Science.gov

Sample records for high performance buildings

  1. High Performance Buildings Database

    DOE Data Explorer

    The High Performance Buildings Database is a shared resource for the building industry, a unique central repository of in-depth information and data on high-performance, green building projects across the United States and abroad. The database includes information on the energy use, environmental performance, design process, finances, and other aspects of each project. Members of the design and construction teams are listed, as are sources for additional information. In total, up to twelve screens of detailed information are provided for each project profile. Projects range in size from small single-family homes or tenant fit-outs within buildings to large commercial and institutional buildings and even entire campuses. The database is a data repository as well. A series of Web-based data-entry templates allows anyone to enter information about a building project into the database. Once a project has been submitted, each of the partner organizations can review the entry and choose whether or not to publish that particular project on its own Web site.

  2. INL High Performance Building Strategy

    SciTech Connect

    Jennifer D. Morton

    2010-02-01

    High performance buildings, also known as sustainable buildings and green buildings, are resource efficient structures that minimize the impact on the environment by using less energy and water, reduce solid waste and pollutants, and limit the depletion of natural resources while also providing a thermally and visually comfortable working environment that increases productivity for building occupants. As Idaho National Laboratory (INL) becomes the nation’s premier nuclear energy research laboratory, the physical infrastructure will be established to help accomplish this mission. This infrastructure, particularly the buildings, should incorporate high performance sustainable design features in order to be environmentally responsible and reflect an image of progressiveness and innovation to the public and prospective employees. Additionally, INL is a large consumer of energy that contributes to both carbon emissions and resource inefficiency. In the current climate of rising energy prices and political pressure for carbon reduction, this guide will help new construction project teams to design facilities that are sustainable and reduce energy costs, thereby reducing carbon emissions. With these concerns in mind, the recommendations described in the INL High Performance Building Strategy (previously called the INL Green Building Strategy) are intended to form the INL foundation for high performance building standards. This revised strategy incorporates the latest federal and DOE orders (Executive Order [EO] 13514, “Federal Leadership in Environmental, Energy, and Economic Performance” [2009], EO 13423, “Strengthening Federal Environmental, Energy, and Transportation Management” [2007], and DOE Order 430.2B, “Departmental Energy, Renewable Energy, and Transportation Management” [2008]), the latest guidelines, trends, and observations in high performance building construction, and the latest changes to the Leadership in Energy and Environmental Design

  3. Project materials [Commercial High Performance Buildings Project

    SciTech Connect

    2001-01-01

    The Consortium for High Performance Buildings (ChiPB) is an outgrowth of DOE'S Commercial Whole Buildings Roadmapping initiatives. It is a team-driven public/private partnership that seeks to enable and demonstrate the benefit of buildings that are designed, built and operated to be energy efficient, environmentally sustainable, superior quality, and cost effective.

  4. Commercial Buildings High Performance Rooftop Unit Challenge

    SciTech Connect

    2011-12-16

    The U.S. Department of Energy (DOE) and the Commercial Building Energy Alliances (CBEAs) are releasing a new design specification for high performance rooftop air conditioning units (RTUs). Manufacturers who develop RTUs based on this new specification will find strong interest from the commercial sector due to the energy and financial savings.

  5. Integrating advanced facades into high performance buildings

    SciTech Connect

    Selkowitz, Stephen E.

    2001-05-01

    Glass is a remarkable material but its functionality is significantly enhanced when it is processed or altered to provide added intrinsic capabilities. The overall performance of glass elements in a building can be further enhanced when they are designed to be part of a complete facade system. Finally the facade system delivers the greatest performance to the building owner and occupants when it becomes an essential element of a fully integrated building design. This presentation examines the growing interest in incorporating advanced glazing elements into more comprehensive facade and building systems in a manner that increases comfort, productivity and amenity for occupants, reduces operating costs for building owners, and contributes to improving the health of the planet by reducing overall energy use and negative environmental impacts. We explore the role of glazing systems in dynamic and responsive facades that provide the following functionality: Enhanced sun protection and cooling load control while improving thermal comfort and providing most of the light needed with daylighting; Enhanced air quality and reduced cooling loads using natural ventilation schemes employing the facade as an active air control element; Reduced operating costs by minimizing lighting, cooling and heating energy use by optimizing the daylighting-thermal tradeoffs; Net positive contributions to the energy balance of the building using integrated photovoltaic systems; Improved indoor environments leading to enhanced occupant health, comfort and performance. In addressing these issues facade system solutions must, of course, respect the constraints of latitude, location, solar orientation, acoustics, earthquake and fire safety, etc. Since climate and occupant needs are dynamic variables, in a high performance building the facade solution have the capacity to respond and adapt to these variable exterior conditions and to changing occupant needs. This responsive performance capability

  6. Commercial Building Partners Catalyze High Performance Buildings Across the Nation

    SciTech Connect

    Baechler, Michael C.; Dillon, Heather E.; Bartlett, Rosemarie

    2012-08-01

    In 2008 the US Department of Energy (DOE) launched the Commercial Buildings Partnership (CBP) project to accelerate market adoption of commercially available energy saving technologies into the design process for new and upgraded commercial buildings. The CBP represents a unique collaboration between industry leaders and DOE to develop high performance buildings as a model for future construction and renovation. CBP was implemented in two stages. This paper focuses on lessons learned at Pacific Northwest National Laboratory (PNNL) in the first stage and discusses some partner insights from the second stage. In the first stage, PNNL and the National Renewable Energy Laboratory recruited CBP partners that own large portfolios of buildings. The labs provide assistance to the partners' design teams and make a business case for energy investments.

  7. High-performance commercial building systems

    SciTech Connect

    Selkowitz, Stephen

    2003-10-01

    This report summarizes key technical accomplishments resulting from the three year PIER-funded R&D program, ''High Performance Commercial Building Systems'' (HPCBS). The program targets the commercial building sector in California, an end-use sector that accounts for about one-third of all California electricity consumption and an even larger fraction of peak demand, at a cost of over $10B/year. Commercial buildings also have a major impact on occupant health, comfort and productivity. Building design and operations practices that influence energy use are deeply engrained in a fragmented, risk-averse industry that is slow to change. Although California's aggressive standards efforts have resulted in new buildings designed to use less energy than those constructed 20 years ago, the actual savings realized are still well below technical and economic potentials. The broad goal of this program is to develop and deploy a set of energy-saving technologies, strategies, and techniques, and improve processes for designing, commissioning, and operating commercial buildings, while improving health, comfort, and performance of occupants, all in a manner consistent with sound economic investment practices. Results are to be broadly applicable to the commercial sector for different building sizes and types, e.g. offices and schools, for different classes of ownership, both public and private, and for owner-occupied as well as speculative buildings. The program aims to facilitate significant electricity use savings in the California commercial sector by 2015, while assuring that these savings are affordable and promote high quality indoor environments. The five linked technical program elements contain 14 projects with 41 distinct R&D tasks. Collectively they form a comprehensive Research, Development, and Demonstration (RD&D) program with the potential to capture large savings in the commercial building sector, providing significant economic benefits to building owners and

  8. 77 FR 2296 - Office of Federal High-Performance Green Buildings; the Green Building Advisory Committee...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-17

    ... ADMINISTRATION Office of Federal High-Performance Green Buildings; the Green Building Advisory Committee... provides the schedule for three teleconference meetings of the Green Building Advisory Committee (the..., Designated Federal Officer, Office of Federal High Performance Green Buildings, Office of...

  9. High-performance commercial building facades

    SciTech Connect

    Lee, Eleanor; Selkowitz, Stephen; Bazjanac, Vladimir; Inkarojrit, Vorapat; Kohler, Christian

    2002-06-01

    This study focuses on advanced building facades that use daylighting, sun control, ventilation systems, and dynamic systems. A quick perusal of the leading architectural magazines, or a discussion in most architectural firms today will eventually lead to mention of some of the innovative new buildings that are being constructed with all-glass facades. Most of these buildings are appearing in Europe, although interestingly U.S. A/E firms often have a leading role in their design. This ''emerging technology'' of heavily glazed fagades is often associated with buildings whose design goals include energy efficiency, sustainability, and a ''green'' image. While there are a number of new books on the subject with impressive photos and drawings, there is little critical examination of the actual performance of such buildings, and a generally poor understanding as to whether they achieve their performance goals, or even what those goals might be. Even if the building ''works'' it is often dangerous to take a design solution from one climate and location and transport it to a new one without a good causal understanding of how the systems work. In addition, there is a wide range of existing and emerging glazing and fenestration technologies in use in these buildings, many of which break new ground with respect to innovative structural use of glass. It is unclear as to how well many of these designs would work as currently formulated in California locations dominated by intense sunlight and seismic events. Finally, the costs of these systems are higher than normal facades, but claims of energy and productivity savings are used to justify some of them. Once again these claims, while plausible, are largely unsupported. There have been major advances in glazing and facade technology over the past 30 years and we expect to see continued innovation and product development. It is critical in this process to be able to understand which performance goals are being met by current

  10. 77 FR 66616 - Office of Federal High-Performance Green Buildings; Green Building Advisory Committee...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-06

    ...: Introductions & plans for today's meeting. Green Building Certification System Review update. Facilities... ADMINISTRATION Office of Federal High-Performance Green Buildings; Green Building Advisory Committee... provides the schedule and agenda for the November 27, 2012, meeting of the Green Building...

  11. The Process Guidelines for High-Performance Buildings

    SciTech Connect

    Grondzik, W.

    1999-07-01

    The Process Guidelines for High-Performance Buildings are a set of recommendations for the design and operation of efficient and effective commercial/institutional buildings. The Process Guidelines have been developed in a searchable database format and are intended to replace print documents that provide guidance for new building designs for the State of Florida and for the operation of existing State buildings. The Process Guidelines for High-Performance buildings reside on the World Wide Web and are publicly accessible. Contents may be accessed in a variety of ways to best suit the needs of the user. The Process Guidelines address the interests of a range of facilities professionals; are organized around the primary phases of building design, construction, and operation; and include content dealing with all major building systems. The Process Guidelines for High-Performance Buildings may be accessed through the ``Resources'' area of the edesign Web site: http://fcn.state.fl.us/fdi/edesign/resource/index.html.

  12. High Performance Home Building Guide for Habitat for Humanity Affiliates

    SciTech Connect

    Lindsey Marburger

    2010-10-01

    This guide covers basic principles of high performance Habitat construction, steps to achieving high performance Habitat construction, resources to help improve building practices, materials, etc., and affiliate profiles and recommendations.

  13. Daylighting Strategies Promote Healthy High Performance Buildings

    ERIC Educational Resources Information Center

    Gille, Steve

    2010-01-01

    There are many reasons to incorporate daylighting into the building or renovation of K-16 learning facilities. Benefits include increased productivity for students and staff, improved health, a better connection to the outdoors, energy savings and better quality of light. Add the role daylighting can play in LEED certification and it's clear that…

  14. Revisit of Energy Use and Technologies of High Performance Buildings

    SciTech Connect

    Li, Cheng; Hong, Tianzhen

    2014-03-30

    Energy consumed by buildings accounts for one third of the world?s total primary energy use. Associated with the conscious of energy savings in buildings, High Performance Buildings (HPBs) has surged across the world, with wide promotion and adoption of various performance rating and certification systems. It is valuable to look into the actual energy performance of HPBs and to understand their influencing factors. To shed some light on this topic, this paper conducted a series of portfolio analysis based on a database of 51 high performance office buildings across the world. Analyses showed that the actual site Energy Use Intensity (EUI) of the 51 buildings varied by a factor of up to 11, indicating a large scale of variation of the actual energy performance of the current HPBs. Further analysis of the correlation between EUI and climate elucidated ubiquitous phenomenon of EUI scatter throughout all climate zones, implying that the weather is not a decisive factor, although important, for the actual energy consumption of an individual building. On the building size via EUI, analysis disclosed that smaller buildings have a tendency to achieving lower energy use. Even so, the correlation is not absolute since some large buildings demonstrated low energy use while some small buildings performed opposite. Concerning the technologies, statistics indicated that the application of some technologies had correlations with some specific building size and climate characteristic. However, it was still hard to pinpoint a set of technologies which was directly correlative with a group of low EUI buildings. It is concluded that no a single factor essentially determines the actual energy performance of HPBs. To deliver energy-efficient buildings, an integrated design taking account of climate, technology, occupant behavior as well as operation and maintenance should be implemented.

  15. Creating high performance buildings: Lower energy, better comfort

    SciTech Connect

    Brager, Gail; Arens, Edward

    2015-03-30

    Buildings play a critical role in the challenge of mitigating and adapting to climate change. It is estimated that buildings contribute 39% of the total U.S. greenhouse gas (GHG) emissions [1] primarily due to their operational energy use, and about 80% of this building energy use is for heating, cooling, ventilating, and lighting. An important premise of this paper is about the connection between energy and comfort. They are inseparable when one talks about high performance buildings. Worldwide data suggests that we are significantly overcooling buildings in the summer, resulting in increased energy use and problems with thermal comfort. In contrast, in naturally ventilated buildings without mechanical cooling, people are comfortable in much warmer temperatures due to shifting expectations and preferences as a result of occupants having a greater degree of personal control over their thermal environment; they have also become more accustomed to variable conditions that closely reflect the natural rhythms of outdoor climate patterns. This has resulted in an adaptive comfort zone that offers significant potential for encouraging naturally ventilated buildings to improve both energy use and comfort. Research on other forms for providing individualized control through low-energy personal comfort systems (desktop fans, foot warmed, and heated and cooled chairs) have also demonstrated enormous potential for improving both energy and comfort performance. Studies have demonstrated high levels of comfort with these systems while ambient temperatures ranged from 64–84°F. Energy and indoor environmental quality are inextricably linked, and must both be important goals of a high performance building.

  16. Creating high performance buildings: Lower energy, better comfort

    NASA Astrophysics Data System (ADS)

    Brager, Gail; Arens, Edward

    2015-03-01

    Buildings play a critical role in the challenge of mitigating and adapting to climate change. It is estimated that buildings contribute 39% of the total U.S. greenhouse gas (GHG) emissions [1] primarily due to their operational energy use, and about 80% of this building energy use is for heating, cooling, ventilating, and lighting. An important premise of this paper is about the connection between energy and comfort. They are inseparable when one talks about high performance buildings. Worldwide data suggests that we are significantly overcooling buildings in the summer, resulting in increased energy use and problems with thermal comfort. In contrast, in naturally ventilated buildings without mechanical cooling, people are comfortable in much warmer temperatures due to shifting expectations and preferences as a result of occupants having a greater degree of personal control over their thermal environment; they have also become more accustomed to variable conditions that closely reflect the natural rhythms of outdoor climate patterns. This has resulted in an adaptive comfort zone that offers significant potential for encouraging naturally ventilated buildings to improve both energy use and comfort. Research on other forms for providing individualized control through low-energy personal comfort systems (desktop fans, foot warmed, and heated and cooled chairs) have also demonstrated enormous potential for improving both energy and comfort performance. Studies have demonstrated high levels of comfort with these systems while ambient temperatures ranged from 64-84°F. Energy and indoor environmental quality are inextricably linked, and must both be important goals of a high performance building.

  17. Building and managing high performance, scalable, commodity mass storage systems

    NASA Technical Reports Server (NTRS)

    Lekashman, John

    1998-01-01

    The NAS Systems Division has recently embarked on a significant new way of handling the mass storage problem. One of the basic goals of this new development are to build systems at very large capacity and high performance, yet have the advantages of commodity products. The central design philosophy is to build storage systems the way the Internet was built. Competitive, survivable, expandable, and wide open. The thrust of this paper is to describe the motivation for this effort, what we mean by commodity mass storage, what the implications are for a facility that performs such an action, and where we think it will lead.

  18. National Best Practices Manual for Building High Performance Schools

    ERIC Educational Resources Information Center

    US Department of Energy, 2007

    2007-01-01

    The U.S. Department of Energy's Rebuild America EnergySmart Schools program provides school boards, administrators, and design staff with guidance to help make informed decisions about energy and environmental issues important to school systems and communities. "The National Best Practices Manual for Building High Performance Schools" is a part of…

  19. Realizing High-Performance Buildings; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    2015-03-02

    High-performance buildings (HPBs) are exceptional examples of both design and practice. Their energy footprints are small, and these are buildings that people want to work in because of their intelligent structure, operations, and coincident comfort. However, the operation of most buildings, even ones that are properly constructed and commissioned at the start, can deviate significantly from the original design intent over time, particularly due to control system overrides and growing plug and data center loads. With early planning for systems such as submetering and occupant engagement tools, operators can identify and remedy the problems. This guide is a primer for owners and owners’ representatives who are pursuing HPBs. It describes processes that have been successful in the planning, procurement, and operation of HPBs with exceptional energy efficiency. Much of the guidance offered results from a series of semi-structured conference calls with a technical advisory group of 15 owners and operators of prominent HPBs in the United States. The guide provides a prescription for planning, achieving, and maintaining an HPB. Although the guide focuses on the operations stage of buildings, many of the operations practices are specified during the planning stage.

  20. Building and measuring a high performance network architecture

    SciTech Connect

    Kramer, William T.C.; Toole, Timothy; Fisher, Chuck; Dugan, Jon; Wheeler, David; Wing, William R; Nickless, William; Goddard, Gregory; Corbato, Steven; Love, E. Paul; Daspit, Paul; Edwards, Hal; Mercer, Linden; Koester, David; Decina, Basil; Dart, Eli; Paul Reisinger, Paul; Kurihara, Riki; Zekauskas, Matthew J; Plesset, Eric; Wulf, Julie; Luce, Douglas; Rogers, James; Duncan, Rex; Mauth, Jeffery

    2001-04-20

    Once a year, the SC conferences present a unique opportunity to create and build one of the most complex and highest performance networks in the world. At SC2000, large-scale and complex local and wide area networking connections were demonstrated, including large-scale distributed applications running on different architectures. This project was designed to use the unique opportunity presented at SC2000 to create a testbed network environment and then use that network to demonstrate and evaluate high performance computational and communication applications. This testbed was designed to incorporate many interoperable systems and services and was designed for measurement from the very beginning. The end results were key insights into how to use novel, high performance networking technologies and to accumulate measurements that will give insights into the networks of the future.

  1. Energy-Performance-Based Design-Build Process: Strategies for Procuring High-Performance Buildings on Typical Construction Budgets: Preprint

    SciTech Connect

    Scheib, J.; Pless, S.; Torcellini, P.

    2014-08-01

    NREL experienced a significant increase in employees and facilities on our 327-acre main campus in Golden, Colorado over the past five years. To support this growth, researchers developed and demonstrated a new building acquisition method that successfully integrates energy efficiency requirements into the design-build requests for proposals and contracts. We piloted this energy performance based design-build process with our first new construction project in 2008. We have since replicated and evolved the process for large office buildings, a smart grid research laboratory, a supercomputer, a parking structure, and a cafeteria. Each project incorporated aggressive efficiency strategies using contractual energy use requirements in the design-build contracts, all on typical construction budgets. We have found that when energy efficiency is a core project requirement as defined at the beginning of a project, innovative design-build teams can integrate the most cost effective and high performance efficiency strategies on typical construction budgets. When the design-build contract includes measurable energy requirements and is set up to incentivize design-build teams to focus on achieving high performance in actual operations, owners can now expect their facilities to perform. As NREL completed the new construction in 2013, we have documented our best practices in training materials and a how-to guide so that other owners and owner's representatives can replicate our successes and learn from our experiences in attaining market viable, world-class energy performance in the built environment.

  2. High Performance Building Facade Solutions - PIER Final Project Report

    SciTech Connect

    Lee, Eleanor; Selkowitz, Stephen

    2009-12-31

    Building facades directly influence heating and cooling loads and indirectly influence lighting loads when daylighting is considered, and are therefore a major determinant of annual energy use and peak electric demand. Facades also significantly influence occupant comfort and satisfaction, making the design optimization challenge more complex than many other building systems.This work focused on addressing significant near-term opportunities to reduce energy use in California commercial building stock by a) targeting voluntary, design-based opportunities derived from the use of better design guidelines and tools, and b) developing and deploying more efficient glazings, shading systems, daylighting systems, facade systems and integrated controls. This two-year project, supported by the California Energy Commission PIER program and the US Department of Energy, initiated a collaborative effort between The Lawrence Berkeley National Laboratory (LBNL) and major stakeholders in the facades industry to develop, evaluate, and accelerate market deployment of emerging, high-performance, integrated facade solutions. The LBNL Windows Testbed Facility acted as the primary catalyst and mediator on both sides of the building industry supply-user business transaction by a) aiding component suppliers to create and optimize cost effective, integrated systems that work, and b) demonstrating and verifying to the owner, designer, and specifier community that these integrated systems reliably deliver required energy performance. An industry consortium was initiated amongst approximately seventy disparate stakeholders, who unlike the HVAC or lighting industry, has no single representative, multi-disciplinary body or organized means of communicating and collaborating. The consortium provided guidance on the project and more importantly, began to mutually work out and agree on the goals, criteria, and pathways needed to attain the ambitious net zero energy goals defined by California and

  3. Building America System Research Results. Innovations for High Performance Homes

    SciTech Connect

    none,

    2006-05-01

    This report provides a summary of key lessons learned from the first 10 years of the Building America program and also included a summary of the future challenges that must be met to reach the program’s long term performance goals.

  4. Building Synergy: The Power of High Performance Work Systems.

    ERIC Educational Resources Information Center

    Gephart, Martha A.; Van Buren, Mark E.

    1996-01-01

    Suggests that high-performance work systems create the synergy that lets companies gain and keep a competitive advantage. Identifies the components of high-performance work systems and critical action steps for implementation. Describes the results companies such as Xerox, Lever Brothers, and Corning Incorporated have achieved by using them. (JOW)

  5. High Performance Homes That Use 50% Less Energy Than the DOE Building America Benchmark Building

    SciTech Connect

    Christian, J.

    2011-01-01

    This document describes lessons learned from designing, building, and monitoring five affordable, energy-efficient test houses in a single development in the Tennessee Valley Authority (TVA) service area. This work was done through a collaboration of Habitat for Humanity Loudon County, the US Department of Energy (DOE), TVA, and Oak Ridge National Laboratory (ORNL).The houses were designed by a team led by ORNL and were constructed by Habitat's volunteers in Lenoir City, Tennessee. ZEH5, a two-story house and the last of the five test houses to be built, provided an excellent model for conducting research on affordable high-performance houses. The impressively low energy bills for this house have generated considerable interest from builders and homeowners around the country who wanted a similar home design that could be adapted to different climates. Because a design developed without the project constraints of ZEH5 would have more appeal for the mass market, plans for two houses were developed from ZEH5: a one-story design (ZEH6) and a two-story design (ZEH7). This report focuses on ZEH6, identical to ZEH5 except that the geothermal heat pump is replaced with a SEER 16 air source unit (like that used in ZEH4). The report also contains plans for the ZEH6 house. ZEH5 and ZEH6 both use 50% less energy than the DOE Building America protocol for energyefficient buildings. ZEH5 is a 4 bedroom, 2.5 bath, 2632 ft2 house with a home energy rating system (HERS) index of 43, which qualifies it for federal energy-efficiency incentives (a HERS rating of 0 is a zero-energy house, and a conventional new house would have a HERS rating of 100). This report is intended to help builders and homeowners build similar high-performance houses. Detailed specifications for the envelope and the equipment used in ZEH5 are compared with the Building America Benchmark building, and detailed drawings, specifications, and lessons learned in the construction and analysis of data gleaned from 94

  6. Data and Analytics to Inform Energy Retrofit of High Performance Buildings

    SciTech Connect

    Hong, Tianzhen; Yang, Le; Hill, David; Feng, Wei

    2014-01-25

    Buildings consume more than one-third of the world?s primary energy. Reducing energy use in buildings with energy efficient technologies is feasible and also driven by energy policies such as energy benchmarking, disclosure, rating, and labeling in both the developed and developing countries. Current energy retrofits focus on the existing building stocks, especially older buildings, but the growing number of new high performance buildings built around the world raises a question that how these buildings perform and whether there are retrofit opportunities to further reduce their energy use. This is a new and unique problem for the building industry. Traditional energy audit or analysis methods are inadequate to look deep into the energy use of the high performance buildings. This study aims to tackle this problem with a new holistic approach powered by building performance data and analytics. First, three types of measured data are introduced, including the time series energy use, building systems operating conditions, and indoor and outdoor environmental parameters. An energy data model based on the ISO Standard 12655 is used to represent the energy use in buildings in a three-level hierarchy. Secondly, a suite of analytics were proposed to analyze energy use and to identify retrofit measures for high performance buildings. The data-driven analytics are based on monitored data at short time intervals, and cover three levels of analysis ? energy profiling, benchmarking and diagnostics. Thirdly, the analytics were applied to a high performance building in California to analyze its energy use and identify retrofit opportunities, including: (1) analyzing patterns of major energy end-use categories at various time scales, (2) benchmarking the whole building total energy use as well as major end-uses against its peers, (3) benchmarking the power usage effectiveness for the data center, which is the largest electricity consumer in this building, and (4) diagnosing HVAC

  7. Challenges in building high performance geoscientific spatial data infrastructures

    NASA Astrophysics Data System (ADS)

    Dubros, Fabrice; Tellez-Arenas, Agnes; Boulahya, Faiza; Quique, Robin; Le Cozanne, Goneri; Aochi, Hideo

    2016-04-01

    One of the main challenges in Geosciences is to deal with both the huge amounts of data available nowadays and the increasing need for fast and accurate analysis. On one hand, computer aided decision support systems remain a major tool for quick assessment of natural hazards and disasters. High performance computing lies at the heart of such systems by providing the required processing capabilities for large three-dimensional time-dependent datasets. On the other hand, information from Earth observation systems at different scales is routinely collected to improve the reliability of numerical models. Therefore, various efforts have been devoted to design scalable architectures dedicated to the management of these data sets (Copernicus, EarthCube, EPOS). Indeed, standard data architectures suffer from a lack of control over data movement. This situation prevents the efficient exploitation of parallel computing architectures as the cost for data movement has become dominant. In this work, we introduce a scalable architecture that relies on high performance components. We discuss several issues such as three-dimensional data management, complex scientific workflows and the integration of high performance computing infrastructures. We illustrate the use of such architectures, mainly using off-the-shelf components, in the framework of both coastal flooding assessments and earthquake early warning systems.

  8. High-Performance Federal Buildings Act of 2011

    THOMAS, 112th Congress

    Rep. Carnahan, Russ [D-MO-3

    2011-11-04

    11/07/2011 Referred to the Subcommittee on Economic Development, Public Buildings and Emergency Management. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  9. Highlighting High Performance Buildings: 4 Times Square, New York City

    SciTech Connect

    2001-11-01

    4 Times Square is a 48-story environmentally responsible building in New York City and is the first project of its size to adopt standards for energy efficiency, indoor ecology, sustainable materials.

