Science.gov

Sample records for high performance control

  1. High performance bilateral telerobot control.

    PubMed

    Kline-Schoder, Robert; Finger, William; Hogan, Neville

    2002-01-01

    Telerobotic systems are used when the environment that requires manipulation is not easily accessible to humans, as in space, remote, hazardous, or microscopic applications or to extend the capabilities of an operator by scaling motions and forces. The Creare control algorithm and software is an enabling technology that makes possible guaranteed stability and high performance for force-feedback telerobots. We have developed the necessary theory, structure, and software design required to implement high performance telerobot systems with time delay. This includes controllers for the master and slave manipulators, the manipulator servo levels, the communication link, and impedance shaping modules. We verified the performance using both bench top hardware as well as a commercial microsurgery system. PMID:15458092

  2. High performance magnetically controllable microturbines.

    PubMed

    Tian, Ye; Zhang, Yong-Lai; Ku, Jin-Feng; He, Yan; Xu, Bin-Bin; Chen, Qi-Dai; Xia, Hong; Sun, Hong-Bo

    2010-11-01

    Reported in this paper is two-photon photopolymerization (TPP) fabrication of magnetic microturbines with high surface smoothness towards microfluids mixing. As the key component of the magnetic photoresist, Fe(3)O(4) nanoparticles were carefully screened for homogeneous doping. In this work, oleic acid stabilized Fe(3)O(4) nanoparticles synthesized via high-temperature induced organic phase decomposition of an iron precursor show evident advantages in particle morphology. After modification with propoxylated trimethylolpropane triacrylate (PO(3)-TMPTA, a kind of cross-linker), the magnetic nanoparticles were homogeneously doped in acrylate-based photoresist for TPP fabrication of microstructures. Finally, a magnetic microturbine was successfully fabricated as an active mixing device for remote control of microfluids blending. The development of high quality magnetic photoresists would lead to high performance magnetically controllable microdevices for lab-on-a-chip (LOC) applications. PMID:20721411

  3. High performance composites with active stiffness control.

    PubMed

    Tridech, Charnwit; Maples, Henry A; Robinson, Paul; Bismarck, Alexander

    2013-09-25

    High performance carbon fiber reinforced composites with controllable stiffness could revolutionize the use of composite materials in structural applications. Here we describe a structural material, which has a stiffness that can be actively controlled on demand. Such a material could have applications in morphing wings or deployable structures. A carbon fiber reinforced-epoxy composite is described that can undergo an 88% reduction in flexural stiffness at elevated temperatures and fully recover when cooled, with no discernible damage or loss in properties. Once the stiffness has been reduced, the required deformations can be achieved at much lower actuation forces. For this proof-of-concept study a thin polyacrylamide (PAAm) layer was electrocoated onto carbon fibers that were then embedded into an epoxy matrix via resin infusion. Heating the PAAm coating above its glass transition temperature caused it to soften and allowed the fibers to slide within the matrix. To produce the stiffness change the carbon fibers were used as resistance heating elements by passing a current through them. When the PAAm coating had softened, the ability of the interphase to transfer load to the fibers was significantly reduced, greatly lowering the flexural stiffness of the composite. By changing the moisture content in PAAm fiber coating, the temperature at which the PAAm softens and the composites undergo a reduction in stiffness can be tuned. PMID:23978266

  4. Stability and control of maneuvering high-performance aircraft

    NASA Technical Reports Server (NTRS)

    Stengel, R. F.; Berry, P. W.

    1977-01-01

    The stability and control of a high-performance aircraft was analyzed, and a design methodology for a departure prevention stability augmentation system (DPSAS) was developed. A general linear aircraft model was derived which includes maneuvering flight effects and trim calculation procedures for investigating highly dynamic trajectories. The stability and control analysis systematically explored the effects of flight condition and angular motion, as well as the stability of typical air combat trajectories. The effects of configuration variation also were examined.

  5. TMD-Based Structural Control of High Performance Steel Bridges

    NASA Astrophysics Data System (ADS)

    Kim, Tae Min; Kim, Gun; Kyum Kim, Moon

    2012-08-01

    The purpose of this study is to investigate the effectiveness of structural control using tuned mass damper (TMD) for suppressing excessive traffic induced vibration of high performance steel bridge. The study considered 1-span steel plate girder bridge and bridge-vehicle interaction using HS-24 truck model. A numerical model of steel plate girder, traffic load, and TMD is constructed and time history analysis is performed using commercial structural analysis program ABAQUS 6.10. Results from analyses show that high performance steel bridge has dynamic serviceability problem, compared to relatively low performance steel bridge. Therefore, the structural control using TMD is implemented in order to alleviate dynamic serviceability problems. TMD is applied to the bridge with high performance steel and then vertical vibration due to dynamic behavior is assessed again. In consequent, by using TMD, it is confirmed that the residual amplitude is appreciably reduced by 85% in steady-state vibration. Moreover, vibration serviceability assessment using 'Reiher-Meister Curve' is also remarkably improved. As a result, this paper provides the guideline for economical design of I-girder using high performance steel and evaluates the effectiveness of structural control using TMD, simultaneously.

  6. High-performance quantitative robust switching control for optical telescopes

    NASA Astrophysics Data System (ADS)

    Lounsbury, William P.; Garcia-Sanz, Mario

    2014-07-01

    This paper introduces an innovative robust and nonlinear control design methodology for high-performance servosystems in optical telescopes. The dynamics of optical telescopes typically vary according to azimuth and altitude angles, temperature, friction, speed and acceleration, leading to nonlinearities and plant parameter uncertainty. The methodology proposed in this paper combines robust Quantitative Feedback Theory (QFT) techniques with nonlinear switching strategies that achieve simultaneously the best characteristics of a set of very active (fast) robust QFT controllers and very stable (slow) robust QFT controllers. A general dynamic model and a variety of specifications from several different commercially available amateur Newtonian telescopes are used for the controller design as well as the simulation and validation. It is also proven that the nonlinear/switching controller is stable for any switching strategy and switching velocity, according to described frequency conditions based on common quadratic Lyapunov functions (CQLF) and the circle criterion.

  7. Switching LPV Control for High Performance Tactical Aircraft

    NASA Technical Reports Server (NTRS)

    Lu, Bei; Wu, Fen; Kim, SungWan

    2004-01-01

    This paper examines a switching Linear Parameter-Varying (LPV) control approach to determine if it is practical to use for flight control designs within a wide angle of attack region. The approach is based on multiple parameter-dependent Lyapunov functions. The full parameter space is partitioned into overlapping subspaces and a family of LPV controllers are designed, each suitable for a specific parameter subspace. The hysteresis switching logic is used to accomplish the transition among different parameter subspaces. The proposed switching LPV control scheme is applied to an F-16 aircraft model with different actuator dynamics in low and high angle of attack regions. The nonlinear simulation results show that the aircraft performs well when switching among different angle of attack regions.

  8. X-31 high angle of attack control system performance

    NASA Technical Reports Server (NTRS)

    Huber, Peter; Seamount, Patricia

    1994-01-01

    The design goals for the X-31 flight control system were: (1) level 1 handling qualities during post-stall maneuvering (30 to 70 degrees angle-of-attack); (2) thrust vectoring to enhance performance across the flight envelope; and (3) adequate pitch-down authority at high angle-of-attack. Additional performance goals are discussed. A description of the flight control system is presented, highlighting flight control system features in the pitch and roll axes and X-31 thrust vectoring characteristics. The high angle-of-attack envelope clearance approach will be described, including a brief explanation of analysis techniques and tools. Also, problems encountered during envelope expansion will be discussed. This presentation emphasizes control system solutions to problems encountered in envelope expansion. An essentially 'care free' envelope was cleared for the close-in-combat demonstrator phase. High angle-of-attack flying qualities maneuvers are currently being flown and evaluated. These results are compared with pilot opinions expressed during the close-in-combat program and with results obtained from the F-18 HARV for identical maneuvers. The status and preliminary results of these tests are discussed.

  9. High-performance solar-control windows. Final report

    SciTech Connect

    King, W.J.

    1980-04-01

    The use of ion-beam sputtered, metal-dielectric layers was investigated for fabricating high-performance solar-control windows for office buildings and residences. Two basic types of windows were studied. The first was optimized for rejecting incident solar energy during the cooling season while maintaining high daylight transmittance. The second was optimized for transmission of solar energy and reduction of thermal losses in the heating season by maximizing reflectivity in the long-wave infrared (i.e., transparent heat mirror). Various compromise configurations for performing both functions were also considered. The program covered original equipment (glass) and retrofit (plastic) substrate materials. Various metal-dielectric combinations, including Cu-SiO/sub 2/, Bs-SiO/sub 2/ (Bs = brass), Bs-Al/sub 2/O/sub 3/, AG-SiO/sub 2/, and Ag-Al/sub 2/O/sub 3/, were used to obtain the necessary optical characteristics. Extensive weathering tests were conducted to demonstrate that the final systems developed are capable of extended life in a practical environment. Roll-to-roll (1' wide) coating was demonstrated for retrofit office and residential windows on various forms of polyester. Comparable window performance was achieved on polypropylene and teflon FEP substrates. A brief economic analysis is presented which indicates that KCl's processing is completely consistent with the price structure in the solar-control film industry.

  10. Robust high-performance control for robotic manipulators

    NASA Technical Reports Server (NTRS)

    Seraji, Homayoun (Inventor)

    1991-01-01

    Model-based and performance-based control techniques are combined for an electrical robotic control system. Thus, two distinct and separate design philosophies have been merged into a single control system having a control law formulation including two distinct and separate components, each of which yields a respective signal component that is combined into a total command signal for the system. Those two separate system components include a feedforward controller and a feedback controller. The feedforward controller is model-based and contains any known part of the manipulator dynamics that can be used for on-line control to produce a nominal feedforward component of the system's control signal. The feedback controller is performance-based and consists of a simple adaptive PID controller which generates an adaptive control signal to complement the nominal feedforward signal.

  11. Robust high-performance control for robotic manipulators

    NASA Technical Reports Server (NTRS)

    Seraji, Homayoun (Inventor)

    1989-01-01

    Model-based and performance-based control techniques are combined for an electrical robotic control system. Thus, two distinct and separate design philosophies were merged into a single control system having a control law formulation including two distinct and separate components, each of which yields a respective signal componet that is combined into a total command signal for the system. Those two separate system components include a feedforward controller and feedback controller. The feedforward controller is model-based and contains any known part of the manipulator dynamics that can be used for on-line control to produce a nominal feedforward component of the system's control signal. The feedback controller is performance-based and consists of a simple adaptive PID controller which generates an adaptive control signal to complement the nomical feedforward signal.

  12. Control Software for a High-Performance Telerobot

    NASA Technical Reports Server (NTRS)

    Kline-Schoder, Robert J.; Finger, William

    2005-01-01

    A computer program for controlling a high-performance, force-reflecting telerobot has been developed. The goal in designing a telerobot-control system is to make the velocity of the slave match the master velocity, and the environmental force on the master match the force on the slave. Instability can arise from even small delays in propagation of signals between master and slave units. The present software, based on an impedance-shaping algorithm, ensures stability even in the presence of long delays. It implements a real-time algorithm that processes position and force measurements from the master and slave and represents the master/slave communication link as a transmission line. The algorithm also uses the history of the control force and the slave motion to estimate the impedance of the environment. The estimate of the impedance of the environment is used to shape the controlled slave impedance to match the transmission-line impedance. The estimate of the environmental impedance is used to match the master and transmission-line impedances and to estimate the slave/environment force in order to present that force immediately to the operator via the master unit.

  13. Archon: A modern controller for high performance astronomical CCDs

    NASA Astrophysics Data System (ADS)

    Bredthauer, Greg

    2014-08-01

    The rapid evolution of commercial FPGAs and analog ICs has enabled the development of Archon, a new modular high performance astronomical CCD controller. CCD outputs are digitized by 16-bit 100 MHz ADCs with differential AC-coupled preamplifiers. The raw data stream from an ADC can be stored in parallel with standard image data into three onboard 512 MB frame buffers. Pixel values are computed using digital correlated double sampling. At low pixel rates (< 1 MHz), the dynamic range achievable by averaging hundreds of ADC samples per pixel can exceed 16 bits, so an option to store 32 bits per pixel is provided. CCD clocks are generated by 14-bit 100 MHz DACs. The scripted timing core driving the clocks can generate a new target voltage for each clock every 10 ns, and the clock slew rates are individually programmable. CCD biases are derived from 16-bit DACs, are continuously monitored for voltage and current, and power up and down in a customizable sequence. Communication between the controller and a host computer occurs over a gigabit Ethernet interface (fiber or copper). A CCD configuration is specified by a simple text file. Together, these features simplify the tuning and debugging of scientific CCDs, and enable CCD-limited imaging. I present details of the controller architecture, examples of CCD tuning, and measured performance data of the controller alone (dynamic range of 108 dB at 100 kHz and 98 dB at 1 MHz) and in combination with an STA1600LN CCD.

  14. A low cost, high performance remotely controlled backhoe/excavator

    SciTech Connect

    Rizzo, J.

    1995-12-31

    This paper addresses a state of the art, low cost, remotely controlled backhoe/excavator system for remediation use at hazardous waste sites. The all weather, all terrain, Remote Dig-It is based on a simple, proven construction platform and incorporates state of the art sensors, control, telemetry and other subsystems derived from advanced underwater remotely operated vehicle systems. The system can be towed to a site without the use of a trailer, manually operated by an on board operator or operated via a fiber optic or optional RF communications link by a remotely positioned operator. A proportional control system is piggy backed onto the standard manual control system. The control system improves manual operation, allows rapid manual/remote mode selection and provides fine manual or remote control of all functions. The system incorporates up to 4 separate video links, acoustic obstacle proximity sensors, and stereo audio pickups and an optional differential GPS navigation. Video system options include electronic panning and tilting within a distortion-corrected wide angle field of view. The backhoe/excavator subsystem has a quick disconnect interface feature which allows its use as a manipulator with a wide variety of end effectors and tools. The Remote Dig-It was developed to respond to the need for a low-cost, effective remediation system for use at sites containing hazardous materials. The prototype system was independently evaluated for this purpose by the Army at the Jefferson Proving Ground where it surpassed all performance goals. At the time of this writing, the Remote Dig-It system is currently the only backhoe/excavator which met the Army`s goals for remediation systems for use at hazardous waste sites and it costs a fraction of any known competing offerings.

  15. Nonlinear stability and control study of highly maneuverable high performance aircraft

    NASA Technical Reports Server (NTRS)

    Mohler, R. R.

    1993-01-01

    This project is intended to research and develop new nonlinear methodologies for the control and stability analysis of high-performance, high angle-of-attack aircraft such as HARV (F18). Past research (reported in our Phase 1, 2, and 3 progress reports) is summarized and more details of final Phase 3 research is provided. While research emphasis is on nonlinear control, other tasks such as associated model development, system identification, stability analysis, and simulation are performed in some detail as well. An overview of various models that were investigated for different purposes such as an approximate model reference for control adaptation, as well as another model for accurate rigid-body longitudinal motion is provided. Only a very cursory analysis was made relative to type 8 (flexible body dynamics). Standard nonlinear longitudinal airframe dynamics (type 7) with the available modified F18 stability derivatives, thrust vectoring, actuator dynamics, and control constraints are utilized for simulated flight evaluation of derived controller performance in all cases studied.

  16. Robust high-performance control for robotic manipulators

    NASA Technical Reports Server (NTRS)

    Seraji, H.

    1989-01-01

    A robust control scheme to accomplish accurate trajectory tracking for an integrated system of manipulator-plus-actuators is proposed. The control scheme comprises a feedforward and a feedback controller. The feedforward controller contains any known part of the manipulator dynamics that can be used for online control. The feedback controller consists of adaptive position and velocity feedback gains and an auxiliary signal which is simply generated by a fixed-gain proportional/integral/derivative controller. The feedback controller is updated by very simple adaptation laws which contain both proportional and integral adaptation terms. By introduction of a simple sigma modification to the adaptation laws, robustness is guaranteed in the presence of unmodeled dynamics and disturbances.

  17. Nonlinear stability and control study of highly maneuverable high performance aircraft, phase 2

    NASA Technical Reports Server (NTRS)

    Mohler, R. R.

    1992-01-01

    This research should lead to the development of new nonlinear methodologies for the adaptive control and stability analysis of high angle-of-attack aircraft such as the F18 (HARV). The emphasis has been on nonlinear adaptive control, but associated model development, system identification, stability analysis and simulation is performed in some detail as well. Various models under investigation for different purposes are summarized in tabular form. Models and simulation for the longitudinal dynamics have been developed for all types except the nonlinear ordinary differential equation model. Briefly, studies completed indicate that nonlinear adaptive control can outperform linear adaptive control for rapid maneuvers with large changes in alpha. The transient responses are compared where the desired alpha varies from 5 degrees to 60 degrees to 30 degrees and back to 5 degrees in all about 16 sec. Here, the horizontal stabilator is the only control used with an assumed first-order linear actuator with a 1/30 sec time constant.

  18. Investigation of High-alpha Lateral-directional Control Power Requirements for High-performance Aircraft

    NASA Technical Reports Server (NTRS)

    Foster, John V.; Ross, Holly M.; Ashley, Patrick A.

    1993-01-01

    Designers of the next-generation fighter and attack airplanes are faced with the requirements of good high-angle-of-attack maneuverability as well as efficient high speed cruise capability with low radar cross section (RCS) characteristics. As a result, they are challenged with the task of making critical design trades to achieve the desired levels of maneuverability and performance. This task has highlighted the need for comprehensive, flight-validated lateral-directional control power design guidelines for high angles of attack. A joint NASA/U.S. Navy study has been initiated to address this need and to investigate the complex flight dynamics characteristics and controls requirements for high-angle-of-attack lateral-directional maneuvering. A multi-year research program is underway which includes ground-based piloted simulation and flight validation. This paper will give a status update of this program that will include a program overview, description of test methodology and preliminary results.

  19. High-performance semiactive controller for structural vibration suppression

    NASA Astrophysics Data System (ADS)

    Bobrow, James E.; Jabbari, Faryar

    1997-06-01

    This article presents an approach to vibration suppression that does not use a viscous damper. The actuator used behaves effectively as a spring with an adjustable unstressed length. By adjusting this unstressed length on-line from feedback, it is possible to obtain fast settling times and superior shock isolation characteristics. At the instants when energy in the actuator is maximized, we discard this energy as heat in the working fluid by opening a low power solenoid valve for a short time interval. This sets the unstressed length of the actuator, or effective spring, to be zero. The total energy in the vibrating structure is therefore decreased at these instants of unstressed length adjustment. Analytical results and simulations are given that demonstrate the performance of our approach.

  20. Integrating Computer Architectures into the Design of High-Performance Controllers

    NASA Technical Reports Server (NTRS)

    Jacklin, Stephen A.; Leyland, Jane A.; Warmbrodt, William

    1986-01-01

    Modern control systems must typically perform real-time identification and control, as well as coordinate a host of other activities related to user interaction, on-line graphics, and file management. This paper discusses five global design considerations that are useful to integrate array processor, multimicroprocessor, and host computer system architecture into versatile, high-speed controllers. Such controllers are capable of very high control throughput, and can maintain constant interaction with the non-real-time or user environment. As an application example, the architecture of a high-speed, closed-loop controller used to actively control helicopter vibration will be briefly discussed. Although this system has been designed for use as the controller for real-time rotorcraft dynamics and control studies in a wind-tunnel environment, the control architecture can generally be applied to a wide range of automatic control applications.

  1. Nonlinear stability and control study of highly maneuverable high performance aircraft

    NASA Technical Reports Server (NTRS)

    Mohler, R. R.

    1991-01-01

    The purpose was to develop and apply new nonlinear system methodologies to the stability analysis and adaptive control of high angle of attack (alpha) aircraft such as the F-18. Considerable progress is documented on nonlinear adaptive control and associated model development, identification, and simulation. The analysis considered linear and nonlinear, longitudinal, high alpha aircraft dynamics with varying degrees of approximation dependent on the purpose. In all cases, angle of attack or pitch rate was controlled primarily by a horizontal stabilizer. In most cases studied, a linear adaptive controller provided sufficient stability. However, it has been demonstrated by simulation of a simplified nonlinear model that certain large rapid maneuvers were not readily stabilized by the investigated linear adaptive control, but were controlled instead by means of a nonlinear time-series based adaptive control.

  2. High Performance, Robust Control of Flexible Space Structures: MSFC Center Director's Discretionary Fund

    NASA Technical Reports Server (NTRS)

    Whorton, M. S.

    1998-01-01

    Many spacecraft systems have ambitious objectives that place stringent requirements on control systems. Achievable performance is often limited because of difficulty of obtaining accurate models for flexible space structures. To achieve sufficiently high performance to accomplish mission objectives may require the ability to refine the control design model based on closed-loop test data and tune the controller based on the refined model. A control system design procedure is developed based on mixed H2/H(infinity) optimization to synthesize a set of controllers explicitly trading between nominal performance and robust stability. A homotopy algorithm is presented which generates a trajectory of gains that may be implemented to determine maximum achievable performance for a given model error bound. Examples show that a better balance between robustness and performance is obtained using the mixed H2/H(infinity) design method than either H2 or mu-synthesis control design. A second contribution is a new procedure for closed-loop system identification which refines parameters of a control design model in a canonical realization. Examples demonstrate convergence of the parameter estimation and improved performance realized by using the refined model for controller redesign. These developments result in an effective mechanism for achieving high-performance control of flexible space structures.

  3. Nonlinear stability and control study of highly maneuverable high performance aircraft, phase 2

    NASA Technical Reports Server (NTRS)

    Mohler, R. R.

    1992-01-01

    Research leading to the development of new nonlinear methodologies for the adaptive control and stability analysis of high angle of attack aircraft such as the F-18 is discussed. The emphasis has been on nonlinear adaptive control, but associated model development, system identification, stability analysis, and simulation were studied in some detail as well. Studies indicated that nonlinear adaptive control can outperform linear adaptive control for rapid maneuvers with large changes in angle of attack. Included here are studies on nonlinear model algorithmic controller design and an analysis of nonlinear system stability using robust stability analysis for linear systems.

  4. Dynamic neural networks based on-line identification and control of high performance motor drives

    NASA Technical Reports Server (NTRS)

    Rubaai, Ahmed; Kotaru, Raj

    1995-01-01

    In the automated and high-tech industries of the future, there wil be a need for high performance motor drives both in the low-power range and in the high-power range. To meet very straight demands of tracking and regulation in the two quadrants of operation, advanced control technologies are of a considerable interest and need to be developed. In response a dynamics learning control architecture is developed with simultaneous on-line identification and control. the feature of the proposed approach, to efficiently combine the dual task of system identification (learning) and adaptive control of nonlinear motor drives into a single operation is presented. This approach, therefore, not only adapts to uncertainties of the dynamic parameters of the motor drives but also learns about their inherent nonlinearities. In fact, most of the neural networks based adaptive control approaches in use have an identification phase entirely separate from the control phase. Because these approaches separate the identification and control modes, it is not possible to cope with dynamic changes in a controlled process. Extensive simulation studies have been conducted and good performance was observed. The robustness characteristics of neuro-controllers to perform efficiently in a noisy environment is also demonstrated. With this initial success, the principal investigator believes that the proposed approach with the suggested neural structure can be used successfully for the control of high performance motor drives. Two identification and control topologies based on the model reference adaptive control technique are used in this present analysis. No prior knowledge of load dynamics is assumed in either topology while the second topology also assumes no knowledge of the motor parameters.

  5. Design of a new high-performance pointing controller for the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Johnson, C. D.

    1993-01-01

    A new form of high-performance, disturbance-adaptive pointing controller for the Hubble Space Telescope (HST) is proposed. This new controller is all linear (constant gains) and can maintain accurate 'pointing' of the HST in the face of persistent randomly triggered uncertain, unmeasurable 'flapping' motions of the large attached solar array panels. Similar disturbances associated with antennas and other flexible appendages can also be accommodated. The effectiveness and practicality of the proposed new controller is demonstrated by a detailed design and simulation testing of one such controller for a planar-motion, fully nonlinear model of HST. The simulation results show a high degree of disturbance isolation and pointing stability.

  6. High-performance gimbal control for self-protection weapon systems

    NASA Astrophysics Data System (ADS)

    Downs, James; Smith, Stephen A.; Schwickert, Jim; Stockum, Larry A.

    1998-07-01

    The gimbal and control system for a high performance, acquisition, tracking and pointing system is described. This system provides full hemispherical coverage, precision stabilization, rapid position response, and precision laser pointing. The high performance laser pointing system (HPLPS) receives position and rate cues form an integrated threat- warning-system, slews to the predicted target location, acquires, tracks, and designates the target. The azimuth and elevation axes of the HPLPS are inertially stabilized with independent, high bandwidth, inertial rate loops. The cue to position control loop is implemented using a time-optimal control algorithm which slews each axis of the platform to the predicted target location with high accuracy and zero overshoot in minimum time. After cuing to position,m auto- track mode engages with a type 4, high bandwidth track loop. Track loop integrators are initialized to keep the platform moving at the cued target rate as control transfers from position cue to auto-track mode. After initially tracking with a narrow field of view tracking sensor, an active laser track is performed with a narrower field of view laser-spot- tracking sensor. The gimbal electronics use a Texas Instruments TMS320C30 digital signal processor and proprietary software executive to achieve the performance required for the 960 Hz control loop sample rates. Optical encoder, resolver, and high bandwidth fiver-optic-gyro sensors are used. Linear amplifiers drive the azimuth and elevation mirror motors and a sine wave commutated amplifier drives the outer gimbal motor.

  7. High performance two degrees of freedom attitude control for solar sails

    NASA Astrophysics Data System (ADS)

    Romagnoli, Daniele; Oehlschlägel, Thimo

    2011-12-01

    The purpose of this paper is to present a high performance solar sail attitude controller which uses ballast masses moving inside the sail's booms as actuators and to demonstrate its ability of performing time efficient reorientation maneuvers. The proposed controller consists of a combination of a feedforward and a feedback controller, which takes advantage of the feedforward's fast response and the feedback's ability of responding to unpredicted disturbances. The feedforward controller considers the attitude dynamics of the sailcraft as well as the disturbance torque due to the center of pressure offset to the center of mass of the sailcraft. Additional disturbance torques, like those coming from the environment or from asymmetry of the spacecraft structure, are then handled by the feedback controller. Simulation performance results are finally compared against results available in the literature.

  8. Design of high performance multivariable control systems for supermaneuverable aircraft at high angle of attack

    NASA Technical Reports Server (NTRS)

    Valavani, Lena

    1995-01-01

    The main motivation for the work under the present grant was to use nonlinear feedback linearization methods to further enhance performance capabilities of the aircraft, and robustify its response throughout its operating envelope. The idea was to use these methods in lieu of standard Taylor series linearization, in order to obtain a well behaved linearized plant, in its entire operational regime. Thus, feedback linearization was going to constitute an 'inner loop', which would then define a 'design plant model' to be compensated for robustness and guaranteed performance in an 'outer loop' application of modern linear control methods. The motivation for this was twofold; first, earlier work had shown that by appropriately conditioning the plant through conventional, simple feedback in an 'inner loop', the resulting overall compensated plant design enjoyed considerable enhancement of performance robustness in the presence of parametric uncertainty. Second, the nonlinear techniques did not have any proven robustness properties in the presence of unstructured uncertainty; a definition of robustness (and performance) is very difficult to achieve outside the frequency domain; to date, none is available for the purposes of control system design. Thus, by proper design of the outer loop, such properties could still be 'injected' in the overall system.

  9. Combined dynamic inversion and QFT flight control of an unstable high performance aircraft

    NASA Astrophysics Data System (ADS)

    Stout, Perry Walter

    Quantitative Feedback Theory (QFT) is a control system synthesis, technique that directly considers system uncertainties and disturbance magnitudes when formulating closed-loop control algorithms. Dynamic Inversion is a nonlinear control system design technique that relies on accurate mathematical models to compute control inputs producing arbitrary system responses. Both techniques have been applied to unstable high performance aircraft flight control, and produced effective aircraft controllers. Both techniques have certain drawbacks: Nonlinear QFT controllers tend to be unnecessarily conservative (the computed controllers have excessive bandwidth) because known system properties are treated as "unknown" disturbances during loop synthesis. Meanwhile Dynamic Inversion control is sensitive to differences between assumed mathematical models and actual system dynamic properties. Combining the two control techniques provides the benefit of both while suffering the drawbacks of neither, as demonstrated by Single Input, Single Output (SISO) control of a constant airspeed, no roll, no yaw nonlinear model of the F-16 aircraft, and by Multi-Input, Multi-Output (MIMO) control of a full six-degree-of-freedom version. Design performance of the combined controllers is verified by reduced actuator efforts and by reduced sensor noise to actuator input (U( s)/n(s)) transfer function magnitudes compared to standard QFT versions.

  10. A multi-layer robust adaptive fault tolerant control system for high performance aircraft

    NASA Astrophysics Data System (ADS)

    Huo, Ying

    Modern high-performance aircraft demand advanced fault-tolerant flight control strategies. Not only the control effector failures, but the aerodynamic type failures like wing-body damages often result in substantially deteriorate performance because of low available redundancy. As a result the remaining control actuators may yield substantially lower maneuvering capabilities which do not authorize the accomplishment of the air-craft's original specified mission. The problem is to solve the control reconfiguration on available control redundancies when the mission modification is urged to save the aircraft. The proposed robust adaptive fault-tolerant control (RAFTC) system consists of a multi-layer reconfigurable flight controller architecture. It contains three layers accounting for different types and levels of failures including sensor, actuator, and fuselage damages. In case of the nominal operation with possible minor failure(s) a standard adaptive controller stands to achieve the control allocation. This is referred to as the first layer, the controller layer. The performance adjustment is accounted for in the second layer, the reference layer, whose role is to adjust the reference model in the controller design with a degraded transit performance. The upmost mission adjust is in the third layer, the mission layer, when the original mission is not feasible with greatly restricted control capabilities. The modified mission is achieved through the optimization of the command signal which guarantees the boundedness of the closed-loop signals. The main distinguishing feature of this layer is the the mission decision property based on the current available resources. The contribution of the research is the multi-layer fault-tolerant architecture that can address the complete failure scenarios and their accommodations in realities. Moreover, the emphasis is on the mission design capabilities which may guarantee the stability of the aircraft with restricted post

  11. Damage-Mitigating Control of Space Propulsion Systems for High Performance and Extended Life

    NASA Technical Reports Server (NTRS)

    Ray, Asok; Wu, Min-Kuang

    1994-01-01

    A major goal in the control of complex mechanical system such as spacecraft rocket engine's advanced aircraft, and power plants is to achieve high performance with increased reliability, component durability, and maintainability. The current practice of decision and control systems synthesis focuses on improving performance and diagnostic capabilities under constraints that often do not adequately represent the materials degradation. In view of the high performance requirements of the system and availability of improved materials, the lack of appropriate knowledge about the properties of these materials will lead to either less than achievable performance due to overly conservative design, or over-straining of the structure leading to unexpected failures and drastic reduction of the service life. The key idea in this report is that a significant improvement in service life could be achieved by a small reduction in the system dynamic performance. The major task is to characterize the damage generation process, and then utilize this information in a mathematical form to synthesize a control law that would meet the system requirements and simultaneously satisfy the constraints that are imposed by the material and structural properties of the critical components. The concept of damage mitigation is introduced for control of mechanical systems to achieve high performance with a prolonged life span. A model of fatigue damage dynamics is formulated in the continuous-time setting, instead of a cycle-based representation, for direct application to control systems synthesis. An optimal control policy is then formulated via nonlinear programming under specified constraints of the damage rate and accumulated damage. The results of simulation experiments for the transient upthrust of a bipropellant rocket engine are presented to demonstrate efficacy of the damage-mitigating control concept.

  12. Expert Meeting: Recommended Approaches to Humidity Control in High Performance Homes

    SciTech Connect

    Rudd, A.

    2013-07-01

    The topic of this Building America expert meeting was 'Recommended Approaches to Humidity Control in High Performance Homes,' which was held on October 16, 2012, in Westford, MA, and brought together experts in the field of residential humidity control to address modeling issues for dehumidification. The presentations and discussions centered on computer simulation and field experience with these systems, with the goal of developing foundational information to support the development of a Building America Measure Guideline on this topic.

  13. High-Performance Integrated Control of water quality and quantity in urban water reservoirs

    NASA Astrophysics Data System (ADS)

    Galelli, S.; Castelletti, A.; Goedbloed, A.

    2015-11-01

    This paper contributes a novel High-Performance Integrated Control framework to support the real-time operation of urban water supply storages affected by water quality problems. We use a 3-D, high-fidelity simulation model to predict the main water quality dynamics and inform a real-time controller based on Model Predictive Control. The integration of the simulation model into the control scheme is performed by a model reduction process that identifies a low-order, dynamic emulator running 4 orders of magnitude faster. The model reduction, which relies on a semiautomatic procedural approach integrating time series clustering and variable selection algorithms, generates a compact and physically meaningful emulator that can be coupled with the controller. The framework is used to design the hourly operation of Marina Reservoir, a 3.2 Mm3 storm-water-fed reservoir located in the center of Singapore, operated for drinking water supply and flood control. Because of its recent formation from a former estuary, the reservoir suffers from high salinity levels, whose behavior is modeled with Delft3D-FLOW. Results show that our control framework reduces the minimum salinity levels by nearly 40% and cuts the average annual deficit of drinking water supply by about 2 times the active storage of the reservoir (about 4% of the total annual demand).

  14. Robust Damage-Mitigating Control of Aircraft for High Performance and Structural Durability

    NASA Technical Reports Server (NTRS)

    Caplin, Jeffrey; Ray, Asok; Joshi, Suresh M.

