Science.gov

Sample records for high power xuv

  1. Spontaneous Raman scattering as a high resolution XUV radiation source

    NASA Technical Reports Server (NTRS)

    Rothenberg, J. E.; Young, J. F.; Harris, S. E.

    1983-01-01

    A type of high resolution XUV radiation source is described which is based upon spontaneous anti-Stokes scattering of tunable incident laser radiation from atoms excited to metastable levels. The theory of the source is summarized and two sets of experiments using He (1s2s)(1)S atoms, produced in a cw hollow cathode and in a pulsed high power microwave discharge, are discussed. The radiation source is used to examine transitions originating from the 3p(6) shell of potassium. The observed features include four previously unreported absorption lines and several sharp interferences of closely spaced autoionizing lines. A source linewidth of about 1.9 cm(-1) at 185,000 cm(-1) is demonstrated.

  2. High-order harmonic generation enhanced by XUV light

    SciTech Connect

    Buth, Christian; Kohler, Markus C.; Ullrich, Joachim; Keitel, Christoph H.

    2012-03-19

    The combination of high-order harmonic generation (HHG) with resonant XUV excitation of a core electron into the transient valence vacancy that is created in the course of the HHG process is investigated theoretically. In this setup, the first electron performs a HHG three-step process, whereas the second electron Rabi flops between the core and the valence vacancy. The modified HHG spectrum due to recombination with the valence and the core is determined and analyzed for krypton on the 3d {yields} 4p resonance in the ion. We assume an 800 nm laser with an intensity of about 10{sup 14} Wcm{sup 2} and XUV radiation from the Free Electron Laser in Hamburg (FLASH) with an intensity in the range 10{sup 13}-10{sup 16} Wcm{sup 2}. Our prediction opens perspectives for nonlinear XUV physics, attosecond x rays, and HHG-based spectroscopy involving core orbitals.

  3. High-order harmonic generation enhanced by XUV light

    NASA Astrophysics Data System (ADS)

    Buth, Christian; Kohler, Markus C.; Ullrich, Joachim; Keitel, Christoph H.

    2011-09-01

    The combination of high-order harmonic generation (HHG) with resonant XUV excitation of a core electron into the transient valence vacancy that is created in the course of the HHG process is investigated theoretically. In this setup, the first electron performs a HHG three-step process, whereas the second electron Rabi flops between the core and the valence vacancy. The modified HHG spectrum due to recombination with the valence and the core is determined and analyzed for krypton on the 3d→4p resonance in the ion. We assume an 800nm laser with an intensity of about 1014Wcm2 and XUV radiation from the Free Electron Laser in Hamburg (FLASH) with an intensity in the range 1013--1016Wcm2. Our prediction opens perspectives for nonlinear XUV physics, attosecond x rays, and HHG-basedspectroscopy involving core orbitals.

  4. Powerful 170-attosecond XUV pulses generated with few-cycle laser pulses and broadband multilayer optics

    NASA Astrophysics Data System (ADS)

    Schultze, M.; Goulielmakis, E.; Uiberacker, M.; Hofstetter, M.; Kim, J.; Kim, D.; Krausz, F.; Kleineberg, U.

    2007-07-01

    Single 170-as extreme ultraviolet (XUV) pulses delivering more than 106 photons/pulse at ~100 eV at a repetition rate of 3 kHz are produced by ionizing neon with waveform-controlled sub-5 fs near-infrared (NIR) laser pulses and spectrally filtering the emerging near-cutoff high-harmonic continuum with a broadband, chirped multilayer molybdenum silicon (Mo/Si) mirror.

  5. Ultrafast XUV Pulses at High Repetition Rate for Time Resolved Photoelectron Spectroscopy of Surface Dynamics

    NASA Astrophysics Data System (ADS)

    Corder, Christopher; Zhao, Peng; Li, Xinlong; Muraca, Amanda R.; Kershis, Matthew D.; White, Michael G.; Allison, Thomas K.

    2016-05-01

    Ultrafast photoelectron studies of surface dynamics are often limited by low repetition rates. At Stony Brook we have built a cavity-enhanced high-harmonic generation XUV source that delivers ultrafast pulses to a surface science apparatus for photoelectron spectroscopy. We begin with a Ytterbium fiber laser at a repetition rate of 78 MHz and up to 90 W of average power. After compression the pulses have μJ's of energy with < 180 fs pulse width. We then use an enhancement cavity with a finesse of a few hundred to build up to the peak intensity required for high harmonic generation. The enhancement cavity is a six mirror double folded bow-tie geometry with a focus of 15 μm at a Krypton gas jet, followed by a Sapphire crystal at Brewster's angle for the fundamental to allow outcoupling of the harmonics. A single harmonic is selected using a time-preserving monochromator to maintain the short pulses, and is sent to an ultra high vacuum chamber with sample preparation and diagnostic tools as well as an electron energy spectrometer. This allows us to study the electronic dynamics of semiconductor surfaces and their interfaces with adsorbed molecules which enable various charge transfer effects. Supported by AFOSR.

  6. High-harmonic XUV source for time- and angle-resolved photoemission spectroscopy

    SciTech Connect

    Dakovski, Georgi L; Li, Yinwan; Durakiewicz, Tomasz; Rodriguez, George

    2009-01-01

    We present a laser-based apparatus for visible pump/XUV probe time- and angle-resolved photoemission spectroscopy (TRARPES) utilizing high-harmonic generation from a noble gas. Femtosecond temporal resolution for each selected harmonic is achieved by using a time-delay-compensated monochromator (TCM). The source has been used to obtain photoemission spectra from insulators (UO{sub 2}) and ultrafast pump/probe processes in semiconductors (GaAs).

  7. Role of Spatial Chirp in High Harmonic Extreme Ultraviolet (XUV) Absorption Spectroscopy of Thin Films

    NASA Astrophysics Data System (ADS)

    Lin, Ming-Fu

    XUV light from high harmonic generation is an emerging new tool for studying ultrafast dynamics. Such sources have intrinsic ``spatial chirp'' that can cause significant periodic artifacts in absorption spectra of inhomogeneous samples. We show that a uniform thin-film morphology is required in order to obtain harmonic-structure free absorption spectra, especially for organometallic complexes that have strong non-resonant absorption features from the organic ligands. Demonstration of several static absorption spectra of different organometallic complexes and perovskite materials reveals elemental, oxidation state, and band structure specificity in agreement with theoretical results.

  8. The ultra high resolution XUV spectroheliograph: An attached payload for the Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Walker, Arthur B. C., Jr.; Hoover, Richard B.; Barbee, Troy W., Jr.; Tandberg-Hanssen, Einar; Timothy, J. Gethyn; Lindblom, Joakim F.

    1990-01-01

    The principle goal of the ultra high resolution XUV spectroheliograph (UHRXS) is to improve the ability to identify and understand the fundamental physical processes that shape the structure and dynamics of the solar chromosphere and corona. The ability of the UHRXS imaging telescope and spectrographs to resolve fine scale structures over a broad wavelength (and hence temperature) range is critical to this mission. The scientific objectives and instrumental capabilities of the UHRXS investigation are reviewed before proceeding to a discussion of the expected performance of the UHRXS observatory.

  9. VUV and XUV reflectance of optically coated mirrors for selection of high harmonics.

    PubMed

    Larsen, K A; Cryan, J P; Shivaram, N; Champenois, E G; Wright, T W; Ray, D; Kostko, O; Ahmed, M; Belkacem, A; Slaughter, D S

    2016-08-01

    We report the reflectance, ~1° from normal incidence, of six different mirrors as a function of photon energy, using monochromatic vacuum ultraviolet (VUV) and extreme ultraviolet (XUV) radiation with energies between 7.5 eV and 24.5 eV. The mirrors examined included both single and multilayer optical coatings, as well as an uncoated substrate. We discuss the performance of each mirror, paying particular attention to the potential application of suppression and selection of high-order harmonics of a Ti:sapphire laser. PMID:27505785

  10. XUV free-electron laser-based projection lithography systems

    SciTech Connect

    Newnam, B.E.

    1990-01-01

    Free-electron laser sources, driven by rf-linear accelerators, have the potential to operate in the extreme ultraviolet (XUV) spectral range with more than sufficient average power for high-volume projection lithography. For XUV wavelengths from 100 nm to 4 nm, such sources will enable the resolution limit of optical projection lithography to be extended from 0.25 {mu}m to 0.05{mu}m and with an adequate total depth of focus (1 to 2 {mu}m). Recent developments of a photoinjector of very bright electron beams, high-precision magnetic undulators, and ring-resonator cavities raise our confidence that FEL operation below 100 nm is ready for prototype demonstration. We address the motivation for an XUV FEL source for commercial microcircuit production and its integration into a lithographic system, include reflecting reduction masks, reflecting XUV projection optics and alignment systems, and surface-imaging photoresists. 52 refs., 7 figs.

  11. Generation of a broadband xuv continuum in high-order-harmonic generation by spatially inhomogeneous fields

    NASA Astrophysics Data System (ADS)

    Yavuz, I.

    2012-01-01

    We address an efficient scheme to generate a broadband extreme-ultraviolet (xuv) continuum from high-order harmonic generation emerging from the concept of plasmonic field enhancement in the vicinity of metallic nanostructures [S. Kim Nature (London)NATUAS0028-083610.1038/nature07012 453, 757 (2008)]. Based on the numerical solution of a time-dependent Schrödinger equation, for moderate field intensities and depending on the inhomogeneity of the field, we are able to increase the plateau region roughly by a factor of two and generate a broadband xuv continuum. The underlying physics of the plasmon enhancement in harmonic generation is investigated in terms of the semiclassical trajectories of strong field-electron dynamics, and perfect consistency is found between quantum mechanical simulations. It is found that the field inhomogeneity plays a critical role in quantum path selection. After a critical value, we observe a systematic suppression in the long trajectories, suggesting the generation of a single isolated attosecond pulse. Finally, we investigate the dependence of cutoff position on the order of field inhomogeneity and find a β2.3∓0.2 scaling.

  12. High gain-production efficiency and large brightness X-UV laser at Palaiseau

    NASA Astrophysics Data System (ADS)

    Jaeglé, P.; Carillon, A.; Dhez, P.; Goedtkindt, P.; Jamelot, G.; Klisnick, A.; Rus, B.; Zeitoun, Ph.; Jacquemot, S.; Mazataud, D.; Mens, A.; Chauvineau, J. P.

    1995-05-01

    A large gain has been measured for the J=0-1 line of neonlike Zn at λ=21.2 nm. The time evolutions and the localization of emission zones of the J=0-1 and J=2-1 lines are compared. It is shown that a train of very small prepulses before the main pulse has an important role in the J=0=1 emission. A half-cavity has been successfully used to attain a nearly saturated intensity with a 2 cm long plasma. The X-UV pulse energy is of 400 μJ, the laser power of 5 MW. The driving laser is the 0.4 KJ, 600 ps laser of LULI.

  13. Prospects for laser spectroscopy of highly charged ions with high-harmonic XUV and soft x-ray sources

    NASA Astrophysics Data System (ADS)

    Rothhardt, J.; Hädrich, S.; Demmler, S.; Krebs, M.; Winters, D. F. A.; Kühl, Th; Stöhlker, Th; Limpert, J.; Tünnermann, A.

    2015-11-01

    We present novel high photon flux XUV and soft x-ray sources based on high harmonic generation (HHG). The sources employ femtosecond fiber lasers, which can be operated at very high (MHz) repetition rate and average power (>100 W). HHG with such lasers results in ˜1013 photons s-1 within a single harmonic line at ˜40 nm (˜30 eV) wavelength, a photon flux comparable to what is typically available at synchrotron beam lines. In addition, resonant enhancement of HHG can result in narrow-band harmonics with high spectral purity—well suited for precision spectroscopy. These novel light sources will enable seminal studies on electronic transitions in highly-charged ions. For example, at the experimental storage ring 2s1/2-2p1/2 transitions in Li-like ions can be excited up to Z = 47 (˜100 eV transition energy), which provides unique sensitivity to quantum electro-dynamical effects and nuclear corrections. We estimate fluorescence count rates of the order of tens per second, which would enable studies on short-lived isotopes as well. In combination with the Doppler up-shift available in head-on excitation at future heavy-ion storage rings, such as the high energy storage ring, even multi-keV transitions can potentially be excited. Pump-probe experiments with femtosecond resolution could also be feasible and access the lifetime of short-lived excited states, thus providing novel benchmarks for atomic structure theory.

  14. Plasma-based XUV lasers

    NASA Astrophysics Data System (ADS)

    Klisnick, A.

    2012-01-01

    This lecture is an introduction to the generation of plasma-based XUV lasers and their use as a source for scientific applications. We first discuss the main conditions required to create population inversions and amplify XUV radiation. We give an overview of the main properties of the different types of XUV lasers beams that are currently operational worldwide, while comparing them to other ultrashort, high-brightness sources existing in the same spectral range. We discuss recent demonstrations of applications of plasma-based XUV lasers to high-resolution imaging and interaction with matter at high intensity. Finally we conclude with current prospects for extending these sources to shorter wavelength and higher output intensity.

  15. XUV ionization of aligned molecules

    SciTech Connect

    Kelkensberg, F.; Siu, W.; Gademann, G.; Rouzee, A.; Vrakking, M. J. J.; Johnsson, P.; Lucchini, M.; Lucchese, R. R.

    2011-11-15

    New extreme-ultraviolet (XUV) light sources such as high-order-harmonic generation (HHG) and free-electron lasers (FELs), combined with laser-induced alignment techniques, enable novel methods for making molecular movies based on measuring molecular frame photoelectron angular distributions. Experiments are presented where CO{sub 2} molecules were impulsively aligned using a near-infrared laser and ionized using femtosecond XUV pulses obtained by HHG. Measured electron angular distributions reveal contributions from four orbitals and the onset of the influence of the molecular structure.

  16. Differential near-edge coherent diffractive imaging using a femtosecond high-harmonic XUV light source.

    PubMed

    Weise, Fabian; Neumark, Daniel M; Leone, Stephen R; Gessner, Oliver

    2012-11-19

    Element-specific contrast enhancement in tabletop coherent diffractive imaging (CDI) is demonstrated by employing an ultrafast extreme ultraviolet (XUV) light source with tunable photon energy. By combining two measurements performed at energies below and above the Al L(2,3) absorption edge, the spatial autocorrelation function of a micron-scale double pinhole in a 300 nm thick aluminum foil is retrieved despite a dominant background signal from directly transmitted light across the entire range of detectable diffraction angles. The fringe visibility in the diffraction patterns is 0 below the Al L(2,3) edge, 0.53 ± 0.06 above the edge, and 0.73 ± 0.08 in the differential image that combines the two measurements. The proof-of-principle experiment demonstrates that the variations of XUV optical constants in the vicinity of an inner-shell absorption edge can be utilized to improve the chemical sensitivity and image reconstruction quality of laboratory-based ultrafast imaging experiments. PMID:23187472

  17. Annual Scientific Report for DE-FG03-02NA00063 Coherent imaging of laser-plasma interactions using XUV high harmonic radiation

    SciTech Connect

    Prof. Henry C. Kapteyn

    2005-05-03

    In this project, we use coherent short-wavelength light generated using high-order harmonic generation as a probe of laser-plasma dynamics and phase transitions on femtosecond time-scales. The interaction of ultrashort laser pulses with materials and plasmas is relevant to stockpile stewardship, to understanding the equation of state of matter at high pressures and temperatures, and to plasma concepts such as the fast-ignitor ICF fusion concept and laser-based particle acceleration. Femtosecond laser technology makes it possible to use a small-scale setup to generate 20fs pulses with average power >10W at multiple kHz repetition rates, that can be focused to intensities in excess of 1017W/cm2. These lasers can be used either to rapidly heat materials to initiate phase transitions, or to create laser plasmas over a wide parameter space. These lasers can also be used to generate fully spatially coherent XUV beams with which to probe these materials and plasma systems. We are in process of implementing imaging studies of plasma hydrodynamics and warm, dense matter. The data will be compared with simulation codes of laser-plasma interactions, making it possible to refine and validate these codes.

  18. SXR-XUV Diagnostics for Edge and Core of Magnetically Confined Plasmas

    SciTech Connect

    Stutman, Dan

    2014-09-10

    The present report summarizes the results obtained during a one-year extension of DoE grant “SXR-XUV Diagnostics for Edge and Core of Magnetically Confined Plasmas”, at Johns Hopkins University, aimed at completing the development of a new type of magnetic fusion plasma diagnostic, the XUV Transmission Grating Imaging Radiometer (TGIR). The TGIR enables simultaneous spatially and spectrally resolved measurements of the XUV/VUV radiated power from impurities in fusion plasmas, with high speed. The instrument was successfully developed and qualified in the laboratory and in experiments on a tokamak. Its future applications will be diagnostic of the impurity content and transport in the divertor and edge of advanced magnetic fusion experiments, such as NSTX Upgrade.

  19. Ionic alkali halide XUV laser feasibility study

    SciTech Connect

    Yang, T.T.; Gylys, V.T.; Bower, R.D.; Harris, D.G.; Blauer, J.A.; Turner, C.E.; Hindy, R.N.

    1989-11-10

    The objective of this work is to assess the feasibility of a select set of ionic alkali halide XUV laser concepts by obtaining the relevant kinetic and spectroscopic parameters required for a proof-of-principle and conceptual design. The proposed lasers operate in the 80--200 nm spectral region and do not require input from outside radiation sources for their operation. Frequency up-conversion and frequency mixing techniques and therefore not considered in the work to be described. An experimental and theoretical study of a new type of laser operating in the extreme ultraviolet wavelength region has been conducted. The lasing species are singly ionized alkali halide molecules such as Rb{sup 2+}F{sub {minus}}, Rb{sup 2+}Br{sup {minus}} and Cs{sup 2+}F{sup {minus}}. These species are similar in electronic structure to the rare gas halide excimers, such as XeF and Krf, except that the ionic molecules emit at wavelengths of 80--200 nm, much shorter than the conventional rare-gas halide excimer laser. The radiative lifetime of these molecules are typically near 1 ns, which is about an order of magnitude shorter than that for rare-gas halide systems. The values of the cross section for stimulated emission are on the order of 1 {times} 10{sup {minus}16}cm{sup 2}. Because of the fundamental similarity to existing UV lasers, these systems show promise as a high power, efficient XUV lasers. 55 refs., 50 figs., 5 tabs.

  20. Strong-Field Induced Dissociative Ionization of Vinyl Bromide Probed by Femtosecond Extreme Ultraviolet (xuv) Transient Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Lin, Ming-Fu; Neumark, Daniel; Leone, Stephen R.; Gessner, Oliver

    2014-06-01

    A table-top high harmonic XUV light source (50 eV to 70 eV) has been successfully utilized to explore the ultrafast dynamics of vinyl bromide (CH2=CHBr) with electronic state specificity and elemental sensitivity. Strong-field ionization (SFI) provides a method to produce ions in different ionic states. The production and dissociation dynamics of these ionic states are investigated by femtosecond XUV transient absorption spectroscopy. The XUV photons probe the time-dependent spectroscopic features associated with transitions of the Br (3d) inner-shell electrons to vacancies in molecular and atomic valence orbitals. The experimental observation shows that two ionic states are produced by SFI. The first ionic excited state is dissociative, leading to C-Br bond dissociation which is observed in real time as a shift in the absorption energy. The results offer powerful new insights about orbital-specific electronic processes in high field ionization, coupled vibrational relaxation and dissociation dynamics, and the correlation of valence hole-state location and dissociation in polyatomic molecules, all probed simultaneously by ultrafast table-top XUV spectroscopy.

  1. Plasma wake field XUV radiation source

    DOEpatents

    Prono, Daniel S.; Jones, Michael E.

    1997-01-01

    A XUV radiation source uses an interaction of electron beam pulses with a gas to create a plasma radiator. A flowing gas system (10) defines a circulation loop (12) with a device (14), such as a high pressure pump or the like, for circulating the gas. A nozzle or jet (16) produces a sonic atmospheric pressure flow and increases the density of the gas for interacting with an electron beam. An electron beam is formed by a conventional radio frequency (rf) accelerator (26) and electron pulses are conventionally formed by a beam buncher (28). The rf energy is thus converted to electron beam energy, the beam energy is used to create and then thermalize an atmospheric density flowing gas to a fully ionized plasma by interaction of beam pulses with the plasma wake field, and the energetic plasma then loses energy by line radiation at XUV wavelengths Collection and focusing optics (18) are used to collect XUV radiation emitted as line radiation when the high energy density plasma loses energy that was transferred from the electron beam pulses to the plasma.

  2. Ab Initio Theoretical Investigation of the Frequency Comb Structure in the XUV Regime via High Harmonic Generation

    NASA Astrophysics Data System (ADS)

    Carrera, Juan J.; Son, Sang-Kil; Chu, Shih-I.

    2007-06-01

    We present an ab initio quantum investigation of the frequency comb structure formed within each high harmonic generation (HHG) power spectrum driven by a train of equal- spacing short laser pulses. The HHG power spectrum of atomic hydrogen is calculated by solving the time-dependent Schr"o dinger equation accurately and efficiently by means of the time- dependent generalized pseudospectral method. We found that the frequency comb structure is preserved within each harmonic. In addition, the repetition frequency of the comb laser depends upon the pulse separation τ and the spectral width of each individual comb fringe is inversely proportional to the number of pulses (n) used. However, the global HHG power spectrum pattern depends only upon the laser frequency and intensity used and is not sensitive to the τ and n parameters. Finally, the frequency comb structure persists even in the presence of appreciable ionization.

  3. Intense isolated few-cycle attosecond XUV pulses from overdense plasmas driven by tailored laser pulses

    NASA Astrophysics Data System (ADS)

    Chen, Zi-Yu; Li, Xiao-Ya; Chen, Li-Ming; Li, Yu-Tong; Zhu, Wen-Jun

    2014-06-01

    A method to generate an intense isolated few-cycle attosecond XUV pulse is demonstrated using particle-in-cell simulations. When a tailored laser pulse with a sharp edge irradiates a foil target, a strong transverse net current can be excited, which emits a few-cycle XUV pulse from the target rear side. The isolated pulse is ultrashort in the time domain with a duration of several hundred attoseconds. It also has a narrow bandwidth in the spectral domain compared to other XUV sources of high-order harmonics. It has most energy confined around the plasma frequency and no low-harmonic orders below the plasma frequency. It is also shown that XUV pulse of peak field strength up to $ 8\\times 10^{12} $ V$\\mathrm{m}^{-1}$ can be produced. Without the need for pulse selecting and spectral filtering, such an intense few-cycle XUV pulse is better suited to a number of applications.

  4. Low chromatic Fresnel lens for broadband attosecond XUV pulse applications.

    PubMed

    Pan, Huaihai; Späth, Christian; Guggenmos, Alexander; Chew, Soo Hoon; Schmidt, Jürgen; Zhao, Quan-Zhong; Kleineberg, Ulf

    2016-07-25

    Fresnel zone plates show a great potential in achieving high spatial resolution imaging or focusing for XUV and soft/hard X-ray radiation, however they are usually strictly monochromatic due to strong chromatic dispersion and thus do not support broad radiation spectra, preventing their application to attosecond XUV pulses. Here we report on the design and theoretical simulations based on the design of an achromatic hybrid optics combining both, a refractive and diffractive lens in one optical element. We are able to show by calculation that the chromatic dispersion along the optical axis can be greatly reduced compared to a standard Fresnel zone plate while preserving the temporal structure of the attosecond XUV pulses at focus. PMID:27464132

  5. Direct Measurement of the XUV Frequency Comb Coherence

    NASA Astrophysics Data System (ADS)

    Benko, Craig; Allison, Thomas; Cingoz, Arman; Yost, Dylan; Ye, Jun

    2013-05-01

    We present the first demonstration of XUV radiation with phase coherence capable of reaching sub-kHz resolution. The XUV comb is produced by frequency up conversion of a near-infrared frequency comb by intra-cavity high harmonic generation (HHG). Using an 80 W Yb:fiber fs frequency comb, we simultaneously pump two femtosecond enhancement cavities to reach intensities suitable for HHG. The harmonics are out-coupled from the cavities using sapphire plates placed at Brewster angle for the pump laser. We developed an interferometer capable of operating in the XUV and measured a heterodyne beat between the two sources at different harmonics. Despite being insensitive to common-mode pump laser noise, the heterodyne beats will reveal any noise added by the intra-cavity HHG process. This will allow us to probe the fundamental limit on the coherence properties of HHG. We acknowledge support for this work from NIST, AFOSR, and NSF.

  6. Design and test of a broadband split-and-delay unit for attosecond XUV-XUV pump-probe experiments

    NASA Astrophysics Data System (ADS)

    Campi, F.; Coudert-Alteirac, H.; Miranda, M.; Rading, L.; Manschwetus, B.; Rudawski, P.; L'Huillier, A.; Johnsson, P.

    2016-02-01

    We present the design of a split-and-delay unit for the production of two delayed replicas of an incident extreme ultraviolet (XUV) pulse. The device features a single grazing incidence reflection in combination with attenuation of remaining infrared light co-propagating with the XUV beam, offering a high throughput without the need of introducing additional optics that would further decrease the XUV flux. To achieve the required spatial and temporal stabilities, the device is controlled by two PID-controllers monitoring the delay and the beam pointing using an optical reference laser beam, making collimation of the beam by additional optics unnecessary. Finally, we demonstrate the stability of the split-and-delay unit by performing all-reflective autocorrelation measurements on broadband few-cycle laser pulses.

  7. Intense XUV radiation driven explosions of Xe clusters

    NASA Astrophysics Data System (ADS)

    Murphy, B.; Hoffmann, K.; Belolipetski, A.; Bernstein, A.; Keto, J.; Ditmire, T.; Artyukov, I.

    2008-04-01

    We have investigated the explosions of large xenon clusters subject to irradiation by high intensity extreme ultraviolet (XUV) light with wavelength near 38 nm. To do this we generated high order harmonics by focusing the output of the 20 TW, 40 fs, 800nm wavelength THOR laser into a jet of argon gas. To select a single harmonic we then employed a Sc/Si short focal length multilayer mirror optimized for the 21st harmonic at 38.1 nm at near normal incidence. This harmonic is focused onto a jet of xenon gas. We characterized the XUV focal spot by scanning a knife edge across an XUV photodiode and determined that our peak XUV intensity was 2x10^10 Wcm-2. Fast ion time-of-flight spectra reveal high ion charge states well above single photon ionization thresholds. These ions exhibit low kinetic energies consistent with hydrodynamic cluster expansion rather than Coulomb explosion. We also measured the electron spectra from these Xe cluster explosions and have observed moderate energy electrons ejected from the clusters.

  8. Creation and control of single attosecond XUV pulse by few-cycle intense laser pulse

    NASA Astrophysics Data System (ADS)

    Carrera, Juan J.; Tong, X. M.; Chu, Shih-I.