  10. High-performance thermoelectric nanocomposites from nanocrystal building blocks

    NASA Astrophysics Data System (ADS)

    Ibáñez, Maria; Luo, Zhishan; Genç, Aziz; Piveteau, Laura; Ortega, Silvia; Cadavid, Doris; Dobrozhan, Oleksandr; Liu, Yu; Nachtegaal, Maarten; Zebarjadi, Mona; Arbiol, Jordi; Kovalenko, Maksym V.; Cabot, Andreu

    2016-03-01

    The efficient conversion between thermal and electrical energy by means of durable, silent and scalable solid-state thermoelectric devices has been a long standing goal. While nanocrystalline materials have already led to substantially higher thermoelectric efficiencies, further improvements are expected to arise from precise chemical engineering of nanoscale building blocks and interfaces. Here we present a simple and versatile bottom-up strategy based on the assembly of colloidal nanocrystals to produce consolidated yet nanostructured thermoelectric materials. In the case study on the PbS-Ag system, Ag nanodomains not only contribute to block phonon propagation, but also provide electrons to the PbS host semiconductor and reduce the PbS intergrain energy barriers for charge transport. Thus, PbS-Ag nanocomposites exhibit reduced thermal conductivities and higher charge carrier concentrations and mobilities than PbS nanomaterial. Such improvements of the material transport properties provide thermoelectric figures of merit up to 1.7 at 850 K.

  11. Calibration and Collaboration: Important Tools to Design high-Performance Affordable Buildings

    SciTech Connect

    Jiang, Wei; Liu, Bing; Snell, John; Helmes, Dan

    2008-03-31

    When new technologies are installed in a building, it is difficult to know how various systems will interact and if the building will perform as well as expected. A widely used technique to verify and quantify the actual energy savings from the energy-efficient features in high-performance buildings is to use the calibrated energy simulation approach. Maverick Gardens Mid-Rise A is a six-story apartment building located in East Boston, Massachusetts. The building was designed and constructed to meet the ENERGY STAR Homes Program rating and the U.S. Green Building Council’s Leadership in Energy and Environmental Design (LEED) certification. During the design phase, DOE-2.1E energy models for both budget building design and proposed building design were developed by the design team to demonstrate energy savings potential from various energy efficient technologies installed in this high-performance building. When comparing the energy use predicted by the proposed design energy model with utility bills, the design team observed that this building’s actual energy consumption was about one-third of what was estimated from the proposed design model, and therefore requested help from the authors through the U.S. Department of Energy’s Rebuild America Program to calibrate the proposed design energy model. This paper describes the energy simulation calibration approach using short-term metering data and utility bills. Details of the analysis, calibration results and the actual building energy performance are presented. This study also discusses lessons learned during the simulation calibration process and demonstrates the importance of collaboration among design professionals throughout the design, building, and commissioning process, as a way to ensure that high-performing building goals are met.

  12. Data of cost-optimality and technical solutions for high energy performance buildings in warm climate

    PubMed Central

    Zacà, Ilaria; D’Agostino, Delia; Maria Congedo, Paolo; Baglivo, Cristina

    2015-01-01

    The data reported in this article refers to input and output information related to the research articles entitled Assessment of cost-optimality and technical solutions in high performance multi-residential buildings in the Mediterranean area by Zacà et al. (Assessment of cost-optimality and technical solutions in high performance multi-residential buildings in the Mediterranean area, in press.) and related to the research article Cost-optimal analysis and technical comparison between standard and high efficient mono residential buildings in a warm climate by Baglivo et al. (Energy, 2015, 10.1016/j.energy.2015.02.062, in press). PMID:26217793

  13. High-Performance Buildings – Value, Messaging, Financial and Policy Mechanisms

    SciTech Connect

    McCabe, Molly

    2011-02-22

    At the request of the Pacific Northwest National Laboratory, an in-depth analysis of the rapidly evolving state of real estate investments, high-performance building technology, and interest in efficiency was conducted by HaydenTanner, LLC, for the U.S. Department of Energy (DOE) Building Technologies Program. The analysis objectives were • to evaluate the link between high-performance buildings and their market value • to identify core messaging to motivate owners, investors, financiers, and others in the real estate sector to appropriately value and deploy high-performance strategies and technologies across new and existing buildings • to summarize financial mechanisms that facilitate increased investment in these buildings. To meet these objectives, work consisted of a literature review of relevant writings, examination of existing and emergent financial and policy mechanisms, interviews with industry stakeholders, and an evaluation of the value implications through financial modeling. This report documents the analysis methodology and findings, conclusion and recommendations. Its intent is to support and inform the DOE Building Technologies Program on policy and program planning for the financing of high-performance new buildings and building retrofit projects.

  14. High-performance thermoelectric nanocomposites from nanocrystal building blocks

    PubMed Central

    Ibáñez, Maria; Luo, Zhishan; Genç, Aziz; Piveteau, Laura; Ortega, Silvia; Cadavid, Doris; Dobrozhan, Oleksandr; Liu, Yu; Nachtegaal, Maarten; Zebarjadi, Mona; Arbiol, Jordi; Kovalenko, Maksym V.; Cabot, Andreu

    2016-01-01

    The efficient conversion between thermal and electrical energy by means of durable, silent and scalable solid-state thermoelectric devices has been a long standing goal. While nanocrystalline materials have already led to substantially higher thermoelectric efficiencies, further improvements are expected to arise from precise chemical engineering of nanoscale building blocks and interfaces. Here we present a simple and versatile bottom–up strategy based on the assembly of colloidal nanocrystals to produce consolidated yet nanostructured thermoelectric materials. In the case study on the PbS–Ag system, Ag nanodomains not only contribute to block phonon propagation, but also provide electrons to the PbS host semiconductor and reduce the PbS intergrain energy barriers for charge transport. Thus, PbS–Ag nanocomposites exhibit reduced thermal conductivities and higher charge carrier concentrations and mobilities than PbS nanomaterial. Such improvements of the material transport properties provide thermoelectric figures of merit up to 1.7 at 850 K. PMID:26948987

  15. An insight into actual energy use and its drivers in high-performance buildings

    DOE PAGESBeta

    Li, Cheng; Hong, Tianzhen; Yan, Da

    2014-07-12

    Using portfolio analysis and individual detailed case studies, we studied the energy performance and drivers of energy use in 51 high-performance office buildings in the U.S., Europe, China, and other parts of Asia. Portfolio analyses revealed that actual site energy use intensity (EUI) of the study buildings varied by a factor of as much as 11, indicating significant variation in real energy use in HPBs worldwide. Nearly half of the buildings did not meet the American Society of Heating, Refrigerating, and Air Conditioning Engineers (ASHRAE) Standard 90.1-2004 energy target, raising questions about whether a building’s certification as high performing accuratelymore » indicates that a building is energy efficient and suggesting that improvement in the design and operation of HPBs is needed to realize their energy-saving potential. We studied the influence of climate, building size, and building technologies on building energy performance and found that although all are important, none are decisive factors in building energy use. EUIs were widely scattered in all climate zones. There was a trend toward low energy use in small buildings, but the correlation was not absolute; some small HPBs exhibited high energy use, and some large HPBs exhibited low energy use. We were unable to identify a set of efficient technologies that correlated directly to low EUIs. In two case studies, we investigated the influence of occupant behavior as well as operation and maintenance on energy performance and found that both play significant roles in realizing energy savings. We conclude that no single factor determines the actual energy performance of HPBs, and adding multiple efficient technologies does not necessarily improve building energy performance; therefore, an integrated design approach that takes account of climate, technology, occupant behavior, and operations and maintenance practices should be implemented to maximize energy savings in HPBs. As a result, these

  16. An insight into actual energy use and its drivers in high-performance buildings

    SciTech Connect

    Li, Cheng; Hong, Tianzhen; Yan, Da

    2014-07-12

    Using portfolio analysis and individual detailed case studies, we studied the energy performance and drivers of energy use in 51 high-performance office buildings in the U.S., Europe, China, and other parts of Asia. Portfolio analyses revealed that actual site energy use intensity (EUI) of the study buildings varied by a factor of as much as 11, indicating significant variation in real energy use in HPBs worldwide. Nearly half of the buildings did not meet the American Society of Heating, Refrigerating, and Air Conditioning Engineers (ASHRAE) Standard 90.1-2004 energy target, raising questions about whether a building’s certification as high performing accurately indicates that a building is energy efficient and suggesting that improvement in the design and operation of HPBs is needed to realize their energy-saving potential. We studied the influence of climate, building size, and building technologies on building energy performance and found that although all are important, none are decisive factors in building energy use. EUIs were widely scattered in all climate zones. There was a trend toward low energy use in small buildings, but the correlation was not absolute; some small HPBs exhibited high energy use, and some large HPBs exhibited low energy use. We were unable to identify a set of efficient technologies that correlated directly to low EUIs. In two case studies, we investigated the influence of occupant behavior as well as operation and maintenance on energy performance and found that both play significant roles in realizing energy savings. We conclude that no single factor determines the actual energy performance of HPBs, and adding multiple efficient technologies does not necessarily improve building energy performance; therefore, an integrated design approach that takes account of climate, technology, occupant behavior, and operations and maintenance practices should be implemented to maximize energy savings in HPBs. As a result, these findings are

  17. A unified framework for building high performance DVEs

    NASA Astrophysics Data System (ADS)

    Lei, Kaibin; Ma, Zhixia; Xiong, Hua

    2011-10-01

    A unified framework for integrating PC cluster based parallel rendering with distributed virtual environments (DVEs) is presented in this paper. While various scene graphs have been proposed in DVEs, it is difficult to enable collaboration of different scene graphs. This paper proposes a technique for non-distributed scene graphs with the capability of object and event distribution. With the increase of graphics data, DVEs require more powerful rendering ability. But general scene graphs are inefficient in parallel rendering. The paper also proposes a technique to connect a DVE and a PC cluster based parallel rendering environment. A distributed multi-player video game is developed to show the interaction of different scene graphs and the parallel rendering performance on a large tiled display wall.

  18. Building Momentum: National Trends and Prospects for High-Performance Green Buildings.

    ERIC Educational Resources Information Center

    2003

    This report is an outgrowth of the Green Building Roundtable of the U.S. Senate Committee on Environment and Public Works held in conjunction with the U.S. Green Building Council on April 24, 2002. The roundtable brought together diverse interests to educate members of Congress on green building trends and generated discussion about the economic…

  19. Overcoming barriers to high performance seismic design using lessons learned from the green building industry

    NASA Astrophysics Data System (ADS)

    Glezil, Dorothy

    NEHRP's Provisions today currently governing conventional seismic resistant design. These provisions, though they ensure the life-safety of building occupants, extensive damage and economic losses may still occur in the structures. This minimum performance can be enhanced using the Performance-Based Earthquake Engineering methodology and passive control systems like base isolation and energy dissipation systems. Even though these technologies and the PBEE methodology are effective reducing economic losses and fatalities during earthquakes, getting them implemented into seismic resistant design has been challenging. One of the many barriers to their implementation has been their upfront costs. The green building community has faced some of the same challenges that the high performance seismic design community currently faces. The goal of this thesis is to draw on the success of the green building industry to provide recommendations that may be used overcome the barriers that high performance seismic design (HPSD) is currently facing.

  20. 77 FR 24494 - Office of Federal High-Performance Green Buildings; Green Building Advisory Committee...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-24

    ...Notice of this meeting is being provided according to the requirements of the Federal Advisory Committee Act, 5 U.S.C. App. 10(a)(2). This notice provides the schedule and agenda for the May 9, 2012, meeting of the Green Building Advisory Committee Meeting (the Committee). The meeting is open to the public and the site is accessible to individuals with...

  1. 78 FR 56703 - Office of Federal High-Performance Green Buildings; Green Building Advisory Committee...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-13

    ... conference call dates: The conference calls will be held according to the following schedule: The Net Zero... effectively accomplish its mission. The Net Zero task group will consider a motion of a committee member to ``Strengthen net zero energy commitments for new and existing federal buildings and federal leased...

  2. 78 FR 21368 - Office of Federal High-Performance Green Buildings; Green Building Advisory Committee...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-10

    ...Notice of this meeting is being provided according to the requirements of the Federal Advisory Committee Act, 5 U.S.C. App., 10(a)(2). This notice provides the schedule and agenda for the May 1, 2013, meeting of the Green Building Advisory Committee Meeting (the Committee). The meeting is open to the public and the site is accessible to individuals with disabilities. Due to limited conference......

  3. Double Wall Framing Technique An Example of High Performance, Sustainable Building Envelope Technology

    SciTech Connect

    Kosny, Dr. Jan; Asiz, Andi; Shrestha, Som S; Biswas, Kaushik; Nitin, Shukla

    2015-01-01

    Double wall technologies utilizing wood framing have been well-known and used in North American buildings for decades. Most of double wall designs use only natural materials such as wood products, gypsum, and cellulose fiber insulation, being one of few building envelope technologies achieving high thermal performance without use of plastic foams or fiberglass. Today, after several material and structural design modifications, these technologies are considered as highly thermally efficient, sustainable option for new constructions and sometimes, for retrofit projects. Following earlier analysis performed for U.S. Department of Energy by Fraunhofer CSE, this paper discusses different ways to build double walls and to optimize their thermal performance to minimize the space conditioning energy consumption. Description of structural configuration alternatives and thermal performance analysis are presented as well. Laboratory tests to evaluate thermal properties of used insulation and whole wall system thermal performance are also discussed in this paper. Finally, the thermal loads generated in field conditions by double walls are discussed utilizing results from a joined project performed by Zero Energy Building Research Alliance and Oak Ridge National Laboratory (ORNL), which made possible evaluation of the market viability of low-energy homes built in the Tennessee Valley. Experimental data recorded in two of the test houses built during this field study is presented in this work.

  4. Model Policies in Support of High Performance School Buildings for All Children

    ERIC Educational Resources Information Center

    21st Century School Fund, 2006

    2006-01-01

    Model Policies in Support of High Performance School Buildings for All Children is to begin to create a coherent and comprehensive set of state policies that will provide the governmental infrastructure for effective and creative practice in facility management. There are examples of good policy in many states, but no state has a coherent set of…

  5. Highlighting High Performance Buildings: Adam Joseph Lewis Center for Environmental Studies

    SciTech Connect

    2002-11-01

    Oberlin College's Adam Joseph Lewis Center for Environmental Studies is a high-performance building featuring an expansive photovoltaic system and a closed-loop groundwater heat pump system. Designers incorporated energy-efficient components and materials that are local, non-toxic, and durable.

  6. Federal High Performance and Sustainable Buildings: Guiding Principles for the Laboratory Support Building (LSB)

    SciTech Connect

    Pope, Jason E.

    2014-09-01

    This report documents the federal Guiding Principles conformance effort for LSB at PNNL. The effort is part of continued progress toward a campus building inventory that is 100% compliant with the Guiding Principles. The report documentation provides a narrative of how the LSB complies with each of the Guiding Principles requirements. These narratives draw from the many sources that are explained in the text and rely on extensive data collection. The descriptions point to each of these sources, providing the reader with specific policies, procedures, and data points.

  7. 77 FR 43084 - Office of Federal High-Performance Green Buildings; Federal Buildings Personnel Training Act...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-23

    ...; Notification of Release of Core Competencies and Recommended Curriculum AGENCY: Office of Federal High... competencies and recommended curriculum. SUMMARY: The General Services Administration, Office of Governmentwide Policy, is providing notification of the release of the core competencies and recommended curriculum...

  8. Introduction to Cost Control Strategies for Zero Energy Buildings: High-Performance Design and Construction on a Budget (Fact Sheet)

    SciTech Connect

    Not Available

    2014-09-01

    Momentum behind zero energy building design and construction is increasing, presenting a tremendous opportunity for advancing energy performance in the commercial building industry. At the same time, there is a lingering perception that zero energy buildings must be cost prohibitive or limited to showcase projects. Fortunately, an increasing number of projects are demonstrating that high performance can be achieved within typical budgets. This factsheet highlights replicable, recommended strategies for achieving high performance on a budget, based on experiences from past projects.

  9. Building America Top Innovations 2012: High-Performance Home Cost Performance Trade-offs: Production Builders

    SciTech Connect

    none,

    2013-01-01

    This Building America Top Innovations profile describes Building America research showing how some energy-efficiency measure cost increases can balance against measures that reduce up-front costs: Advanced framing cuts lumber costs, right sizing can mean downsizing the HVAC, moving HVAC into conditioned space cuts installation costs, designing on a 2-foot grid reduces materials waste, etc.

  10. 76 FR 65511 - Office of Governmentwide Policy; Office of Federal High-Performance Green Buildings; the Green...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-21

    ... Expert Meetings. Green Building Certification Systems review. --30 Minute public comment period for... ADMINISTRATION Office of Governmentwide Policy; Office of Federal High- Performance Green Buildings; the Green... provides the schedule and agenda for the first meeting of the Green Building Advisory Committee...

  11. Developing a next-generation community college curriculum forenergy-efficient high-performance building operations

    SciTech Connect

    Crabtree, Peter; Kyriakopedi, Nick; Mills, Evan; Haves, Philip; Otto, Roland J.; Piette, Mary Ann; Xu, Peng; Diamond, Rick; Frost, Chuck; Deringer, Joe

    2004-05-01

    The challenges of increased technological demands in today's workplace require virtually all workers to develop higher-order cognitive skills including problem solving and systems thinking in order to be productive. Such ''habits of mind'' are viewed as particularly critical for success in the information-based workplace, which values reduced hierarchy, greater worker independence, teamwork, communications skills, non-routine problem solving, and understanding of complex systems. The need is particularly compelling in the buildings arena. To scope the problem, this paper presents the results of interviews and focus groups--conducted by Oakland California's Peralta Community College District and Lawrence Berkeley National Laboratory--in which approximately 50 industry stakeholders discussed contemporary needs for building operator education at the community college level. Numerous gaps were identified between the education today received by building operators and technicians and current workplace needs. The participants concurred that many of the problems seen today in achieving and maintaining energy savings in buildings can be traced to inadequacies in building operation and lack of awareness and knowledge about how existing systems are to be used, monitored, and maintained. Participants and others we interviewed affirmed that while these issues are addressed in various graduate-level and continuing education programs, they are virtually absent at the community college level. Based on that assessment of industry needs, we present a new curriculum and innovative simulation-based learning tool to provide technicians with skills necessary to commission and operate high-performance buildings, with particular emphasis on energy efficiency and indoor environmental quality in the context of HVAC&R equipment and control systems.

  12. An Adaptive Intelligent Integrated Lighting Control Approach for High-Performance Office Buildings

    NASA Astrophysics Data System (ADS)

    Karizi, Nasim

    An acute and crucial societal problem is the energy consumed in existing commercial buildings. There are 1.5 million commercial buildings in the U.S. with only about 3% being built each year. Hence, existing buildings need to be properly operated and maintained for several decades. Application of integrated centralized control systems in buildings could lead to more than 50% energy savings. This research work demonstrates an innovative adaptive integrated lighting control approach which could achieve significant energy savings and increase indoor comfort in high performance office buildings. In the first phase of the study, a predictive algorithm was developed and validated through experiments in an actual test room. The objective was to regulate daylight on a specified work plane by controlling the blind slat angles. Furthermore, a sensor-based integrated adaptive lighting controller was designed in Simulink which included an innovative sensor optimization approach based on genetic algorithm to minimize the number of sensors and efficiently place them in the office. The controller was designed based on simple integral controllers. The objective of developed control algorithm was to improve the illuminance situation in the office through controlling the daylight and electrical lighting. To evaluate the performance of the system, the controller was applied on experimental office model in Lee et al.'s research study in 1998. The result of the developed control approach indicate a significantly improvement in lighting situation and 1-23% and 50-78% monthly electrical energy savings in the office model, compared to two static strategies when the blinds were left open and closed during the whole year respectively.

  13. Towards Building a High Performance Spatial Query System for Large Scale Medical Imaging Data

    PubMed Central

    Aji, Ablimit; Wang, Fusheng; Saltz, Joel H.

    2013-01-01

    Support of high performance queries on large volumes of scientific spatial data is becoming increasingly important in many applications. This growth is driven by not only geospatial problems in numerous fields, but also emerging scientific applications that are increasingly data- and compute-intensive. For example, digital pathology imaging has become an emerging field during the past decade, where examination of high resolution images of human tissue specimens enables more effective diagnosis, prediction and treatment of diseases. Systematic analysis of large-scale pathology images generates tremendous amounts of spatially derived quantifications of micro-anatomic objects, such as nuclei, blood vessels, and tissue regions. Analytical pathology imaging provides high potential to support image based computer aided diagnosis. One major requirement for this is effective querying of such enormous amount of data with fast response, which is faced with two major challenges: the “big data” challenge and the high computation complexity. In this paper, we present our work towards building a high performance spatial query system for querying massive spatial data on MapReduce. Our framework takes an on demand index building approach for processing spatial queries and a partition-merge approach for building parallel spatial query pipelines, which fits nicely with the computing model of MapReduce. We demonstrate our framework on supporting multi-way spatial joins for algorithm evaluation and nearest neighbor queries for microanatomic objects. To reduce query response time, we propose cost based query optimization to mitigate the effect of data skew. Our experiments show that the framework can efficiently support complex analytical spatial queries on MapReduce. PMID:24501719

  14. Play-Building: Creating a Documentary Theatre Performance in a High School Setting

    ERIC Educational Resources Information Center

    van Eyck, Philip

    2013-01-01

    This paper describes a high school theatre program's project in which Anna Deavere Smith's documentary theatre work serves as the foundation for play-building for students. Research in theatre arts supports the use of play-building as a way to explore major themes of relevance to students. However, there is little research addressing documentary…

  15. Towards Building High Performance Medical Image Management System for Clinical Trials.

    PubMed

    Wang, Fusheng; Lee, Rubao; Zhang, Xiaodong; Saltz, Joel

    2011-01-01

    Medical image based biomarkers are being established for therapeutic cancer clinical trials, where image assessment is among the essential tasks. Large scale image assessment is often performed by a large group of experts by retrieving images from a centralized image repository to workstations to markup and annotate images. In such environment, it is critical to provide a high performance image management system that supports efficient concurrent image retrievals in a distributed environment. There are several major challenges: high throughput of large scale image data over the Internet from the server for multiple concurrent client users, efficient communication protocols for transporting data, and effective management of versioning of data for audit trails. We study the major bottlenecks for such a system, propose and evaluate a solution by using a hybrid image storage with solid state drives and hard disk drives, RESTful Web Services based protocols for exchanging image data, and a database based versioning scheme for efficient archive of image revision history. Our experiments show promising results of our methods, and our work provides a guideline for building enterprise level high performance medical image management systems. PMID:21603096

  16. Towards building high performance medical image management system for clinical trials

    NASA Astrophysics Data System (ADS)

    Wang, Fusheng; Lee, Rubao; Zhang, Xiaodong; Saltz, Joel

    2011-03-01

    Medical image based biomarkers are being established for therapeutic cancer clinical trials, where image assessment is among the essential tasks. Large scale image assessment is often performed by a large group of experts by retrieving images from a centralized image repository to workstations to markup and annotate images. In such environment, it is critical to provide a high performance image management system that supports efficient concurrent image retrievals in a distributed environment. There are several major challenges: high throughput of large scale image data over the Internet from the server for multiple concurrent client users, efficient communication protocols for transporting data, and effective management of versioning of data for audit trails. We study the major bottlenecks for such a system, propose and evaluate a solution by using a hybrid image storage with solid state drives and hard disk drives, RESTfulWeb Services based protocols for exchanging image data, and a database based versioning scheme for efficient archive of image revision history. Our experiments show promising results of our methods, and our work provides a guideline for building enterprise level high performance medical image management systems.

  17. 75 FR 41892 - Solicitation for a Cooperative Agreement: Guidebook for Building High Performance Correctional...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-19

    ... National Institute of Corrections Solicitation for a Cooperative Agreement: Guidebook for Building High.... ACTION: Solicitation for Cooperative Agreement. SUMMARY: The National Institute of Corrections (NIC) is soliciting proposals from organizations, groups, or individuals to enter into a cooperative agreement for...

  18. Are Biophilic-Designed Site Office Buildings Linked to Health Benefits and High Performing Occupants?

    PubMed Central

    Gray, Tonia; Birrell, Carol

    2014-01-01

    This paper discusses the first phase of a longitudinal study underway in Australia to ascertain the broad health benefits of specific types of biophilic design for workers in a building site office. A bespoke site design was formulated to include open plan workspace, natural lighting, ventilation, significant plants, prospect and views, recycled materials and use of non-synthetic materials. Initial data in the first three months was gathered from a series of demographic questions and from interviews and observations of site workers. Preliminary data indicates a strong positive effect from incorporating aspects of biophilic design to boost productivity, ameliorate stress, enhance well-being, foster a collaborative work environment and promote workplace satisfaction, thus contributing towards a high performance workspace. The longitudinal study spanning over two years will track human-plant interactions in a biophilic influenced space, whilst also assessing the concomitant cognitive, social, psychological and physical health benefits for workers. PMID:25431874

  19. Building a High Performance Metadata Broker using Clojure, NoSQL and Message Queues

    NASA Astrophysics Data System (ADS)

    Truslove, I.; Reed, S.

    2013-12-01

    In practice, Earth and Space Science Informatics often relies on getting more done with less: fewer hardware resources, less IT staff, fewer lines of code. As a capacity-building exercise focused on rapid development of high-performance geoinformatics software, the National Snow and Ice Data Center (NSIDC) built a prototype metadata brokering system using a new JVM language, modern database engines and virtualized or cloud computing resources. The metadata brokering system was developed with the overarching goals of (i) demonstrating a technically viable product with as little development effort as possible, (ii) using very new yet very popular tools and technologies in order to get the most value from the least legacy-encumbered code bases, and (iii) being a high-performance system by using scalable subcomponents, and implementation patterns typically used in web architectures. We implemented the system using the Clojure programming language (an interactive, dynamic, Lisp-like JVM language), Redis (a fast in-memory key-value store) as both the data store for original XML metadata content and as the provider for the message queueing service, and ElasticSearch for its search and indexing capabilities to generate search results. On evaluating the results of the prototyping process, we believe that the technical choices did in fact allow us to do more for less, due to the expressive nature of the Clojure programming language and its easy interoperability with Java libraries, and the successful reuse or re-application of high performance products or designs. This presentation will describe the architecture of the metadata brokering system, cover the tools and techniques used, and describe lessons learned, conclusions, and potential next steps.

  20. Performance Metrics for Commercial Buildings

    SciTech Connect

    Fowler, Kimberly M.; Wang, Na; Romero, Rachel L.; Deru, Michael P.