    1999-01-01

    This paper presents the concept and a design methodology for robust damage-mitigating control (DMC) of aircraft. The goal of DMC is to simultaneously achieve high performance and structural durability. The controller design procedure involves consideration of damage at critical points of the structure, as well as the performance requirements of the aircraft. An aeroelastic model of the wings has been formulated and is incorporated into a nonlinear rigid-body model of aircraft flight-dynamics. Robust damage-mitigating controllers are then designed using the H(infinity)-based structured singular value (mu) synthesis method based on a linearized model of the aircraft. In addition to penalizing the error between the ideal performance and the actual performance of the aircraft, frequency-dependent weights are placed on the strain amplitude at the root of each wing. Using each controller in turn, the control system is put through an identical sequence of maneuvers, and the resulting (varying amplitude cyclic) stress profiles are analyzed using a fatigue crack growth model that incorporates the effects of stress overload. Comparisons are made to determine the impact of different weights on the resulting fatigue crack damage in the wings. The results of simulation experiments show significant savings in fatigue life of the wings while retaining the dynamic performance of the aircraft.

  15. Damage-mitigating control of aircraft for high performance and life extension

    NASA Astrophysics Data System (ADS)

    Caplin, Jeffrey

    1998-12-01

    A methodology is proposed for the synthesis of a Damage-Mitigating Control System for a high-performance fighter aircraft. The design of such a controller involves consideration of damage to critical points of the structure, as well as the performance requirements of the aircraft. This research is interdisciplinary, and brings existing knowledge in the fields of unsteady aerodynamics, structural dynamics, fracture mechanics, and control theory together to formulate a new approach towards aircraft flight controller design. A flexible wing model is formulated using the Finite Element Method, and the important mode shapes and natural frequencies are identified. The Doublet Lattice Method is employed to develop an unsteady flow model for computation of the unsteady aerodynamic loads acting on the wing due to rigid-body maneuvers and structural deformation. These two models are subsequently incorporated into a pre-existing nonlinear rigid-body aircraft flight-dynamic model. A family of robust Damage-Mitigating Controllers is designed using the Hinfinity-optimization and mu-synthesis method. In addition to weighting the error between the ideal performance and the actual performance of the aircraft, weights are also placed on the strain amplitude at the root of each wing. The results show significant savings in fatigue life of the wings while retaining the dynamic performance of the aircraft.

  16. An experimental study of concurrent methods for adaptively controlling vertical tail buffet in high performance aircraft

    NASA Astrophysics Data System (ADS)

    Roberts, Patrick J.

    High performance twin-tail aircraft, like the F-15 and F/A-18, encounter a condition known as tail buffet. At high angles of attack, vortices are generated at the wing fuselage interface (shoulder) or other leading edge extensions. These vortices are directed toward the twin vertical tails. When the flow interacts with the vertical tail it creates pressure variations that can oscillate the vertical tail assembly. This results in fatigue cracks in the vertical tail assembly that can decrease the fatigue life and increase maintenance costs. Recently, an offset piezoceramic stack actuator was used on an F-15 wind tunnel model to control buffet induced vibrations at high angles of attack. The controller was based on the acceleration feedback control methods, In this thesis a procedure for designing the offset piezoceramic stack actuators is developed. This design procedure includes determining the quantity and type of piezoceramic stacks used in these actuators. The changes of stresses, in the vertical tail caused by these actuators during an active control, are investigated. In many cases, linear controllers are very effective in reducing vibrations. However, during flight, the natural frequencies of the vertical tail structural system changes as the airspeed increases. This in turn, reduces the effectiveness of a linear controller. Other causes such as the unmodeled dynamics and nonlinear effects due to debonds also reduce the effectiveness of linear controllers. In this thesis, an adaptive neural network is used to augment the linear controller to correct these effects.

  17. High performance control of a three-level IGBT inverter fed AC drive

    SciTech Connect

    Zhang, J.

    1995-12-31

    Three-level PWM inverters have been increasingly employed in industry and traction applications where high power and efficiency energy conversions are required. This paper presents a high performance control of a cage induction motor drive fed by a 100 Hp three-level IGBT inverter operating at a low switching frequency. A practical math model of the drive control system is established to aid in the control design to improve the system stability, dynamic performance and robustness over a wide speed range. The modeling and the simulation in Matlab/Simulink facilitate the self-tuning of the regulators in the multi-loop systems. The field oriented control and three-level space-vector modulation together with the drive protection and diagnostics are implemented in software based on a DSP TMS320C31. Experimental results based on the IGBT inverter prototype are given to verify the design and performance. Test results in motor common-mode voltage reduction and inverter neutral-point potential control re also briefly presented.

  18. Performance improvements of a highly integrated digital electronic control system for an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Putnam, T. W.; Burcham, F. W., Jr.; Andries, M. G.; Kelly, J. B.

    1985-01-01

    The NASA highly integrated digital electronic control (HIDEC) program is structured to conduct flight research into the benefits of integrating an aircraft flight control system with the engine control system. A brief description of the HIDEC system installed on an F-15 aircraft is provided. The adaptive engine control system (ADECS) mode is described in detail, together with simulation results and analyses that show the significant excess thrust improvements achievable with the ADECS mode. It was found that this increased thrust capability is accompanied by reduced fan stall margin and can be realized during flight conditions where engine face distortion is low. The results of analyses and simulations also show that engine thrust response is improved and that fuel consumption can be reduced. Although the performance benefits that accrue because of airframe and engine control integration are being demonstrated on an F-15 aircraft, the principles are applicable to advanced aircraft such as the advanced tactical fighter and advanced tactical aircraft.

  19. Development of a preliminary high-angle-of-attack nose-down pitch control requirement for high-performance aircraft

    NASA Technical Reports Server (NTRS)

    Nguyen, Luat T.; Foster, John V.

    1990-01-01

    The requirements for high-angle-of-attack nose-down pitch control for advanced high-performance aircraft are discussed. Background information on fundamental factors that influence and, to a large extent, determine the high angle-of-attack nose-down control requirement is briefly reviewed. Guidelines currently proposed by other sources which attempt to define these requirements are discussed. A requirement based on NASA analysis of the characteristics of existing relaxed static stability (RSS) aircraft is presented. This analysis could provide the basis for a preliminary design guide.

  20. Control performances of a piezoactuator direct drive valve system at high temperatures with thermal insulation

    NASA Astrophysics Data System (ADS)

    Han, Yung-Min; Han, Chulhee; Kim, Wan Ho; Seong, Ho Yong; Choi, Seung-Bok

    2016-09-01

    This technical note presents control performances of a piezoactuator direct drive valve (PDDV) operated at high temperature environment. After briefly discussing operating principle and mechanical dimensions of the proposed PDDV, an appropriate size of the PDDV is manufactured. As a first step, the temperature effect on the valve performance is experimentally investigated by measuring the spool displacement at various temperatures. Subsequently, the PDDV is thermally insulated using aerogel and installed in a large-size heat chamber in which the pneumatic-hydraulic cylinders and sensors are equipped. A proportional-integral-derivative feedback controller is then designed and implemented to control the spool displacement of the valve system. In this work, the spool displacement is chosen as a control variable since it is directly related to the flow rate of the valve system. Three different sinusoidal displacements with different frequencies of 1, 10 and 50 Hz are used as reference spool displacement and tracking controls are undertaken up to 150 °C. It is shown that the proposed PDDV with the thermal insulation can provide favorable control responses without significant tracking errors at high temperatures.

  1. New Technique of High-Performance Torque Control Developed for Induction Machines

    NASA Technical Reports Server (NTRS)

    Kenny, Barbara H.

    2003-01-01

    Two forms of high-performance torque control for motor drives have been described in the literature: field orientation control and direct torque control. Field orientation control has been the method of choice for previous NASA electromechanical actuator research efforts with induction motors. Direct torque control has the potential to offer some advantages over field orientation, including ease of implementation and faster response. However, the most common form of direct torque control is not suitable for the highspeed, low-stator-flux linkage induction machines designed for electromechanical actuators with the presently available sample rates of digital control systems (higher sample rates are required). In addition, this form of direct torque control is not suitable for the addition of a high-frequency carrier signal necessary for the "self-sensing" (sensorless) position estimation technique. This technique enables low- and zero-speed position sensorless operation of the machine. Sensorless operation is desirable to reduce the number of necessary feedback signals and transducers, thus improving the reliability and reducing the mass and volume of the system. This research was directed at developing an alternative form of direct torque control known as a "deadbeat," or inverse model, solution. This form uses pulse-width modulation of the voltage applied to the machine, thus reducing the necessary sample and switching frequency for the high-speed NASA motor. In addition, the structure of the deadbeat form allows the addition of the high-frequency carrier signal so that low- and zero-speed sensorless operation is possible. The new deadbeat solution is based on using the stator and rotor flux as state variables. This choice of state variables leads to a simple graphical representation of the solution as the intersection of a constant torque line with a constant stator flux circle. Previous solutions have been expressed only in complex mathematical terms without a

  2. High-Achieving High School Students and Not so High-Achieving College Students: A Look at Lack of Self-Control, Academic Ability, and Performance in College

    ERIC Educational Resources Information Center

    Honken, Nora B.; Ralston, Patricia A. S.

    2013-01-01

    This study investigated the relationship among lack of self-control, academic ability, and academic performance for a cohort of freshman engineering students who were, with a few exceptions, extremely high achievers in high school. Structural equation modeling analysis led to the conclusion that lack of self-control in high school, as measured by…

  3. Innovative use of controlled availability fertilizers with high performance for intensive agriculture and environmental conservation.

    PubMed

    Shoji, Sadao

    2005-12-01

    A variety of slow release fertilizers, controlled release (availability) fertilizers (CAFs), and stability fertilizers have been developed in response to the serious drawbacks of the conventional fertilizers since the early 1960's. Of these fertilizers, CAFs which are coated with resin are consumed in the largest quantity in the world. Selecting CAFs with higher performance, the author will discuss about: 1) Innovation of agro-technologies for various field crops including new concepts of fertilizer application, 2) high yielding of field crops, 3) enhancing quality and safety of farm products, and 4) controlling the adverse effect of intensive agriculture on the environment. PMID:16512212

  4. Innovative use of controlled availability fertilizers with high performance for intensive agriculture and environmental conservation.

    PubMed

    Shoji, Sadao

    2005-09-01

    A variety of slow release fertilizers, controlled release (availability) fertilizers (CAFs), and stability fertilizers have been developed in response to the serious drawbacks of the conventional fertilizers since the early 1960's. Of these fertilizers, CAFs which are coated with resin are consumed in the largest quantity in the world. Selecting CAFs with higher performance, the author will discuss about: 1) Innovation of agro-technologies for various field crops including new concepts of fertilizer application, 2) high yielding of field crops, 3) enhancing quality and safety of farm products, and 4) controlling the adverse effect of intensive agriculture on the environment. PMID:20549445

  5. An Adaptive Intelligent Integrated Lighting Control Approach for High-Performance Office Buildings

    NASA Astrophysics Data System (ADS)

    Karizi, Nasim

    An acute and crucial societal problem is the energy consumed in existing commercial buildings. There are 1.5 million commercial buildings in the U.S. with only about 3% being built each year. Hence, existing buildings need to be properly operated and maintained for several decades. Application of integrated centralized control systems in buildings could lead to more than 50% energy savings. This research work demonstrates an innovative adaptive integrated lighting control approach which could achieve significant energy savings and increase indoor comfort in high performance office buildings. In the first phase of the study, a predictive algorithm was developed and validated through experiments in an actual test room. The objective was to regulate daylight on a specified work plane by controlling the blind slat angles. Furthermore, a sensor-based integrated adaptive lighting controller was designed in Simulink which included an innovative sensor optimization approach based on genetic algorithm to minimize the number of sensors and efficiently place them in the office. The controller was designed based on simple integral controllers. The objective of developed control algorithm was to improve the illuminance situation in the office through controlling the daylight and electrical lighting. To evaluate the performance of the system, the controller was applied on experimental office model in Lee et al.'s research study in 1998. The result of the developed control approach indicate a significantly improvement in lighting situation and 1-23% and 50-78% monthly electrical energy savings in the office model, compared to two static strategies when the blinds were left open and closed during the whole year respectively.

  6. A Modified Lunar Reconnaissance Orbiter (LRO) High Gain Antenna (HGA) Controller Based on Flight Performance

    NASA Technical Reports Server (NTRS)

    Shah, Neerav

    2010-01-01

    The National Aeronautics and Space Administration's (NASA) Lunar Reconnaissance Orbiter (LRO) was launched on June 18, 2009 and is currently in a 50 km mean altitude polar orbit around the Moon. LRO was designed and built by the NASA Goddard Space Flight Center in Greenbelt, MD. The spacecraft is three-axis stabilized via the attitude control system (ACS), which is composed of various control modes using different sets of sensors and actuators. In addition to pointing the spacecraft, the ACS is responsible for pointing LRO s two appendages, the Solar Array (SA) and the High Gain Antenna (HGA). This study reviews LRO s HGA control system. Starting with an overview of the HGA system, the paper delves into the single input single output (SISO) linear analysis followed by the controller design. Based on flight results, an alternate control scheme is devised to address inherent features in the flight control system. The modified control scheme couples the HGA loop with the spacecraft pointing control loop, and through analysis is shown to be stable and improve transient performance. Although proposed, the LRO project decided against implementing this modification.

  7. Freeze-drying for morphological control of high performance semi-interpenetrating polymer networks. III

    NASA Technical Reports Server (NTRS)

    Hsiung, H. J.; Hansen, M. G.; Pater, R. H.

    1991-01-01

    The feasibility of using a freeze-drying (solvent removal by sublimation) approach for controlling the morphology of a high-performance semi-IPN is assessed. A high-performance thermoplastic polyimide and commercially available 4,4'-bismaleimide diphenylenemethane were dissolved in a solvent, 1,3,5-trioxane. The solvent was removed from the constituents by freeze-drying. For purposes of comparison, the constituents were dissolved in a high-boiling-point solvent, N,N-dimethylformamide. The solvent was removed from the solution by evaporation. The physical and mechanical properties and phase morphology of the neat resins and composites prepared by freeze-drying and traditional solution methods are presented and compared. It is concluded that the TG is higher and that the magnitude of minor constituent separation is less in the freeze-dry processed materials than for the processed solution.

  8. High-performance computing-based exploration of flow control with micro devices.

    PubMed

    Fujii, Kozo

    2014-08-13

    The dielectric barrier discharge (DBD) plasma actuator that controls flow separation is one of the promising technologies to realize energy savings and noise reduction of fluid dynamic systems. However, the mechanism for controlling flow separation is not clearly defined, and this lack of knowledge prevents practical use of this technology. Therefore, large-scale computations for the study of the DBD plasma actuator have been conducted using the Japanese Petaflops supercomputer 'K' for three different Reynolds numbers. Numbers of new findings on the control of flow separation by the DBD plasma actuator have been obtained from the simulations, and some of them are presented in this study. Knowledge of suitable device parameters is also obtained. The DBD plasma actuator is clearly shown to be very effective for controlling flow separation at a Reynolds number of around 10(5), and several times larger lift-to-drag ratio can be achieved at higher angles of attack after stall. For higher Reynolds numbers, separated flow is partially controlled. Flow analysis shows key features towards better control. DBD plasma actuators are a promising technology, which could reduce fuel consumption and contribute to a green environment by achieving high aerodynamic performance. The knowledge described above can be obtained only with high-end computers such as the supercomputer 'K'. PMID:25024414

  9. High-performance computing-based exploration of flow control with micro devices

    PubMed Central

    Fujii, Kozo

    2014-01-01

    The dielectric barrier discharge (DBD) plasma actuator that controls flow separation is one of the promising technologies to realize energy savings and noise reduction of fluid dynamic systems. However, the mechanism for controlling flow separation is not clearly defined, and this lack of knowledge prevents practical use of this technology. Therefore, large-scale computations for the study of the DBD plasma actuator have been conducted using the Japanese Petaflops supercomputer ‘K’ for three different Reynolds numbers. Numbers of new findings on the control of flow separation by the DBD plasma actuator have been obtained from the simulations, and some of them are presented in this study. Knowledge of suitable device parameters is also obtained. The DBD plasma actuator is clearly shown to be very effective for controlling flow separation at a Reynolds number of around 105, and several times larger lift-to-drag ratio can be achieved at higher angles of attack after stall. For higher Reynolds numbers, separated flow is partially controlled. Flow analysis shows key features towards better control. DBD plasma actuators are a promising technology, which could reduce fuel consumption and contribute to a green environment by achieving high aerodynamic performance. The knowledge described above can be obtained only with high-end computers such as the supercomputer ‘K’. PMID:25024414

  10. Damage-mitigating control of a reusable rocket engine for high performance and extended life

    NASA Technical Reports Server (NTRS)

    Ray, Asok; Dai, Xiaowen

    1995-01-01

    The goal of damage mitigating control in reusable rocket engines is to achieve high performance with increased durability of mechanical structures such that functional lives of the critical components are increased. The major benefit is an increase in structural durability with no significant loss of performance. This report investigates the feasibility of damage mitigating control of reusable rocket engines. Phenomenological models of creep and thermo-mechanical fatigue damage have been formulated in the state-variable setting such that these models can be combined with the plant model of a reusable rocket engine, such as the Space Shuttle Main Engine (SSME), for synthesizing an optimal control policy. Specifically, a creep damage model of the main thrust chamber wall is analytically derived based on the theories of sandwich beam and viscoplasticity. This model characterizes progressive bulging-out and incremental thinning of the coolant channel ligament leading to its eventual failure by tensile rupture. The objective is to generate a closed form solution of the wall thin-out phenomenon in real time where the ligament geometry is continuously updated to account for the resulting deformation. The results are in agreement with those obtained from the finite element analyses and experimental observation for both Oxygen Free High Conductivity (OFHC) copper and a copper-zerconium-silver alloy called NARloy-Z. Due to its computational efficiency, this damage model is suitable for on-line applications of life prediction and damage mitigating control, and also permits parametric studies for off-line synthesis of damage mitigating control systems. The results are presented to demonstrate the potential of life extension of reusable rocket engines via damage mitigating control. The control system has also been simulated on a testbed to observe how the damage at different critical points can be traded off without any significant loss of engine performance. The research work

  11. The tracking performance of distributed recoverable flight control systems subject to high intensity radiated fields

    NASA Astrophysics Data System (ADS)

    Wang, Rui

    It is known that high intensity radiated fields (HIRF) can produce upsets in digital electronics, and thereby degrade the performance of digital flight control systems. Such upsets, either from natural or man-made sources, can change data values on digital buses and memory and affect CPU instruction execution. HIRF environments are also known to trigger common-mode faults, affecting nearly-simultaneously multiple fault containment regions, and hence reducing the benefits of n-modular redundancy and other fault-tolerant computing techniques. Thus, it is important to develop models which describe the integration of the embedded digital system, where the control law is implemented, as well as the dynamics of the closed-loop system. In this dissertation, theoretical tools are presented to analyze the relationship between the design choices for a class of distributed recoverable computing platforms and the tracking performance degradation of a digital flight control system implemented on such a platform while operating in a HIRF environment. Specifically, a tractable hybrid performance model is developed for a digital flight control system implemented on a computing platform inspired largely by the NASA family of fault-tolerant, reconfigurable computer architectures known as SPIDER (scalable processor-independent design for enhanced reliability). The focus will be on the SPIDER implementation, which uses the computer communication system known as ROBUS-2 (reliable optical bus). A physical HIRF experiment was conducted at the NASA Langley Research Center in order to validate the theoretical tracking performance degradation predictions for a distributed Boeing 747 flight control system subject to a HIRF environment. An extrapolation of these results for scenarios that could not be physically tested is also presented.

  12. Multisensory systems integration for high-performance motor control in flies.

    PubMed

    Frye, Mark A

    2010-06-01

    Engineered tracking systems 'fuse' data from disparate sensor platforms, such as radar and video, to synthesize information that is more reliable than any single input. The mammalian brain registers visual and auditory inputs to directionally localize an interesting environmental feature. For a fly, sensory perception is challenged by the extreme performance demands of high speed flight. Yet even a fruit fly can robustly track a fragmented odor plume through varying visual environments, outperforming any human engineered robot. Flies integrate disparate modalities, such as vision and olfaction, which are neither related by spatiotemporal spectra nor processed by registered neural tissue maps. Thus, the fly is motivating new conceptual frameworks for how low-level multisensory circuits and functional algorithms produce high-performance motor control. PMID:20202821

  13. Performance Evaluation of a High Bandwidth Liquid Fuel Modulation Valve for Active Combustion Control

    NASA Technical Reports Server (NTRS)

    Saus, Joseph R.; DeLaat, John C.; Chang, Clarence T.; Vrnak, Daniel R.

    2012-01-01

    At the NASA Glenn Research Center, a characterization rig was designed and constructed for the purpose of evaluating high bandwidth liquid fuel modulation devices to determine their suitability for active combustion control research. Incorporated into the rig s design are features that approximate conditions similar to those that would be encountered by a candidate device if it were installed on an actual combustion research rig. The characterized dynamic performance measures obtained through testing in the rig are planned to be accurate indicators of expected performance in an actual combustion testing environment. To evaluate how well the characterization rig predicts fuel modulator dynamic performance, characterization rig data was compared with performance data for a fuel modulator candidate when the candidate was in operation during combustion testing. Specifically, the nominal and off-nominal performance data for a magnetostrictive-actuated proportional fuel modulation valve is described. Valve performance data were collected with the characterization rig configured to emulate two different combustion rig fuel feed systems. Fuel mass flows and pressures, fuel feed line lengths, and fuel injector orifice size was approximated in the characterization rig. Valve performance data were also collected with the valve modulating the fuel into the two combustor rigs. Comparison of the predicted and actual valve performance data show that when the valve is operated near its design condition the characterization rig can appropriately predict the installed performance of the valve. Improvements to the characterization rig and accompanying modeling activities are underway to more accurately predict performance, especially for the devices under development to modulate fuel into the much smaller fuel injectors anticipated in future lean-burning low-emissions aircraft engine combustors.

  14. Modelling of LHCD profile control for high performance DT experiments on JET

    SciTech Connect

    Tala, T. J. J.; Heikkinen, J. A.; Karttunen, S. J.; Paettikangas, T. J. H.; Soeldner, F. X.; Parail, V. V.; Baranov, Yu. F.; Taroni, A.

    1999-09-20

    Transport calculations with relevant lower hybrid current drive control have been performed with the JETTO transport code. The heat transport model and various particle transport models reproducing the experimental JET data have been used in JETTO for predictive high performance modelling. Application of 3.5 MW LHCD power provides a slightly inverted or flat q-profile across 70% of the plasma radius whereas, without LHCD the q-profile is monotonic during the flat-top phase. The results predict a fusion power up to 30 MW for the high performance DT plasmas in the optimised shear scenario at B{sub t}=3.4 T and I{sub p}=3.9 MA. Large uncertainties, however, still persist in particular on the particle transport which strongly influences on the modelling calculations. The presence of not well understood MHD instabilities is also likely to reduce the performance. The most optimistic model, still consistent with experimental results, predicts a fusion gain approaching Q=1.

  15. Performance of High-Speed PWM Control Chips at Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Elbuluk, Malik E.; Gerber, Scott; Hammoud, Ahmad; Patterson, Richard; Overton, Eric

    2001-01-01

    The operation of power electronic systems at cryogenic temperatures is anticipated in many NASA space missions such as planetary exploration and deep space probes. In addition to surviving the space hostile environment, electronics capable of low temperature operation would contribute to improving circuit performance, increasing system efficiency, and reducing development and launch costs. As part of the NASA Glenn Low Temperature Electronics Program, several commercial high-speed Pulse Width Modulation (PWM) chips have been characterized in terms of their performance as a function of temperature in the range of 25 to -196 C (liquid nitrogen). These chips ranged in their electrical characteristics, modes of control, packaging options, and applications. The experimental procedures along with the experimental data obtained on the investigated chips are presented and discussed.

  16. TiO2 microboxes with controlled internal porosity for high-performance lithium storage

    DOE PAGESBeta

    Gao, Xuehui; Li, Gaoran; Xu, Yangyang; Hong, Zhanglian; Liang, Chengdu; Lin, Zhan

    2015-10-02

    Titanium dioxide (TiO2) is considered a promising anode material for high-power lithium ion batteries (LIBs) because of its low cost, high thermal/chemical stability, and good safety performance without solid electrolyte interface formation. However, the poor electronic conductivity and low lithium ion diffusivity of TiO2 result in poor cyclability and lithium ion depletion at high current rates, which hinder them from practical applications. Herein we demonstrate that hierarchically structured TiO2 microboxes with controlled internal porosity can address the aforementioned problems for high-power, long-life LIB anodes. A self-templating method for the synthesis of mesoporous microboxes was developed through Na2EDTA-assisted ion exchange ofmore » CaTiO3 microcubes. The resulting TiO2 nanorods were organized into microboxes that resemble the microcube precursors. Furthermore, this nanostructured TiO2 material has superior lithium storage properties with a capacity of 187 mAh g-1 after 300 cycles at 1C and good rate capabilities up to 20C.« less

  17. TiO2 Microboxes with Controlled Internal Porosity for High-Performance Lithium Storage.

    PubMed

    Gao, Xuehui; Li, Gaoran; Xu, Yangyang; Hong, Zhanglian; Liang, Chengdu; Lin, Zhan

    2015-11-23

    Titanium dioxide (TiO2) is considered a promising anode material for high-power lithium ion batteries (LIBs) because of its low cost, high thermal/chemical stability, and good safety performance without solid electrolyte interface formation. However, the poor electronic conductivity and low lithium ion diffusivity of TiO2 result in poor cyclability and lithium ion depletion at high current rates, which hinder them from practical applications. Herein we demonstrate that hierarchically structured TiO2 microboxes with controlled internal porosity can address the aforementioned problems for high-power, long-life LIB anodes. A self-templating method for the synthesis of mesoporous microboxes was developed through Na2 EDTA-assisted ion exchange of CaTiO3 microcubes. The resulting TiO2 nanorods were organized into microboxes that resemble the microcube precursors. This nanostructured TiO2 material has superior lithium storage properties with a capacity of 187 mAh g(-1) after 300 cycles at 1 C and good rate capabilities up to 20 C. PMID:26429596

  18. Mesoporous carbon spheres with controlled porosity for high-performance lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Wang, Dexian; Fu, Aiping; Li, Hongliang; Wang, Yiqian; Guo, Peizhi; Liu, Jingquan; Zhao, Xiu Song

    2015-07-01

    Mesoporous carbon (MC) spheres with hierarchical pores, controlled pore volume and high specific surface areas have been prepared by a mass-producible spray drying assisted template method using sodium alginate as carbon precursor and commercial colloidal silica particles as hard template. The resulting MC spheres, possessing hierarchical pores in the range of 3-30 nm, are employed as conductive matrices for the preparation of cathode materials for lithium-sulfur batteries. A high pressure induced one-step impregnation of elemental sulfur into the pore of the MC spheres has been exploited. The electrochemical performances of sulfur-impregnated MC spheres (S-MC) derived from MC spheres with different pore volume and specific surface area but with the same sulfur loading ratio of 60 wt% (S-MC-X-60) have been investigated in details. The S-MC-4-60 composite cathode material displayed a high initial discharge capacity of 1388 mAhg-1 and a good cycling stability of 857 mAhg-1 after 100 cycles at 0.2C, and shows also excellent rate capability of 864 mAhg-1 at 2C. More importantly, the sulfur loading content in MC-4 spheres can reach as high as 80%, and it still can deliver a capacity of 569 mAhg-1 after 100 cycles at 0.2C.

  19. High Performance Piezoelectric Thin Films for Shape Control in Large Inflatable Structures

    NASA Technical Reports Server (NTRS)

    Neurgaonkar, R. R.; Nelson, J. G.

    1999-01-01

    The objective of this research and development program was to develop PbZr(1-x)Ti(x)O3 (PZT) and Pb(1-x)Ba(x)Nb2O6 (PBN) materials with large piezoelectric response which are suitable for shape control in large inflatable structures. Two approaches were to be considered: (1) direct deposition of PZT and PBN films on flexible plastic or thin metal foil substrates, and (2) deposition on Si followed by fabrication of hybrid structures on mylar or kapton. Testing in shape control concepts was carried out at JPL and based on their results, the required modifications were made in the final film compositions and deposition techniques. The program objective was to identify and then optimize piezoelectric materials for NASA shape control applications. This involved the bulk piezoelectric and photovoltaic responses and the compatibility of the thin films with appropriate substrate structures. Within the PZT system, Rockwell has achieved the highest reported piezoelectric coefficient (d(sub 33) greater than 100 pC/N) of any ceramic composition. We used this experience in piezoelectric technology to establish compositions that can effectively address the issues of this program. The performance of piezoelectric thin films depends directly on d(sub ij) and Epsilon. The challenge was to find PZT compositions that maintained high d(sub ij) and Epsilon, while also exhibiting a large photovoltaic effect and integrate thin films of this composition into the system structure necessary to meet shape control applications. During the course of this program, several PZT and PLZT compositions were identified that meet these requirements. Two such compositions were successfully used in electrical and optical actuation studies of thin film structures.

  20. High Performance Piezoelectric Thin Films for Shape Control in Large Inflatable Structures

    NASA Technical Reports Server (NTRS)

    Neurgaonkar, R. R.; Nelson, J. G.

    1999-01-01

    The objective of this research and development program was to develop PbZr(1-x)Ti(x)O3 (PZT) and Pb(1-x)Ba(x)Nb2O6 (PBN) materials with large piezoelectric response which are suitable for shape control in large inflatable structures. Two approaches were to be considered: (1) direct deposition of PZT and PBN films on flexible plastic or thin metal foil substrates, and (2) deposition on Si followed by fabrication of hybrid structures on mylar or kapton. Testing in shape control concepts was carried out at JPL and based on their results, the required modifications were made in the final film compositions and deposition techniques. The program objective was to identify and then optimize piezoelectric materials for NASA shape control applications. This involved the bulk piezoelectric and photovoltaic responses and the compatibility of the thin films with appropriate substrate structures. Within the PZT system, Rockwell has achieved the highest reported piezoelectric coefficient (d(sub 33) greater than 100 pC/N) of any ceramic composition. We used this experience in piezoelectric technology to establish compositions that can effectively address the issues of this program. The performance of piezoelectric thin films depends directly on d(sub ij) and epsilin. The challenge was to find PZT compositions that maintained high d(sub ij) and epsilon, while also exhibiting a large photovoltaic effect and integrate thin films of this composition into the system structure necessary to meet shape control applications. During the course of this program, several PZT and PLZT compositions were identified that meet these requirements. Two such compositions were successfully used in electrical and optical actuation studies of thin film structures.

  1. An Electronic Workshop on the Performance Seeking Control and Propulsion Controlled Aircraft Results of the F-15 Highly Integrated Digital Electronic Control Flight Research Program

    NASA Technical Reports Server (NTRS)

    Powers, Sheryll Goecke (Compiler)

    1995-01-01

    Flight research for the F-15 HIDEC (Highly Integrated Digital Electronic Control) program was completed at NASA Dryden Flight Research Center in the fall of 1993. The flight research conducted during the last two years of the HIDEC program included two principal experiments: (1) performance seeking control (PSC), an adaptive, real-time, on-board optimization of engine, inlet, and horizontal tail position on the F-15; and (2) propulsion controlled aircraft (PCA), an augmented flight control system developed for landings as well as up-and-away flight that used only engine thrust (flight controls locked) for flight control. In September 1994, the background details and results of the PSC and PCA experiments were presented in an electronic workshop, accessible through the Dryden World Wide Web (http://www.dfrc.nasa.gov/dryden.html) and as a compact disk.

  2. CF6 Jet Engine Performance Improvement: High Pressure Turbine Active Clearance Control

    NASA Technical Reports Server (NTRS)

    Rich, S. E.; Fasching, W. A.

    1982-01-01

    An active clearance control system was developed which reduces fuel consumption and performance degradation. This system utilizes compressor discharge air during takeoff and fan discharge air during cruise to impinge on the shroud structure to improve the thermal response. The system was evaluated in component and engine tests. The test results demonstrated a performance improvement of 0.7 percent in cruise SFC.

  3. Sentinel-3 Mission Performance Center: paving the way of high-quality controlled data

    NASA Astrophysics Data System (ADS)

    Bruniquel, Jerome; Féménias, Pierre; Goryl, Philippe; Bonekamp, Hans

    2015-04-01

    As part of the Sentinel-3 mission and in order to ensure the highest quality of products, ESA and EUMETSAT set up the Sentinel-3 Mission Performance Centre (S-3 MPC). This facility is part of the Payload Data Ground Segment (PDGS) and aims at controlling the quality of all generated products, from L0 to L2. The S-3 MPC is composed of a Coordinating Centre (CC), where the core infrastructure is hosted, which is in charge of the main routine activities (especially the quality control of data) and the overall service management. Expert Support Laboratories (ESLs) are involved in calibration and validation activities and provide specific assessment of the products (e.g., analysis of trends, ad hoc analysis of anomalies, etc.). The S-3 MPC interacts with the Processing Archiving Centers (PACs) and the marine centre at EUMETSAT. The S-3 MPC service contract is currently carried out by 23-partners consortium led by ACRI-ST, France. The S-3 MPC contract was kick-offed in September 2014 with a first set-up phase of 12 months. After the launch of S3-A (planned before end of 2015), the S-3 MPC will start its second phase to support commissioning activities. Then a routine operation phase of up to 5 years will begin, including the commissioning activities related to S3-B. The main S-3 MPC activities are: - Calibration: to update on-board and on-ground configuration data in order to meet product quality requirements. - Validation: to assess, by independent means with respect to the methods and tools used for calibration, the quality of the generated data products. Validation functions provide feedback to calibration and data processors corrective and perfective maintenance activities. - Verification: to confirm that the specified requirements on a system have been satisfied. - Quality Control: to routinely monitor the status of the sensor and to check if the derived products (Level 0, Level 1 and Level 2) meet the quality requirements along mission lifetime. - Algorithm

  4. a Pc-Controlled Ultrafast Scanning Electrochemical Detector for High Performance Liquid Chromatography.