    2006-05-01

    We present a theoretical investigation of the mechanisms responsible for the production of single atto-second pulse by using few-cycle intense laser pulses. The atto-second XUV spectral is calculated by accurately integrating the time- dependent Schr"odinger equation. The detailed mechanism for the production of the XUV pulse are also corroborated by analyzing the classical trajectories of the electron. Our study shows that the first return of the rescattering electron is responsible for the high energy atto-second pulse. Furthermore, we can optimize the production of atto-second XUV pulses by modifying the trajectory of the rescattering electron by tuning the laser field envelope.

  9. XUV lasing during strong-field-assisted transient absorption in molecules

    NASA Astrophysics Data System (ADS)

    Bredtmann, Timm; Chelkowski, Szczepan; Bandrauk, André D.; Ivanov, Misha

    2016-02-01

    Using ab initio non-Born-Oppenheimer simulations, we demonstrate the amplification of XUV radiation in a high-harmonic-generation-type process using the example of the hydrogen molecular ion. A small fraction of the molecules is pumped to a dissociative excited state from which IR-assisted XUV amplification is observed. We show that starting at sufficiently high IR driving field intensities, the ground-state molecules become quasitransparent for XUV radiation, while due to stabilization, gain from excited states is maintained. While the basic physics should also be observable in atomic media, the main advantage of the investigated molecular laser is, first, efficient lasing from field-free excited states with a high mean angular momentum and, second, the possibility to tune the amplified XUV frequency windows via control of the internuclear distance.

  10. Generation of broad XUV continuous high harmonic spectra and isolated attosecond pulses with intense mid-infrared lasers

    NASA Astrophysics Data System (ADS)

    Trallero-Herrero, C.; Jin, Cheng; Schmidt, B. E.; Shiner, A. D.; Kieffer, J.-C.; Corkum, P. B.; Villeneuve, D. M.; Lin, C. D.; Légaré, F.; Le, A. T.

    2012-01-01

    We present experimental results showing the appearance of a near-continuum in the high-order harmonic generation spectra of atomic and molecular species as the driving laser intensity of a mid-infrared pulse increases. Detailed macroscopic simulations reveal that these near-continuum spectra are capable of producing isolated attosecond pulses (IAPs) in the far field if a proper spatial filter is applied. Further, our simulations show that the near-continuum spectra and the IAPs are a product of the strong temporal and spatial reshaping (blue shift and defocusing) of the driving field. This offers a possibility of producing IAPs with a broad range of photon energy, including plateau harmonics, by mid-IR laser pulses even without carrier-envelope phase stabilization.

  11. Flexible attosecond beamline for high harmonic spectroscopy and XUV/near-IR pump probe experiments requiring long acquisition times

    NASA Astrophysics Data System (ADS)

    Weber, S. J.; Manschwetus, B.; Billon, M.; Böttcher, M.; Bougeard, M.; Breger, P.; Géléoc, M.; Gruson, V.; Huetz, A.; Lin, N.; Picard, Y. J.; Ruchon, T.; Salières, P.; Carré, B.

    2015-03-01

    We describe the versatile features of the attosecond beamline recently installed at CEA-Saclay on the PLFA kHz laser. It combines a fine and very complete set of diagnostics enabling high harmonic spectroscopy (HHS) through the advanced characterization of the amplitude, phase, and polarization of the harmonic emission. It also allows a variety of photo-ionization experiments using magnetic bottle and COLTRIMS (COLd Target Recoil Ion Momentum Microscopy) electron spectrometers that may be used simultaneously, thanks to a two-foci configuration. Using both passive and active stabilization, special care was paid to the long term stability of the system to allow, using both experimental approaches, time resolved studies with attosecond precision, typically over several hours of acquisition times. As an illustration, applications to multi-orbital HHS and electron-ion coincidence time resolved spectroscopy are presented.

  12. Flexible attosecond beamline for high harmonic spectroscopy and XUV/near-IR pump probe experiments requiring long acquisition times

    SciTech Connect

    Weber, S. J. Manschwetus, B.; Billon, M.; Bougeard, M.; Breger, P.; Géléoc, M.; Gruson, V.; Lin, N.; Ruchon, T.; Salières, P.; Carré, B.

    2015-03-15

    We describe the versatile features of the attosecond beamline recently installed at CEA-Saclay on the PLFA kHz laser. It combines a fine and very complete set of diagnostics enabling high harmonic spectroscopy (HHS) through the advanced characterization of the amplitude, phase, and polarization of the harmonic emission. It also allows a variety of photo-ionization experiments using magnetic bottle and COLTRIMS (COLd Target Recoil Ion Momentum Microscopy) electron spectrometers that may be used simultaneously, thanks to a two-foci configuration. Using both passive and active stabilization, special care was paid to the long term stability of the system to allow, using both experimental approaches, time resolved studies with attosecond precision, typically over several hours of acquisition times. As an illustration, applications to multi-orbital HHS and electron-ion coincidence time resolved spectroscopy are presented.

  13. Flexible attosecond beamline for high harmonic spectroscopy and XUV/near-IR pump probe experiments requiring long acquisition times.

    PubMed

    Weber, S J; Manschwetus, B; Billon, M; Böttcher, M; Bougeard, M; Breger, P; Géléoc, M; Gruson, V; Huetz, A; Lin, N; Picard, Y J; Ruchon, T; Salières, P; Carré, B

    2015-03-01

    We describe the versatile features of the attosecond beamline recently installed at CEA-Saclay on the PLFA kHz laser. It combines a fine and very complete set of diagnostics enabling high harmonic spectroscopy (HHS) through the advanced characterization of the amplitude, phase, and polarization of the harmonic emission. It also allows a variety of photo-ionization experiments using magnetic bottle and COLTRIMS (COLd Target Recoil Ion Momentum Microscopy) electron spectrometers that may be used simultaneously, thanks to a two-foci configuration. Using both passive and active stabilization, special care was paid to the long term stability of the system to allow, using both experimental approaches, time resolved studies with attosecond precision, typically over several hours of acquisition times. As an illustration, applications to multi-orbital HHS and electron-ion coincidence time resolved spectroscopy are presented. PMID:25832212

  14. Communication: XUV transient absorption spectroscopy of iodomethane and iodobenzene photodissociation

    NASA Astrophysics Data System (ADS)

    Drescher, L.; Galbraith, M. C. E.; Reitsma, G.; Dura, J.; Zhavoronkov, N.; Patchkovskii, S.; Vrakking, M. J. J.; Mikosch, J.

    2016-07-01

    Time-resolved extreme ultraviolet (XUV) transient absorption spectroscopy of iodomethane and iodobenzene photodissociation at the iodine pre-N4,5 edge is presented, using femtosecond UV pump pulses and XUV probe pulses from high harmonic generation. For both molecules the molecular core-to-valence absorption lines fade immediately, within the pump-probe time-resolution. Absorption lines converging to the atomic iodine product emerge promptly in CH3I but are time-delayed in C6H5I. We attribute this delay to the initial π → σ* excitation in iodobenzene, which is distant from the iodine reporter atom. We measure a continuous shift in energy of the emerging atomic absorption lines in CH3I, attributed to relaxation of the excited valence shell. An independent particle model is used to rationalize the observed experimental findings.

  15. Communication: XUV transient absorption spectroscopy of iodomethane and iodobenzene photodissociation.

    PubMed

    Drescher, L; Galbraith, M C E; Reitsma, G; Dura, J; Zhavoronkov, N; Patchkovskii, S; Vrakking, M J J; Mikosch, J

    2016-07-01

    Time-resolved extreme ultraviolet (XUV) transient absorption spectroscopy of iodomethane and iodobenzene photodissociation at the iodine pre-N4,5 edge is presented, using femtosecond UV pump pulses and XUV probe pulses from high harmonic generation. For both molecules the molecular core-to-valence absorption lines fade immediately, within the pump-probe time-resolution. Absorption lines converging to the atomic iodine product emerge promptly in CH3I but are time-delayed in C6H5I. We attribute this delay to the initial π → σ(*) excitation in iodobenzene, which is distant from the iodine reporter atom. We measure a continuous shift in energy of the emerging atomic absorption lines in CH3I, attributed to relaxation of the excited valence shell. An independent particle model is used to rationalize the observed experimental findings. PMID:27394091

  16. XUV spectroscopy of laser plasma from molecular coated metal targets

    NASA Astrophysics Data System (ADS)

    Papanyan, Valeri O.; Nersisyan, Gagik T.; Tittel, Frank K.

    1999-12-01

    Metal targets covered by micrometer layers of metal- phthalocyanines or fullerenes are studied here. An increase in XUV yield due to the optimized absorption of the laser field is reported. Effects of high-temperature plasma rapid expansion (velocity about 106 cm/s) were observed. Moderate power nanosecond and picosecond neodymium lasers are used to produce an incident intensity of 1011 to 1013 W/cm2 on the targets. The plasma electron density was measured by fitting observed spectral profiles to the theoretical profiles. Collisional, Doppler, and Stark broadening mechanisms were considered in the calculations. Our measurement technique permits us to determine the electron density and temperature dependence on distances from the target surface from 1 mm (where Ne approximately equals 1018 cm-3 and Te approximately equals 14 eV are measured for aluminum plasma) up to approximately 5 mm (where Ne

  17. Tracing ultrafast molecular transitions in C2H4 using two­color XUV pump­ XUV probe

    NASA Astrophysics Data System (ADS)

    Ray, D.; Sturm, F. P.; Wright, T. W.; Shivaram, N.; Bocharova, I.; Belkacem, A.; Weber, Th.

    2014-05-01

    We present the study of the ultrafast energy transfer near a conical intersection in C2H4, using an extreme ultraviolet (XUV) pump XUV probe scheme. The high harmonic pulses, which have sufficiently high flux to split into both pump and probe arms, are generated in a noble gas by IR pulses from our state of the art 30 mJ, 50 Hz laser system. The pulses are overlapped with the supersonic jet in our Momentum Imaging for TimE Resolved Studies (MISTERS) setup. The C2H4 is pumped by the 13.5 eV XUV pulses (9th harmonic) to populate the excited valence state (π*)2 orbitals. The double ionization of these molecular cations from this transient state is triggered by the 15th harmonic (22.5 eV) as the probe. The ionic fragments are imaged with the reaction microscope. The MISTERS setup allows us to do an ion-ion coincidence detection in full 3D momentum space. The Kinetic Energy Release (KER) distributions are studied as a function of pump probe delay to trace the evolution of the transient states. Supported by the Director, Office of Science, Office of Basic Energy Sciences, and by the Division of Chemical Sciences, Geosciences, and Biosciences of the U.S. Department of Energy at LBNL under Contract No. DE­AC02­05CH11231.

  18. Long-term operation of surface high-harmonic generation from relativistic oscillating mirrors using a spooling tape

    SciTech Connect

    Bierbach, Jana; Yeung, Mark; Eckner, Erich; Roedel, Christian; Kuschel, Stephan; Zepf, Matt; Paulus, Gerhard G.

    2015-05-01

    Surface high-harmonic generation in the relativistic regime is demonstrated as a source of extreme ultra-violet (XUV) pulses with extended operation time. Relativistic high-harmonic generation is driven by a frequency-doubled high-power Ti:Sapphire laser focused to a peak intensity of 3·1019 W/cm2 onto spooling tapes. We demonstrate continuous operation over up to one hour runtime at a repetition rate of 1 Hz. Harmonic spectra ranging from 20 eV to 70 eV (62 nm to 18 nm) were consecutively recorded by an XUV spectrometer. An average XUV pulse energy in the µJ range is measured. With the presented setup, relativistic surface high-harmonic generation becomes a powerful source of coherent XUV pulses that might enable applications in, e.g. attosecond laser physics and the seeding of free-electron lasers, when the laser issues causing 80-% pulse energy fluctuations are overcome.

  19. THE SPACE DENSITY OF EXTENDED ULTRAVIOLET (XUV) DISKS IN THE LOCAL UNIVERSE AND IMPLICATIONS FOR GAS ACCRETION ONTO GALAXIES

    SciTech Connect

    Lemonias, Jenna J.; Schiminovich, David; Thilker, David; Bianchi, Luciana; Wyder, Ted K.; Martin, D. Christopher; Seibert, Mark; Madore, Barry F.; Treyer, Marie A.; Heckman, Timothy M.; Rich, R. Michael

    2011-06-01

    We present results of the first unbiased search for extended ultraviolet (XUV)-disk galaxies undertaken to determine the space density of such galaxies. Our sample contains 561 local (0.001 < z < 0.05) galaxies that lie in the intersection of available Galaxy Evolution Explorer (GALEX) deep imaging (exposure time >1.5 x 10{sup 4} s) and Sloan Digital Sky Survey DR7 footprints. We explore modifications to the standard classification scheme for our sample that includes both disk- and bulge-dominated galaxies. Visual classification of each galaxy in the sample reveals an XUV-disk frequency of up to 20% for the most nearby portion of our sample. On average over the entire sample (out to z = 0.05) the frequency ranges from a hard limit of 4%-14%. The GALEX imaging allows us to detect XUV disks beyond 100 Mpc. The XUV regions around XUV-disk galaxies are consistently bluer than the main bodies. We find a surprisingly high frequency of XUV emission around luminous red (NUV-r > 5) and green valley (3 < NUV-r < 5) galaxies. The XUV-disk space density in the local universe is >(1.5-4.2) x 10{sup -3} Mpc{sup -3}. Using the XUV emission as an indicator of recent gas accretion, we estimate that the cold gas accretion rate onto these galaxies is >(1.7-4.6) x 10{sup -3} M{sub sun} Mpc{sup -3} yr{sup -1}. The number of XUV disks in the green valley and the estimated accretion rate onto such galaxies points to the intriguing possibility that 7%-18% of galaxies in this population are transitioning away from the red sequence.

  20. High Power Hall Thrusters

    NASA Technical Reports Server (NTRS)

    Jankovsky, Robert; Tverdokhlebov, Sergery; Manzella, David

    1999-01-01

    The development of Hall thrusters with powers ranging from tens of kilowatts to in excess of one hundred kilowatts is considered based on renewed interest in high power. high thrust electric propulsion applications. An approach to develop such thrusters based on previous experience is discussed. It is shown that the previous experimental data taken with thrusters of 10 kW input power and less can be used. Potential mass savings due to the design of high power Hall thrusters are discussed. Both xenon and alternate thruster propellant are considered, as are technological issues that will challenge the design of high power Hall thrusters. Finally, the implications of such a development effort with regard to ground testing and spacecraft intecrati'on issues are discussed.

  1. CSTI High Capacity Power

    NASA Technical Reports Server (NTRS)

    Winter, Jerry M.

    1989-01-01

    The SP-100 program was established in 1983 by DOD, DOE, and NASA as a joint program to develop the technology necessary for space nuclear power systems for military and civil application. During FY-86 and 87, the NASA SP-100 Advanced Technology Program was devised to maintain the momentum of promising technology advancement efforts started during Phase 1 of SP-100 and to strengthen, in key areas, the chances for successful development and growth capability of space nuclear reactor power systems for future space applications. In FY-88, the Advanced Technology Program was incorporated into NASA's new Civil Space Technology Initiative (CSTI). The CSTI Program was established to provide the foundation for technology development in automation and robotics, information, propulsion, and power. The CSTI High Capacity Power Program builds on the technology efforts of the SP-100 program, incorporates the previous NASA SP-100 Advanced Technology project, and provides a bridge to NASA Project Pathfinder. The elements of CSTI High Capacity Power development include Conversion Systems, Thermal Management, Power Management, System Diagnostics, and Environmental Interactions. Technology advancement in all areas, including materials, is required to assure the high reliability and 7 to 10 year lifetime demanded for future space nuclear power systems. The overall program will develop and demonstrate the technology base required to provide a wide range of modular power systems as well as allowing mission independence from solar and orbital attitude requirements. Several recent advancements in CSTI High Capacity power development will be discussed.

  2. CSTI high capacity power

    SciTech Connect

    Winter, J.M.

    1994-09-01

    The SP-100 program was established in 1983 by DOD, DOE, and NASA as a joint program to develop the technology necessary for space nuclear power systems for military and civil application. During FY86 and 87, the NASA SP-100 Advanced Technology Program was devised to maintain the momentum of promising technology advancement efforts started during Phase I of SP-100 and to strengthen, in key areas, the chances for successful development and growth capability of space nuclear reactor power systems for future space applications. In FY88, the Advanced Technology Program was incorporated into NASA`s new Civil Space Technology Initiative (CSTI). The CSTI Program was established to provide the foundation for technology development in automation and robotics, information, propulsion, and power. The CSTI High Capacity Power Program builds on the technology efforts of the SP-100 program, incorporates the previous NASA SP-100 Advanced Technology project, and provides a bridge to NASA Project Pathfinder. The elements of CSTI High Capacity Power development include Conversion Systems, Thermal Management, Power Management, System Diagnostics, and Environmental Interactions. Technology advancement in all areas, including materials, is required to assure the high reliability and 7 to 10 year lifetime demanded for future space nuclear power systems. The overall program will develop and demonstrate the technology base required to provide a wide range of modular power systems as well as allowing mission independence from solar and orbital attitude requirements. Several recent advancements in CSTI High Capacity power development will be discussed.

  3. High power microwave generator

    DOEpatents

    Ekdahl, C.A.

    1983-12-29

    A microwave generator efficiently converts the energy of an intense relativistic electron beam (REB) into a high-power microwave emission using the Smith-Purcell effect which is related to Cerenkov radiation. Feedback for efficient beam bunching and high gain is obtained by placing a cylindrical Smith-Purcell transmission grating on the axis of a toroidal resonator. High efficiency results from the use of a thin cold annular highly-magnetized REB that is closely coupled to the resonant structure.

  4. High power microwave generator

    DOEpatents

    Ekdahl, Carl A.

    1986-01-01

    A microwave generator efficiently converts the energy of an intense relativistic electron beam (REB) into a high-power microwave emission using the Smith-Purcell effect which is related to Cerenkov radiation. Feedback for efficient beam bunching and high gain is obtained by placing a cylindrical Smith-Purcell transmission grating on the axis of a toroidal resonator. High efficiency results from the use of a thin cold annular highly-magnetized REB that is closely coupled to the resonant structure.

  5. Bright high-order harmonic generation with controllable polarization from a relativistic plasma mirror.

    PubMed

    Chen, Zi-Yu; Pukhov, Alexander

    2016-01-01

    Ultrafast extreme ultraviolet (XUV) sources with a controllable polarization state are powerful tools for investigating the structural and electronic as well as the magnetic properties of materials. However, such light sources are still limited to only a few free-electron laser facilities and, very recently, to high-order harmonic generation from noble gases. Here we propose and numerically demonstrate a laser-plasma scheme to generate bright XUV pulses with fully controlled polarization. In this scheme, an elliptically polarized laser pulse is obliquely incident on a plasma surface, and the reflected radiation contains pulse trains and isolated circularly or highly elliptically polarized attosecond XUV pulses. The harmonic polarization state is fully controlled by the laser-plasma parameters. The mechanism can be explained within the relativistically oscillating mirror model. This scheme opens a practical and promising route to generate bright attosecond XUV pulses with desirable ellipticities in a straightforward and efficient way for a number of applications. PMID:27531047

  6. Bright high-order harmonic generation with controllable polarization from a relativistic plasma mirror

    PubMed Central

    Chen, Zi-Yu; Pukhov, Alexander

    2016-01-01

    Ultrafast extreme ultraviolet (XUV) sources with a controllable polarization state are powerful tools for investigating the structural and electronic as well as the magnetic properties of materials. However, such light sources are still limited to only a few free-electron laser facilities and, very recently, to high-order harmonic generation from noble gases. Here we propose and numerically demonstrate a laser–plasma scheme to generate bright XUV pulses with fully controlled polarization. In this scheme, an elliptically polarized laser pulse is obliquely incident on a plasma surface, and the reflected radiation contains pulse trains and isolated circularly or highly elliptically polarized attosecond XUV pulses. The harmonic polarization state is fully controlled by the laser–plasma parameters. The mechanism can be explained within the relativistically oscillating mirror model. This scheme opens a practical and promising route to generate bright attosecond XUV pulses with desirable ellipticities in a straightforward and efficient way for a number of applications. PMID:27531047

  7. Formation of ultrashort pulses from quasimonochromatic XUV radiation via infrared-field-controlled forward scattering

    NASA Astrophysics Data System (ADS)

    Akhmedzhanov, T. R.; Antonov, V. A.; Kocharovskaya, Olga

    2016-08-01

    We suggest a highly efficient method of ultrashort pulse formation from resonant XUV radiation due to sub-laser-cycle modulation of the excited state of non-hydrogen-like atoms by a nonionizing IR laser field. This modulation results in formation of the Raman-Stokes and anti-Stokes sidebands in coherently forward-scattered radiation, which, in turn, leads to formation of short pulses, when the phases of the sidebands are matched. This method is a generalization of a recently suggested technique [V. A. Antonov et al., Phys. Rev. A 88, 053849 (2013), 10.1103/PhysRevA.88.053849] for a non-hydrogen-like medium. The possibility to form 2-fs XUV pulses in the gas of helium atoms and 990-as XUV pulses in the plasma of Li+ ions with efficiencies over 80% is shown.

  8. High power density targets

    NASA Astrophysics Data System (ADS)

    Pellemoine, Frederique

    2013-12-01

    In the context of new generation rare isotope beam facilities based on high-power heavy-ion accelerators and in-flight separation of the reaction products, the design of the rare isotope production targets is a major challenge. In order to provide high-purity beams for science, high resolution is required in the rare isotope separation. This demands a small beam spot on the production target which, together with the short range of heavy ions in matter, leads to very high power densities inside the target material. This paper gives an overview of the challenges associated with this high power density, discusses radiation damage issues in targets exposed to heavy ion beams, and presents recent developments to meet some of these challenges through different projects: FAIR, RIBF and FRIB which is the most challenging. Extensive use of Finite Element Analysis (FEA) has been made at all facilities to specify critical target parameters and R&D work at FRIB successfully retired two major risks related to high-power density and heavy-ion induced radiation damage.

  9. Time resolved 3D momentum imaging of ultrafast dynamics by coherent VUV-XUV radiation

    NASA Astrophysics Data System (ADS)

    Sturm, F. P.; Wright, T. W.; Ray, D.; Zalyubovskaya, I.; Shivaram, N.; Slaughter, D. S.; Ranitovic, P.; Belkacem, A.; Weber, Th.

    2016-06-01

    We present a new experimental setup for measuring ultrafast nuclear and electron dynamics of molecules after photo-excitation and ionization. We combine a high flux femtosecond vacuum ultraviolet (VUV) and extreme ultraviolet (XUV) source with an internally cold molecular beam and a 3D momentum imaging particle spectrometer to measure electrons and ions in coincidence. We describe a variety of tools developed to perform pump-probe studies in the VUV-XUV spectrum and to modify and characterize the photon beam. First benchmark experiments are presented to demonstrate the capabilities of the system.

  10. Time resolved 3D momentum imaging of ultrafast dynamics by coherent VUV-XUV radiation.

    PubMed

    Sturm, F P; Wright, T W; Ray, D; Zalyubovskaya, I; Shivaram, N; Slaughter, D S; Ranitovic, P; Belkacem, A; Weber, Th

    2016-06-01

    We present a new experimental setup for measuring ultrafast nuclear and electron dynamics of molecules after photo-excitation and ionization. We combine a high flux femtosecond vacuum ultraviolet (VUV) and extreme ultraviolet (XUV) source with an internally cold molecular beam and a 3D momentum imaging particle spectrometer to measure electrons and ions in coincidence. We describe a variety of tools developed to perform pump-probe studies in the VUV-XUV spectrum and to modify and characterize the photon beam. First benchmark experiments are presented to demonstrate the capabilities of the system. PMID:27370429

  11. High Power Cryogenic Targets

    SciTech Connect

    Gregory Smith

    2011-08-01

    The development of high power cryogenic targets for use in parity violating electron scattering has been a crucial ingredient in the success of those experiments. As we chase the precision frontier, the demands and requirements for these targets have grown accordingly. We discuss the state of the art, and describe recent developments and strategies in the design of the next generation of these targets.

  12. XUV metrology: surface analysis with extreme ultraviolet radiation

    NASA Astrophysics Data System (ADS)

    Banyay, M.; Juschkin, L.; Bücker, T.; Loosen, P.; Bayer, A.; Barkusky, F.; Döring, S.; Peth, C.; Mann, K.; Blaschke, H.; Balasa, I.; Ristau, D.

    2009-05-01

    The utilization of nanostructured materials for modern applications gained more and more importance during the last few years. As examples super-fluorescent quantum dots, the use of carbon nano tubes (CNTs) in microelectronics, electrospun fibers in filter membranes, thin film coatings for solar cells, mirrors or LEDs, semiconductor electronics, and functionalized surfaces may be named to address only a few topics. To optimize the systems and enable the full range of capabilities of nanostructures a thorough characterization of the surface-near topography (e.g. roughness, thickness, lateral dimension) as well as of the chemical composition is essential. As a versatile tool for spatial and chemical characterization XUV reflectometry, scatterometry and diffractometry is proposed. Three different experimental setups have been realized evaluating spectral resolved reflectance under constant incidence angle, angular resolved reflectance at a constant wavelength, or a combined approach using laboratory scaled XUV sources to gain insight into chemical composition, film thickness and surface/interface roughness. Experiments on near-edge X-ray absorption fine structure spectroscopy (NEXAFS) at the carbon K-edge have been performed. The investigated systems range from synthetic polymers (PMMA, PI) over organic substances (humic acids) to biological matter (lipids), delivering unique spectra for each compound. Thus NEXAFS spectroscopy using a table-top XUV source could be established as a highly surface sensitive fingerprint method for chemical analysis. Future extended experiments will investigate the silicon L-edge where e.g. silicon oxide interlayers below high-k or other nano-layered material on Sisubstrates depict a technological important group of composite systems.

  13. X-ray and XUV imaging and spectroscopy of dense plasmas using multilayer optics

    SciTech Connect

    Seely, J.F.; Brown, C.M.; Kowalski, M.P.; Cruddace, R.G.; Rife, J.C.; Barbee, T.W. Jr.; Hunter, W.R.

    1995-12-31

    High-reflectance multilayer mirrors and gratings have been developed and implemented in the x-ray and XUV regions. The imaging and spectroscopic instruments have high throughput and can be positioned at a large distance from the radiation source where damage from the plasma debris and the radiation flux does not occur.

  14. Excitation of XUV radiation in solar flares

    NASA Technical Reports Server (NTRS)

    Emslie, A. Gordon

    1992-01-01

    The goal of the proposed research was to understand the means by which XUV radiation in solar flares is excited, and to use this radiation as diagnostics of the energy release and transport processes occurring in the flare. Significant progress in both of these areas, as described, was made.