    2010-09-30

    Commercial building owners and operators have requested a standard set of key performance metrics to provide a systematic way to evaluate the performance of their buildings. The performance metrics included in this document provide standard metrics for the energy, water, operations and maintenance, indoor environmental quality, purchasing, waste and recycling and transportation impact of their building. The metrics can be used for comparative performance analysis between existing buildings and industry standards to clarify the impact of sustainably designed and operated buildings.

  1. Controlling Capital Costs in High Performance Office Buildings: A Review of Best Practices for Overcoming Cost Barriers

    SciTech Connect

    Pless, S.; Torcellini, P.

    2012-05-01

    This paper presents a set of 15 best practices for owners, designers, and construction teams of office buildings to reach high performance goals for energy efficiency, while maintaining a competitive budget. They are based on the recent experiences of the owner and design/build team for the Research Support Facility (RSF) on National Renewable Energy Facility's campus in Golden, CO, which show that achieving this outcome requires each key integrated team member to understand their opportunities to control capital costs.

  2. 48 CFR 570.117-2 - Guiding principles for federal leadership in high performance and sustainable buildings.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 4 2011-10-01 2011-10-01 false Guiding principles for federal leadership in high performance and sustainable buildings. 570.117-2 Section 570.117-2 Federal... LEASEHOLD INTERESTS IN REAL PROPERTY General 570.117-2 Guiding principles for federal leadership in...

  3. 48 CFR 570.117-2 - Guiding principles for federal leadership in high performance and sustainable buildings.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 4 2012-10-01 2012-10-01 false Guiding principles for federal leadership in high performance and sustainable buildings. 570.117-2 Section 570.117-2 Federal... LEASEHOLD INTERESTS IN REAL PROPERTY General 570.117-2 Guiding principles for federal leadership in...

  4. 48 CFR 570.117-2 - Guiding principles for federal leadership in high performance and sustainable buildings.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 4 2014-10-01 2014-10-01 false Guiding principles for federal leadership in high performance and sustainable buildings. 570.117-2 Section 570.117-2 Federal... LEASEHOLD INTERESTS IN REAL PROPERTY General 570.117-2 Guiding principles for federal leadership in...

  5. 48 CFR 570.117-2 - Guiding principles for federal leadership in high performance and sustainable buildings.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 4 2013-10-01 2013-10-01 false Guiding principles for federal leadership in high performance and sustainable buildings. 570.117-2 Section 570.117-2 Federal... LEASEHOLD INTERESTS IN REAL PROPERTY General 570.117-2 Guiding principles for federal leadership in...

  6. Lessons Learned from Case Studies of Six High-Performance Buildings

    SciTech Connect

    Torcellini, P.; Pless, S.; Deru, M.; Griffith, B.; Long, N.; Judkoff, R.

    2006-06-01

    Commercial buildings have a significant impact on energy use and the environment. They account for approximately 18% (17.9 quads) of the total primary energy consumption in the United States (DOE 2005). The energy used by the building sector continues to increase, primarily because new buildings are added to the national building stock faster than old buildings are retired. Energy consumption by commercial buildings will continue to increase until buildings can be designed to produce more energy than they consume. As a result, the U.S. Department of Energy's (DOE) Building Technologies Program has established a goal to create the technology and knowledge base for marketable zero-energy commercial buildings (ZEBs) by 2025.

  7. Building America Top Innovations 2012: High-Performance with Solar Electric Reduced Peak Demand

    SciTech Connect

    none,

    2013-01-01

    This Building America Top Innovations profile describes Building America solar home research that has demonstrated the ability to reduce peak demand by 75%. Numerous field studies have monitored power production and system effectiveness.

  8. Building America Top Innovations 2012: High-Performance Affordable Housing with Habitat for Humanity

    SciTech Connect

    none,

    2013-01-01

    This Building America Top Innovations profile describes Building America support of Habitat for Humanity including researchers who wrote Habitat construction guides and teams that have worked with affiliates on numerous field projects.

  9. Highlighting High Performance: Department of Environmental Protection; Cambria Office Building, Ebensburg, Pennsylvania

    SciTech Connect

    Not Available

    2001-10-01

    The 36,000-square-foot Cambria Office building in Ebensbug, Pennsylvania houses the Pennsylvania Department of Environmental Protection. Designers of the energy-efficient building used integrated design to minimize energy use and pollution created in the production of the materials they used, and reduced the overall pollution and environmental impact the building will create over its lifetime. The building also employs daylighting and renewable energy technologies.

  10. Building America Top Innovations 2012: Reduced Call-Backs with High-Performance Production Builders

    SciTech Connect

    none,

    2013-01-01

    This Building America Top Innovations profile describes ways Building America teams have helped builders cut call-backs. Harvard University study found builders who worked with Building America had a 50% drop in call-backs. One builder reported a 50-fold reduction in the incidence of pipe freezing, a 50% reduction in drywall cracking, and a 60% decline in call-backs.

  11. Wynkoop Building Performance Measurement: Water

    SciTech Connect

    Fowler, Kimberly M.; Kora, Angela R.

    2012-08-26

    This report is a summary of the water analysis performance for the Denver, Colorado Wynkoop Building. The Wynkoop Building (Figure 1) was built in 2006 as the Environmental Protection Agency (EPA) Region 8 Headquarters intended to house over 900 occupants in the 301,292 gross square feet (248,849 rentable square feet). The building was built on a brownfield in the Lower Downtown Historic District as part of an urban redevelopment effort. The building was designed and constructed through a public-private partnership with the sustainable design elements developed jointly by General Services Administration (GSA) and EPA. That partnership is still active with all parties still engaged to optimize building operations and use the building as a Learning Laboratory. The building design achieved U.S. Green Building Council Leadership in Energy and Environmental Design for New Construction (LEED-NC) Gold Certification in 2008 (Figure 2) and a 2008 EPA Energy Star Rating of 96 with design highlights that include: (1) Water use was designed to use 40% less than a typical design baseline. The design included low flow fixtures, waterless urinals and dual flush toilets; (2) Native and adaptive vegetation were selected to minimize the need for irrigation water for landscaping; and (3) Energy use intensity was modeled at 66.1 kBtus/gross square foot, which is 39% better than ASHRAE 90.1 1999. The Wynkoop Building water use (10 gallons/square foot) was measured at lower than industry average (15 gallons/square foot) and GSA goals (13 gallons/square foot), however, it was higher than building management expected it would be. The type of occupants and number of occupants can have a significant impact on fixture water use. The occupancy per floor varied significantly over the study time period, which added uncertainty to the data analysis. Investigation of the fixture use on the 2nd, 5th, and 7th floors identified potential for water use reduction if the flush direction of the dual

  12. Can We Build a Truly High Performance Computer Which is Flexible and Transparent?

    PubMed Central

    Rojas, Jhonathan P.; Torres Sevilla, Galo A.; Hussain, Muhammad M.

    2013-01-01

    State-of-the art computers need high performance transistors, which consume ultra-low power resulting in longer battery lifetime. Billions of transistors are integrated neatly using matured silicon fabrication process to maintain the performance per cost advantage. In that context, low-cost mono-crystalline bulk silicon (100) based high performance transistors are considered as the heart of today's computers. One limitation is silicon's rigidity and brittleness. Here we show a generic batch process to convert high performance silicon electronics into flexible and semi-transparent one while retaining its performance, process compatibility, integration density and cost. We demonstrate high-k/metal gate stack based p-type metal oxide semiconductor field effect transistors on 4 inch silicon fabric released from bulk silicon (100) wafers with sub-threshold swing of 80 mV dec−1 and on/off ratio of near 104 within 10% device uniformity with a minimum bending radius of 5 mm and an average transmittance of ~7% in the visible spectrum. PMID:24018904

  13. Building high-performance system for processing a daily large volume of Chinese satellites imagery

    NASA Astrophysics Data System (ADS)

    Deng, Huawu; Huang, Shicun; Wang, Qi; Pan, Zhiqiang; Xin, Yubin

    2014-10-01

    The number of Earth observation satellites from China increases dramatically recently and those satellites are acquiring a large volume of imagery daily. As the main portal of image processing and distribution from those Chinese satellites, the China Centre for Resources Satellite Data and Application (CRESDA) has been working with PCI Geomatics during the last three years to solve two issues in this regard: processing the large volume of data (about 1,500 scenes or 1 TB per day) in a timely manner and generating geometrically accurate orthorectified products. After three-year research and development, a high performance system has been built and successfully delivered. The high performance system has a service oriented architecture and can be deployed to a cluster of computers that may be configured with high end computing power. The high performance is gained through, first, making image processing algorithms into parallel computing by using high performance graphic processing unit (GPU) cards and multiple cores from multiple CPUs, and, second, distributing processing tasks to a cluster of computing nodes. While achieving up to thirty (and even more) times faster in performance compared with the traditional practice, a particular methodology was developed to improve the geometric accuracy of images acquired from Chinese satellites (including HJ-1 A/B, ZY-1-02C, ZY-3, GF-1, etc.). The methodology consists of fully automatic collection of dense ground control points (GCP) from various resources and then application of those points to improve the photogrammetric model of the images. The delivered system is up running at CRESDA for pre-operational production and has been and is generating good return on investment by eliminating a great amount of manual labor and increasing more than ten times of data throughput daily with fewer operators. Future work, such as development of more performance-optimized algorithms, robust image matching methods and application

  14. Building High-Performing and Improving Education Systems. Systems and Structures: Powers, Duties and Funding. Review

    ERIC Educational Resources Information Center

    Slater, Liz

    2013-01-01

    This Review looks at the way high-performing and improving education systems share out power and responsibility. Resources--in the form of funding, capital investment or payment of salaries and other ongoing costs--are some of the main levers used to make policy happen, but are not a substitute for well thought-through and appropriate policy…

  15. Out of the Box: Strategies for Building High-Performing Colleges.

    ERIC Educational Resources Information Center

    Alfred, Richard L.; Carter, Patricia

    1997-01-01

    Argues that current changes in the educational climate require transformations in community college organization. Discusses operational, linear, and frame-breaking approaches to change, arguing that all are important in making the transformation to high-performing institutions, or institutions that can manage both incremental and revolutionary…

  16. Building America Top Innovations 2012: Community Scale High Performance with Solar - Pulte Homes

    SciTech Connect

    none,

    2013-01-01

    This Building America Top Innovations profile describes Pulte Homes of Tucson’s work with Building America to apply a suite of energy-efficiency measures integrated with passive solar design and solar water heating that reduced energy use more than 50% for a community of more than 1,000 homes.

  17. Metrics for building performance assurance

    SciTech Connect

    Koles, G.; Hitchcock, R.; Sherman, M.

    1996-07-01

    This report documents part of the work performed in phase I of a Laboratory Directors Research and Development (LDRD) funded project entitled Building Performance Assurances (BPA). The focus of the BPA effort is to transform the way buildings are built and operated in order to improve building performance by facilitating or providing tools, infrastructure, and information. The efforts described herein focus on the development of metrics with which to evaluate building performance and for which information and optimization tools need to be developed. The classes of building performance metrics reviewed are (1) Building Services (2) First Costs, (3) Operating Costs, (4) Maintenance Costs, and (5) Energy and Environmental Factors. The first category defines the direct benefits associated with buildings; the next three are different kinds of costs associated with providing those benefits; the last category includes concerns that are broader than direct costs and benefits to the building owner and building occupants. The level of detail of the various issues reflect the current state of knowledge in those scientific areas and the ability of the to determine that state of knowledge, rather than directly reflecting the importance of these issues; it intentionally does not specifically focus on energy issues. The report describes work in progress and is intended as a resource and can be used to indicate the areas needing more investigation. Other reports on BPA activities are also available.

  18. High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems; Volume 6 Building America Best Practices Series

    SciTech Connect

    2007-06-01

    The sixth volume of the Building America Best Practices Series presents information that is useful throughout the U.S. for enhancing the energy efficiency practices in the specific climate zones that are presented in each of the volumes.

  19. Highlighting High Performance: Four Times Square. Office of Building Technology, State and Community Programs (BTS) Brochure

    SciTech Connect

    2001-11-01

    4 Times Square is a 48-story environmentally responsible building in New York City and is the first project of its size to adopt standards for energy efficiency, indoor ecology, sustainable materials.

  20. Identifying Sources of Volatile Organic Compounds and Aldehydes in a High Performance Building

    SciTech Connect

    Ortiz, Anna C.; Russell, Marion; Lee, Wen-Yee; Apte, Michael; Maddalena, Randy

    2010-09-20

    The developers of the Paharpur Business Center (PBC) and Software Technology Incubator Park in New Delhi, India offer an environmentally sustainable building with a strong emphasis on energy conservation, waste minimization and superior indoor air quality (IAQ). To achieve the IAQ goal, the building utilizes a series of air cleaning technologies for treating the air entering the building. These technologies include an initial water wash followed by ultraviolet light treatment and biolfiltration using a greenhouse located on the roof and numerous plants distributed throughout the building. Even with the extensive treatment of makeup air and room air in the PBC, a recent study found that the concentrations of common volatile organic compounds and aldehydes appear to rise incrementally as the air passes through the building from the supply to the exhaust. This finding highlights the need to consider the minimization of chemical sources in buildings in combination with the use of advanced air cleaning technologies when seeking to achieve superior IAQ. The goal of this project was to identify potential source materials for indoor chemicals in the PBC. Samples of building materials, including wood paneling (polished and unpolished), drywall, and plastic from a hydroponic drum that was part of the air cleaning system, were collected from the building for testing. All materials were collected from the PBC building and shipped to the Lawrence Berkeley National Laboratory (LBNL) for testing. The materials were pre-conditioned for two different time periods before measuring material and chemical specific emission factors for a range of VOCs and Aldehydes. Of the six materials tested, we found that the highest emitter of formaldehyde was new plywood paneling. Although polish and paint contribute to some VOC emissions, the main influence of the polish was in altering the capacity of the surface to accumulate formaldehyde. Neither the new nor aged polish contributed

  1. Building America Best Practices Series, Volume 6: High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems

    SciTech Connect

    Baechler, Michael C.; Gilbride, Theresa L.; Ruiz, Kathleen A.; Steward, Heidi E.; Love, Pat M.

    2007-06-04

    This guide is was written by PNNL for the US Department of Energy's Building America program to provide information for residential production builders interested in building near zero energy homes. The guide provides indepth descriptions of various roof-top photovoltaic power generating systems for homes. The guide also provides extensive information on various designs of solar thermal water heating systems for homes. The guide also provides construction company owners and managers with an understanding of how solar technologies can be added to their homes in a way that is cost effective, practical, and marketable. Twelve case studies provide examples of production builders across the United States who are building energy-efficient homes with photovoltaic or solar water heating systems.

  2. Building America Top Innovations 2012: Affordable High Performance in Production Homes: Artistic Homes

    SciTech Connect

    none,

    2013-01-01

    This Building America Top Innovations profile describes Artistic Homes, a successful New Mexico production builder, who went from code-minimum to under HERS 50 standard on every home, with optional PV upgrades to HERS 35 or true net zero on every home plan offered.

  3. Do We Really Know how Much it Costs to Construct High Performance Buildings?

    SciTech Connect

    Livingston, Olga V.; Dillon, Heather E.; Halverson, Mark A.; Antonopoulos, Chrissi A.; Madison, Michael C.; Lucas, Robert G.

    2012-08-31

    Understanding the cost of energy efficient construction is critical to decision makers in building design, code development, and energy analysis. How much does it cost to upgrade from R-13 to R-19 in a building wall? How much do low-e windows really cost? Can we put a dollar figure on commissioning? Answers to these questions have a fuzzy nature, based on educated guesses and industry lore. The response depends on location, perspective, bulk buying, and hand waving. This paper explores the development of a web tool intended to serve as a publicly available repository of building component costs. In 2011 the U.S. Department of Energy (DOE) funded the launch of a web tool called the Building Component Cost Community (BC3), dedicated to publishing building component costs from documented sources, actively gathering verifiable cost data from the users, and collecting feedback from a wide range of participants on the quality of the posted cost data. The updated BC3 database, available at http://bc3.pnnl.gov, went live on April 30, 2012. BC3 serves as the ultimate source of the energy-related component costs for DOE’s residential code development activities, including cost-effectiveness analyses. The paper discusses BC3 objectives, structure, functionality and the current content of the database. It aims to facilitate a dialog about the lack of verifiable transparent cost data, as well as introduce a web tool that helps to address the problem. The questions posed above will also be addressed by this paper, but they have to be resolved by the user community by providing feedback and cost data to the BC3 database, thus increasing transparency and removing information asymmetry.

  4. Targeting 100! Advanced Energy Efficient Building Technologies for High Performance Hospitals: Executive Summary.

    SciTech Connect

    Burpee, Heather; Loveland, Joel; Helmers, Aaron

    2015-09-02

    This research, Targeting 100!, provides a conceptual framework and decision-making structure at a schematic design level of precision for hospital owners, architects and engineers to radically reduce energy use in hospitals. Following the goals of Architecture 2030 and The 2030 Challenge, it offers access to design strategies and the cost implications of those strategies for new hospitals to utilize 60% less energy. The name, Targeting 100!, comes from the 2030 Challenge energy reduction goal for hospitals; a 60% energy use reduction from typical acute care hospital targets approximately 100 KBtu/SF Year, thus the name “Targeting 100!”. Targeting 100! was developed through funding partnerships with the US Department of Energy and the Northwest Energy Efficiency’s BetterBricks Initiative. The technical team was led by the University of Washington Integrated Design Lab supported by deep collaboration with Solarc Architecture and Engineering, TBD Cost Consultants, and NBBJ Architecture. Through extensive research and design development, Targeting 100! provides a framework for developing high performance healthcare projects today and into the future. An online tool houses a Targeting 100! knowlegebase and roadmap. It can be accessed at: www.idlseattle.com/t100. The webtool is structured from high-level overview materials to detailed library with modeling inputs and outputs, providing a comprehensive report of the background, data, and outcomes from the project.

  5. Multicriteria Decision Analysis of Material Selection of High Energy Performance Residential Building

    NASA Astrophysics Data System (ADS)

    Čuláková, Monika; Vilčeková, Silvia; Katunská, Jana; Krídlová Burdová, Eva

    2013-11-01

    In world with limited amount of energy sources and with serious environmental pollution, interest in comparing the environmental embodied impacts of buildings using different structure systems and alternative building materials will be increased. This paper shows the significance of life cycle energy and carbon perspective and the material selection in reducing energy consumption and emissions production in the built environment. The study evaluates embodied environmental impacts of nearly zero energy residential structures. The environmental assessment uses framework of LCA within boundary: cradle to gate. Designed alternative scenarios of material compositions are also assessed in terms of energy effectiveness through selected thermal-physical parameters. This study uses multi-criteria decision analysis for making clearer selection between alternative scenarios. The results of MCDA show that alternative E from materials on nature plant base (wood, straw bales, massive wood panel) present possible way to sustainable perspective of nearly zero energy houses in Slovak republic

  6. Seismic Assessment of R/C Building Structure through Nonlinear Probabilistic Analysis with High-performance Computing

    SciTech Connect

    Faggella, M.; Barbosa, A.; Conte, J. P.; Restrepo, J. I.; Spacone, E.

    2008-07-08

    This paper presents a probabilistic seismic demand analysis of a three dimensional R/C building model subjected to tri-axial earthquake excitation. Realistic probability distributions are assumed for the main structural and material properties and for the ground motion Intensity Measure (IM) Sa(T1. Natural ground motions are used in the analyses to represent the inherent randomness in the earthquake ground motion time histories. Monte Carlo simulations are performed to account for the record-to-record variability and Tornado diagrams are used to represent the uncertainty induced in the response by the basic uncertainties in the structural properties. In order to perform a probabilistic study on three-dimensional engineering demand parameters (EDPs), a large number of ensemble time history analyses were carried out using the TeraGrid high-performance computing resources available at the San Diego Supercomputer Center. Early results show that for the testbed building used in this study, uncertainty in the structural parameters contribute little to the uncertainty of the EDPs, while large variations in the EDPs are due to the variability of the ground motion intensity measure and the record-to-record variability.

  7. Analysis Methods for Post Occupancy Evaluation of Energy-Use in High Performance Buildings Using Short-Term Monitoring

    NASA Astrophysics Data System (ADS)

    Singh, Vipul

    2011-12-01

    The green building movement has been an effective catalyst in reducing energy demands of buildings and a large number of 'green' certified buildings have been in operation for several years. Whether these buildings are actually performing as intended, and if not, identifying specific causes for this discrepancy falls into the general realm of post-occupancy evaluation (POE). POE involves evaluating building performance in terms of energy-use, indoor environmental quality, acoustics and water-use; the first aspect i.e. energy-use is addressed in this thesis. Normally, a full year or more of energy-use and weather data is required to determine the actual post-occupancy energy-use of buildings. In many cases, either measured building performance data is not available or the time and cost implications may not make it feasible to invest in monitoring the building for a whole year. Knowledge about the minimum amount of measured data needed to accurately capture the behavior of the building over the entire year can be immensely beneficial. This research identifies simple modeling techniques to determine best time of the year to begin in-situ monitoring of building energy-use, and the least amount of data required for generating acceptable long-term predictions. Four analysis procedures are studied. The short-term monitoring for long-term prediction (SMLP) approach and dry-bulb temperature analysis (DBTA) approach allow determining the best time and duration of the year for in-situ monitoring to be performed based only on the ambient temperature data of the location. Multivariate change-point (MCP) modeling uses simulated/monitored data to determine best monitoring period of the year. This is also used to validate the SMLP and DBTA approaches. The hybrid inverse modeling method-1 predicts energy-use by combining a short dataset of monitored internal loads with a year of utility-bills, and hybrid inverse method-2 predicts long term building performance using utility

  8. Building High-Performing and Improving Education Systems: Quality Assurance and Accountability. Review

    ERIC Educational Resources Information Center

    Slater, Liz

    2013-01-01

    Monitoring, evaluation, and quality assurance in their various forms are seen as being one of the foundation stones of high-quality education systems. De Grauwe, writing about "school supervision" in four African countries in 2001, linked the decline in the quality of basic education to the cut in resources for supervision and support.…

  9. Utilization of CO2 in High Performance Building and Infrastructure Products

    SciTech Connect

    DeCristofaro, Nicholas

    2015-11-01

    -core slabs, and aerated concrete were produced to verify the utility of the CO2-curing process. These products exhibited a range of part dimensions and densities that were representative of the precast concrete industry. In the subsequent Demonstration of Commercial Development phase, the characteristics and performance of Solidia Cement made at a LafargeHolcim cement plant were established. This Solidia Cement was then used to demonstrate the CO2-curing process within operating concrete plants. Pavers, concrete masonry units and roofing tiles were produced according to ASTM and manufacturer specifications. A number of attractive manufacturing economies were recognized when Solidia Cement-based concrete parts were compared to their Portland cement based counterparts. These include reduced raw materials waste, reduced dependence on admixtures to control efflorescence, shorter curing time to full concrete strength, faster equipment clean-up, reduced equipment maintenance, and improved inventory management. These economies make the adoption of the Solidia Cement / CO2-curing process attractive even in the absence of environmental incentives. The culminating activity of the Demonstration of Commercial Development phase was the conversion of 10% of the manufacturing capacity at a concrete paver and block company from Portland cement-based products to Solidia Cement-based products. The successful completion of the Demonstration of Commercial Development phase clearly illustrated the environmental benefits associated with Solidia Cement and Solidia Concrete technologies. The industrial production of Solidia Cement, as a low-lime alternative to traditional Portland cement, reduces CO2 emissions at the cement kiln from 816 kg of CO2 per tonne of Portland cement clinker to 570 kg per tonne of Solidia Cement clinker. Industrial scale CO2-curing of Solidia Concrete sequestered a net of 183 kg of CO2 per tonne of Solidia Cement used in concrete pavers. Taken together, these two effects

  10. Sandia`s research network for Supercomputing `93: A demonstration of advanced technologies for building high-performance networks

    SciTech Connect

    Gossage, S.A.; Vahle, M.O.

    1993-12-01

    Supercomputing `93, a high-performance computing and communications conference, was held November 15th through 19th, 1993 in Portland, Oregon. For the past two years, Sandia National Laboratories has used this conference to showcase and focus its communications and networking endeavors. At the 1993 conference, the results of Sandia`s efforts in exploring and utilizing Asynchronous Transfer Mode (ATM) and Synchronous Optical Network (SONET) technologies were vividly demonstrated by building and operating three distinct networks. The networks encompassed a Switched Multimegabit Data Service (SMDS) network running at 44.736 megabits per second, an ATM network running on a SONET circuit at the Optical Carrier (OC) rate of 155.52 megabits per second, and a High Performance Parallel Interface (HIPPI) network running over a 622.08 megabits per second SONET circuit. The SMDS and ATM networks extended from Albuquerque, New Mexico to the showroom floor, while the HIPPI/SONET network extended from Beaverton, Oregon to the showroom floor. This paper documents and describes these networks.

  11. Building Maintenance. Performance Objectives. Basic Course.

    ERIC Educational Resources Information Center

    Taylor, Ernest

    Several intermediate performance objectives and corresponding criterion measures are listed for each of the 13 terminal objectives for a basic high school building maintenance course (the first year of a 3-year program). The materials were developed for a 36-week course (2 hours daily) designed to enable 10th grade students to develop competencies…

  12. Building America Case Study: High Performance Ducts in Hot-Dry Climates; Technology Solutions for New and Existing Homes, Energy Efficiency & Renewable Energy (EERE)

    SciTech Connect

    2015-08-01

    ?Ducts in conditioned space (DCS) represent a high priority measure for moving the next generation of new homes to the Zero Net Energy performance level. Various strategies exist for incorporating ducts within the conditioned thermal envelope. To support this activity, in 2013 the Pacific Gas & Electric Company initiated a project with Davis Energy Group (lead for the Building America team, Alliance for Residential Building Innovation) to solicit builder involvement in California to participate in field demonstrations of various DCS strategies. Builders were given incentives and design support in exchange for providing site access for construction observation, diagnostic testing, and builder survey feedback. Information from the project was designed to feed into California's 2016 Title 24 process, but also to serve as an initial mechanism to engage builders in more high performance construction strategies. This Building America project complemented information collected in the California project with BEopt simulations of DCS performance in hot/dry climate regions.

  13. An Illustrative Case Study of the Heuristic Practices of a High-Performing Research Department: Toward Building a Model Applicable in the Context of Large Urban Districts

    ERIC Educational Resources Information Center

    Munoz, Marco A.; Rodosky, Robert J.