    NASA Astrophysics Data System (ADS)

    Rhodes, Derek Frank

    This research focuses on the design, implementation and evaluation of an ultra-fast scanning Electrochemical Detector (ECD) for High Performance Liquid Chromatography, (HPLC). The scanning detector employs a microelectrode array as the working electrode. The electrode array has been designed to fit directly into a commercially available ECD cell. Microelectrodes allow very rapid changes in potential while maintaining low background currents. Rapidly scanning the potential up to 10 volts per second yields time resolved current-voltage profiles of components as they elute from a chromatographic column. Coeluting peaks in the time domain are then resolved in the potential domain by taking the differential of the electrochemical profile. Several microelectrode arrays for various electrochemical detection techniques were evaluated using gold and carbon electrodes of radius 25mum, 6.5mu m and 3mum with solutions of ferrocene and catecholamines. The detector interface, software and electronics were engineered to interface with an IBM AT or compatible computer with 640 K of memory, a hard disk and a 20 MHz analog-to-digital digital-to-analog board. The rapid potential changes and the resulting cell current were controlled and monitored using fast executing assembler routines. Computer control of the ECD system made the application of a variety of amperometric techniques possible. Extensive data reduction procedures such as signal sorting from three dimensional data (E-i-t), and data averaging and smoothing were also developed. The research also explored the effect of flow rate and solution resistance on the electrochemical cell current.

  5. Real-Time Adaptive Control Allocation Applied to a High Performance Aircraft

    NASA Technical Reports Server (NTRS)

    Davidson, John B.; Lallman, Frederick J.; Bundick, W. Thomas

    2001-01-01

    Abstract This paper presents the development and application of one approach to the control of aircraft with large numbers of control effectors. This approach, referred to as real-time adaptive control allocation, combines a nonlinear method for control allocation with actuator failure detection and isolation. The control allocator maps moment (or angular acceleration) commands into physical control effector commands as functions of individual control effectiveness and availability. The actuator failure detection and isolation algorithm is a model-based approach that uses models of the actuators to predict actuator behavior and an adaptive decision threshold to achieve acceptable false alarm/missed detection rates. This integrated approach provides control reconfiguration when an aircraft is subjected to actuator failure, thereby improving maneuverability and survivability of the degraded aircraft. This method is demonstrated on a next generation military aircraft Lockheed-Martin Innovative Control Effector) simulation that has been modified to include a novel nonlinear fluid flow control control effector based on passive porosity. Desktop and real-time piloted simulation results demonstrate the performance of this integrated adaptive control allocation approach.

  6. Direct selective laser sintering of high performance metals: Machine design, process development and process control

    NASA Astrophysics Data System (ADS)

    Das, Suman

    1998-11-01

    This dissertation describes the development of an advanced manufacturing technology known as Direct Selective Laser Sintering (Direct SLS). Direct SLS is a laser based rapid manufacturing technology that enables production of functional, fully dense, metal and cermet components via the direct, layerwise consolidation of constituent powders. Specifically, this dissertation focuses on a new, hybrid net shape manufacturing technique known as Selective Laser Sintering/Hot Isostatic Pressing (SLS/HIP). The objective of research presented in this dissertation was to establish the fundamental machine technology and processing science to enable direct SLS fabrication of metal components composed of high performance, high temperature metals and alloys. Several processing requirements differentiate direct SLS of metals from SLS of polymers or polymer coated powders. Perhaps the most important distinguishing characteristic is the regime of high temperatures involved in direct SLS of metals. Biasing the temperature of the feedstock powder via radiant preheat prior to and during SLS processing was shown to be beneficial. Preheating the powder significantly influenced the flow and wetting characteristics of the melt. During this work, it was conclusively established that powder cleanliness is of paramount importance for successful layerwise consolidation of metal powders by direct SLS. Sequential trials were conducted to establish optimal bake-out and degas cycles under high vacuum. These cycles agreed well with established practices in the powder metallurgy industry. A study of some of the important transport mechanisms in direct SLS of metals was undertaken to obtain a fundamental understanding of the underlying process physics. This study not only provides an explanation of phenomena observed during SLS processing of a variety of metallic materials but also helps in developing selection schemes for those materials that are most amenable to direct SLS processing. The

  7. Search and Development of High Performance Thermoelectric Materials: A Controlled Approach

    NASA Technical Reports Server (NTRS)

    Fleurial, J. -P.

    1995-01-01

    The paper discusses some of the lessons learned in research and development of high performance thermoelectric materials. Discussion is on optimizing existing thermoelectric materials and considerations for development of new materials.

  8. A PC-controlled ultrafast scanning electrochemical detector for high-performance liquid chromatography

    SciTech Connect

    Rhodes, D.F.

    1989-01-01

    This research focuses on the design, implementation and evaluation of an ultra-fast scanning Electrochemical Detector (ECD) for High Performance Liquid Chromatography, (HPLC). The scanning detector employs a microelectrode array as the working electrode. The electrode array has been designed to fit directly into a commercially available ECD cell. Microelectrodes allow very rapid changes in potential while maintaining low background currents. Rapidly scanning the potential up to 10 volts per second yields time resolved current-voltage profiles of components as they elute from a chromatographic column. Coeluting peaks in the time domain are then resolved in the potential domain by taking the differential of the electrochemical profile. Several microelectrode arrays for various electrochemical detection techniques were evaluated using gold and carbon electrodes of radius 25{mu}m, 6.5{mu}m and 3{mu}m with solutions of ferrocene and catecholamines. The detector interface, software and electronics were engineered to interface with an IBM AT or compatible computer with 640 K of memory, a hard disk and a 20 MHz analog-to-digital digital-to-analog board. The rapid potential changes and the resulting cell current were controlled and monitored using fast executing assembler routines. Computer control of the ECD system made the application of a variety of amperometric techniques possible. Extensive data reduction procedures such as signal sorting from three dimensional data (E-i-t), and data averaging and smoothing were also developed. The research also explored the effect of flow rate and solution resistance on the electrochemical cell current.

  9. Constructing a LabVIEW-Controlled High-Performance Liquid Chromatography (HPLC) System: An Undergraduate Instrumental Methods Exercise

    ERIC Educational Resources Information Center

    Smith, Eugene T.; Hill, Marc

    2011-01-01

    In this laboratory exercise, students develop a LabVIEW-controlled high-performance liquid chromatography system utilizing a data acquisition device, two pumps, a detector, and fraction collector. The programming experience involves a variety of methods for interface communication, including serial control, analog-to-digital conversion, and…

  10. Modeling and control of actuators for high performance structural dynamic testing

    NASA Astrophysics Data System (ADS)

    Gao, X.; Dyke, S. J.

    2014-05-01

    Most research in the structural engineering field uses either a simplified data-based model or a physics-based model to describe the dynamic behavior of servo-hydraulic actuators. In either way, the nominal model is typically used for modeling, analysis and control design. However, little effort has been directed to model uncertainties that are inherently associated with any physical system. A robust modeling approach is proposed in this study that can characterize both parametric and non-parametric uncertainties. The combination of this uncertainty with the nominal model provides a powerful tool to analyze the system performance and stability properties. Several control techniques are evaluated experimentally, and an H∞ robust control design is demonstrated to achieve the best performance as well as good robustness.

  11. High performance, accelerometer-based control of the Mini-MAST structure

    NASA Technical Reports Server (NTRS)

    Collins, Emmanuel G., Jr.; King, James A.; Phillips, Douglas J.; Hyland, David C.

    1992-01-01

    Many large space system concepts will require active vibration control to satisfy critical performance requirements such as line of sight pointing accuracy and constraints on rms surface roughness. In order for these concepts to become operational, it is imperative that the benefits of active vibration control be shown to be practical in ground based experiments. The results of an experiment shows the successful application of the Maximum Entropy/Optical Projection control design methodology to active vibration control for a flexible structure. The testbed is the Mini-Mast structure at NASA-Langley and has features dynamically traceable to future space systems. To maximize traceability to real flight systems, the controllers were designed and implemented using sensors (four accelerometers and one rate gyro) that are actually mounted to the structure. Ground mounted displacement sensors that could greatly ease the control design task were available but were used only for performance evaluation. The use of the accelerometers increased the potential of destabilizing the system due to spillover effects and motivated the use of precompensation strategy to achieve sufficient compensator roll-off.

  12. High performance, accelerometer-based control of the Mini-MAST structure at Langley Research Center

    NASA Technical Reports Server (NTRS)

    Collins, Emmanuel G., Jr.; King, James A.; Phillips, Douglas J.; Hyland, David C.

    1991-01-01

    Many large space system concepts will require active vibration control to satisfy critical performance requirements such as line of sight pointing accuracy and constraints on rms surface roughness. In order for these concepts to become operational, it is imperative that the benefits of active vibration control be shown to be practical in ground based experiments. The results of an experiment shows the successful application of the Maximum Entropy/Optimal Projection control design methodology to active vibration control for a flexible structure. The testbed is the Mini-Mast structure at NASA-Langley and has features dynamically traceable to future space systems. To maximize traceability to real flight systems, the controllers were designed and implemented using sensors (four accelerometers and one rate gyro) that are actually mounted to the structure. Ground mounted displacement sensors that could greatly ease the control design task were available but were used only for performance evaluation. The use of the accelerometers increased the potential of destabilizing the system due to spillover effects and motivated the use of precompensation strategy to achieve sufficient compensator roll-off.

  13. A robust and high-performance queue management controller for large round trip time networks

    NASA Astrophysics Data System (ADS)

    Khoshnevisan, Ladan; Salmasi, Farzad R.

    2016-05-01

    Congestion management for transmission control protocol is of utmost importance to prevent packet loss within a network. This necessitates strategies for active queue management. The most applied active queue management strategies have their inherent disadvantages which lead to suboptimal performance and even instability in the case of large round trip time and/or external disturbance. This paper presents an internal model control robust queue management scheme with two degrees of freedom in order to restrict the undesired effects of large and small round trip time and parameter variations in the queue management. Conventional approaches such as proportional integral and random early detection procedures lead to unstable behaviour due to large delay. Moreover, internal model control-Smith scheme suffers from large oscillations due to the large round trip time. On the other hand, other schemes such as internal model control-proportional integral and derivative show excessive sluggish performance for small round trip time values. To overcome these shortcomings, we introduce a system entailing two individual controllers for queue management and disturbance rejection, simultaneously. Simulation results based on Matlab/Simulink and also Network Simulator 2 (NS2) demonstrate the effectiveness of the procedure and verify the analytical approach.

  14. Controlling the Interface Areas of Organic/Inorganic Semiconductor Heterojunction Nanowires for High-Performance Diodes.

    PubMed

    Xue, Zheng; Yang, Hui; Gao, Juan; Li, Jiaofu; Chen, Yanhuan; Jia, Zhiyu; Li, Yongjun; Liu, Huibiao; Yang, Wensheng; Li, Yuliang; Li, Dan

    2016-08-24

    A new method of in situ electrically induced self-assembly technology combined with electrochemical deposition has been developed for the controllable preparation of organic/inorganic core/shell semiconductor heterojunction nanowire arrays. The size of the interface of the heterojunction nanowire can be tuned by the growing parameter. The heterojunction nanowires of graphdiyne/CuS with core/shell structure showed the strong dependence of rectification ratio and perfect diode performance on the size of the interface. It will be a new way for controlling the structures and properties of one-dimensional heterojunction nanomaterials. PMID:27472226

  15. Performance, Performance System, and High Performance System

    ERIC Educational Resources Information Center

    Jang, Hwan Young

    2009-01-01

    This article proposes needed transitions in the field of human performance technology. The following three transitions are discussed: transitioning from training to performance, transitioning from performance to performance system, and transitioning from learning organization to high performance system. A proposed framework that comprises…

  16. Control carrier recombination of multi-scale textured black silicon surface for high performance solar cells

    NASA Astrophysics Data System (ADS)

    Hong, M.; Yuan, G. D.; Peng, Y.; Chen, H. Y.; Zhang, Y.; Liu, Z. Q.; Wang, J. X.; Cai, B.; Zhu, Y. M.; Chen, Y.; Liu, J. H.; Li, J. M.

    2014-06-01

    We report an enhanced performance of multi-scale textured black silicon solar cell with power conversion efficiency of 15.5% by using anisotropic tetramethylammonium hydroxide etching to control the recombination. The multi-scale texture can effectively reduce the surface reflectance in a wide wavelength range, and both the surface and Auger recombination can be effectively suppressed by etching the samples after the n++ emitter formed. Our result shows that the reformed solar cell has higher conversion efficiency than that of conventional pyramid textured cell (15.3%). This work presents an effective method for improving the performance of nanostructured silicon solar cells.

  17. Mission Control Operations: Employing a New High Performance Design for Communications Links Supporting Exploration Programs

    NASA Technical Reports Server (NTRS)

    Jackson, Dan E., Jr.

    2015-01-01

    The planetary exploration programs demand a totally new examination of data multiplexing, digital communications protocols and data transmission principles for both ground and spacecraft operations. Highly adaptive communications devices on-board and on the ground must provide the greatest possible transmitted data density between deployed crew personnel, spacecraft and ground control teams. Regarding these requirements, this proposal borrows from research into quantum mechanical computing by applying the concept of a qubit, a single bit that represents 16 states, to radio frequency (RF) communications link design for exploration programs. This concept of placing multiple character values into a single data bit can easily make the evolutionary steps needed to meet exploration mission demands. To move the qubit from the quantum mechanical research laboratory into long distance RF data transmission, this proposal utilizes polarization modulation of the RF carrier signal to represent numbers from zero to fifteen. It introduces the concept of a binary-to-hexadecimal converter that quickly chops any data stream into 16-bit words and connects variously polarized feedhorns to a single-frequency radio transmitter. Further, the concept relies on development of a receiver that uses low-noise amplifiers and an antenna array to quickly assess carrier polarity and perform hexadecimal to binary conversion. Early testbed experiments using the International Space Station (ISS) as an operations laboratory can be implemented to provide the most cost-effective return for research investment. The improvement in signal-to-noise ratio while supporting greater baseband data rates that could be achieved through this concept justifies its consideration for long-distance exploration programs.

  18. Quantitative Measurement of Vocal Fold Vibration in Male Radio Performers and Healthy Controls Using High-Speed Videoendoscopy

    PubMed Central

    Warhurst, Samantha; McCabe, Patricia; Heard, Rob; Yiu, Edwin; Wang, Gaowu; Madill, Catherine

    2014-01-01

    Purpose Acoustic and perceptual studies show a number of differences between the voices of radio performers and controls. Despite this, the vocal fold kinematics underlying these differences are largely unknown. Using high-speed videoendoscopy, this study sought to determine whether the vocal vibration features of radio performers differed from those of non-performing controls. Method Using high-speed videoendoscopy, recordings of a mid-phonatory/i/ in 16 male radio performers (aged 25–52 years) and 16 age-matched controls (aged 25–52 years) were collected. Videos were extracted and analysed semi-automatically using High-Speed Video Program, obtaining measures of fundamental frequency (f0), open quotient and speed quotient. Post-hoc analyses of sound pressure level (SPL) were also performed (n = 19). Pearson's correlations were calculated between SPL and both speed and open quotients. Results Male radio performers had a significantly higher speed quotient than their matched controls (t = 3.308, p = 0.005). No significant differences were found for f0 or open quotient. No significant correlation was found between either open or speed quotient with SPL. Discussion A higher speed quotient in male radio performers suggests that their vocal fold vibration was characterised by a higher ratio of glottal opening to closing times than controls. This result may explain findings of better voice quality, higher equivalent sound level and greater spectral tilt seen in previous research. Open quotient was not significantly different between groups, indicating that the durations of complete vocal fold closure were not different between the radio performers and controls. Further validation of these results is required to determine the aetiology of the higher speed quotient result and its implications for voice training and clinical management in performers. PMID:24971625

  19. High Performance FORTRAN

    NASA Technical Reports Server (NTRS)

    Mehrotra, Piyush

    1994-01-01

    High performance FORTRAN is a set of extensions for FORTRAN 90 designed to allow specification of data parallel algorithms. The programmer annotates the program with distribution directives to specify the desired layout of data. The underlying programming model provides a global name space and a single thread of control. Explicitly parallel constructs allow the expression of fairly controlled forms of parallelism in particular data parallelism. Thus the code is specified in a high level portable manner with no explicit tasking or communication statements. The goal is to allow architecture specific compilers to generate efficient code for a wide variety of architectures including SIMD, MIMD shared and distributed memory machines.

  20. Whisker: a client-server high-performance multimedia research control system.

    PubMed

    Cardinal, Rudolf N; Aitken, Michael R F

    2010-11-01

    We describe an original client-server approach to behavioral research control and the Whisker system, a specific implementation of this design. The server process controls several types of hardware, including digital input/output devices, multiple graphical monitors and touchscreens, keyboards, mice, and sound cards. It provides a way to access this hardware for client programs, communicating with them via a simple text-based network protocol based on the standard Internet protocol. Clients to implement behavioral tasks may be written in any network-capable programming language. Applications to date have been in experimental psychology and behavioral and cognitive neuroscience, using rodents, humans, nonhuman primates, dogs, pigs, and birds. This system is flexible and reliable, although there are potential disadvantages in terms of complexity. Its design, features, and performance are described. PMID:21139173

  1. Controllable synthesis of layered Co-Ni hydroxide hierarchical structures for high-performance hybrid supercapacitors

    NASA Astrophysics Data System (ADS)

    Yuan, Peng; Zhang, Ning; Zhang, Dan; Liu, Tao; Chen, Limiao; Ma, Renzhi; Qiu, Guanzhou; Liu, Xiaohe

    2016-01-01

    A facile solvothermal method is developed for synthesizing layered Co-Ni hydroxide hierarchical structures by using hexamethylenetetramine (HMT) as alkaline reagent. The electrochemical measurements reveal that the specific capacitances of layered bimetallic (Co-Ni) hydroxides are generally superior to those of layered monometallic (Co, Ni) hydroxides. The as-prepared Co0.5Ni0.5 hydroxide hierarchical structures possesses the highest specific capacitance of 1767 F g-1 at a galvanic current density of 1 A g-1 and an outstanding specific capacitance retention of 87% after 1000 cycles. In comparison with the dispersed nanosheets of Co-Ni hydroxide, layered hydroxide hierarchical structures show much superior electrochemical performance. This study provides a promising method to construct hierarchical structures with controllable transition-metal compositions for enhancing the electrochemical performance in hybrid supercapacitors.

  2. Damage-mitigating control of space propulsion systems for high performance and extended life

    NASA Technical Reports Server (NTRS)

    Ray, Asok; Wu, Min-Kuang; Dai, Xiaowen; Carpino, Marc; Lorenzo, Carl F.

    1993-01-01

    Calculations are presented showing that a substantial improvement in service life of a reusable rocket engine can be achieved by an insignificant reduction in the system dynamic performance. The paper introduces the concept of damage mitigation and formulates a continuous-time model of fatigue damage dynamics. For control of complex mechanical systems, damage prediction and damage mitigation are carried out based on the available sensory and operational information such that the plant can be inexpensively maintained and safely and efficiently steered under diverse operating conditions. The results of simulation experiments are presented for transient operations of a reusable rocket engine.

  3. The sun-tracking control of solar collectors using high-performance step motors

    NASA Technical Reports Server (NTRS)

    Hughes, R. O.

    1977-01-01

    Sun-tracking solar energy-focusing devices involving a central receiver, thermionic conversion, or a distributed solar thermal collector system are described. The Perkins solar collector uses a fixed focal point about which an 18 m-diameter parabolic dish moves on tracks. The elevation axis also moves on a circular track. A microprocessor manipulates sun sensor information and sun ephemeris data to ensure correct placement. Stepper motors are digital devices which provide direct interface with digital electronics and a wide dynamic range, and could easily be associated with the microprocessors. Design philosophy, performance criteria, wind load analysis, and control system requirements are also discussed.

  4. Advanced Real-Time Feedback Control in JT-60U High Performance Discharges for Application to Fusion Reactor Plasmas

    SciTech Connect

    Fukuda, T.; Oikawa, T.; Takeji, S.; Isayama, A.; Kawano, Y.; Neyatani, Y.; Nagashima, A.; Nishitani, T.; Konoshima, S.; Tamai, H.; Fujita, T.; Sakamoto, Y.; Kamada, Y.; Ide, S.; Koide, Y.; Takenaga, H.; Kurihara, K.; Sakata, S.; Ozeki, T.; Kawamata, Y.; Miura, Y. M.

    2002-09-15

    The significance of real-time feedback control is emphasized in this paper as an indispensable method to improve and sustain the improved plasma characteristics in JT-60U high fusion performance discharges as well as to operate the fusion reactor under the optimal divertor conditions with respect to the heat load and exhaust pumping. In accordance, substantial improvement in the equivalent fusion amplification gain of over unity has been reproducibly achieved at the JT-60U tokamak in the reversed shear mode of operation with the robust feedback controls, where the value of target density was deliberately optimized for the reliable internal transport barrier formation, and the magneto-hydrodynamic stability control was performed with the stored energy feedback. The feedback control techniques also demonstrated the effectiveness to produce quasi-steady-state high-performance plasmas. In addition, three major parameters associated with the fusion reactor instrumentations, namely the neutron production rate, operating density, and divertor radiation power, were simultaneously feedback controlled in the ELMy H-mode plasmas. Here, the matrix response function was evaluated to identify the limitations involved with the linear combination of independent controls. Other advanced feedback schemes, such as the feedback suppression of the neoclassical tearing mode required to sustain high plasma pressure in a steady-state, are also described. Finally, the controversial issues for the future intelligent plasma control necessary for the advanced steady-stated tokamak reactor are addressed.

  5. Control of geometrical properties of carbon nanotube electrodes towards high-performance microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Erbay, Celal; Pu, Xiong; Choi, Woongchul; Choi, Mi-Jin; Ryu, Yeontack; Hou, Huijie; Lin, Furong; de Figueiredo, Paul; Yu, Choongho; Han, Arum

    2015-04-01

    In microbial fuel cells (MFCs), physical and electrochemical interactions between microbes and electrode surfaces are critical to performance. Nanomaterial-based electrodes have shown promising performances, however their unique characteristics have not been fully utilized. The developed electrodes here consist of multi-wall carbon nanotubes (MWCNTs) directly grown in the radial direction from the wires of stainless steel (SS) meshes, providing extremely large three-dimensional surfaces while ensuring minimal ohmic loss between CNTs and SS meshes, fully utilizing the advantages of CNTs. Systematic studies on how different lengths, packing densities, and surface conditions of CNTs affect MFC power output revealed that long and loosely packed CNTs without any amorphous carbon show the highest power production performance. The power density of this anode is 7.4-fold higher compared to bare carbon cloth, which is the highest reported improvement for MFCs with nanomaterial-decorated electrodes. The results of this study offer great potential for advancing the development of microbial electrochemical systems by providing a highly efficient nanomaterial-based electrode that delivers large surface area, high electrochemical activity, and minimum ohmic loss, as well as provide design principles for next-generation nanomaterial-based electrodes that can be broadly applicable for highly efficient microbial electrochemical cells.

  6. Construction of High-Performance, Low-Cost Photoelectrodes with Controlled Polycrystalline Architectures

    SciTech Connect

    Kyoung-Shin Choi

    2013-06-30

    The major goal of our research was to gain the ability in electrochemical synthesis to precisely control compositions and morphologies of various oxide-based polycrystalline photoelectrodes in order to establish the composition-morphology-photoelectrochemical property relationships while discovering highly efficient photoelectrode systems for use in solar energy conversion. Major achievements include: development of porous n-type BiVO{sub 4} photoanode for efficient and stable solar water oxidation; development of p-type CuFeO{sub 2} photocathode for solar hydrogen production; and junction studies on electrochemically fabricated p-n Cu{sub 2}O homojunction solar cells for efficiency enhancement.

  7. High Contrast Vacuum Nuller Testbed (VNT) Contrast, Performance and Null Control

    NASA Technical Reports Server (NTRS)

    Lyon, Richard G.; Clampin, Mark; Petrone, Peter; Mallik, Udayan; Madison, Timothy; Bolcar, Matthew R.

    2012-01-01

    Herein we report on our Visible Nulling Coronagraph high-contrast result of 109 contrast averaged over a focal planeregion extending from 14 D with the Vacuum Nuller Testbed (VNT) in a vibration isolated vacuum chamber. TheVNC is a hybrid interferometriccoronagraphic approach for exoplanet science. It operates with high Lyot stopefficiency for filled, segmented and sparse or diluted-aperture telescopes, thereby spanning the range of potential futureNASA flight telescopes. NASAGoddard Space Flight Center (GSFC) has a well-established effort to develop the VNCand its technologies, and has developed an incremental sequence of VNC testbeds to advance this approach and itsenabling technologies. These testbeds have enabled advancement of high-contrast, visible light, nulling interferometry tounprecedented levels. The VNC is based on a modified Mach-Zehnder nulling interferometer, with a W configurationto accommodate a hex-packed MEMS based deformable mirror, a coherent fiber bundle and achromatic phase shifters.We give an overview of the VNT and discuss the high-contrast laboratory results, the optical configuration, criticaltechnologies and null sensing and control.

  8. Carbohydrate supplementation and exercise performance at high altitude: a randomized controlled trial.

    PubMed

    Oliver, Samuel J; Golja, Petra; Macdonald, Jamie H

    2012-03-01

    Acute carbohydrate supplementation decreases effort perception and increases endurance exercise capacity at sea level. It also improves laboratory-based endurance performance at altitude. However, the effect of chronic carbohydrate supplementation at altitude, when acclimatization may attenuate carbohydrate effects, achieved doses are lower and metabolic effects may be different, is unknown and was therefore focused on in the present study. Forty-one members of a 22-day high altitude expedition were randomized in a double-blind design to receive either placebo or carbohydrate supplementation. Diet was manipulated with commercially available energy drinks consumed ad libitum throughout the expedition. Participants performed a mountaineering time trial at 5192 m, completed submaximal incremental exercise step tests to assess cardiovascular parameters before, during, and after the expedition, and recorded spontaneous physical activity by accelerometer on rest days. Compared to placebo, compliant individuals of the carbohydrate-supplemented group received daily an additional 3.5±1.4 g carbohydrate·kg body mass(-1). Compliant individuals of the carbohydrate supplemented group reported 18% lower ratings of perceived exertion during the time trial at altitude, and completed it 17% faster than the placebo group (both p<0.05 by t-test). However, cardiovascular parameters obtained during submaximal exercise and spontaneous physical activity on rest days were similar between the two groups (all p>0.05 by analysis of variance). This study utilized testing protocols of specific relevance to high altitude sojourners, including the highest mountaineering time trial completed to date at altitude. Chronic carbohydrate supplementation reduced ratings of perceived exertion and improved physical performance, especially during prolonged and higher intensity exercise tasks. PMID:22429229

  9. Controllable film densification and interface flatness for high-performance amorphous indium oxide based thin film transistors

    SciTech Connect

    Ou-Yang, Wei E-mail: TSUKAGOSHI.Kazuhito@nims.go.jp; Mitoma, Nobuhiko; Kizu, Takio; Gao, Xu; Lin, Meng-Fang; Tsukagoshi, Kazuhito E-mail: TSUKAGOSHI.Kazuhito@nims.go.jp; Nabatame, Toshihide

    2014-10-20

    To avoid the problem of air sensitive and wet-etched Zn and/or Ga contained amorphous oxide transistors, we propose an alternative amorphous semiconductor of indium silicon tungsten oxide as the channel material for thin film transistors. In this study, we employ the material to reveal the relation between the active thin film and the transistor performance with aid of x-ray reflectivity study. By adjusting the pre-annealing temperature, we find that the film densification and interface flatness between the film and gate insulator are crucial for achieving controllable high-performance transistors. The material and findings in the study are believed helpful for realizing controllable high-performance stable transistors.

  10. A new instantaneous torque control of PM synchronous motor for high-performance direct-drive applications

    SciTech Connect

    Chung, S.K.; Kim, H.S.; Kim, C.G.; Youn, M.J.

    1998-05-01

    a new instantaneous torque-control strategy is presented for high-performance control of a permanent magnet (PM) synchronous motor. In order to deal with the torque pulsating problem of a PM synchronous motor in a low-speed region, new torque estimation and control techniques are proposed. The linkage flux of a PM synchronous motor is estimated using a model reference adaptive system technique, and the developed torque is instantaneously controlled by the proposed torque controller combining a variable structure control (VSC) with a space-vector pulse-width modulation (PWM). The proposed control provides the advantage of reducing the torque pulsation caused by the nonsinusoidal flux distribution. This control strategy is applied to the high-torque PM synchronous motor drive system for direct-drive applications and implemented by using a software of the digital signal processor (DSP) TMS320C30. The simulations and experiments are carried out for this system, and the results well demonstrate the effectiveness of the proposed control.

  11. Sand-control completion design, installation, and performance in high-rate gas wells

    SciTech Connect

    Burton, R.C.; Boggan, S.A.

    1998-09-01

    The Jupiter fields consist of a number of separate Rotliegendes gas reservoirs located approximately 90 miles off the Lincolnshire coast of the UK. The fields that make up Jupiter are Ganymede, Calisto, Europa, Sinope, and Thebe. Originally discovered in 1970, initial appraisal wells indicated poor reservoir properties and low deliverabilities. Development was postponed until a reappraisal of the area in the 1990`s indicated significant upside potential. The initial phase of the Jupiter development plan called for development of Ganymede and Calisto fields, with subsequent phases tying in Europa and Thebe. Initial development planning indicated a need for high field deliverability at low capital cost to meet economic targets. A small number of high-rate-potential wells were to be used to deplete the reservoir. Ganymede would be developed by use of a 10-slot platform and Calisto would be developed subsea and tied back to the Ganymede platform. The paper discusses the reservoir, formation assessment, productivity design, drilling design, screen installation, and completion performance.

  12. Tail buffet alleviation of high performance twin tail aircraft using offset piezoceramic stack actuators and acceleration feedback control

    NASA Astrophysics Data System (ADS)

    Bayon de Noyer, Maxime P.

    In High Performance Twin-Tail Aircraft (HPTTA), tail buffet occurs during high angles of attack maneuvers. At high angles of attack, flow separates and vortices are convected by the geometry of the wing-fuselage interface toward the vertical tails. This phenomenon, along with the aeroelastic coupling of the tail structural assembly, results in vibrations that can shorten the fatigue life of the empennage assembly and limit the flight envelope due to the large amplitude of the fin vibrations. The main goal of this research was to develop an active buffet alleviation system for HPTTA using Offset Piezoceramic Stack Actuators (OPSA) in combination with Acceleration Feedback Control (AFC) theory. In order to complete this task, the research work was divided into three main areas. First, two new methods for the design of non-collocated AFC controller parameters were developed for pure active damping applications and for quadratic performance criterion minimization. Second, a new type of moment inducing actuator based on piezoceramic stacks, the OPSA, was developed to provide high control authority while satisfying high reliability and maintainability requirements. A modal model of the OPSA acting on a benchmark structure was developed to create a low frequency approximation of the actuator and to optimize its offset distance and its placement. Third, because of the non-availability of reliable models for the controlled structure and the buffet-induced loads, a control system design method, based solely on the use of experimental data, was developed. Finally, two sets of experiments were conducted to show the feasibility of controlling buffet-induced vibrations during high angle of attack operations of a HPTTA. The first experiment validated both the effectiveness and the robustness of the active buffet alleviation system on an aeroelastically scaled model in wind tunnel tests. The second experiment showed that the combination of OPSA and AFC could suppress vibrations in

  13. Controlling Capital Costs in High Performance Office Buildings: A Review of Best Practices for Overcoming Cost Barriers

    SciTech Connect

    Pless, S.; Torcellini, P.

    2012-05-01

    This paper presents a set of 15 best practices for owners, designers, and construction teams of office buildings to reach high performance goals for energy efficiency, while maintaining a competitive budget. They are based on the recent experiences of the owner and design/build team for the Research Support Facility (RSF) on National Renewable Energy Facility's campus in Golden, CO, which show that achieving this outcome requires each key integrated team member to understand their opportunities to control capital costs.

  14. Data acquisition and control system for high-performance large-area CCD systems

    NASA Astrophysics Data System (ADS)

    Afanasieva, I. V.

    2015-04-01

    Astronomical CCD systems based on second-generation DINACON controllers were developed at the SAO RAS Advanced Design Laboratory more than seven years ago and since then have been in constant operation at the 6-meter and Zeiss-1000 telescopes. Such systems use monolithic large-area CCDs. We describe the software developed for the control of a family of large-area CCD systems equipped with a DINACON-II controller. The software suite serves for acquisition, primary reduction, visualization, and storage of video data, and also for the control, setup, and diagnostics of the CCD system.