  15. High power connection system

    DOEpatents

    Schaefer, Christopher E.; Beer, Robert C.; McCall, Mark D.

    2000-01-01

    A high power connection system adapted for automotive environments which provides environmental and EMI shielding includes a female connector, a male connector, and a panel mount. The female connector includes a female connector base and a snap fitted female connector cover. The male connector includes a male connector base and a snap fitted male connector cover. The female connector base has at least one female power terminal cavity for seatably receiving a respective female power terminal. The male connector base has at least one male power terminal cavity for seatably receiving a respective male power terminal. The female connector is covered by a cover seal and a conductive shroud. A pair of lock arms protrude outward from the front end of the male connector base, pass through the panel mount and interface with a lever of a lever rotatably connected to the shroud to thereby mechanically assist mating of the male and female connectors. Safety terminals in the male and female connectors provide a last-to-connect-first-to-break connection with an HVIL circuit.

  16. High power arcjet

    NASA Technical Reports Server (NTRS)

    Goelz, T. M.; Auweter-Kurtz, M.; Kurtz, H. L.; Schrade, H. O.

    1992-01-01

    In this period a new mass flow controller was brought into the gas supply system, so that the upper limit for the mass flow rate could be increased up to 500 mg/s with hydrogen. A maximum specific impulse of 1500 s could be achieved with the high powered arcjet (HIPARC) at an efficiency of slightly better than 20 percent. Different nozzle throat diameters had been tested. The 100 kilo-watt input power limit was reached with the 4 mm nozzle throat diameter at a mass flow rate of 400 mg/s. Tests were carried out with different cathode gaps and with three different cathodes. In addition measurements of pressure and gas temperature were taken in the feed line in order to determine the pressure drop in the propellant injectors.

  17. Global sensitivity analysis of the XUV-ABLATOR code

    NASA Astrophysics Data System (ADS)

    Nevrlý, Václav; Janku, Jaroslav; Dlabka, Jakub; Vašinek, Michal; Juha, Libor; Vyšín, Luděk.; Burian, Tomáš; Lančok, Ján.; Skřínský, Jan; Zelinger, Zdeněk.; Pira, Petr; Wild, Jan

    2013-05-01

    Availability of numerical model providing reliable estimation of the parameters of ablation processes induced by extreme ultraviolet laser pulses in the range of nanosecond and sub-picosecond timescales is highly desirable for recent experimental research as well as for practical purposes. Performance of the one-dimensional thermodynamic code (XUV-ABLATOR) in predicting the relationship of ablation rate and laser fluence is investigated for three reference materials: (i) silicon, (ii) fused silica and (iii) polymethyl methacrylate. The effect of pulse duration and different material properties on the model predictions is studied in the frame of this contribution for the conditions typical for two compact laser systems operating at 46.9 nm. Software implementation of the XUV-ABLATOR code including graphical user's interface and the set of tools for sensitivity analysis was developed. Global sensitivity analysis using high dimensional model representation in combination with quasi-random sampling was applied in order to identify the most critical input data as well as to explore the uncertainty range of model results.

  18. HIGH POWER PULSED OSCILLATOR

    DOEpatents

    Singer, S.; Neher, L.K.

    1957-09-24

    A high powered, radio frequency pulse oscillator is described for generating trains of oscillations at the instant an input direct voltage is impressed, or immediately upon application of a light pulse. In one embodiment, the pulse oscillator comprises a photo-multiplier tube with the cathode connected to the first dynode by means of a resistor, and adjacent dynodes are connected to each other through adjustable resistors. The ohmage of the resistors progressively increases from a very low value for resistors adjacent the cathode to a high value adjacent the plate, the last dynode. Oscillation occurs with this circuit when a high negative voltage pulse is applied to the cathode and the photo cathode is bombarded. Another embodiment adds capacitors at the resistor connection points of the above circuit to increase the duration of the oscillator train.

  19. High voltage power supply

    NASA Technical Reports Server (NTRS)

    Ruitberg, A. P.; Young, K. M. (Inventor)

    1985-01-01

    A high voltage power supply is formed by three discrete circuits energized by a battery to provide a plurality of concurrent output signals floating at a high output voltage on the order of several tens of kilovolts. In the first two circuits, the regulator stages are pulse width modulated and include adjustable ressistances for varying the duty cycles of pulse trains provided to corresponding oscillator stages while the third regulator stage includes an adjustable resistance for varying the amplitude of a steady signal provided to a third oscillator stage. In the first circuit, the oscillator, formed by a constant current drive network and a tuned resonant network included a step up transformer, is coupled to a second step up transformer which, in turn, supplies an amplified sinusoidal signal to a parallel pair of complementary poled rectifying, voltage multiplier stages to generate the high output voltage.

  20. High Power Density Motors

    NASA Technical Reports Server (NTRS)

    Kascak, Daniel J.

    2004-01-01

    With the growing concerns of global warming, the need for pollution-free vehicles is ever increasing. Pollution-free flight is one of NASA's goals for the 21" Century. , One method of approaching that goal is hydrogen-fueled aircraft that use fuel cells or turbo- generators to develop electric power that can drive electric motors that turn the aircraft's propulsive fans or propellers. Hydrogen fuel would likely be carried as a liquid, stored in tanks at its boiling point of 20.5 K (-422.5 F). Conventional electric motors, however, are far too heavy (for a given horsepower) to use on aircraft. Fortunately the liquid hydrogen fuel can provide essentially free refrigeration that can be used to cool the windings of motors before the hydrogen is used for fuel. Either High Temperature Superconductors (HTS) or high purity metals such as copper or aluminum may be used in the motor windings. Superconductors have essentially zero electrical resistance to steady current. The electrical resistance of high purity aluminum or copper near liquid hydrogen temperature can be l/lOO* or less of the room temperature resistance. These conductors could provide higher motor efficiency than normal room-temperature motors achieve. But much more importantly, these conductors can carry ten to a hundred times more current than copper conductors do in normal motors operating at room temperature. This is a consequence of the low electrical resistance and of good heat transfer coefficients in boiling LH2. Thus the conductors can produce higher magnetic field strengths and consequently higher motor torque and power. Designs, analysis and actual cryogenic motor tests show that such cryogenic motors could produce three or more times as much power per unit weight as turbine engines can, whereas conventional motors produce only 1/5 as much power per weight as turbine engines. This summer work has been done with Litz wire to maximize the current density. The current is limited by the amount of heat it

  1. High power microwave generator

    SciTech Connect

    Minich, Roger W.

    1988-01-01

    A device (10) for producing high-powered and coherent microwaves is described. The device comprises an evacuated, cylindrical, and hollow real cathode (20) that is driven to inwardly field emit relativistic electrons. The electrons pass through an internally disposed cylindrical and substantially electron-transparent cylindrical anode (24), proceed toward a cylindrical electron collector electrode (26), and form a cylindrical virtual cathode (32). Microwaves are produced by spatial and temporal oscillations of the cylindrical virtual cathode (32), and by electrons that reflex back and forth between the cylindrical virtual cathode (32) and the cylindrical real cathode (20).

  2. High power coaxial ubitron

    NASA Astrophysics Data System (ADS)

    Balkcum, Adam J.

    In the ubitron, also known as the free electron laser, high power coherent radiation is generated from the interaction of an undulating electron beam with an electromagnetic signal and a static periodic magnetic wiggler field. These devices have experimentally produced high power spanning the microwave to x-ray regimes. Potential applications range from microwave radar to the study of solid state material properties. In this dissertation, the efficient production of high power microwaves (HPM) is investigated for a ubitron employing a coaxial circuit and wiggler. Designs for the particular applications of an advanced high gradient linear accelerator driver and a directed energy source are presented. The coaxial ubitron is inherently suited for the production of HPM. It utilizes an annular electron beam to drive the low loss, RF breakdown resistant TE01 mode of a large coaxial circuit. The device's large cross-sectional area greatly reduces RF wall heat loading and the current density loading at the cathode required to produce the moderate energy (500 keV) but high current (1-10 kA) annular electron beam. Focusing and wiggling of the beam is achieved using coaxial annular periodic permanent magnet (PPM) stacks without a solenoidal guide magnetic field. This wiggler configuration is compact, efficient and can propagate the multi-kiloampere electron beams required for many HPM applications. The coaxial PPM ubitron in a traveling wave amplifier, cavity oscillator and klystron configuration is investigated using linear theory and simulation codes. A condition for the dc electron beam stability in the coaxial wiggler is derived and verified using the 2-1/2 dimensional particle-in-cell code, MAGIC. New linear theories for the cavity start-oscillation current and gain in a klystron are derived. A self-consistent nonlinear theory for the ubitron-TWT and a new nonlinear theory for the ubitron oscillator are presented. These form the basis for simulation codes which, along

  3. XUV laser-plasma source based on solid Ar filament

    SciTech Connect

    Peth, Christian; Kalinin, Anton; Barkusky, Frank; Mann, Klaus; Toennies, J. Peter; Rusin, Lev Yu

    2007-10-15

    We present a laser driven soft x-ray source based on a novel solid argon filament. The continuously flowing micron-sized filament (diameter {approx}56 {mu}m, flow speed {approx}5 mm/s) was used as a laser target in order to generate a plasma source of high brightness in the ''water window'' (2.2-4.4 nm) spectral range. The emission properties of the source were characterized in detail with respect to crucial parameters such as positional and energy stability using an extreme ultraviolet (XUV) sensitive pinhole camera and an XUV spectrometer. The results are compared with an argon plasma based on a gas puff target operated under the same experimental conditions showing an increase of the brilliance by a factor of 84. By changing the capillary geometry from a constant diameter to a convergent shape the flow speed of the filament was significantly increased up to 250 mm/s, facilitating the operation at higher repetition rates.

  4. XUV polarimeter for undulator radiation measurements

    SciTech Connect

    Gluskin, E.; Mattson, J.E.; Bader, S.D.; Viccaro, P.J. ); Barbee, T.W. Jr. ); Brookes, N. ); Pitas, A. ); Watts, R. )

    1991-01-01

    A polarimeter for x-ray and vacuum ultraviolet (XUV) radiation was built to measure the spatial spectral dependence of the polarization of the light produced by the new undulator at the U5 beamline at NSLS. The fourth-harmonic radiation was measured, and it does not agree with predictions based on ideal simulation codes in the far-field approximation. 13 ref., 7 figs.

  5. High-Efficiency Power Module

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N. (Inventor); Wintucky, Edwin G. (Inventor)

    2015-01-01

    One or more embodiments of the present invention pertain to an all solid-state microwave power module. The module includes a plurality of solid-state amplifiers configured to amplify a signal using a low power stage, a medium power stage, and a high power stage. The module also includes a power conditioner configured to activate a voltage sequencer (e.g., bias controller) when power is received from a power source. The voltage sequencer is configured to sequentially apply voltage to a gate of each amplifier and sequentially apply voltage to a drain of each amplifier.

  6. High-Efficiency Power Module

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N (Inventor); Wintucky, Edwin G (Inventor)

    2013-01-01

    One or more embodiments of the present invention pertain to an all solid-state microwave power module. The module includes a plurality of solid-state amplifiers configured to amplify a signal using a low power stage, a medium power stage, and a high power stage. The module also includes a power conditioner configured to activate a voltage sequencer (e.g., bias controller) when power is received from a power source. The voltage sequencer is configured to sequentially apply voltage to a gate of each amplifier and sequentially apply voltage to a drain of each amplifier.

  7. Thermal analysis of multifacet-mirror ring resonator for XUV free-electron lasers

    SciTech Connect

    McVey, B.D.; Goldstein, J.C.; McFarland, R.D.; Newnam, B.E.

    1990-01-01

    XUV (10 nm {le} {lambda} {le} 100 nm) free-electron lasers (FELs) are potentially important light sources for advanced lithography and materials applications. The average power of an XUV FEL oscillator may be limited by thermal loading of the resonator mirrors. We analyze the requirements for the thermal performance of the mirrors of a metal, multifacet-mirror ring resonator for use at 12 nm. We use analytical methods and numerical approaches which include simulations with the 3-D FEL code FELEX. Thermal distortion of mirror surfaces leads to optical wavefront aberrations which reduce the focusability of the light beam in the gain medium (wiggler/electron beam) and limit the laser performance. 10 refs., 6 figs., 1 tab.

  8. XUV spectral analysis of ns- and ps-laser produced platinum plasmas

    NASA Astrophysics Data System (ADS)

    Wu, Tao; Higashiguchi, Takeshi; Li, Bowen; Suzuki, Yuhei; Arai, Goki; Dinh, Thanh-Hung; Dunne, Padraig; O'Reilly, Fergal; Sokell, Emma; O'Sullivan, Gerry

    2015-12-01

    XUV spectra of ns- and ps-laser produced platinum (Pt) plasmas in the 1-7 nm wavelength region, where Δn = 1 n = 4-5 and Δn = 0 n = 4-4 transitions dominate the observed emission, were investigated experimentally and theoretically. Ab initio calculations using the Hartree-Fock with configuration interaction (HFCI) Cowan suite of codes and the unresolved transition array (UTA) formalism, as well as consideration of previous predictions of isoelectronic trends, together with spectra obtained under different laser power densities are all employed to identify lines and a number of new features in spectra from Pt XX to Pt XLII. The possible reasons for the main differences between the ns- and ps-laser plasmas spectra are also demonstrated. This work extends previous analyses of the XUV spectra of laser produced gold, tungsten, tantalum, hafnium and rhenium plasmas in the 1-7 nm wavelength range.

  9. Reflectivity enhancement in titanium by ultrafast XUV irradiation

    PubMed Central

    Bencivenga, F.; Principi, E.; Giangrisostomi, E.; Cucini, R.; Battistoni, A.; D'Amico, F.; Di Cicco, A.; Di Fonzo, S.; Filipponi, A.; Gessini, A.; Gunnella, R.; Marsi, M.; Properzi, L.; Saito, M.; Masciovecchio, C.

    2014-01-01

    The study of highly photo-excited matter at solid state density is an emerging field of research, which is benefitting the development of free-electron-laser (FEL) technology. We report an extreme ultraviolet (XUV) reflectivity experiment from a titanium (Ti) sample irradiated with ultrafast seeded FEL pulses at variable incident photon fluence and frequency. Using a Drude formalism we relate the observed increase in reflectivity as a function of the excitation fluence to an increase in the plasma frequency, which allows us to estimate the free electron density in the excited sample. The extreme simplicity of the experimental setup makes the present approach potentially a valuable complementary tool to determine the average ionization state of the excited sample, information of primary relevance for understanding the physics of matter under extreme conditions. PMID:24824987

  10. Reflectivity enhancement in titanium by ultrafast XUV irradiation.

    PubMed

    Bencivenga, F; Principi, E; Giangrisostomi, E; Cucini, R; Battistoni, A; D'Amico, F; Di Cicco, A; Di Fonzo, S; Filipponi, A; Gessini, A; Gunnella, R; Marsi, M; Properzi, L; Saito, M; Masciovecchio, C

    2014-01-01

    The study of highly photo-excited matter at solid state density is an emerging field of research, which is benefitting the development of free-electron-laser (FEL) technology. We report an extreme ultraviolet (XUV) reflectivity experiment from a titanium (Ti) sample irradiated with ultrafast seeded FEL pulses at variable incident photon fluence and frequency. Using a Drude formalism we relate the observed increase in reflectivity as a function of the excitation fluence to an increase in the plasma frequency, which allows us to estimate the free electron density in the excited sample. The extreme simplicity of the experimental setup makes the present approach potentially a valuable complementary tool to determine the average ionization state of the excited sample, information of primary relevance for understanding the physics of matter under extreme conditions. PMID:24824987

  11. Probing Dense Plasmas Created from Intense Irradiation of Solid Target in the XUV Domain

    SciTech Connect

    Dobosz, S.; Doumy, G.; Stabile, H.; Monot, P.; Bougeard, M.; Reau, F.; Martin, Ph.

    2006-04-07

    In this paper, electronic density and temperature have been inferred from XUV transmission through hot solid-density plasma created by high temporal contrast femtosecond irradiation of thin plastic foil target in the 1018W/cm2 intensity range. High order harmonics generated in pulsed gas jet are used as a probe beam. The initial plasma parameters are determined with an accuracy better than 15% on the 100fs time scale, by comparison of the transmission of two consecutive harmonics.

  12. Final Scientific/Technical Report for DE-FG03-02NA00063 Coherent imaging of laser-plasma interactions using XUV high harmonic radiation

    SciTech Connect

    Henry Kapteyn

    2006-06-06

    The objective of this project was to develop experimental techniques for using coherent extreme-ultraviolet (EUV) radiation generated using the high-order harmonic generation technique, as an illumination source for studies of high-density plasmas relevant to the stockpile stewardship mission. In this project, we made considerable progress, including the first demonstration of imaging of dynamic processes using this coherent ultrashort pulse light. This work also stimulated considerable progress in the development of the required ultrashort EUV pulses, and in the development of new laser technologies that have been commercialized. We also demonstrated the first EUV sources that exhibit full intrinsic optical coherence. This work resulted in 12 publications.

  13. High power ultrasound standard.

    PubMed

    Wong, George S K; Wu, Lixue

    2002-04-01

    A sensitive radiation force balance for laboratory measurement of ultrasonic power is presented. The principle of the system is based on measuring the ultrasonic radiation force exerted on a conical float suspended in water. Technical details of the implementation of the economically attractive system are described. The operation of the system is automated with the aid of the IEEE-488 bus and a desktop computer. Design aspects that affect measurement uncertainty are investigated. A theoretical model for the measurement of ultrasonic power with a conical reflector target is discussed. The expanded uncertainty (95% confidence level) of the above radiation force conical float system is estimated to be between 5% to 10%. PMID:12002863

  14. Characterization of partially coherent ultrashort XUV pulses

    NASA Astrophysics Data System (ADS)

    Bourassin-Bouchet, Charles; Couprie, Marie-Emmanuelle

    2015-05-01

    Modern ultrafast metrology relies on the postulate that the pulse to be measured is fully coherent, i.e. that it can be completely described by its spectrum and spectral phase. However, synthesizing fully coherent pulses is not always possible in practice, especially in the domain of emerging ultrashort X-ray sources where temporal metrology is strongly needed. As an example, the lack of longitudinal coherence, that is shot-to-shot fluctuations, of Free-Electron Lasers (FEL) has prevented so far their full amplitude and phase temporal characterization. To sort out this issue, we have adapted Frequency-Resolved Optical Gating (FROG), the first and one of the most widespread techniques for pulse characterization, to enable the measurement of partially coherent XUV pulses even down to the attosecond timescale. Especially, this technique allows one to overcome the sources of decoherence that normally prevent a pulse measurement, such as the spectrometer resolution or the presence of XUV/laser arrival time jitter.

  15. High power phase shifter

    SciTech Connect

    Foster, B.; Gonin, I.; Khabiboulline, T.; Makarov, A.; Solyak, N.; Terechkine, I.; Wildman, D.; /Fermilab

    2005-05-01

    One of the approaches to power distribution system of a superconducting proton linac under discussion at FNAL requires development of a fast-action, megawatt-range phase shifter. Using a couple of this kind of devices with a waveguide hybrid junction can allow independent control of phase and amplitude of RF power at the input of each superconducting cavity, which will result in significant saving in number of klystrons and modulators required for the accelerator. A prototype of a waveguide version of the shifter that uses Yttrium-Iron Garnet (YIG) blocks was developed and tested. This report presents design concept of the device, and main results of simulation and proof-of-principle tests.

  16. High Power Pulsed Gas Lasers

    NASA Astrophysics Data System (ADS)

    Witteman, W. J.

    1987-09-01

    Gas lasers have shown to be capable of delivering tens of terrawatt aspeak power or tens of kilowatt as average power. The efficiencies of most high power gas lasers are relatively high compared with other types of lasers. For instance molecular lasers, oscillating on low lying vibrational levels, and excimer lasers may have intrinsic efficiencies above 10%.The wavelengths of these gas lasers cover the range from the far infrared to the ultra-violet region, say from 12000 to 193 nm. The most important properties are the scalability, optical homogeneity of the excited medium, and the relatively low price per watt of output power. The disadvantages may be the large size of the systems and the relatively narrow line width with limited tunability compared with solid state systems producing the same peak power. High power gas lasers group into three main categories depending on the waste-heat handling capacity.

  17. Material analysis with EUV/XUV radiation using a broadband laser plasma source and optics system

    NASA Astrophysics Data System (ADS)

    Bayer, A.; Barkusky, F.; Dette, J.-O.; Döring, S.; Flöter, B.; Peth, C.; Mann, K.

    2009-05-01

    Triggered by the roadmap of the semiconductor industry, tremendous progress has been achieved in the development of Extreme Ultraviolet (EUV) sources and high-quality EUV optical coatings in recent years, opening up also new fields of applications apart from microlithography, such as metrology, high-resolution microscopy, or surface analysis. The Laser-Laboratorium Göttingen has developed a laser-driven plasma source for generation of soft X-rays in the spectral range 2...20 nm. A Nd:YAG laser (1064 nm, 800 mJ, 6 ns) is focused into a gas-target leading to the formation of a plasma which in turn emits characteristic soft X-ray radiation. Hereby the main focus lies on wavelengths around 13.5 nm ("EUV" - future optical lithography) and the so called water window (2.2 nm...4.4 nm - "XUV") region. Depending on the employed target gas, narrow-band (e.g. O2 for EUV, N2 for XUV) as well as broad-band (e.g. Xe for EUV, Ar, Kr for XUV) spectra can be obtained. For focusing a flexible Kirkpatrick-Baez optics was developed, providing broad-band light steering due to grazing-incidence reflection. The carbon-coated mirrors of this device are formed by bent silicon wafer slices allowing continuous tuning to the desired curvatures. As an application of such a setup, results on near-edge X-ray absorption fine structure spectroscopy (NEXAFS) at the carbon K-edge will be presented. The investigated systems range from synthetic polymers (PMMA, PI) over organic substances (humic acids) to biological matter (lipids), delivering unique spectra for each compound. Thus NEXAFS spectroscopy using a table-top XUV source could be established as a highly surface sensitive fingerprint method for chemical analysis.

  18. Photographic film as a detector for solar X-ray/XUV astronomical applications

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.

    1985-01-01

    The characteristics of several films as detectors for solar soft X-ray (3-100 A) and XUV (100-600 A) radiation are discussed. The properties of soft-X-ray-sensitive films like the SO-212 make them useful for the glancing-incidence X-ray telescopes. Used for the MSFC X-Ray Telescope during the Skylab mission (at the wavelengths of 8.34 and 15.4 A), the SO-212 film functioned as a photon detector, achieving spatial resolution of 2.2 arc sec. Other high-resolution soft-X-ray-sensitive films include SO-242 and 101-07. For XUV detection, the SC-5, SC-7, 104-07, and 101-07 films are recommended.

  19. High Power Proton Facilities

    NASA Astrophysics Data System (ADS)

    Nagaitsev, Sergei

    2015-04-01

    This presentation will provide an overview of the capabilities and challenges of high intensity proton accelerators, such as J-PARC, Fermilab MI, SNS, ISIS, PSI, ESS (in the future) and others. The presentation will focus on lessons learned, new concepts, beam loss mechanisms and methods to mitigate them.

  20. TRANSISTOR HIGH VOLTAGE POWER SUPPLY

    DOEpatents

    Driver, G.E.

    1958-07-15

    High voltage, direct current power supplies are described for use with battery powered nuclear detection equipment. The particular advantages of the power supply described, are increased efficiency and reduced size and welght brought about by the use of transistors in the circuit. An important feature resides tn the employment of a pair of transistors in an alternatefiring oscillator circuit having a coupling transformer and other circuit components which are used for interconnecting the various electrodes of the transistors.

  1. Probing ultrafast molecular dynamics in O2 using XUV/IR pump-probe studies

    NASA Astrophysics Data System (ADS)

    Ray, D.; Sturm, F. P.; Wright, T. W.; Ranitovic, P.; Shivaram, N. H.; Bocharova, I.; Belkacem, A.; Weber, Th.

    2015-05-01

    We investigate the molecular dynamics via different dissociative and autoionizing pathways in molecular oxygen using a pump-probe scheme with ultrashort extreme ultraviolet (XUV) laser pulses. Our primary focus is to study the molecular dynamics in the superexcited Rydberg states in a time-resolved manner. The O2 molecules are pumped by 20.2 eV and 23.1 eV XUV pulses (13th and 15th harmonics). Probing the relaxation dynamics with an infrared (IR) pulse at very long delays (100s of fs) enables us to measure the lifetimes of these Rydberg states. We also observe an enhancement and suppression of vibrational levels of the O2+ion due to the presence of IR. The high flux XUV pulses used for this experiment are generated in an Ar gas by IR pulses from our state-of-the-art 30 mJ, 50 Hz laser system. The pulses are overlapped with the supersonic jet in our Momentum Imaging for TimE Resolved Studies (MISTERS) setup. The cold target in our setup, combined with a very tight focussing geometry and a 3D momentum detection capability gives a high kinetic energy resolution. Molecular dynamics in other polyatomic molecules are also under investigation. Chemical Sciences Division, Lawrence Berkeley National Laboratory.

  2. Compact High Power THz Source

    SciTech Connect

    Geoffrey Krafft

    2003-08-01

    In this paper a new type of THz radiation source, based on recirculating an electron beam through a high gradient superconducting radio frequency cavity, and using this beam to drive a standard electromagnetic undulator, is discussed. Because the beam is recirculated, short bunches may be produced that radiate coherently in the undulator, yielding high average THz power for relatively low average beam power. Deceleration from the coherent emission, and the detuning it causes is discussed.

  3. High power solid state lasers

    SciTech Connect

    Weber, H.

    1988-01-01

    These proceedings discuss the following subjects: trends in materials processing with laser radiation; slabs and high power systems; glasses and new crystals; solid state lasers at HOYA Corp.; lamps, resonators and transmission; glasses as active materials for high average power solid state lasers; flashlamp pumped GGG-crystals; alexandrite lasers; designing telescope resonators; mode operation of neodymium: YAG lasers; intracavity frequency doubling with KTP crystal and thermal effects in cylinder lasers.

  4. High average power pockels cell

    DOEpatents

    Daly, Thomas P.

    1991-01-01

    A high average power pockels cell is disclosed which reduces the effect of thermally induced strains in high average power laser technology. The pockels cell includes an elongated, substantially rectangular crystalline structure formed from a KDP-type material to eliminate shear strains. The X- and Y-axes are oriented substantially perpendicular to the edges of the crystal cross-section and to the C-axis direction of propagation to eliminate shear strains.

  5. High power ferrite microwave switch

    NASA Technical Reports Server (NTRS)

    Bardash, I.; Roschak, N. K.