    2011-01-01

    This case study provides an illustration of the heuristic practices of a high-performing research department, which in turn, will help build much needed models applicable in the context of large urban districts. This case study examines the accountability, planning, evaluation, testing, and research functions of a research department in a large…

  14. Building thermography and energy performance directive of buildings

    NASA Astrophysics Data System (ADS)

    Kauppinen, Timo; Siikanen, Sami

    2012-06-01

    Energy Performance of Buildings Directive came in to the force in Europe couple of years ago and it had an immediate effect on Building Codes in Europe. Finland have changed its building codes since 2007 - the insulation requirements have been tightened and the requirements have been specified. The biggest change is energy efficient calculations and determination of energy efficiency and energy label for buildings. This has caused a boom of new service providers (thermography services, air-tightness measurements and other services like new calculation tools). Thermography is used in verification in performance of buildings. In this presentation some examples of building thermography in walk-through energy audits combined with the results of energy efficiency calculations are presented - also some special problems in buildings of specific use (e.g. an art museum) and use of thermography to solve them.

  15. Virtual Design Studio (VDS) - Development of an Integrated Computer Simulation Environment for Performance Based Design of Very-Low Energy and High IEQ Buildings

    SciTech Connect

    Chen, Yixing; Zhang, Jianshun; Pelken, Michael; Gu, Lixing; Rice, Danial; Meng, Zhaozhou; Semahegn, Shewangizaw; Feng, Wei; Ling, Francesca; Shi, Jun; Henderson, Hugh

    2013-09-01

    Executive Summary The objective of this study was to develop a “Virtual Design Studio (VDS)”: a software platform for integrated, coordinated and optimized design of green building systems with low energy consumption, high indoor environmental quality (IEQ), and high level of sustainability. This VDS is intended to assist collaborating architects, engineers and project management team members throughout from the early phases to the detailed building design stages. It can be used to plan design tasks and workflow, and evaluate the potential impacts of various green building strategies on the building performance by using the state of the art simulation tools as well as industrial/professional standards and guidelines for green building system design. Engaged in the development of VDS was a multi-disciplinary research team that included architects, engineers, and software developers. Based on the review and analysis of how existing professional practices in building systems design operate, particularly those used in the U.S., Germany and UK, a generic process for performance-based building design, construction and operation was proposed. It distinguishes the whole process into five distinct stages: Assess, Define, Design, Apply, and Monitoring (ADDAM). The current VDS is focused on the first three stages. The VDS considers building design as a multi-dimensional process, involving multiple design teams, design factors, and design stages. The intersection among these three dimensions defines a specific design task in terms of “who”, “what” and “when”. It also considers building design as a multi-objective process that aims to enhance the five aspects of performance for green building systems: site sustainability, materials and resource efficiency, water utilization efficiency, energy efficiency and impacts to the atmospheric environment, and IEQ. The current VDS development has been limited to energy efficiency and IEQ performance, with particular focus

  16. Building America Case Study: Northwest Energy Efficient Manufactured Housing Program High-Performance Test Homes; Whole-House Solutions for New Homes, Energy Efficiency & Renewable Energy (EERE)

    SciTech Connect

    2015-05-01

    ?This project represents the third phase of a multi-year effort to develop and bring to market a High Performance Manufactured Home (HPMH). The scope of this project involved building four HPMH prototypes, resulting in what is expected to be a 30% savings relative to the Building America Benchmark. (The actual % savings varies depending on choice of heating equipment and climate zone). The HPMH home is intended to make significant progress toward performing as zero-net-energy ready. Previous phases of this project created a HPMH specification and prototyped individual measures from the package to obtain engineering approvals and develop preliminary factory construction processes. This report describes the project team's work during 2014 to build prototype homes to the HPMH specifications and to monitor the homes for energy performance and durability during 2014. Monitoring is expected to continue into 2016.
    home is intended to make significant progress toward performing as zero-net-energy ready. Previous phases of this project created a HPMH specification and prototyped individual measures from the package to obtain engineering approvals and develop preliminary factory construction processes. This report describes the project team's work during 2014 to build prototype homes to the HPMH specifications and to monitor the homes for energy performance and durability during 2014. Monitoring is expected to continue into 2016.

  17. Bay-annulated indigo (BAI) as an excellent electron accepting building block for high performance organic semiconductors

    DOEpatents

    Liu, Yi; He, Bo; Pun, Andrew

    2015-11-24

    A novel electron acceptor based on bay-annulated indigo (BAI) was synthesized and used for the preparation of a series of high performance donor-acceptor small molecules and polymers. The resulting materials possess low-lying LUMO energy level and small HOMO-LUMO gaps, while their films exhibited high crystallinity upon thermal treatment, commensurate with high field effect mobilities and ambipolar transfer characteristics.

  18. Bay-annulated indigo (BAI) as an excellent electron accepting building block for high performance organic semiconductors

    DOEpatents

    Liu, Yi; He, Bo; Pun, Andrew

    2016-04-19

    A novel electron acceptor based on bay-annulated indigo (BAI) was synthesized and used for the preparation of a series of high performance donor-acceptor small molecules and polymers. The resulting materials possess low-lying LUMO energy level and small HOMO-LUMO gaps, while their films exhibited high crystallinity upon thermal treatment, commensurate with high field effect mobilities and ambipolar transfer characteristics.

  19. The Cost-Effectiveness of Investments to Meet the Guiding Principles for High-Performance Sustainable Buildings on the PNNL Campus

    SciTech Connect

    Cort, Katherine A.; Judd, Kathleen S.

    2014-08-29

    As part its campus sustainability efforts, Pacific Northwest National Laboratory (PNNL) has invested in eight new and existing buildings to ensure they meet the U.S. Department of Energy’s requirements for high performance sustainable buildings (HPSB) at DOE sites. These investments are expected to benefit PNNL by reducing the total life-cycle cost of facilities, improving energy efficiency and water conservation, and making buildings safer and healthier for the occupants. This study examines the cost-effectiveness of the implementing measures that meet the criteria for HPSBs in 3 different types of buildings on the PNNL campus: offices, scientific laboratories, and data centers. In each of the three case studies examined the investments made to achieve HPSB status demonstrated a high return on the HPSB investments that have taken place in these varied environments. Simple paybacks for total investments in the three case study buildings ranged from just 2 to 5 years; savings-to-investment ratios all exceeded the desirable threshold of 1; and the net present values associated with these investments were all positive.

  20. A polyhedral metal-organic framework based on the supermolecular building block strategy exhibiting high performance for carbon dioxide capture and separation of light hydrocarbons.

    PubMed

    Wang, Dongmei; Liu, Bing; Yao, Shuo; Wang, Tao; Li, Guanghua; Huo, Qisheng; Liu, Yunling

    2015-10-25

    By using the supermolecular building block (SBB) strategy, a polyhedron-based metal-organic framework (PMOF), which features three types of cages with multiple sizes and shapes, has been synthesized. It exhibits high performance for CO2 capture (170 cm(3) g(-1) at 273 K under 1 bar) and selectivity of CO2/CH4 (9.4) and C3H8/CH4 (271.5). PMID:26339689

  1. Building robust architectures of carbon and metal oxide nanocrystals toward high-performance anodes for lithium-ion batteries.

    PubMed

    Jia, Xilai; Chen, Zheng; Cui, Xia; Peng, Yiting; Wang, Xiaolei; Wang, Ge; Wei, Fei; Lu, Yunfeng

    2012-11-27

    Design and fabrication of effective electrode structure is essential but is still a challenge for current lithium-ion battery technology. Herein we report the design and fabrication of a class of high-performance robust nanocomposites based on iron oxide spheres and carbon nanotubes (CNTs). An efficient aerosol spray process combined with vacuum filtration was used to synthesize such composite architecture, where oxide nanocrystals were assembled into a continuous carbon skeleton and entangled in porous CNT networks. This material architecture offers many critical features that are required for high-performance anodes, including efficient ion transport, high conductivity, and structure durability, therefore enabling an electrode with outstanding lithium storage performance. For example, such an electrode with a thickness of ∼35 μm could deliver a specific capacity of 994 mA h g(-1) (based on total electrode weight) and high recharging rates. This effective strategy can be extended to construct many other composite electrodes for high-performance lithium-ion batteries. PMID:23046380

  2. High Performance Window Retrofit

    SciTech Connect

    Shrestha, Som S; Hun, Diana E; Desjarlais, Andre Omer

    2013-12-01

    The US Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) and Traco partnered to develop high-performance windows for commercial building that are cost-effective. The main performance requirement for these windows was that they needed to have an R-value of at least 5 ft2 F h/Btu. This project seeks to quantify the potential energy savings from installing these windows in commercial buildings that are at least 20 years old. To this end, we are conducting evaluations at a two-story test facility that is representative of a commercial building from the 1980s, and are gathering measurements on the performance of its windows before and after double-pane, clear-glazed units are upgraded with R5 windows. Additionally, we will use these data to calibrate EnergyPlus models that we will allow us to extrapolate results to other climates. Findings from this project will provide empirical data on the benefits from high-performance windows, which will help promote their adoption in new and existing commercial buildings. This report describes the experimental setup, and includes some of the field and simulation results.

  3. 76 FR 13617 - Office of Federal High-Performance Green Buildings (OFHPGB); Notice of GSA Bulletin OFHPGB 2011...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-14

    ... found at http://www.gsa.gov/portal/content/221677 . DATES: Effective March 14, 2011. FOR FURTHER... Buildings.'' Notice 2008-40 can be found at http://www.irs.gov/irb/2008-14_IRB/ar12.html . For clarification... Green Building are located on the Internet at http://www.gsa.gov/portal/content/105239 as...

  4. Building America Best Practices Series - High-Performance Home Technologies: Guide to Determining Climate Regions by County

    SciTech Connect

    Baechler, Michael C.; Gilbride, Theresa L.; Cole, Pam C.; Hefty, Marye G.; Ruiz, Kathi

    2013-11-01

    This report identifies the climate region of each county in the United States. The report is intended as an aid in helping builders to identify the appropriate climate designation for the counties in which they are building.

  5. Building a medical multimedia database system to integrate clinical information: an application of high-performance computing and communications technology.

    PubMed

    Lowe, H J; Buchanan, B G; Cooper, G F; Vries, J K

    1995-01-01

    The rapid growth of diagnostic-imaging technologies over the past two decades has dramatically increased the amount of nontextual data generated in clinical medicine. The architecture of traditional, text-oriented, clinical information systems has made the integration of digitized clinical images with the patient record problematic. Systems for the classification, retrieval, and integration of clinical images are in their infancy. Recent advances in high-performance computing, imaging, and networking technology now make it technologically and economically feasible to develop an integrated, multimedia, electronic patient record. As part of The National Library of Medicine's Biomedical Applications of High-Performance Computing and Communications program, we plan to develop Image Engine, a prototype microcomputer-based system for the storage, retrieval, integration, and sharing of a wide range of clinically important digital images. Images stored in the Image Engine database will be indexed and organized using the Unified Medical Language System Metathesaurus and will be dynamically linked to data in a text-based, clinical information system. We will evaluate Image Engine by initially implementing it in three clinical domains (oncology, gastroenterology, and clinical pathology) at the University of Pittsburgh Medical Center. PMID:7703940

  6. Cost Control Strategies for Zero Energy Buildings: High-Performance Design and Construction on a Budget (Brochure)

    SciTech Connect

    Not Available

    2014-09-01

    There is mounting evidence that zero energy can, in many cases, be achieved within typical construction budgets. To ensure that the momentum behind zero energy buildings and other low-energy buildings will continue to grow, this guide assembles recommendations for replicating specific successes of early adopters who have met their energy goals while controlling costs. Contents include: discussion of recommended cost control strategies, which are grouped by project phase (acquisition and delivery, design, and construction) and accompanied by industry examples; recommendations for balancing key decision-making factors; and quick reference tables that can help teams apply strategies to specific projects.

  7. Building Enclosure Hygrothermal Performance Study, Phase 1

    SciTech Connect

    Karagiozis, A.N.

    2002-08-08

    The moisture performance of three different classes of wall systems has been investigated in the context of the preliminary hygrothermal analysis of walls in Seattle. The results reported in this phase specifically address the moisture performance of walls designed with loads that have some unintentional water penetration. The results have been developed in a manner to present the relative performance of the walls in the same climate with similar water penetration effects. The analysis was performed with the best available input data. Several limitations should be recognized within the context of this study. Results showed that selection of wooden sheathing boards on interior vapor-tight assemblies does not significantly influence the performance of stucco-clad walls. A larger effect was observed when the interior vapor control is made vapor open. When continuous cavity ventilation is employed, the effect of the selection of the type of sheathing board on the hygrothermal performance of the wall was found to be negligible. When comparing oriented strand board sheathing performance against the performance of exterior grade gypsum, the differences are very significant in terms of the amount of moisture content present in the walls. Moisture content alone does not indicate their respective durability as durability is directly related to the combination of relative humidity and temperature, mechanical, chemical, and biological properties of the substrates. This study did not investigate the durability performance of either sheathing. In terms of interior vapor control, inhabitant behavior must be considered during the wall hygrothermal design stage. If interior relative humidity is maintained below 60%, then a latex primer and paint may perform better than the use of PVA or even a polyethylene sheet. When the interior environment is maintained at a higher relative humidity, then stricter vapor control is needed. Multilayered building paper was experimentally shown to

  8. Highlighting High Performance: National Renewable Energy Laboratory's Thermal Test Facility, Golden, Colorado. Office of Building Technology State and Community Programs (BTS) Brochure

    SciTech Connect

    Burgert, S.

    2002-10-21

    The National Renewable Energy Laboratory's Thermal Test Facility in Golden, Colorado, was designed using a whole-building approach--looking at the way the building's systems worked together most efficiently. Researchers monitor the performance of the 11,000-square-foot building, which boasts an energy cost savings of 63% for heating, cooling, and lighting. The basic plan of the building can be adapted to many needs, including retail and warehouse space. The Thermal Test Facility contains office and laboratory space; research focuses on the development of energy-efficiency and renewable energy technologies that are cost-effective and environmentally friendly.

  9. Building Nationally-Focussed, Globally Federated, High Performance Earth Science Platforms to Solve Next Generation Social and Economic Issues.

    NASA Astrophysics Data System (ADS)

    Wyborn, Lesley; Evans, Ben; Foster, Clinton; Pugh, Timothy; Uhlherr, Alfred

    2015-04-01

    Digital geoscience data and information are integral to informing decisions on the social, economic and environmental management of natural resources. Traditionally, such decisions were focused on regional or national viewpoints only, but it is increasingly being recognised that global perspectives are required to meet new challenges such as predicting impacts of climate change; sustainably exploiting scarce water, mineral and energy resources; and protecting our communities through better prediction of the behaviour of natural hazards. In recent years, technical advances in scientific instruments have resulted in a surge in data volumes, with data now being collected at unprecedented rates and at ever increasing resolutions. The size of many earth science data sets now exceed the computational capacity of many government and academic organisations to locally store and dynamically access the data sets; to internally process and analyse them to high resolutions; and then to deliver them online to clients, partners and stakeholders. Fortunately, at the same time, computational capacities have commensurately increased (both cloud and HPC): these can now provide the capability to effectively access the ever-growing data assets within realistic time frames. However, to achieve this, data and computing need to be co-located: bandwidth limits the capacity to move the large data sets; the data transfers are too slow; and latencies to access them are too high. These scenarios are driving the move towards more centralised High Performance (HP) Infrastructures. The rapidly increasing scale of data, the growing complexity of software and hardware environments, combined with the energy costs of running such infrastructures is creating a compelling economic argument for just having one or two major national (or continental) HP facilities that can be federated internationally to enable earth and environmental issues to be tackled at global scales. But at the same time, if

  10. High resolution rainfall measurements around a high rise building

    NASA Astrophysics Data System (ADS)

    de Jong, Stijn; van de Giesen, Nick; Hut, Rolf

    2010-05-01

    A number of disdrometers (acoustic rain gauge) has been placed around a high rise building on a place where variation in spatial distribution of precipitation is expected, to show the advantage of high resolution rainfall measurements in a urban area. The standard recommendation for the placement of a rain gauge is that the gauge is positioned at a distance corresponding to two to four times the height of any nearby obstruction to obtain a measurement that is representative for the surrounding area. In an urban area it is almost impossible to find a location that suits this recommendation. Rain measurements in urban area with a high spatial resolution are desired, to obtain a better understanding of urban hydrology, but costs may be prohibitive. A low cost disdrometer has been developed to make it affordable to perform rain measurements with a very high spatial and temporal resolution. The disdrometer is tested around a high rise building on the Delft University of Technology campus. The faculty of Electrical Engineering, Mathematics and Computer Science (EWI) on the campus of Delft University of Technology consists of a high rise building of 90 meters and a low rise building of 15 meters. Sensors are placed on the low rise building to measure the impact of the high rise building on the spatial distribution of precipitation. In addition to the disdrometer, two other methods are used to measure precipitation differences around the high rise building. Tipping bucket rain gauges have been placed on two elevator shaft housings on the low rise building, of which one is situated in the shadow of the high rise building. Simultaneously, runoff from the elevator shafts is measured. A comparison of the different methods will be presented.

  11. Hierarchical 3D dendritic TiO2 nanospheres building with ultralong 1D nanoribbon/wires for high performance concurrent photocatalytic membrane water purification.

    PubMed

    Bai, Hongwei; Liu, Lei; Liu, Zhaoyang; Sun, Darren Delai

    2013-08-01

    Hierarchical 3D dendritic TiO2 nanospheres building with ultralong 1D TiO2 nanoribbon/wires were hydrothermally synthesized via controlling the hydrolysis rate of precursor by EG. It is found that the EG and Cl(-) in the precursor solution are the dominant factors in controlling the hydrolysis rate of Ti(4+) from TTIP, and the growing direction of 1D TiO2, respectively. Through optimizing the molar ratio of TTIP:EG, hierarchical 3D dendritic TiO2 nanospheres building with long 1D nanoribbons (TiO2 nanoribbon spheres) were synthesized at a molar ratio of TTIP:EG = 1:2. And hierarchical 3D dendritic TiO2 nanospheres building with even longer and thinner 1D TiO2 nanowires (TiO2 nanowire spheres) were synthesized via further reducing the hydrolysis rate of Ti(4+) by increasing the content of EG at a molar ratio of TTIP:EG = 1:3. The hierarchical 3D dendritic TiO2 nanoribbon/wire spheres were well characterized by a variety of techniques such as FESEM, TEM, XRD, N2 adsorption/desorption, UV-vis spectra, etc. A "win-win" strategy was developed to integrate the hierarchical TiO2 nanoribbon/wire spheres and membrane for high performance photocatalytic membrane water purification through maximizing the advantages of TiO2 photocatalysis and membrane, while minimizing their disadvantages. Hierarchical TiO2 nanoribbon/wire spheres exhibited high performance for water purification in terms of high flux, low fouling, high removal rate of pollutants, and long lifespan of membrane, both in concurrent dead end and cross flow membrane system. The rationale behind this phenomenon lies in that the hierarchical TiO2 nanoribbon/wire spheres in the concurrent system possess the advantages of mitigating the membrane fouling via photocatalytic degrading the organic pollutants relying on their high photocatalytic activities; and keeping high water flux owing to the porous functional layer favorable for water pass through. The experimental results demonstrated that the hierarchical TiO2

  12. Process innovation in high-performance systems: From polymeric composites R&D to design and build of airplane showers

    NASA Astrophysics Data System (ADS)

    Wu, Yi-Jui

    In the aerospace industry reducing aircraft weight is key because it increases flight performance and drives down operating costs. With fierce competition in the commercial aircraft industry, companies that focused primarily on exterior aircraft performance design issues are turning more attention to the design of aircraft interior. Simultaneously, there has been an increase in the number of new amenities offered to passengers especially in first class travel and executive jets. These new amenities present novel and challenging design parameters that include integration into existing aircraft systems without sacrificing flight performance. The objective of this study was to design a re-circulating shower system for an aircraft that weighs significantly less than pre-existing shower designs. This was accomplished by integrating processes from polymeric composite materials, water filtration, and project management. Carbon/epoxy laminates exposed to hygrothermal cycling conditions were evaluated and compared to model calculations. Novel materials and a variety of fabrication processes were developed to create new types of paper for honeycomb applications. Experiments were then performed on the properties and honeycomb processability of these new papers. Standard water quality tests were performed on samples taken from the re-circulating system to see if current regulatory standards were being met. These studies were executed and integrated with tools from project management to design a better shower system for commercial aircraft applications.

  13. Automatic Extraction of Building Outline from High Resolution Aerial Imagery

    NASA Astrophysics Data System (ADS)

    Wang, Yandong

    2016-06-01

    In this paper, a new approach for automated extraction of building boundary from high resolution imagery is proposed. The proposed approach uses both geometric and spectral properties of a building to detect and locate buildings accurately. It consists of automatic generation of high quality point cloud from the imagery, building detection from point cloud, classification of building roof and generation of building outline. Point cloud is generated from the imagery automatically using semi-global image matching technology. Buildings are detected from the differential surface generated from the point cloud. Further classification of building roof is performed in order to generate accurate building outline. Finally classified building roof is converted into vector format. Numerous tests have been done on images in different locations and results are presented in the paper.

  14. Experimental Evaluation of Indoor Air Distribution in High-Performance Residential Buildings: Part I. General Descriptions and Qualification Tests

    SciTech Connect

    Jalalzadeh, A. A.; Hancock, E.; Powell, D.

    2007-12-01

    The main objective of this project is to experimentally characterize an air distribution system in heating mode during a period of recovery from setback. The specific air distribution system under evaluation incorporates a high sidewall supply-air register/diffuser and a near-floor wall return air grille directly below. With this arrangement, the highest temperature difference between the supply air and the room can occur during the recovery period and create a favorable condition for stratification. The experimental approach will provide realistic input data and results for verification of computational fluid dynamics modeling.

  15. Performance, Performance System, and High Performance System

    ERIC Educational Resources Information Center

    Jang, Hwan Young

    2009-01-01

    This article proposes needed transitions in the field of human performance technology. The following three transitions are discussed: transitioning from training to performance, transitioning from performance to performance system, and transitioning from learning organization to high performance system. A proposed framework that comprises…

  16. High-tech buildings - Market transformation project

    SciTech Connect

    Applications Team

    2001-10-01

    Facility managers and designers know their buildings are energy intensive yet have few techniques to quantify cleanroom energy performance. Benchmarking identifies the energy end uses in a cleanroom. As expected, besides the process loads, which are often very intense, the mechanical systems are the most energy intensive in these buildings. Benchmarking the mechanical systems and components can provide useful information on system and component performance and provide a basis to identify energy-saving opportunities in cleanrooms. HVAC systems in cleanrooms are dramatically different from their counterparts in commercial buildings in terms of reliability, safety requirements, and scale. The design of cleanroom HVAC systems is a specialty area requiring unique understanding of cleanliness guidelines, airflow quantities, room pressurization, code requirements, specialty equipment, tight control, and many more details. The HVAC systems must also operate reliably and safely. Since recirculation air systems use large amounts of fan power in moving large amounts of conditioned air through HEPA filters, the cleanroom, and return pathways they represent one of the largest energy end uses in a cleanroom. In addition, many processes requiring cleanrooms also have large make-up and exhaust airflow needs requiring huge amounts of energy to move and condition the displaced air. Energy intensity for mechanical systems in cleanrooms ranges between 4 to 100 times that of commercial buildings. There is, however, a lack of comparative data on the performance of cleanroom mechanical systems. To better understand existing cleanroom systems in high technology industries, and to better enable building owners, operators, and designers to compare energy use for a given cleanroom to others, it is necessary to benchmark energy performance in such facilities.

  17. Achieving high performance non-fullerene organic solar cells through tuning the numbers of electron deficient building blocks of molecular acceptors

    NASA Astrophysics Data System (ADS)

    Yang, Lei; Chen, Yusheng; Chen, Shangshang; Dong, Tao; Deng, Wei; Lv, Lei; Yang, Saina; Yan, He; Huang, Hui

    2016-08-01

    Two analogous dimer and tetramer compounds, SF-PDI2 and SF-PDI4, were designed, theoretically calculated, synthesized, and developed as electron acceptors for organic solar cells. The effects of the number of the electron deficient building blocks on the optical absorption, energy levels, charge transport, morphology, crystallinity, and photovoltaic performance of the molecules were investigated. In combination with two different donors, PTB7-Th and PffBT4T-2OD, the results showed that increasing the numbers of PDI building blocks is beneficial to photovoltaic performance and leads to efficiency over 5%.

  18. Duct thermal performance models for large commercial buildings

    SciTech Connect

    Wray, Craig P.

    2003-10-01

    Despite the potential for significant energy savings by reducing duct leakage or other thermal losses from duct systems in large commercial buildings, California Title 24 has no provisions to credit energy-efficient duct systems in these buildings. A substantial reason is the lack of readily available simulation tools to demonstrate the energy-saving benefits associated with efficient duct systems in large commercial buildings. The overall goal of the Efficient Distribution Systems (EDS) project within the PIER High Performance Commercial Building Systems Program is to bridge the gaps in current duct thermal performance modeling capabilities, and to expand our understanding of duct thermal performance in California large commercial buildings. As steps toward this goal, our strategy in the EDS project involves two parts: (1) developing a whole-building energy simulation approach for analyzing duct thermal performance in large commercial buildings, and (2) using the tool to identify the energy impacts of duct leakage in California large commercial buildings, in support of future recommendations to address duct performance in the Title 24 Energy Efficiency Standards for Nonresidential Buildings. The specific technical objectives for the EDS project were to: (1) Identify a near-term whole-building energy simulation approach that can be used in the impacts analysis task of this project (see Objective 3), with little or no modification. A secondary objective is to recommend how to proceed with long-term development of an improved compliance tool for Title 24 that addresses duct thermal performance. (2) Develop an Alternative Calculation Method (ACM) change proposal to include a new metric for thermal distribution system efficiency in the reporting requirements for the 2005 Title 24 Standards. The metric will facilitate future comparisons of different system types using a common ''yardstick''. (3) Using the selected near-term simulation approach, assess the impacts of

  19. Rating the energy performance of buildings

    SciTech Connect

    Olofsson, Thomas; Meier, Alan; Lamberts, Roberto

    2004-12-01

    In order to succeed in developing a more sustainable society, buildings will need to be continuously improved. This paper discusses how to rate the energy performance of buildings. A brief review of recent approaches to energy rating is presented. It illustrates that there is no single correct or wrong concept, but one needs to be aware of the relative impact of the strategies. Different strategies of setting energy efficiency standards are discussed and the advantages of the minimum life cycle cost are shown. Indicators for building energy rating based on simulations, aggregated statistics and expert knowledge are discussed and illustrated in order to demonstrate strengths and weaknesses of each approach. In addition, the importance of considering the level of amenities offered is presented. Attributes of a rating procedure based on three elements, flexible enough for recognizing different strategies to achieve energy conservation, is proposed.