  15. Digitally controlled high-performance dc SQUID readout electronics for a 304-channel vector magnetometer

    NASA Astrophysics Data System (ADS)

    Bechstein, S.; Petsche, F.; Scheiner, M.; Drung, D.; Thiel, F.; Schnabel, A.; Schurig, Th

    2006-06-01

    Recently, we have developed a family of dc superconducting quantum interference device (SQUID) readout electronics for several applications. These electronics comprise a low-noise preamplifier followed by an integrator, and an analog SQUID bias circuit. A highly-compact low-power version with a flux-locked loop bandwidth of 0.3 MHz and a white noise level of 1 nV/√Hz was specially designed for a 304-channel low-Tc dc SQUID vector magnetometer, intended to operate in the new Berlin Magnetically Shielded Room (BMSR-2). In order to minimize the space needed to mount the electronics on top of the dewar and to minimize the power consumption, we have integrated four electronics channels on one 3 cm × 10 cm sized board. Furthermore we embedded the analog components of these four channels into a digitally controlled system including an in-system programmable microcontroller. Four of these integrated boards were combined to one module with a size of 4 cm × 4 cm × 16 cm. 19 of these modules were implemented, resulting in a total power consumption of about 61 W. To initialize the 304 channels and to service the system we have developed software tools running on a laptop computer. By means of these software tools the microcontrollers are fed with all required data such as the working points, the characteristic parameters of the sensors (noise, voltage swing), or the sensor position inside of the vector magnetometer system. In this paper, the developed electronics including the software tools are described, and first results are presented.

  16. Electrospun V2O5 nanostructures with controllable morphology as high-performance cathode materials for lithium-ion batteries.

    PubMed

    Wang, Heng-guo; Ma, De-long; Huang, Yun; Zhang, Xin-bo

    2012-07-16

    Porous V(2)O(5) nanotubes, hierarchical V(2)O(5) nanofibers, and single-crystalline V(2)O(5) nanobelts were controllably synthesized by using a simple electrospinning technique and subsequent annealing. The mechanism for the formation of these controllable structures was investigated. When tested as the cathode materials in lithium-ion batteries (LIBs), the as-formed V(2)O(5) nanostructures exhibited a highly reversible capacity, excellent cycling performance, and good rate capacity. In particular, the porous V(2)O(5) nanotubes provided short distances for Li(+)-ion diffusion and large electrode-electrolyte contact areas for high Li(+)-ion flux across the interface; Moreover, these nanotubes delivered a high power density of 40.2 kW kg(-1) whilst the energy density remained as high as 201 W h kg(-1), which, as one of the highest values measured on V(2)O(5)-based cathode materials, could bridge the performance gap between batteries and supercapacitors. Moreover, to the best of our knowledge, this is the first preparation of single-crystalline V(2)O(5) nanobelts by using electrospinning techniques. Interestingly, the beneficial crystal orientation provided improved cycling stability for lithium intercalation. These results demonstrate that further improvement or optimization of electrochemical performance in transition-metal-oxide-based electrode materials could be realized by the design of 1D nanostructures with unique morphologies. PMID:22689094

  17. Process for controlling morphology and improving thermal-mechanical performance of high performance interpenetrating and semi-interpenetrating polymer networks

    NASA Technical Reports Server (NTRS)

    Pater, Ruth H. (Inventor); Hansen, Marion G. (Inventor)

    1997-01-01

    In the process of the present invention, a non-polar, aprotic solvent is removed from an oligomer/polymer solution by freeze-drying in order to produce IPNs and semi-IPNs. By thermally quenching the solution to a solid in a short length of time, the size of the minor constituent-rich regions is greatly reduced as they are excluded along with the major constituent from the regions of crystallizing solvent. The use of this process sequence of controlling phase morphology provides IPNs and semi-IPNs with improved fracture toughness, microcracking resistance, and other physical-mechanical properties as compared to IPNs and semi-IPNs formed when the solvent is evaporated rather than sublimed.

  18. Process for controlling morphology and improving thermal mechanical performance of high performance interpenetrating and semiinterpenetrating polymer networks

    NASA Technical Reports Server (NTRS)

    Pater, Ruth H. (Inventor); Hansen, Marion G. (Inventor)

    1998-01-01

    In the process of the present invention, a non-polar, aprotic solvent is removed from an oligomer/polymer solution by freeze-drying in order to produce IPNs and semi-IPNs. By thermally quenching the solution to a solid in a short length of time, the size of the minor constituent-rich regions is greatly reduced as they are excluded along with the major constituent from the regions of crystallizing solvent. The use of this process sequence of controlling phase morphology provides IPNs and semi-IPNs with improved fracture toughness, microcracking resistance, and other physical-mechanical properties as compared to IPNs and semi-IPNs formed when the solvent is evaporated rather than sublimed.

  19. Performance of microprocessor controllers

    SciTech Connect

    Gates, R.S.; Turner, L.W.; Overhults, D.G. . Dept. of Agricultural Engineering)

    1992-01-01

    United States animal production systems are at the threshold of a major new method for daily management of environmental control -- the integrated microprocessor-based environmental control system. Widespread adoption of this technology has the potential for dramatic improvement in production efficiencies through lower management costs, improved energy savings, and better feed conversion efficiencies. However, the technical problems of transient surge protection and appropriate mechanical backup systems have not been adequately addressed by the industry. The goals of this research were to identify the degree to which transient surge protection was being provided by current manufacturers, and to illustrate the implementation of microprocessor environmental control systems with mechanical backup. Transient open circuit over-voltage tests (ANSI/IEEE C62.41-1980) were performed on 16 environmental control units: a maximum of 800 V spike was applied to the power supplies, and up to 100 V spike applied to temperature sensor lines. Under these relatively mild tests, no failures were noted due to power supply transients, but three units failed when subjected to transients on their temperature sensor lines. Mechanical backup systems were designed to provide essential life-support during critical conditions of extreme outside conditions and extreme animal densities. The design and installation of environmental control systems for (1) a gestation unit and (2) a broiler house was performed. An overview of the process, and difficulties noted, is presented. Both systems incorporated mechanical backups. 20 refs.

  20. High Performance Operation Control for Heat Driven Heat Pump System using Metal Hydride

    NASA Astrophysics Data System (ADS)

    Okamoto, Hideyuki; Masuda, Masao; Kozawa, Yoshiyuki

    lt is recognized that COP of heat driven heat pump system using metal hydride is 0.3-0.4 in general. In order to rise COP, we have proposed two kinds of specific operation control; the control of cycle change time according to cold heat load and the control of cooling water temperature according to outside air wet-bulb temperature. The characteristics of the heat pump system using metal hydride have grasped by various experiments and simulations. The validity of the simulation model has been confirmed by comparing with experimental results. As results of the simulations programmed for the actual operation control month by month, yearly COP has risen till 0.5-0.6 for practical scale air-conditioning system without regard for the building use. By the operation control hour by hour, yearly COP has risen till 0.6-0.65. Moreover, in the office building case added 40% sensible heat recovery, yearly COP has risen more than 0.8.

  1. A high-performance network for a distributed-control system

    NASA Astrophysics Data System (ADS)

    Cuttone, G.; Aghion, F.; Giove, D.

    1989-04-01

    Local area networks play a central rule in modern distributed-control systems for accelerators. For a superconducting cyclotron under construction at the University of Milan, an optical Ethernet network has been implemented for the interconnection of multicomputer-based stations. Controller boards, with VLSI protocol chips, have been used. The higher levels of the ISO OSI model have been implemented to suit real-time control requirements. The experimental setup for measuring the data throughput between stations will be described. The effect of memory-to-memory data transfer with respect to the packet size has been studied for packets ranging from 200 bytes to 10 Kbytes. Results, showing the data throughput to range from 0.2 to 1.1 Mbit/s, will be discussed.

  2. High-performance digital triggering system for phase-controlled rectifiers

    SciTech Connect

    Olsen, R.E.

    1983-01-01

    The larger power supplies used to power accelerator magnets are most commonly polyphase rectifiers using phase control. While this method is capable of handling impressive amounts of power, it suffers from one serious disadvantage, namely that of subharmonic ripple. Since the stability of the stored beam depends to a considerable extent on the regulation of the current in the bending magnets, subharmonic ripple, especially that of low frequency, can have a detrimental effect. At the NSLS, we have constructed a 12-pulse, phase control system using digital signal processing techniques that essentially eliminates subharmonic ripple.

  3. Expert Meeting. Recommended Approaches to Humidity Control in High Performance Homes

    SciTech Connect

    Rudd, Armin

    2013-07-01

    This meeting was held on October 16, 2012, in Westford, MA, and brought together experts in the field of residential humidity control to address modeling issues for dehumidification. The presentations and discussions centered on computer simulation and field experience with these systems, with the goal of developing foundational information to support the development of a Building America Measure Guideline on this topic.

  4. Controlled synthesis of large-scale, uniform, vertically standing graphene for high-performance field emitters.

    PubMed

    Jiang, Lili; Yang, Tianzhong; Liu, Fei; Dong, Jing; Yao, Zhaohui; Shen, Chengmin; Deng, Shaozhi; Xu, Ningsheng; Liu, Yunqi; Gao, Hong-Jun

    2013-01-11

    Large-scale, uniform, vertically standing graphene with atomically thin edges are controllably synthesized on copper foil using a microwave-plasma chemical vapor deposition system. A growth mechanism for this system is proposed. This film shows excellent field-emission properties, with low turn-on field of 1.3 V μm(-1) , low threshold field of 3.0 V μm(-1) and a large field-enhancement factor more than 10 000. PMID:23135968

  5. High Contrast Vacuum Nuller Testbed (VNT) Contrast, Performance and Null Control

    NASA Technical Reports Server (NTRS)

    Lyon, Richard G.; Clampin, Mark; Petrone, Peter; Mallik, Udayan; Madison, Timothy; Bolcar, Matthew R.

    2012-01-01

    Herein we report on our contrast assessment and the development, sensing and control of the Vacuum Nuller Testbed to realize a Visible Nulling Coronagraphy (VNC) for exoplanet detection and characterization. Tbe VNC is one of the few approaches that works with filled, segmented and sparse or diluted-aperture telescope systems. It thus spans a range of potential future NASA telescopes and could be flown as a separate instrument on such a future mission. NASA/Goddard Space Flight Center has an established effort to develop VNC technologies, and an incremental sequence of testbeds to advance this approach and its critical technologies. We discuss the development of the vacuum Visible Nulling Coronagraph testbed (VNT). The VNT is an ultra-stable vibration isolated testbed that operates under closed-loop control within a vacuum chamber. It will be used to achieve an incremental sequence of three visible-light nulling milestones with sequentially higher contrasts of 10(exp 8), 10(exp 9) and ideally 10(exp 10) at an inner working angle of 2*lambda/D. The VNT is based on a modified Mach-Zehnder nulling interferometer, with a "W" configuration to accommodate a hex-packed MEMS based deformable mirror, a coherent fiber bundle and achromatic phase shifters. We discuss the laboratory results, optical configuration, critical technologies and the null sensing and control approach.

  6. High performance polymer development

    NASA Technical Reports Server (NTRS)

    Hergenrother, Paul M.

    1991-01-01

    The term high performance as applied to polymers is generally associated with polymers that operate at high temperatures. High performance is used to describe polymers that perform at temperatures of 177 C or higher. In addition to temperature, other factors obviously influence the performance of polymers such as thermal cycling, stress level, and environmental effects. Some recent developments at NASA Langley in polyimides, poly(arylene ethers), and acetylenic terminated materials are discussed. The high performance/high temperature polymers discussed are representative of the type of work underway at NASA Langley Research Center. Further improvement in these materials as well as the development of new polymers will provide technology to help meet NASA future needs in high performance/high temperature applications. In addition, because of the combination of properties offered by many of these polymers, they should find use in many other applications.

  7. Controlled Growth of Platinum Nanowire Arrays on Sulfur Doped Graphene as High Performance Electrocatalyst

    PubMed Central

    Wang, Rongyue; Higgins, Drew C.; Hoque, Md Ariful; Lee, DongUn; Hassan, Fathy; Chen, Zhongwei

    2013-01-01

    Graphene supported Pt nanostructures have great potential to be used as catalysts in electrochemical energy conversion and storage technologies; however the simultaneous control of Pt morphology and dispersion, along with ideally tailoring the physical properties of the catalyst support properties has proven very challenging. Using sulfur doped graphene (SG) as a support material, the heterogeneous dopant atoms could serve as nucleation sites allowing for the preparation of SG supported Pt nanowire arrays with ultra-thin diameters (2–5 nm) and dense surface coverage. Detailed investigation of the preparation technique reveals that the structure of the resulting composite could be readily controlled by fine tuning the Pt nanowire nucleation and growth reaction kinetics and the Pt-support interactions, whereby a mechanistic platinum nanowire array growth model is proposed. Electrochemical characterization demonstrates that the composite materials have 2–3 times higher catalytic activities toward the oxygen reduction and methanol oxidation reaction compared with commercial Pt/C catalyst. PMID:23942256

  8. Controlled growth of platinum nanowire arrays on sulfur doped graphene as high performance electrocatalyst.

    PubMed

    Wang, Rongyue; Higgins, Drew C; Hoque, Md Ariful; Lee, Dongun; Hassan, Fathy; Chen, Zhongwei

    2013-01-01

    Graphene supported Pt nanostructures have great potential to be used as catalysts in electrochemical energy conversion and storage technologies; however the simultaneous control of Pt morphology and dispersion, along with ideally tailoring the physical properties of the catalyst support properties has proven very challenging. Using sulfur doped graphene (SG) as a support material, the heterogeneous dopant atoms could serve as nucleation sites allowing for the preparation of SG supported Pt nanowire arrays with ultra-thin diameters (2-5 nm) and dense surface coverage. Detailed investigation of the preparation technique reveals that the structure of the resulting composite could be readily controlled by fine tuning the Pt nanowire nucleation and growth reaction kinetics and the Pt-support interactions, whereby a mechanistic platinum nanowire array growth model is proposed. Electrochemical characterization demonstrates that the composite materials have 2-3 times higher catalytic activities toward the oxygen reduction and methanol oxidation reaction compared with commercial Pt/C catalyst. PMID:23942256

  9. Preliminary Study of Relationships between Stability and Control Characteristics and Affordability for High-Performance Aircraft

    NASA Technical Reports Server (NTRS)

    Ogburn, Marilyn E.

    1998-01-01

    This paper describes a study that is being done as part of the Methods for Affordable Design (MAD) program within the National Aeronautics and Space Administration (NASA), for which the goal is to develop design methods and information that contribute to reductions in the aircraft development cycle time while increasing design confidence throughout the design cycle. The product of the study will be a database of information that relates key stability and control parameters to affordability considerations such as air combat exchange ratio, safety of flight, and probability of loss of the aircraft or pilot. The overall background and methodology are described, and preliminary results are shown for the first phase of the study to evaluate characteristics in the longitudinal axis. For these preliminary results a simplified analytical model of the aircraft response to uncommanded nose-up pitching moments was developed and used to characterize the requirements for recoveries to controlled flight conditions and to evaluate some parameters that affect the survivability of the aircraft and the pilot.

  10. High-performance brain-machine interface enabled by an adaptive optimal feedback-controlled point process decoder.

    PubMed

    Shanechi, Maryam M; Orsborn, Amy; Moorman, Helene; Gowda, Suraj; Carmena, Jose M

    2014-01-01

    Brain-machine interface (BMI) performance has been improved using Kalman filters (KF) combined with closed-loop decoder adaptation (CLDA). CLDA fits the decoder parameters during closed-loop BMI operation based on the neural activity and inferred user velocity intention. These advances have resulted in the recent ReFIT-KF and SmoothBatch-KF decoders. Here we demonstrate high-performance and robust BMI control using a novel closed-loop BMI architecture termed adaptive optimal feedback-controlled (OFC) point process filter (PPF). Adaptive OFC-PPF allows subjects to issue neural commands and receive feedback with every spike event and hence at a faster rate than the KF. Moreover, it adapts the decoder parameters with every spike event in contrast to current CLDA techniques that do so on the time-scale of minutes. Finally, unlike current methods that rotate the decoded velocity vector, adaptive OFC-PPF constructs an infinite-horizon OFC model of the brain to infer velocity intention during adaptation. Preliminary data collected in a monkey suggests that adaptive OFC-PPF improves BMI control. OFC-PPF outperformed SmoothBatch-KF in a self-paced center-out movement task with 8 targets. This improvement was due to both the PPF's increased rate of control and feedback compared with the KF, and to the OFC model suggesting that the OFC better approximates the user's strategy. Also, the spike-by-spike adaptation resulted in faster performance convergence compared to current techniques. Thus adaptive OFC-PPF enabled proficient BMI control in this monkey. PMID:25571483

  11. High-performance perovskite light-emitting diodes via morphological control of perovskite films.

    PubMed

    Yu, Jae Choul; Kim, Da Bin; Jung, Eui Dae; Lee, Bo Ram; Song, Myoung Hoon

    2016-04-01

    Solution-processable perovskite materials have garnered tremendous attention because of their excellent charge carrier mobility, possibility of a tunable optical bandgap, and high photoluminescence quantum efficiency (PLQE). In particular, the uniform morphology of a perovskite film is the most important factor in realizing perovskite light-emitting diodes (PeLEDs) with high efficiency and full-coverage electroluminescence (EL). In this study, we demonstrate highly efficient PeLEDs that contain a perovskite film with a uniform morphology by introducing HBr into the perovskite precursor. The introduction of HBr into the perovskite precursor results in a perovskite film with a uniform, continuous morphology because the HBr increases the solubility of the inorganic component in the perovskite precursor and reduces the crystallization rate of the perovskite film upon spin-coating. Moreover, PeLEDs fabricated using perovskite films with a uniform, continuous morphology, which were deposited using 6 vol% HBr in a dimethylformamide (DMF)/hydrobromic acid (HBr) cosolvent, exhibited full coverage of the green EL emission. Finally, the optimized PeLEDs fabricated with perovskite films deposited using the DMF/HBr cosolvent exhibited a maximum luminance of 3490 cd m(-2) (at 4.3 V) and a luminous efficiency of 0.43 cd A(-1) (at 4.3 V). PMID:26607474

  12. Composite-Based High Performance Electroactive Polymers For Remotely Controlled Mechanical Manipulations in NASA Applications

    NASA Technical Reports Server (NTRS)

    Zhang, Q. M.

    2003-01-01

    This program supported investigation of an all-polymer percolative composite which exhibits very high dielectric constant (less than 7,000). The experimental results show that the dielectric behavior of this new class of percolative composites follows the prediction of the percolation theory and the analysis of the conductive percolation phenomena. The very high dielectric constant of the all-polymer composites which are also very flexible and possess elastic modulus not very much different from that of the insulation polymer matrix makes it possible to induce a high electromechanical response under a much reduced electric field (a strain of 2.65% with an elastic energy density of 0.18 J/cu cm can be achieved under a field of 16 MV/m). Data analysis also suggests that in these composites, the non-uniform local field distribution as well as interface effects can significantly enhance the strain responses. Furthermore, the experimental data as well as the data analysis indicate that the conduction loss in these composites will not affect the strain hysteresis.

  13. High-performance nanocomposite based memristor with controlled quantum dots as charge traps.

    PubMed

    Younis, Adnan; Chu, Dewei; Lin, Xi; Yi, Jiabao; Dang, Feng; Li, Sean

    2013-03-01

    We report a novel approach to improve the resistive switching performance of semiconductor nanorod (NR) arrays, by introducing ceria (CeO2) quantum dots (QDs) as surface charge trappers. The vertically aligned zinc oxide (ZnO) (NR) arrays were grown on transparent conductive glass by electrochemical deposition while CeO2 QDs were prepared by a solvothermal method. Subsequently, the as-prepared CeO2 QDs were embedded into a ZnO NR array by dip coating to obtain a CeO2-ZnO nanocomposite. Interestingly, such a device exhibits excellent resistive switching properties with much higher ON/OFF ratios, better uniformity, and stability over the pure ZnO and CeO2 nanostructures. The origin of resistive switching was studied and the role of heterointerface was discussed. PMID:23470212

  14. Closed-Loop System Identification Experience for Flight Control Law and Flying Qualities Evaluation of a High Performance Fighter Aircraft

    NASA Technical Reports Server (NTRS)

    Murphy, Patrick C.

    1996-01-01

    This paper highlights some of the results and issues associated with estimating models to evaluate control law design methods and design criteria for advanced high performance aircraft. Experimental fighter aircraft such as the NASA-High Alpha Research Vehicle (HARV) have the capability to maneuver at very high angles of attack where nonlinear aerodynamics often predominate. HARV is an experimental F/A-18, configured with thrust vectoring and conformal actuated nose strakes. Identifying closed-loop models for this type of aircraft can be made difficult by nonlinearities and high order characteristics of the system. In this paper, only lateral-directional axes are considered since the lateral-directional control law was specifically designed to produce classical airplane responses normally expected with low-order, rigid-body systems. Evaluation of the control design methodology was made using low-order equivalent systems determined from flight and simulation. This allowed comparison of the closed-loop rigid-body dynamics achieved in flight with that designed in simulation. In flight, the On Board Excitation System was used to apply optimal inputs to lateral stick and pedals at five angles at attack : 5, 20, 30, 45, and 60 degrees. Data analysis and closed-loop model identification were done using frequency domain maximum likelihood. The structure of identified models was a linear state-space model reflecting classical 4th-order airplane dynamics. Input time delays associated with the high-order controller and aircraft system were accounted for in data preprocessing. A comparison of flight estimated models with small perturbation linear design models highlighted nonlinearities in the system and indicated that the closed-loop rigid-body dynamics were sensitive to input amplitudes at 20 and 30 degrees angle of attack.

  15. Closed-Loop System Identification Experience for Flight Control Law and Flying Qualities Evaluation of a High Performance Fighter Aircraft

    NASA Technical Reports Server (NTRS)

    Murphy, Patrick C.

    1999-01-01

    This paper highlights some of the results and issues associated with estimating models to evaluate control law design methods and design criteria for advanced high performance aircraft. Experimental fighter aircraft such as the NASA High Alpha Research Vehicle (HARV) have the capability to maneuver at very high angles of attack where nonlinear aerodynamics often predominate. HARV is an experimental F/A-18, configured with thrust vectoring and conformal actuated nose strakes. Identifying closed-loop models for this type of aircraft can be made difficult by nonlinearities and high-order characteristics of the system. In this paper only lateral-directional axes are considered since the lateral-directional control law was specifically designed to produce classical airplane responses normally expected with low-order, rigid-body systems. Evaluation of the control design methodology was made using low-order equivalent systems determined from flight and simulation. This allowed comparison of the closed-loop rigid-body dynamics achieved in flight with that designed in simulation. In flight, the On Board Excitation System was used to apply optimal inputs to lateral stick and pedals at five angles of attack: 5, 20, 30, 45, and 60 degrees. Data analysis and closed-loop model identification were done using frequency domain maximum likelihood. The structure of the identified models was a linear state-space model reflecting classical 4th-order airplane dynamics. Input time delays associated with the high-order controller and aircraft system were accounted for in data preprocessing. A comparison of flight estimated models with small perturbation linear design models highlighted nonlinearities in the system and indicated that the estimated closed-loop rigid-body dynamics were sensitive to input amplitudes at 20 and 30 degrees angle of attack.

  16. High-performance perovskite light-emitting diodes via morphological control of perovskite films

    NASA Astrophysics Data System (ADS)

    Yu, Jae Choul; Kim, Da Bin; Jung, Eui Dae; Lee, Bo Ram; Song, Myoung Hoon

    2016-03-01

    Solution-processable perovskite materials have garnered tremendous attention because of their excellent charge carrier mobility, possibility of a tunable optical bandgap, and high photoluminescence quantum efficiency (PLQE). In particular, the uniform morphology of a perovskite film is the most important factor in realizing perovskite light-emitting diodes (PeLEDs) with high efficiency and full-coverage electroluminescence (EL). In this study, we demonstrate highly efficient PeLEDs that contain a perovskite film with a uniform morphology by introducing HBr into the perovskite precursor. The introduction of HBr into the perovskite precursor results in a perovskite film with a uniform, continuous morphology because the HBr increases the solubility of the inorganic component in the perovskite precursor and reduces the crystallization rate of the perovskite film upon spin-coating. Moreover, PeLEDs fabricated using perovskite films with a uniform, continuous morphology, which were deposited using 6 vol% HBr in a dimethylformamide (DMF)/hydrobromic acid (HBr) cosolvent, exhibited full coverage of the green EL emission. Finally, the optimized PeLEDs fabricated with perovskite films deposited using the DMF/HBr cosolvent exhibited a maximum luminance of 3490 cd m-2 (at 4.3 V) and a luminous efficiency of 0.43 cd A-1 (at 4.3 V).Solution-processable perovskite materials have garnered tremendous attention because of their excellent charge carrier mobility, possibility of a tunable optical bandgap, and high photoluminescence quantum efficiency (PLQE). In particular, the uniform morphology of a perovskite film is the most important factor in realizing perovskite light-emitting diodes (PeLEDs) with high efficiency and full-coverage electroluminescence (EL). In this study, we demonstrate highly efficient PeLEDs that contain a perovskite film with a uniform morphology by introducing HBr into the perovskite precursor. The introduction of HBr into the perovskite precursor results in

  17. Performance of high-area-ratio annular dump diffuser using suction-stabilized-vortex flow control

    NASA Technical Reports Server (NTRS)

    Juhasz, A. J.; Smith, J. M.

    1977-01-01

    A short annular dump diffuser having a geometry conductive to formation of suction stabilized toroidal vortices in the region of abrupt area change was tested. The overall diffuser area ratio was 4.0 and the length to inlet height ratio was 2.0. Performance data were obtained at near ambient temperature and pressure for inlet Mach numbers of 0.18 and 0.30 with suction rates ranging from 0 to 18 percent of total inlet mass flowrate. Results show that the exit velocity profile could be readily biased toward either wall by adjustment of inner and outer wall suction rates. Symmetric exit velocity profiles were inherently unstable with a tendency to revert to a hub or tip bias. Diffuser effectiveness was increased from about 38 percent without suction to over 85 percent at a total suction rate of 10 to 12 percent. At the same time diffuser total pressure loss was reduced from 3.1 percent to 1.1 percent at an inlet Mach number of 0.3.

  18. Performance of a high-force controllable MR fluid damper-liquid spring suspension systems

    NASA Astrophysics Data System (ADS)

    Raja, Pramod; Wang, Xiaojie; Gordaninejad, Faramarz

    2010-04-01

    In this study a compact compressible magneto-rheological (MR) fluid damper-liquid spring (CMRFD-LS) with high spring rate is designed, developed and tested. The proposed device consists of a cylinder and piston-rod arrangement, with an annular MR fluid valve. The internal pressures in the chambers on either side of the piston develop the spring force, while the pressure difference across the MR valve produces the damping force, when the fluid flows through the MR valve. A fluid mechanics-based model is conducted to predict the behavior of the damper device under sinusoidal input. The device is studied under oscillatory vibrations for various frequencies and applied magnetic fields. The experimental results are in good agreement with the theoretical predictions.

  19. Turbulence Decorrelation via Controlled Ex B Shear in High-Performance Plasmas

    NASA Astrophysics Data System (ADS)

    McKee, G. R.

    2015-11-01

    Multi-scale spatiotemporal turbulence properties are significantly altered as toroidal rotation and resulting ExB shearing rate profile are systematically varied in advanced-inductive H-mode plasmas on DIII-D (βN ~ 2.7, q95=5.1). Density, electron and ion temperature profiles and dimensionless parameters (βN, q95, ν*, ρ*, and Te/Ti) are maintained nearly fixed during the rotation scan. Low-wavenumber turbulence (k⊥ρS < 1), measured with Beam Emission Spectroscopy, exhibits increased decorrelation rates (reduced eddy lifetime) as the ExB shear rises across the radial zone of maximum shearing rate (0.55 < ρ < 0 . 75), while the fluctuation amplitude undergoes little change. The poloidal wavenumber is reduced at higher shear, indicating a change in the wavenumber spectrum: eddies elongate in the direction orthogonal to shear and field. At both low and high shear, the 2D turbulence correlation function exhibits a tilted structure, consistent with flow shear. At mid-radius (ρ ~ 0.5), low-k density fluctuations show localized amplitude reduction, consistent with linear GYRO growth rates and ωExB shearing rates. Intermediate and high wavenumber fluctuations measured with Doppler Back-Scattering (k⊥ρS ~ 2.5-3.5) at ρ=0.7 and Phase Contrast Imaging (k⊥ρS > 5) exhibit decreasing amplitude at higher rotation. The energy confinement time increases from 105 ms to 150 ms as the toroidal Mach number (M=vTOR / vth , i) increases to Mo ~ 0.5, while transport decreases. TGLF calculations match the Ti profile with modest discrepancies in the Te and ne profiles. These results clarify the complex mechanisms by which ExB shear affects turbulence. Work supported in part by the US DOE under DE-FG02-08ER54999, DE-FC02-04ER54698.

  20. Low-cost high performance adaptive optics real-time controller in free space optical communication system

    NASA Astrophysics Data System (ADS)

    Chen, Shanqiu; Liu, Chao; Zhao, Enyi; Xian, Hao; Xu, Bing; Ye, Yutang

    2014-11-01

    This paper proposed a low-cost and high performance adaptive optics real-time controller in free space optical communication system. Real-time controller is constructed with a 4-core CPU with Linux operation system patched with Real-Time Application Interface (RTAI) and a frame-grabber, and the whole cost is below $6000. Multi-core parallel processing scheme and SSE instruction optimization for reconstruction process result in about 5 speedup, and overall processing time for this 137-element adaptive optic system can reach below 100 us and with latency about 50 us by utilizing streamlined processing scheme, which meet the requirement of processing at frequency over 1709 Hz. Real-time data storage system designed by circle buffer make this system to store consecutive image frames and provide an approach to analysis the image data and intermediate data such as slope information.

  1. Controlled Prelithiation of Silicon Monoxide for High Performance Lithium-Ion Rechargeable Full Cells.

    PubMed

    Kim, Hye Jin; Choi, Sunghun; Lee, Seung Jong; Seo, Myung Won; Lee, Jae Goo; Deniz, Erhan; Lee, Yong Ju; Kim, Eun Kyung; Choi, Jang Wook

    2016-01-13

    Despite the recent considerable progress, the reversibility and cycle life of silicon anodes in lithium-ion batteries are yet to be improved further to meet the commercial standards. The current major industry, instead, adopts silicon monoxide (SiOx, x ≈ 1), as this phase can accommodate the volume change of embedded Si nanodomains via the silicon oxide matrix. However, the poor Coulombic efficiencies (CEs) in the early period of cycling limit the content of SiOx, usually below 10 wt % in a composite electrode with graphite. Here, we introduce a scalable but delicate prelithiation scheme based on electrical shorting with lithium metal foil. The accurate shorting time and voltage monitoring allow a fine-tuning on the degree of prelithiation without lithium plating, to a level that the CEs in the first three cycles reach 94.9%, 95.7%, and 97.2%. The excellent reversibility enables robust full-cell operations in pairing with an emerging nickel-rich layered cathode, Li[Ni0.8Co0.15Al0.05]O2, even at a commercial level of initial areal capacity of 2.4 mAh cm(-2), leading to a full cell energy density 1.5-times as high as that of graphite-LiCoO2 counterpart in terms of the active material weight. PMID:26694703

  2. High performance systems

    SciTech Connect

    Vigil, M.B.

    1995-03-01

    This document provides a written compilation of the presentations and viewgraphs from the 1994 Conference on High Speed Computing given at the High Speed Computing Conference, {open_quotes}High Performance Systems,{close_quotes} held at Gleneden Beach, Oregon, on April 18 through 21, 1994.

  3. TiO2 microboxes with controlled internal porosity for high-performance lithium storage

    SciTech Connect

    Gao, Xuehui; Li, Gaoran; Xu, Yangyang; Hong, Zhanglian; Liang, Chengdu; Lin, Zhan

    2015-10-02

    Titanium dioxide (TiO2) is considered a promising anode material for high-power lithium ion batteries (LIBs) because of its low cost, high thermal/chemical stability, and good safety performance without solid electrolyte interface formation. However, the poor electronic conductivity and low lithium ion diffusivity of TiO2 result in poor cyclability and lithium ion depletion at high current rates, which hinder them from practical applications. Herein we demonstrate that hierarchically structured TiO2 microboxes with controlled internal porosity can address the aforementioned problems for high-power, long-life LIB anodes. A self-templating method for the synthesis of mesoporous microboxes was developed through Na2EDTA-assisted ion exchange of CaTiO3 microcubes. The resulting TiO2 nanorods were organized into microboxes that resemble the microcube precursors. Furthermore, this nanostructured TiO2 material has superior lithium storage properties with a capacity of 187 mAh g-1 after 300 cycles at 1C and good rate capabilities up to 20C.

  4. High Performance Polymers

    NASA Technical Reports Server (NTRS)

    Venumbaka, Sreenivasulu R.; Cassidy, Patrick E.

    2003-01-01

    This report summarizes results from research on high performance polymers. The research areas proposed in this report include: 1) Effort to improve the synthesis and to understand and replicate the dielectric behavior of 6HC17-PEK; 2) Continue preparation and evaluation of flexible, low dielectric silicon- and fluorine- containing polymers with improved toughness; and 3) Synthesis and characterization of high performance polymers containing the spirodilactam moiety.

  5. Facet-Controlling Agents Free Synthesis of Hematite Crystals with High-Index Planes: Excellent Photodegradation Performance and Mechanism Insight.