    1975-01-01

    A high power ferrite microwave switch was developed along with associated electronic driver circuits for operation in a spaceborne high power microwave transmitter in geostationary orbit. Three units were built and tested in a space environment to demonstrate conformance to the required performance characteristics. Each unit consisted of an input magic-tee hybrid, two non-reciprocal latching ferrite phase shifters, an out short-slot 3 db quadrature coupler, a dual driver electronic circuit, and input logic interface circuitry. The basic mode of operation of the high power ferrite microwave switch is identical to that of a four-port, differential phase shift, switchable circulator. By appropriately designing the phase shifters and electronic driver circuits to operate in the flux-transfer magnetization mode, power and temperature insensitive operation was achieved. A list of the realized characteristics of the developed units is given.

  6. High angular resolution cosmic X-ray astronomy observations in the energy range 0.15-2 keV and XUV observations of nearby stars from an attitude controlled rocket

    NASA Technical Reports Server (NTRS)

    Garmire, G. P.

    1974-01-01

    The construction of a two dimensional focusing Wolter Type I mirror system for X-ray and XUV astronomical observations from an Astrobee F sounding rocket is described. The mirror design goal will have a one degree field, a 20-arc seconds resolution, an effective area of about 50 sq cm at 1 keV and 10 sq cm at 0.25 keV on axis. A star camera provides aspect data to about 15-arc seconds. Two detectors are placed at the focus with an interchange mechanism to allow a detector change during flight. The following specific developments are reported: (1) position sensitive proportional counter development; (2) channel plate multiplier development; (3) telescope mirror development and payload structure; (4) Australian rocket flight results; (5) Comet Kohoutek He I observation; and (6) Vela, Puppis A, and Gem-Mon bright patch observations.

  7. High Power Amplifier and Power Supply

    NASA Technical Reports Server (NTRS)

    Duong, Johnny; Stride, Scot; Harvey, Wayne; Haque, Inam; Packard, Newton; Ng, Quintin; Ispirian, Julie Y.; Waian, Christopher; Janes, Drew

    2008-01-01

    A document discusses the creation of a high-voltage power supply (HVPS) that is able to contain voltages up to -20 kV, keep electrical field strengths to below 200 V/mil (approximately equal to 7.87 kV/mm), and can provide a 200-nanosecond rise/fall time focus modulator swinging between cathode potential of 16.3 kV and -19.3 kV. This HVPS can protect the 95-GHz, pulsed extended interaction klystron (EIK) from arcs/discharges from all sources, including those from within the EIK fs vacuum envelope. This innovation has a multi-winding pulse transformer design, which uses new winding techniques to provide the same delays and rise/fall times (less than 10 nanoseconds) at different potential levels ranging from -20 kV to -16 kV. Another feature involves a high-voltage printed-wiring board that was corona-free at -20 kV DC with a 3- kV AC swing. The corona-free multilayer high-voltage board is used to simulate fields of less than 200 V/mil (approximately equal to 7.87 kV/mm) at 20 kV DC. Drive techniques for the modulator FETs (field-effect transistors) (four to 10 in a series) were created to change states (3,000-V swing) without abrupt steps, while still maintaining required delays and transition times. The packing scheme includes a potting mold to house a ten-stage modulator in the space that, in the past, only housed a four-stage modulator. Problems keeping heat down were solved using aluminum oxide substrate in the high-voltage section to limit temperature rise to less than 10 while withstanding -20 kV DC voltage and remaining corona-free.

  8. Applications of compact laser-driven EUV/XUV plasma sources

    NASA Astrophysics Data System (ADS)

    Barkusky, Frank; Bayer, Armin; Döring, Stefan; Flöter, Bernhard; Großmann, Peter; Peth, Christian; Reese, Michael; Mann, Klaus

    2009-05-01

    In recent years, technological developments in the area of extreme ultraviolet lithography (EUVL) have experienced great improvements. So far, intense light sources based on discharge or laser plasmas, beam steering and imaging optics as well as sensitive detectors are available. Currently, applications of EUV radiation apart from microlithography, such as metrology, high-resolution microscopy, or surface analysis come more and more into focus. In this contribution we present an overview on the EUV/XUV activities of the Laser-Laboratorium Göttingen based on table-top laser-produced plasma (LPP) sources. As target materials gaseous or liquid jets of noble gases or solid Gold are employed. Depending on the applications, the very clean but low intense gaseous targets are mainly used for metrology, whereas the targets for high brilliances (liquid, solid) are used for microscopy and direct structuring. For the determination of interaction mechanisms between EUV radiation and matter, currently the solid Gold target is used. In order to obtain a small focal spot resulting in high EUV fluence, a modified Schwarzschild objective consisting of two spherical mirrors with Mo/Si multilayer coatings is adapted to this source. By demagnified (10x) imaging of the Au plasma an EUV spot of 3 μm diameter with a maximum energy density of ~1.3 J/cm2 is generated (pulse duration 8.8 ns). First applications of this integrated source and optics system reveal its potential for high-resolution modification and direct structuring of solid surfaces. For chemical analysis of various samples a NEXAFS setup was developed. It consists of a LPP, using gaseous Krypton as a broadband emitter in the water-window range, as well as a flat field spectrograph. The laboratory system is set to the XUV spectral range around the carbon K-edge (4.4 nm). The table-top setup allows measurements with spectral accuracy comparable to synchrotron experiments. NEXAFS-experiments in transmission and reflection are

  9. Integrated high power VCSEL systems

    NASA Astrophysics Data System (ADS)

    Moench, Holger; Conrads, Ralf; Gronenborn, Stephan; Gu, Xi; Miller, Michael; Pekarski, Pavel; Pollmann-Retsch, Jens; Pruijmboom, Armand; Weichmann, Ulrich

    2016-03-01

    High power VCSEL systems are a novel laser source used for thermal treatment in industrial manufacturing. These systems will be applied in many applications, which have not used a laser source before. This is enabled by the unique combination of efficiency, compactness and robustness. High power VCSEL system technology encompasses elements far beyond the VCSEL chip itself: i.e. heat sinks, bonding technology and integrated optics. This paper discusses the optimization of these components and processes specifically for building high-power laser systems with VCSEL arrays. New approaches help to eliminate components and process steps and make the system more robust and easier to manufacture. New cooler concepts with integrated electrical and mechanical interfaces have been investigated and offer advantages for high power system design. The bonding process of chips on sub-mounts and coolers has been studied extensively and for a variety of solder materials. High quality of the interfaces as well as good reliability under normal operation and thermal cycling have been realized. A viable alternative to soldering is silver sintering. The very positive results which have been achieved with a variety of technologies indicate the robustness of the VCSEL chips and their suitability for high power systems. Beam shaping micro-optics can be integrated on the VCSEL chip in a wafer scale process by replication of lenses in a polymer layer. The performance of VCSEL arrays with integrated collimation lenses has been positively evaluated and the integrated chips are fully compatible with all further assembly steps. The integrated high power systems make the application even easier and more robust. New examples in laser material processing and pumping of solid state lasers are presented.

  10. Pulsed high-power beams

    SciTech Connect

    Reginato, L.L.; Birx, D.L.

    1988-06-01

    The marriage of induction linac technology with nonlinear magnetic modulators has produced some unique capabilities. It is now possible to produce short-pulse electron beams with average currents measured in amperes, at gradients approaching 1-MeV/m, and with power efficiencies exceeding 50%. A 70-Mev, 3-kA induction accelerator (ETA II) constructed at the Lawrence Livermore National Laboratory incorporates the pulse technology concepts that have evolved over the past several years. The ETA II is a linear induction accelerator and provides a test facility for demonstration of the high-average-power components and high-brightness sources used in such accelerators. The pulse drive for the accelerator is based on state-of-the-art magnetic pulse compressors with very high peak-power capability, repetition rates exceeding 1 kHz, and excellent reliability. 6 figs.

  11. High power excimer laser micromachining

    NASA Astrophysics Data System (ADS)

    Herbst, Ludolf; Paetzel, Rainer

    2006-02-01

    Today's excimer lasers are well-established UV laser sources for a wide variety of micromachining applications. The excimer's high pulse energy and average power at short UV wavelengths make them ideal for ablation of various materials, e. g., polyimide, PMMA, copper, and diamond. Excimer micromachining technology, driven by the ever-shrinking feature sizes of micro-mechanical and micro-electronic devices, is used for making semiconductor packaging microvias, ink jet nozzle arrays, and medical devices. High-power excimer laser systems are capable of processing large areas with resolution down to several microns without using wet chemical processes. For instance, drilling precise tapered holes and reel-to-reel manufacturing of disposable sensors have proven to be very cost-effective manufacturing techniques for volume production. Specifically, the new industrial excimer laser-the LAMBDA SX 315C-easily meets the high demands of cost-effective production. The stabilized output power of 315 watts at 300 Hz (308 nm) and its outstanding long-term stability make this laser ideal for high-duty-cycle, high-throughput micromachining. In this paper, high-power excimer laser technology, products, applications, and beam delivery systems will be discussed.

  12. High-Average Power Facilities

    SciTech Connect

    Dowell, David H.; Power, John G.; /Argonne

    2012-09-05

    There has been significant progress in the development of high-power facilities in recent years yet major challenges remain. The task of WG4 was to identify which facilities were capable of addressing the outstanding R&D issues presently preventing high-power operation. To this end, information from each of the facilities represented at the workshop was tabulated and the results are presented herein. A brief description of the major challenges is given, but the detailed elaboration can be found in the other three working group summaries.

  13. High temperature, high power piezoelectric composite transducers.

    PubMed

    Lee, Hyeong Jae; Zhang, Shujun; Bar-Cohen, Yoseph; Sherrit, Stewart

    2014-01-01

    Piezoelectric composites are a class of functional materials consisting of piezoelectric active materials and non-piezoelectric passive polymers, mechanically attached together to form different connectivities. These composites have several advantages compared to conventional piezoelectric ceramics and polymers, including improved electromechanical properties, mechanical flexibility and the ability to tailor properties by using several different connectivity patterns. These advantages have led to the improvement of overall transducer performance, such as transducer sensitivity and bandwidth, resulting in rapid implementation of piezoelectric composites in medical imaging ultrasounds and other acoustic transducers. Recently, new piezoelectric composite transducers have been developed with optimized composite components that have improved thermal stability and mechanical quality factors, making them promising candidates for high temperature, high power transducer applications, such as therapeutic ultrasound, high power ultrasonic wirebonding, high temperature non-destructive testing, and downhole energy harvesting. This paper will present recent developments of piezoelectric composite technology for high temperature and high power applications. The concerns and limitations of using piezoelectric composites will also be discussed, and the expected future research directions will be outlined. PMID:25111242

  14. High Temperature, High Power Piezoelectric Composite Transducers

    PubMed Central

    Lee, Hyeong Jae; Zhang, Shujun; Bar-Cohen, Yoseph; Sherrit, StewarT.

    2014-01-01

    Piezoelectric composites are a class of functional materials consisting of piezoelectric active materials and non-piezoelectric passive polymers, mechanically attached together to form different connectivities. These composites have several advantages compared to conventional piezoelectric ceramics and polymers, including improved electromechanical properties, mechanical flexibility and the ability to tailor properties by using several different connectivity patterns. These advantages have led to the improvement of overall transducer performance, such as transducer sensitivity and bandwidth, resulting in rapid implementation of piezoelectric composites in medical imaging ultrasounds and other acoustic transducers. Recently, new piezoelectric composite transducers have been developed with optimized composite components that have improved thermal stability and mechanical quality factors, making them promising candidates for high temperature, high power transducer applications, such as therapeutic ultrasound, high power ultrasonic wirebonding, high temperature non-destructive testing, and downhole energy harvesting. This paper will present recent developments of piezoelectric composite technology for high temperature and high power applications. The concerns and limitations of using piezoelectric composites will also be discussed, and the expected future research directions will be outlined. PMID:25111242

  15. High power fast ramping power supplies

    SciTech Connect

    Marneris,I.; Bajon, E.; Bonati, R.; Sandberg, J.; Roser, T.; Tsoupas, N.

    2009-05-04

    Hundred megawatt level fast ramping power converters to drive proton and heavy ion machines are under research and development at accelerator facilities in the world. This is a leading edge technology. There are several topologies to achieve this power level. Their advantages and related issues will be discussed.

  16. High power neutron production targets

    SciTech Connect

    Wender, S.

    1996-06-01

    The author describes issues of concern in the design of targets and associated systems for high power neutron production facilities. The facilities include uses for neutron scattering, accelerator driven transmutation, accelerator production of tritium, short pulse spallation sources, and long pulse spallation sources. Each of these applications requires a source with different design needs and consequently different implementation in practise.

  17. High power, high frequency helix TWT's

    NASA Astrophysics Data System (ADS)

    Sloley, H. J.; Willard, J.; Paatz, S. R.; Keat, M. J.

    The design and performance characteristics of a 34-GHz pulse tube capable of 75 W peak power output at 30 percent duty cycle and a broadband CW tube are presented. Particular attention is given to the engineering problems encountered during the development of the tubes, including the suppression of backward wave oscillation, the design of electron guns for small-diameter high-current beams, and the thermal capability of small helix structures. The discussion also covers the effects of various design parameters and choice of engineering materials on the ultimate practical limit of power and gain at the operating frequencies. Measurements are presented for advanced experimental tubes.

  18. Collection and spectral control of high-order harmonics generated with a 50 W high-repetition rate Ytterbium femtosecond laser system

    NASA Astrophysics Data System (ADS)

    Cabasse, A.; Hazera, Ch; Quintard, L.; Cormier, E.; Petit, S.; Constant, E.

    2016-04-01

    We generate high-order harmonics with a 50 W, Yb femtosecond fiber laser system operating at 100 kHz in a tight focusing configuration. We achieve a high photon flux even with pulses longer than 500 fs. We collect the diverging extreme ultraviolet (XUV) harmonic beam in a 35 mrad wide solid angle by using a spectrometer designed to handle the high thermal load under vacuum and refocus the XUV beam onto a detector where the beam is characterised or can alternatively be used for experiments. This setup is designed for a 50 eV XUV bandwidth and offers the possibility to perform XUV-IR pump probe experiments with both temporal and spectral resolution. The high-order harmonics were generated and optimized at 100 kHz by using several gas target geometries (a gas jet and a semi-infinite gas cell) and several gases (argon, krypton, xenon) that provide XUV beams with different characteristics. After the spectrometer and for high-order harmonic generation (HHG) in xenon, we detect more than 4 × 1010 photons per second over four harmonics, that is a useful XUV power on target of 0.1 μW. This corresponds to the emission of more than 1 μW per harmonic at the source and we achieved a similar flux with both the semi-infinite cell and the jet. In addition, we observe a strong spectral selectivity when generating harmonics in a semi-infinite gas cell as few harmonics clearly dominate the neighbouring harmonics. We attribute this spectral selectivity to phase matching effects.

  19. High-power fibre lasers

    NASA Astrophysics Data System (ADS)

    Jauregui, Cesar; Limpert, Jens; Tünnermann, Andreas

    2013-11-01

    Fibre lasers are now associated with high average powers and very high beam qualities. Both these characteristics are required by many industrial, defence and scientific applications, which explains why fibre lasers have become one of the most popular laser technologies. However, this success, which is largely founded on the outstanding characteristics of fibres as an active medium, has only been achieved through researchers around the world striving to overcome many of the limitations imposed by the fibre architecture. This Review focuses on these limitations, both past and current, and the creative solutions that have been proposed for overcoming them. These solutions have enabled fibre lasers to generate the highest diffraction-limited average power achieved to date by solid-state lasers.

  20. High frequency power distribution system

    NASA Technical Reports Server (NTRS)

    Patel, Mikund R.

    1986-01-01

    The objective of this project was to provide the technology of high frequency, high power transmission lines to the 100 kW power range at 20 kHz frequency. In addition to the necessary design studies, a 150 m long, 600 V, 60 A transmission line was built, tested and delivered for full vacuum tests. The configuration analysis on five alternative configurations resulted in the final selection of the three parallel Litz straps configuration, which gave a virtually concentric design in the electromagnetic sense. Low inductance, low EMI and flexibility in handling are the key features of this configuration. The final design was made after a parametric study to minimize the losses, weight and inductance. The construction of the cable was completed with no major difficulties. The R,L,C parameters measured on the cable agreed well with the calculated values. The corona tests on insulation samples showed a safety factor of 3.

  1. High power gas laser amplifier

    DOEpatents

    Leland, Wallace T.; Stratton, Thomas F.

    1981-01-01

    A high power output CO.sub.2 gas laser amplifier having a number of sections, each comprising a plurality of annular pumping chambers spaced around the circumference of a vacuum chamber containing a cold cathode, gridded electron gun. The electron beam from the electron gun ionizes the gas lasing medium in the sections. An input laser beam is split into a plurality of annular beams, each passing through the sections comprising one pumping chamber.

  2. Investigating two-photon double ionization of D{sub 2} by XUV-pump-XUV-probe experiments

    SciTech Connect

    Jiang, Y. H.; Kurka, M.; Kuehnel, K. U.; Toppin, M.; Schroeter, C. D.; Moshammer, R.; Rudenko, A.; Foucar, L.; Perez-Torres, J. F.; Plesiat, E.; Morales, F.; Martin, F.; Herrwerth, O.; Lezius, M.; Kling, M. F.; Jahnke, T.; Doerner, R.; Sanz-Vicario, J. L.; Tilborg, J. van; Belkacem, A.

    2010-05-15

    We used a split-mirror setup attached to a reaction microscope at the free-electron laser in Hamburg (FLASH) to perform an XUV-pump-XUV-probe experiment by tracing the ultrafast nuclear wave-packet motion in the D{sub 2}{sup +}(1s{sigma}{sub g}) with <10 fs time resolution. Comparison with time-dependent calculations shows excellent agreement with the measured vibrational period of 22{+-}4 fs in D{sub 2}{sup +}, points to the importance of accurately knowing the internuclear distance-dependent ionization probability, and paves the way to control sequential and nonsequential two-photon double-ionization contributions.

  3. High-Power Rf Load

    DOEpatents

    Tantawi, Sami G.; Vlieks, Arnold E.

    1998-09-01

    A compact high-power RF load comprises a series of very low Q resonators, or chokes [16], in a circular waveguide [10]. The sequence of chokes absorb the RF power gradually in a short distance while keeping the bandwidth relatively wide. A polarizer [12] at the input end of the load is provided to convert incoming TE.sub.10 mode signals to circularly polarized TE.sub.11 mode signals. Because the load operates in the circularly polarized mode, the energy is uniformly and efficiently absorbed and the load is more compact than a rectangular load. Using these techniques, a load having a bandwidth of 500 MHz can be produced with an average power dissipation level of 1.5 kW at X-band, and a peak power dissipation of 100 MW. The load can be made from common lossy materials, such as stainless steel, and is less than 15 cm in length. These techniques can also produce loads for use as an alternative to ordinary waveguide loads in small and medium RF accelerators, in radar systems, and in other microwave applications. The design is easily scalable to other RF frequencies and adaptable to the use of other lossy materials.

  4. High power, high beam quality regenerative amplifier

    DOEpatents

    Hackel, Lloyd A.; Dane, Clifford B.

    1993-01-01

    A regenerative laser amplifier system generates high peak power and high energy per pulse output beams enabling generation of X-rays used in X-ray lithography for manufacturing integrated circuits. The laser amplifier includes a ring shaped optical path with a limited number of components including a polarizer, a passive 90 degree phase rotator, a plurality of mirrors, a relay telescope, and a gain medium, the components being placed close to the image plane of the relay telescope to reduce diffraction or phase perturbations in order to limit high peak intensity spiking. In the ring, the beam makes two passes through the gain medium for each transit of the optical path to increase the amplifier gain to loss ratio. A beam input into the ring makes two passes around the ring, is diverted into an SBS phase conjugator and proceeds out of the SBS phase conjugator back through the ring in an equal but opposite direction for two passes, further reducing phase perturbations. A master oscillator inputs the beam through an isolation cell (Faraday or Pockels) which transmits the beam into the ring without polarization rotation. The isolation cell rotates polarization only in beams proceeding out of the ring to direct the beams out of the amplifier. The diffraction limited quality of the input beam is preserved in the amplifier so that a high power output beam having nearly the same diffraction limited quality is produced.

  5. High power, high beam quality regenerative amplifier

    DOEpatents

    Hackel, L.A.; Dane, C.B.

    1993-08-24

    A regenerative laser amplifier system generates high peak power and high energy per pulse output beams enabling generation of X-rays used in X-ray lithography for manufacturing integrated circuits. The laser amplifier includes a ring shaped optical path with a limited number of components including a polarizer, a passive 90 degree phase rotator, a plurality of mirrors, a relay telescope, and a gain medium, the components being placed close to the image plane of the relay telescope to reduce diffraction or phase perturbations in order to limit high peak intensity spiking. In the ring, the beam makes two passes through the gain medium for each transit of the optical path to increase the amplifier gain to loss ratio. A beam input into the ring makes two passes around the ring, is diverted into an SBS phase conjugator and proceeds out of the SBS phase conjugator back through the ring in an equal but opposite direction for two passes, further reducing phase perturbations. A master oscillator inputs the beam through an isolation cell (Faraday or Pockels) which transmits the beam into the ring without polarization rotation. The isolation cell rotates polarization only in beams proceeding out of the ring to direct the beams out of the amplifier. The diffraction limited quality of the input beam is preserved in the amplifier so that a high power output beam having nearly the same diffraction limited quality is produced.

  6. High Power Free Electron Lasers

    SciTech Connect

    George Neil

    2004-04-12

    FEL Oscillators have been around since 1977 providing not only a test bed for the physics of Free Electron Lasers and electron/photon interactions but as a workhorse of scientific research. The characteristics that have driven the development of these sources are the desire for high peak and average power, high pulse energies, wavelength tunability, timing flexibility, and wavelengths that are unavailable from more conventional laser sources. User programs have been performed using such sources encompassing medicine, biology, solid state research, atomic and molecular physics, effects of non-linear fields, surface science, polymer science, pulsed laser vapor deposition, to name just a few. Recently the incorporation of energy recovery systems has permitted extension of the average power capabilities to the kW level and beyond. Development of substantially higher power systems with applications in defense and security is believed feasible with modest R&D efforts applied to a few technology areas. This paper will discuss at a summary level the physics of such devices, survey existing and planned facilities, and touch on the applications that have driven the development of these popular light sources.

  7. Extreme-ultraviolet ultrafast ARPES at high repetition rates

    NASA Astrophysics Data System (ADS)

    Buss, Jan; Wang, He; Xu, Yiming; Stoll, Sebastian; Zeng, Lingkun; Ulonska, Stefan; Denlinger, Jonathan; Hussain, Zahid; Jozwiak, Chris; Lanzara, Alessandra; Kaindl, Robert

    Time- and angle-resolved photoemission spectroscopy (trARPES) represents a powerful approach to resolve the electronic structure and quasiparticle dynamics in complex materials, yet is often limited in either momentum space (incident photon energy), probe sensitivity (pulse repetition rate), or energy resolution. We demonstrate a novel table-top trARPES setup that combines a bright 50-kHz source of narrowband, extreme ultraviolet (XUV) pulses at 22.3 eV with UHV photoemission instrumentation to sensitively access dynamics for a large momentum space. The output of a high-power Ti:sapphire amplifier is split to provide the XUV probe and intense photoexcitation (up to mJ/cm2) . A vacuum beamline delivers spectral and flux characterization, differential pumping, as well as XUV beam steering and toroidal refocusing onto the sample with high incident flux of 3x1011 ph/s. Photoemission studies are carried out in a customized UHV chamber equipped with a hemispherical analyzer (R4000), six-axis sample cryostat, and side chambers for sample loading, storage and preparation. An ARPES energy resolution down to 70 meV with the direct XUV output is demonstrated. We will discuss initial applications of this setup including Fermi surface mapping and trARPES of complex materials.

  8. Nonlinear Interaction of Intense Attosecond XUV Pulses with Atoms and Molecules

    NASA Astrophysics Data System (ADS)

    Midorikawa, K.; Shimizu, T.; Nabekawa, Y.

    We have observed nonlinear optical processes such as two-photon double ionization and above threshold ionization of rare gases in the xuv region with intense high-order harmonics. Using two-photon double ionization in He, the pulse width of the 27th (42 eV) harmonic was measured by an autocorrelation technique, and found it to be 8 ns. A train of attosecond pulses was also characterized directly by the energy-resolved autocorrelation of the above threshold ionized electrons.

  9. Asymmetric photoelectron momentum distribution driven by two-color XUV fields

    NASA Astrophysics Data System (ADS)

    Wu, Wan-Yang; He, Feng

    2016-02-01

    The photoionization of He+ in two-color XUV fields is studied by numerically solving the time-dependent Schrödinger equation. He+ may be ionized by directly absorbing one high-energetic photon or by absorbing two photons sequentially by mediating an excited state. The interference of these two pathways results in either enhancement or suppression of photoionization, depending on the propagating direction of the photoelectron and the relative phase of two pulses. The two-pathway interference also induces the split of photoelectron momenta. This study shows that the participation of intermediate states may substantially change photoionization processes.

  10. High voltage DC power supply

    DOEpatents

    Droege, T.F.

    1989-12-19

    A high voltage DC power supply having a first series resistor at the output for limiting current in the event of a short-circuited output, a second series resistor for sensing the magnitude of output current, and a voltage divider circuit for providing a source of feedback voltage for use in voltage regulation is disclosed. The voltage divider circuit is coupled to the second series resistor so as to compensate the feedback voltage for a voltage drop across the first series resistor. The power supply also includes a pulse-width modulated control circuit, having dual clock signals, which is responsive to both the feedback voltage and a command voltage, and also includes voltage and current measuring circuits responsive to the feedback voltage and the voltage developed across the second series resistor respectively. 7 figs.

  11. High voltage DC power supply

    DOEpatents

    Droege, Thomas F.

    1989-01-01

    A high voltage DC power supply having a first series resistor at the output for limiting current in the event of a short-circuited output, a second series resistor for sensing the magnitude of output current, and a voltage divider circuit for providing a source of feedback voltage for use in voltage regulation is disclosed. The voltage divider circuit is coupled to the second series resistor so as to compensate the feedback voltage for a voltage drop across the first series resistor. The power supply also includes a pulse-width modulated control circuit, having dual clock signals, which is responsive to both the feedback voltage and a command voltage, and also includes voltage and current measuring circuits responsive to the feedback voltage and the voltage developed across the second series resistor respectively.

  12. High frequency, high power capacitor development

    NASA Technical Reports Server (NTRS)

    White, C. W.; Hoffman, P. S.