  20. Development of an Integrated Process, Modeling and Simulation Platform for Performance-Based Design of Low-Energy and High IEQ Buildings

    ERIC Educational Resources Information Center

    Chen, Yixing

    2013-01-01

    The objective of this study was to develop a "Virtual Design Studio (VDS)": a software platform for integrated, coordinated and optimized design of green building systems with low energy consumption, high indoor environmental quality (IEQ), and high level of sustainability. The VDS is intended to assist collaborating architects,…

  1. Enabling a High Performance of Mesoporous α-Fe2O3 Anodes by Building a Conformal Coating of Cyclized-PAN Network.

    PubMed

    Wang, Di; Dong, Hui; Zhang, Huang; Zhang, Yang; Xu, Yunlong; Zhao, Chongjun; Sun, Yunong; Zhou, Nan

    2016-08-01

    The mesoporous α-Fe2O3/cyclized-polyacrylonitrile (C-PAN) composite was synthesized by a rapid and facile two-step method. The electrode was fabricated without conductive carbon addictive and employed as anode for lithium-ion batteries. Results demonstrate that building a conformal coating of a C-PAN network can provide a strong adhesion with active materials and contribute excellent electronic conductivity to the electrode, which can relieve the huge volume changes during a lithiation/delithiation process and accelerate the charge transfer rate. The material exhibited high reversible capacity of ca. 996 mAh g(-1) after 100 cycles at 0.2C, 773 mAh g(-1) at 1C and 655 mAh g(-1) at 2C, respectively, showing well-enhanced cycling performance and superior rate capacity, and also exhibiting significantly improved power density and energy density compared to the traditional graphite materials. Our results provide a facile and efficient way to enhance the performance of α-Fe2O3 anode material, which also can be applied for other oxide anode materials. PMID:27414066

  2. 5 strategies for building a top-performing hospital.

    PubMed

    McCarthy, Kathleen H

    2012-11-01

    A hospital's strategy for attaining high performance under value-based business models should focus on five key objectives: Building meaningful scale and scope; Focusing on more integrated care delivery and management; Attaining demonstrably high levels of clinical quality; Differentiating from the competition through superior customer service; Establishing a competitive cost position. PMID:23173363

  3. 3,3'-Dinitroamino-4,4'-azoxyfurazan and its derivatives: an assembly of diverse N-O building blocks for high-performance energetic materials.

    PubMed

    Zhang, Jiaheng; Shreeve, Jean'ne M

    2014-03-19

    On the basis of a design strategy that results in the assembly of diverse N-O building blocks leading to energetic materials, 3,3'-dinitroamino-4,4'-azoxyfurazan and its nitrogen-rich salts were obtained and fully characterized via spectral and elemental analyses. Oxone (potassium peroxomonosulfate) is an efficient oxidizing agent for introducing the azoxy N-oxide functionality into the furazan backbone, giving a straightforward and low-cost synthetic route. On the basis of heats of formation calculated with Gaussian 03 and combined with experimentally determined densities, energetic properties (detonation velocity, pressure and specific impulse) were obtained using the EXPLO v6.01 program. These new molecules exhibit high density, moderate to good thermal stability, acceptable impact and friction sensitivities, and excellent detonation properties, which suggest potential applications as energetic materials. Interestingly, 3,3'-dinitroamino-4,4'-azoxyfurazan (4) has the highest calculated crystal density of 2.02 g cm(-3) at 173 K (gas pycnometer measured density is 1.96 g cm(-3) at 298 K) for N-oxide energetic compounds yet reported. Another promising compound is the hydroxylammonium salt (6), which has four different kinds of N-O moieties and a detonation performance superior to those of 1,3,5,7-tetranitrotetraazacyclooctane (HMX), and 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazatetracyclododecane (CL-20). Furthermore, computational results, viz., NBO charges and ESP, also support the superior qualities of the newly prepared compounds and the design strategy. PMID:24571188

  4. High-Performance Schools Make Cents.

    ERIC Educational Resources Information Center

    Nielsen-Palacios, Christian

    2003-01-01

    Describes the educational benefits of high-performance schools, buildings that are efficient, healthy, safe, and easy to operate and maintain. Also briefly describes how to create a high-performance school drawn from volume I (Planning) of the three-volume Collaborative for High Performance Schools (CHPS) "Best Practices Manual." (For more…

  5. The impact of roofing material on building energy performance

    NASA Astrophysics Data System (ADS)

    Badiee, Ali

    The last decade has seen an increase in the efficient use of energy sources such as water, electricity, and natural gas as well as a variety of roofing materials, in the heating and cooling of both residential and commercial infrastructure. Oil costs, coal and natural gas prices remain high and unstable. All of these instabilities and increased costs have resulted in higher heating and cooling costs, and engineers are making an effort to keep them under control by using energy efficient building materials. The building envelope (that which separates the indoor and outdoor environments of a building) plays a significant role in the rate of building energy consumption. An appropriate architectural design of a building envelope can considerably lower the energy consumption during hot summers and cold winters, resulting in reduced HVAC loads. Several building components (walls, roofs, fenestration, foundations, thermal insulation, external shading devices, thermal mass, etc.) make up this essential part of a building. However, thermal insulation of a building's rooftop is the most essential part of a building envelope in that it reduces the incoming "heat flux" (defined as the amount of heat transferred per unit area per unit time from or to a surface) (Sadineni et al., 2011). Moreover, more than 60% of heat transfer occurs through the roof regardless of weather, since a roof is often the building surface that receives the largest amount of solar radiation per square annually (Suman, and Srivastava, 2009). Hence, an argument can be made that the emphasis on building energy efficiency has influenced roofing manufacturing more than any other building envelope component. This research project will address roofing energy performance as the source of nearly 60% of the building heat transfer (Suman, and Srivastava, 2009). We will also rank different roofing materials in terms of their energy performance. Other parts of the building envelope such as walls, foundation

  6. High performance polymer development

    NASA Technical Reports Server (NTRS)

    Hergenrother, Paul M.

    1991-01-01

    The term high performance as applied to polymers is generally associated with polymers that operate at high temperatures. High performance is used to describe polymers that perform at temperatures of 177 C or higher. In addition to temperature, other factors obviously influence the performance of polymers such as thermal cycling, stress level, and environmental effects. Some recent developments at NASA Langley in polyimides, poly(arylene ethers), and acetylenic terminated materials are discussed. The high performance/high temperature polymers discussed are representative of the type of work underway at NASA Langley Research Center. Further improvement in these materials as well as the development of new polymers will provide technology to help meet NASA future needs in high performance/high temperature applications. In addition, because of the combination of properties offered by many of these polymers, they should find use in many other applications.

  7. Procedure for Measuring and Reporting Commercial Building Energy Performance

    SciTech Connect

    Barley, D.; Deru, M.; Pless, S.; Torcellini, P.

    2005-10-01

    This procedure is intended to provide a standard method for measuring and characterizing the energy performance of commercial buildings. The procedure determines the energy consumption, electrical energy demand, and on-site energy production in existing commercial buildings of all types. The performance metrics determined here may be compared against benchmarks to evaluate performance and verify that performance targets have been achieved.

  8. Highlighting High Performance: Whitman Hanson Regional High School; Whitman, Massachusetts

    SciTech Connect

    Not Available

    2006-06-01

    This brochure describes the key high-performance building features of the Whitman-Hanson Regional High School. The brochure was paid for by the Massachusetts Technology Collaborative as part of their Green Schools Initiative. High-performance features described are daylighting and energy-efficient lighting, indoor air quality, solar and wind energy, building envelope, heating and cooling systems, water conservation, and acoustics. Energy cost savings are also discussed.

  9. High Performance Builder Spotlight: Imagine Homes

    SciTech Connect

    2011-01-01

    Imagine Homes, working with the DOE's Building America research team member IBACOS, has developed a system that can be replicated by other contractors to build affordable, high-performance homes. Imagine Homes has used the system to produce more than 70 Builders Challenge-certified homes per year in San Antonio over the past five years.

  10. Building America Top Innovations 2012: Tankless Gas Water Heater Performance

    SciTech Connect

    none,

    2013-01-01

    This Building America Top Innovations profile describes Building America field testing that shed light on how real-world water usage affects energy saving estimates of high-efficiency water heating systems.

  11. High performance systems

    SciTech Connect

    Vigil, M.B.

    1995-03-01

    This document provides a written compilation of the presentations and viewgraphs from the 1994 Conference on High Speed Computing given at the High Speed Computing Conference, {open_quotes}High Performance Systems,{close_quotes} held at Gleneden Beach, Oregon, on April 18 through 21, 1994.

  12. High performance storable propellant resistojet

    NASA Technical Reports Server (NTRS)

    Vaughan, C. E.

    1992-01-01

    From 1965 until 1985 resistojets were used for a limited number of space missions. Capability increased in stages from an initial application using a 90 W gN2 thruster operating at 123 sec specific impulse (Isp) to a 830 W N2H4 thruster operating at 305 sec Isp. Prior to 1985 fewer than 100 resistojets were known to have been deployed on spacecraft. Building on this base NASA embarked upon the High Performance Storable Propellant Resistojet (HPSPR) program to significantly advance the resistojet state-of-the-art. Higher performance thrusters promised to increase the market demand for resistojets and enable space missions requiring higher performance. During the program three resistojets were fabricated and tested. High temperature wire and coupon materials tests were completed. A life test was conducted on an advanced gas generator.

  13. A building life-cycle information system for tracking building performance metrics

    SciTech Connect

    Hitchcock, R.J.; Piette, M.A.; Selkowitz, S.E.

    1999-04-01

    Buildings often do not perform as well in practice as expected during pre-design planning, nor as intended at the design stage. While this statement is generally considered to be true, it is difficult to quantify the impacts and long-term economic implications of a building in which performance does not meet expectations. This leads to a building process that is devoid of quantitative feedback that could be used to detect and correct problems both in an individual building and in the building process itself. One key element in this situation is the lack of a standardized method for documenting and communicating information about the intended performance of a building. This paper describes the Building Life-cycle Information System (BLISS); designed to manage a wide range of building related information across the life cycle of a building project. BLISS is based on the Industry Foundation Classes (IFC) developed by the International Alliance for Interoperability. A BLISS extension to th e IFC that adds classes for building performance metrics is described. Metracker, a prototype tool for tracking performance metrics across the building life cycle, is presented.

  14. High Performance Polymers

    NASA Technical Reports Server (NTRS)

    Venumbaka, Sreenivasulu R.; Cassidy, Patrick E.

    2003-01-01

    This report summarizes results from research on high performance polymers. The research areas proposed in this report include: 1) Effort to improve the synthesis and to understand and replicate the dielectric behavior of 6HC17-PEK; 2) Continue preparation and evaluation of flexible, low dielectric silicon- and fluorine- containing polymers with improved toughness; and 3) Synthesis and characterization of high performance polymers containing the spirodilactam moiety.

  15. Analysis of the seismic performance of isolated buildings according to life-cycle cost.

    PubMed

    Dang, Yu; Han, Jian-Ping; Li, Yong-Tao

    2015-01-01

    This paper proposes an indicator of seismic performance based on life-cycle cost of a building. It is expressed as a ratio of lifetime damage loss to life-cycle cost and determines the seismic performance of isolated buildings. Major factors are considered, including uncertainty in hazard demand and structural capacity, initial costs, and expected loss during earthquakes. Thus, a high indicator value indicates poor building seismic performance. Moreover, random vibration analysis is conducted to measure structural reliability and evaluate the expected loss and life-cycle cost of isolated buildings. The expected loss of an actual, seven-story isolated hospital building is only 37% of that of a fixed-base building. Furthermore, the indicator of the structural seismic performance of the isolated building is much lower in value than that of the structural seismic performance of the fixed-base building. Therefore, isolated buildings are safer and less risky than fixed-base buildings. The indicator based on life-cycle cost assists owners and engineers in making investment decisions in consideration of structural design, construction, and expected loss. It also helps optimize the balance between building reliability and building investment. PMID:25653677

  16. Analysis of the Seismic Performance of Isolated Buildings according to Life-Cycle Cost

    PubMed Central

    Dang, Yu; Han, Jian-ping; Li, Yong-tao

    2015-01-01

    This paper proposes an indicator of seismic performance based on life-cycle cost of a building. It is expressed as a ratio of lifetime damage loss to life-cycle cost and determines the seismic performance of isolated buildings. Major factors are considered, including uncertainty in hazard demand and structural capacity, initial costs, and expected loss during earthquakes. Thus, a high indicator value indicates poor building seismic performance. Moreover, random vibration analysis is conducted to measure structural reliability and evaluate the expected loss and life-cycle cost of isolated buildings. The expected loss of an actual, seven-story isolated hospital building is only 37% of that of a fixed-base building. Furthermore, the indicator of the structural seismic performance of the isolated building is much lower in value than that of the structural seismic performance of the fixed-base building. Therefore, isolated buildings are safer and less risky than fixed-base buildings. The indicator based on life-cycle cost assists owners and engineers in making investment decisions in consideration of structural design, construction, and expected loss. It also helps optimize the balance between building reliability and building investment. PMID:25653677

  17. Commissioning tools for life-cycle building performance assurance

    SciTech Connect

    Piette, M.A.

    1996-05-01

    This paper discusses information systems for building life-cycle performance analysis and the use of computer-based commissioning tools within this context. There are many reasons why buildings do not perform in practice as well as intended at the design stage. One reason is the lack of commissioning. A second reason is that design intent is not well documented, and performance targets for building components and systems are not well specified. Thus, criteria for defining verification and functional tests is unclear. A third reason is that critical information is often lost throughout the building life-cycle, which causes problems such as misunderstanding of operational characteristics and sequences and reduced overall performance. The life-cycle building performance analysis tools project discussed in this paper are focused on chillers and cooling systems.

  18. Re-Assessing Green Building Performance: A Post Occupancy Evaluation of 22 GSA Buildings

    SciTech Connect

    Fowler, Kimberly M.; Rauch, Emily M.; Henderson, Jordan W.; Kora, Angela R.

    2010-06-01

    2nd report on the performance of GSA's sustainably designed buildings. The purpose of this study was to provide an overview of measured whole building performance as it compares to GSA and industry baselines. The PNNL research team found the data analysis illuminated strengths and weaknesses of individual buildings as well as the portfolio of buildings. This section includes summary data, observations that cross multiple performance metrics, discussion of lessons learned from this research, and opportunities for future research. The summary of annual data for each of the performance metrics is provided in Table 25. The data represent 1 year of measurements and are not associated with any specific design features or strategies. Where available, multiple years of data were examined and there were minimal significant differences between the years. Individually focused post occupancy evaluation (POEs) would allow for more detailed analysis of the buildings. Examining building performance over multiple years could potentially offer a useful diagnostic tool for identifying building operations that are in need of operational changes. Investigating what the connection is between the building performance and the design intent would offer potential design guidance and possible insight into building operation strategies. The 'aggregate operating cost' metric used in this study represents the costs that were available for developing a comparative industry baseline for office buildings. The costs include water utilities, energy utilities, general maintenance, grounds maintenance, waste and recycling, and janitorial costs. Three of the buildings that cost more than the baseline in Figure 45 have higher maintenance costs than the baseline, and one has higher energy costs. Given the volume of data collected and analyzed for this study, the inevitable request is for a simple answer with respect to sustainably designed building performance. As previously stated, compiling the

  19. Tailored Assemblies of Rod-Coil Poly(3-hexylthiophene)-b-Polystyrene Diblock Copolymers: Adaptable Building Blocks for High-Performance Organic Field-Effect Transistors

    SciTech Connect

    Xiao, Kai; Yu, Xiang; Chen, Jihua; Lavrik, Nickolay V; Hong, Kunlun; Sumpter, Bobby; Geohegan, David B

    2011-01-01

    The self-assembly process and resulting structure of a series of conductive diblock copolymer thin films of Poly(3-hexylthiophene)-b-Polystyrene (P3HT-b-PS) have been studied by TEM, SAED, GIXD and AFM and additionally by first principles modeling and simulation. By varying the molecular weight of the P3HT segment, these block copolymers undergo microphase separation and self-assemble into nanostructured sphere, lamellae, nanofiber, and nanoribbon in the films. Within the diblock copolymer thin film, the convalently bonded PS blocks segregated to form amorphous domains, however, the conductive P3HT blocks were crystalline, exhibiting highly-ordered molecular packing with their alkyl side chains aligned along to the normal to the substrate and the - stacking direction of the thiophene rings aligned parallel to the substrate. The conductive P3HY block copolymers exhibited significant improvements in organic feild-effect transistor (OFET) performance and environmental stability as compared to P3HT homopolymers, with up to a factor of two increase in measured moblity (0.08 cm2/Vs ) for the P4 (85 wt% P3HT). Overall, this work demonstrates that the high degree of molecular order induced by bock copolymer phase separation can improve the transport properties and stability of conductive polymer critical for high-performance OFET s.

  20. High performance polymeric foams

    SciTech Connect

    Gargiulo, M.; Sorrentino, L.; Iannace, S.

    2008-08-28

    The aim of this work was to investigate the foamability of high-performance polymers (polyethersulfone, polyphenylsulfone, polyetherimide and polyethylenenaphtalate). Two different methods have been used to prepare the foam samples: high temperature expansion and two-stage batch process. The effects of processing parameters (saturation time and pressure, foaming temperature) on the densities and microcellular structures of these foams were analyzed by using scanning electron microscopy.

  1. High-performance combinatorial algorithms

    SciTech Connect

    Pinar, Ali

    2003-10-31

    Combinatorial algorithms have long played an important role in many applications of scientific computing such as sparse matrix computations and parallel computing. The growing importance of combinatorial algorithms in emerging applications like computational biology and scientific data mining calls for development of a high performance library for combinatorial algorithms. Building such a library requires a new structure for combinatorial algorithms research that enables fast implementation of new algorithms. We propose a structure for combinatorial algorithms research that mimics the research structure of numerical algorithms. Numerical algorithms research is nicely complemented with high performance libraries, and this can be attributed to the fact that there are only a small number of fundamental problems that underlie numerical solvers. Furthermore there are only a handful of kernels that enable implementation of algorithms for these fundamental problems. Building a similar structure for combinatorial algorithms will enable efficient implementations for existing algorithms and fast implementation of new algorithms. Our results will promote utilization of combinatorial techniques and will impact research in many scientific computing applications, some of which are listed.

  2. Acquisition of building geometry in the simulation of energy performance

    SciTech Connect

    Bazjanac, Vladimir

    2001-06-28

    Building geometry is essential to any simulation of building performance. This paper examines the importing of building geometry into simulation of energy performance from the users' point of view. It lists performance requirements for graphic user interfaces that input building geometry, and discusses the basic options in moving from two- to three-dimensional definition of geometry and the ways to import that geometry into energy simulation. The obvious answer lies in software interoperability. With the BLIS group of interoperable software one can interactively import building geometry from CAD into EnergyPlus and dramatically reduce the effort otherwise needed for manual input.The resulting savings may greatly increase the value obtained from simulation, the number of projects in which energy performance simulation is used, and expedite decision making in the design process.

  3. High performance parallel architectures

    SciTech Connect

    Anderson, R.E. )

    1989-09-01

    In this paper the author describes current high performance parallel computer architectures. A taxonomy is presented to show computer architecture from the user programmer's point-of-view. The effects of the taxonomy upon the programming model are described. Some current architectures are described with respect to the taxonomy. Finally, some predictions about future systems are presented. 5 refs., 1 fig.

  4. High-Performance Happy

    ERIC Educational Resources Information Center

    O'Hanlon, Charlene

    2007-01-01

    Traditionally, the high-performance computing (HPC) systems used to conduct research at universities have amounted to silos of technology scattered across the campus and falling under the purview of the researchers themselves. This article reports that a growing number of universities are now taking over the management of those systems and…

  5. Lab-on-a-fiber: building a fiber optic sensing platform for low-cost and high-performance trace vapor TNT detection

    NASA Astrophysics Data System (ADS)

    Ma, Jianjun; Kos, Aldona; Bock, Wojtek J.; Li, Xianzhe; Nguyen, Huy; Wang, Zhi Yuan; Cusano, Andrea

    2010-09-01

    By depositing an amplifying fluorescent polymer (AFP) directly onto the core side wall of an optical fiber near the fiber tip, a functional fiber-optic sensing platform is created at a scale of a mere 0.8×0.8×1.6 mm3, including the second fiber tip for excitation light delivery. The device integrates several functional optical components, a chemical sensory film and the necessary laboratory procedures on a minute scale. Here the Lab-on-a-Fiber (LOF) platform is conceptually introduced and proven to be a high-performance and low-cost approach to detection of trace vapors of TNT explosives. The low-cost potential is achieved by straightforward system construction and simple procedures for the AFP film deposition. The high performance is achieved by a dramatic increase of fluorescence emission signal collection, virtually complete suppression of excitation stray light and the fast response to the presence of TNT vapor, which is illustrated by 30% of quenching percentage occurring within 10 seconds.

  6. High Performance, Dependable Multiprocessor

    NASA Technical Reports Server (NTRS)

    Ramos, Jeremy; Samson, John R.; Troxel, Ian; Subramaniyan, Rajagopal; Jacobs, Adam; Greco, James; Cieslewski, Grzegorz; Curreri, John; Fischer, Michael; Grobelny, Eric; George, Alan; Aggarwal, Vikas; Patel, Minesh; Some, Raphael

    2006-01-01

    With the ever increasing demand for higher bandwidth and processing capacity of today's space exploration, space science, and defense missions, the ability to efficiently apply commercial-off-the-shelf (COTS) processors for on-board computing is now a critical need. In response to this need, NASA's New Millennium Program office has commissioned the development of Dependable Multiprocessor (DM) technology for use in payload and robotic missions. The Dependable Multiprocessor technology is a COTS-based, power efficient, high performance, highly dependable, fault tolerant cluster computer. To date, Honeywell has successfully demonstrated a TRL4 prototype of the Dependable Multiprocessor [I], and is now working on the development of a TRLS prototype. For the present effort Honeywell has teamed up with the University of Florida's High-performance Computing and Simulation (HCS) Lab, and together the team has demonstrated major elements of the Dependable Multiprocessor TRLS system.

  7. High performance steam development

    SciTech Connect

    Duffy, T.; Schneider, P.

    1995-12-31

    DOE has launched a program to make a step change in power plant to 1500 F steam, since the highest possible performance gains can be achieved in a 1500 F steam system when using a topping turbine in a back pressure steam turbine for cogeneration. A 500-hour proof-of-concept steam generator test module was designed, fabricated, and successfully tested. It has four once-through steam generator circuits. The complete HPSS (high performance steam system) was tested above 1500 F and 1500 psig for over 102 hours at full power.

  8. 76 FR 74050 - Measured Building Energy Performance Data Taxonomy

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-30

    ... Office of Energy Efficiency and Renewable Energy Measured Building Energy Performance Data Taxonomy AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy. ACTION: Notice of request..., Office of Energy Efficiency and Renewable Energy, Building Technologies Program, EE-2J, 1000...

  9. High Performance FORTRAN

    NASA Technical Reports Server (NTRS)

    Mehrotra, Piyush

    1994-01-01

    High performance FORTRAN is a set of extensions for FORTRAN 90 designed to allow specification of data parallel algorithms. The programmer annotates the program with distribution directives to specify the desired layout of data. The underlying programming model provides a global name space and a single thread of control. Explicitly parallel constructs allow the expression of fairly controlled forms of parallelism in particular data parallelism. Thus the code is specified in a high level portable manner with no explicit tasking or communication statements. The goal is to allow architecture specific compilers to generate efficient code for a wide variety of architectures including SIMD, MIMD shared and distributed memory machines.

  10. Performance of Buildings in the 2009 Western Sumatra Earthquake

    NASA Astrophysics Data System (ADS)

    Deierlein, G.; Hart, T.; Alexander, N.; Hausler, E.; Henderson, S.; Wood, K.; Cedillos, V.; Wijanto, S.; Cabrera, C.; Rudianto, S.

    2009-12-01

    The M7.6 earthquake of 30 September 2009 in Western Sumatra, Indonesia caused significant damage and collapse to hundreds of buildings and the deaths of 1,117 people. In Padang City, with a population of about 900,000 people, building collapse was the primary cause of deaths and serious injuries (313 deaths and 431 serious injuries). The predominant building construction types in Padang are concrete moment frames with brick infill and masonry bearing wall systems. Concrete frames are common in multistory commercial retail buildings, offices, schools, and hotels; and masonry bearing wall systems are primarily used in low-rise (usually single story) residential and school buildings. In general, buildings that collapsed did not conform to modern seismic engineering practices that are required by the current Indonesian building code and would be expected in regions of moderate to high seismicity. While collapse of multi-story concrete buildings was more prevalent in older buildings (more than 10 years old), there were several newer buildings that collapsed. Primary deficiencies identified in collapsed or severely damaged buildings included: (a) soft or weak stories that failed in either by sidesway mechanisms or shear failures followed by loss of axial capacity of columns, (b) lack of ductile reinforcing bar detailing in concrete beams, columns, and beam-column joints, (c) poor quality concrete and mortar materials and workmanship, (d) vulnerable building configurations and designs with incomplete or deficient load paths, and (e) out-of-plane wall failures in unreinforced (or marginally reinforced) masonry. While these deficiencies may be expected in older buildings, damage and collapse to some modern (or recently rennovated buildings) indicates a lack of enforcement of building code provisions for design and construction quality assurance. Many new buildings whose structural systems were undamaged were closed due to extensive earthquake damage to brick infill walls

  11. Building America Performance Analysis Procedures: Revision 1

    SciTech Connect

    2004-06-01

    To measure progress toward multi-year research goals, cost and performance trade-offs are evaluated through a series of controlled field and laboratory experiments supported by energy analysis techniques using test data to calibrate simulation models.

  12. Strategy Guideline: High Performance Residential Lighting

    SciTech Connect

    Holton, J.

    2012-02-01

    The Strategy Guideline: High Performance Residential Lighting has been developed to provide a tool for the understanding and application of high performance lighting in the home. The high performance lighting strategies featured in this guide are drawn from recent advances in commercial lighting for application to typical spaces found in residential buildings. This guide offers strategies to greatly reduce lighting energy use through the application of high quality fluorescent and light emitting diode (LED) technologies. It is important to note that these strategies not only save energy in the home but also serve to satisfy the homeowner's expectations for high quality lighting.

  13. High Performance Liquid Chromatography

    NASA Astrophysics Data System (ADS)

    Talcott, Stephen

    High performance liquid chromatography (HPLC) has many applications in food chemistry. Food components that have been analyzed with HPLC include organic acids, vitamins, amino acids, sugars, nitrosamines, certain pesticides, metabolites, fatty acids, aflatoxins, pigments, and certain food additives. Unlike gas chromatography, it is not necessary for the compound being analyzed to be volatile. It is necessary, however, for the compounds to have some solubility in the mobile phase. It is important that the solubilized samples for injection be free from all particulate matter, so centrifugation and filtration are common procedures. Also, solid-phase extraction is used commonly in sample preparation to remove interfering compounds from the sample matrix prior to HPLC analysis.