    PubMed

    Ding, Dahu; Huang, Yang; Zhou, Cuifeng; Liu, Zongwen; Ren, Jichang; Zhang, Ruiqin; Wang, Jianhai; Zhang, Yuanjian; Lei, Zhongfang; Zhang, Zhenya; Zhi, Chunyi

    2016-01-13

    Hematite (α-Fe2O3) crystals with uniform size and structure are synthesized through very facile one-pot hydrothermal methods without any additive. The as-synthesized sub-micrometer-sized α-Fe2O3 crystals with small surface areas perform superb visible light photodegradation activities, even much better than most other α-Fe2O3 nanostructures with large surface areas. Profound mechanism analyses reveal that the microwave-assisted hydrothermal (Mic-H) synthesized α-Fe2O3 is enclosed by 12 high-index {2-15} facets. The structure and the low unoccupied molecular orbital (LUMO) of the high-index planes result in the excellent photocatalytic activity. This is the first report on the formation of {2-15} plane group of hematite, and the synthesis of the hematite particles with the {2-15} planes is very simple and no any facet-controlling agent is used. This study may pave the way to further performance enhancement and practical applications of the cheap hematite materials. PMID:26651218

  6. Solid State Digital Propulsion "Cluster Thrusters" For Small Satellites Using High Performance Electrically Controlled Extinguishable Solid Propellants (ECESP)

    NASA Technical Reports Server (NTRS)

    Sawka, Wayne N.; Katzakian, Arthur; Grix, Charles

    2005-01-01

    Electrically controlled extinguishable solid propellants (ESCSP) are capable of multiple ignitions, extinguishments and throttle control by the application of electrical power. Both core and end burning no moving parts ECESP grains/motors to three inches in diameter have now been tested. Ongoing research has led to a newer family of even higher performance ECESP providing up to 10% higher performance, manufacturing ease, and significantly higher electrical conduction. The high conductivity was not found to be desirable for larger motors; however it is ideal for downward scaling to micro and pico- propulsion applications with a web thickness of less than 0.125 inch/ diameter. As a solid solution propellant, this ECESP is molecularly uniform, having no granular structure. Because of this homogeneity and workable viscosity it can be directly cast into thin layers or vacuum cast into complex geometries. Both coaxial and grain stacks have been demonstrated. Combining individual propellant coaxial grains and/or grain stacks together form three-dimensional arrays yield modular cluster thrusters. Adoption of fabless manufacturing methods and standards from the electronics industry will provide custom, highly reproducible micro-propulsion arrays and clusters at low costs. These stack and cluster thruster designs provide a small footprint saving spacecraft surface area for solar panels and/or experiments. The simplicity of these thrusters will enable their broad use on micro-pico satellites for primary propulsion, ACS and formation flying applications. Larger spacecraft may find uses for ECESP thrusters on extended booms, on-orbit refueling, pneumatic actuators, and gas generators.

  7. Preparation of morphology-controllable polyaniline and polyaniline/graphene hydrogels for high performance binder-free supercapacitor electrodes

    NASA Astrophysics Data System (ADS)

    Luo, Jinwei; Zhong, Wenbin; Zou, Yubo; Xiong, Changlun; Yang, Wantai

    2016-07-01

    Polyaniline (PANI) and its composite hydrogels have been considered as a unique supercapacitor electrode material due to their three dimensional (3D) porous structures, formed conducting networks, high specific surface areas and fast electron/ion transfer. Herein, dendritic and long fibrous PANI nanostructure hydrogels (PDH and PFH), dendritic PNAI nanofiber/graphene and long PANI nanofibers/Nitrogen-doped graphene composite hydrogels (PGH and PNGH) were prepared by integration polymerization of aniline and hydrothermal process. It was found that the addition of p-Phenylenediamine (PPD) not only controlled the morphologies of PANI from dendritic to long fibrous, but also facilitated the graphene oxide (GO) into nitrogen-doped graphene. Furthermore, after freeze-drying, PDH and PGH exhibited a max compressive strength of 9.5 and 9.6 KPa, respectively; while the max compressive strength of PFH and PNGH constructed with long PANI nanofiber is 79.9 and 75.8 KPa, respectively. Directly using these prepared hydrogels as electrodes for supercapacitors, it was found that PDH, PFH, PGH and PNGH exhibited high specific capacitances of 448.6, 470, 540.9 and 610 F g-1, respectively, at the current density of 1 A g-1. It is expected that the prepared PDH, PFH, PGH and PNGH can be directly applied in the field of high performance energy storage devices.

  8. High-performance flat data center network architecture based on scalable and flow-controlled optical switching system

    NASA Astrophysics Data System (ADS)

    Calabretta, Nicola; Miao, Wang; Dorren, Harm

    2016-03-01

    Traffic in data centers networks (DCNs) is steadily growing to support various applications and virtualization technologies. Multi-tenancy enabling efficient resource utilization is considered as a key requirement for the next generation DCs resulting from the growing demands for services and applications. Virtualization mechanisms and technologies can leverage statistical multiplexing and fast switch reconfiguration to further extend the DC efficiency and agility. We present a novel high performance flat DCN employing bufferless and distributed fast (sub-microsecond) optical switches with wavelength, space, and time switching operation. The fast optical switches can enhance the performance of the DCNs by providing large-capacity switching capability and efficiently sharing the data plane resources by exploiting statistical multiplexing. Benefiting from the Software-Defined Networking (SDN) control of the optical switches, virtual DCNs can be flexibly created and reconfigured by the DCN provider. Numerical and experimental investigations of the DCN based on the fast optical switches show the successful setup of virtual network slices for intra-data center interconnections. Experimental results to assess the DCN performance in terms of latency and packet loss show less than 10^-5 packet loss and 640ns end-to-end latency with 0.4 load and 16- packet size buffer. Numerical investigation on the performance of the systems when the port number of the optical switch is scaled to 32x32 system indicate that more than 1000 ToRs each with Terabit/s interface can be interconnected providing a Petabit/s capacity. The roadmap to photonic integration of large port optical switches will be also presented.

  9. Introduction to Cost Control Strategies for Zero Energy Buildings: High-Performance Design and Construction on a Budget (Fact Sheet)

    SciTech Connect

    Not Available

    2014-09-01

    Momentum behind zero energy building design and construction is increasing, presenting a tremendous opportunity for advancing energy performance in the commercial building industry. At the same time, there is a lingering perception that zero energy buildings must be cost prohibitive or limited to showcase projects. Fortunately, an increasing number of projects are demonstrating that high performance can be achieved within typical budgets. This factsheet highlights replicable, recommended strategies for achieving high performance on a budget, based on experiences from past projects.

  10. High-Performance WSe2 Field-Effect Transistors via Controlled Formation of In-Plane Heterojunctions.

    PubMed

    Liu, Bilu; Ma, Yuqiang; Zhang, Anyi; Chen, Liang; Abbas, Ahmad N; Liu, Yihang; Shen, Chenfei; Wan, Haochuan; Zhou, Chongwu

    2016-05-24

    Monolayer WSe2 is a two-dimensional (2D) semiconductor with a direct band gap, and it has been recently explored as a promising material for electronics and optoelectronics. Low field-effect mobility is the main constraint preventing WSe2 from becoming one of the competing channel materials for field-effect transistors (FETs). Recent results have demonstrated that chemical treatments can modify the electrical properties of transition metal dichalcogenides (TMDCs), including MoS2 and WSe2. Here, we report that controlled heating in air significantly improves device performance of WSe2 FETs in terms of on-state currents and field-effect mobilities. Specifically, after being heated at optimized conditions, chemical vapor deposition grown monolayer WSe2 FETs showed an average FET mobility of 31 cm(2)·V(-1)·s(-1) and on/off current ratios up to 5 × 10(8). For few-layer WSe2 FETs, after the same treatment applied, we achieved a high mobility up to 92 cm(2)·V(-1)·s(-1). These values are significantly higher than FETs fabricated using as-grown WSe2 flakes without heating treatment, demonstrating the effectiveness of air heating on the performance improvements of WSe2 FETs. The underlying chemical processes involved during air heating and the formation of in-plane heterojunctions of WSe2 and WO3-x, which is believed to be the reason for the improved FET performance, were studied by spectroscopy and transmission electron microscopy. We further demonstrated that, by combining the air heating method developed in this work with supporting 2D materials on the BN substrate, we achieved a noteworthy field-effect mobility of 83 cm(2)·V(-1)·s(-1) for monolayer WSe2 FETs. This work is a step toward controlled modification of the properties of WSe2 and potentially other TMDCs and may greatly improve device performance for future applications of 2D materials in electronics and optoelectronics. PMID:27159780

  11. DSP-based adaptive backstepping using the tracking errors for high-performance sensorless speed control of induction motor drive.

    PubMed

    Zaafouri, Abderrahmen; Ben Regaya, Chiheb; Ben Azza, Hechmi; Châari, Abdelkader

    2016-01-01

    This paper presents a modified structure of the backstepping nonlinear control of the induction motor (IM) fitted with an adaptive backstepping speed observer. The control design is based on the backstepping technique complemented by the introduction of integral tracking errors action to improve its robustness. Unlike other research performed on backstepping control with integral action, the control law developed in this paper does not propose the increase of the number of system state so as not increase the complexity of differential equations resolution. The digital simulation and experimental results show the effectiveness of the proposed control compared to the conventional PI control. The results analysis shows the characteristic robustness of the adaptive control to disturbances of the load, the speed variation and low speed. PMID:26653141

  12. High-Performance Integrated Control of water quality and quantity in urban water reservoirs by dynamic emulation and model predictive control

    NASA Astrophysics Data System (ADS)

    Castelletti, A.; Galelli, S.; Goedbloed, A.

    2015-12-01

    Retention basins and urban reservoirs are increasingly used to support drinking water supply in large metropolitan contexts, since they make use of a resource, i.e., stormwater, that would be otherwise wasted, thus limiting the amount of water extracted from natural systems or produced with energy-intensive techniques. Yet, the operation of these infrastructures faces a twofold challenge. First, the presence of large impervious areas in urban catchments results in high discharge peaks and runoff volumes and a fast runoff response to rainfall, with consequent very short times of concentration. Second, stormwater transports large amount of pollutants to the receiving water bodies. This paper contributes a novel High-Performance Integrated Control framework to support the real-time operation of urban water supply storages affected by water quality problems. We use a 3D hydrodynamic, high-fidelity, simulation model to predict the main water quality dynamics and inform a real-time controller based on Model Predictive Control. We integrate the simulation model into the control scheme by a model reduction process, where the high-fidelity simulator is first used to identify and then replaced by a low-order dynamic emulator, which runs orders of magnitude faster. The framework is used to design the hourly operation of Marina Reservoir, a 3.2 Mm3 stormwater-fed reservoir located in the centre of Singapore operated for drinking water supply and flood control. Because of its recent formation from a former estuary, the reservoir suffers from high salinity levels, whose dynamics is modelled with Delft3D-FLOW. Results show that the real-time operation designed by our framework drops the minimum salinity levels of nearly 30% while reducing the average annual deficit of drinking water supply by about two times the active storage of the reservoir. Such a win-win solution is obtained by means of a model reduction process that reduced the dimensionality of Delft3D-FLOW by three orders

  13. High performance polymeric foams

    SciTech Connect

    Gargiulo, M.; Sorrentino, L.; Iannace, S.

    2008-08-28

    The aim of this work was to investigate the foamability of high-performance polymers (polyethersulfone, polyphenylsulfone, polyetherimide and polyethylenenaphtalate). Two different methods have been used to prepare the foam samples: high temperature expansion and two-stage batch process. The effects of processing parameters (saturation time and pressure, foaming temperature) on the densities and microcellular structures of these foams were analyzed by using scanning electron microscopy.

  14. A Method for Integrating Thrust-Vectoring and Actuated Forebody Strakes with Conventional Aerodynamic Controls on a High-Performance Fighter Airplane

    NASA Technical Reports Server (NTRS)

    Lallman, Frederick J.; Davidson, John B.; Murphy, Patrick C.

    1998-01-01

    A method, called pseudo controls, of integrating several airplane controls to achieve cooperative operation is presented. The method eliminates conflicting control motions, minimizes the number of feedback control gains, and reduces the complication of feedback gain schedules. The method is applied to the lateral/directional controls of a modified high-performance airplane. The airplane has a conventional set of aerodynamic controls, an experimental set of thrust-vectoring controls, and an experimental set of actuated forebody strakes. The experimental controls give the airplane additional control power for enhanced stability and maneuvering capabilities while flying over an expanded envelope, especially at high angles of attack. The flight controls are scheduled to generate independent body-axis control moments. These control moments are coordinated to produce stability-axis angular accelerations. Inertial coupling moments are compensated. Thrust-vectoring controls are engaged according to their effectiveness relative to that of the aerodynamic controls. Vane-relief logic removes steady and slowly varying commands from the thrust-vectoring controls to alleviate heating of the thrust turning devices. The actuated forebody strakes are engaged at high angles of attack. This report presents the forward-loop elements of a flight control system that positions the flight controls according to the desired stability-axis accelerations. This report does not include the generation of the required angular acceleration commands by means of pilot controls or the feedback of sensed airplane motions.

  15. High performance parallel architectures

    SciTech Connect

    Anderson, R.E. )

    1989-09-01

    In this paper the author describes current high performance parallel computer architectures. A taxonomy is presented to show computer architecture from the user programmer's point-of-view. The effects of the taxonomy upon the programming model are described. Some current architectures are described with respect to the taxonomy. Finally, some predictions about future systems are presented. 5 refs., 1 fig.

  16. High-Performance Happy

    ERIC Educational Resources Information Center

    O'Hanlon, Charlene

    2007-01-01

    Traditionally, the high-performance computing (HPC) systems used to conduct research at universities have amounted to silos of technology scattered across the campus and falling under the purview of the researchers themselves. This article reports that a growing number of universities are now taking over the management of those systems and…

  17. High Performance, Dependable Multiprocessor

    NASA Technical Reports Server (NTRS)

    Ramos, Jeremy; Samson, John R.; Troxel, Ian; Subramaniyan, Rajagopal; Jacobs, Adam; Greco, James; Cieslewski, Grzegorz; Curreri, John; Fischer, Michael; Grobelny, Eric; George, Alan; Aggarwal, Vikas; Patel, Minesh; Some, Raphael

    2006-01-01

    With the ever increasing demand for higher bandwidth and processing capacity of today's space exploration, space science, and defense missions, the ability to efficiently apply commercial-off-the-shelf (COTS) processors for on-board computing is now a critical need. In response to this need, NASA's New Millennium Program office has commissioned the development of Dependable Multiprocessor (DM) technology for use in payload and robotic missions. The Dependable Multiprocessor technology is a COTS-based, power efficient, high performance, highly dependable, fault tolerant cluster computer. To date, Honeywell has successfully demonstrated a TRL4 prototype of the Dependable Multiprocessor [I], and is now working on the development of a TRLS prototype. For the present effort Honeywell has teamed up with the University of Florida's High-performance Computing and Simulation (HCS) Lab, and together the team has demonstrated major elements of the Dependable Multiprocessor TRLS system.

  18. High performance steam development

    SciTech Connect

    Duffy, T.; Schneider, P.

    1995-12-31

    DOE has launched a program to make a step change in power plant to 1500 F steam, since the highest possible performance gains can be achieved in a 1500 F steam system when using a topping turbine in a back pressure steam turbine for cogeneration. A 500-hour proof-of-concept steam generator test module was designed, fabricated, and successfully tested. It has four once-through steam generator circuits. The complete HPSS (high performance steam system) was tested above 1500 F and 1500 psig for over 102 hours at full power.

  19. Controlled modification of carbon nanotubes and polyaniline on macroporous graphite felt for high-performance microbial fuel cell anode

    NASA Astrophysics Data System (ADS)

    Cui, Hui-Fang; Du, Lin; Guo, Peng-Bo; Zhu, Bao; Luong, John H. T.

    2015-06-01

    Polyaniline (PANI) was electropolymerized on the surface of macroporous graphite felt (GF) followed by the electrophoretic deposition of carbon nanotubes (CNTs). The as-prepared macroporous material was characterized by scanning electron microscopy, water contact angle goniometry and electrochemical techniques. Upon the modification of PANI, a rough and nano-cilia containing film is coated on the surface of the graphite fibers, transforming the surface from hydrophobic to hydrophilic. The subsequent modification by CNTs increases the effective surface area and electrical conductivity of the resulting material. The power output of a mediator-free dual-chamber microbial fuel cell (MFC) constructed from the GF anode and an exoelectrogen Shewanella putrefaciens increases drastically with the CNT modification. The CNT/PANI/GF MFC attains an output voltage of 342 mV across an external resistor of 1.96 kΩ constant load, and a maximum power density of 257 mW m-2, increased by 343% and 186%, compared to that of the pristine GF MFC and the PANI/GF MFC, respectively. More bacteria are attached on the CNT/PANI/GF anode than on the PANI/GF anode during the working of the MFC. This strategy provides an easy scale-up, simple and controllable method for the preparation of high-performance and low-cost MFC anodes.

  20. Controllable synthesis and highly efficient electrocatalytic oxidation performance of SnO 2/CNT core-shell structures

    NASA Astrophysics Data System (ADS)

    Zhang, Dengsong; Pan, Chengsi; Shi, Liyi; Mai, Hailing; Gao, Xiaohong

    2009-02-01

    In this work, the nanocomposites, carbon nanotubes (CNTs) coated with nanosized uninterrupted SnO 2, were prepared controllably by a facile solvothermal method. The obtained nanocomposites have a thin overlayer which is made of nanoparticles with a diameter of ˜3 nm. The products were characterized by X-ray diffraction and transmission electron microscopy. The obtained SnO 2/CNTs have an excellent electrocatalytic oxidation performance for the X-3B, a kind of dye. The parameters affecting the electrocatalytic activity were investigated in details. The excellent catalytic property of the SnO 2/CNT electrodes can be explained as follows: (1) high specific surface area gives more active sites for X-3B oxidation; (2) the formation of thin, uniform, and uninterrupted coverage of SnO 2 nanoparticles on CNTs raises the potential of oxygen evolution and the current efficiency; and (3) the CNTs increase the conductivity of the electrodes, which results in the increase of the current efficiency.

  1. High Performance Window Retrofit

    SciTech Connect

    Shrestha, Som S; Hun, Diana E; Desjarlais, Andre Omer

    2013-12-01

    The US Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) and Traco partnered to develop high-performance windows for commercial building that are cost-effective. The main performance requirement for these windows was that they needed to have an R-value of at least 5 ft2 F h/Btu. This project seeks to quantify the potential energy savings from installing these windows in commercial buildings that are at least 20 years old. To this end, we are conducting evaluations at a two-story test facility that is representative of a commercial building from the 1980s, and are gathering measurements on the performance of its windows before and after double-pane, clear-glazed units are upgraded with R5 windows. Additionally, we will use these data to calibrate EnergyPlus models that we will allow us to extrapolate results to other climates. Findings from this project will provide empirical data on the benefits from high-performance windows, which will help promote their adoption in new and existing commercial buildings. This report describes the experimental setup, and includes some of the field and simulation results.

  2. Controlled Growth of NiCo2O4 Nanorods and Ultrathin Nanosheets on Carbon Nanofibers for High-performance Supercapacitors

    PubMed Central

    Zhang, Genqiang; (David) Lou, Xiong Wen

    2013-01-01

    Two one-dimensional hierarchical hybrid nanostructures composed of NiCo2O4 nanorods and ultrathin nanosheets on carbon nanofibers (CNFs) are controllably synthesized through facile solution methods combined with a simple thermal treatment. The structure of NiCo2O4 can be easily controlled to be nanorods or nanosheets by using different additives in the synthesis. These two different nanostructures are evaluated as electrodes for high performance supercapacitors, in view of their apparent advantages, such as high electroactive surface area, ultrathin and porous features, robust mechanical strength, shorter ion and electron transport path. Their electrochemical performance is systematically studied, and both of these two hierarchical hybrid nanostructures exhibit high capacitance and excellent cycling stability. The remarkable electrochemical performance will undoubtedly make these hybrid structures attractive for high-performance supercapacitors with high power and energy densities. PMID:23503561

  3. High User Control in Game Design Elements Increases Compliance and In-game Performance in a Memory Training Game.

    PubMed

    Nagle, Aniket; Riener, Robert; Wolf, Peter

    2015-01-01

    Computer games are increasingly being used for training cognitive functions like working memory and attention among the growing population of older adults. While cognitive training games often include elements like difficulty adaptation, rewards, and visual themes to make the games more enjoyable and effective, the effect of different degrees of afforded user control in manipulating these elements has not been systematically studied. To address this issue, two distinct implementations of the three aforementioned game elements were tested among healthy older adults (N = 21, 69.9 ± 6.4 years old) playing a game-like version of the n-back task on a tablet at home for 3 weeks. Two modes were considered, differentiated by the afforded degree of user control of the three elements: user control of difficulty vs. automatic difficulty adaptation, difficulty-dependent rewards vs. automatic feedback messages, and user choice of visual theme vs. no choice. The two modes ("USER-CONTROL" and "AUTO") were compared for frequency of play, duration of play, and in-game performance. Participants were free to play the game whenever and for however long they wished. Participants in USER-CONTROL exhibited significantly higher frequency of playing, total play duration, and in-game performance than participants in AUTO. The results of the present study demonstrate the efficacy of providing user control in the three game elements, while validating a home-based study design in which participants were not bound by any training regimen, and could play the game whenever they wished. The results have implications for designing cognitive training games that elicit higher compliance and better in-game performance, with an emphasis on home-based training. PMID:26635681

  4. High Performance Buildings Database

    DOE Data Explorer

    The High Performance Buildings Database is a shared resource for the building industry, a unique central repository of in-depth information and data on high-performance, green building projects across the United States and abroad. The database includes information on the energy use, environmental performance, design process, finances, and other aspects of each project. Members of the design and construction teams are listed, as are sources for additional information. In total, up to twelve screens of detailed information are provided for each project profile. Projects range in size from small single-family homes or tenant fit-outs within buildings to large commercial and institutional buildings and even entire campuses. The database is a data repository as well. A series of Web-based data-entry templates allows anyone to enter information about a building project into the database. Once a project has been submitted, each of the partner organizations can review the entry and choose whether or not to publish that particular project on its own Web site.

  5. Effects of high energy simulated space radiation on polymeric second-surface mirrors. [thermal control coatings - performance tests

    NASA Technical Reports Server (NTRS)

    Eogdall, L. B.; Cannaday, S. S.

    1975-01-01

    A radiation effects experimental program was performed, in which second surface mirror type thermal control coatings were exposed to ultraviolet radiation, electrons, and protons simultaneously. Stability was assessed by making periodic spectral reflectance measurements in situ (and in air after testing for comparison). Solar absorption coefficients were derived by computer. Many of the exposed materials showed large amounts of degradation in reflectance absorptance, principally due to the electron exposure. A series of tests was conducted, leading to the identification of a modified second surface mirror that shows considerable improvement and promise for stability during thermal control applications in a charged particle space radiation environment.

  6. High Performance Liquid Chromatography

    NASA Astrophysics Data System (ADS)

    Talcott, Stephen

    High performance liquid chromatography (HPLC) has many applications in food chemistry. Food components that have been analyzed with HPLC include organic acids, vitamins, amino acids, sugars, nitrosamines, certain pesticides, metabolites, fatty acids, aflatoxins, pigments, and certain food additives. Unlike gas chromatography, it is not necessary for the compound being analyzed to be volatile. It is necessary, however, for the compounds to have some solubility in the mobile phase. It is important that the solubilized samples for injection be free from all particulate matter, so centrifugation and filtration are common procedures. Also, solid-phase extraction is used commonly in sample preparation to remove interfering compounds from the sample matrix prior to HPLC analysis.

  7. High User Control in Game Design Elements Increases Compliance and In-game Performance in a Memory Training Game

    PubMed Central

    Nagle, Aniket; Riener, Robert; Wolf, Peter

    2015-01-01

    Computer games are increasingly being used for training cognitive functions like working memory and attention among the growing population of older adults. While cognitive training games often include elements like difficulty adaptation, rewards, and visual themes to make the games more enjoyable and effective, the effect of different degrees of afforded user control in manipulating these elements has not been systematically studied. To address this issue, two distinct implementations of the three aforementioned game elements were tested among healthy older adults (N = 21, 69.9 ± 6.4 years old) playing a game-like version of the n-back task on a tablet at home for 3 weeks. Two modes were considered, differentiated by the afforded degree of user control of the three elements: user control of difficulty vs. automatic difficulty adaptation, difficulty-dependent rewards vs. automatic feedback messages, and user choice of visual theme vs. no choice. The two modes (“USER-CONTROL” and “AUTO”) were compared for frequency of play, duration of play, and in-game performance. Participants were free to play the game whenever and for however long they wished. Participants in USER-CONTROL exhibited significantly higher frequency of playing, total play duration, and in-game performance than participants in AUTO. The results of the present study demonstrate the efficacy of providing user control in the three game elements, while validating a home-based study design in which participants were not bound by any training regimen, and could play the game whenever they wished. The results have implications for designing cognitive training games that elicit higher compliance and better in-game performance, with an emphasis on home-based training. PMID:26635681

  8. High Performance Work Practices and Firm Performance.

    ERIC Educational Resources Information Center

    Department of Labor, Washington, DC. Office of the American Workplace.

    A literature survey established that a substantial amount of research has been conducted on the relationship between productivity and the following specific high performance work practices: employee involvement in decision making, compensation linked to firm or worker performance, and training. According to these studies, high performance work…

  9. High performance sapphire windows

    NASA Technical Reports Server (NTRS)

    Bates, Stephen C.; Liou, Larry

    1993-01-01

    High-quality, wide-aperture optical access is usually required for the advanced laser diagnostics that can now make a wide variety of non-intrusive measurements of combustion processes. Specially processed and mounted sapphire windows are proposed to provide this optical access to extreme environment. Through surface treatments and proper thermal stress design, single crystal sapphire can be a mechanically equivalent replacement for high strength steel. A prototype sapphire window and mounting system have been developed in a successful NASA SBIR Phase 1 project. A large and reliable increase in sapphire design strength (as much as 10x) has been achieved, and the initial specifications necessary for these gains have been defined. Failure testing of small windows has conclusively demonstrated the increased sapphire strength, indicating that a nearly flawless surface polish is the primary cause of strengthening, while an unusual mounting arrangement also significantly contributes to a larger effective strength. Phase 2 work will complete specification and demonstration of these windows, and will fabricate a set for use at NASA. The enhanced capabilities of these high performance sapphire windows will lead to many diagnostic capabilities not previously possible, as well as new applications for sapphire.

  10. Interface-designed Membranes with Shape-controlled Patterns for High-performance Polymer Electrolyte Membrane Fuel Cells

    PubMed Central

    Jeon, Yukwon; Kim, Dong Jun; Koh, Jong Kwan; Ji, Yunseong; Kim, Jong Hak; Shul, Yong-Gun

    2015-01-01

    Polymer electrolyte membrane fuel cell is a promising zero-emission power generator for stationary/automotive applications. However, key issues, such as performance and costs, are still remained for an economical commercialization. Here, we fabricated a high-performance membrane electrode assembly (MEA) using an interfacial design based on well-arrayed micro-patterned membranes including circles, squares and hexagons with different sizes, which are produced by a facile elastomeric mold method. The best MEA performance is achieved using patterned Nafion membrane with a circle 2 μm in size, which exhibited a very high power density of 1906 mW/cm2 at 75 °C and Pt loading of 0.4 mg/cm2 with 73% improvement compared to the commercial membrane. The improved performance are attributed to the decreased MEA resistances and increased surface area for higher Pt utilization of over 80%. From these enhanced properties, it is possible to operate at lower Pt loading of 0.2 mg/cm2 with an outstanding performance of 1555 mW/cm2 and even at air/low humidity operations. PMID:26552839

  11. Interface-designed Membranes with Shape-controlled Patterns for High-performance Polymer Electrolyte Membrane Fuel Cells.

    PubMed

    Jeon, Yukwon; Kim, Dong Jun; Koh, Jong Kwan; Ji, Yunseong; Kim, Jong Hak; Shul, Yong-Gun

    2015-01-01

    Polymer electrolyte membrane fuel cell is a promising zero-emission power generator for stationary/automotive applications. However, key issues, such as performance and costs, are still remained for an economical commercialization. Here, we fabricated a high-performance membrane electrode assembly (MEA) using an interfacial design based on well-arrayed micro-patterned membranes including circles, squares and hexagons with different sizes, which are produced by a facile elastomeric mold method. The best MEA performance is achieved using patterned Nafion membrane with a circle 2 μm in size, which exhibited a very high power density of 1906 mW/cm(2) at 75 °C and Pt loading of 0.4 mg/cm(2) with 73% improvement compared to the commercial membrane. The improved performance are attributed to the decreased MEA resistances and increased surface area for higher Pt utilization of over 80%. From these enhanced properties, it is possible to operate at lower Pt loading of 0.2 mg/cm(2) with an outstanding performance of 1555 mW/cm(2) and even at air/low humidity operations. PMID:26552839

  12. Interface-designed Membranes with Shape-controlled Patterns for High-performance Polymer Electrolyte Membrane Fuel Cells

    NASA Astrophysics Data System (ADS)

    Jeon, Yukwon; Kim, Dong Jun; Koh, Jong Kwan; Ji, Yunseong; Kim, Jong Hak; Shul, Yong-Gun

    2015-11-01

    Polymer electrolyte membrane fuel cell is a promising zero-emission power generator for stationary/automotive applications. However, key issues, such as performance and costs, are still remained for an economical commercialization. Here, we fabricated a high-performance membrane electrode assembly (MEA) using an interfacial design based on well-arrayed micro-patterned membranes including circles, squares and hexagons with different sizes, which are produced by a facile elastomeric mold method. The best MEA performance is achieved using patterned Nafion membrane with a circle 2 μm in size, which exhibited a very high power density of 1906 mW/cm2 at 75 °C and Pt loading of 0.4 mg/cm2 with 73% improvement compared to the commercial membrane. The improved performance are attributed to the decreased MEA resistances and increased surface area for higher Pt utilization of over 80%. From these enhanced properties, it is possible to operate at lower Pt loading of 0.2 mg/cm2 with an outstanding performance of 1555 mW/cm2 and even at air/low humidity operations.

  13. Design and performance of an Automatic Gain Control system for the High Energy X-Ray Timing Experiment

    NASA Technical Reports Server (NTRS)

    Pelling, Michael R.; Rothschild, Richard E.; Macdonald, Daniel R.; Hertel, Robert; Nishiie, Edward

    1991-01-01

    The High Energy X-Ray Timing Experiment (HEXTE), currently under development for the X-Ray Timing Explorer (XTE) mission, employs a closed loop gain control system to attain 0.5 percent stabilization of each of eight-phoswich detector gains. This Automatic Gain Control (AGC) system utilizes a split window discriminator scheme to control the response of each detector pulse height analyzer to gated Am-241 X-ray events at 60 keV. A prototype AGC system has been implemented and tested within the gain perturbation environment expected to be experienced by the HEXTE instrument in flight. The AGC system and test configuration are described. Response, stability and noise characteristics are measured and compared with theoretical predictions. The system is found to be generally suitable for the HEXTE application.

  14. Ultra high performance liquid chromatography tandem mass spectrometric detection of glucuronides resistant to enzymatic hydrolysis: Implications to doping control analysis.

    PubMed

    Kotronoulas, Aristotelis; Marcos, Josep; Segura, Jordi; Ventura, Rosa; Joglar, Jesús; Pozo, Oscar J

    2015-10-01

    Controversial results have been reported in the literature regarding the behavior of two testosterone (T) metabolites (3α-glucuronide-6β-hydroxyandrosterone and 3α-glucuronide-6β-hydroxyetiocholanolone) excreted after T administration. Due to their potential as biomarkers of T misuse, a UHPLC-MS/MS method for the direct quantification of these glucuronides was developed and validated. In addition, the main phase II metabolites of T that compose the steroid profile used for doping control purposes (glucuronides of T, epitestosterone, androsterone and etiocholanolone) were included. The method was found to be linear and with suitable LODs and LOQs for all metabolites. The average accuracies were between 86% and 120%, the RSDs for the intra- and inter-day precision were below 15% and 25% respectively. The method showed low matrix effect. Samples obtained before and after the administration of T were analyzed by both the developed UHPLC-MS/MS method and the GC-MS/MS method currently used by anti-doping laboratories. Relevant disagreements between the results obtained for 3α-glucuronide-6β-hydroxyandrosterone and 3α-glucuronide-6β-hydroxyetiocholanolone quantitation were observed. These markers seemed to be more suitable for the screening of T misuse when detected by UHPLC-MS/MS. These discrepancies were further investigated in 50 urine samples from healthy volunteers. The two methods gave highly correlated results for all metabolites that are currently included in the athlete's steroid profile confirming the reliability of the UHPLC-MS/MS method. However, the quantification of 3α-glucuronide-6β-hydroxyandrosterone and 3α-glucuronide-6β-hydroxyetiocholanolone, was only possible by using the UHPLC-MS/MS method since three interfering compounds were observed when performing the GC-MS/MS analysis with the most intense ion transitions. These results confirm the potential of the resistant glucuronides as biomarkers of T misuse. Additionally, they suggest that

  15. Performance measures for multiprocessor controllers

    NASA Technical Reports Server (NTRS)

    Krishna, C. M.; Shin, K. G.

    1982-01-01

    Performance measures to characterize fault tolerant multiprocessors used in the control of critical processes are considered. Our performance indices are based on controller response time. By relating this to the needs of the application, we have been able to derive indices that faithfully reflect the performance of the multiprocessor in the context of the application, that permit the objective comparison of rival computer systems, and that can either be definitively estimated or objectively measured. An example of a controller in an idealized satellite application is provided.

  16. High-dose galantamine augmentation inferior to placebo on attention, inhibitory control and working memory performance in nonsmokers with schizophrenia.