    1983-01-01

    A program to develop a special high energy density, high power transfer capacitor to operate at frequency of 40 kHz, 600 V rms at 125 A rms plus 600 V dc bias for space operation. The program included material evaluation and selection, a capacitor design was prepared, a thermal analysis performed on the design. Fifty capacitors were manufactured for testing at 10 kHz and 40 kHz for 50 hours at Industrial Electric Heating Co. of Columbus, Ohio. The vacuum endurance test used on environmental chamber and temperature plate furnished by Maxwell. The capacitors were energized with a special power conditioning apparatus developed by Industrial Electric Heating Co. Temperature conditions of the capacitors were monitored by IEHCo test equipment. Successful completion of the vacuum endurance test series confirmed achievement of the main goal of producing a capacitor or reliable operation at high frequency in an environment normally not hospitable to electrical and electronic components. The capacitor developed compared to a typical commercial capacitor at the 40 kHz level represents a decrease in size and weight by a factor of seven.

  13. High power cladding light strippers

    NASA Astrophysics Data System (ADS)

    Wetter, Alexandre; Faucher, Mathieu; Sévigny, Benoit

    2008-02-01

    The ability to strip cladding light from double clad fiber (DCF) fibers is required for many different reasons, one example is to strip unwanted cladding light in fiber lasers and amplifiers. When removing residual pump light for example, this light is characterized by a large numerical aperture distribution and can reach power levels into the hundreds of watts. By locally changing the numerical aperture (N.A.) of the light to be stripped, it is possible to achieve significant attenuation even for the low N.A. rays such as escaped core modes in the same device. In order to test the power-handling capability of this device, one hundred watts of pump and signal light is launched from a tapered fusedbundle (TFB) 6+1x1 combiner into a high power-cladding stripper. In this case, the fiber used in the cladding stripper and the output fiber of the TFB was a 20/400 0.06/0.46 N.A. double clad fiber. Attenuation of over 20dB in the cladding was measured without signal loss. By spreading out the heat load generated by the unwanted light that is stripped, the package remained safely below the maximum operating temperature internally and externally. This is achieved by uniformly stripping the energy along the length of the fiber within the stripper. Different adhesive and heat sinking techniques are used to achieve this uniform removal of the light. This suggests that these cladding strippers can be used to strip hundreds of watts of light in high power fiber lasers and amplifiers.

  14. High power, high frequency, vacuum flange

    DOEpatents

    Felker, B.; McDaniel, M.R.

    1993-03-23

    An improved waveguide flange is disclosed for high power operation that helps prevent arcs from being initiated at the junctions between waveguide sections. The flanges at the end of the waveguide sections have counter bores surrounding the waveguide tubes. When the sections are bolted together the counter bores form a groove that holds a fully annealed copper gasket. Each counterbore has a beveled step that is specially configured to insure the gasket forms a metal-to-metal vacuum seal without gaps or sharp edges. The resultant inner surface of the waveguide is smooth across the junctions between waveguide sections, and arcing is prevented.

  15. High power, high frequency, vacuum flange

    DOEpatents

    Felker, Brian; McDaniel, Michael R.

    1993-01-01

    An improved waveguide flange is disclosed for high power operation that helps prevent arcs from being initiated at the junctions between waveguide sections. The flanges at the end of the waveguide sections have counterbores surrounding the waveguide tubes. When the sections are bolted together the counterbores form a groove that holds a fully annealed copper gasket. Each counterbore has a beveled step that is specially configured to insure the gasket forms a metal-to-metal vacuum seal without gaps or sharp edges. The resultant inner surface of the waveguide is smooth across the junctions between waveguide sections, and arcing is prevented.

  16. Improved Programmable High-Voltage Power Supply

    NASA Technical Reports Server (NTRS)

    Castell, Karen; Rutberg, Arthur

    1994-01-01

    Improved dc-to-dc converter functions as programmable high-voltage power supply with low-power-dissipation voltage regulator on high-voltage side. Design of power supply overcomes deficiencies of older designs. Voltage regulation with low power dissipation provided on high-voltage side.

  17. High-power pulsed lasers

    SciTech Connect

    Holzrichter, J.F.

    1980-04-02

    The ideas that led to the successful construction and operation of large multibeam fusion lasers at the Lawrence Livermore Laboratory are reviewed. These lasers are based on the use of Nd:glass laser materials. However, most of the concepts are applicable to any laser being designed for fusion experimentation. This report is a summary of lectures given by the author at the 20th Scottish University Summer School in Physics, on Laser Plasma Interaction. This report includes basic concepts of the laser plasma system, a discussion of lasers that are useful for short-pulse, high-power operation, laser design constraints, optical diagnostics, and system organization.

  18. High power microwave source development

    NASA Astrophysics Data System (ADS)

    Benford, James N.; Miller, Gabriel; Potter, Seth; Ashby, Steve; Smith, Richard R.

    1995-05-01

    The requirements of this project have been to: (1) improve and expand the sources available in the facility for testing purposes and (2) perform specific tasks under direction of the Defense Nuclear Agency about the applications of high power microwaves (HPM). In this project the HPM application was power beaming. The requirements of this program were met in the following way: (1) We demonstrated that a compact linear induction accelerator can drive HPM sources at repetition rates in excess of 100 HZ at peak microwave powers of a GW. This was done for the relativistic magnetron. Since the conclusion of this contract such specifications have also been demonstrated for the relativistic klystron under Ballistic Missile Defense Organization funding. (2) We demonstrated an L band relativistic magnetron. This device has been used both on our single pulse machines, CAMEL and CAMEL X, and the repetitive system CLIA. (3) We demonstrated that phase locking of sources together in large numbers is a feasible technology and showed the generation of multigigawatt S-band radiation in an array of relativistic magnetrons.

  19. XUV frequency-comb metrology on the ground state of helium

    SciTech Connect

    Kandula, Dominik Z.; Gohle, Christoph; Pinkert, Tjeerd J.; Ubachs, Wim; Eikema, Kjeld S. E.

    2011-12-15

    The operation of a frequency comb at extreme ultraviolet (xuv) wavelengths based on pairwise amplification and nonlinear upconversion to the 15th harmonic of pulses from a frequency-comb laser in the near-infrared range is reported. It is experimentally demonstrated that the resulting spectrum at 51 nm is fully phase coherent and can be applied to precision metrology. The pulses are used in a scheme of direct-frequency-comb excitation of helium atoms from the ground state to the 1s4p and 1s5p {sup 1} P{sub 1} states. Laser ionization by auxiliary 1064 nm pulses is used to detect the excited-state population, resulting in a cosine-like signal as a function of the repetition rate of the frequency comb with a modulation contrast of up to 55%. Analysis of the visibility of this comb structure, thereby using the helium atom as a precision phase ruler, yields an estimated timing jitter between the two upconverted-comb laser pulses of 50 attoseconds, which is equivalent to a phase jitter of 0.38 (6) cycles in the xuv at 51 nm. This sets a quantitative figure of merit for the operation of the xuv comb and indicates that extension to even shorter wavelengths should be feasible. The helium metrology investigation results in transition frequencies of 5 740 806 993 (10) and 5 814 248 672 (6) MHz for excitation of the 1s4p and 1s5p {sup 1} P{sub 1} states, respectively. This constitutes an important frequency measurement in the xuv, attaining high accuracy in this windowless part of the electromagnetic spectrum. From the measured transition frequencies an eight-fold-improved {sup 4}He ionization energy of 5 945 204 212 (6) MHz is derived. Also, a new value for the {sup 4}He ground-state Lamb shift is found of 41 247 (6) MHz. This experimental value is in agreement with recent theoretical calculations up to order m{alpha}{sup 6} and m{sup 2}/M{alpha}{sup 5}, but with a six-times-higher precision, therewith providing a stringent test of quantum electrodynamics in bound two

  20. High Power, High Voltage Electric Power System for Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Aintablian, Harry; Kirkham, Harold; Timmerman, Paul

    2006-01-01

    This paper provides an overview of the 30 KW, 600 V MRHE power subsystem. Descriptions of the power subsystem elements, the mode of power transfer, and power and mass estimates are presented. A direct-drive architecture for electric propulsion is considered which reduces mass and complexity. Solar arrays with concentrators are used for increased efficiency. Finally, the challenges due to the environment of a hypothetical lunar mission as well as due to the advanced technologies considered are outlined.

  1. PHERMEX, REX, AND THOMSON-GENERATED XUV CALCULATIONS

    SciTech Connect

    THOMAS P. HUGHES; RANDY M. CLARK - MISSION RESEARCH CORP. RANDOLPH L. CARLSON; DAVID C. MOIR - LANL

    1993-05-01

    We report on calculations carried out during 1990 in support of on-going and planned beam experiments at M-4. A higher-current injector for PHERMEX is under consideration and we have modeled a REX-like diode geometry which can deliver 1--1.5 kA. A three+coil focusing configuration has been designed to maintain low beam emittance in the diode region. We show that the existing two transport magnets are marginally capable of transporting a 1 kA beam to the a-cavity. This work is described in Sec. 2. In Sec. 3, we look at the possibility of accelerating a 4 kA, 4 MV beam, which could be provided by the REX machine, through the PHERMEX a cavity. Simulation results indicate that this is feasible. Because of the high cost and limited pulse length of a REX injector, however, a 1-1.5 kA upgrade is a more attractive option at this time. Computations in support of ongoing REX experiments are described in Sec. 4. We have modeled the generation of transverse beam oscillations through the excitation of an electromagnetic dipole mode in the diode cavity. Results show that oscillating magnetic fields on the order of 1--2 gauss are sufficient to cause the oscillation amplitudes observed. A simulation was carried to look at the effect of placing iron rings inside the windings of the REX anode magnet. We conclude that this causes no significant degradation of beam emittance. We have also looked at the focusing produced when the REX beam is injected into a laser-ionized plasma channel. This is a possible alternative to a magnetic lens to obtain a small spot-size. Finally, in Sec. 5, we give results of preliminary calculations of XUV and X-ray photon production through laser backscattering off a relativistic electron beam. There are plans to carry out such an experiment on REX in the near future.

  2. Development of an XUV-IR free-electron laser user facility for scientific research and industrial applications

    SciTech Connect

    Newnam, B.E.; Warren, R.W.; Conradson, S.D.; Goldstein, J.C.; McVey, B.D.; Schmitt, M.J.; Elliott, C.J.; Burns, M.J.; Carlsten, B.E.; Chan, K.C.; Johnson, W.J.; Wang, T.S.; Sheffield, R.L.; Meier, K.L.; Olsher, R.H.; Scott, M.L.; Griggs, J.E.

    1991-01-01

    Los Alamos has designed and proposes to establish an XUV-IR free- electron laser (FEL) user facility for scientific research and industrial applications based on coherent radiation ranging from soft x-rays as short as 1 nm to far-infrared wavelengths as long as 100 {mu}m. As the next-generation light source beyond low-emittance storage rings with undulator insertion devices, this proposed national FEL user facility should make available to researchers broadly tunable, picosecond-pulse, coherent radiation with 10{sup 4} to 10{sup 7} greater spectral flux and brightness. The facility design is based on two series of FEL oscillators including one regenerative amplifier. The primary series of seven FEL oscillators, driven by a single, 1-GeV rf linac, spans the short-wavelength range from 1 to 600 nm. A second 60-MeV rf linac, synchronized with the first, drives a series of three Vis/IR FEL oscillators to cover the 0. 5 to 100-{mu}m range. This paper presents the motivation for such a facility arising from its inherently high power per unit bandwidth and its potential use for an array of scientific and industrial applications, describes the facility design, output parameters, and user laboratories, makes comparisons with synchrotron radiation sources, and summarizes recent technical progress that supports the technical feasibility. 80 refs., 9 figs., 6 tabs.

  3. Creation and control of a single coherent attosecond xuv pulse by few-cycle intense laser pulses

    NASA Astrophysics Data System (ADS)

    Carrera, Juan J.; Tong, X. M.; Chu, Shih-I.

    2006-08-01

    We present ab initio quantum and classical investigations on the production and control of a single attosecond pulse by using few-cycle intense laser pulses as the driving field. The high-harmonic-generation power spectrum is calculated by accurately and efficiently solving the time-dependent Schrödinger equation using the time-dependent generalized pseudospectral method. The time-frequency characteristics of the attosecond xuv pulse are analyzed in detail by means of the wavelet transform of the time-dependent induced dipole. To better understand the physical processes, we also perform classical trajectory simulation of the strong-field electron dynamics and electron returning energy map. We found that the quantum and classical results provide complementary and consistent information regarding the underlying mechanisms responsible for the production of the coherent attosecond pulse. For few-cycle (5fs) driving pulses, it is shown that the emission of the consecutive harmonics in the supercontinuum cutoff regime can be synchronized and locked in phase resulting in the production of a coherent attosecond pulse. Moreover, the time profile of the attosecond pulses can be controlled by tuning the carrier envelope phase.

  4. High power density spray cooling

    NASA Astrophysics Data System (ADS)

    Tilton, Donald E.; Pais, Martin R.; Chow, Louis C.

    1989-07-01

    The research reported describes experimental and theoretical investigations of high power density evaporative spray cooling. Preliminary experiments demonstrating heat fluxes greater than 1,000 W/sq cm were conducted. Extensive laser phase Doppler measurements of spray characteristics were also taken. These measurements provided valuable insight into the heat transfer process. An in-depth analysis was conducted to determine the mechanisms responsible for critical heat flux. Theoretical modeling was also conducted to determine the most desirable heat transfer conditions. After analysis of these results, an improved experimental apparatus was designed and fabricated. The new apparatus provided greater experimental control and improve accuracy. New tests were conducted in which the critical heat flux was increased, and the heat transfer efficiency was greatly improved. These results are compared to those of previous researchers, and indicated substantial improvement.

  5. Photo-induced dynamics in heterocyclic aromatic molecules probed by femtosecond XUV transient absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Lackner, Florian; Chatterley, Adam S.; Pemmaraju, Chaitanya D.; Neumark, Daniel M.; Leone, Stephen R.; Gessner, Oliver

    2016-05-01

    We report on the ring-opening and dissociation dynamics of strong-field ionized selenophene (C4 H4 Se), studied by transient XUV absorption spectroscopy at the Se 3d edge. The table-top experiments are facilitated by high-order harmonic generation coupled with a gas phase transient XUV absorption setup that is optimized for the study of organic compounds. Employing element-specific core-to-valence transitions, the ultrafast molecular dynamics are monitored from the perspective of the well-localized Se atoms. Spectral features are assigned based on first principles TDDFT calculations for a large manifold of electronic states. We observe signatures of rapidly (~ 35 fs) decaying highly excited molecular cations, the formation of ring-opened products on a 100 fs time scale and, most notably, the elimination of bare Se+ ions in a very rapid multi-step process. A delayed onset of the Se+ ions provides direct evidence that both selenium-carbon bonds are broken within only ~ 130 fs and that a sequential mechanism, presumably an initial ring-opening followed by a subsequent breaking of the second bond, is required to eliminate the atomic fragments.

  6. Optical concept of a compressor for XUV pulses in the attosecond domain.

    PubMed

    Frassetto, Fabio; Villoresi, Paolo; Poletto, Luca

    2008-04-28

    We discuss the phase properties of a double-grating compressor with grazing-incidence gratings in the off-plane mount, designed for the temporal compression of XUV attosecond pulses produced with the technique of high-order harmonic generation. Its purpose is to introduce a negative chirp that compensates for the intrinsic chirp of the pulse. The study is based on the path lengths of the rays at different wavelengths, and their control in order to achieve either positive or negative group-delay dispersion. We demonstrate that the sign and the amount of the dispersion introduced is controlled by a linear translation of a grating. Beside the instrument is expected to present a high throughput, constant along the spectrum of interest. The compressor can be designed for any spectral region in the XUV and soft X-ray domain. As a test case, the applications to the compression of attosecond pulses centered at 70 eV and at 160 eV are discussed. PMID:18545369

  7. Optics assembly for high power laser tools

    DOEpatents

    Fraze, Jason D.; Faircloth, Brian O.; Zediker, Mark S.

    2016-06-07

    There is provided a high power laser rotational optical assembly for use with, or in high power laser tools for performing high power laser operations. In particular, the optical assembly finds applications in performing high power laser operations on, and in, remote and difficult to access locations. The optical assembly has rotational seals and bearing configurations to avoid contamination of the laser beam path and optics.

  8. High power laser apparatus and system

    NASA Technical Reports Server (NTRS)

    Evans, J. C., Jr.; Brandhorst, H. W., Jr. (Inventor)

    1975-01-01

    A high-power, continuous-wave laser was designed for use in power transmission and energy-collecting systems, and for producing incoherent light for pumping a laser material. The laser has a high repetitive pulsing rate per unit time, resulting in a high-power density beam. The laser is composed of xenon flash tubes powered by fast-charging capacitors flashed in succession by a high-speed motor connected to an automobile-type distributor.

  9. Long-term operation of surface high-harmonic generation from relativistic oscillating mirrors using a spooling tape

    DOE PAGESBeta

    Bierbach, Jana; Yeung, Mark; Eckner, Erich; Roedel, Christian; Kuschel, Stephan; Zepf, Matt; Paulus, Gerhard G.

    2015-05-01

    Surface high-harmonic generation in the relativistic regime is demonstrated as a source of extreme ultra-violet (XUV) pulses with extended operation time. Relativistic high-harmonic generation is driven by a frequency-doubled high-power Ti:Sapphire laser focused to a peak intensity of 3·1019 W/cm2 onto spooling tapes. We demonstrate continuous operation over up to one hour runtime at a repetition rate of 1 Hz. Harmonic spectra ranging from 20 eV to 70 eV (62 nm to 18 nm) were consecutively recorded by an XUV spectrometer. An average XUV pulse energy in the µJ range is measured. With the presented setup, relativistic surface high-harmonic generationmore » becomes a powerful source of coherent XUV pulses that might enable applications in, e.g. attosecond laser physics and the seeding of free-electron lasers, when the laser issues causing 80-% pulse energy fluctuations are overcome.« less

  10. Mo/Si multilayer-coated amplitude-division beam splitters for XUV radiation sources

    PubMed Central

    Sobierajski, Ryszard; Loch, Rolf Antonie; van de Kruijs, Robbert W. E.; Louis, Eric; von Blanckenhagen, Gisela; Gullikson, Eric M.; Siewert, Frank; Wawro, Andrzej; Bijkerk, Fred

    2013-01-01

    Amplitude-division beam splitters for XUV radiation sources have been developed and extensively characterized. Mo/Si multilayer coatings were deposited on 50 nm-thick SiN membranes. By changing the multilayer structure (periodicity, number of bilayers, etc.) the intensity of the reflected and transmitted beams were optimized for selected incident radiation parameters (wavelength, incident angle). The developed optical elements were characterized by means of XUV reflectometry and transmission measurements, atomic force microscopy and optical interferometry. Special attention was paid to the spatial homogeneity of the optical response and reflected beam wavefront distortions. Here the results of the characterization are presented and improvements required for advanced applications at XUV free-electron lasers are identified. A flatness as low as 4 nm r.m.s. on 3 × 3 mm beam splitters and 22 nm r.m.s. on 10 × 10 mm beam splitters has been obtained. The high-spatial-frequency surface roughness was about 0.7–1 nm r.m.s. The middle-spatial-frequency roughness was in the range 0.2–0.8 nm r.m.s. The reflection and transmission of the beam splitters were found to be very homogeneous, with a deviation of less than 2% across the full optical element. PMID:23412481

  11. High power ion thruster performance

    NASA Technical Reports Server (NTRS)

    Rawlin, Vincent K.; Patterson, Michael J.

    1987-01-01

    The ion thruster is one of several forms of space electric propulsion being considered for use on future SP-100-based missions. One possible major mission ground rule is the use of a single Space Shuttle launch. Thus, the mass in orbit at the reactor activation altitude would be limited by the Shuttle mass constraints. When the spacecraft subsystem masses are subtracted from this available mass limit, a maximum propellant mass may be calculated. Knowing the characteristics of each type of electric thruster allows maximum values of total impulse, mission velocity increment, and thrusting time to be calculated. Because ion thrusters easily operate at high values of efficiency (60 to 70%) and specific impulse (3000 to 5000 sec), they can impart large values of total impulse to a spacecraft. They also can be operated with separate control of the propellant flow rate and exhaust velocity. This paper presents values of demonstrated and projected performance of high power ion thrusters used in an analysis of electric propulsion for an SP-100 based mission.

  12. Interference effects and Stark broadening in XUV intrashell transitions in aluminum under conditions of intense XUV free-electron-laser irradiation

    NASA Astrophysics Data System (ADS)

    Galtier, E.; Rosmej, F. B.; Calisti, A.; Talin, B.; Mossé, C.; Ferri, S.; Lisitsa, V. S.

    2013-03-01

    Quantum mechanical interference effects in the line broadening of intrashell transitions are investigated for dense plasma conditions. Simulations that involved LSJ-split level structure and intermediate coupling discovered unexpected strong line narrowing for intrashell transitions L-L while M-L transitions remained practically unaffected by interference effects. This behavior allows a robust study of line narrowing in dense plasmas. Simulations are carried out for XUV transitions of aluminum that have recently been observed in experiments with the FLASH free-electron laser in Hamburg irradiating solid aluminum samples with intensities greater than 1016 W/cm2. We explore the advantageous case of Al that allows, first, simultaneous observation of M-L transitions and L-L intrashell transitions with high-resolution grating spectrometers and, second, has a convenient threshold to study interference effects at densities much below solid. Finally, we present simulations at near solid density where the line emission transforms into a quasicontinuum.

  13. Double Lloyd's mirror: versatile instrument for XUV surface interferometry and interferometric microscopy

    NASA Astrophysics Data System (ADS)

    Kozlova, M.; Rus, B.; Mocek, T.; Polan, J.; Stupka, M.; Prag, A.; Homer, P.; Hudecek, M.; Jamelot, G.; Lagron, J. C.; Cassou, K.; Ros, D.; Kazamias, S.; Klisnick, A.; Park, J.-J.; Nam, C.-H.

    2005-09-01

    We have developed a double Lloyd's mirror wavefront-splitting interferometer, constituting a compact device for surface probing in the XUV and soft X-ray spectral domain. The device consists of two independently adjustable superpolished flat surfaces, operated under grazing incidence angle to reflect a diverging or parallel beam. When the mirrors are appropriately inclined to each other, the structure produces interference fringes at the required distance and with tuneable fringe period. The double Lloyd's mirror may be used alone for surface topography with nanometric altitude resolution, or in conjunction with an imaging element for interferometric XUV surface microscopy. In the latter case, resolution in the plane of the probed surface is about micron, which is given by the quality of the imaging element and/or by the detector pixel size. Here, we present results obtained using the double Lloyd's mirror in two separate X-ray laser and high harmonics generation (HHG) application projects. The first experiment was aimed at understanding microscopic nature of the effects involved in laserinduced optical damage of thin pellicles, exposed to sub-ns laser pulses (438 nm) producing fluence of up to 10 Jcm-2. The probing source in this case was a QSS neon-like zinc soft X-ray laser, proving a few mJ at 21.2 nm in ~100-ps pulses. The second experiment was carried out using a narrowly collimated HHG beam near 30 nm, employed to topographically probe the surface of a semiconductor chip.

  14. Channel electron multipliers - Detection efficiencies with opaque MgF2 photocathodes at XUV wavelengths

    NASA Technical Reports Server (NTRS)

    Lapson, L. B.; Timothy, J. G.

    1976-01-01

    Detection efficiencies of channel electron multipliers (CEM) with opaque MgF2 photocathodes obtained in the extreme ultraviolet (XUV), 44 A to 990 A, are reported. A stable highly efficient response is reported for that interval, with no adverse effects on CEM performance. Efficiencies twice those of uncoated CEMs are obtained for 50 A to 350 A. The Mullard B419BL and Galileo 4510WL single-stage cone-cathode CEMs were used in the experiments. A rare-gas double ionization chamber was employed as absolute standard detector for 406 A to 990 A, and a flow Geiger counter filled with 96% argon and 4% isobutane for 44 A to 256 A. Absolute detection efficiencies are 10% higher from 67 A to 990 A when photocathodes are illuminated at an angle of incidence 45 deg. The photocathodes suffered no loss of response in storage (in vacuum or air) after an initial aging period. Effects of scattered UV radiation are greatly reduced when MgF2-coated CEMs are used in the XUV.

  15. Subkilovolt response of Kodak T max XUV film

    SciTech Connect

    Dittmore, C.; Stoering, J.P. ); Gullikson, E. )

    1990-02-08

    A calibration of Kodak T max 100 XUV film at six x-ray energies ranging from 0.27 keV to 1.49 keV has been concluded. The primary purpose was to compare the sensitivity of this film to that of Kodak type 101-07 XUV film in order to appraise the feasibility of replacing the type 101-07 film with the type T max 100 film. In addition to being considerably less expensive, the T max 100 film is less disposed to abrasion from handling. A secondary objective was to provide a base for further response measurements should the T max 100 film prove to be an acceptable substitute for the type 101-07 film. 10 figs., 2 tabs.

  16. Ablation of CsI by XUV Capillary Discharge Laser

    NASA Astrophysics Data System (ADS)

    Pira, Peter; Zelinger, Zdenek; Burian, Tomas; Vysin, Ludek; Wild, Jan; Juha, Libor; Lancok, Jan; Nevrly, Vaclav

    2015-09-01

    XUV capillary discharge laser (CDL) is suitable source for ablation of ionic crystals as material which is difficult to ablate by conventional laser. Single crystal of CsI was irradiated by 2.5 ns pulses of a 46.9 nm radiation at 2 Hz. The CDL beam was focused by Sc/Si multilayer spherical mirror. Attenuation length of CsI for this wavelength is 38 nm. Ablation rate was calculated after irradiation of 10, 20, 30, 50 and 100 pulses. Depth of the craters was measured by optical profiler (white light interferometry). Ablation threshold was determined from craters after irradiation with the changing fluence and compared with modeling by XUV-ABLATOR.

  17. The XUV spectroheliometer on SMM. [Solar Maximum Mission

    NASA Technical Reports Server (NTRS)

    Reeves, E. M.; Zombeck, M. V.

    1978-01-01

    The XUV spectroheliometer for the Solar Maximum Mission (SMM) is described. This instrument is a grazing-incidence polychromatic photoelectric spectrometer illuminated by a grazing-incidence telescope mirror. The wavelength range is 20-1336 A, the spectral resolution is between 0.1 and 0.3 A, and the spatial resolution is 4 arcsec. Simultaneous spectroheliograms in twelve spectral lines are obtained by rastering the instrument at variable rates. The scientific objectives and the mission operations concept are also described.