  14. Infrared survey of 50 buildings constructed during 100 years: thermal performances and damage conditions

    NASA Astrophysics Data System (ADS)

    Ljungberg, Sven-Ake

    1995-03-01

    Different building constructions and craftsmanship give rise to different thermal performance and damage conditions. The building stock of most industrial countries consists of buildings of various age, and constructions, from old historic buildings with heavy stone or wooden construction, to new buildings with heavy or light concrete construction, or modern steel or wooden construction. In this paper the result from a detailed infrared survey of 50 buildings from six Swedish military camps is presented. The presentation is limited to a comparison of thermal performance and damage conditions of buildings of various ages, functions, and constructions, of a building period of more than 100 years. The result is expected to be relevant even to civilian buildings. Infrared surveys were performed during 1992-1993, with airborne, and mobile short- and longwave infrared systems, out- and indoor thermography. Interpretation and analysis of infrared data was performed with interactive image and analyzing systems. Field inspections were carried out with fiber optics system, and by ocular inspections. Air-exchange rate was measured in order to quantify air leakages through the building envelope, indicated in thermograms. The objects studied were single-family houses, barracks, office-, service-, school- and exercise buildings, military hotels and restaurants, aircraft hangars, and ship factory buildings. The main conclusions from this study are that most buildings from 1880 - 1940 have a solid construction with a high quality of craftsmanship, relatively good thermal performance, due to extremely thick walls, and adding insulation at the attic floor. From about 1940 - 1960 the quality of construction, thermal performance and craftsmanship seem to vary a lot. Buildings constructed during the period of 1960 - 1990 have in general the best thermal performance due to a better insulation capacity, however, also one finds here the greatest variety of problems. The result from this

  15. Building Leadership Talent through Performance Evaluation

    ERIC Educational Resources Information Center

    Clifford, Matthew

    2015-01-01

    Most states and districts scramble to provide professional development to support principals, but "principal evaluation" is often lost amid competing priorities. Evaluation is an important method for supporting principal growth, communicating performance expectations to principals, and improving leadership practice. It provides leaders…

  16. LED Lighting in a Performing Arts Building

    SciTech Connect

    Miller, N. J.; Kaye, S. M.; Coleman, P. M.; Wilkerson, A. M.; Perrin, T. E.; Sullivan, G. P.

    2014-07-31

    At the University of Florida in Gainesville, the DOE Solid-State Lighting GATEWAY program evaluated LED architectural and theatrical lighting in four academic/performance-related spaces within the Nadine McGuire Theatre + Dance Pavilion. Due to a wise choice of products and luminaire light distributions, the change brought significant quality improvements including improved controllability and color.

  17. Building Cost and Performance Metrics: Data Collection Protocol, Revision 1.0

    SciTech Connect

    Fowler, Kimberly M.; Solana, Amy E.; Spees, Kathleen L.

    2005-09-29

    This technical report describes the process for selecting and applying the building cost and performance metrics for measuring sustainably designed buildings in comparison to traditionally designed buildings.

  18. High Performance Work Practices and Firm Performance.

    ERIC Educational Resources Information Center

    Department of Labor, Washington, DC. Office of the American Workplace.

    A literature survey established that a substantial amount of research has been conducted on the relationship between productivity and the following specific high performance work practices: employee involvement in decision making, compensation linked to firm or worker performance, and training. According to these studies, high performance work…

  19. Building Confidence in LLW Performance Assessments - 13386

    SciTech Connect

    Rustick, Joseph H.; Kosson, David S.; Krahn, Steven L.; Clarke, James H.

    2013-07-01

    The performance assessment process and incorporated input assumptions for four active and one planned DOE disposal sites were analyzed using a systems approach. The sites selected were the Savannah River E-Area Slit and Engineered Trenches, Hanford Integrated Disposal Facility, Idaho Radioactive Waste Management Complex, Oak Ridge Environmental Management Waste Management Facility, and Nevada National Security Site Area 5. Each disposal facility evaluation incorporated three overall system components (1) site characteristics (climate, geology, geochemistry, etc.), (2) waste properties (waste form and package), and (3) engineered barrier designs (cover system, liner system). Site conceptual models were also analyzed to identity the main risk drivers and risk insights controlling performance for each disposal facility. (authors)

  20. High performance sapphire windows

    NASA Technical Reports Server (NTRS)

    Bates, Stephen C.; Liou, Larry

    1993-01-01

    High-quality, wide-aperture optical access is usually required for the advanced laser diagnostics that can now make a wide variety of non-intrusive measurements of combustion processes. Specially processed and mounted sapphire windows are proposed to provide this optical access to extreme environment. Through surface treatments and proper thermal stress design, single crystal sapphire can be a mechanically equivalent replacement for high strength steel. A prototype sapphire window and mounting system have been developed in a successful NASA SBIR Phase 1 project. A large and reliable increase in sapphire design strength (as much as 10x) has been achieved, and the initial specifications necessary for these gains have been defined. Failure testing of small windows has conclusively demonstrated the increased sapphire strength, indicating that a nearly flawless surface polish is the primary cause of strengthening, while an unusual mounting arrangement also significantly contributes to a larger effective strength. Phase 2 work will complete specification and demonstration of these windows, and will fabricate a set for use at NASA. The enhanced capabilities of these high performance sapphire windows will lead to many diagnostic capabilities not previously possible, as well as new applications for sapphire.

  1. Using Whole Building Performance Measurement to Develop a Business Case

    SciTech Connect

    Fowler, Kimberly M.

    2006-09-15

    Since 1998 the U.S. Navy?s Naval Facilities Engineering Command (NAVFAC) has had a policy for incorporating sustainable design principles into new building construction. The policy also states it is the intent of NAVFAC to accomplish this within the given budget constraints and while meeting customer requirements. Programming a building using a first cost approach instead of a life cycle cost approach is one of the biggest challenges for integrating sustainable design into projects at the Navy. Due to this hurdle, an attempt to develop a Navy specific business case was undertaken. Through this process, it was discovered that consistent data were not being collected for all applicable Navy buildings. Therefore, the current business case information being used by the Navy is the conglomeration of existing business case analysis in the literature. Although this business case information is useful, there is still a need for collecting and analyzing the Navy business case. To develop the Navy specific business case, NAVFAC is developing program metrics to capture the status of buildings in the design and construction phase and they have started to collect whole building cost and performance data for 14 buildings (7 sustainably designed and 7 traditionally designed buildings) to capture data on their existing inventory of sustainably design buildings. Performance measurement data are being collected on water, energy, operations and maintenance, waste generation, purchasing, occupant satisfaction, and transportation. The building cost and performance data will be collected for a minimum of 12 months. Both of these data collection and analysis efforts have offered lessons learned that will be shared alongside the current Navy business case information.

  2. Building Quakes: Detection of Weld Fractures in Buildings using High-Frequency Seismic Techniques

    NASA Astrophysics Data System (ADS)

    Heckman, V.; Kohler, M. D.; Heaton, T. H.

    2009-12-01

    Catastrophic fracture of welded beam-column connections in buildings was observed in the Northridge and Kobe earthquakes. Despite the structural importance of such connections, it can be difficult to locate damage in structural members underneath superficial building features. We have developed a novel technique to locate fracturing welds in buildings in real time using high-frequency information from seismograms. Numerical and experimental methods were used to investigate an approach for detecting the brittle fracture of welds of beam-column connections in instrumented steel moment-frame buildings through the use of time-reversed Green’s functions and wave propagation reciprocity. The approach makes use of a prerecorded catalogue of Green’s functions for an instrumented building to detect high-frequency failure events in the building during a later earthquake by screening continuous data for the presence of one or more of the events. This was explored experimentally by comparing structural responses of a small-scale laboratory structure under a variety of loading conditions. Experimentation was conducted on a polyvinyl chloride frame model structure with data recorded at a sample rate of 2000 Hz using piezoelectric accelerometers and a 24-bit digitizer. Green’s functions were obtained by applying impulsive force loads at various locations along the structure with a rubber-tipped force transducer hammer. We performed a blind test using cross-correlation techniques to determine if it was possible to use the catalogue of Green’s functions to pinpoint the absolute times and locations of subsequent, induced failure events in the structure. A finite-element method was used to simulate the response of the model structure to various source mechanisms in order to determine the types of elastic waves that were produced as well as to obtain a general understanding of the structural response to localized loading and fracture.

  3. High Performance Work Systems and Firm Performance.

    ERIC Educational Resources Information Center

    Kling, Jeffrey

    1995-01-01

    A review of 17 studies of high-performance work systems concludes that benefits of employee involvement, skill training, and other high-performance work practices tend to be greater when new methods are adopted as part of a consistent whole. (Author)

  4. A Model for Sustainable Building Energy Efficiency Retrofit (BEER) Using Energy Performance Contracting (EPC) Mechanism for Hotel Buildings in China

    NASA Astrophysics Data System (ADS)

    Xu, Pengpeng

    Hotel building is one of the high-energy-consuming building types, and retrofitting hotel buildings is an untapped solution to help cut carbon emissions contributing towards sustainable development. Energy Performance Contracting (EPC) has been promulgated as a market mechanism for the delivery of energy efficiency projects. EPC mechanism has been introduced into China relatively recently, and it has not been implemented successfully in building energy efficiency retrofit projects. The aim of this research is to develop a model for achieving the sustainability of Building Energy Efficiency Retrofit (BEER) in hotel buildings under the Energy Performance Contracting (EPC) mechanism. The objectives include: • To identify a set of Key Performance Indicators (KPIs) for measuring the sustainability of BEER in hotel buildings; • To identify Critical Success Factors (CSFs) under EPC mechanism that have a strong correlation with sustainable BEER project; • To develop a model explaining the relationships between the CSFs and the sustainability performance of BEER in hotel building. Literature reviews revealed the essence of sustainable BEER and EPC, which help to develop a conceptual framework for analyzing sustainable BEER under EPC mechanism in hotel buildings. 11 potential KPIs for sustainable BEER and 28 success factors of EPC were selected based on the developed framework. A questionnaire survey was conducted to ascertain the importance of selected performance indicators and success factors. Fuzzy set theory was adopted in identifying the KPIs. Six KPIs were identified from the 11 selected performance indicators. Through a questionnaire survey, out of the 28 success factors, 21 Critical Success Factors (CSFs) were also indentified. Using the factor analysis technique, the 21 identified CSFs in this study were grouped into six clusters to help explain project success of sustainable BEER. Finally, AHP/ANP approach was used in this research to develop a model to

  5. High Performance Field Reversed Configurations

    NASA Astrophysics Data System (ADS)

    Binderbauer, Michl

    2014-10-01

    The field-reversed configuration (FRC) is a prolate compact toroid with poloidal magnetic fields. FRCs could lead to economic fusion reactors with high power density, simple geometry, natural divertor, ease of translation, and possibly capable of burning aneutronic fuels. However, as in other high-beta plasmas, there are stability and confinement concerns. These concerns can be addressed by introducing and maintaining a significant fast ion population in the system. This is the approach adopted by TAE and implemented for the first time in the C-2 device. Studying the physics of FRCs driven by Neutral Beam (NB) injection, significant improvements were made in confinement and stability. Early C-2 discharges had relatively good confinement, but global power losses exceeded the available NB input power. The addition of axially streaming plasma guns, magnetic end plugs as well as advanced surface conditioning leads to dramatic reductions in turbulence driven losses and greatly improved stability. As a result, fast ion confinement significantly improved and allowed for build-up of a dominant fast particle population. Under such appropriate conditions we achieved highly reproducible, long-lived, macroscopically stable FRCs with record lifetimes. This demonstrated many beneficial effects of large orbit particles and their performance impact on FRCs Together these achievements point to the prospect of beam-driven FRCs as a path toward fusion reactors. This presentation will review and expand on key results and present context for their interpretation.

  6. High Performance Network Monitoring

    SciTech Connect

    Martinez, Jesse E

    2012-08-10

    Network Monitoring requires a substantial use of data and error analysis to overcome issues with clusters. Zenoss and Splunk help to monitor system log messages that are reporting issues about the clusters to monitoring services. Infiniband infrastructure on a number of clusters upgraded to ibmon2. ibmon2 requires different filters to report errors to system administrators. Focus for this summer is to: (1) Implement ibmon2 filters on monitoring boxes to report system errors to system administrators using Zenoss and Splunk; (2) Modify and improve scripts for monitoring and administrative usage; (3) Learn more about networks including services and maintenance for high performance computing systems; and (4) Gain a life experience working with professionals under real world situations. Filters were created to account for clusters running ibmon2 v1.0.0-1 10 Filters currently implemented for ibmon2 using Python. Filters look for threshold of port counters. Over certain counts, filters report errors to on-call system administrators and modifies grid to show local host with issue.

  7. Building the road map for a performance-driven organization.

    PubMed

    Lima, C; Huey, E

    1999-01-01

    The strategic importance of performance improvement (PI) in healthcare is being recognized across the country. Organizations that recognize PI's importance and support PI will be better prepared for a healthcare future that mandates measurable value. Building the foundation for success is neither a simple task nor a cheap one. It requires a total systems perspective on improving processes and systems, a commitment to continual learning, and recognition of what other industries have already learned--to succeed, you must constantly innovate and improve. This article discusses one organization's approach to building the foundation for a performance-driven 21st-century healthcare system. PMID:10350982

  8. Fire in High Buildings. Fire Study No. 21.

    ERIC Educational Resources Information Center

    Galbreath, M.

    Research into and measures of fire protection with regard to high building design are discussed with suggestions for proper building equipment, materials, and planning. The study outlines how smoke and toxic gases spread in high buildings through stairs, service shafts, air handling and heating equipment. The problems of basement fires, means of…

  9. Building integrated semi-transparent photovoltaics: energy and daylighting performance

    NASA Astrophysics Data System (ADS)

    Kapsis, Konstantinos; Athienitis, Andreas K.

    2011-08-01

    This paper focuses on modeling and evaluation of semi-transparent photovoltaic technologies integrated into a coolingdominated office building façade by employing the concept of three-section façade. An energy simulation model is developed, using building simulation software, to investigate the effect of semi-transparent photovoltaic transmittance on the energy performance of an office in a typical office building in Montreal. The analysis is performed for five major façade orientations and two façade configurations. Using semi-transparent photovoltaic integrated into the office façade, electricity savings of up to 53.1% can be achieved compared to a typical office equipped with double glazing with Argon filling and a low emissivity coating, and lighting controlled based on occupancy and daylight levels.e.c

  10. Commoditization of High Performance Storage

    SciTech Connect

    Studham, Scott S.

    2004-04-01

    The commoditization of high performance computers started in the late 80s with the attack of the killer micros. Previously, high performance computers were exotic vector systems that could only be afforded by an illustrious few. Now everyone has a supercomputer composed of clusters of commodity processors. A similar commoditization of high performance storage has begun. Commodity disks are being used for high performance storage, enabling a paradigm change in storage and significantly changing the price point of high volume storage.

  11. Building America Top Innovations 2012: High-R Walls

    SciTech Connect

    none,

    2013-01-01

    This Building America Top Innovations profile describes Building America research on high-R-value walls showing the difference between rated and whole wall R values and the need for vented cladding to reduce condensation potential with some insulation types.

  12. High Performance Computing Today

    SciTech Connect

    Dongarra, Jack; Meuer,Hans; Simon,Horst D.; Strohmaier,Erich

    2000-04-01

    In last 50 years, the field of scientific computing has seen a rapid change of vendors, architectures, technologies and the usage of systems. Despite all these changes the evolution of performance on a large scale however seems to be a very steady and continuous process. Moore's Law is often cited in this context. If the authors plot the peak performance of various computers of the last 5 decades in Figure 1 that could have been called the supercomputers of their time they indeed see how well this law holds for almost the complete lifespan of modern computing. On average they see an increase in performance of two magnitudes of order every decade.

  13. Ventilation and infiltration in high-rise apartment buildings

    SciTech Connect

    Diamond, R.C.; Feustel, H.E.; Dickerhoff, D.J.

    1996-03-01

    Air flow, air leakage measurements and numerical simulations were made on a 13-story apartment building to characterize the ventilation rates for the individual apartments. Parametric simulations were performed for specific conditions, e.g., height, orientation, outside temperature and wind speed. Our analysis of the air flow simulations suggest that the ventilation to the individual units varies considerably. With the mechanical ventilation system disabled and no wind, units at the lower level of the building have adequate ventilation only on days with high temperature differences, while units on higher floors have no ventilation at all. Units facing the windward side will be over-ventilated when the building experiences wind directions between west and north. At the same time, leeward apartments did not experience any fresh air-because, in these cases, air flows enter the apartments from the corridor and exit through the exhaust shafts and the cracks in the facade. Even with the mechanical ventilation system operating, we found wide variation in the air flows to the individual apartments. In addition to the specific case presented here, these findings have more general implications for energy retrofits and health and comfort of occupants in high-rise apartment buildings.

  14. Environmental performance of green building code and certification systems.

    PubMed

    Suh, Sangwon; Tomar, Shivira; Leighton, Matthew; Kneifel, Joshua

    2014-01-01

    We examined the potential life-cycle environmental impact reduction of three green building code and certification (GBCC) systems: LEED, ASHRAE 189.1, and IgCC. A recently completed whole-building life cycle assessment (LCA) database of NIST was applied to a prototype building model specification by NREL. TRACI 2.0 of EPA was used for life cycle impact assessment (LCIA). The results showed that the baseline building model generates about 18 thousand metric tons CO2-equiv. of greenhouse gases (GHGs) and consumes 6 terajoule (TJ) of primary energy and 328 million liter of water over its life-cycle. Overall, GBCC-compliant building models generated 0% to 25% less environmental impacts than the baseline case (average 14% reduction). The largest reductions were associated with acidification (25%), human health-respiratory (24%), and global warming (GW) (22%), while no reductions were observed for ozone layer depletion (OD) and land use (LU). The performances of the three GBCC-compliant building models measured in life-cycle impact reduction were comparable. A sensitivity analysis showed that the comparative results were reasonably robust, although some results were relatively sensitive to the behavioral parameters, including employee transportation and purchased electricity during the occupancy phase (average sensitivity coefficients 0.26-0.29). PMID:24483287

  15. Building America Performance Analysis Procedures for Existing Homes

    SciTech Connect

    Hendron, R.

    2006-05-01

    Because there are more than 101 million residential households in the United States today, it is not surprising that existing residential buildings represent an extremely large source of potential energy savings. Because thousands of these homes are renovated each year, Building America is investigating the best ways to make existing homes more energy-efficient, based on lessons learned from research in new homes. The Building America program is aiming for a 20%-30% reduction in energy use in existing homes by 2020. The strategy for the existing homes project of Building America is to establish technology pathways that reduce energy consumption cost-effectively in American homes. The existing buildings project focuses on finding ways to adapt the results from the new homes research to retrofit applications in existing homes. Research activities include a combination of computer modeling, field demonstrations, and long-term monitoring to support the development of integrated approaches to reduce energy use in existing residential buildings. Analytical tools are being developed to guide designers and builders in selecting the best approaches for each application. Also, DOE partners with the U.S. Environmental Protection Agency (EPA) to increase energy efficiency in existing homes through the Home Performance with ENERGY STAR program.

  16. Synthesizing the Effect of Building Condition Quality on Academic Performance

    ERIC Educational Resources Information Center

    Gunter, Tracey; Shao, Jing

    2016-01-01

    Since the late 1970s, researchers have examined the relationship between school building condition and student performance. Though many literature reviews have claimed that a relationship exists, no meta-analysis has quantitatively examined this literature. The purpose of this review was to synthesize the existing literature on the relationship…

  17. Strategy Guideline. Partnering for High Performance Homes

    SciTech Connect

    Prahl, Duncan

    2013-01-01

    High performance houses require a high degree of coordination and have significant interdependencies between various systems in order to perform properly, meet customer expectations, and minimize risks for the builder. Responsibility for the key performance attributes is shared across the project team and can be well coordinated through advanced partnering strategies. For high performance homes, traditional partnerships need to be matured to the next level and be expanded to all members of the project team including trades, suppliers, manufacturers, HERS raters, designers, architects, and building officials as appropriate. This guide is intended for use by all parties associated in the design and construction of high performance homes. It serves as a starting point and features initial tools and resources for teams to collaborate to continually improve the energy efficiency and durability of new houses.

  18. Strategy Guideline: Partnering for High Performance Homes

    SciTech Connect

    Prahl, D.

    2013-01-01

    High performance houses require a high degree of coordination and have significant interdependencies between various systems in order to perform properly, meet customer expectations, and minimize risks for the builder. Responsibility for the key performance attributes is shared across the project team and can be well coordinated through advanced partnering strategies. For high performance homes, traditional partnerships need to be matured to the next level and be expanded to all members of the project team including trades, suppliers, manufacturers, HERS raters, designers, architects, and building officials as appropriate. In an environment where the builder is the only source of communication between trades and consultants and where relationships are, in general, adversarial as opposed to cooperative, the chances of any one building system to fail are greater. Furthermore, it is much harder for the builder to identify and capitalize on synergistic opportunities. Partnering can help bridge the cross-functional aspects of the systems approach and achieve performance-based criteria. Critical success factors for partnering include support from top management, mutual trust, effective and open communication, effective coordination around common goals, team building, appropriate use of an outside facilitator, a partnering charter progress toward common goals, an effective problem-solving process, long-term commitment, continuous improvement, and a positive experience for all involved.

  19. High Performance Commercial Fenestration Framing Systems

    SciTech Connect

    Mike Manteghi; Sneh Kumar; Joshua Early; Bhaskar Adusumalli

    2010-01-31

    A major objective of the U.S. Department of Energy is to have a zero energy commercial building by the year 2025. Windows have a major influence on the energy performance of the building envelope as they control over 55% of building energy load, and represent one important area where technologies can be developed to save energy. Aluminum framing systems are used in over 80% of commercial fenestration products (i.e. windows, curtain walls, store fronts, etc.). Aluminum framing systems are often required in commercial buildings because of their inherent good structural properties and long service life, which is required from commercial and architectural frames. At the same time, they are lightweight and durable, requiring very little maintenance, and offer design flexibility. An additional benefit of aluminum framing systems is their relatively low cost and easy manufacturability. Aluminum, being an easily recyclable material, also offers sustainable features. However, from energy efficiency point of view, aluminum frames have lower thermal performance due to the very high thermal conductivity of aluminum. Fenestration systems constructed of aluminum alloys therefore have lower performance in terms of being effective barrier to energy transfer (heat loss or gain). Despite the lower energy performance, aluminum is the choice material for commercial framing systems and dominates the commercial/architectural fenestration market because of the reasons mentioned above. In addition, there is no other cost effective and energy efficient replacement material available to take place of aluminum in the commercial/architectural market. Hence it is imperative to improve the performance of aluminum framing system to improve the energy performance of commercial fenestration system and in turn reduce the energy consumption of commercial building and achieve zero energy building by 2025. The objective of this project was to develop high performance, energy efficient commercial

  20. Baxter Community—High Performance Green Building

    SciTech Connect

    2009-02-16

    This case study describes the Baxter community built by David Weekley Homes, which is reducing their energy demand through a number of techniques including advanced air sealing techniques, the installation of SEER 14 air conditioners, and Low-e windows in conjunction with conventional framing and insulation.

  1. Performance-based Seismic Evaluation of RC Framed Building

    NASA Astrophysics Data System (ADS)

    Cinitha, A.; Umesha, P. K.; R Iyer, Nagesh; Lakshmanan, N.

    2015-12-01

    This work presents a typical 6-storey reinforced concrete building frame analyzed and designed for four load cases considering the three revisions of IS:1893 and IS:456. A conceptual frame work and detailed procedure for performance evaluation of reinforced concrete framed buildings are presented against the explicit force based method described in Indian codes of practice. Modelling issues related to generation of capacity curve, the damage and vulnerability indices are discussed. Based on the studies simple expressions are suggested to estimate, the global damage indices in the hardening and elasto-plastic regions of the capacity spectra.

  2. Performance evaluation of the Solar Building Test Facility

    NASA Technical Reports Server (NTRS)

    Jensen, R. N.

    1981-01-01

    The general performance of the NASA Solar Building Test Facility (SBTF) and its subsystems and components over a four year operational period is discussed, and data are provided for a typical one year period. The facility consists of a 4645 sq office building modified to accept solar heated water for operation of an absorption air conditioner and a baseboard heating system. An adjoining 1176 sq solar flat plate collector field with a 114 cu tank provides the solar heated water. The solar system provided 57 percent of the energy required for heating and cooling on an annual basis. The average efficiency of the solar collectors was 26 percent over a one year period.

  3. High Voltage TAL Performance

    NASA Technical Reports Server (NTRS)

    Jacobson, David T.; Jankovsky, Robert S.; Rawlin, Vincent K.; Manzella, David H.

    2001-01-01

    The performance of a two-stage, anode layer Hall thruster was evaluated. Experiments were conducted in single and two-stage configurations. In single-stage configuration, the thruster was operated with discharge voltages ranging from 300 to 1700 V. Discharge specific impulses ranged from 1630 to 4140 sec. Thruster investigations were conducted with input power ranging from 1 to 8.7 kW, corresponding to power throttling of nearly 9: 1. An extensive two-stage performance map was generated. Data taken with total voltage (sum of discharge and accelerating voltage) constant revealed a decrease in thruster efficiency as the discharge voltage was increased. Anode specific impulse values were comparable in the single and two-stage configurations showing no strong advantage for two-stage operation.

  4. High Performance Arcjet Engines

    NASA Technical Reports Server (NTRS)

    Kennel, Elliot B.; Ivanov, Alexey Nikolayevich; Nikolayev, Yuri Vyacheslavovich

    1994-01-01

    This effort sought to exploit advanced single crystal tungsten-tantalum alloy material for fabrication of a high strength, high temperature arcjet anode. The use of this material is expected to result in improved strength, temperature resistance, and lifetime compared to state of the art polycrystalline alloys. In addition, the use of high electrical and thermal conductivity carbon-carbon composites was considered, and is believed to be a feasible approach. Highly conductive carbon-carbon composite anode capability represents enabling technology for rotating-arc designs derived from the Russian Scientific Research Institute of Thermal Processes (NIITP) because of high heat fluxes at the anode surface. However, for US designs the anode heat flux is much smaller, and thus the benefits are not as great as in the case of NIITP-derived designs. Still, it does appear that the tensile properties of carbon-carbon can be even better than those of single crystal tungsten alloys, especially when nearly-single-crystal fibers such as vapor grown carbon fiber (VGCF) are used. Composites fabricated from such materials must be coated with a refractory carbide coating in order to ensure compatibility with high temperature hydrogen. Fabrication of tungsten alloy single crystals in the sizes required for fabrication of an arcjet anode has been shown to be feasible. Test data indicate that the material can be expected to be at least the equal of W-Re-HfC polycrystalline alloy in terms of its tensile properties, and possibly superior. We are also informed by our colleagues at Scientific Production Association Luch (NP0 Luch) that it is possible to use Russian technology to fabricate polycrystalline W-Re-HfC or other high strength alloys if desired. This is important because existing engines must rely on previously accumulated stocks of these materials, and a fabrication capability for future requirements is not assured.