    PubMed

    Dyer, Michael A; Freudenreich, Oliver; Culhane, Melissa A; Pachas, Gladys N; Deckersbach, Thilo; Murphy, Erin; Goff, Donald C; Evins, A Eden

    2008-07-01

    Dysfunction in the neuronal nicotinic acetylcholine receptor (nAChR) system has been implicated in the pathophysiology of schizophrenia, and it has been postulated that treatments that increase nAChR activity may improve symptoms of the disorder. We investigated the effects of the acetylcholinesterase inhibitor and allosteric nAChR modulator, galantamine, on cognitive performance and clinical symptoms when added to a stable antipsychotic medication regimen in nonsmoking outpatients with schizophrenia in a double-blind, placebo-controlled, parallel-group design. Participants were randomized to receive either galantamine (n=10) up to 32 mg/day or identical placebo (n=10) for 8 weeks and completed a cognitive battery at baseline and week 8 and clinical scales at baseline, week 4 and week 8. The primary outcome measure was attentional performance as measured by the d' measure in the Continuous Performance Test - Identical Pairs (CPT-IP) Version. Contrary to our hypothesis, galantamine treatment was associated with inferior performance on the CPT-IP, on the three-card Stroop task, and on the Letter-Number Span task without reordering. Galantamine had no effect on clinical symptoms. In summary, galantamine treatment, at a dose of 32 mg/day, was well tolerated but was not effective as an adjunctive treatment for cognitive deficits in stable nonsmokers with schizophrenia. PMID:18325740

  17. High Performance Work Systems and Firm Performance.

    ERIC Educational Resources Information Center

    Kling, Jeffrey

    1995-01-01

    A review of 17 studies of high-performance work systems concludes that benefits of employee involvement, skill training, and other high-performance work practices tend to be greater when new methods are adopted as part of a consistent whole. (Author)

  18. Correlation between Hierarchical Structure and Processing Control of Large-area Spray-coated Polymer Solar Cells toward High Performance

    NASA Astrophysics Data System (ADS)

    Huang, Yu-Ching; Tsao, Cheng-Si; Cha, Hou-Chin; Chuang, Chih-Min; Su, Chun-Jen; Jeng, U.-Ser; Chen, Charn-Ying

    2016-01-01

    The formation mechanism of a spray-coated film is different from that of a spin-coated film. This study employs grazing incidence small- and wide-angle X-ray Scattering (GISAXS and GIWAXS, respectively) quantitatively and systematically to investigate the hierarchical structure and phase-separated behavior of a spray-deposited blend film. The formation of PCBM clusters involves mutual interactions with both the P3HT crystal domains and droplet boundary. The processing control and the formed hierarchical structure of the active layer in the spray-coated polymer/fullerene blend film are compared to those in the spin-coated film. How the different post-treatments, such as thermal and solvent vapor annealing, tailor the hierarchical structure of the spray-coated films is quantitatively studied. Finally, the relationship between the processing control and tailored BHJ structures and the performance of polymer solar cell devices is established here, taking into account the evolution of the device area from 1 × 0.3 and 1 × 1 cm2. The formation and control of the special networks formed by the PCBM cluster and P3HT crystallites, respectively, are related to the droplet boundary. These structures are favorable for the transverse transport of electrons and holes.

  19. Correlation between Hierarchical Structure and Processing Control of Large-area Spray-coated Polymer Solar Cells toward High Performance

    PubMed Central

    Huang, Yu-Ching; Tsao, Cheng-Si; Cha, Hou-Chin; Chuang, Chih-Min; Su, Chun-Jen; Jeng, U-Ser; Chen, Charn-Ying

    2016-01-01

    The formation mechanism of a spray-coated film is different from that of a spin-coated film. This study employs grazing incidence small- and wide-angle X-ray Scattering (GISAXS and GIWAXS, respectively) quantitatively and systematically to investigate the hierarchical structure and phase-separated behavior of a spray-deposited blend film. The formation of PCBM clusters involves mutual interactions with both the P3HT crystal domains and droplet boundary. The processing control and the formed hierarchical structure of the active layer in the spray-coated polymer/fullerene blend film are compared to those in the spin-coated film. How the different post-treatments, such as thermal and solvent vapor annealing, tailor the hierarchical structure of the spray-coated films is quantitatively studied. Finally, the relationship between the processing control and tailored BHJ structures and the performance of polymer solar cell devices is established here, taking into account the evolution of the device area from 1 × 0.3 and 1 × 1 cm2. The formation and control of the special networks formed by the PCBM cluster and P3HT crystallites, respectively, are related to the droplet boundary. These structures are favorable for the transverse transport of electrons and holes. PMID:26817585

  20. High Performance Network Monitoring

    SciTech Connect

    Martinez, Jesse E

    2012-08-10

    Network Monitoring requires a substantial use of data and error analysis to overcome issues with clusters. Zenoss and Splunk help to monitor system log messages that are reporting issues about the clusters to monitoring services. Infiniband infrastructure on a number of clusters upgraded to ibmon2. ibmon2 requires different filters to report errors to system administrators. Focus for this summer is to: (1) Implement ibmon2 filters on monitoring boxes to report system errors to system administrators using Zenoss and Splunk; (2) Modify and improve scripts for monitoring and administrative usage; (3) Learn more about networks including services and maintenance for high performance computing systems; and (4) Gain a life experience working with professionals under real world situations. Filters were created to account for clusters running ibmon2 v1.0.0-1 10 Filters currently implemented for ibmon2 using Python. Filters look for threshold of port counters. Over certain counts, filters report errors to on-call system administrators and modifies grid to show local host with issue.

  1. Phase-controlled synthesis of α-NiS nanoparticles confined in carbon nanorods for High Performance Supercapacitors

    NASA Astrophysics Data System (ADS)

    Sun, Chencheng; Ma, Mingze; Yang, Jun; Zhang, Yufei; Chen, Peng; Huang, Wei; Dong, Xiaochen

    2014-11-01

    A facile and phase-controlled synthesis of α-NiS nanoparticles (NPs) embedded in carbon nanorods (CRs) is reported by in-situ sulfurating the preformed Ni/CRs. The nanopore confinement by the carbon matrix is essential for the formation of α-NiS and preventing its transition to β-phase, which is in strong contrast to large aggregated β-NiS particles grown freely without the confinement of CRs. When used as electrochemical electrode, the hybrid electrochemical charge storage of the ultrasmall α-NiS nanoparticels dispersed in CRs is benefit for the high capacitor (1092, 946, 835, 740 F g-1 at current densities of 1, 2, 5, 10 A g-1, respectively.). While the high electrochemical stability (approximately 100% retention of specific capacitance after 2000 charge/discharge cycles) is attributed to the supercapacitor-battery electrode, which makes synergistic effect of capacitor (CRs) and battery (NiS NPs) components rather than a merely additive composite. This work not only suggests a general approach for phase-controlled synthesis of nickel sulfide but also opens the door to the rational design and fabrication of novel nickel-based/carbon hybrid supercapacitor-battery electrode materials.

  2. Phase-controlled synthesis of α-NiS nanoparticles confined in carbon nanorods for high performance supercapacitors.

    PubMed

    Sun, Chencheng; Ma, Mingze; Yang, Jun; Zhang, Yufei; Chen, Peng; Huang, Wei; Dong, Xiaochen

    2014-01-01

    A facile and phase-controlled synthesis of α-NiS nanoparticles (NPs) embedded in carbon nanorods (CRs) is reported by in-situ sulfurating the preformed Ni/CRs. The nanopore confinement by the carbon matrix is essential for the formation of α-NiS and preventing its transition to β-phase, which is in strong contrast to large aggregated β-NiS particles grown freely without the confinement of CRs. When used as electrochemical electrode, the hybrid electrochemical charge storage of the ultrasmall α-NiS nanoparticels dispersed in CRs is benefit for the high capacitor (1092, 946, 835, 740 F g(-1) at current densities of 1, 2, 5, 10 A g(-1), respectively.). While the high electrochemical stability (approximately 100% retention of specific capacitance after 2000 charge/discharge cycles) is attributed to the supercapacitor-battery electrode, which makes synergistic effect of capacitor (CRs) and battery (NiS NPs) components rather than a merely additive composite. This work not only suggests a general approach for phase-controlled synthesis of nickel sulfide but also opens the door to the rational design and fabrication of novel nickel-based/carbon hybrid supercapacitor-battery electrode materials. PMID:25394517

  3. Phase-controlled synthesis of α-NiS nanoparticles confined in carbon nanorods for High Performance Supercapacitors

    PubMed Central

    Sun, Chencheng; Ma, Mingze; Yang, Jun; Zhang, Yufei; Chen, Peng; Huang, Wei; Dong, Xiaochen

    2014-01-01

    A facile and phase-controlled synthesis of α-NiS nanoparticles (NPs) embedded in carbon nanorods (CRs) is reported by in-situ sulfurating the preformed Ni/CRs. The nanopore confinement by the carbon matrix is essential for the formation of α-NiS and preventing its transition to β-phase, which is in strong contrast to large aggregated β-NiS particles grown freely without the confinement of CRs. When used as electrochemical electrode, the hybrid electrochemical charge storage of the ultrasmall α-NiS nanoparticels dispersed in CRs is benefit for the high capacitor (1092, 946, 835, 740 F g−1 at current densities of 1, 2, 5, 10 A g−1, respectively.). While the high electrochemical stability (approximately 100% retention of specific capacitance after 2000 charge/discharge cycles) is attributed to the supercapacitor-battery electrode, which makes synergistic effect of capacitor (CRs) and battery (NiS NPs) components rather than a merely additive composite. This work not only suggests a general approach for phase-controlled synthesis of nickel sulfide but also opens the door to the rational design and fabrication of novel nickel-based/carbon hybrid supercapacitor-battery electrode materials. PMID:25394517

  4. High-performance n-type black phosphorus transistors with type control via thickness and contact-metal engineering

    PubMed Central

    Perello, David J.; Chae, Sang Hoon; Song, Seunghyun; Lee, Young Hee

    2015-01-01

    Recent work has demonstrated excellent p-type field-effect switching in exfoliated black phosphorus, but type control has remained elusive. Here, we report unipolar n-type black phosphorus transistors with switching polarity control via contact-metal engineering and flake thickness, combined with oxygen and moisture-free fabrication. With aluminium contacts to black phosphorus, a unipolar to ambipolar transition occurs as flake thickness increases from 3 to 13 nm. The 13-nm aluminium-contacted flake displays graphene-like symmetric hole and electron mobilities up to 950 cm2 V−1 s−1 at 300 K, while a 3 nm flake displays unipolar n-type switching with on/off ratios greater than 105 (107) and electron mobility of 275 (630) cm2 V−1 s−1 at 300 K (80 K). For palladium contacts, p-type behaviour dominates in thick flakes, while 2.5–7 nm flakes have symmetric ambipolar transport. These results demonstrate a leap in n-type performance and exemplify the logical switching capabilities of black phosphorus. PMID:26223778

  5. Ordered Monolayer Gold Nano-urchin Structures and Their Size Induced Control for High Gas Sensing Performance

    PubMed Central

    Sabri, Ylias M.; Kandjani, Ahmad Esmaielzadeh; Ippolito, Samuel J.; Bhargava, Suresh K.

    2016-01-01

    The synthesis of ordered monolayers of gold nano-urchin (Au-NU) nanostructures with controlled size, directly on thin films using a simple electrochemical method is reported in this study. In order to demonstrate one of the vast potential applications, the developed Au-NUs were formed on the electrodes of transducers (QCM) to selectively detect low concentrations of elemental mercury (Hg0) vapor. It was found that the sensitivity and selectivity of the sensor device is enhanced by increasing the size of the nanospikes on the Au-NUs. The Au-NU-12 min QCM (Au-NUs with nanospikes grown on it for a period of 12 min) had the best performance in terms of transducer based Hg0 vapor detection. The sensor had 98% accuracy, 92% recovery, 96% precision (repeatability) and significantly, showed the highest sensitivity reported to date, resulting in a limit of detection (LoD) of only 32 μg/m3 at 75 °C. When compared to the control counterpart, the accuracy and sensitivity of the Au-NU-12 min was enhanced by ~2 and ~5 times, respectively. The results demonstrate the excellent activity of the developed materials which can be applied to a range of applications due to their long range order, tunable size and ability to form directly on thin-films. PMID:27090570

  6. Ordered Monolayer Gold Nano-urchin Structures and Their Size Induced Control for High Gas Sensing Performance.

    PubMed

    Sabri, Ylias M; Kandjani, Ahmad Esmaielzadeh; Ippolito, Samuel J; Bhargava, Suresh K

    2016-01-01

    The synthesis of ordered monolayers of gold nano-urchin (Au-NU) nanostructures with controlled size, directly on thin films using a simple electrochemical method is reported in this study. In order to demonstrate one of the vast potential applications, the developed Au-NUs were formed on the electrodes of transducers (QCM) to selectively detect low concentrations of elemental mercury (Hg(0)) vapor. It was found that the sensitivity and selectivity of the sensor device is enhanced by increasing the size of the nanospikes on the Au-NUs. The Au-NU-12 min QCM (Au-NUs with nanospikes grown on it for a period of 12 min) had the best performance in terms of transducer based Hg(0) vapor detection. The sensor had 98% accuracy, 92% recovery, 96% precision (repeatability) and significantly, showed the highest sensitivity reported to date, resulting in a limit of detection (LoD) of only 32 μg/m3 at 75 °C. When compared to the control counterpart, the accuracy and sensitivity of the Au-NU-12 min was enhanced by ~2 and ~5 times, respectively. The results demonstrate the excellent activity of the developed materials which can be applied to a range of applications due to their long range order, tunable size and ability to form directly on thin-films. PMID:27090570

  7. Ordered Monolayer Gold Nano-urchin Structures and Their Size Induced Control for High Gas Sensing Performance

    NASA Astrophysics Data System (ADS)

    Sabri, Ylias M.; Kandjani, Ahmad Esmaielzadeh; Ippolito, Samuel J.; Bhargava, Suresh K.

    2016-04-01

    The synthesis of ordered monolayers of gold nano-urchin (Au-NU) nanostructures with controlled size, directly on thin films using a simple electrochemical method is reported in this study. In order to demonstrate one of the vast potential applications, the developed Au-NUs were formed on the electrodes of transducers (QCM) to selectively detect low concentrations of elemental mercury (Hg0) vapor. It was found that the sensitivity and selectivity of the sensor device is enhanced by increasing the size of the nanospikes on the Au-NUs. The Au-NU-12 min QCM (Au-NUs with nanospikes grown on it for a period of 12 min) had the best performance in terms of transducer based Hg0 vapor detection. The sensor had 98% accuracy, 92% recovery, 96% precision (repeatability) and significantly, showed the highest sensitivity reported to date, resulting in a limit of detection (LoD) of only 32 μg/m3 at 75 °C. When compared to the control counterpart, the accuracy and sensitivity of the Au-NU-12 min was enhanced by ~2 and ~5 times, respectively. The results demonstrate the excellent activity of the developed materials which can be applied to a range of applications due to their long range order, tunable size and ability to form directly on thin-films.

  8. Commoditization of High Performance Storage

    SciTech Connect

    Studham, Scott S.

    2004-04-01

    The commoditization of high performance computers started in the late 80s with the attack of the killer micros. Previously, high performance computers were exotic vector systems that could only be afforded by an illustrious few. Now everyone has a supercomputer composed of clusters of commodity processors. A similar commoditization of high performance storage has begun. Commodity disks are being used for high performance storage, enabling a paradigm change in storage and significantly changing the price point of high volume storage.

  9. High Performance Computing Today

    SciTech Connect

    Dongarra, Jack; Meuer,Hans; Simon,Horst D.; Strohmaier,Erich

    2000-04-01

    In last 50 years, the field of scientific computing has seen a rapid change of vendors, architectures, technologies and the usage of systems. Despite all these changes the evolution of performance on a large scale however seems to be a very steady and continuous process. Moore's Law is often cited in this context. If the authors plot the peak performance of various computers of the last 5 decades in Figure 1 that could have been called the supercomputers of their time they indeed see how well this law holds for almost the complete lifespan of modern computing. On average they see an increase in performance of two magnitudes of order every decade.

  10. Numerical Stability and Control Analysis Towards Falling-Leaf Prediction Capabilities of Splitflow for Two Generic High-Performance Aircraft Models

    NASA Technical Reports Server (NTRS)

    Charlton, Eric F.

    1998-01-01

    Aerodynamic analysis are performed using the Lockheed-Martin Tactical Aircraft Systems (LMTAS) Splitflow computational fluid dynamics code to investigate the computational prediction capabilities for vortex-dominated flow fields of two different tailless aircraft models at large angles of attack and sideslip. These computations are performed with the goal of providing useful stability and control data to designers of high performance aircraft. Appropriate metrics for accuracy, time, and ease of use are determined in consultations with both the LMTAS Advanced Design and Stability and Control groups. Results are obtained and compared to wind-tunnel data for all six components of forces and moments. Moment data is combined to form a "falling leaf" stability analysis. Finally, a handful of viscous simulations were also performed to further investigate nonlinearities and possible viscous effects in the differences between the accumulated inviscid computational and experimental data.

  11. High Performance Parallel Computational Nanotechnology

    NASA Technical Reports Server (NTRS)

    Saini, Subhash; Craw, James M. (Technical Monitor)

    1995-01-01

    control mini robotic manipulators for positional control; scalable numerical algorithms for reliability, verifications and testability. There appears no fundamental obstacle to simulating molecular compilers and molecular computers on high performance parallel computers, just as the Boeing 777 was simulated on a computer before manufacturing it.

  12. Graphene oxide as a high-performance fluid-loss-control additive in water-based drilling fluids.

    PubMed

    Kosynkin, Dmitry V; Ceriotti, Gabriel; Wilson, Kurt C; Lomeda, Jay R; Scorsone, Jason T; Patel, Arvind D; Friedheim, James E; Tour, James M

    2012-01-01

    Graphene oxide (GO) performs well as a filtration additive in water-based drilling fluids at concentrations as low as 0.2 % (w/w) by carbon content. Standard American Petroleum Institute (API) filtration tests were conducted on pH-adjusted, aqueous dispersions of GO and xanthan gum. It was found that a combination of large-flake GO and powdered GO in a 3:1 ratio performed best in the API tests, allowing an average fluid loss of 6.1 mL over 30 min and leaving a filter cake ~20 μm thick. In comparison, a standard suspension (~12 g/L) of clays and polymers used in the oil industry gave an average fluid loss of 7.2 mL and a filter cake ~280 μm thick. Scanning electron microscopy imaging revealed the extreme pliability of well-exfoliated GO, as the pressure due to filtration crumpled single GO sheets, forcing them to slide through pores with diameters much smaller than the flake's flattened size. GO solutions also exhibited greater shear thinning and higher temperature stability compared to clay-based fluid-loss additives, demonstrating potential for high-temperature well applications. PMID:22136134

  13. Vortex control and aerodynamic performance improvement of a highly loaded compressor cascade via inlet boundary layer suction

    NASA Astrophysics Data System (ADS)

    Guo, Shuang; Lu, Huawei; Chen, Fu; Wu, Chuijie

    2013-07-01

    Effects of inlet boundary layer suction on the vortex structure and cascade loss in a highly loaded compressor cascade were investigated experimentally. Ink-track visualization was undertaken on cascade endwall and the blade surface. Ten traverse planes from upstream to downstream of the cascade in a rectangular wind tunnel were measured by an L-shaped five-hole probe. These tested planes revealed the process of emergence, development and decline of several principal vortices as well as the corresponding additional losses. Details of ink-track visualization displaying the secondary flow behavior of boundary layer upon endwall and blade surface assist to make judgment on vortex evolution. Inspection of the vortex structure revealed that highly loaded compressor was characterized by large-scale vortices in the endwall region. After suction, these vortices are all well organized and under control. Among all of them, passage vortex is most sensitive to the variation of the inlet boundary layer, and its main function is to spread low-energy fluid rather than to produce loss. On the other hand, a wall vortex and a concentrated shedding vortex take place inside and after the cascade, respectively, and engender considerable accompanying loss as they dissipate. The effects of inlet boundary layer suction on them are correspondingly weaker. About one forth of the total loss in the baseline cascade was eliminated when boundary layer suction flow rate reaches 2.5 % of the inlet mass flow. The feasibility of simplifying the suction system is also verified through this work.

  14. Helicopter high gain control

    NASA Technical Reports Server (NTRS)

    Cunningham, T. B.; Nunn, E. C.

    1979-01-01

    High gain control is explored through a design study of the CH-47B helicopter. The plans are designed to obtain the maximum bandwidth possible given the hardware constraints. Controls are designed with modal control theory to specific bandwidths and closed loop mode shapes. Comparisons are made to an earlier complementary filter approach. Bandwidth improvement by removal of limitations is explored in order to establish hardware and mechanization options. Improvements in the pitch axis control system and in the rate gyro sensor noise characteristics in all axes are discussed. The use of rotor state feedback is assessed.

  15. Controllable synthesis of Cu-doped CoO hierarchical structure for high performance lithium-ion battery

    NASA Astrophysics Data System (ADS)

    Chen, Chengcheng; Huang, Yanan; Zhang, Hao; Wang, Xiaofeng; Wang, Yijing; Jiao, Lifang; Yuan, Huatang

    2016-05-01

    We report on the strategy of Cu doping inducing the nanosize effect of CoO and their application as anode for lithium ion batteries. With an increase of Cu-doped amount, the structures and morphologies of CoO have special changes. The 0.05 mol Cu-doped CoO shows straw-like bundle structure assembled by nanorods, and the nanorods consist of ultra small nanoparticles (about 6-8 nm). Meanwhile, it shows an excellent rates performance and cycle life. The capacity of 800 mA h g-1 is obtained at 0.5 C after 80 cycles. The highest discharge capacity is 580 mA h g-1 at 10 C and the discharge capacities are relatively stable for 1000 cycles as an anode for Li-ion battery. Therefore, the controllable Cu-doped CoO composite could be deemed to be a potential candidate as an anode material.

  16. High performance solar Stirling system

    NASA Technical Reports Server (NTRS)

    Stearns, J. W.; Haglund, R.

    1981-01-01

    A full-scale Dish-Stirling system experiment, at a power level of 25 kWe, has been tested during 1981 on the Test Bed Concentrator No. 2 at the Parabolic Dish Test Site, Edwards, CA. Test components, designed and developed primarily by industrial contractors for the Department of Energy, include an advanced Stirling engine driving an induction alternator, a directly-coupled solar receiver with a natural gas combustor for hybrid operation and a breadboard control system based on a programmable controller and standard utility substation components. The experiment demonstrated practicality of the solar Stirling application and high system performance into a utility grid. This paper describes the design and its functions, and the test results obtained.

  17. High Voltage TAL Performance

    NASA Technical Reports Server (NTRS)

    Jacobson, David T.; Jankovsky, Robert S.; Rawlin, Vincent K.; Manzella, David H.

    2001-01-01

    The performance of a two-stage, anode layer Hall thruster was evaluated. Experiments were conducted in single and two-stage configurations. In single-stage configuration, the thruster was operated with discharge voltages ranging from 300 to 1700 V. Discharge specific impulses ranged from 1630 to 4140 sec. Thruster investigations were conducted with input power ranging from 1 to 8.7 kW, corresponding to power throttling of nearly 9: 1. An extensive two-stage performance map was generated. Data taken with total voltage (sum of discharge and accelerating voltage) constant revealed a decrease in thruster efficiency as the discharge voltage was increased. Anode specific impulse values were comparable in the single and two-stage configurations showing no strong advantage for two-stage operation.

  18. High Performance Arcjet Engines

    NASA Technical Reports Server (NTRS)

    Kennel, Elliot B.; Ivanov, Alexey Nikolayevich; Nikolayev, Yuri Vyacheslavovich

    1994-01-01

    This effort sought to exploit advanced single crystal tungsten-tantalum alloy material for fabrication of a high strength, high temperature arcjet anode. The use of this material is expected to result in improved strength, temperature resistance, and lifetime compared to state of the art polycrystalline alloys. In addition, the use of high electrical and thermal conductivity carbon-carbon composites was considered, and is believed to be a feasible approach. Highly conductive carbon-carbon composite anode capability represents enabling technology for rotating-arc designs derived from the Russian Scientific Research Institute of Thermal Processes (NIITP) because of high heat fluxes at the anode surface. However, for US designs the anode heat flux is much smaller, and thus the benefits are not as great as in the case of NIITP-derived designs. Still, it does appear that the tensile properties of carbon-carbon can be even better than those of single crystal tungsten alloys, especially when nearly-single-crystal fibers such as vapor grown carbon fiber (VGCF) are used. Composites fabricated from such materials must be coated with a refractory carbide coating in order to ensure compatibility with high temperature hydrogen. Fabrication of tungsten alloy single crystals in the sizes required for fabrication of an arcjet anode has been shown to be feasible. Test data indicate that the material can be expected to be at least the equal of W-Re-HfC polycrystalline alloy in terms of its tensile properties, and possibly superior. We are also informed by our colleagues at Scientific Production Association Luch (NP0 Luch) that it is possible to use Russian technology to fabricate polycrystalline W-Re-HfC or other high strength alloys if desired. This is important because existing engines must rely on previously accumulated stocks of these materials, and a fabrication capability for future requirements is not assured.

  19. ACCESS: Detector Control and Performance

    NASA Astrophysics Data System (ADS)

    Morris, Matthew J.; Kaiser, M.; McCandliss, S. R.; Rauscher, B. J.; Kimble, R. A.; Kruk, J. W.; Wright, E. L.; Bohlin, R.; Kurucz, R. L.; Riess, A. G.; Pelton, R.; Deustua, S. E.; Dixon, W. V.; Sahnow, D. J.; Mott, D. B.; Wen, Y.; Benford, D. J.; Gardner, J. P.; Feldman, P. D.; Moos, H. W.; Lampton, M.; Perlmutter, S.; Woodgate, B. E.

    2014-01-01

    ACCESS, Absolute Color Calibration Experiment for Standard Stars, is a series of rocket-borne sub-orbital missions and ground-based experiments that will enable improvements in the precision of the astrophysical flux scale through the transfer of absolute laboratory detector standards from the National Institute of Standards and Technology (NIST) to a network of stellar standards with a calibration accuracy of 1% and a spectral resolving power of 500 across the 0.35 to 1.7 micron bandpass (companion poster, Kaiser et al.). The flight detector and detector spare have been selected and integrated with their electronics and flight mount. The controller electronics have been flight qualified. Vibration testing to launch loads and thermal vacuum testing of the detector, mount, and housing have been successfully performed. Further improvements to the flight controller housing have been made. A cryogenic ground test system has been built. Dark current and read noise tests have been performed, yielding results consistent with the initial characterization tests of the detector performed by Goddard Space Flight Center’s Detector Characterization Lab (DCL). Detector control software has been developed and implemented for ground testing. Performance and integration of the detector and controller with the flight software will be presented. NASA APRA sounding rocket grant NNX08AI65G supports this work.

  20. Controllable in situ synthesis of epsilon manganese dioxide hollow structure/RGO nanocomposites for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Lin, Mei; Chen, Bolei; Wu, Xiao; Qian, Jiasheng; Fei, Linfeng; Lu, Wei; Chan, Lai Wa Helen; Yuan, Jikang

    2016-01-01

    Well-organized epsilon-MnO2 hollow spheres/reduced graphene oxide (MnO2HS/RGO) composites have been successfully constructed via a facile and one-pot synthetic route. The ε-MnO2 hollow spheres with the diameter of ~500 nm were grown in situ with homogeneous distribution on both sides of graphene oxide (GO) sheets in aqueous suspensions. The formation mechanism of the MnO2HS/RGO composites has been systematically investigated, and a high specific capacitance and good cycling capability were achieved on using the composites as supercapacitors. The galvanostatic charge/discharge curves show a specific capacitance of 471.5 F g-1 at 0.8 A g-1. The hollow structures of ε-MnO2 and the crumpled RGO sheets can enhance the electroactive surface area and improve the electrical conductivity, thus further facilitating the charge transport. The MnO2HS/RGO composite exhibits a high capacitance of 272 F g-1 at 3 A g-1 (92% retention) even after 1000 cycles. The prominent electrochemical performance might be attributed to the combination of the pseudo-capacitance of the MnO2 nanospheres with a hollow structure and to the good electrical conductivity of the RGO sheets. This work explores a new concept in designing metal oxides/RGO composites as electrode materials.Well-organized epsilon-MnO2 hollow spheres/reduced graphene oxide (MnO2HS/RGO) composites have been successfully constructed via a facile and one-pot synthetic route. The ε-MnO2 hollow spheres with the diameter of ~500 nm were grown in situ with homogeneous distribution on both sides of graphene oxide (GO) sheets in aqueous suspensions. The formation mechanism of the MnO2HS/RGO composites has been systematically investigated, and a high specific capacitance and good cycling capability were achieved on using the composites as supercapacitors. The galvanostatic charge/discharge curves show a specific capacitance of 471.5 F g-1 at 0.8 A g-1. The hollow structures of ε-MnO2 and the crumpled RGO sheets can enhance the

  1. Controllable Tailoring Graphene Nanoribbons with Tunable Surface Functionalities: An Effective Strategy toward High-Performance Lithium-Ion Batteries.

    PubMed

    Wang, Chundong; Li, Yan-Sheng; Jiang, Jianjun; Chiang, Wei-Hung

    2015-08-12

    An effective, large-scale synthesis strategy for producing graphene nanoribbons (GNRs) with a nearly 100% yield has been proposed using a stepwise, solution-based, lengthwise unzipping carbon nanotube (CNT) method. Detailed Raman and X-ray photoelectron spectroscopy (XPS) analysis suggest that GNRs with tunable density of oxygen-containing functional groups on the GNR surfaces can be synthesized by adjusting the oxidant concentration during the CNT unzipping. The electrochemical characterization reveals that the as-produced GNRs with 42.91 atomic percent (atom %) oxygen-containing functional groups deliver a capacity of 437 mAh g(-1) after 100 cycles at 0.33C, while the as-produced GNRs with higher oxygen-containing functional groups only present a capacity of 225 mAh g(-1). On the basis of the electrochemical assessment and XPS analysis, the funtionals groups (epoxy-, carbonyl-, and carboxyl groups) in GNRs could be the effective contributor for the high-performance Li-ion batteries with appropriate adjustment. PMID:26196904

  2. High performance cyclone development

    SciTech Connect

    Giles, W.B.

    1981-01-01

    The results of cold flow experiments at atmospheric conditions of an air-shielded 18 in-dia electrocyclone with a central cusped electrode are reported using fine test dusts of both flyash and nickel powder. These results are found to confirm expectations of enhanced performance, similar to earlier work on a 12 in-dia model. An analysis of the combined inertial-electrostatic force field is also presented which identifies general design goals and scaling laws. From this, it is found that electrostatic enhancement will be particularly beneficial for fine dusts in large cyclones. Recommendations for further improvement in cyclone collection efficiency are proposed.

  3. START High Performance Discharges

    NASA Astrophysics Data System (ADS)

    Gates, D. A.

    1997-11-01

    Improvements to START (Small Tight Aspect Ratio Tokamak), the first spherical tokamak in the world to achieve high plasma temperature with both a significant pulse length and confinement time, have been ongoing since 1991. Recent modifications include: expansion of the existing capacitor banks allowing plasma currents as high as 300kA, an increase in the available neutral beam heating power ( ~ 500kW), and improvements to the vacuum system. These improvements have led to the achievement of the world record plasma β (≡ 2μ_0 /B^2) of ~ 30% in a tokamak. The normalised β ( βN ≡ β aB/I_p) reached 4.5 with q_95 = 2.3. Properties of the reconstructed equilibrium will be discussed in detail. The theoretical limit to β is higher in a spherical tokamak than in a conventional machine, due to the higher values of normalised current (IN ≡ I_p/aB) achievable at low aspect ratio. The record β was achieved with IN ~ 8 while conventional tokamaks are limited to IN ~ 3, or less. Calculations of the ideal MHD stability of the record discharge indicate high β low-n kink modes are stable, but that the entire profile is at or near marginal stability for high-n ballooning modes. The phenomenology of the events leading up to the plasma termination is discussed. An important aspect of the START program is to explore the physics of neutral beam absorption at low aspect ratio. A passive neutral particle analyser has been used to study the temporal and spatial dependence of the fast hydrogen beam ions. These measurements have been used in conjunction with a single particle orbit code to estimate the fast ion losses due to collisions with slow neutrals from the plasma edge. Numerical analysis of neutral beam power deposition profiles are compared with the data from an instrumented beam stop. The global energy confinement time τE in beam heated discharges on START is similar to that obtained in Ohmic discharges, even though the input power has roughly doubled over the Ohmic case

  4. Tough high performance composite matrix

    NASA Technical Reports Server (NTRS)

    Pater, Ruth H. (Inventor); Johnston, Norman J. (Inventor)

    1994-01-01

    This invention is a semi-interpentrating polymer network which includes a high performance thermosetting polyimide having a nadic end group acting as a crosslinking site and a high performance linear thermoplastic polyimide. Provided is an improved high temperature matrix resin which is capable of performing in the 200 to 300 C range. This resin has significantly improved toughness and microcracking resistance, excellent processability, mechanical performance, and moisture and solvent resistances.

  5. ALTERNATIVES FOR HIGH-TEMPERATURE/HIGH-PRESSURE PARTICULATE CONTROL

    EPA Science Inventory

    The report gives the status of the most promising high-temperature/high-pressure (HTP) particulate control devices being developed. Data are presented and anticipated performance and development problems are discussed. HTP particulate control offers efficiency and potential econo...

  6. Turning High-Poverty Schools into High-Performing Schools

    ERIC Educational Resources Information Center

    Parrett, William H.; Budge, Kathleen

    2012-01-01

    If some schools can overcome the powerful and pervasive effects of poverty to become high performing, shouldn't any school be able to do the same? Shouldn't we be compelled to learn from those schools? Although schools alone will never systemically eliminate poverty, high-poverty, high-performing (HP/HP) schools take control of what they can to…

  7. High performance aerated lagoon systems

    SciTech Connect

    Rich, L.