  18. Isolated 80 as XUV pulses characterized by PROOF

    NASA Astrophysics Data System (ADS)

    Zhao, Kun; Zhang, Qi; Chini, Michael; Khan, Sabih; Gilbertson, Steve; Chang, Zenghu

    2011-05-01

    Attosecond extreme ultraviolet (XUV) pulses are a useful tool for studying electron dynamics. Double optical gating (DOG) was developed to generate isolated attosecond pulses with broad XUV spectra, violating the central momentum approximation (CMA) of FROG-CRAB (frequency-resolved optical gating for complete reconstruction of Attosecond bursts) for characterizing attosecond pulses. For broadband pulses, PROOF (phase retrieval by omega oscillation filtering) was developed. The quantum interference of the continuum states in the dressing laser field in a streak camera was utilized to retrieve the spectral phase of the XUV pulses. PROOF does not rely on the CMA and sets no limit on the bandwidth. In the experiments, isolated attosecond pulses with continuous spectra from 25 to 80 eV were generated with DOG. The bandwidth is larger than the photoelectron center energy. The pulses are retrieved by FROG-CRAB and PROOF. While the two methods retrieve same 80 as pulses for a nearly transform-limited spectrum, they deviate significantly for a chirped spectrum due to the violation of the CMA in FROG-CRAB.

  19. Simplified High-Power Inverter

    NASA Technical Reports Server (NTRS)

    Edwards, D. B.; Rippel, W. E.

    1984-01-01

    Solid-state inverter simplified by use of single gate-turnoff device (GTO) to commutate multiple silicon controlled rectifiers (SCR's). By eliminating conventional commutation circuitry, GTO reduces cost, size and weight. GTO commutation applicable to inverters of greater than 1-kilowatt capacity. Applications include emergency power, load leveling, drives for traction and stationary polyphase motors, and photovoltaic-power conditioning.

  20. Investigating two-photon double ionization of D2 by XUV-Pump -- XUV-Probe experiments at FLASH

    SciTech Connect

    FLASH Collaboration; Jiang, Y.; Rudenko, A.; Perez-Torres, J.; Foucar, L.; Kurka, M.; Kuhnel, K.; Toppin, M.; Plesiat, E.; Morales, F.; Martin, F.; Herrwerth, O.; Lezius, M.; Kling, M.; Jahnke, T.; Dorner, R.; Sanz-Vicario, J.; van Tilborg, J.; Belkacem, A.; Schulz, M.; Ueda, K.; Zouros, T.; Dusterer, S.; Treusch, R.; Schroter, C.; Moshammer, R.; Ullrich, J.

    2010-08-02

    Using a novel split-mirror set-up attached to a Reaction Microscope at the Free electron LASer in Hamburg (FLASH) we demonstrate an XUV-pump -- XUV-probe ((hbar omega = 38 eV) experiment by tracing the ultra-fast nuclear wave-packet motion in the D2+ (1s sigma g-state) with<10 fs time resolution. Comparison with time-dependent calculations yields excellent agreement with the measured vibrational period of 22+-4 fs in D2+, points to the importance of the inter-nuclear distance dependent ionization probability and paves the way to control sequential and non-sequential two-photon double ionization contributions.

  1. Rotary high power transfer apparatus

    NASA Technical Reports Server (NTRS)

    Jacobson, Peter E. (Inventor); Porter, Ryan S. (Inventor)

    1987-01-01

    An apparatus for reducing terminal-to-terminal circuit resistance and enhancing heat transfer in a rotary power transfer apparatus of the roll ring type comprising a connecting thimble for attaching an external power cable to a cone shaped terminal which is attached to a tab integral to an outer ring. An inner ring having a spherical recess mates with the spherical end of a tie connector. A cone shaped terminal is fitted to a second connecting thimble for attaching a second external power cable.

  2. High power RF solid state power amplifier system

    NASA Technical Reports Server (NTRS)

    Sims, III, William Herbert (Inventor); Chavers, Donald Gregory (Inventor); Richeson, James J. (Inventor)

    2011-01-01

    A high power, high frequency, solid state power amplifier system includes a plurality of input multiple port splitters for receiving a high-frequency input and for dividing the input into a plurality of outputs and a plurality of solid state amplifier units. Each amplifier unit includes a plurality of amplifiers, and each amplifier is individually connected to one of the outputs of multiport splitters and produces a corresponding amplified output. A plurality of multiport combiners combine the amplified outputs of the amplifiers of each of the amplifier units to a combined output. Automatic level control protection circuitry protects the amplifiers and maintains a substantial constant amplifier power output.

  3. High-Power Electromagnetic Thruster Being Developed

    NASA Technical Reports Server (NTRS)

    LaPointe, Michael R.; Mikellides, Pavlos G.

    2001-01-01

    High-power electromagnetic thrusters have been proposed as primary in-space propulsion options for several bold new interplanetary and deep-space missions. As the lead center for electric propulsion, the NASA Glenn Research Center designs, develops, and tests high-power electromagnetic technologies to meet these demanding mission requirements. Two high-power thruster concepts currently under investigation by Glenn are the magnetoplasmadynamic (MPD) thruster and the Pulsed Inductive Thruster (PIT).

  4. Status of high power electric propulsion technology

    NASA Technical Reports Server (NTRS)

    Byers, David C.; Stone, James R.

    1988-01-01

    The growing emphasis on very challenging missions and the anticipated availability of high power levels in space have led to renewed interest in high power electric propulsion. The status of high power electric propulsion technology and its applicability to various missions are reviewed. The major thruster and system technology issues are identified which must be addressed in a focussed program in order to assure technology readiness for these missions.

  5. Optimization of Extreme Ultraviolet Light Source from High Harmonic Generation for Condensed-Phase Core-Level Spectroscopy

    NASA Astrophysics Data System (ADS)

    Lin, Ming-Fu; Verkamp, Max A.; Ryland, Elizabeth S.; Benke, Kristin; Zhang, Kaili; Carlson, Michaela; Vura-Weis, Josh

    2015-06-01

    Extreme ultraviolet (XUV) light source from high-order harmonic generation has been shown to be a powerful tool for core-level spectroscopy. In addition, this light source provides very high temporal resolution (10-18 s to 10-15 s) for time-resolved transient absorption spectroscopy. Most applications of the light source have been limited to the studies of atomic and molecular systems, with technique development focused on optimizing for shorter pulses (i.e. tens of attoseconds) or higher XUV energy (i.e. ~keV range). For the application to general molecular systems in solid and liquid forms, however, the XUV photon flux and stability are highly demanded due to the strong absorption by substrates and solvents. In this case, the main limitation is due to the stability of the high order generation process and the limited bandwidth of the XUV source that gives only discrete even/odd order peaks. Consequently, this results in harmonic artifact noise that overlaps with the resonant signal. In our current study, we utilize a semi-infinite cell for high harmonic generation from two quantum trajectories (i.e. short and long) at over-driven NIR power. This condition, produces broad XUV spectrum without using complicated optics (e.g. hollow-core fibers and double optical gating). This light source allows us to measure the static absorption spectrum of the iron M-edge from a Fe(acac)3 molecular solid film, which shows a resonant feature of 0.01 OD (~2.3% absorption). Moreover, we also investigate how sample roughness affects the static absorption spectrum. We are able to make smooth solar cell precursor materials (i.e. PbI2 and PbBr2) by spin casting and observe iodine (50 eV) and bromine (70 eV) absorption edges in the order of 0.05 OD with minimal harmonic artifact noise.

  6. High average power induction accelerators

    SciTech Connect

    Swingle, J.C.

    1985-10-01

    The induction accelerator is discussed with respect to general background and concept, beam transport, scaling, pulse power technology, and the electron beam injector. A discussion of the factors which affect the scaling of the intensity of the beam is given. Limiting factors include collective forces in the beam, virtual cathode formation, surroundings, and beam breakup instability. 24 refs., 11 figs. (WRF)

  7. A High Power Frequency Doubled Fiber Laser

    NASA Technical Reports Server (NTRS)

    Thompson, Robert J.; Tu, Meirong; Aveline, Dave; Lundblad, Nathan; Maleki, Lute

    2003-01-01

    This viewgraph presentation reports on the development of a high power 780 nm laser suitable for space applications of laser cooling. A possible solution is to use frequency doubling of high power 1560 nm telecom lasers. The presentation shows a diagram of the frequency conversion, and a graph of the second harmonic generation in one crystal, and the use of the cascading crystals. Graphs show the second harmonic power as a function of distance between crystals, second harmonic power vs. pump power, tunability of laser systems.

  8. XUV spectrum of C I observed from Skylab during a solar flare

    NASA Technical Reports Server (NTRS)

    Feldman, U.; Brown, C. M.; Doschek, G. A.; Moore, C. E.; Rosenberg, F. D.

    1976-01-01

    A list of 193 neutral carbon lines observed in the XUV spectrum of a solar flare between 100 and 2000 A using the normal incidence spectrograph flown on Skylab is presented. Of these, 69 are newly identified lines arising from transitions from upper levels of high quantum number where the quantum number is not less than six. The new lines have allowed the determination of 63 new energy levels. Wavelengths for an additional 109 transitions were calculated by polynomial fitting using reference wavelengths of unblended neutral carbon, Si, N, and S lines emitted in the same atmospheric regions of the flare. The calculated lines falling between 1102 and 1140 A were not observed due to low instrumental efficiency at these wavelengths. The calculated wavelengths are in excellent agreement with those of Johansson (1965). It appears that in solar spectra recombination processes are dominant, enhancing the populations of the high quantum levels relative to the populations of levels with small quantum numbers.

  9. Development of XUV-interferometry (155 {angstrom}) using a soft x-ray laser

    SciTech Connect

    Da Silva, L.B.; Barbee, T.W.; Cauble, R.

    1995-08-01

    Over the past several years the authors have developed a variety of techniques for probing plasmas with x-ray lasers. These have included direct high resolution plasma imaging to quantify laser produced plasma uniformities and moire deflectometry to measure electron density profiles in one-dimension. Although these techniques have been valuable, a need existed for direct two dimensional measurements of electron densities in large high density plasmas. For this reason the authors have worked on developing a xuv interferometer compatible with the harsh environment of laser produced plasmas. This paper describes the design and presents some results showing excellent fringe visibility using the neon-like yttrium x-ray laser operating at 155 {angstrom}. The coherence properties of this x-ray laser source were measured using interferometry and are also discussed.

  10. The at-wavelength metrology facility for UV- and XUV-reflection and diffraction optics at BESSY-II

    PubMed Central

    Schäfers, F.; Bischoff, P.; Eggenstein, F.; Erko, A.; Gaupp, A.; Künstner, S.; Mast, M.; Schmidt, J.-S.; Senf, F.; Siewert, F.; Sokolov, A.; Zeschke, Th.

    2016-01-01

    A technology center for the production of high-precision reflection gratings has been established. Within this project a new optics beamline and a versatile reflectometer for at-wavelength characterization of UV- and XUV-reflection gratings and other (nano-) optical elements has been set up at BESSY-II. The Plane Grating Monochromator beamline operated in collimated light (c-PGM) is equipped with an SX700 monochromator, of which the blazed gratings (600 and 1200 lines mm−1) have been recently exchanged for new ones of improved performance produced in-house. Over the operating range from 10 to 2000 eV this beamline has very high spectral purity achieved by (i) a four-mirror arrangement of different coatings which can be inserted into the beam at different angles and (ii) by absorber filters for high-order suppression. Stray light and scattered radiation is removed efficiently by double sets of in situ exchangeable apertures and slits. By use of in- and off-plane bending-magnet radiation the beamline can be adjusted to either linear or elliptical polarization. One of the main features of a novel 11-axes reflectometer is the possibility to incorporate real life-sized gratings. The samples are adjustable within six degrees of freedom by a newly developed UHV-tripod system carrying a load up to 4 kg, and the reflectivity can be measured between 0 and 90° incidence angle for both s- and p-polarization geometry. This novel powerful metrology facility has gone into operation recently and is now open for external users. First results on optical performance and measurements on multilayer gratings will be presented here. PMID:26698047

  11. The at-wavelength metrology facility for UV- and XUV-reflection and diffraction optics at BESSY-II.

    PubMed

    Schäfers, F; Bischoff, P; Eggenstein, F; Erko, A; Gaupp, A; Künstner, S; Mast, M; Schmidt, J-S; Senf, F; Siewert, F; Sokolov, A; Zeschke, Th

    2016-01-01

    A technology center for the production of high-precision reflection gratings has been established. Within this project a new optics beamline and a versatile reflectometer for at-wavelength characterization of UV- and XUV-reflection gratings and other (nano-) optical elements has been set up at BESSY-II. The Plane Grating Monochromator beamline operated in collimated light (c-PGM) is equipped with an SX700 monochromator, of which the blazed gratings (600 and 1200 lines mm(-1)) have been recently exchanged for new ones of improved performance produced in-house. Over the operating range from 10 to 2000 eV this beamline has very high spectral purity achieved by (i) a four-mirror arrangement of different coatings which can be inserted into the beam at different angles and (ii) by absorber filters for high-order suppression. Stray light and scattered radiation is removed efficiently by double sets of in situ exchangeable apertures and slits. By use of in- and off-plane bending-magnet radiation the beamline can be adjusted to either linear or elliptical polarization. One of the main features of a novel 11-axes reflectometer is the possibility to incorporate real life-sized gratings. The samples are adjustable within six degrees of freedom by a newly developed UHV-tripod system carrying a load up to 4 kg, and the reflectivity can be measured between 0 and 90° incidence angle for both s- and p-polarization geometry. This novel powerful metrology facility has gone into operation recently and is now open for external users. First results on optical performance and measurements on multilayer gratings will be presented here. PMID:26698047

  12. Ultrafast XUV spectroscopy: Unveiling the nature of electronic couplings in molecular dynamics

    NASA Astrophysics Data System (ADS)

    Timmers, Henry Robert

    Molecules are traditionally treated quantum mechanically using the Born-Oppenheimer formalism. In this formalism, different electronic states of the molecule are treated independently. However, most photo-initiated phenomena occurring in nature are driven by the couplings between different electronic states in both isolated molecules and molecular aggregates, and therefore occur beyond the Born-Oppenheimer formalism. These couplings are relevant in reactions relating to the perception of vision in the human eye, the oxidative damage and repair of DNA, the harvesting of light in photosynthesis, and the transfer of charge across large chains of molecules. While these reaction dynamics have traditionally been studied with visible and ultraviolet spectroscopy, attosecond XUV pulses formed through the process of high harmonic generation form a perfect tool for probing coupled electronic dynamics in molecules. In this thesis, I will present our work in using ultrafast, XUV spectroscopy to study these dynamics in molecules of increasing complexity. We begin by probing the relaxation dynamics of superexcited states in diatomic O 2. These states can relax via two types of electronic couplings, either through autoionization or neutral dissociation. We find that our pump-probe scheme can disentangle the two relaxation mechanisms and independently measure their contributing lifetimes. Next, we present our work in observing a coherent electron hole wavepacket initiated by the ionization of polyatomic CO 2 near a conical intersection. The electron-nuclear couplings near the conical intersection drive the electron hole between different orbital configurations. We find that we can not only measure the lifetime of quantum coherence in the electron hole wavepacket, but also control its evolution with a strong, infrared probing field. Finally, we propose an experiment to observe the migration of an electron hole across iodobenzene on the few-femtosecond timescale. We present

  13. High Average Power Yb:YAG Laser

    SciTech Connect

    Zapata, L E; Beach, R J; Payne, S A

    2001-05-23

    We are working on a composite thin-disk laser design that can be scaled as a source of high brightness laser power for tactical engagement and other high average power applications. The key component is a diffusion-bonded composite comprising a thin gain-medium and thicker cladding that is strikingly robust and resolves prior difficulties with high average power pumping/cooling and the rejection of amplified spontaneous emission (ASE). In contrast to high power rods or slabs, the one-dimensional nature of the cooling geometry and the edge-pump geometry scale gracefully to very high average power. The crucial design ideas have been verified experimentally. Progress this last year included: extraction with high beam quality using a telescopic resonator, a heterogeneous thin film coating prescription that meets the unusual requirements demanded by this laser architecture, thermal management with our first generation cooler. Progress was also made in design of a second-generation laser.

  14. An explosively driven high-power microwave pulsed power system

    NASA Astrophysics Data System (ADS)

    Elsayed, M. A.; Neuber, A. A.; Dickens, J. C.; Walter, J. W.; Kristiansen, M.; Altgilbers, L. L.

    2012-02-01

    The increased popularity of high power microwave systems and the various sources to drive them is the motivation behind the work to be presented. A stand-alone, self-contained explosively driven high power microwave pulsed power system has been designed, built, and tested at Texas Tech University's Center for Pulsed Power and Power Electronics. The system integrates four different sub-units that are composed of a battery driven prime power source utilizing capacitive energy storage, a dual stage helical flux compression generator as the main energy amplification device, an integrated power conditioning system with inductive energy storage including a fast opening electro-explosive switch, and a triode reflex geometry virtual cathode oscillator as the microwave radiating source. This system has displayed a measured electrical source power level of over 5 GW and peak radiated microwaves of about 200 MW. It is contained within a 15 cm diameter housing and measures 2 m in length, giving a housing volume of slightly less than 39 l. The system and its sub-components have been extensively studied, both as integrated and individual units, to further expand on components behavior and operation physics. This report will serve as a detailed design overview of each of the four subcomponents and provide detailed analysis of the overall system performance and benchmarks.

  15. Test facilities for high power electric propulsion

    NASA Technical Reports Server (NTRS)

    Sovey, James S.; Vetrone, Robert H.; Grisnik, Stanley P.; Myers, Roger M.; Parkes, James E.

    1991-01-01

    Electric propulsion has applications for orbit raising, maneuvering of large space systems, and interplanetary missions. These missions involve propulsion power levels from tenths to tens of megawatts, depending upon the application. General facility requirements for testing high power electric propulsion at the component and thrust systems level are defined. The characteristics and pumping capabilities of many large vacuum chambers in the United States are reviewed and compared with the requirements for high power electric propulsion testing.

  16. High efficiency solar photovoltaic power module concept

    NASA Technical Reports Server (NTRS)

    Bekey, I.

    1978-01-01

    The investigation of a preliminary concept for high efficiency solar power generation in space is presented. The concept was a synergistic combination of spectral splitting, tailored bandgap cells, high concentration ratios, and cool cell areas.

  17. High power laser perforating tools and systems

    DOEpatents

    Zediker, Mark S; Rinzler, Charles C; Faircloth, Brian O; Koblick, Yeshaya; Moxley, Joel F

    2014-04-22

    ystems devices and methods for the transmission of 1 kW or more of laser energy deep into the earth and for the suppression of associated nonlinear phenomena. Systems, devices and methods for the laser perforation of a borehole in the earth. These systems can deliver high power laser energy down a deep borehole, while maintaining the high power to perforate such boreholes.

  18. Photoconductive switching for high power microwave generation

    SciTech Connect

    Pocha, M.D.; Hofer, W.W.

    1990-10-01

    Photoconductive switching is a technology that is being increasingly applied to generation of high power microwaves. Two primary semiconductors used for these devices are silicon and gallium arsenide. Diamond is a promising future candidate material. This paper discusses the important material parameters and switching modes, critical issues for microwave generation, and future directions for this high power, photoconductive switching technology.

  19. Automated System Tests High-Power MOSFET's

    NASA Technical Reports Server (NTRS)

    Huston, Steven W.; Wendt, Isabel O.

    1994-01-01

    Computer-controlled system tests metal-oxide/semiconductor field-effect transistors (MOSFET's) at high voltages and currents. Measures seven parameters characterizing performance of MOSFET, with view toward obtaining early indication MOSFET defective. Use of test system prior to installation of power MOSFET in high-power circuit saves time and money.

  20. High temperature power electronics for space

    NASA Technical Reports Server (NTRS)

    Hammoud, Ahmad N.; Baumann, Eric D.; Myers, Ira T.; Overton, Eric

    1991-01-01

    A high temperature electronics program at NASA Lewis Research Center focuses on dielectric and insulating materials research, development and testing of high temperature power components, and integration of the developed components and devices into a demonstrable 200 C power system, such as inverter. An overview of the program and a description of the in-house high temperature facilities along with experimental data obtained on high temperature materials are presented.

  1. A high power TWT power processing system. [for communication satellites

    NASA Technical Reports Server (NTRS)

    Farber, B. F.; Goldin, D. S.; Siegert, C.; Gourash, F.

    1974-01-01

    A power processing system (PPS) is designed for a space-type high power (200W RF) multi-collector traveling-wave tube (TWT). The basic power circuit is presented along with the simplified block diagram and the input, output, and general requirements for the PPS design are tabulated. The paper covers the PPS design as to critical TWT/PPS interface requirements, high voltage cathode/collector supply, high voltage components material, packaging, grounding and isolation, and electrical performance. The use of a single two loop control system for the regulation of cathode and collector voltages is shown to give high efficiency, excellent steady-state and transient performance characteristics, and complete protection for TWT and PPS components under transient conditions.

  2. High Density Power Converters for Photovoltaic Power Management

    NASA Astrophysics Data System (ADS)

    Sangwan, Rahul

    In typical photovoltaic systems, PV cells are connected in series to achieve high output voltages, which decreases conduction losses and helps the downstream power electronics operate at higher efficiencies. A series connection means that the current through the string is limited by the worst case cell, substring, or module, which can result in suboptimal operation of the rest of the string. Given how even small shading can have a large effect on performance, there has been growing interest in the use of distributed power management architectures to mitigate losses from variation in PV systems. In particular, partial power processing converters have gained traction as a means to improve the performance of PV arrays with small, distributed converters that configure in parallel with PV cells. These converters can use low voltage components, only process a fraction of the total power allowing them to achieve higher efficiencies and power density and also have higher reliability. This work details the design and operation of a partial power processing converter implemented as a Resonant Switched Capacitor (ReSC) converter. An integrated circuit (IC) is designed in 0.18 mum CMOS process. Operation at high frequencies (20-50 MHz) allows high levels of integration with air core inductors directly attached to the die through a gold bump, solder reflow process. Test results for the IC are presented with power density and efficiency metrics. The IC is then used as a partial power processing converter to implement equalization with a specially constructed PV panel. The converter is shown to mitigate power loss due to mismatch.

  3. The NASA CSTI High Capacity Power Project

    NASA Technical Reports Server (NTRS)

    Winter, J.; Dudenhoefer, J.; Juhasz, A.; Schwarze, G.; Patterson, R.; Ferguson, D.; Schmitz, P.; Vandersande, J.

    1992-01-01

    The elements of the Civilian Space Technology Initiative (CSTI) High Capacity Power Project include Systems Analysis, Stirling Power Conversion, Thermoelectric Power Conversion, Thermal Management, Power Management, Systems Diagnostics, Environmental Interactions, and Material/Structural Development. The overall project will develop and demonstrate the technology base required to provide a wide range of modular power systems compatible with the SP-100 reactor which facilitates operation during lunar and planetary day/night cycles as well as allowing spacecraft operation at any attitude or distance from the sun. Significant accomplishments in all of the project elements are presented, along with revised goals and project timelines recently developed.

  4. Averaging picosecond streak camera for time resolved x-ray and XUV spectroscopy of ultrashort plasmas

    NASA Astrophysics Data System (ADS)

    Maksimchuk, A.; Nantel, M.; Workman, J.; Umstadter, D.; Mourou, G.; Pikuz, S.

    1996-11-01

    We have developed an averaging picosecond x-ray streak camera that uses a DC-biased semi-insulating GaAs photoconductive switch as a generator of a high-voltage ramp for the deflection plates of the streak camera. The streak camera is operated at a sweep speed of up to 8 ps/mm, with a shot-to-shot jitter of 1 ps. The streak camera driven by this switch is absolutely synhronized with the femtosecond laser pulse and allows the direct accumulation of the x-ray temporal signals at a 10 Hz repetition rate. The streak camera has been used for the investigation of temporal behavior of keV x-ray lines and spectrally resolved XUV emission from solid target at the laser intensity of 10^17 W/cm^2. This work is supported by NSF under Grant STC PHY 8920108.

  5. Photospheric abundances of oxygen, neon, and argon derived from the XUV spectrum of an impulsive flare

    SciTech Connect

    Feldman, U.; Widing, K.G. )

    1990-11-01

    Relative elemental abundances of O, Ne, Na, Mg, Ar, and Ca are determined from detailed analysis of XUV spectra emitted by an impulsive flare. The electron density measured from three diagnostic line ratios is 2-3 x 10 to the 12th/cu cm. It was found that the relative abundances in the flare are similar to values obtained from or proposed for photospheric material. The ratios of O/Mg, Ne/Mg, and Ar/Mg are about four times higher in the impulsive flare than the values typically observed in the average corona. It is suggested that electric fields above the photosphere may be responsible for the order of magnitude variations between the abundances of the group of elements with high first ionization potentials (FIP) and the group with low FIP. 18 refs.

  6. High power radial klystron oscillator

    SciTech Connect

    Arman, M.J.

    1995-11-01

    The advantages of the radial klystron amplifier over the conventional klystron amplifier have been reported by Arman et al. Briefly, the radial structure of this design allows for much smaller impedances and thus higher power, the beam-cavity coupling is stronger because the beam travels inside the cavity, and the source is much more compact because there is no need for external magnetic fields. Here the author reports on possible advantages of the radial klystron oscillator over the radial klystron amplifier. The amplifying nature of certain HPM sources is often mandated by the requirement for synchronization and phase-locking of a number of sources in specific applications. In situations where amplification is solely adhered to for the purpose of achieving higher powers, the oscillator will be a better choice if a mechanism can be found to grow the desired mode at the required frequency. By switching to the oscillator mode there will be no need for priming the cavity or maintaining the phase. This simplifies the design and reduces the operational and maintenance cost of the source. Here he reports that an oscillator version of the radial klystron is possible and in fact more suitable for many applications. The mechanism for exciting and growing the mode will be transit-time effects thus providing all the beneficial features of the transit-time oscillators. The complications due to the presence of thin foils in the radial design still persist and will be dealt with in subsequent works. Numerical simulations using the PIC codes MAGIC and SOS indicate the radial klystron oscillator is a viable and efficient means of rf generation.

  7. High-Temperature Passive Power Electronics

    NASA Technical Reports Server (NTRS)

    1997-01-01

    In many future NASA missions - such as deep-space exploration, the National AeroSpace Plane, minisatellites, integrated engine electronics, and ion or arcjet thrusters - high-power electrical components and systems must operate reliably and efficiently in high-temperature environments. The high-temperature power electronics program at the NASA Lewis Research Center focuses on dielectric and insulating material research, the development and characterization of high-temperature components, and the integration of the developed components into a demonstrable 200 C power system - such as an inverter. NASA Lewis has developed high-temperature power components through collaborative efforts with the Air Force Wright Laboratory, Northrop Grumman, and the University of Wisconsin. Ceramic and film capacitors, molypermalloy powder inductors, and a coaxially wound transformer were designed, developed, and evaluated for high-temperature operation.

  8. High power ultrashort pulse lasers

    SciTech Connect

    Perry, M.D.