  5. Data Preparation Process for the Buildings Performance Database

    SciTech Connect

    Walter, Travis; Dunn, Laurel; Mercado, Andrea; Brown, Richard E.; Mathew, Paul

    2014-06-30

    The Buildings Performance Database (BPD) includes empirically measured data from a variety of data sources with varying degrees of data quality and data availability. The purpose of the data preparation process is to maintain data quality within the database and to ensure that all database entries have sufficient data for meaningful analysis and for the database API. Data preparation is a systematic process of mapping data into the Building Energy Data Exchange Specification (BEDES), cleansing data using a set of criteria and rules of thumb, and deriving values such as energy totals and dominant asset types. The data preparation process takes the most amount of effort and time therefore most of the cleansing process has been automated. The process also needs to adapt as more data is contributed to the BPD and as building technologies over time. The data preparation process is an essential step between data contributed by providers and data published to the public in the BPD.

  6. Dinosaurs can fly -- High performance refining

    SciTech Connect

    Treat, J.E.

    1995-09-01

    High performance refining requires that one develop a winning strategy based on a clear understanding of one`s position in one`s company`s value chain; one`s competitive position in the products markets one serves; and the most likely drivers and direction of future market forces. The author discussed all three points, then described measuring performance of the company. To become a true high performance refiner often involves redesigning the organization as well as the business processes. The author discusses such redesigning. The paper summarizes ten rules to follow to achieve high performance: listen to the market; optimize; organize around asset or area teams; trust the operators; stay flexible; source strategically; all maintenance is not equal; energy is not free; build project discipline; and measure and reward performance. The paper then discusses the constraints to the implementation of change.

  7. High performance cyclone development

    SciTech Connect

    Giles, W.B.

    1981-01-01

    The results of cold flow experiments at atmospheric conditions of an air-shielded 18 in-dia electrocyclone with a central cusped electrode are reported using fine test dusts of both flyash and nickel powder. These results are found to confirm expectations of enhanced performance, similar to earlier work on a 12 in-dia model. An analysis of the combined inertial-electrostatic force field is also presented which identifies general design goals and scaling laws. From this, it is found that electrostatic enhancement will be particularly beneficial for fine dusts in large cyclones. Recommendations for further improvement in cyclone collection efficiency are proposed.

  8. START High Performance Discharges

    NASA Astrophysics Data System (ADS)

    Gates, D. A.

    1997-11-01

    Improvements to START (Small Tight Aspect Ratio Tokamak), the first spherical tokamak in the world to achieve high plasma temperature with both a significant pulse length and confinement time, have been ongoing since 1991. Recent modifications include: expansion of the existing capacitor banks allowing plasma currents as high as 300kA, an increase in the available neutral beam heating power ( ~ 500kW), and improvements to the vacuum system. These improvements have led to the achievement of the world record plasma β (≡ 2μ_0 /B^2) of ~ 30% in a tokamak. The normalised β ( βN ≡ β aB/I_p) reached 4.5 with q_95 = 2.3. Properties of the reconstructed equilibrium will be discussed in detail. The theoretical limit to β is higher in a spherical tokamak than in a conventional machine, due to the higher values of normalised current (IN ≡ I_p/aB) achievable at low aspect ratio. The record β was achieved with IN ~ 8 while conventional tokamaks are limited to IN ~ 3, or less. Calculations of the ideal MHD stability of the record discharge indicate high β low-n kink modes are stable, but that the entire profile is at or near marginal stability for high-n ballooning modes. The phenomenology of the events leading up to the plasma termination is discussed. An important aspect of the START program is to explore the physics of neutral beam absorption at low aspect ratio. A passive neutral particle analyser has been used to study the temporal and spatial dependence of the fast hydrogen beam ions. These measurements have been used in conjunction with a single particle orbit code to estimate the fast ion losses due to collisions with slow neutrals from the plasma edge. Numerical analysis of neutral beam power deposition profiles are compared with the data from an instrumented beam stop. The global energy confinement time τE in beam heated discharges on START is similar to that obtained in Ohmic discharges, even though the input power has roughly doubled over the Ohmic case

  9. Impact of the U.S. National Building Information Model Standard (NBIMS) on Building Energy Performance Simulation

    SciTech Connect

    Bazjanac, Vladimir

    2007-08-01

    The U.S. National Institute for Building Sciences (NIBS) started the development of the National Building Information Model Standard (NBIMS). Its goal is to define standard sets of data required to describe any given building in necessary detail so that any given AECO industry discipline application can find needed data at any point in the building lifecycle. This will include all data that are used in or are pertinent to building energy performance simulation and analysis. This paper describes the background that lead to the development of NBIMS, its goals and development methodology, its Part 1 (Version 1.0), and its probable impact on building energy performance simulation and analysis.

  10. Tough high performance composite matrix

    NASA Technical Reports Server (NTRS)

    Pater, Ruth H. (Inventor); Johnston, Norman J. (Inventor)

    1994-01-01

    This invention is a semi-interpentrating polymer network which includes a high performance thermosetting polyimide having a nadic end group acting as a crosslinking site and a high performance linear thermoplastic polyimide. Provided is an improved high temperature matrix resin which is capable of performing in the 200 to 300 C range. This resin has significantly improved toughness and microcracking resistance, excellent processability, mechanical performance, and moisture and solvent resistances.

  11. High Voltage SPT Performance

    NASA Technical Reports Server (NTRS)

    Manzella, David; Jacobson, David; Jankovsky, Robert

    2001-01-01

    A 2.3 kW stationary plasma thruster designed to operate at high voltage was tested at discharge voltages between 300 and 1250 V. Discharge specific impulses between 1600 and 3700 sec were demonstrated with thrust between 40 and 145 mN. Test data indicated that discharge voltage can be optimized for maximum discharge efficiency. The optimum discharge voltage was between 500 and 700 V for the various anode mass flow rates considered. The effect of operating voltage on optimal magnet field strength was investigated. The effect of cathode flow rate on thruster efficiency was considered for an 800 V discharge.

  12. High performance steam development

    SciTech Connect

    Duffy, T.; Schneider, P.

    1995-10-01

    Over 30 years ago U.S. industry introduced the world`s highest temperature (1200{degrees}F at 5000 psig) and most efficient power plant, the Eddystone coal-burning steam plant. The highest alloy material used in the plant was 316 stainless steel. Problems during the first few years of operation caused a reduction in operating temperature to 1100{degrees}F which has generally become the highest temperature used in plants around the world. Leadership in high temperature steam has moved to Japan and Europe over the last 30 years.

  13. Bedford Farmhouse High Performance Retrofit Prototype

    SciTech Connect

    2010-04-26

    In this case study, Building Science Corporation partnered with Habitat for Humanity of Greater Lowell on a retrofit of a mid-19th century farmhouse into affordable housing meeting Building America performance standards.

  14. High-albedo materials for reducing building cooling energy use

    SciTech Connect

    Taha, H.; Sailor, D.; Akbari, H.

    1992-01-01

    One simple and effective way to mitigate urban heat islands, i.e., the higher temperatures in cities compared to those of the surrounds, and their negative impacts on cooling energy consumption is to use high-albedo materials on major urban surfaces such as rooftops, streets, sidewalks, school yards, and the exposed surfaces of parking lots. High-albedo materials can save cooling energy use by directly reducing the heat gain through a building`s envelope (direct effect) and also by lowering the urban air temperature in the neighborhood of the building (indirect effect). This project is an attempt to address high-albedo materials for buildings and to perform measurements of roof coatings. We search for existing methods and materials to implement fighter colors on major building and urban surfaces. Their cost effectiveness are examined and the possible related technical, maintenance, and environmental problems are identified. We develop a method for measuring albedo in the field by studying the instrumentation aspects of such measurements. The surface temperature impacts of various albedo/materials in the actual outdoor environment are studied by measuring the surface temperatures of a variety of materials tested on an actual roof. We also generate an albedo database for several urban surfaces to serve as a reference for future use. The results indicate that high-albedo materials can have a large impact on the surface temperature regime. On clear sunny days, when the solar noon surface temperatures of conventional roofing materials were about 40{degrees}C (72{degrees}F) warmer than air, the surface temperature of high-albedo coatings were only about 5{degrees}C warmer than air. In the morning and in the late afternoon, the high-albedo materials were as cool as the air itself. While conventional roofing materials warm up by an average 0.055{degrees}C/(W m{sup {minus}2}), the high-albedo surfaces warm up by an average 0.015{degrees}C/(W m{sup {minus}2}).

  15. High performance alloy electroforming

    NASA Technical Reports Server (NTRS)

    Malone, G. A.; Winkelman, D. M.

    1989-01-01

    Electroformed copper and nickel are used in structural applications for advanced propellant combustion chambers. An improved process has been developed by Bell Aerospace Textron, Inc. wherein electroformed nickel-manganese alloy has demonstrated superior mechanical and thermal stability when compared to previously reported deposits from known nickel plating processes. Solution chemistry and parametric operating procedures are now established and material property data is established for deposition of thick, large complex shapes such as the Space Shuttle Main Engine. The critical operating variables are those governing the ratio of codeposited nickel and manganese. The deposition uniformity which in turn affects the manganese concentration distribution is affected by solution resistance and geometric effects as well as solution agitation. The manganese concentration in the deposit must be between 2000 and 3000 ppm for optimum physical properties to be realized. The study also includes data regarding deposition procedures for achieving excellent bond strength at an interface with copper, nickel-manganese or INCONEL 718. Applications for this electroformed material include fabrication of complex or re-entry shapes which would be difficult or impossible to form from high strength alloys such as INCONEL 718.

  16. High-performance laboratories and cleanrooms

    SciTech Connect

    Tschudi, William; Sartor, Dale; Mills, Evan; Xu, Tengfang

    2002-07-01

    The California Energy Commission sponsored this roadmap to guide energy efficiency research and deployment for high performance cleanrooms and laboratories. Industries and institutions utilizing these building types (termed high-tech buildings) have played an important part in the vitality of the California economy. This roadmap's key objective to present a multi-year agenda to prioritize and coordinate research efforts. It also addresses delivery mechanisms to get the research products into the market. Because of the importance to the California economy, it is appropriate and important for California to take the lead in assessing the energy efficiency research needs, opportunities, and priorities for this market. In addition to the importance to California's economy, energy demand for this market segment is large and growing (estimated at 9400 GWH for 1996, Mills et al. 1996). With their 24hr. continuous operation, high tech facilities are a major contributor to the peak electrical demand. Laboratories and cleanrooms constitute the high tech building market, and although each building type has its unique features, they are similar in that they are extremely energy intensive, involve special environmental considerations, have very high ventilation requirements, and are subject to regulations--primarily safety driven--that tend to have adverse energy implications. High-tech buildings have largely been overlooked in past energy efficiency research. Many industries and institutions utilize laboratories and cleanrooms. As illustrated, there are many industries operating cleanrooms in California. These include semiconductor manufacturing, semiconductor suppliers, pharmaceutical, biotechnology, disk drive manufacturing, flat panel displays, automotive, aerospace, food, hospitals, medical devices, universities, and federal research facilities.

  17. High Poverty, High Performing Schools. IDRA Focus.

    ERIC Educational Resources Information Center

    IDRA Newsletter, 1997

    1997-01-01

    This theme issue includes four articles on high performance by poor Texas schools. In "Principal of National Blue Ribbon School Says High Poverty Schools Can Excel" (interview with Robert Zarate by Christie L. Goodman), the principal of Mary Hull Elementary School (San Antonio, Texas) describes how the high-poverty, high-minority school…

  18. Development of EnergyPlus Utility to Batch Simulate Building Energy Performance on a National Scale

    SciTech Connect

    Valencia, Jayson F.; Dirks, James A.

    2008-08-29

    EnergyPlus is a simulation program that requires a large number of details to fully define and model a building. Hundreds or even thousands of lines in a text file are needed to run the EnergyPlus simulation depending on the size of the building. To manually create these files is a time consuming process that would not be practical when trying to create input files for thousands of buildings needed to simulate national building energy performance. To streamline the process needed to create the input files for EnergyPlus, two methods were created to work in conjunction with the National Renewable Energy Laboratory (NREL) Preprocessor; this reduced the hundreds of inputs needed to define a building in EnergyPlus to a small set of high-level parameters. The first method uses Java routines to perform all of the preprocessing on a Windows machine while the second method carries out all of the preprocessing on the Linux cluster by using an in-house built utility called Generalized Parametrics (GPARM). A comma delimited (CSV) input file is created to define the high-level parameters for any number of buildings. Each method then takes this CSV file and uses the data entered for each parameter to populate an extensible markup language (XML) file used by the NREL Preprocessor to automatically prepare EnergyPlus input data files (idf) using automatic building routines and macro templates. Using a Linux utility called “make”, the idf files can then be automatically run through the Linux cluster and the desired data from each building can be aggregated into one table to be analyzed. Creating a large number of EnergyPlus input files results in the ability to batch simulate building energy performance and scale the result to national energy consumption estimates.

  19. Strategy Guideline. High Performance Residential Lighting

    SciTech Connect

    Holton, J.

    2012-02-01

    This report has been developed to provide a tool for the understanding and application of high performance lighting in the home. The strategies featured in this guide are drawn from recent advances in commercial lighting for application to typical spaces found in residential buildings. This guide offers strategies to greatly reduce lighting energy use through the application of high quality fluorescent and light emitting diode (LED) technologies. It is important to note that these strategies not only save energy in the home but also serve to satisfy the homeowner’s expectations for high quality lighting.

  20. High Performance Fortran: An overview

    SciTech Connect

    Zosel, M.E.

    1992-12-23

    The purpose of this paper is to give an overview of the work of the High Performance Fortran Forum (HPFF). This group of industry, academic, and user representatives has been meeting to define a set of extensions for Fortran dedicated to the special problems posed by a very high performance computers, especially the new generation of parallel computers. The paper describes the HPFF effort and its goals and gives a brief description of the functionality of High Performance Fortran (HPF).

  1. Causes and Solutions for High Energy Consumption in Traditional Buildings Located in Hot Climate Regions

    NASA Astrophysics Data System (ADS)

    Barayan, Olfat Mohammad

    A considerable amount of money for high-energy consumption is spent in traditional buildings located in hot climate regions. High-energy consumption is significantly influenced by several causes, including building materials, orientation, mass, and openings' sizes. This paper aims to identify these causes and find practical solutions to reduce the annual cost of bills. For the purpose of this study, simulation research method has been followed. A comparison between two Revit models has also been created to point out the major cause of high-energy consumption. By analysing different orientations, wall insulation, and window glazing and applying some other high performance building techniques, a conclusion was found to confirm that appropriate building materials play a vital role in affecting energy cost. Therefore, the ability to reduce the energy cost by more than 50% in traditional buildings depends on a careful balance of building materials, mass, orientation, and type of window glazing.

  2. Building identification from very high-resolution satellite images

    NASA Astrophysics Data System (ADS)

    Lhomme, Stephane

    Urbanisation still remains one of the main problems worldwide. The extent and rapidity of the urban growth induce a number of socio-economic and environmental conflicts everywhere. In order to reduce these problems, urban planners need to integrate spatial information in planning tools. Actually high expectations are made on Very High Spatial Resolution imagery (VHSR). These high-spatial resolution images are available at a reasonable price and due to short revisit periods, they offer a high degree of actuality. However, interpretation methods seem not to be adapted to this new type of images. The aim of our study is to develop a new method for semi-automatic building extraction with VHSR. The different steps performed to achieve our objective are each presented in a chapter. In the first chapter, the general context of our research is described with the definition of our objective. After a short historical review of urbanisation, we focus on urban growth and associated problems. In the following we discuss the possible contributions of geography to reduce these problems. After discussing concepts, theories and methodologies of geographical analysis in urban areas, we present existing general urban planning tools. Finally, we show the special interest of our study that is due to a growing need to integrate spatial information in these decision support tools. In the second chapter we verify the possibility of reaching our objective by analysing the technical characteristics of the images, the noise and the distortions which affect the images. Quality and interpretability of the studied image is analysed in order to show the capacity of these image to represent urban objects as close to reality as possible. The results confirm the potential of VHSR Imagery for urban objects analysis. The third chapter deal with the preliminary steps necessary for the elaboration of our method of building extraction. First, we evaluate the quality of the Sherbrooke Ikonos image

  3. Fenestration guideline for energy and daylight efficiency: Evaluation and prediction of performance in office buildings

    NASA Astrophysics Data System (ADS)

    Ko, Dong-Hwan

    The primary significance of this paper is the development of guidelines that can help in defining fenestration properties and design factors to increase building performances. Since the influence of fenestration on energy consumption is well known and proved, in order to encourage the development of appropriate designs to ensure high performance office buildings, fenestration guidelines have been developed. This research consisted of the following two parts. First, in relation to window design of typical office buildings, the main design parameters were considered for (1) daylight simulation using RADIANCE and (2) energy performance using eQUEST, based on the characteristics of the typical office building. Second, window area and properties such as U-factor, SHGC, and VT were considered, because building performance depends on a good configuration of fenestration factors. The main results of this research provide the necessary criteria with respect to fenestration in order to meet daylight requirements and conserve energy. These fenestration criteria are targeted at architects and designers to facilitate them in the selection of the U-factor, SHGC, VT, and window-to-wall ratio (WWR). Further, the application of the abovementioned method can result in more energy-efficient buildings, which, in turn, can assist in attaining an LEED green building rating system certification. In sum, in this research, guidelines to estimate energy conservation and daylight performance have been presented. Further, the use of the simplified method developed in this study can help in designing green buildings and obtaining more LEED credits. It is hoped that these criteria will enable architects to achieve better fenestration designs and ensure that they consider window properties and local climate types in the design process.

  4. Low Energy Building for High Energy People.

    ERIC Educational Resources Information Center

    American School and University, 1982

    1982-01-01

    The Huston Huffman Center at the University of Oklahoma's Norman campus has a jogging track as well as facilities for exercise and court games that are fully accessible to the handicapped. The building is set eight feet in the ground both to reduce its bulk and to conserve energy. (Author/MLF)

  5. High-School Buildings and Grounds. Bulletin, 1922, No. 23

    ERIC Educational Resources Information Center

    Bureau of Education, Department of the Interior, 1922

    1922-01-01

    The success of any high school depends largely upon the planning of its building. The wise planning of a high-school building requires familiarity with school needs and processes, knowledge of the best approved methods of safety, lighting, sanitation, and ventilation, and ability to solve the educational, structural, and architectural problems…

  6. High Performance Thin Layer Chromatography.

    ERIC Educational Resources Information Center

    Costanzo, Samuel J.

    1984-01-01

    Clarifies where in the scheme of modern chromatography high performance thin layer chromatography (TLC) fits and why in some situations it is a viable alternative to gas and high performance liquid chromatography. New TLC plates, sample applications, plate development, and instrumental techniques are considered. (JN)

  7. Commissioning: A Highly Cost-Effective Building Energy Management Strategy

    SciTech Connect

    Mills, Evan

    2011-01-06

    Quality assurance and optimization are essential elements of any serious technological endeavor, including efforts to improve energy efficiency. Commissioning is an important tool in this respect. The aim of commissioning new buildings is to ensure that they deliver-if not exceed-the performance and energy savings promised by their design. When applied to existing buildings, one-time or repeated commissioning (often called retrocommissioning) identifies the almost inevitable drift in energy performance and puts the building back on course, often surpassing the original design intent. In both contexts, commissioning is a systematic, forensic approach to improving performance, rather than a discrete technology.

  8. Archaeomagnetic Study performed on Early Medieval Buildings from western France

    NASA Astrophysics Data System (ADS)

    Chauvin, A.; Lanos, P.; Dufresne, P.; Blain, S.; Guibert, P.; Oberlin, C.; Sapin, C.

    2009-05-01

    A multiple dating study, involving a collaboration between specialists of dating techniques (thermoluminescence (TL) and radiocarbon), historians of art and archaeologists, has been carried out on several early medieval buildings from western France. The early medieval period is not well known especially in France where there is a lack of visible evidence that identifies pre-Romanesque architecture. The majority of buildings to have survived from this period are religious ones, considered important enough to be made of strong, non-perishable material such as stone or brick, as for example the churches of Notre-Dame-sous- Terre in the Mont-Saint-Michel or St Martin in Angers. Due to their significance in architectural history, it is imperative to position them accurately in the chronology of the history of art. Bricks are often used to build up round-headed arches or to reinforce the frame of a wall with bonding courses in those churches. TL dating and archeomagnetic analysis were performed on cores drilled within bricks while radiocarbon dating were undertaken on coals found within mortars. In order to increase the number of data during the early Middle Ages, archeointensity determinations using the classical Thellier technique with anisotropy of thermal remanence and cooling rate corrections were performed. Archaeomagnetic directions were used to recognize the firing position of bricsk during manufacture. Reliable and precise ages were obtained on the church Notre-Dame-sous-Terre; they indicate two phases of building in 950±50AD and 990±50AD. Mean archeointensities obtained on 17 (21) samples from the first (second) phases appears very closed 69.1±1.2 and 68.3±1.6 microTesla. Ages and archeomagnetic results obtained on 4 other sites will be presented and compared to the available data in western Europe.

  9. High-albedo materials for reducing building cooling energy use

    SciTech Connect

    Taha, H.; Sailor, D.; Akbari, H.

    1992-01-01

    One simple and effective way to mitigate urban heat islands, i.e., the higher temperatures in cities compared to those of the surrounds, and their negative impacts on cooling energy consumption is to use high-albedo materials on major urban surfaces such as rooftops, streets, sidewalks, school yards, and the exposed surfaces of parking lots. High-albedo materials can save cooling energy use by directly reducing the heat gain through a building's envelope (direct effect) and also by lowering the urban air temperature in the neighborhood of the building (indirect effect). This project is an attempt to address high-albedo materials for buildings and to perform measurements of roof coatings. We search for existing methods and materials to implement fighter colors on major building and urban surfaces. Their cost effectiveness are examined and the possible related technical, maintenance, and environmental problems are identified. We develop a method for measuring albedo in the field by studying the instrumentation aspects of such measurements. The surface temperature impacts of various albedo/materials in the actual outdoor environment are studied by measuring the surface temperatures of a variety of materials tested on an actual roof. We also generate an albedo database for several urban surfaces to serve as a reference for future use. The results indicate that high-albedo materials can have a large impact on the surface temperature regime. On clear sunny days, when the solar noon surface temperatures of conventional roofing materials were about 40{degrees}C (72{degrees}F) warmer than air, the surface temperature of high-albedo coatings were only about 5{degrees}C warmer than air. In the morning and in the late afternoon, the high-albedo materials were as cool as the air itself. While conventional roofing materials warm up by an average 0.055{degrees}C/(W m{sup {minus}2}), the high-albedo surfaces warm up by an average 0.015{degrees}C/(W m{sup {minus}2}).

  10. Building Integrated Active Flow Control: Improving the Aerodynamic Performance of Tall Buildings Using Fluid-Based Aerodynamic Modification

    NASA Astrophysics Data System (ADS)

    Menicovich, David

    By 2050 an estimated 9 billion people will inhabit planet earth and almost all the growth in the next 40 years will be in urban areas putting tremendous pressure on creating sustainable cities. The rapid increase in population, rise in land value and decrease in plot sizes in cities around the world positions tall or more importantly slender buildings as the best suited building typology to address the increasingly critical demand for space in this pressing urbanization trend. However, the majority of new tall building urban developments have not followed principles of environmental and/or sustainable design and incentives to innovate, both technological and economic, are urgently required. The biggest climatic challenge to the design, construction and performance of tall buildings is wind sensitivity. This challenge is further emphasized seeing two market driven trends: on one hand as urban population grows, land value rises while plot sizes decrease; on the other, more cost effective modular construction techniques are introducing much lighter tall building structures. The combination of the two suggests a potential increase in the slenderness ratio of tall buildings (typically less than 6:1 but stretching to 20:1 in the near future) where not-so-tall but much lighter buildings will be the bulk of new construction in densely populated cities, providing affordable housing in the face of fast urbanization but also introducing wind sensitivity which was previously the problem of a very limited number of super tall buildings to a much larger number of buildings and communities. The proposed research aims to investigate a novel approach to the interaction between tall buildings and their environment. Through this approach the research proposes a new relationship between buildings and the flows around, through and inside them, where buildings could adapt to better control and manage the air flow around them, and consequently produce significant opportunities to reduce

  11. From "Muddle School" to Middle School: Building Capacity to Collaborate for Higher-Performing Middle Schools

    ERIC Educational Resources Information Center

    Wilcox, Kristen C.; Angelis, Janet I.

    2012-01-01

    The authors report findings from a study regarding the ways in which educators in middle level schools with high student achievement implement practices that build their capacity to collaborate. Teacher and administrator interviews and documentary evidence from ten higher-performing schools that are "beating the odds" and six demographically…

  12. Persisting challenges for performance-based building assessment

    NASA Astrophysics Data System (ADS)

    Bayhan, B.; Kazaz, İ.; Gülkan, P.

    2014-08-01

    Intense research and refinement of the tools used in performance-based seismic engineering have been made, but the maturity and accuracy of these methods have not been adequately confirmed with actual data from the field. The gap between the assumed characteristics of actual building systems and their idealized counterparts used for analysis is wide. When the randomly distributed flaws in buildings as they exist in urban areas and the extreme variability of ground motion patterns combine, the conventional procedures used for pushover or dynamic response history analyses seem to fall short of reconciling the differences between calculated and observed damage. For emergency planning and loss modeling purposes, such discrepancies are factors that must be borne in mind. Two relevant examples are provided herein. These examples demonstrate that consensus-based analytical guidelines also require well-idealized building models that do not lend themselves to reasonably manageable representations from field data. As a corollary, loss modeling techniques, e.g., used for insurance purposes, must undergo further development and improvement.

  13. High Performance Networks for High Impact Science

    SciTech Connect

    Scott, Mary A.; Bair, Raymond A.

    2003-02-13

    This workshop was the first major activity in developing a strategic plan for high-performance networking in the Office of Science. Held August 13 through 15, 2002, it brought together a selection of end users, especially representing the emerging, high-visibility initiatives, and network visionaries to identify opportunities and begin defining the path forward.