    1999-08-01

    At a time when less money is available for wastewater treatment facilities and there is increased competition for the local tax dollar, regulatory agencies are enforcing stricter effluent limits on treatment discharges. A solution for both municipalities and industry is to use aerated lagoon systems designed to meet these limits. This monograph, prepared by a recognized expert in the field, provides methods for the rational design of a wide variety of high-performance aerated lagoon systems. Such systems range from those that can be depended upon to meet secondary treatment standards alone to those that, with the inclusion of intermittent sand filters or elements of sequenced biological reactor (SBR) technology, can also provide for nitrification and nutrient removal. Considerable emphasis is placed on the use of appropriate performance parameters, and an entire chapter is devoted to diagnosing performance failures. Contents include: principles of microbiological processes, control of algae, benthal stabilization, design for CBOD removal, design for nitrification and denitrification in suspended-growth systems, design for nitrification in attached-growth systems, phosphorus removal, diagnosing performance.

  8. Hetero-metal cation control of CuO nanostructures and their high catalytic performance for CO oxidation

    NASA Astrophysics Data System (ADS)

    Huang, Hongwen; Zhang, Liqiang; Wu, Kewei; Yu, Qing; Chen, Ru; Yang, Hangsheng; Peng, Xinsheng; Ye, Zhizhen

    2012-11-01

    A controllable synthesis of various morphologies of CuO nanostructures with tuning by hetero-metal cations has been developed in aqueous solution at room temperature. The morphologies of CuO can be engineered from nanosheets to nanoparticles with different length ratios of the long axis to the short axis. The formation of many metal-ion complexes plays an important role in slowing the release rate of OH- and affects the reaction kinetics further. We found that the effect of hetero-metal cations on the final morphology of the CuO nanostructures was the same as that of the cooling temperature. A series of temperature-controlled experiments demonstrated this. Furthermore, among all the synthesized CuO nanostructures, the fascinating colloidal mesoporous CuO quasi-monocrystalline nanosheets prepared at 25 °C with a thickness of ca. 10 nm and large specific surface area of 80.32 m2 g-1 is investigated intensively. These CuO nanosheets demonstrate a superior catalytic activity for CO oxidation, with features of high CO conversion efficiency (47.77 mmolCO g-1CuO h-1 at 200 °C), which is close to that reported for previously investigated supported-CuO catalysts, and a low apparent activation energy Ea (53.3 kJ mol-1).A controllable synthesis of various morphologies of CuO nanostructures with tuning by hetero-metal cations has been developed in aqueous solution at room temperature. The morphologies of CuO can be engineered from nanosheets to nanoparticles with different length ratios of the long axis to the short axis. The formation of many metal-ion complexes plays an important role in slowing the release rate of OH- and affects the reaction kinetics further. We found that the effect of hetero-metal cations on the final morphology of the CuO nanostructures was the same as that of the cooling temperature. A series of temperature-controlled experiments demonstrated this. Furthermore, among all the synthesized CuO nanostructures, the fascinating colloidal mesoporous Cu

  9. High Voltage SPT Performance

    NASA Technical Reports Server (NTRS)

    Manzella, David; Jacobson, David; Jankovsky, Robert

    2001-01-01

    A 2.3 kW stationary plasma thruster designed to operate at high voltage was tested at discharge voltages between 300 and 1250 V. Discharge specific impulses between 1600 and 3700 sec were demonstrated with thrust between 40 and 145 mN. Test data indicated that discharge voltage can be optimized for maximum discharge efficiency. The optimum discharge voltage was between 500 and 700 V for the various anode mass flow rates considered. The effect of operating voltage on optimal magnet field strength was investigated. The effect of cathode flow rate on thruster efficiency was considered for an 800 V discharge.

  10. High performance steam development

    SciTech Connect

    Duffy, T.; Schneider, P.

    1995-10-01

    Over 30 years ago U.S. industry introduced the world`s highest temperature (1200{degrees}F at 5000 psig) and most efficient power plant, the Eddystone coal-burning steam plant. The highest alloy material used in the plant was 316 stainless steel. Problems during the first few years of operation caused a reduction in operating temperature to 1100{degrees}F which has generally become the highest temperature used in plants around the world. Leadership in high temperature steam has moved to Japan and Europe over the last 30 years.

  11. Thermal pretreatments of superficially porous silica particles for high-performance liquid chromatography: Surface control, structural characterization and chromatographic evaluation.

    PubMed

    Mignot, Mélanie; Sebban, Muriel; Tchapla, Alain; Mercier, Olivier; Cardinael, Pascal; Peulon-Agasse, Valérie

    2015-11-01

    This study reports the impact of thermal pretreatment between 400 and 1100°C on superficially porous silica particles (e.g. core-shell, fused-core; here abbreviated as SPP silica). The different thermally pretreated SPP silica (400°C, 900°C and 1100°C) were chemically bonded with an octadecyl chain under microwave irradiation. The bare SPP silica, thermally untreated and pretreated, as well as the chemically bonded phases (CBPs) were fully characterized by elemental analysis, diffuse reflectance infrared Fourier transform spectroscopy (DRIFT), and solid state cross polarization magic angle spinning (CP-MAS) (29)Si NMR. The chromatographic properties of the overall set of C18-thermally pretreated SPP silica stationary phases were determined using the Tanaka test. Complementary, the simplified Veuthey test was used to deeply study the silanol activity, considering a set of 7 basic solutes with various physicochemical properties. Both tests were also performed on different commercial SPP silica columns and different types of bonding chemistry (C18, Phenyl-hexyl, RP-amide, C30, aQ). Multivariate data analyses (hierarchical cluster analysis and principal component analysis) were carried out to define groups of stationary phases with similar chromatographic properties and situate them in relation to those commercially available. These different C18-thermally pretreated SPP silicas represented a wide range of stationary phases as they were spread out along the score plot. Moreover, this study highlighted that the thermal pretreatment improved the chemical stability of the SPP silica compare to untreated SPP silica and untreated porous silica. Consequently, higher thermal pretreatment can be applied (up to 900°C) before functionalization without destruction of the silica matrix. Indeed, a significantly lower dissolution of the thermally pretreated SPP silica under aggressive conditions could allow the use of the corresponding functionalized stationary phases at high

  12. Experimental and Numerical Optimization of a High-Lift System to Improve Low-Speed Performance, Stability, and Control of an Arrow-Wing Supersonic Transport

    NASA Technical Reports Server (NTRS)

    Hahne, David E.; Glaab, Louis J.

    1999-01-01

    An investigation was performed to evaluate leading-and trailing-edge flap deflections for optimal aerodynamic performance of a High-Speed Civil Transport concept during takeoff and approach-to-landing conditions. The configuration used for this study was designed by the Douglas Aircraft Company during the 1970's. A 0.1-scale model of this configuration was tested in the Langley 30- by 60-Foot Tunnel with both the original leading-edge flap system and a new leading-edge flap system, which was designed with modem computational flow analysis and optimization tools. Leading-and trailing-edge flap deflections were generated for the original and modified leading-edge flap systems with the computational flow analysis and optimization tools. Although wind tunnel data indicated improvements in aerodynamic performance for the analytically derived flap deflections for both leading-edge flap systems, perturbations of the analytically derived leading-edge flap deflections yielded significant additional improvements in aerodynamic performance. In addition to the aerodynamic performance optimization testing, stability and control data were also obtained. An evaluation of the crosswind landing capability of the aircraft configuration revealed that insufficient lateral control existed as a result of high levels of lateral stability. Deflection of the leading-and trailing-edge flaps improved the crosswind landing capability of the vehicle considerably; however, additional improvements are required.

  13. High Stability Engine Control (HISTEC)

    NASA Technical Reports Server (NTRS)

    DeLaat, John C.; Southwick, Robert D.; Gallops, George W.

    1996-01-01

    Future aircraft turbine engines, both commercial and military, must be able to successfully accommodate expected increased levels of steady-state and dynamic engine-face distortion. The current approach of incorporating a sufficient component design stall margin to tolerate these increased levels of distortion would significantly reduce performance. The objective of the High Stability Engine Control (HISTEC) program is to design, develop, and flight demonstrate an advanced, high-stability, integrated engine control system that uses measurement-based, real-time estimates of distortion to enhance engine stability. The resulting distortion tolerant control reduces the required design stall margin, with a corresponding increase in performance and decrease in fuel burn. The HISTEC concept, consisting of a Distortion Estimation System and a Stability Management Control, has been designed and developed. The Distortion Estimation System uses a small number of high-response pressure sensors at the engine face to calculate indicators of the type and extent of distortion in real time. The Stability Management Control, through direct control of the fan and compressor pressure ratio, accommodates the distortion by transiently increasing the amount of stall margin available based on information from the Distortion Estimation System. Simulation studies have shown the HISTEC distortion tolerant control is able to successfully estimate and accommodate time-varying distortion. Currently, hardware and software systems necessary for flight demonstration of the HISTEC concept are being designed and developed. The HISTEC concept will be flight tested in early 1997.

  14. High performance alloy electroforming

    NASA Technical Reports Server (NTRS)

    Malone, G. A.; Winkelman, D. M.

    1989-01-01

    Electroformed copper and nickel are used in structural applications for advanced propellant combustion chambers. An improved process has been developed by Bell Aerospace Textron, Inc. wherein electroformed nickel-manganese alloy has demonstrated superior mechanical and thermal stability when compared to previously reported deposits from known nickel plating processes. Solution chemistry and parametric operating procedures are now established and material property data is established for deposition of thick, large complex shapes such as the Space Shuttle Main Engine. The critical operating variables are those governing the ratio of codeposited nickel and manganese. The deposition uniformity which in turn affects the manganese concentration distribution is affected by solution resistance and geometric effects as well as solution agitation. The manganese concentration in the deposit must be between 2000 and 3000 ppm for optimum physical properties to be realized. The study also includes data regarding deposition procedures for achieving excellent bond strength at an interface with copper, nickel-manganese or INCONEL 718. Applications for this electroformed material include fabrication of complex or re-entry shapes which would be difficult or impossible to form from high strength alloys such as INCONEL 718.

  15. High Poverty, High Performing Schools. IDRA Focus.

    ERIC Educational Resources Information Center

    IDRA Newsletter, 1997

    1997-01-01

    This theme issue includes four articles on high performance by poor Texas schools. In "Principal of National Blue Ribbon School Says High Poverty Schools Can Excel" (interview with Robert Zarate by Christie L. Goodman), the principal of Mary Hull Elementary School (San Antonio, Texas) describes how the high-poverty, high-minority school…

  16. High Performance Fortran: An overview

    SciTech Connect

    Zosel, M.E.

    1992-12-23

    The purpose of this paper is to give an overview of the work of the High Performance Fortran Forum (HPFF). This group of industry, academic, and user representatives has been meeting to define a set of extensions for Fortran dedicated to the special problems posed by a very high performance computers, especially the new generation of parallel computers. The paper describes the HPFF effort and its goals and gives a brief description of the functionality of High Performance Fortran (HPF).

  17. Cost Control Strategies for Zero Energy Buildings: High-Performance Design and Construction on a Budget (Brochure)

    SciTech Connect

    Not Available

    2014-09-01

    There is mounting evidence that zero energy can, in many cases, be achieved within typical construction budgets. To ensure that the momentum behind zero energy buildings and other low-energy buildings will continue to grow, this guide assembles recommendations for replicating specific successes of early adopters who have met their energy goals while controlling costs. Contents include: discussion of recommended cost control strategies, which are grouped by project phase (acquisition and delivery, design, and construction) and accompanied by industry examples; recommendations for balancing key decision-making factors; and quick reference tables that can help teams apply strategies to specific projects.

  18. High Performance Thin Layer Chromatography.

    ERIC Educational Resources Information Center

    Costanzo, Samuel J.

    1984-01-01

    Clarifies where in the scheme of modern chromatography high performance thin layer chromatography (TLC) fits and why in some situations it is a viable alternative to gas and high performance liquid chromatography. New TLC plates, sample applications, plate development, and instrumental techniques are considered. (JN)

  19. High-Performance Bipropellant Engine

    NASA Technical Reports Server (NTRS)

    Biaglow, James A.; Schneider, Steven J.

    1999-01-01

    TRW, under contract to the NASA Lewis Research Center, has successfully completed over 10 000 sec of testing of a rhenium thrust chamber manufactured via a new-generation powder metallurgy. High performance was achieved for two different propellants, N2O4- N2H4 and N2O4 -MMH. TRW conducted 44 tests with N2O4-N2H4, accumulating 5230 sec of operating time with maximum burn times of 600 sec and a specific impulse Isp of 333 sec. Seventeen tests were conducted with N2O4-MMH for an additional 4789 sec and a maximum Isp of 324 sec, with a maximum firing duration of 700 sec. Together, the 61 tests totalled 10 019 sec of operating time, with the chamber remaining in excellent condition. Of these tests, 11 lasted 600 to 700 sec. The performance of radiation-cooled rocket engines is limited by their operating temperature. For the past two to three decades, the majority of radiation-cooled rockets were composed of a high-temperature niobium alloy (C103) with a disilicide oxide coating (R512) for oxidation resistance. The R512 coating practically limits the operating temperature to 1370 C. For the Earth-storable bipropellants commonly used in satellite and spacecraft propulsion systems, a significant amount of fuel film cooling is needed. The large film-cooling requirement extracts a large penalty in performance from incomplete mixing and combustion. A material system with a higher temperature capability has been matured to the point where engines are being readied for flight, particularly the 100-lb-thrust class engine. This system has powder rhenium (Re) as a substrate material with an iridium (Ir) oxidation-resistant coating. Again, the operating temperature is limited by the coating; however, Ir is capable of long-life operation at 2200 C. For Earth-storable bipropellants, this allows for the virtual elimination of fuel film cooling (some film cooling is used for thermal control of the head end). This has resulted in significant increases in specific impulse performance

  20. Yoga Improves Academic Performance in Urban High School Students Compared to Physical Education: A Randomized Controlled Trial

    ERIC Educational Resources Information Center

    Hagins, Marshall; Rundle, Andrew

    2016-01-01

    Yoga programs within schools have become more widespread but research regarding the potential effect on academic achievement remains limited. This study cluster-randomized 112 students within a single New York City public high school to participate in either school-based yoga or physical education (PE) for an entire academic year. The primary…

  1. Thermo-Controlled in Situ Phase Transition of Polymer-Peptides on Cell Surfaces for High-Performance Proliferative Inhibition.

    PubMed

    Qiao, Sheng-Lin; Wang, Yi; Lin, Yao-Xin; An, Hong-Wei; Ma, Yang; Li, Li-Li; Wang, Lei; Wang, Hao

    2016-07-13

    We herein report a thermocontrolled strategy for realizing in situ conformational transition of polymer-peptide conjugates at cell surfaces to manipulate and monitor HER2 receptor clustering, which finally result in effective breast cancer cell proliferation inhibition. Functional paring motifs (HBP) are covalently linked to a synthetic thermoresponsive polymer PNIPAAm to incorporate temperature control properties to HER2 targeting peptide. At 40 °C, the PNIPAAm polymers collapse and act as a "shield" to block the aggregation of HBP. Upon cooling to 35 °C, polymers are in their extended state and HBP are expose in aqueous and aggregate subsequently with enhanced fluorescence, allowing for promoting and in situ monitoring of receptor clustering. Ultimately, HER2 receptor clustering leads to cytoplasmic domain phosphorylation, which further results in effective cancer cell proliferation inhibition. We envision that this useful approach has the potential to be applied for molecule-targeted tumor therapy. PMID:27348260

  2. Large-area high-performance SERS substrates with deep controllable sub-10-nm gap structure fabricated by depositing Au film on the cicada wing

    NASA Astrophysics Data System (ADS)

    Jiwei, Qi; Yudong, Li; Ming, Yang; Qiang, Wu; Zongqiang, Chen; Wudeng, Wang; Wenqiang, Lu; Xuanyi, Yu; Jingjun, Xu; Qian, Sun

    2013-10-01

    Noble metal nanogap structure supports strong surface-enhanced Raman scattering (SERS) which can be used to detect single molecules. However, the lack of reproducible fabrication techniques with nanometer-level control over the gap size has limited practical applications. In this letter, by depositing the Au film onto the cicada wing, we engineer the ordered array of nanopillar structures on the wing to form large-area high-performance SERS substrates. Through the control of the thickness of the Au film deposited onto the cicada wing, the gap sizes between neighboring nanopillars are fine defined. SERS substrates with sub-10-nm gap sizes are obtained, which have the highest average Raman enhancement factor (EF) larger than 2 × 108, about 40 times as large as that of commercial Klarite® substrates. The cicada wings used as templates are natural and environment-friendly. The depositing method is low cost and high throughput so that our large-area high-performance SERS substrates have great advantage for chemical/biological sensing applications.

  3. Large-area high-performance SERS substrates with deep controllable sub-10-nm gap structure fabricated by depositing Au film on the cicada wing

    PubMed Central

    2013-01-01

    Noble metal nanogap structure supports strong surface-enhanced Raman scattering (SERS) which can be used to detect single molecules. However, the lack of reproducible fabrication techniques with nanometer-level control over the gap size has limited practical applications. In this letter, by depositing the Au film onto the cicada wing, we engineer the ordered array of nanopillar structures on the wing to form large-area high-performance SERS substrates. Through the control of the thickness of the Au film deposited onto the cicada wing, the gap sizes between neighboring nanopillars are fine defined. SERS substrates with sub-10-nm gap sizes are obtained, which have the highest average Raman enhancement factor (EF) larger than 2 × 108, about 40 times as large as that of commercial Klarite® substrates. The cicada wings used as templates are natural and environment-friendly. The depositing method is low cost and high throughput so that our large-area high-performance SERS substrates have great advantage for chemical/biological sensing applications. PMID:24148212

  4. Study and Simulation of Enhancements for TCP (Transmission Control Protocol) Performance Over Noisy, High-Latency Links

    NASA Technical Reports Server (NTRS)

    Shepard, Timothy J.; Partridge, Craig; Coulter, Robert

    1997-01-01

    The designers of the TCP/IP protocol suite explicitly included support of satellites in their design goals. The goal of the Internet Project was to design a protocol which could be layered over different networking technologies to allow them to be concatenated into an internet. The results of this project included two protocols, IP and TCP. IP is the protocol used by all elements in the network and it defines the standard packet format for IP datagrams. TCP is the end-to-end transport protocol commonly used between end systems on the Internet to derive a reliable bi-directional byte-pipe service from the underlying unreliable IP datagram service. Satellite links are explicitly mentioned in Vint Cerf's 2-page article which appeared in 1980 in CCR [2] to introduce the specifications for IP and TCP. In the past fifteen years, TCP has been demonstrated to work over many differing networking technologies, including over paths including satellites links. So if satellite links were in the minds of the designers from the beginning, what is the problem? The problem is that the performance of TCP has in some cases been disappointing. A goal of the authors of the original specification of TCP was to specify only enough behavior to ensure interoperability. The specification left a number of important decisions, in particular how much data is to be sent when, to the implementor. This was deliberately' done. By leaving performance-related decisions to the implementor, this would allow the protocol TCP to be tuned and adapted to different networks and situations in the future without the need to revise the specification of the protocol, or break interoperability. Interoperability would continue while future implementations would be allowed flexibility to adapt to needs which could not be anticipated at the time of the original protocol design.

  5. High power ion thruster performance

    NASA Technical Reports Server (NTRS)

    Rawlin, Vincent K.; Patterson, Michael J.

    1987-01-01

    The ion thruster is one of several forms of space electric propulsion being considered for use on future SP-100-based missions. One possible major mission ground rule is the use of a single Space Shuttle launch. Thus, the mass in orbit at the reactor activation altitude would be limited by the Shuttle mass constraints. When the spacecraft subsystem masses are subtracted from this available mass limit, a maximum propellant mass may be calculated. Knowing the characteristics of each type of electric thruster allows maximum values of total impulse, mission velocity increment, and thrusting time to be calculated. Because ion thrusters easily operate at high values of efficiency (60 to 70%) and specific impulse (3000 to 5000 sec), they can impart large values of total impulse to a spacecraft. They also can be operated with separate control of the propellant flow rate and exhaust velocity. This paper presents values of demonstrated and projected performance of high power ion thrusters used in an analysis of electric propulsion for an SP-100 based mission.

  6. High-performance thin layer chromatography for quality control of multicomponent herbal drugs: example of cangzhu xianglian san.

    PubMed

    Li, Zhi; Merfort, Irmgard; Reich, Eike

    2010-01-01

    Due to their complexity, multicomponent herbal drugs pose enormous analytical challenges for quality control (QC). Although they may have traditionally been used for hundreds of years, the information about their chemical composition is often still limited. Selecting suitable markers to monitor the identity and potency of the mixture is, therefore, difficult. There is also the possibility of natural variability for each plant. This paper illustrates a pragmatic and practical approach to QC of a multicomponent herbal drug by HPTLC. Cangzhu xianglian xan (CXS), composed of the herbal drugs Coptis rhizome, Aucklandia root, and Atractylodes rhizome (30 + 20 + 60, w/w/w), is used as an example. A characteristic fingerprint can be generated for CXS with toluene-ethyl acetate-methanol-isopropanol-water (60 + 30 + 20 + 15 + 3, v/v/v/v/v) mobile phase on HPTLC silica gel 60 conditioned with ammonia. While the corresponding monograph of the Chinese Veterinary Pharmacopoeia focuses only on the detection of berberine, one of the principal components of Coptis rhizome, the proposed method of identification determines the presence of all three components in the drug after derivatization with anisaldehyde reagent. The same method can also be used to quantitatively determine the content of berberine by scanning densitometry. This paper provides details about the validation of the qualitative and quantitative determinations. PMID:21140648

  7. Simple size control of TiO2 nanoparticles and their electrochemical performance: emphasizing the contribution of the surface area to lithium storage at high-rates

    NASA Astrophysics Data System (ADS)

    Lim, Joohyun; Um, Ji Hyun; Lee, Kyung Jae; Yu, Seung-Ho; Kim, Young-Jae; Sung, Yung-Eun; Lee, Jin-Kyu

    2016-03-01

    The particle size effects of TiO2 nanoparticles (TNPs), which are composed of small crystallites, on Li ion storage are a very fundamental and important subject. However, size control of TNPs under 200 nm using a sol-gel method has been limited due to the highly reactive precursor, titanium alkoxide. In this study, TNPs with various sizes even under 100 nm are obtained by controlling the reactant concentrations in a mixed solvent of ethanol and acetonitrile. Among them, three different sizes of TNPs are prepared to compare the Li ion storage capacity, and 60 nm TNPs are found to have the best reversible capacity of 182 mA h g-1 after 50 cycles at 1 C and a remarkable rate performance of 120 mA h g-1 at 10 C. Capacity increase upon cycling is observed in the size-controlled TNPs, and the explanation of this phenomenon is proposed to the lattice volume expansion of TiO2 upon intercalation for enabling further penetration of the electrolyte into the particles' interior. Moreover, the capacity at high rates is more closely related to the surface area from Hg porosimetry analysis than from typical N2 adsorption/desorption analysis.The particle size effects of TiO2 nanoparticles (TNPs), which are composed of small crystallites, on Li ion storage are a very fundamental and important subject. However, size control of TNPs under 200 nm using a sol-gel method has been limited due to the highly reactive precursor, titanium alkoxide. In this study, TNPs with various sizes even under 100 nm are obtained by controlling the reactant concentrations in a mixed solvent of ethanol and acetonitrile. Among them, three different sizes of TNPs are prepared to compare the Li ion storage capacity, and 60 nm TNPs are found to have the best reversible capacity of 182 mA h g-1 after 50 cycles at 1 C and a remarkable rate performance of 120 mA h g-1 at 10 C. Capacity increase upon cycling is observed in the size-controlled TNPs, and the explanation of this phenomenon is proposed to the lattice

  8. High Performance Networks for High Impact Science

    SciTech Connect

    Scott, Mary A.; Bair, Raymond A.

    2003-02-13

    This workshop was the first major activity in developing a strategic plan for high-performance networking in the Office of Science. Held August 13 through 15, 2002, it brought together a selection of end users, especially representing the emerging, high-visibility initiatives, and network visionaries to identify opportunities and begin defining the path forward.

  9. High performance flexible heat pipes

    NASA Technical Reports Server (NTRS)

    Shaubach, R. M.; Gernert, N. J.

    1985-01-01

    A Phase I SBIR NASA program for developing and demonstrating high-performance flexible heat pipes for use in the thermal management of spacecraft is examined. The program combines several technologies such as flexible screen arteries and high-performance circumferential distribution wicks within an envelope which is flexible in the adiabatic heat transport zone. The first six months of work during which the Phase I contract goal were met, are described. Consideration is given to the heat-pipe performance requirements. A preliminary evaluation shows that the power requirement for Phase II of the program is 30.5 kilowatt meters at an operating temperature from 0 to 100 C.

  10. High Performance Solution Processable TFTs

    NASA Astrophysics Data System (ADS)

    Gundlach, David

    2008-03-01

    Organic-based electronic devices offer the potential to significantly impact the functionality and pervasiveness of large-area electronics. We report on soluble acene-based organic thin film transistors (OTFTs) where the microstructure of as-cast films can be precisely controlled via interfacial chemistry. Chemically tailoring the source/drain contact interface is a novel route to self-patterning of soluble small molecule organic semiconductors and enables the growth of highly ordered regions along opposing contact edges which extend into the transistor channel. The unique film forming properties of soluble fluorinated anthradithiophenes allows us to fabricate high performance OTFTs, OTFT circuits, and to deterministically study the influence of the film microstructure on the electrical characteristics of devices. Most recently we have grown single crystals of soluble fluorinated anthradithiophenes by vapor transport method allowing us to probe deeper into their intrinsic properties and determine the potential and limitations of this promising family of oligomers for use in organic-based electronic devices. Co-Authors: O. D. Jurchescu^1,4, B. H. Hamadani^1, S. K. Park^4, D. A. Mourey^4, S. Subramanian^5, A. J. Moad^2, R. J. Kline^3, L. C. Teague^2, J. G. Kushmerick^2, L. J. Richter^2, T. N. Jackson^4, and J. E. Anthony^5 ^1Semiconductor Electronics Division, ^2Surface and Microanalysis Science Division, ^3Polymers Division, National Institute of Standards and Technology, Gaithersburg, MD 20899 ^4Department of Electrical Engineering, The Pennsylvania State University, University Park, PA 16802 ^5Department of Chemistry, University of Kentucky, Lexington, KY 40506-0055

  11. High performance dielectric materials development

    NASA Technical Reports Server (NTRS)

    Piche, Joe; Kirchner, Ted; Jayaraj, K.

    1994-01-01

    The mission of polymer composites materials technology is to develop materials and processing technology to meet DoD and commercial needs. The following are outlined in this presentation: high performance capacitors, high temperature aerospace insulation, rationale for choosing Foster-Miller (the reporting industry), the approach to the development and evaluation of high temperature insulation materials, and the requirements/evaluation parameters. Supporting tables and diagrams are included.

  12. Nonlinear feedback control of highly manoeuvrable aircraft

    NASA Technical Reports Server (NTRS)

    Garrard, William L.; Enns, Dale F.; Snell, S. A.

    1992-01-01

    This paper describes the application of nonlinear quadratic regulator (NLQR) theory to the design of control laws for a typical high-performance aircraft. The NLQR controller design is performed using truncated solutions of the Hamilton-Jacobi-Bellman equation of optimal control theory. The performance of the NLQR controller is compared with the performance of a conventional P + I gain scheduled controller designed by applying standard frequency response techniques to the equations of motion of the aircraft linearized at various angles of attack. Both techniques result in control laws which are very similar in structure to one another and which yield similar performance. The results of applying both control laws to a high-g vertical turn are illustrated by nonlinear simulation.

  13. INL High Performance Building Strategy

    SciTech Connect

    Jennifer D. Morton

    2010-02-01

    High performance buildings, also known as sustainable buildings and green buildings, are resource efficient structures that minimize the impact on the environment by using less energy and water, reduce solid waste and pollutants, and limit the depletion of natural resources while also providing a thermally and visually comfortable working environment that increases productivity for building occupants. As Idaho National Laboratory (INL) becomes the nation’s premier nuclear energy research laboratory, the physical infrastructure will be established to help accomplish this mission. This infrastructure, particularly the buildings, should incorporate high performance sustainable design features in order to be environmentally responsible and reflect an image of progressiveness and innovation to the public and prospective employees. Additionally, INL is a large consumer of energy that contributes to both carbon emissions and resource inefficiency. In the current climate of rising energy prices and political pressure for carbon reduction, this guide will help new construction project teams to design facilities that are sustainable and reduce energy costs, thereby reducing carbon emissions. With these concerns in mind, the recommendations described in the INL High Performance Building Strategy (previously called the INL Green Building Strategy) are intended to form the INL foundation for high performance building standards. This revised strategy incorporates the latest federal and DOE orders (Executive Order [EO] 13514, “Federal Leadership in Environmental, Energy, and Economic Performance” [2009], EO 13423, “Strengthening Federal Environmental, Energy, and Transportation Management” [2007], and DOE Order 430.2B, “Departmental Energy, Renewable Energy, and Transportation Management” [2008]), the latest guidelines, trends, and observations in high performance building construction, and the latest changes to the Leadership in Energy and Environmental Design

  14. High Performance Photovoltaic Project Overview

    SciTech Connect

    Symko-Davies, M.; McConnell, R.

    2005-01-01

    The High-Performance Photovoltaic (HiPerf PV) Project was initiated by the U.S. Department of Energy to substantially increase the viability of photovoltaics (PV) for cost-competitive applications so that PV can contribute significantly to our energy supply and environment in the 21st century. To accomplish this, the National Center for Photovoltaics (NCPV) directs in-house and subcontracted research in high-performance polycrystalline thin-film and multijunction concentrator devices. In this paper, we describe the recent research accomplishments in the in-house directed efforts and the research efforts under way in the subcontracted area.

  15. High-Performance Thermoelectric Semiconductors

    NASA Technical Reports Server (NTRS)

    Fleurial, Jean-Pierre; Caillat, Thierry; Borshchevsky, Alexander

    1994-01-01

    Figures of merit almost double current state-of-art thermoelectric materials. IrSb3 is semiconductor found to exhibit exceptional thermoelectric properties. CoSb3 and RhSb3 have same skutterudite crystallographic structure as IrSb3, and exhibit exceptional transport properties expected to contribute to high thermoelectric performance. These three compounds form solid solutions. Combination of properties offers potential for development of new high-performance thermoelectric materials for more efficient thermoelectric power generators, coolers, and detectors.

  16. High-performance membrane chromatography.

    PubMed

    Belenkii, B G; Malt'sev, V G

    1995-02-01

    In gradient chromatography for proteins migrating along the chromatographic column, the critical distance X0 has been shown to exist at which the separation of zones is at a maximum and band spreading is at a minimum. With steep gradients and small elution velocity, the column length may be reduced to the level of membrane thickness--about one millimeter. The peculiarities of this novel separation method for proteins, high-performance membrane chromatography (HPMC), are discussed and stepwise elution is shown to be especially effective. HPMC combines the advantages of membrane technology and high-performance liquid chromatography, and avoids their drawbacks. PMID:7727132

  17. Agronomic performance and transcriptional analysis of carotenoid biosynthesis in fruits of transgenic HighCaro and control tomato lines under field conditions.

    PubMed

    Giorio, Giovanni; Stigliani, Adriana Lucia; D'Ambrosio, Caterina

    2007-02-01

    Genetic manipulation of carotenoid biosynthesis in higher plants has been the objective of a number of biotechnology programs, e.g. the Golden Rice Program. However, tomato (Solanum lycopersicum L.), which naturally accumulates lycopene in fruits, has attracted the attention of many groups who have manipulated it to increase or diversify carotenoid accumulation. One of the most significant achievements was "HighCaro (HC)," a transgenic tomato plant constitutively expressing the tomato lycopene beta-cyclase (tLcy-b), that produces orange fruits due to the complete conversion of lycopene to beta-carotene. In this article we report the results of a field trial conducted in Metaponto (Italy) on HC and on two control genotypes to evaluate the stability of the transgenic trait and their yield performances. Transcriptional regulation of eight genes involved in carotenogenesis was assayed by quantitative real-time PCR (qRT-PCR) analysis on fruits collected at four distinct development stages. Statistical analysis results demonstrated that in field conditions the transgene maintained its ability to induce the conversion of lycopene to beta-carotene. Moreover, agronomic performances and fruit quality in the transgenic line were not impaired by this metabolic disturbance. Results of qRT-PCR analysis suggested that transcription of PSY-1, PDS and ZDS genes were developmentally regulated in both genotypes. Unexpectedly, Lcy-b expression in transgenic fruits was also developmentally regulated, despite the fact that the gene was driven by a constitutive promoter. Our data provide evidence that in photosynthetic cells a strict and aspecific mechanism controls the level of transcripts until the onset of chromoplasts differentiation, at which point a gene-specific control on transcription takes place. PMID:17096211

  18. High Performance Bulk Thermoelectric Materials

    SciTech Connect

    Ren, Zhifeng

    2013-03-31

    Over 13 plus years, we have carried out research on electron pairing symmetry of superconductors, growth and their field emission property studies on carbon nanotubes and semiconducting nanowires, high performance thermoelectric materials and other interesting materials. As a result of the research, we have published 104 papers, have educated six undergraduate students, twenty graduate students, nine postdocs, nine visitors, and one technician.

  19. Panelized high performance multilayer insulation

    NASA Technical Reports Server (NTRS)

    Burkley, R. A.; Shriver, C. B.; Stuckey, J. M.

    1968-01-01

    Multilayer insulation coverings with low conductivity foam spacers are interleaved with quarter mil aluminized polymer film radiation shields to cover flight type liquid hydrogen tankage of space vehicles with a removable, structurally compatible, lightweight, high performance cryogenic insulation capable of surviving extended space mission environments.

