected into the right caudal air sac of 2-week-old chickens. One avirulent mutant, designated (chi)7145, carries a replacement of the rfb locus at 44 min, generating a rough phenotype. The second mutant is designated (chi)7146, and carries a replacement at position 0.0 min on the genetic map. Both mutants could be complemented to partial virulence by cosmids carrying sequences unique to (chi)7122. Images Fig. 1 Fig. 3 PMID:8855324

  17. Wind-Mediated Spread of Low-Pathogenic Avian Influenza Virus into the Environment during Outbreaks at Commercial Poultry Farms.

    PubMed

    Jonges, Marcel; van Leuken, Jeroen; Wouters, Inge; Koch, Guus; Meijer, Adam; Koopmans, Marion

    2015-01-01

    Avian influenza virus-infected poultry can release a large amount of virus-contaminated droppings that serve as sources of infection for susceptible birds. Much research so far has focused on virus spread within flocks. However, as fecal material or manure is a major constituent of airborne poultry dust, virus-contaminated particulate matter from infected flocks may be dispersed into the environment. We collected samples of suspended particulate matter, or the inhalable dust fraction, inside, upwind and downwind of buildings holding poultry infected with low-pathogenic avian influenza virus, and tested them for the presence of endotoxins and influenza virus to characterize the potential impact of airborne influenza virus transmission during outbreaks at commercial poultry farms. Influenza viruses were detected by RT-PCR in filter-rinse fluids collected up to 60 meters downwind from the barns, but virus isolation did not yield any isolates. Viral loads in the air samples were low and beyond the limit of RT-PCR quantification except for one in-barn measurement showing a virus concentration of 8.48 x 10(4) genome copies/m(3). Air samples taken outside poultry barns had endotoxin concentrations of ~50 EU/m(3) that declined with increasing distance from the barn. Atmospheric dispersion modeling of particulate matter, using location-specific meteorological data for the sampling days, demonstrated a positive correlation between endotoxin measurements and modeled particulate matter concentrations, with an R(2) varying from 0.59 to 0.88. Our data suggest that areas at high risk for human or animal exposure to airborne influenza viruses can be modeled during an outbreak to allow directed interventions following targeted surveillance. PMID:25946115

  18. Wind-Mediated Spread of Low-Pathogenic Avian Influenza Virus into the Environment during Outbreaks at Commercial Poultry Farms

    PubMed Central

    Jonges, Marcel; van Leuken, Jeroen; Wouters, Inge; Koch, Guus; Meijer, Adam; Koopmans, Marion

    2015-01-01

    Avian influenza virus-infected poultry can release a large amount of virus-contaminated droppings that serve as sources of infection for susceptible birds. Much research so far has focused on virus spread within flocks. However, as fecal material or manure is a major constituent of airborne poultry dust, virus-contaminated particulate matter from infected flocks may be dispersed into the environment. We collected samples of suspended particulate matter, or the inhalable dust fraction, inside, upwind and downwind of buildings holding poultry infected with low-pathogenic avian influenza virus, and tested them for the presence of endotoxins and influenza virus to characterize the potential impact of airborne influenza virus transmission during outbreaks at commercial poultry farms. Influenza viruses were detected by RT-PCR in filter-rinse fluids collected up to 60 meters downwind from the barns, but virus isolation did not yield any isolates. Viral loads in the air samples were low and beyond the limit of RT-PCR quantification except for one in-barn measurement showing a virus concentration of 8.48x104 genome copies/m3. Air samples taken outside poultry barns had endotoxin concentrations of ~50 EU/m3 that declined with increasing distance from the barn. Atmospheric dispersion modeling of particulate matter, using location-specific meteorological data for the sampling days, demonstrated a positive correlation between endotoxin measurements and modeled particulate matter concentrations, with an R2 varying from 0.59 to 0.88. Our data suggest that areas at high risk for human or animal exposure to airborne influenza viruses can be modeled during an outbreak to allow directed interventions following targeted surveillance. PMID:25946115

  19. Characterizing the interface between wild ducks and poultry to evaluate the potential of transmission of avian pathogens

    PubMed Central

    2011-01-01

    Background Characterizing the interface between wild and domestic animal populations is increasingly recognized as essential in the context of emerging infectious diseases (EIDs) that are transmitted by wildlife. More specifically, the spatial and temporal distribution of contact rates between wild and domestic hosts is a key parameter for modeling EIDs transmission dynamics. We integrated satellite telemetry, remote sensing and ground-based surveys to evaluate the spatio-temporal dynamics of indirect contacts between wild and domestic birds to estimate the risk that avian pathogens such as avian influenza and Newcastle viruses will be transmitted between wildlife to poultry. We monitored comb ducks (Sarkidiornis melanotos melanotos) with satellite transmitters for seven months in an extensive Afro-tropical wetland (the Inner Niger Delta) in Mali and characterise the spatial distribution of backyard poultry in villages. We modelled the spatial distribution of wild ducks using 250-meter spatial resolution and 8-days temporal resolution remotely-sensed environmental indicators based on a Maxent niche modelling method. Results Our results show a strong seasonal variation in potential contact rate between wild ducks and poultry. We found that the exposure of poultry to wild birds was greatest at the end of the dry season and the beginning of the rainy season, when comb ducks disperse from natural water bodies to irrigated areas near villages. Conclusions Our study provides at a local scale a quantitative evidence of the seasonal variability of contact rate between wild and domestic bird populations. It illustrates a GIS-based methodology for estimating epidemiological contact rates at the wildlife and livestock interface integrating high-resolution satellite telemetry and remote sensing data. PMID:22085837

  20. Low pathogenic avian influenza (H9N2) in chicken: Evaluation of an ancestral H9-MVA vaccine.

    PubMed

    Ducatez, Mariette F; Becker, Jens; Freudenstein, Astrid; Delverdier, Maxence; Delpont, Mattias; Sutter, Gerd; Guérin, Jean-Luc; Volz, Asisa

    2016-06-30

    Modified Vaccinia Ankara (MVA) has proven its efficacy as a recombinant vector vaccine for numerous pathogens including influenza virus. The present study aimed at evaluating a recombinant MVA candidate vaccine against low pathogenic avian influenza virus subtype H9N2 in the chicken model. As the high genetic and antigenic diversity of H9N2 viruses increases vaccine design complexity, one strategy to widen the range of vaccine coverage is to use an ancestor sequence. We therefore generated a recombinant MVA encoding for the gene sequence of an ancestral hemagglutinin H9 protein (a computationally derived amino acid sequence of the node of the H9N2 G1 lineage strains was obtained using the ANCESCON program). We analyzed the genetics and the growth properties of the MVA vector virus confirming suitability for use under biosafety level 1 and tested its efficacy when applied either as an intra-muscular (IM) or an oral vaccine in specific pathogen free chickens challenged with A/chicken/Tunisia/12/2010(H9N2). Two control groups were studied in parallel (unvaccinated and inoculated birds; unvaccinated and non-inoculated birds). IM vaccinated birds seroconverted as early as four days post vaccination and neutralizing antibodies were detected against A/chicken/Tunisia/12/2010(H9N2) in all the birds before challenge. The role of local mucosal immunity is unclear here as no antibodies were detected in eye drop or aerosol vaccinated birds. Clinical signs were not detected in any of the infected birds even in absence of vaccination. Virus replication was observed in both vaccinated and unvaccinated chickens, suggesting the MVA-ancestral H9 vaccine may not stop virus spread in the field. However vaccinated birds showed less histological damage, fewer influenza-positive cells and shorter virus shedding than their unvaccinated counterparts. PMID:27259828