  14. Assuring the Performance of Buildings and Infrastructures: Report of Discussions

    SciTech Connect

    Hunter, Regina L.

    1999-05-28

    How to ensure the appropriate performance of our built environment in the face of normal conditions, natural hazards, and malevolent threats is an issue of emerging national and international importance. As the world population increases, new construction must be increasingly cost effective and at the same time increasingly secure, safe, and durable. As the existing infrastructure ages, materials and techniques for retrofitting must be developed in parallel with improvements in design, engineering, and building codes for new construction. Both new and renovated structures are more often being subjected to the scrutiny of risk analysis. An international conference, "Assuring the Performance of Buildings and Infrastructures," was held in May 1997 to address some of these issues. The conference was co-sponsored by the Architectural Engineering Division of the American Society of Civil Engineers (ASCE), the American Institute of Architects, and Sandia National Laboratories and convened in Albuquerque, NM. Many of the papers presented at the conference are found within this issue of Techno20~. This paper presents some of the major conference themes and summarizes discussions not found in the other papers.

  15. High performance flexible heat pipes

    NASA Technical Reports Server (NTRS)

    Shaubach, R. M.; Gernert, N. J.

    1985-01-01

    A Phase I SBIR NASA program for developing and demonstrating high-performance flexible heat pipes for use in the thermal management of spacecraft is examined. The program combines several technologies such as flexible screen arteries and high-performance circumferential distribution wicks within an envelope which is flexible in the adiabatic heat transport zone. The first six months of work during which the Phase I contract goal were met, are described. Consideration is given to the heat-pipe performance requirements. A preliminary evaluation shows that the power requirement for Phase II of the program is 30.5 kilowatt meters at an operating temperature from 0 to 100 C.

  16. Highlighting High Performance: Blackstone Valley Regional Vocational Technical High School; Upton, Massachusetts

    SciTech Connect

    Not Available

    2006-10-01

    This brochure describes the key high-performance building features of the Blackstone Valley High School. The brochure was paid for by the Massachusetts Technology Collaborative as part of their Green Schools Initiative. High-performance features described are daylighting and energy-efficient lighting, indoor air quality, solar energy, building envelope, heating and cooling systems, and water conservation. Energy cost savings are also discussed.

  17. Building America

    SciTech Connect

    Brad Oberg

    2010-12-31

    IBACOS researched the constructability and viability issues of using high performance windows as one component of a larger approach to building houses that achieve the Building America 70% energy savings target.

  18. High performance dielectric materials development

    NASA Technical Reports Server (NTRS)

    Piche, Joe; Kirchner, Ted; Jayaraj, K.

    1994-01-01

    The mission of polymer composites materials technology is to develop materials and processing technology to meet DoD and commercial needs. The following are outlined in this presentation: high performance capacitors, high temperature aerospace insulation, rationale for choosing Foster-Miller (the reporting industry), the approach to the development and evaluation of high temperature insulation materials, and the requirements/evaluation parameters. Supporting tables and diagrams are included.

  19. Energy efficiency indicators for high electric-load buildings

    SciTech Connect

    Aebischer, Bernard; Balmer, Markus A.; Kinney, Satkartar; Le Strat, Pascale; Shibata, Yoshiaki; Varone, Frederic

    2003-06-01

    Energy per unit of floor area is not an adequate indicator for energy efficiency in high electric-load buildings. For two activities, restaurants and computer centres, alternative indicators for energy efficiency are discussed.

  20. VIEW OF THE INTERIOR OF BUILDING 442 OF THE HIGH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF THE INTERIOR OF BUILDING 442 OF THE HIGH EFFICIENCY PARTICULATE AIR FILTERS TESTING EQUIPMENT - Rocky Flats Plant, Filter Test Laboratory & Warehouse, Southeast corner of Central Avenue & Fifth Street, Golden, Jefferson County, CO

  1. Trenton High School: Attitude Builds Community

    ERIC Educational Resources Information Center

    Principal Leadership, 2013

    2013-01-01

    High schools often are the anchor of their communities. Nowhere is this more so than in rural north-central Missouri where Trenton High School is the community. Over the last 10 years, this 400-student comprehensive high school mirrored the community's economic downturn and experienced a significant increase in students living in poverty--to…

  2. Methodology for Modeling Building Energy Performance across the Commercial Sector

    SciTech Connect

    Griffith, B.; Long, N.; Torcellini, P.; Judkoff, R.; Crawley, D.; Ryan, J.

    2008-03-01

    This report uses EnergyPlus simulations of each building in the 2003 Commercial Buildings Energy Consumption Survey (CBECS) to document and demonstrate bottom-up methods of modeling the entire U.S. commercial buildings sector (EIA 2006). The ability to use a whole-building simulation tool to model the entire sector is of interest because the energy models enable us to answer subsequent 'what-if' questions that involve technologies and practices related to energy. This report documents how the whole-building models were generated from the building characteristics in 2003 CBECS and compares the simulation results to the survey data for energy use.

  3. High Five: Building Capacity for School Excellence

    ERIC Educational Resources Information Center

    McCullen, Caroline

    2006-01-01

    In 2004, five North Carolina school districts combined forces with five corporate foundations to leverage their collective wisdom and develop regional strategies for school improvement. The result was the High Five Regional Partnership for High School Excellence, a corporate-public sector effort that had the common goal of improving graduation…

  4. High Performance Photovoltaic Project Overview

    SciTech Connect

    Symko-Davies, M.; McConnell, R.

    2005-01-01

    The High-Performance Photovoltaic (HiPerf PV) Project was initiated by the U.S. Department of Energy to substantially increase the viability of photovoltaics (PV) for cost-competitive applications so that PV can contribute significantly to our energy supply and environment in the 21st century. To accomplish this, the National Center for Photovoltaics (NCPV) directs in-house and subcontracted research in high-performance polycrystalline thin-film and multijunction concentrator devices. In this paper, we describe the recent research accomplishments in the in-house directed efforts and the research efforts under way in the subcontracted area.

  5. High-Performance Thermoelectric Semiconductors

    NASA Technical Reports Server (NTRS)

    Fleurial, Jean-Pierre; Caillat, Thierry; Borshchevsky, Alexander

    1994-01-01

    Figures of merit almost double current state-of-art thermoelectric materials. IrSb3 is semiconductor found to exhibit exceptional thermoelectric properties. CoSb3 and RhSb3 have same skutterudite crystallographic structure as IrSb3, and exhibit exceptional transport properties expected to contribute to high thermoelectric performance. These three compounds form solid solutions. Combination of properties offers potential for development of new high-performance thermoelectric materials for more efficient thermoelectric power generators, coolers, and detectors.

  6. High-performance membrane chromatography.

    PubMed

    Belenkii, B G; Malt'sev, V G

    1995-02-01

    In gradient chromatography for proteins migrating along the chromatographic column, the critical distance X0 has been shown to exist at which the separation of zones is at a maximum and band spreading is at a minimum. With steep gradients and small elution velocity, the column length may be reduced to the level of membrane thickness--about one millimeter. The peculiarities of this novel separation method for proteins, high-performance membrane chromatography (HPMC), are discussed and stepwise elution is shown to be especially effective. HPMC combines the advantages of membrane technology and high-performance liquid chromatography, and avoids their drawbacks. PMID:7727132

  7. Improving the Quality of School Facilities through Building Performance Assessment: Educational Reform and School Building Quality in Sao Paulo, Brazil

    ERIC Educational Resources Information Center

    Ornstein, Sheila Walbe; Moreira, Nanci Saraiva; Ono, Rosaria; Limongi Franca, Ana J. G.; Nogueira, Roselene A. M. F.

    2009-01-01

    Purpose: The paper describes the purpose of and strategies for conducting post-occupancy evaluations (POEs) as a method for assessing school building performance. Set within the larger context of global efforts to develop and apply common indicators of school building quality, the authors describe research conducted within the newest generation of…

  8. High Performance Bulk Thermoelectric Materials

    SciTech Connect

    Ren, Zhifeng

    2013-03-31

    Over 13 plus years, we have carried out research on electron pairing symmetry of superconductors, growth and their field emission property studies on carbon nanotubes and semiconducting nanowires, high performance thermoelectric materials and other interesting materials. As a result of the research, we have published 104 papers, have educated six undergraduate students, twenty graduate students, nine postdocs, nine visitors, and one technician.

  9. Panelized high performance multilayer insulation

    NASA Technical Reports Server (NTRS)

    Burkley, R. A.; Shriver, C. B.; Stuckey, J. M.

    1968-01-01

    Multilayer insulation coverings with low conductivity foam spacers are interleaved with quarter mil aluminized polymer film radiation shields to cover flight type liquid hydrogen tankage of space vehicles with a removable, structurally compatible, lightweight, high performance cryogenic insulation capable of surviving extended space mission environments.

  10. High performance rolling element bearing

    NASA Technical Reports Server (NTRS)

    Bursey, Jr., Roger W. (Inventor); Olinger, Jr., John B. (Inventor); Owen, Samuel S. (Inventor); Poole, William E. (Inventor); Haluck, David A. (Inventor)

    1993-01-01

    A high performance rolling element bearing (5) which is particularly suitable for use in a cryogenically cooled environment, comprises a composite cage (45) formed from glass fibers disposed in a solid lubricant matrix of a fluorocarbon polymer. The cage includes inserts (50) formed from a mixture of a soft metal and a solid lubricant such as a fluorocarbon polymer.

  11. High performance bilateral telerobot control.

    PubMed

    Kline-Schoder, Robert; Finger, William; Hogan, Neville

    2002-01-01

    Telerobotic systems are used when the environment that requires manipulation is not easily accessible to humans, as in space, remote, hazardous, or microscopic applications or to extend the capabilities of an operator by scaling motions and forces. The Creare control algorithm and software is an enabling technology that makes possible guaranteed stability and high performance for force-feedback telerobots. We have developed the necessary theory, structure, and software design required to implement high performance telerobot systems with time delay. This includes controllers for the master and slave manipulators, the manipulator servo levels, the communication link, and impedance shaping modules. We verified the performance using both bench top hardware as well as a commercial microsurgery system. PMID:15458092

  12. Measuring thermal performance of building envelopes: nine case studies

    SciTech Connect

    Flanders, S.N.

    1985-03-01

    Nine buildings at Ft. Devens were the object of a study employing heat-flux sensors, thermocouples, a computer-controlled data-acquisition system, and infrared thermography. The purpose was to measure the R-values of those buildings to determine their economic potential for improved insulation. The sample included four frame buildings, two masonry buildings, and three frame buildings with brick facing. The technique for measuring R-values proved repeatable and accurate within 15%. Sampling a small representative sample sufficiently characterizes the entire stock of buildings. Measurement is more important for poorly insulated buildings, since the beginning R-value has a drastic impact on the budget for a cost-effective reinsulation project. At Ft. Devens, installing an external Styrofoam insulation system on concrete block barracks has a savings-to-investment ratio of about 1.4.

  13. Photocopy of drawing. VEHICLE ASSEMBLY BUILDING MODIFICATIONS, HIGH BAY AREA. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing. VEHICLE ASSEMBLY BUILDING MODIFICATIONS, HIGH BAY AREA. NASA John F. Kennedy Space Center, Florida. File Number 79K05424, Seelye Stevenson Value & Knecht, March 1975. TRANSFER AISLE NORTH DOOR,ARCHITECTURAL NORTH ELEVATION AND MISC. DETAILS. Sheet 78 of 207 - Cape Canaveral Air Force Station, Launch Complex 39, Vehicle Assembly Building, VAB Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  14. Photocopy of drawing. VEHICLE ASSEMBLY BUILDING MODIFICATIONS, HIGH BAY AREA. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing. VEHICLE ASSEMBLY BUILDING MODIFICATIONS, HIGH BAY AREA. NASA John F. Kennedy Space Center, Florida. File Number 79K05424, Seelye Stevenson Value & Knecht, March 1975. TRANSFER AISLE NORTH DOOR, ARCHITECTURAL AND STRUCTURAL ELEVATIONS, SECTIONS AND DETAILS. Sheet 79 of 207 - Cape Canaveral Air Force Station, Launch Complex 39, Vehicle Assembly Building, VAB Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  15. Whole Building Cost and Performance Measurement: Data Collection Protocol Revision 2

    SciTech Connect

    Fowler, Kimberly M.; Spees, Kathleen L.; Kora, Angela R.; Rauch, Emily M.; Hathaway, John E.; Solana, Amy E.

    2009-03-27

    This protocol was written for the Department of Energy’s Federal Energy Management Program (FEMP) to be used by the public as a tool for assessing building cost and performance measurement. The primary audiences are sustainable design professionals, asset owners, building managers, and research professionals within the Federal sector. The protocol was developed based on the need for measured performance and cost data on sustainable design projects. Historically there has not been a significant driver in the public or private sector to quantify whole building performance in comparable terms. The deployment of sustainable design into the building sector has initiated many questions on the performance and operational cost of these buildings.

  16. High Performance Tools And Technologies

    SciTech Connect

    Collette, M R; Corey, I R; Johnson, J R

    2005-01-24

    This goal of this project was to evaluate the capability and limits of current scientific simulation development tools and technologies with specific focus on their suitability for use with the next generation of scientific parallel applications and High Performance Computing (HPC) platforms. The opinions expressed in this document are those of the authors, and reflect the authors' current understanding and functionality of the many tools investigated. As a deliverable for this effort, we are presenting this report describing our findings along with an associated spreadsheet outlining current capabilities and characteristics of leading and emerging tools in the high performance computing arena. This first chapter summarizes our findings (which are detailed in the other chapters) and presents our conclusions, remarks, and anticipations for the future. In the second chapter, we detail how various teams in our local high performance community utilize HPC tools and technologies, and mention some common concerns they have about them. In the third chapter, we review the platforms currently or potentially available to utilize these tools and technologies on to help in software development. Subsequent chapters attempt to provide an exhaustive overview of the available parallel software development tools and technologies, including their strong and weak points and future concerns. We categorize them as debuggers, memory checkers, performance analysis tools, communication libraries, data visualization programs, and other parallel development aides. The last chapter contains our closing information. Included with this paper at the end is a table of the discussed development tools and their operational environment.

  17. Behavioral Change and Building Performance: Strategies for Significant, Persistent, and Measurable Institutional Change

    SciTech Connect

    Wolfe, Amy K.; Malone, Elizabeth L.; Heerwagen, Judith H.; Dion, Jerome P.

    2014-04-01

    The people who use Federal buildings — Federal employees, operations and maintenance staff, and the general public — can significantly impact a building’s environmental performance and the consumption of energy, water, and materials. Many factors influence building occupants’ use of resources (use behaviors) including work process requirements, ability to fulfill agency missions, new and possibly unfamiliar high-efficiency/high-performance building technologies; a lack of understanding, education, and training; inaccessible information or ineffective feedback mechanisms; and cultural norms and institutional rules and requirements, among others. While many strategies have been used to introduce new occupant use behaviors that promote sustainability and reduced resource consumption, few have been verified in the scientific literature or have properly documented case study results. This paper documents validated strategies that have been shown to encourage new use behaviors that can result in significant, persistent, and measureable reductions in resource consumption. From the peer-reviewed literature, the paper identifies relevant strategies for Federal facilities and commercial buildings that focus on the individual, groups of individuals (e.g., work groups), and institutions — their policies, requirements, and culture. The paper documents methods with evidence of success in changing use behaviors and enabling occupants to effectively interact with new technologies/designs. It also provides a case study of the strategies used at a Federal facility — Fort Carson, Colorado. The paper documents gaps in the current literature and approaches, and provides topics for future research.

  18. High Performance Input/Output Systems for High Performance Computing and Four-Dimensional Data Assimilation

    NASA Technical Reports Server (NTRS)

    Fox, Geoffrey C.; Ou, Chao-Wei

    1997-01-01

    The approach of this task was to apply leading parallel computing research to a number of existing techniques for assimilation, and extract parameters indicating where and how input/output limits computational performance. The following was used for detailed knowledge of the application problems: 1. Developing a parallel input/output system specifically for this application 2. Extracting the important input/output characteristics of data assimilation problems; and 3. Building these characteristics s parameters into our runtime library (Fortran D/High Performance Fortran) for parallel input/output support.

  19. Research Support Facility (RSF): Leadership in Building Performance (Brochure)

    SciTech Connect

    Not Available

    2011-09-01

    This brochure/poster provides information on the features of the Research Support Facility including a detailed illustration of the facility with call outs of energy efficiency and renewable energy technologies. Imagine an office building so energy efficient that its occupants consume only the amount of energy generated by renewable power on the building site. The building, the Research Support Facility (RSF) occupied by the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) employees, uses 50% less energy than if it were built to current commercial code and achieves the U.S. Green Building Council's Leadership in Energy and Environmental Design (LEED{reg_sign}) Platinum rating. With 19% of the primary energy in the U.S. consumed by commercial buildings, the RSF is changing the way commercial office buildings are designed and built.

  20. Energy performance of evacuated glazings in residential buildings

    SciTech Connect

    Sullivan, R.; Beck, F.; arasteh, D.; Selkowitz, S.

    1995-09-01

    This paper presents the results of a study investigating the energy performance of evacuated glazings or glazings which maintain a vacuum between two panes of glass. Their performance is determined by comparing results to prototype highly insulated superwindows as well as a more conventional. insulating glass unit with a low-E coating and argon gas fill. We used the DOE2.1E energy analysis simulation program to analyze the annual and hourly heating energy use due to the windows of a prototypical single-story house located in Madison, Wisconsin. Cooling energy performance was also investigated. Our results show that for highly insulating windows, the solar heat gain coefficient is as important as the window`s U-factor in determining heating performance for window orientations facing west-south-east. For other orientations in which there is not much direct solar radiation, the window`s U-factor primarily governs performance. The vacuum glazings had lower heating requirements than the superwindows for most window orientations. The conventional low-E window outperformed the superwindows for southwest-south-southeast orientations These performance differences are directly related to the solar heat gain coefficients of the various windows analyzed. The cooling performance of the windows was inversely related to the heating performance. The lower solar heat gain coefficients of the superwindows resulted in the best cooling performance. However, we were able to mitigate the cooling differences of the windows by using an interior shading device that reduced the amount of solar gain at appropriate times.

  1. Energy performance of evacuated glazings in residential buildings

    SciTech Connect

    Sullivan, R.; Beck, F.; Arasteh, D.; Selkowitz, S.

    1996-10-01

    This paper presents the results of a study investigating the energy performance of evacuated glazings or glazings which maintain a vacuum between two panes of glass. Their performance is determined by comparing results to prototype highly insulated superwindows as well as a more conventional insulating glass unit with a low-E coating and argon gas fill. The authors used the DOE-2.1E energy analysis simulation program to analyze the annual and hourly heating energy use due to the windows of a prototypical single-story house located in Madison, Wisconsin. Cooling energy performance was also investigated. The results show that for highly insulating windows, the solar heat gain coefficient is as important as the window`s U-factor in determining heating performance for window orientations facing west-south-east. For other orientations in which there is not much direct solar radiation, the window`s U-factor primarily governs performance. The vacuum glazings had lower heating requirements than the superwindows for most window orientations. The conventional low-E window outperformed the superwindows for southwest-south-southeast orientations. These performance differences are directly related to the solar heat gain coefficients of the various windows analyzed. The cooling performance of the windows was inversely related to the heating performance. The lower solar heat gain coefficients of the superwindows resulted in the best cooling performance. However, the authors were able to mitigate the cooling differences of the windows by using an interior shading device that reduced the amount of solar gain at appropriate times.

  2. High performance magnetically controllable microturbines.

    PubMed

    Tian, Ye; Zhang, Yong-Lai; Ku, Jin-Feng; He, Yan; Xu, Bin-Bin; Chen, Qi-Dai; Xia, Hong; Sun, Hong-Bo

    2010-11-01

    Reported in this paper is two-photon photopolymerization (TPP) fabrication of magnetic microturbines with high surface smoothness towards microfluids mixing. As the key component of the magnetic photoresist, Fe(3)O(4) nanoparticles were carefully screened for homogeneous doping. In this work, oleic acid stabilized Fe(3)O(4) nanoparticles synthesized via high-temperature induced organic phase decomposition of an iron precursor show evident advantages in particle morphology. After modification with propoxylated trimethylolpropane triacrylate (PO(3)-TMPTA, a kind of cross-linker), the magnetic nanoparticles were homogeneously doped in acrylate-based photoresist for TPP fabrication of microstructures. Finally, a magnetic microturbine was successfully fabricated as an active mixing device for remote control of microfluids blending. The development of high quality magnetic photoresists would lead to high performance magnetically controllable microdevices for lab-on-a-chip (LOC) applications. PMID:20721411

  3. The High Cost of Building a Better University

    ERIC Educational Resources Information Center

    Guckert, Donald J.; King, Jeri Ripley

    2004-01-01

    Why does it cost so much? is a question often asked about university construction. On college and university campuses, the cost of new construction and renovation will appear high relative to other construction efforts in our communities. Part of the explanation of the high construction cost lies in the complexity of what we build, the codes…

  4. 1. GENERAL VIEW OF THE JUNIOR HIGH SCHOOL BUILDING FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. GENERAL VIEW OF THE JUNIOR HIGH SCHOOL BUILDING FROM THE SOUTH. THE ORIGINAL STRUCTURE (1914) IS VISIBLE ON THE RIGHT, AND THE 1928 ADDITION ON THE LEFT. THE HEARST FREE LIBRARY IS AT THE FAR LEFT OF THE PHOTO. - Anaconda Historic District, Anaconda Junior High School, Fourth & Main Streets, Anaconda, Deer Lodge County, MT

  5. New, high performance rotating parachute

    SciTech Connect

    Pepper, W.B. Jr.

    1983-01-01

    A new rotating parachute has been designed primarily for recovery of high performance reentry vehicles. Design and development/testing results are presented from low-speed wind tunnel testing, free-flight deployments at transonic speeds and tests in a supersonic wind tunnel at Mach 2.0. Drag coefficients of 1.15 based on the 2-ft diameter of the rotor have been measured in the wind tunnel. Stability of the rotor is excellent.

  6. High performance ammonium nitrate propellant

    NASA Technical Reports Server (NTRS)

    Anderson, F. A. (Inventor)

    1979-01-01

    A high performance propellant having greatly reduced hydrogen chloride emission is presented. It is comprised of: (1) a minor amount of hydrocarbon binder (10-15%), (2) at least 85% solids including ammonium nitrate as the primary oxidizer (about 40% to 70%), (3) a significant amount (5-25%) powdered metal fuel, such as aluminum, (4) a small amount (5-25%) of ammonium perchlorate as a supplementary oxidizer, and (5) optionally a small amount (0-20%) of a nitramine.

  7. High Efficiency, High Performance Clothes Dryer

    SciTech Connect

    Peter Pescatore; Phil Carbone

    2005-03-31

    This program covered the development of two separate products; an electric heat pump clothes dryer and a modulating gas dryer. These development efforts were independent of one another and are presented in this report in two separate volumes. Volume 1 details the Heat Pump Dryer Development while Volume 2 details the Modulating Gas Dryer Development. In both product development efforts, the intent was to develop high efficiency, high performance designs that would be attractive to US consumers. Working with Whirlpool Corporation as our commercial partner, TIAX applied this approach of satisfying consumer needs throughout the Product Development Process for both dryer designs. Heat pump clothes dryers have been in existence for years, especially in Europe, but have not been able to penetrate the market. This has been especially true in the US market where no volume production heat pump dryers are available. The issue has typically been around two key areas: cost and performance. Cost is a given in that a heat pump clothes dryer has numerous additional components associated with it. While heat pump dryers have been able to achieve significant energy savings compared to standard electric resistance dryers (over 50% in some cases), designs to date have been hampered by excessively long dry times, a major market driver in the US. The development work done on the heat pump dryer over the course of this program led to a demonstration dryer that delivered the following performance characteristics: (1) 40-50% energy savings on large loads with 35 F lower fabric temperatures and similar dry times; (2) 10-30 F reduction in fabric temperature for delicate loads with up to 50% energy savings and 30-40% time savings; (3) Improved fabric temperature uniformity; and (4) Robust performance across a range of vent restrictions. For the gas dryer development, the concept developed was one of modulating the gas flow to the dryer throughout the dry cycle. Through heat modulation in a

  8. High-Rise Buildings versus Outdoor Thermal Environment in Chongqing

    PubMed Central

    Lu, Jun; Chen, Jin-hua; Tang, Ying; Feng, Yuan; Wang, Jin-sha

    2007-01-01

    This paper gives a brief description of the over quick urbanization since Chongqing, one of the biggest cities in China, has been a municipality directly under the Central Government in 1997, excessive development and exceeding increase of high-rise buildings because of its special geographical position which finally leads to the worsening of the urban outdoor thermal environment. Then, this paper makes a bright balance to the field measurement and simulated results of the wind speed field, temperature field of one multifunctional high-rise building in Chongqing university located in the city center, and the contrasted results validate the correctness of CFD in the outdoor thermal environmental simulation, expose the disadvantages of high-rise buildings on the aspects of blocking the wind field, decreasing wind speed which results in accumulation of the air-conditioning heat revolving around and periscian region where sunshine can not rip into. Finally, in order to improve the urban outdoor thermal environment near the high-rise buildings especially for the angle of natural ventilation, this paper simulates the wind environment in different architectural compositions and architectural layouts by CFD, and the simulated results show that freestyle and tower buildings which can guarantee the wind speed and take the air-conditioning heat away are much suitable and reasonable for the special Chongqing geography. These conclusions can also be used as a reference in other mountain cities, especially for the one with a great number of populations.

  9. Building Face Composites Can Harm Lineup Identification Performance

    ERIC Educational Resources Information Center

    Wells, Gary L.; Charman, Steve D.; Olson, Elizabeth A.

    2005-01-01

    Face composite programs permit eyewitnesses to build likenesses of target faces by selecting facial features and combining them into an intact face. Research has shown that these composites are generally poor likenesses of the target face. Two experiments tested the proposition that this composite-building process could harm the builder's memory…

  10. Improving building energy system performance by continuous commissioning

    SciTech Connect

    Liu, M.

    1999-10-01

    Commissioning has played an important role in improved building comfort and reduced energy consumption. This article presents an advanced form of commissioning for existing buildings, called continuous commissioning (CC), which has produced energy savings comparable to those produced by the traditional audit/retrofit process at a third of the cost. It has also increased operating staff skills, reduced maintenance costs, and improved building comfort--extras which are not provided by usual retrofit programs. This article will present the philosophy, process, cost, and savings. Continuous commissioning is a process developed by the Energy Systems Laboratory (ESL) to: (1) optimize the operation of existing systems to improve building comfort and reduce building energy cost; (2) solve existing comfort and IAQ problems; (3) guarantee continuous optimal operation by operational staff in future years; and (4) provide optimal energy retrofit suggestions to owners to minimize the project costs.