    1994-10-07

    Small scale terawatt and soon even petawatt (1000 terawatt) class laser systems are made possible by application of the chirped-pulse amplification technique to solid-state lasers combined with the availability of broad bandwidth materials. These lasers make possible a new class of high gradient accelerators based on the large electric fields associated with intense laser-plasma interactions or from the intense laser field directly. Here, we concentrate on the laser technology to produce these intense pulses. Application of the smallest of these systems to the production of high brightness electron sources is also introduced.

  9. HIGH AVERAGE POWER OPTICAL FEL AMPLIFIERS.

    SciTech Connect

    BEN-ZVI, ILAN, DAYRAN, D.; LITVINENKO, V.

    2005-08-21

    Historically, the first demonstration of the optical FEL was in an amplifier configuration at Stanford University [l]. There were other notable instances of amplifying a seed laser, such as the LLNL PALADIN amplifier [2] and the BNL ATF High-Gain Harmonic Generation FEL [3]. However, for the most part FELs are operated as oscillators or self amplified spontaneous emission devices. Yet, in wavelength regimes where a conventional laser seed can be used, the FEL can be used as an amplifier. One promising application is for very high average power generation, for instance FEL's with average power of 100 kW or more. The high electron beam power, high brightness and high efficiency that can be achieved with photoinjectors and superconducting Energy Recovery Linacs (ERL) combine well with the high-gain FEL amplifier to produce unprecedented average power FELs. This combination has a number of advantages. In particular, we show that for a given FEL power, an FEL amplifier can introduce lower energy spread in the beam as compared to a traditional oscillator. This properly gives the ERL based FEL amplifier a great wall-plug to optical power efficiency advantage. The optics for an amplifier is simple and compact. In addition to the general features of the high average power FEL amplifier, we will look at a 100 kW class FEL amplifier is being designed to operate on the 0.5 ampere Energy Recovery Linac which is under construction at Brookhaven National Laboratory's Collider-Accelerator Department.

  10. High power solid state switches

    NASA Astrophysics Data System (ADS)

    Gundersen, Martin

    1991-11-01

    We have successfully produced an optically triggered thyristor based in Gallium Arsenide, developed a model for breakdown, and are developing two related devices, including a Gallium Arsenide based static inductor thyristor. We are getting at the basic limitations of Gallium Arsenide for these applications, and are developing models for the physical processes that will determine device limitations. The previously supported gas phase work - resulting in the back-lighted thyratron (BLT) - has actually resulted in a very changed view of how switching can be accomplished, and this is impacting the design of important machines. The BLT is being studied internationally: in Japan for laser fusion and laser isotope separation. ITT has built a BLT that has switched 30 kA at 60 kV in testing at NSWC Dahlgren and the device is being commercialized by another American company. Versions of the switch are now being tested for excimer laser and other applications. Basically, the switch, which arose from pulse power physics studies at USC, can switch more current faster (higher di/dt), with less housekeeping, and with other advantageous properties. There are a large number of other new applications, include kinetic energy weapons, pulsed microwave sources and R.F. accelerators.

  11. High Power Picosecond Laser Pulse Recirculation

    SciTech Connect

    Shverdin, M Y; Jovanovic, I; Semenov, V A; Betts, S M; Brown, C; Gibson, D J; Shuttlesworth, R M; Hartemann, F V; Siders, C W; Barty, C P

    2010-04-12

    We demonstrate a nonlinear crystal-based short pulse recirculation cavity for trapping the second harmonic of an incident high power laser pulse. This scheme aims to increase the efficiency and flux of Compton-scattering based light sources. We demonstrate up to 36x average power enhancement of frequency doubled sub-millijoule picosecond pulses, and 17x average power enhancement of 177 mJ, 10 ps, 10 Hz pulses.

  12. NASA GRC High Power Electromagnetic Thruster Program

    NASA Technical Reports Server (NTRS)

    LaPointe, Michael R.; Pensil, Eric J.

    2004-01-01

    High-power electromagnetic thrusters have been proposed as primary in-space propulsion options for several bold new interplanetary and deep-space missions. As the lead center for electric propulsion, the NASA Glenn Research Center designs, develops, and tests high-power electromagnetic technologies to meet these demanding mission requirements. Two high-power thruster concepts currently under investigation by Glenn are the magnetoplasmadynamic (MPD) thruster and the Pulsed Inductive Thruster (PIT). This paper describes the MPD thruster and the test facility.

  13. High voltage photovoltaic power converter

    DOEpatents

    Haigh, Ronald E.; Wojtczuk, Steve; Jacobson, Gerard F.; Hagans, Karla G.

    2001-01-01

    An array of independently connected photovoltaic cells on a semi-insulating substrate contains reflective coatings between the cells to enhance efficiency. A uniform, flat top laser beam profile is illuminated upon the array to produce electrical current having high voltage. An essentially wireless system includes a laser energy source being fed through optic fiber and cast upon the photovoltaic cell array to prevent stray electrical signals prior to use of the current from the array. Direct bandgap, single crystal semiconductor materials, such as GaAs, are commonly used in the array. Useful applications of the system include locations where high voltages are provided to confined spaces such as in explosive detonation, accelerators, photo cathodes and medical appliances.

  14. High Power Co-Axial Coupler

    SciTech Connect

    Neubauer, M.; Dudas, A.; Rimmer, Robert A.; Guo, Jiquan; Williams, R. Scott

    2013-12-01

    A very high power Coax RF Coupler (MW-Level) is very desirable for a number of accelerator and commercial applications. For example, the development of such a coupler operating at 1.5 GHz may permit the construction of a higher-luminosity version of the Electron-Ion Collider (EIC) being planned at JLab. Muons, Inc. is currently funded by a DOE STTR grant to develop a 1.5-GHz high-power doublewindowcoax coupler with JLab (about 150 kW). Excellent progress has been made on this R&D project, so we propose an extension of this development to build a very high power coax coupler (MW level peak power and a max duty factor of about 4%). The dimensions of the current coax coupler will be scaled up to provide higher power capability.

  15. High-efficiency solid state power amplifier

    NASA Technical Reports Server (NTRS)

    Wallis, Robert E. (Inventor); Cheng, Sheng (Inventor)

    2005-01-01

    A high-efficiency solid state power amplifier (SSPA) for specific use in a spacecraft is provided. The SSPA has a mass of less than 850 g and includes two different X-band power amplifier sections, i.e., a lumped power amplifier with a single 11-W output and a distributed power amplifier with eight 2.75-W outputs. These two amplifier sections provide output power that is scalable from 11 to 15 watts without major design changes. Five different hybrid microcircuits, including high-efficiency Heterostructure Field Effect Transistor (HFET) amplifiers and Monolithic Microwave Integrated Circuit (MMIC) phase shifters have been developed for use within the SSPA. A highly efficient packaging approach enables the integration of a large number of hybrid circuits into the SSPA.

  16. An XUV/VUV free-electron laser oscillator

    NASA Astrophysics Data System (ADS)

    Goldstein, J. C.; Newnam, B. E.; Cooper, R. K.; Comly, J. C., Jr.

    Problems regarding the extension of free-electron laser technology from the visible and near infrared region, where such devices are currently operating, to the ultraviolet have recently been extensively discussed. It was found that significant technical problems must be overcome before free-electron lasers (FELs) can be operated in the VUV (100-200 nm) and the XUV (50-100). However, the present lack of other intense and tunable sources of coherent radiation at these wavelengths together with the intrinsic properties of FELs make the development of such devices potentially very rewarding. The properties of FELs include continuous tunability in wavelength and output in the form of a train of picosecond pulses. An investigation is conducted regarding the feasibility of an operation of a FEL in the XUV/VUV regions, taking into account a theoretical model. It is found that modest improvements in electron beam and optical mirror technologies will make the design of a FEL for operation in the 50-200-nm range of optical wavelength possible.

  17. High-power red VCSEL arrays

    NASA Astrophysics Data System (ADS)

    Seurin, Jean-Francois; Khalfin, Viktor; Xu, Guoyang; Miglo, Alexander; Li, Daizong; Zhou, Delai; Sundaresh, Mukta; Zou, Wei-Xiong; Lu, Chien-Yao; Wynn, James D.; Ghosh, Chuni

    2013-03-01

    High-power red laser sources are used in many applications such as cosmetics, cancer photodynamic therapy, and DNA sequencing in the medical field, laser-based RGB projection display, and bar-code scanning to name a few. Verticalcavity surface-emitting lasers (VCSELs) can be used as high-power laser sources, as efficient single devices can be configured into high-power two-dimensional arrays and scaled into modules of arrays. VCSELs emit in a circular, uniform beam which can greatly reduce the complexity and cost of optics. Other advantages include a narrow and stable emission spectrum, low speckle of the far-field emission, and good reliability. However, developing efficient red VCSEL sources presents some challenges because of the reduced quantum-well carrier confinement and the increased Aluminum content (to avoid absorption) which increases thermal impedance, and also decreases the DBR index contrast resulting in increased penetration length and cavity losses. We have recently developed VCSEL devices lasing in the visible 6xx nm wavelength band, and reaching 30% power conversion efficiency. We fabricated high-power 2D arrays by removing the GaAs substrate entirely and soldered the chips on high thermal conductivity submounts. Such arrays have demonstrated several Watts of output power at room temperature, in continuous-wave (CW) operation. Several tens of Watts are obtained in QCW operation. Results and challenges of these high-power visible VCSEL arrays will be discussed.

  18. High-power VCSEL systems and applications

    NASA Astrophysics Data System (ADS)

    Moench, Holger; Conrads, Ralf; Deppe, Carsten; Derra, Guenther; Gronenborn, Stephan; Gu, Xi; Heusler, Gero; Kolb, Johanna; Miller, Michael; Pekarski, Pavel; Pollmann-Retsch, Jens; Pruijmboom, Armand; Weichmann, Ulrich

    2015-03-01

    Easy system design, compactness and a uniform power distribution define the basic advantages of high power VCSEL systems. Full addressability in space and time add new dimensions for optimization and enable "digital photonic production". Many thermal processes benefit from the improved control i.e. heat is applied exactly where and when it is needed. The compact VCSEL systems can be integrated into most manufacturing equipment, replacing batch processes using large furnaces and reducing energy consumption. This paper will present how recent technological development of high power VCSEL systems will extend efficiency and flexibility of thermal processes and replace not only laser systems, lamps and furnaces but enable new ways of production. High power VCSEL systems are made from many VCSEL chips, each comprising thousands of low power VCSELs. Systems scalable in power from watts to multiple ten kilowatts and with various form factors utilize a common modular building block concept. Designs for reliable high power VCSEL arrays and systems can be developed and tested on each building block level and benefit from the low power density and excellent reliability of the VCSELs. Furthermore advanced assembly concepts aim to reduce the number of individual processes and components and make the whole system even more simple and reliable.

  19. High Power Amplifier Harmonic Output Level Measurement

    NASA Technical Reports Server (NTRS)

    Perez, R. M.; Hoppe, D. J.; Khan, A. R.

    1995-01-01

    A method is presented for the measurement of the harmonic output power of high power klystron amplifiers, involving coherent hemispherical radiation pattern measurements of the radiated klystron output. Results are discussed for the operation in saturated and unsaturated conditions, and with a waveguide harmonic filter included.

  20. Driver Circuit For High-Power MOSFET's

    NASA Technical Reports Server (NTRS)

    Letzer, Kevin A.

    1991-01-01

    Driver circuit generates rapid-voltage-transition pulses needed to switch high-power metal oxide/semiconductor field-effect transistor (MOSFET) modules rapidly between full "on" and full "off". Rapid switching reduces time of overlap between appreciable current through and appreciable voltage across such modules, thereby increasing power efficiency.

  1. Test results of high-voltage, high-power, solid-state remote power controllers

    NASA Technical Reports Server (NTRS)

    Johnson, Yvette Binford; Kapustka, Robert E.

    1988-01-01

    This report discusses the results of testing high-voltage, high-power, solid-state remote power controllers (RPC) using RPCs designed and built by John C. Sturman at the Lewis Research Center, Cleveland, Ohio, and utilizing the Autonomously Managed Power Systems (AMPS) breadboard/test facility. These test results are used to determine usefulness of the RPCs for future applications in high-voltage direct-current space power.

  2. High-Speed, high-power, switching transistor

    NASA Technical Reports Server (NTRS)

    Carnahan, D.; Ohu, C. K.; Hower, P. L.

    1979-01-01

    Silicon transistor rate for 200 angstroms at 400 to 600 volts combines switching speed of transistors with ruggedness, power capacity of thyristor. Transistor introduces unique combination of increased power-handling capability, unusally low saturation and switching losses, and submicrosecond switching speeds. Potential applications include high power switching regulators, linear amplifiers, chopper controls for high frequency electrical vehicle drives, VLF transmitters, RF induction heaters, kitchen cooking ranges, and electronic scalpels for medical surgery.

  3. Coupling output of multichannel high power microwaves

    SciTech Connect

    Li Guolin; Shu Ting; Yuan Chengwei; Zhang Jun; Yang Jianhua; Jin Zhenxing; Yin Yi; Wu Dapeng; Zhu Jun; Ren Heming; Yang Jie

    2010-12-15

    The coupling output of multichannel high power microwaves is a promising technique for the development of high power microwave technologies, as it can enhance the output capacities of presently studied devices. According to the investigations on the spatial filtering method and waveguide filtering method, the hybrid filtering method is proposed for the coupling output of multichannel high power microwaves. As an example, a specific structure is designed for the coupling output of S/X/X band three-channel high power microwaves and investigated with the hybrid filtering method. In the experiments, a pulse of 4 GW X band beat waves and a pulse of 1.8 GW S band microwave are obtained.

  4. High power millimeter wave source development program

    NASA Technical Reports Server (NTRS)

    George, T. V.

    1989-01-01

    High power millimeter wave sources for fusion program; ECH source development program strategy; and 1 MW, 140 GHz gyrotron experiment design philosophy are briefly outlined. This presentation is represented by viewgraphs only.

  5. Very high power THz radiation sources

    SciTech Connect

    Carr, G.L.; Martin, Michael C.; McKinney, Wayne R.; Jordan, K.; Neil, George R.; Williams, G.P.

    2002-10-31

    We report the production of high power (20 watts average, {approx} 1 Megawatt peak) broadband THz light based on coherent emission from relativistic electrons. Such sources are ideal for imaging, for high power damage studies and for studies of non-linear phenomena in this spectral range. We describe the source, presenting theoretical calculations and their experimental verification. For clarity we compare this source to one based on ultrafast laser techniques.

  6. Spacecraft high-voltage power supply construction

    NASA Technical Reports Server (NTRS)

    Sutton, J. F.; Stern, J. E.

    1975-01-01

    The design techniques, circuit components, fabrication techniques, and past experience used in successful high-voltage power supplies for spacecraft flight systems are described. A discussion of the basic physics of electrical discharges in gases is included and a design rationale for the prevention of electrical discharges is provided. Also included are typical examples of proven spacecraft high-voltage power supplies with typical specifications for design, fabrication, and testing.

  7. High power density carbonate fuel cell

    SciTech Connect

    Yuh, C.; Johnsen, R.; Doyon, J.; Allen, J.

    1996-12-31

    Carbonate fuel cell is a highly efficient and environmentally clean source of power generation. Many organizations worldwide are actively pursuing the development of the technology. Field demonstration of multi-MW size power plant has been initiated in 1996, a step toward commercialization before the turn of the century, Energy Research Corporation (ERC) is planning to introduce a 2.85MW commercial fuel cell power plant with an efficiency of 58%, which is quite attractive for distributed power generation. However, to further expand competitive edge over alternative systems and to achieve wider market penetration, ERC is exploring advanced carbonate fuel cells having significantly higher power densities. A more compact power plant would also stimulate interest in new markets such as ships and submarines where space limitations exist. The activities focused on reducing cell polarization and internal resistance as well as on advanced thin cell components.

  8. High power regenerative laser amplifier

    DOEpatents

    Miller, J.L.; Hackel, L.A.; Dane, C.B.; Zapata, L.E.

    1994-02-08

    A regenerative amplifier design capable of operating at high energy per pulse, for instance, from 20-100 Joules, at moderate repetition rates, for instance from 5-20 Hertz is provided. The laser amplifier comprises a gain medium and source of pump energy coupled with the gain medium; a Pockels cell, which rotates an incident beam in response to application of a control signal; an optical relay system defining a first relay plane near the gain medium and a second relay plane near the rotator; and a plurality of reflectors configured to define an optical path through the gain medium, optical relay and Pockels cell, such that each transit of the optical path includes at least one pass through the gain medium and only one pass through the Pockels cell. An input coupler, and an output coupler are provided, implemented by a single polarizer. A control circuit coupled to the Pockels cell generates the control signal in timed relationship with the input pulse so that the input pulse is captured by the input coupler and proceeds through at least one transit of the optical path, and then the control signal is applied to cause rotation of the pulse to a polarization reflected by the polarizer, after which the captured pulse passes through the gain medium at least once more and is reflected out of the optical path by the polarizer before passing through the rotator again to provide an amplified pulse. 7 figures.

  9. High power regenerative laser amplifier

    DOEpatents

    Miller, John L.; Hackel, Lloyd A.; Dane, Clifford B.; Zapata, Luis E.

    1994-01-01

    A regenerative amplifier design capable of operating at high energy per pulse, for instance, from 20-100 Joules, at moderate repetition rates, for instance from 5-20 Hertz is provided. The laser amplifier comprises a gain medium and source of pump energy coupled with the gain medium; a Pockels cell, which rotates an incident beam in response to application of a control signal; an optical relay system defining a first relay plane near the gain medium and a second relay plane near the rotator; and a plurality of reflectors configured to define an optical path through the gain medium, optical relay and Pockels cell, such that each transit of the optical path includes at least one pass through the gain medium and only one pass through the Pockels cell. An input coupler, and an output coupler are provided, implemented by a single polarizer. A control circuit coupled to the Pockels cell generates the control signal in timed relationship with the input pulse so that the input pulse is captured by the input coupler and proceeds through at least one transit of the optical path, and then the control signal is applied to cause rotation of the pulse to a polarization reflected by the polarizer, after which the captured pulse passes through the gain medium at least once more and is reflected out of the optical path by the polarizer before passing through the rotator again to provide an amplified pulse.

  10. High Voltage Power Transmission for Wind Energy

    NASA Astrophysics Data System (ADS)

    Kim, Young il

    The high wind speeds and wide available area at sea have recently increased the interests on offshore wind farms in the U.S.A. As offshore wind farms become larger and are placed further from the shore, the power transmission to the onshore grid becomes a key feature. Power transmission of the offshore wind farm, in which good wind conditions and a larger installation area than an onshore site are available, requires the use of submarine cable systems. Therefore, an underground power cable system requires unique design and installation challenges not found in the overhead power cable environment. This paper presents analysis about the benefit and drawbacks of three different transmission solutions: HVAC, LCC/VSC HVDC in the grid connecting offshore wind farms and also analyzed the electrical characteristics of underground cables. In particular, loss of HV (High Voltage) subsea power of the transmission cables was evaluated by the Brakelmann's theory, taking into account the distributions of current and temperature.

  11. Inverter design for high frequency power distribution

    NASA Technical Reports Server (NTRS)

    King, R. J.

    1985-01-01

    A class of simple resonantly commutated inverters are investigated for use in a high power (100 KW - 1000 KW) high frequency (10 KHz - 20 KHz) AC power distribution system. The Mapham inverter is found to provide a unique combination of large thyristor turn-off angle and good utilization factor, much better than an alternate 'current-fed' inverter. The effects of loading the Mapham inverter entirely with rectifier loads are investigated by simulation and with an experimental 3 KW 20 KHz inverter. This inverter is found to be well suited to a power system with heavy rectifier loading.

  12. Optical power splitter for splitting high power light

    DOEpatents

    English, Jr., Ronald E.; Christensen, John J.

    1995-01-01

    An optical power splitter for the distribution of high-power light energy has a plurality of prisms arranged about a central axis to form a central channel. The input faces of the prisms are in a common plane which is substantially perpendicular to the central axis. A beam of light which is substantially coaxial to the central axis is incident on the prisms and at least partially strikes a surface area of each prism input face. The incident beam also partially passes through the central channel.

  13. Optical power splitter for splitting high power light

    DOEpatents

    English, R.E. Jr.; Christensen, J.J.

    1995-04-18

    An optical power splitter for the distribution of high-power light energy has a plurality of prisms arranged about a central axis to form a central channel. The input faces of the prisms are in a common plane which is substantially perpendicular to the central axis. A beam of light which is substantially coaxial to the central axis is incident on the prisms and at least partially strikes a surface area of each prism input face. The incident beam also partially passes through the central channel. 5 figs.

  14. High Power Particle Beams and Pulsed Power for Industrial Applications

    NASA Astrophysics Data System (ADS)

    Bluhm, Hansjoachim; An, Wladimir; Engelko, Wladimir; Giese, Harald; Frey, Wolfgang; Heinzel, Annette; Hoppé, Peter; Mueller, Georg; Schultheiss, Christoph; Singer, Josef; Strässner, Ralf; Strauß, Dirk; Weisenburger, Alfons; Zimmermann, Fritz

    2002-12-01

    Several industrial scale projects with economic and ecologic potential are presently emanating from research and development in the fields of high power particle beams and pulsed power in Europe. Material surface modifications with large area pulsed electron beams are used to protect high temperature gas turbine blades and steel structures in Pb/Bi cooled accelerator driven nuclear reactor systems against oxidation and corrosion respectively. Channel spark electron beams are applied to deposit bio-compatible or bio-active layers on medical implants. Cell membranes are perforated with strong pulsed electric fields to extract nutritive substances or raw materials from the cells and to kill bacteria for sterilization of liquids. Eletrodynamic fragmentation devices are developed to reutilize concrete aggregates for the production of high quality secondary concrete. All activities have a large potential to contribute to a more sustainable economy.

  15. High power impulse magnetron sputtering discharge

    SciTech Connect

    Gudmundsson, J. T.; Brenning, N.; Lundin, D.; Helmersson, U.

    2012-05-15

    The high power impulse magnetron sputtering (HiPIMS) discharge is a recent addition to plasma based sputtering technology. In HiPIMS, high power is applied to the magnetron target in unipolar pulses at low duty cycle and low repetition frequency while keeping the average power about 2 orders of magnitude lower than the peak power. This results in a high plasma density, and high ionization fraction of the sputtered vapor, which allows better control of the film growth by controlling the energy and direction of the deposition species. This is a significant advantage over conventional dc magnetron sputtering where the sputtered vapor consists mainly of neutral species. The HiPIMS discharge is now an established ionized physical vapor deposition technique, which is easily scalable and has been successfully introduced into various industrial applications. The authors give an overview of the development of the HiPIMS discharge, and the underlying mechanisms that dictate the discharge properties. First, an introduction to the magnetron sputtering discharge and its various configurations and modifications is given. Then the development and properties of the high power pulsed power supply are discussed, followed by an overview of the measured plasma parameters in the HiPIMS discharge, the electron energy and density, the ion energy, ion flux and plasma composition, and a discussion on the deposition rate. Finally, some of the models that have been developed to gain understanding of the discharge processes are reviewed, including the phenomenological material pathway model, and the ionization region model.

  16. High-Power, High-Temperature Superconductor Technology Development

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul B.

    2005-01-01

    Since the first discovery of high-temperature superconductors (HTS) 10 years ago, the most promising areas for their applications in microwave systems have been as passive components for communication systems. Soon after the discovery, experiments showed that passive microwave circuits made from HTS material exceeded the performance of conventional devices for low-power applications and could be 10 times as small or smaller. However, for superconducting microwave components, high-power microwave applications have remained elusive until now. In 1996, DuPont and Com Dev Ltd. developed high-power superconducting materials and components for communication applications under a NASA Lewis Research Center cooperative agreement, NCC3-344 "High Power High Temperature Superconductor (HTS) Technology Development." The agreement was cost shared between the Defense Advanced Research Projects Agency's (DARPA) Technology Reinvestment Program Office and the two industrial partners. It has the following objectives: 1) Material development and characterization for high-power HTS applications; 2) Development and validation of generic high-power microwave components; 3) Development of a proof-of-concept model for a high-power six-channel HTS output multiplexer.

  17. The NASA CSTI High Capacity Power Project

    SciTech Connect

    Winter, J.; Dudenhoefer, J.; Juhasz, A.; Schwarze, G.; Patterson, R.; Ferguson, D.; Titran, R.; Schmitz, P.; Vandersande, J.

    1994-09-01

    The SP-100 Space Nuclear Power Program was established in 1983 by DOD, DOE, and NASA as a joint program to develop technology for military and civil applications. Starting in 1986, NASA has funded a technology program to maintain the momentum of promising aerospace technology advancement started during Phase I of SP-100 and to strengthen, in key areas, the changes for successful development and growth capability of space nuclear reactor power systems for a wide range of future space applications. The elements of the CSTI High Capacity Power Project include Systems Analysis, Stirling Power Conversion, Thermoelectric Power Conversion, Thermal Management, Power Management, Systems Diagnostics, Environmental Interactions, and Material/Structural Development. Technology advancement in all elements is required to provide the growth capability, high reliability and 7 to 10 year lifetime demanded for future space nuclear power systems. The overall project with develop and demonstrate the technology base required to provide a wide range of modular power systems compatible with the SP-100 reactor which facilitates operation during lunar and planetary day/night cycles as well as allowing spacecraft operation at any attitude or distance from the sun. Significant accomplishments in all of the project elements will be presented, along with revised goals and project timelines recently developed.

  18. The NASA CSTI high capacity power project

    NASA Technical Reports Server (NTRS)

    Winter, J.; Dudenhoefer, J.; Juhasz, A.; Schwarze, G.; Patterson, R.; Ferguson, D.; Titran, R.; Schmitz, P.; Vandersande, J.

    1992-01-01

    The SP-100 Space Nuclear Power Program was established in 1983 by DOD, DOE, and NASA as a joint program to develop technology for military and civil applications. Starting in 1986, NASA has funded a technology program to maintain the momentum of promising aerospace technology advancement started during Phase 1 of SP-100 and to strengthen, in key areas, the chances for successful development and growth capability of space nuclear reactor power systems for a wide range of future space applications. The elements of the Civilian Space Technology Initiative (CSTI) High Capacity Power Project include Systems Analysis, Stirling Power Conversion, Thermoelectric Power Conversion, Thermal Management, Power Management, Systems Diagnostics, Environmental Interactions, and Material/Structural Development. Technology advancement in all elements is required to provide the growth capability, high reliability and 7 to 10 year lifetime demanded for future space nuclear power systems. The overall project will develop and demonstrate the technology base required to provide a wide range of modular power systems compatible with the SP-100 reactor which facilitates operation during lunar and planetary day/night cycles as well as allowing spacecraft operation at any attitude or distance from the sun. Significant accomplishments in all of the project elements will be presented, along with revised goals and project timelines recently developed.