  20. High performance rolling element bearing

    NASA Technical Reports Server (NTRS)

    Bursey, Jr., Roger W. (Inventor); Olinger, Jr., John B. (Inventor); Owen, Samuel S. (Inventor); Poole, William E. (Inventor); Haluck, David A. (Inventor)

    1993-01-01

    A high performance rolling element bearing (5) which is particularly suitable for use in a cryogenically cooled environment, comprises a composite cage (45) formed from glass fibers disposed in a solid lubricant matrix of a fluorocarbon polymer. The cage includes inserts (50) formed from a mixture of a soft metal and a solid lubricant such as a fluorocarbon polymer.

  1. High performance storable propellant resistojet

    NASA Technical Reports Server (NTRS)

    Vaughan, C. E.

    1992-01-01

    From 1965 until 1985 resistojets were used for a limited number of space missions. Capability increased in stages from an initial application using a 90 W gN2 thruster operating at 123 sec specific impulse (Isp) to a 830 W N2H4 thruster operating at 305 sec Isp. Prior to 1985 fewer than 100 resistojets were known to have been deployed on spacecraft. Building on this base NASA embarked upon the High Performance Storable Propellant Resistojet (HPSPR) program to significantly advance the resistojet state-of-the-art. Higher performance thrusters promised to increase the market demand for resistojets and enable space missions requiring higher performance. During the program three resistojets were fabricated and tested. High temperature wire and coupon materials tests were completed. A life test was conducted on an advanced gas generator.

  2. High Performance Tools And Technologies

    SciTech Connect

    Collette, M R; Corey, I R; Johnson, J R

    2005-01-24

    This goal of this project was to evaluate the capability and limits of current scientific simulation development tools and technologies with specific focus on their suitability for use with the next generation of scientific parallel applications and High Performance Computing (HPC) platforms. The opinions expressed in this document are those of the authors, and reflect the authors' current understanding and functionality of the many tools investigated. As a deliverable for this effort, we are presenting this report describing our findings along with an associated spreadsheet outlining current capabilities and characteristics of leading and emerging tools in the high performance computing arena. This first chapter summarizes our findings (which are detailed in the other chapters) and presents our conclusions, remarks, and anticipations for the future. In the second chapter, we detail how various teams in our local high performance community utilize HPC tools and technologies, and mention some common concerns they have about them. In the third chapter, we review the platforms currently or potentially available to utilize these tools and technologies on to help in software development. Subsequent chapters attempt to provide an exhaustive overview of the available parallel software development tools and technologies, including their strong and weak points and future concerns. We categorize them as debuggers, memory checkers, performance analysis tools, communication libraries, data visualization programs, and other parallel development aides. The last chapter contains our closing information. Included with this paper at the end is a table of the discussed development tools and their operational environment.

  3. Quality control of processed Crataegi Fructus and its medicinal parts by ultra high performance liquid chromatography with electrospray ionization tandem mass spectrometry.

    PubMed

    Yin, Fangzhou; Li, Lin; Chen, Yan; Lu, Tuling; Li, Weidong; Cai, Baochang; Yin, Wu

    2015-08-01

    Crataegi Fructus, an edible food, has been used as a traditional medicine to treat diseases for many years. There is substantial evidence that multiple constituents are responsible for the beneficial effects of Crataegi Fructus. To effectively control the quality of this herbal medicine, we developed an ultra high performance liquid chromatography with electrospray ionization tandem mass spectrometry protocol to simultaneously quantify ten compounds (chlorogenic acid, procyanidin B2, l-epicatechin, glucosylvitexin, vitexin-2-O-rhamnoside, vitexin, rutin, hyperoside, isoquercitrin, and quercetin) in Crataegi Fructus. Multiple-reaction monitoring was used for the quantification in the negative mode for 8 min. This proposed method is simple, reliable, sensitive, and specific. Further, the quantification parameters, including linearity, limit of detection, limit of quantification, precision, reproducibility, stability, and accuracy were optimized. The quality of the processed samples of Crataegi Fructus was evaluated using this method. Additionally, the method was successfully used to distinguish the medicinal components, including peel, kernel, and flesh. The data described in this study offer valuable information for the quality control and proper use of Crataegi Fructus. PMID:26009877

  4. ADVANCED HIGH PERFORMANCE SOLID WALL BLANKET CONCEPTS

    SciTech Connect

    WONG, CPC; MALANG, S; NISHIO, S; RAFFRAY, R; SAGARA, S

    2002-04-01

    OAK A271 ADVANCED HIGH PERFORMANCE SOLID WALL BLANKET CONCEPTS. First wall and blanket (FW/blanket) design is a crucial element in the performance and acceptance of a fusion power plant. High temperature structural and breeding materials are needed for high thermal performance. A suitable combination of structural design with the selected materials is necessary for D-T fuel sufficiency. Whenever possible, low afterheat, low chemical reactivity and low activation materials are desired to achieve passive safety and minimize the amount of high-level waste. Of course the selected fusion FW/blanket design will have to match the operational scenarios of high performance plasma. The key characteristics of eight advanced high performance FW/blanket concepts are presented in this paper. Design configurations, performance characteristics, unique advantages and issues are summarized. All reviewed designs can satisfy most of the necessary design goals. For further development, in concert with the advancement in plasma control and scrape off layer physics, additional emphasis will be needed in the areas of first wall coating material selection, design of plasma stabilization coils, consideration of reactor startup and transient events. To validate the projected performance of the advanced FW/blanket concepts the critical element is the need for 14 MeV neutron irradiation facilities for the generation of necessary engineering design data and the prediction of FW/blanket components lifetime and availability.

  5. Performance Control and Condition Monitoring

    NASA Astrophysics Data System (ADS)

    Ewert, Uwe; Jaenisch, Gerd-Rüdiger; Osterloh, Kurt; Zscherpel, Uwe; Bathias, Claude; Hentschel, Manfred; Erhard, Anton; Goebbels, Jürgen; Hanselka, Holger; Nuffer, Jürgen; Daum, Werner

    The performance of materials - as constituents of the components of engineering systems - is essential for the functionality of engineering systems in all branches of technology and industry. Instrumental for characterizing the performance of materials are: methods to study and assess the basic damage mechanisms that detrimentally influence the proper functioning of materials, such as materials fatigue and fracture (Chap. 7), corrosion (Chap. 12), friction and wear (Chap. 13), biogenic impact (Chap. 14), materials-environment interactions (Chap. 15),

  6. Comparison of Raman spectroscopy vs. high performance liquid chromatography for quality control of complex therapeutic objects: model of elastomeric portable pumps filled with a fluorouracil solution.

    PubMed

    Bourget, Philippe; Amin, Alexandre; Vidal, Fabrice; Merlette, Christophe; Lagarce, Frédéric

    2014-03-01

    This study compares the performance of a reference method of HPLC to Raman spectroscopy (RS) for the analytical quality control (AQC) of complex therapeutic objects. We assessed a model consisting of a widely used anticancer drug, i.e., 5-fluorouracil, which was compounded in a complex medical device, i.e., an elastomeric portable infusion pump. In view of the main objective, the two methods provided excellent results for the analytical validation key criteria, i.e., trueness, precision and accuracy, ranging from 7.5 to 50mg/mL and in either isotonic sodium or 5% dextrose. The Spearman and Kendall correlation tests (p-value<1×10(-15)) and the statistical studies performed on the graphs confirm a strong correlation in the results between RS and the standard HPLC under the experimental conditions. The selection of a spectral interval between 700 and 1400cm(-1) for both the characterization and quantification by RS was the result of a gradual process optimization, combining matrix and packaging responses. In this new application, we demonstrate at least eight benefits of RS: (a) operator safety, (b) elimination of disposables, (c) elimination of analysis waste, which contributes to the protection of the environment, (d) a fast analytical response of less than 2min, (e) the ability to identify the solubilizing phase, (f) reduction of the risk of errors because no intrusion or dilution are needed, (g) negligible maintenance costs and (h) a reduction in the budget dedicated to technician training. Overall, we indicate the potential of non-intrusive AQC performed by RS, especially when the analysis is not possible using the usual techniques, and the technique's high potential as a contributor to the safety of medication. PMID:24463044

  7. New, high performance rotating parachute

    SciTech Connect

    Pepper, W.B. Jr.

    1983-01-01

    A new rotating parachute has been designed primarily for recovery of high performance reentry vehicles. Design and development/testing results are presented from low-speed wind tunnel testing, free-flight deployments at transonic speeds and tests in a supersonic wind tunnel at Mach 2.0. Drag coefficients of 1.15 based on the 2-ft diameter of the rotor have been measured in the wind tunnel. Stability of the rotor is excellent.

  8. High performance ammonium nitrate propellant

    NASA Technical Reports Server (NTRS)

    Anderson, F. A. (Inventor)

    1979-01-01

    A high performance propellant having greatly reduced hydrogen chloride emission is presented. It is comprised of: (1) a minor amount of hydrocarbon binder (10-15%), (2) at least 85% solids including ammonium nitrate as the primary oxidizer (about 40% to 70%), (3) a significant amount (5-25%) powdered metal fuel, such as aluminum, (4) a small amount (5-25%) of ammonium perchlorate as a supplementary oxidizer, and (5) optionally a small amount (0-20%) of a nitramine.

  9. High Efficiency, High Performance Clothes Dryer

    SciTech Connect

    Peter Pescatore; Phil Carbone

    2005-03-31

    This program covered the development of two separate products; an electric heat pump clothes dryer and a modulating gas dryer. These development efforts were independent of one another and are presented in this report in two separate volumes. Volume 1 details the Heat Pump Dryer Development while Volume 2 details the Modulating Gas Dryer Development. In both product development efforts, the intent was to develop high efficiency, high performance designs that would be attractive to US consumers. Working with Whirlpool Corporation as our commercial partner, TIAX applied this approach of satisfying consumer needs throughout the Product Development Process for both dryer designs. Heat pump clothes dryers have been in existence for years, especially in Europe, but have not been able to penetrate the market. This has been especially true in the US market where no volume production heat pump dryers are available. The issue has typically been around two key areas: cost and performance. Cost is a given in that a heat pump clothes dryer has numerous additional components associated with it. While heat pump dryers have been able to achieve significant energy savings compared to standard electric resistance dryers (over 50% in some cases), designs to date have been hampered by excessively long dry times, a major market driver in the US. The development work done on the heat pump dryer over the course of this program led to a demonstration dryer that delivered the following performance characteristics: (1) 40-50% energy savings on large loads with 35 F lower fabric temperatures and similar dry times; (2) 10-30 F reduction in fabric temperature for delicate loads with up to 50% energy savings and 30-40% time savings; (3) Improved fabric temperature uniformity; and (4) Robust performance across a range of vent restrictions. For the gas dryer development, the concept developed was one of modulating the gas flow to the dryer throughout the dry cycle. Through heat modulation in a

  10. High performance forward swept wing aircraft

    NASA Technical Reports Server (NTRS)

    Koenig, David G. (Inventor); Aoyagi, Kiyoshi (Inventor); Dudley, Michael R. (Inventor); Schmidt, Susan B. (Inventor)

    1988-01-01

    A high performance aircraft capable of subsonic, transonic and supersonic speeds employs a forward swept wing planform and at least one first and second solution ejector located on the inboard section of the wing. A high degree of flow control on the inboard sections of the wing is achieved along with improved maneuverability and control of pitch, roll and yaw. Lift loss is delayed to higher angles of attack than in conventional aircraft. In one embodiment the ejectors may be advantageously positioned spanwise on the wing while the ductwork is kept to a minimum.

  11. High Performance Pulse Tube Cryocoolers

    NASA Astrophysics Data System (ADS)

    Olson, J. R.; Roth, E.; Champagne, P.; Evtimov, B.; Nast, T. C.

    2008-03-01

    Lockheed Martin's Advanced Technology Center has been developing pulse tube cryocoolers for more than ten years. Recent innovations include successful testing of four-stage coldheads, no-load temperature below 4 K, and the recent development of a high-efficiency compressor. This paper discusses the predicted performance of single and multiple stage pulse tube coldheads driven by our new 6 kg "M5Midi" compressor, which is capable of 90% efficiency with 200 W input power, and a maximum input power of 1000 W. This compressor retains the simplicity of earlier LM-ATC compressors: it has a moving magnet and an external electrical coil, minimizing organics in the working gas and requiring no electrical penetrations through the pressure wall. Motor losses were minimized during design, resulting in a simple, easily-manufactured compressor with state-of-the-art motor efficiency. The predicted cryocooler performance is presented as simple formulae, allowing an engineer to include the impact of a highly-optimized cryocooler into a full system analysis. Performance is given as a function of the heat rejection temperature and the cold tip temperatures and cooling loads.

  12. Selecting umbilicals for control system performance

    SciTech Connect

    Kovit, S.

    1995-12-01

    This paper provides qualitative discussions and quantitative performance estimates to define the relationship between the size, material and length of umbilical lines and the performance of common types of subsea production control systems. Since performance is also a function of other parameters such as control fluid characteristics, platform and field geometries and the characteristics of the controlled functions; these are also considered in order to provide a more complete overview.

  13. HIGH PERFORMANCE EBIS FOR RHIC.

    SciTech Connect

    ALESSI,J.; BEEBE, E.; GOULD, O.; KPONOU, A.; LOCKEY, R.; PIKIN, A.; RAPARIA, D.; RITTER, J.; SNYDSTRUP, L.

    2007-06-25

    An Electron Beam Ion Source (EBIS), capable of producing high charge states and high beam currents of any heavy ion species in short pulses, is ideally suited for injection into a synchrotron. An EBIS-based, high current, heavy ion preinjector is now being built at Brookhaven to provide increased capabilities for the Relativistic Heavy Ion Collider (RHIC), and the NASA Space Radiation Laboratory (NSRL). Benefits of the new preinjector include the ability to produce ions of any species, fast switching between species to serve the simultaneous needs of multiple programs, and lower operating and maintenance costs. A state-of-the-art EBIS, operating with an electron beam current of up to 10 A, and producing multi-milliamperes of high charge state heavy ions, has been developed at Brookhaven, and has been operating very successfully on a test bench for several years. The present performance of this high-current EBIS is presented, along with details of the design of the scaled-up EBIS for RHIC, and the status of its construction. Other aspects of the project, including design and construction of the heavy ion RFQ, Linac, and matching beamlines, are also mentioned.

  14. High Performance Proactive Digital Forensics

    NASA Astrophysics Data System (ADS)

    Alharbi, Soltan; Moa, Belaid; Weber-Jahnke, Jens; Traore, Issa

    2012-10-01

    With the increase in the number of digital crimes and in their sophistication, High Performance Computing (HPC) is becoming a must in Digital Forensics (DF). According to the FBI annual report, the size of data processed during the 2010 fiscal year reached 3,086 TB (compared to 2,334 TB in 2009) and the number of agencies that requested Regional Computer Forensics Laboratory assistance increasing from 689 in 2009 to 722 in 2010. Since most investigation tools are both I/O and CPU bound, the next-generation DF tools are required to be distributed and offer HPC capabilities. The need for HPC is even more evident in investigating crimes on clouds or when proactive DF analysis and on-site investigation, requiring semi-real time processing, are performed. Although overcoming the performance challenge is a major goal in DF, as far as we know, there is almost no research on HPC-DF except for few papers. As such, in this work, we extend our work on the need of a proactive system and present a high performance automated proactive digital forensic system. The most expensive phase of the system, namely proactive analysis and detection, uses a parallel extension of the iterative z algorithm. It also implements new parallel information-based outlier detection algorithms to proactively and forensically handle suspicious activities. To analyse a large number of targets and events and continuously do so (to capture the dynamics of the system), we rely on a multi-resolution approach to explore the digital forensic space. Data set from the Honeynet Forensic Challenge in 2001 is used to evaluate the system from DF and HPC perspectives.

  15. LPV Controller Interpolation for Improved Gain-Scheduling Control Performance

    NASA Technical Reports Server (NTRS)

    Wu, Fen; Kim, SungWan

    2002-01-01

    In this paper, a new gain-scheduling control design approach is proposed by combining LPV (linear parameter-varying) control theory with interpolation techniques. The improvement of gain-scheduled controllers can be achieved from local synthesis of Lyapunov functions and continuous construction of a global Lyapunov function by interpolation. It has been shown that this combined LPV control design scheme is capable of improving closed-loop performance derived from local performance improvement. The gain of the LPV controller will also change continuously across parameter space. The advantages of the newly proposed LPV control is demonstrated through a detailed AMB controller design example.

  16. Performance Analysis on Fault Tolerant Control System

    NASA Technical Reports Server (NTRS)

    Shin, Jong-Yeob; Belcastro, Christine

    2005-01-01

    In a fault tolerant control (FTC) system, a parameter varying FTC law is reconfigured based on fault parameters estimated by fault detection and isolation (FDI) modules. FDI modules require some time to detect fault occurrences in aero-vehicle dynamics. In this paper, an FTC analysis framework is provided to calculate the upper bound of an induced-L(sub 2) norm of an FTC system with existence of false identification and detection time delay. The upper bound is written as a function of a fault detection time and exponential decay rates and has been used to determine which FTC law produces less performance degradation (tracking error) due to false identification. The analysis framework is applied for an FTC system of a HiMAT (Highly Maneuverable Aircraft Technology) vehicle. Index Terms fault tolerant control system, linear parameter varying system, HiMAT vehicle.

  17. Controlled Assembly of Gold Nanostructures on a Solid Substrate via Imidazole Directed Hydrogen Bonding for High Performance Surface Enhance Raman Scattering Sensing of Hypochlorous Acid.

    PubMed

    Sun, Jiefang; Liu, Rui; Tang, Jijun; Zhang, Zongmian; Zhou, Xiaoxia; Liu, Jingfu

    2015-08-01

    Here, we report an efficient and facile method for constructing plasmonic gold nanostructures with controlled morphology on a Si wafer and its use as a surface enhanced Raman scattering (SERS) reporting system for specific detection of HClO. To achieve this substrate, the core gold nanoparticles (AuNPs, ∼100 nm) with a monolayer of 4-mercaptoimidazole (MI) ligands were covalently linked to a thiol-derived Si wafer (MI-AuNPs@SH-Si). Taking advantage of the intermolecular NH···N hydrogen bond (HB) provided by the neighboring imidazole moiety, multiple satellite AuNPs (∼12 nm) decorated with both MI and a Raman reporter are assembled around the core MI-AuNPs at pH 5.0. The uniform morphology of the AuNP-based nanostructures on the Si wafer offer a high density of hot spots with good SERS performance for detecting HClO. The fast oxidation of the imidazole moieties by HClO causes HB destruction and therefore separation of the satellite AuNPs from the core AuNPs, which gives rise to SERS signal damping of the chip that is employed for HClO analysis. This simple and cost-effective method is highly selective for HClO over common interferences and several reactive oxygen/nitrogen species, and enabled rapid analysis at concentrations as low as 1.2 μmol L(-1). The present approach is applied to analyze water and human serum samples with satisfactory results. PMID:26167718

  18. Designing high-performance jobs.

    PubMed

    Simons, Robert

    2005-01-01

    Tales of great strategies derailed by poor execution are all too common. That's because some organizations are designed to fail. For a company to achieve its potential, each employee's supply of organizational resources should equal the demand, and the same balance must apply to every business unit and to the company as a whole. To carry out his or her job, each employee has to know the answers to four basic questions: What resources do I control to accomplish my tasks? What measures will be used to evaluate my performance? Who do I need to interact with and influence to achieve my goals? And how much support can I expect when I reach out to others for help? The questions correspond to what the author calls the four basic spans of a job-control, accountability, influence, and support. Each span can be adjusted so that it is narrow or wide or somewhere in between. If you get the settings right, you can design a job in which a talented individual can successfully execute on your company's strategy. If you get the settings wrong, it will be difficult for an employee to be effective. The first step is to set the span of control to reflect the resources allocated to each position and unit that plays an important role in delivering customer value. This setting, like the others, is determined by how the business creates value for customers and differentiates its products and services. Next, you can dial in different levels of entrepreneurial behavior and creative tension by widening or narrowing spans of accountability and influence. Finally, you must adjust the span of support to ensure that the job or unit will get the informal help it needs. PMID:16028816

  19. High-performance combinatorial algorithms

    SciTech Connect

    Pinar, Ali

    2003-10-31

    Combinatorial algorithms have long played an important role in many applications of scientific computing such as sparse matrix computations and parallel computing. The growing importance of combinatorial algorithms in emerging applications like computational biology and scientific data mining calls for development of a high performance library for combinatorial algorithms. Building such a library requires a new structure for combinatorial algorithms research that enables fast implementation of new algorithms. We propose a structure for combinatorial algorithms research that mimics the research structure of numerical algorithms. Numerical algorithms research is nicely complemented with high performance libraries, and this can be attributed to the fact that there are only a small number of fundamental problems that underlie numerical solvers. Furthermore there are only a handful of kernels that enable implementation of algorithms for these fundamental problems. Building a similar structure for combinatorial algorithms will enable efficient implementations for existing algorithms and fast implementation of new algorithms. Our results will promote utilization of combinatorial techniques and will impact research in many scientific computing applications, some of which are listed.

  20. TRMM On Orbit Attitude Control System Performance

    NASA Technical Reports Server (NTRS)

    Robertson, Brent; Placanica, Sam; Morgenstern, Wendy

    1999-01-01

    This paper presents an overview of the Tropical Rainfall Measuring Mission (TRMM) Attitude Control System (ACS) along with detailed in-flight performance results for each operational mode. The TRMM spacecraft is an Earth-pointed, zero momentum bias satellite launched on November 27, 1997 from Tanegashima Space Center, Japan. TRMM is a joint mission between NASA and the National Space Development Agency (NASDA) of Japan designed to monitor and study tropical rainfall and the associated release of energy. Launched to provide a validation for poorly known rainfall data sets generated by global climate models, TRMM has demonstrated its utility by reducing uncertainties in global rainfall measurements by a factor of two. The ACS is comprised of Attitude Control Electronics (ACE), an Earth Sensor Assembly (ESA), Digital Sun Sensors (DSS), Inertial Reference Units (IRU), Three Axis Magnetometers (TAM), Coarse Sun Sensors (CSS), Magnetic Torquer Bars (MTB), Reaction Wheel Assemblies (RWA), Engine Valve Drivers (EVD) and thrusters. While in Mission Mode, the ESA provides roll and pitch axis attitude error measurements and the DSS provide yaw updates twice per orbit. In addition, the TAM in combination with the IRU and DSS can be used to provide pointing in a contingency attitude determination mode which does not rely on the ESA. Although the ACS performance to date has been highly successful, lessons were learned during checkout and initial on-orbit operation. This paper describes the design, on-orbit checkout, performance and lessons learned for the TRMM ACS.

  1. Pilot Implementation of a Field Study Design to Evaluate the Impact of Source Control Measures on Indoor Air Quality in High Performance Homes

    SciTech Connect

    Widder, Sarah H.; Chamness, Michele A.; Petersen, Joseph M.; Singer, Brett C.; Maddalena, Randy L.; Destaillats, Hugo

    2014-10-20

    -emitting and “conventional” materials as installed in newly constructed residential homes using both (1) highly controlled, short-term active samples to precisely characterize the building-related chemical emissions and building contents and (2) a week-long passive sample designed to capture the impact of occupant behavior and related activities on measured IAQ contaminant levels indoors. The combination of detailed short-term measurements with the home under controlled/consistent conditions during pre- and post-occupancy and the week-long passive sampling data provide the opportunity to begin to separate the different emission sources and help isolate and quantify variability in the monitored homes. Between April and August 2014, the research team performed pre-occupancy and post-occupancy sampling in one conventional home and two homes built with low-emitting materials that were generally consistent with EPA’s Indoor airPLUS guidelines. However, for a number of reasons, the full experimental plan was not implemented. The project was intended to continue for up to three years to asses long-term changes in IAQ but the project was limited to one calendar year. As a result, several of the primary research questions related to seasonal impacts and the long-term trends in IAQ could not be addressed. In addition, there were several unexpected issues related to recruiting, availability of home types, and difficulty coordinating with builders/realtors/homeowners. Several field monitoring issues also came up that provide “lessons learned” that led to improvements to the original monitoring plan. The project produced a good experimental plan that is expected to be be useful for future efforts collecting data to support answering these same or similar research questions.

  2. Feedback control laws for highly maneuverable aircraft

    NASA Technical Reports Server (NTRS)

    Garrard, William L.; Balas, Gary J.

    1992-01-01

    The results of a study of the application of H infinity and mu synthesis techniques to the design of feedback control laws for the longitudinal dynamics of the High Angle of Attack Research Vehicle (HARV) are presented. The objective of this study is to develop methods for the design of feedback control laws which cause the closed loop longitudinal dynamics of the HARV to meet handling quality specifications over the entire flight envelope. Control law designs are based on models of the HARV linearized at various flight conditions. The control laws are evaluated by both linear and nonlinear simulations of typical maneuvers. The fixed gain control laws resulting from both the H infinity and mu synthesis techniques result in excellent performance even when the aircraft performs maneuvers in which the system states vary significantly from their equilibrium design values. Both the H infinity and mu synthesis control laws result in performance which compares favorably with an existing baseline longitudinal control law.

  3. High Performance Field Reversed Configurations

    NASA Astrophysics Data System (ADS)

    Binderbauer, Michl

    2014-10-01

    The field-reversed configuration (FRC) is a prolate compact toroid with poloidal magnetic fields. FRCs could lead to economic fusion reactors with high power density, simple geometry, natural divertor, ease of translation, and possibly capable of burning aneutronic fuels. However, as in other high-beta plasmas, there are stability and confinement concerns. These concerns can be addressed by introducing and maintaining a significant fast ion population in the system. This is the approach adopted by TAE and implemented for the first time in the C-2 device. Studying the physics of FRCs driven by Neutral Beam (NB) injection, significant improvements were made in confinement and stability. Early C-2 discharges had relatively good confinement, but global power losses exceeded the available NB input power. The addition of axially streaming plasma guns, magnetic end plugs as well as advanced surface conditioning leads to dramatic reductions in turbulence driven losses and greatly improved stability. As a result, fast ion confinement significantly improved and allowed for build-up of a dominant fast particle population. Under such appropriate conditions we achieved highly reproducible, long-lived, macroscopically stable FRCs with record lifetimes. This demonstrated many beneficial effects of large orbit particles and their performance impact on FRCs Together these achievements point to the prospect of beam-driven FRCs as a path toward fusion reactors. This presentation will review and expand on key results and present context for their interpretation.

  4. FPGA Based High Performance Computing

    SciTech Connect

    Bennett, Dave; Mason, Jeff; Sundararajan, Prasanna; Dellinger, Erik; Putnam, Andrew; Storaasli, Olaf O

    2008-01-01

    Current high performance computing (HPC) applications are found in many consumer, industrial and research fields. From web searches to auto crash simulations to weather predictions, these applications require large amounts of power by the compute farms and supercomputers required to run them. The demand for more and faster computation continues to increase along with an even sharper increase in the cost of the power required to operate and cool these installations. The ability of standard processor based systems to address these needs has declined in both speed of computation and in power consumption over the past few years. This paper presents a new method of computation based upon programmable logic as represented by Field Programmable Gate Arrays (FPGAs) that addresses these needs in a manner requiring only minimal changes to the current software design environment.

  5. Characterization of a high-pressure diesel fuel injection system as a control technology option to improve engine performance and reduce exhaust emissions

    NASA Technical Reports Server (NTRS)

    Mcfadden, J. J.; Dezelick, R. A.; Barrows, R. R.

    1983-01-01

    Test results from a high pressure electronically controlled fuel injection system are compared with a commercial mechanical injection system on a single cylinder, diesel test engine using an inlet boost pressure of 2.6:1. The electronic fuel injection system achieved high pressure by means of a fluid intensifier with peak injection pressures of 47 to 69 MPa. Reduced exhaust emissions were demonstrated with an increasing rate of injection followed by a fast cutoff of injection. The reduction in emissions is more responsive to the rate of injection and injection timing than to high peak injection pressure.

  6. High performance anode for advanced Li batteries

    SciTech Connect

    Lake, Carla

    2015-11-02

    The overall objective of this Phase I SBIR effort was to advance the manufacturing technology for ASI’s Si-CNF high-performance anode by creating a framework for large volume production and utilization of low-cost Si-coated carbon nanofibers (Si-CNF) for the battery industry. This project explores the use of nano-structured silicon which is deposited on a nano-scale carbon filament to achieve the benefits of high cycle life and high charge capacity without the consequent fading of, or failure in the capacity resulting from stress-induced fracturing of the Si particles and de-coupling from the electrode. ASI’s patented coating process distinguishes itself from others, in that it is highly reproducible, readily scalable and results in a Si-CNF composite structure containing 25-30% silicon, with a compositionally graded interface at the Si-CNF interface that significantly improve cycling stability and enhances adhesion of silicon to the carbon fiber support. In Phase I, the team demonstrated the production of the Si-CNF anode material can successfully be transitioned from a static bench-scale reactor into a fluidized bed reactor. In addition, ASI made significant progress in the development of low cost, quick testing methods which can be performed on silicon coated CNFs as a means of quality control. To date, weight change, density, and cycling performance were the key metrics used to validate the high performance anode material. Under this effort, ASI made strides to establish a quality control protocol for the large volume production of Si-CNFs and has identified several key technical thrusts for future work. Using the results of this Phase I effort as a foundation, ASI has defined a path forward to commercialize and deliver high volume and low-cost production of SI-CNF material for anodes in Li-ion batteries.

  7. High performance Cu adhesion coating

    SciTech Connect

    Lee, K.W.; Viehbeck, A.; Chen, W.R.; Ree, M.

    1996-12-31

    Poly(arylene ether benzimidazole) (PAEBI) is a high performance thermoplastic polymer with imidazole functional groups forming the polymer backbone structure. It is proposed that upon coating PAEBI onto a copper surface the imidazole groups of PAEBI form a bond with or chelate to the copper surface resulting in strong adhesion between the copper and polymer. Adhesion of PAEBI to other polymers such as poly(biphenyl dianhydride-p-phenylene diamine) (BPDA-PDA) polyimide is also quite good and stable. The resulting locus of failure as studied by XPS and IR indicates that PAEBI gives strong cohesive adhesion to copper. Due to its good adhesion and mechanical properties, PAEBI can be used in fabricating thin film semiconductor packages such as multichip module dielectric (MCM-D) structures. In these applications, a thin PAEBI coating is applied directly to a wiring layer for enhancing adhesion to both the copper wiring and the polymer dielectric surface. In addition, a thin layer of PAEBI can also function as a protection layer for the copper wiring, eliminating the need for Cr or Ni barrier metallurgies and thus significantly reducing the number of process steps.

  8. ALMA high performance nutating subreflector

    NASA Astrophysics Data System (ADS)

    Gasho, Victor L.; Radford, Simon J. E.; Kingsley, Jeffrey S.

    2003-02-01

    For the international ALMA project"s prototype antennas, we have developed a high performance, reactionless nutating subreflector (chopping secondary mirror). This single axis mechanism can switch the antenna"s optical axis by +/-1.5" within 10 ms or +/-5" within 20 ms and maintains pointing stability within the antenna"s 0.6" error budget. The light weight 75 cm diameter subreflector is made of carbon fiber composite to achieve a low moment of inertia, <0.25 kg m2. Its reflecting surface was formed in a compression mold. Carbon fiber is also used together with Invar in the supporting structure for thermal stability. Both the subreflector and the moving coil motors are mounted on flex pivots and the motor magnets counter rotate to absorb the nutation reaction force. Auxiliary motors provide active damping of external disturbances, such as wind gusts. Non contacting optical sensors measure the positions of the subreflector and the motor rocker. The principle mechanical resonance around 20 Hz is compensated with a digital PID servo loop that provides a closed loop bandwidth near 100 Hz. Shaped transitions are used to avoid overstressing mechanical links.

  9. Performance specification for control tower display systems

    NASA Astrophysics Data System (ADS)

    Aleva, Denise L.; Meyer, Frederick M.

    2003-09-01

    Personnel in airport control towers monitor and direct the takeoff of outgoing aircraft, landing of incoming aircraft and all movements of aircraft on the ground. Although the primary source of information for the Local Controller, Assistant Local Controller and the Ground Controller is the real world viewed through the windows of the control tower, electronic displays are also used to provide situation awareness. Due to the criticality of the work to be performed by the controllers and the rather unique environment of the air traffic control tower, display hardware standards, which have been developed for general use, are not directly applicable. The Federal Aviation Administration (FAA) requested assistance of Air Force Research Laboratory Human Effectiveness Directorate in producing a document which can be adopted as a Tower Display Standard usable by display engineers, human factors practitioners and system integrators. Particular emphasis was placed on human factors issues applicable to the control tower environment and controller task demands.

  10. Nanotubular structured Si-based multicomponent anodes for high-performance lithium-ion batteries with controllable pore size via coaxial electro-spinning.

    PubMed

    Ryu, Jaegeon; Choi, Sinho; Bok, Taesoo; Park, Soojin

    2015-04-14

    We demonstrate a simple but straightforward process for the synthesis of nanotube-type Si-based multicomponents by combining a coaxial electrospinning technique and subsequent metallothermic reduction reaction. Si-based multicomponent anodes consisting of Si, alumina and titanium silicide show several advantages for high-performance lithium-ion batteries. Alumina and titanium silicide, which have high mechanical properties, act as an effective buffer layer for the large volume change of Si, resulting in outstanding volume suppression behavior (volume expansion of only 14%). Moreover, electrically conductive titanium silicide layers located at the inner and outer layers of a Si nanotube exhibit a high initial coulombic efficiency of 88.5% and an extraordinary rate capability. Nanotubular structured Si-based multicomponents with mechanically and electrically improved components can be used as a promising alternative to conventional graphite anode materials. This synthetic route can be extended to other high capacity lithium-ion battery anode materials. PMID:25772327