  19. Small high cooling power space cooler

    SciTech Connect

    Nguyen, T. V.; Raab, J.; Durand, D.; Tward, E.

    2014-01-29

    The small High Efficiency pulse tube Cooler (HEC) cooler, that has been produced and flown on a number of space infrared instruments, was originally designed to provide cooling of 10 W @ 95 K. It achieved its goal with >50% margin when limited by the 180 W output ac power of its flight electronics. It has also been produced in 2 stage configurations, typically for simultaneously cooling of focal planes to temperatures as low as 35 K and optics at higher temperatures. The need for even higher cooling power in such a low mass cryocooler is motivated by the advent of large focal plane arrays. With the current availability at NGAS of much larger power cryocooler flight electronics, reliable long term operation in space with much larger cooling powers is now possible with the flight proven 4 kg HEC mechanical cooler. Even though the single stage cooler design can be re-qualified for those larger input powers without design change, we redesigned both the linear and coaxial version passive pulse tube cold heads to re-optimize them for high power cooling at temperatures above 130 K while rejecting heat to 300 K. Small changes to the regenerator packing, the re-optimization of the tuned inertance and no change to the compressor resulted in the increased performance at 150 K. The cooler operating at 290 W input power achieves 35 W@ 150 K corresponding to a specific cooling power at 150 K of 8.25 W/W and a very high specific power of 72.5 W/Kg. At these powers the cooler still maintains large stroke, thermal and current margins. In this paper we will present the measured data and the changes to this flight proven cooler that were made to achieve this increased performance.

  20. Material properties of lithium fluoride for predicting XUV laser ablation rate and threshold fluence

    NASA Astrophysics Data System (ADS)

    Blejchař, Tomáś; Nevrlý, Václav; Vašinek, Michal; Dostál, Michal; Pečínka, Lukáś; Dlabka, Jakub; Stachoň, Martin; Juha, Libor; Bitala, Petr; Zelinger, Zdeněk.; Pira, Peter; Wild, Jan

    2015-05-01

    This paper deals with prediction of extreme ultraviolet (XUV) laser ablation of lithium fluoride at nanosecond timescales. Material properties of lithium fluoride were determined based on bibliographic survey. These data are necessary for theoretical estimation of surface removal rate in relevance to XUV laser desorption/ablation process. Parameters of XUV radiation pulses generated by the Prague capillary-discharge laser (CDL) desktop system were assumed in this context. Prediction of ablation curve and threshold laser fluence for lithium fluoride was performed employing XUV-ABLATOR code. Quasi-random sampling approach was used for evaluating its predictive capabilities in the means of variance and stability of model outputs in expected range of uncertainties. These results were compared to experimental data observed previously.

  1. Tapered fiber based high power random laser.

    PubMed

    Zhang, Hanwei; Du, Xueyuan; Zhou, Pu; Wang, Xiaolin; Xu, Xiaojun

    2016-04-18

    We propose a novel high power random fiber laser (RFL) based on tapered fiber. It can overcome the power scaling limitation of RFL while maintaining good beam quality to a certain extent. An output power of 26.5 W has been achieved in a half-open cavity with one kilometer long tapered fiber whose core diameter gradually changes from 8 μm to 20 μm. The steady-state light propagation equations have been modified by taking into account the effective core area to demonstrate the tapered RFL through numerical calculations. The numerical model effectively describes the power characteristics of the tapered fiber based RFL, and both the calculating and experimental results show higher power exporting potential compared with the conventional single mode RFL. PMID:27137338

  2. High-torque power wrench, a concept

    NASA Technical Reports Server (NTRS)

    Cox, E. F.

    1968-01-01

    High-torque power wrench is small enough to be handled by one or two men yet has sufficient torque to remove 1-1/2- to 4-inch nuts from high-pressure tanks and valves. The action can be made automatic by use of solenoid-operated valves and suitable switches.

  3. CLIC RF High Power Production Testing Program

    SciTech Connect

    Syratchev, I.; Riddone, G.; Tantawi, S.G.; /SLAC

    2011-11-02

    The CLIC Power Extraction and Transfer Structure (PETS) is a passive microwave device in which bunches of the drive beam interact with the impedance of the periodically loaded waveguide and generate RF power for the main linac accelerating structure. The demands on the high power production ({approx} 150 MW) and the needs to transport the 100 A drive beam for about 1 km without losses, makes the PETS design rather unique and the operation very challenging. In the coming year, an intense PETS testing program will be implemented. The target is to demonstrate the full performance of the PETS operation. The testing program overview and test results available to date are presented.

  4. ATF2 High Availability Power Supplies

    SciTech Connect

    Bellomo, A; Lira, C.de; Lam, B.; MacNair, D.; White, G.; /SLAC

    2008-06-27

    ATF2 is an accelerator test facility modeled after the final focus beamline envisioned for the ILC. By the end of 2008, KEK plans to commission the ATF2 [1]. SLAC and OCEM collaborated on the design of 38 power systems for beamline magnets. The systems range in output power from 1.5 kW to 6 kW. Since high availability is essential for the success of the ILC, Collaborators employed an N+1 modular approach, allowing for redundancy and the use of a single power module rating. This approach increases the availability of the power systems. Common power modules reduces inventory and eases maintenance. Current stability requirements are as tight as 10 ppm. A novel, SLAC designed 20-bit Ethernet Power Supply Controller provides the required precision current regulation. In this paper, Collaborators present the power system design, the expected reliability, fault immunity features, and the methods for satisfying the control and monitoring challenges. Presented are test results and the status of the power systems.

  5. High Power Third Gyroharmonic Frequency Multiplier

    NASA Astrophysics Data System (ADS)

    Lapointe, M. A.; Ganguly, A. K.; Hirshfield, J. L.; Wang, Changbiao; Yoder, R. B.; Wang, Mei

    1998-11-01

    A high power freqeuncy multplier which uses a cyclotron autoresonance accelerator (CARA)(M.A. LaPointe, R.B. Yoder, Changbiao Wang, A.K. Ganguly and J.L. Hirshfield, Phys. Rev. Lett., 76), 2718 (1996) and a third harmonic, TE_311 cavity is being tested. Primary power at 2.856 GHz is used to accelerate a 20--30 A, 75--96kV electron beam up to 320 kV in a CARA. The prepared beam interacts with the TE_311 cavity tuned to the third harmonic of the drive frequency. Simulations show that conversion efficiencies from beam power to microwave power can be as high as 48% producing up to 4.5 MW of 8.568 GHz power. Experiments to date have shown under certain conditions only third harmonic radiation has been generated with a FWHM of 350 kHz, the Fourier limit for the length of the radiation pulse. High power experiments are underway to measure the efficiency of the device.

  6. Transient absorption and reshaping of ultrafast XUV light by laser-dressed helium

    SciTech Connect

    Gaarde, Mette B.; Schafer, Kenneth J.; Buth, Christian; Tate, Jennifer L.

    2011-01-15

    We present a theoretical study of transient absorption and reshaping of extreme ultraviolet (XUV) pulses by helium atoms dressed with a moderately strong infrared (IR) laser field. We formulate the atomic response using both the frequency-dependent absorption cross section and a time-frequency approach based on the time-dependent dipole induced by the light fields. The latter approach can be used in cases when an ultrafast dressing pulse induces transient effects, and/or when the atom exchanges energy with multiple frequency components of the XUV field. We first characterize the dressed atom response by calculating the frequency-dependent absorption cross section for XUV energies between 20 and 24 eV for several dressing wavelengths between 400 and 2000 nm and intensities up to 10{sup 12} W/cm{sup 2}. We find that for dressing wavelengths near 1600 nm, there is an Autler-Townes splitting of the 1s{yields}2p transition that can potentially lead to transparency for absorption of XUV light tuned to this transition. We study the effect of this XUV transparency in a macroscopic helium gas by incorporating the time-frequency approach into a solution of the coupled Maxwell-Schroedinger equations. We find rich temporal reshaping dynamics when a 61-fs XUV pulse resonant with the 1s{yields}2p transition propagates through a helium gas dressed by an 11-fs, 1600-nm laser pulse.

  7. Ultra high vacuum broad band high power microwave window

    DOEpatents

    Nguyen-Tuong, V.; Dylla, H.F. III

    1997-11-04

    An improved high vacuum microwave window has been developed that utilizes high density polyethylene coated on two sides with SiOx, SiNx, or a combination of the two. The resultant low dielectric and low loss tangent window creates a low outgassing, low permeation seal through which broad band, high power microwave energy may be passed. No matching device is necessary and the sealing technique is simple. The features of the window are broad band transmission, ultra-high vacuum compatibility with a simple sealing technique, low voltage standing wave ratio, high power transmission and low cost. 5 figs.

  8. Ultra high vacuum broad band high power microwave window

    DOEpatents

    Nguyen-Tuong, Viet; Dylla, III, Henry Frederick

    1997-01-01

    An improved high vacuum microwave window has been developed that utilizes high density polyethylene coated on two sides with SiOx, SiNx, or a combination of the two. The resultant low dielectric and low loss tangent window creates a low outgassing, low permeation seal through which broad band, high power microwave energy may be passed. No matching device is necessary and the sealing technique is simple. The features of the window are broad band transmission, ultra-high vacuum compatibility with a simple sealing technique, low voltage standing wave ratio, high power transmission and low cost.

  9. The Jefferson Lab High Power Light Source

    SciTech Connect

    James R. Boyce

    2006-01-01

    Jefferson Lab has designed, built and operated two high average power free-electron lasers (FEL) using superconducting RF (SRF) technology and energy recovery techniques. Between 1999-2001 Jefferson Lab operated the IR Demo FEL. This device produced over 2 kW in the mid-infrared, in addition to producing world record average powers in the visible (50 W), ultraviolet (10 W) and terahertz range (50 W) for tunable, short-pulse (< ps) light. This FEL was the first high power demonstration of an accelerator configuration that is being exploited for a number of new accelerator-driven light source facilities that are currently under design or construction. The driver accelerator for the IR Demo FEL uses an Energy Recovered Linac (ERL) configuration that improves the energy efficiency and lowers both the capital and operating cost of such devices by recovering most of the power in the spent electron beam after optical power is extracted from the beam. The IR Demo FEL was de-commissioned in late 2001 for an upgraded FEL for extending the IR power to over 10 kW and the ultraviolet power to over 1 kW. The FEL Upgrade achieved 10 kW of average power in the mid-IR (6 microns) in July of 2004, and its IR operation currently is being extended down to 1 micron. In addition, we have demonstrated the capability of on/off cycling and recovering over a megawatt of electron beam power without diminishing machine performance. A complementary UV FEL will come on-line within the next year. This paper presents a summary of the FEL characteristics, user community accomplishments with the IR Demo, and planned user experiments.

  10. High power infrared QCLs: advances and applications

    NASA Astrophysics Data System (ADS)

    Patel, C. Kumar N.

    2012-01-01

    QCLs are becoming the most important sources of laser radiation in the midwave infrared (MWIR) and longwave infrared (LWIR) regions because of their size, weight, power and reliability advantages over other laser sources in the same spectral regions. The availability of multiwatt RT operation QCLs from 3.5 μm to >16 μm with wall plug efficiency of 10% or higher is hastening the replacement of traditional sources such as OPOs and OPSELs in many applications. QCLs can replace CO2 lasers in many low power applications. Of the two leading groups in improvements in QCL performance, Pranalytica is the commercial organization that has been supplying the highest performance QCLs to various customers for over four year. Using a new QCL design concept, the non-resonant extraction [1], we have achieved CW/RT power of >4.7 W and WPE of >17% in the 4.4 μm - 5.0 μm region. In the LWIR region, we have recently demonstrated QCLs with CW/RT power exceeding 1 W with WPE of nearly 10 % in the 7.0 μm-10.0 μm region. In general, the high power CW/RT operation requires use of TECs to maintain QCLs at appropriate operating temperatures. However, TECs consume additional electrical power, which is not desirable for handheld, battery-operated applications, where system power conversion efficiency is more important than just the QCL chip level power conversion efficiency. In high duty cycle pulsed (quasi-CW) mode, the QCLs can be operated without TECs and have produced nearly the same average power as that available in CW mode with TECs. Multiwatt average powers are obtained even in ambient T>70°C, with true efficiency of electrical power-to-optical power conversion being above 10%. Because of the availability of QCLs with multiwatt power outputs and wavelength range covering a spectral region from ~3.5 μm to >16 μm, the QCLs have found instantaneous acceptance for insertion into multitude of defense and homeland security applications, including laser sources for infrared

  11. High-Performance Power-Semiconductor Packages

    NASA Technical Reports Server (NTRS)

    Renz, David; Hansen, Irving; Berman, Albert

    1989-01-01

    A 600-V, 50-A transistor and 1,200-V, 50-A diode in rugged, compact, lightweight packages intended for use in inverter-type power supplies having switching frequencies up to 20 kHz. Packages provide low-inductance connections, low loss, electrical isolation, and long-life hermetic seal. Low inductance achieved by making all electrical connections to each package on same plane. Also reduces high-frequency losses by reducing coupling into inherent shorted turns in packaging material around conductor axes. Stranded internal power conductors aid conduction at high frequencies, where skin effect predominates. Design of packages solves historical problem of separation of electrical interface from thermal interface of high-power semiconductor device.

  12. The NASA CSTI High Capacity Power Program

    SciTech Connect

    Winter, J.M.

    1994-09-01

    The SP-100 program was established in 1983 by DOD, DOE, and NASA as a joint program to develop the technology necessary for space nuclear power systems for military and civil applications. During 1986 and 1987, the NASA Advanced Technology Program was responsible for maintaining the momentum of promising technology advancement efforts started during Phase I of SP-100 and to strengthen, in key areas, the chances for successful development and growth capability of space nuclear reactor power systems for future space applications. In 1988, the NASA Advanced Technology Program was incorporated into NASA`s new Civil Space Technology Initiative (CSTI). The CSTI program was established to provide the foundation for technology development in automation and robotics, information, propulsion, and power. The CSTI High Capacity Power Program builds on the technology efforts of the SP-100 program, incorporates the previous NASA advanced technology project, and provides a bridge to the NASA exploration technology programs. The elements of CSTI high capacity power development include conversion systems - Stirling and thermoelectric, thermal management, power management, system diagnostics, and environmental interactions. Technology advancement in all areas, including materials, is required to provide the growth capability, high reliability and 7 to 10 years lifetime demanded for future space nuclear power systems. The overall program will develop and demonstrate the technology base required to provide a wide range of modular power systems while minimizing the impact of day/night operation as well as attitudes and distance from the Sun. Significant accomplishments in all of the program elements will be discussed, along with revised goals and project timelines recently developed.

  13. The NASA CSTI High Capacity Power Program

    NASA Technical Reports Server (NTRS)

    Winter, Jerry M.

    1991-01-01

    The SP-100 program was established in 1983 by DOD, DOE, and NASA as a joint program to develop the technology necessary for space nuclear power systems for military and civil applications. During 1986 and 1987, the NASA Advanced Technology Program was responsible for maintaining the momentum of promising technology advancement efforts started during Phase 1 of SP-100 and to strengthen, in key areas, the chances for successful development and growth capability of space nuclear reactor power systems for future space applications. In 1988, the NASA Advanced Technology Program was incorporated into NASA's new Civil Space Technology Initiative (CSTI). The CSTI program was established to provide the foundation for technology development in automation and robotics, information, propulsion, and power. The CSTI High Capacity Power Program builds on the technology efforts of the SP-100 program, incorporates the previous NASA advanced technology project, and provides a bridge to the NASA exploration technology programs. The elements of CSTI high capacity power development include conversion systems: Stirling and thermoelectric, thermal management, power management, system diagnostics, and environmental interactions. Technology advancement in all areas, including materials, is required to provide the growth capability, high reliability, and 7 to 10 year lifetime demanded for future space nuclear power systems. The overall program will develop and demonstrate the technology base required to provide a wide range of modular power systems while minimizing the impact of day/night operations as well as attitudes and distance from the Sun. Significant accomplishments in all of the program elements will be discussed, along with revised goals and project timelines recently developed.

  14. High power diode laser Master Oscillator-Power Amplifier (MOPA)

    NASA Technical Reports Server (NTRS)

    Andrews, John R.; Mouroulis, P.; Wicks, G.

    1994-01-01

    High power multiple quantum well AlGaAs diode laser master oscillator - power amplifier (MOPA) systems were examined both experimentally and theoretically. For two pass operation, it was found that powers in excess of 0.3 W per 100 micrometers of facet length were achievable while maintaining diffraction-limited beam quality. Internal electrical-to-optical conversion efficiencies as high as 25 percent were observed at an internal amplifier gain of 9 dB. Theoretical modeling of multiple quantum well amplifiers was done using appropriate rate equations and a heuristic model of the carrier density dependent gain. The model gave a qualitative agreement with the experimental results. In addition, the model allowed exploration of a wider design space for the amplifiers. The model predicted that internal electrical-to-optical conversion efficiencies in excess of 50 percent should be achievable with careful system design. The model predicted that no global optimum design exists, but gain, efficiency, and optical confinement (coupling efficiency) can be mutually adjusted to meet a specific system requirement. A three quantum well, low optical confinement amplifier was fabricated using molecular beam epitaxial growth. Coherent beam combining of two high power amplifiers injected from a common master oscillator was also examined. Coherent beam combining with an efficiency of 93 percent resulted in a single beam having diffraction-limited characteristics. This beam combining efficiency is a world record result for such a system. Interferometric observations of the output of the amplifier indicated that spatial mode matching was a significant factor in the less than perfect beam combining. Finally, the system issues of arrays of amplifiers in a coherent beam combining system were investigated. Based upon experimentally observed parameters coherent beam combining could result in a megawatt-scale coherent beam with a 10 percent electrical-to-optical conversion efficiency.

  15. NASA GRC High Power Electromagnetic Thruster Program

    NASA Astrophysics Data System (ADS)

    Lapointe, Michael R.; Pencil, Eric J.

    2004-02-01

    Interest in high power electromagnetic propulsion has been revived to support a variety of future space missions, such as platform maneuvering in low earth orbit, cost-effective cargo transport to lunar and Mars bases, asteroid and outer planet sample return, deep space robotic exploration, and piloted missions to Mars and the outer planets. Magnetoplasmadynamic (MPD) thrusters have demonstrated, at the laboratory level, the capacity to process megawatts of electrical power while providing higher thrust densities than current electric propulsion systems. The ability to generate higher thrust densities permits a reduction in the number of thrusters required to perform a given mission and alleviates the system complexity associated with multiple thruster arrays. The specific impulse of an MPD thruster can be optimized to meet given mission requirements, from a few thousand seconds with heavier gas propellants up to 10,000 seconds with hydrogen propellant. In support of NASA space science and human exploration strategic initiatives, Glenn Research Center is developing and testing pulsed, MW-class MPD thrusters as a prelude to long-duration high power thruster tests. The research effort includes numerical modeling of self-field and applied-field MPD thrusters and experimental testing of quasi-steady MW-class MPD thrusters in a high power pulsed thruster facility. This paper provides an overview of the GRC high power electromagnetic thruster program and the pulsed thruster test facility.

  16. High Average Power, High Energy Short Pulse Fiber Laser System

    SciTech Connect

    Messerly, M J

    2007-11-13

    Recently continuous wave fiber laser systems with output powers in excess of 500W with good beam quality have been demonstrated [1]. High energy, ultrafast, chirped pulsed fiber laser systems have achieved record output energies of 1mJ [2]. However, these high-energy systems have not been scaled beyond a few watts of average output power. Fiber laser systems are attractive for many applications because they offer the promise of high efficiency, compact, robust systems that are turn key. Applications such as cutting, drilling and materials processing, front end systems for high energy pulsed lasers (such as petawatts) and laser based sources of high spatial coherence, high flux x-rays all require high energy short pulses and two of the three of these applications also require high average power. The challenge in creating a high energy chirped pulse fiber laser system is to find a way to scale the output energy while avoiding nonlinear effects and maintaining good beam quality in the amplifier fiber. To this end, our 3-year LDRD program sought to demonstrate a high energy, high average power fiber laser system. This work included exploring designs of large mode area optical fiber amplifiers for high energy systems as well as understanding the issues associated chirped pulse amplification in optical fiber amplifier systems.

  17. Deep Space C3: High Power Uplinks

    NASA Astrophysics Data System (ADS)

    Kodis, Mary Anne; Abraham, Douglas S.; Morabito, David D.

    2003-12-01

    The uplink transmitters of the Deep Space Network (DSN) perform three key functions in support of space missions: navigation, command uplink, and emergency recovery. The transmitters range in frequency from S-band to Ka-band, and range in RF transmit power from 200W to 400kW. Future improvements to the uplink transmitters will focus on higher frequency transmitters for high data rate communications, high power X-band uplinks for emergency recovery, and/or in-phase uplink arraying for either application.

  18. Technology development for high power induction accelerators

    SciTech Connect

    Birx, D.L.; Reginato, L.L.

    1985-06-11

    The marriage of Induction Linac technology with Nonlinear Magnetic Modulators has produced some unique capabilities. It appears possible to produce electron beams with average currents measured in amperes, at gradients exceeding 1 MeV/meter, and with power efficiencies approaching 50%. A 2 MeV, 5 kA electron accelerator has been constructed at the Lawrence Livermore National Laboratory (LLNL) to demonstrate these concepts and to provide a test facility for high brightness sources. The pulse drive for the accelerator is based on state-of-the-art magnetic pulse compressors with very high peak power capability, repetition rates exceeding a kilohertz and excellent reliability.

  19. High-frequency-link based power electronics in power systems

    NASA Astrophysics Data System (ADS)

    Sree, Hari

    Power quality has become a serious concern to many utility customers in recent times. Among the many power quality problems, voltage sags are one of the most common and most mischievous, affecting industrial and commercial customers. They are primarily caused by power system faults at the transmission and distribution level, and thus, are mostly unavoidable. Their effect depends on the equipment sensitivities to the magnitude and duration of these sags and each can cost an industry up to few million dollars. To counter these limitations, many solutions at the customer end have been proposed which include Constant Voltage Transformers (CVT's), UPS and line frequency transformer based Dynamic Voltage Restorer (DVR). These approaches have their respective limitations with regard to capabilities, size and cost. This research proposes a new approach to mitigating these voltage sags involving the use of high frequency transformer link. Suitable switching logic and control strategies have been implemented. The proposed approach in a one-phase application is verified with computer simulations and by a hardware proof-of-concept prototype. Application to three-phase system is verified through simulations. Application of high frequency transformers in other utility applications such as active filters and static compensators is also looked at.

  20. High efficiency low cost solar cell power

    NASA Technical Reports Server (NTRS)

    Bekey, I.; Blocker, W.

    1978-01-01

    A concept for generating high-efficiency, low-cost, solar-cell power is outlined with reference to solar cell parameters, optical concentrators, and thermal control procedures. A design for a 12.5-kw power module for space operation is discussed noting the optical system, spectrum splitter, light conversion system, cell cooling, power conditioner, and tracking mechanism. It is found that for an unconcentrated array, efficiency approaches 60% when ten or more bandgaps are used. For a 12-band system, a computer program distributed bandgaps for maximum efficiency and equal cell currents. Rigid materials and thin films have been proposed for optical components and prisms, gratings, and dichroic mirrors have been recommended for spectrum splitting. Various radiator concepts are noted including that of Weatherston and Smith (1960) and Hedgepeth and Knapp (1978). The concept may be suitable for the Solar Power Satellite.

  1. High-power microwave development in Russia

    NASA Astrophysics Data System (ADS)

    Gauthier, Sylvain

    1995-03-01

    This is a survey of Russian research and development in high-power microwave (HPM) sources. It emphasizes those sources of nanoseconds pulse duration time which have potential weapon as well as radar applications. It does not cover the whole range of Russian HPM research and development but concentrates on those aspects which may lead to military applications. Russian investigators have achieved many world firsts in HPM generation; for example, a multiwave Cerenkov generator with a peak output power of 15 gigawatts. Their successes are based on their impressive capability in pulsed power technology which has yielded high-current generators of terawatt peak power. They have transformed the energy of these currents into microwave radiation using tubes of both conventional and novel designs exploiting relativistic electron beams. Recently, the development of high-current mini-accelerators has moved relativistic electron-beam (REB) HPM generation out of the laboratory and enabled the development of deployable military systems with peak powers in the gigawatt range. As a result, they now see development of a REB-based radar systems as one of the most promising directions in radar systems. Details of such a system are described and the implications for HPM weapons are considered.

  2. Power Budget Analysis for High Altitude Airships

    NASA Technical Reports Server (NTRS)

    Choi, Sang H.; Elliott, James R.; King, Glen C.

    2006-01-01

    The High Altitude Airship (HAA) has various potential applications and mission scenarios that require onboard energy harvesting and power distribution systems. The energy source considered for the HAA s power budget is solar photon energy that allows the use of either photovoltaic (PV) cells or advanced thermoelectric (ATE) converters. Both PV cells and an ATE system utilizing high performance thermoelectric materials were briefly compared to identify the advantages of ATE for HAA applications in this study. The ATE can generate a higher quantity of harvested energy than PV cells by utilizing the cascaded efficiency of a three-staged ATE in a tandem mode configuration. Assuming that each stage of ATE material has the figure of merit of 5, the cascaded efficiency of a three-staged ATE system approaches the overall conversion efficiency greater than 60%. Based on this estimated efficiency, the configuration of a HAA and the power utility modules are defined.

  3. High Power Disk Loaded Guide Load

    SciTech Connect

    Farkas, Z.D.; /SLAC

    2006-02-22

    A method to design a matching section from a smooth guide to a disk-loaded guide, using a variation of broadband matching, [1, 2] is described. Using this method, we show how to design high power loads. The load consists of a disk-loaded coaxial guide operating in the TE{sub 01}-mode. We use this mode because it has no electric field terminating on a conductor, has no axial currents, and has no current at the cylinder-disk interface. A high power load design that has -35 dB reflection and a 200 MHz, -20 dB bandwidth, is presented. It is expected that it will carry the 600 MW output peak power of the pulse compression network. We use coaxial geometry and stainless steel material to increase the attenuation per cell.

  4. Targets for high power neutral beams

    SciTech Connect

    Kim, J.

    1980-01-01

    Stopping high-power, long-pulse beams is fast becoming an engineering challenge, particularly in neutral beam injectors for heating magnetically confined plasmas. A brief review of neutral beam target technology is presented along with heat transfer calculations for some selected target designs.

  5. CHALLENGES FACING HIGH POWER PROTON ACCELERATORS

    SciTech Connect

    Plum, Michael A

    2013-01-01

    This presentation will provide an overview of the challenges of high power proton accelerators such as SNS, J-PARC, etc., and what we have learned from recent experiences. Beam loss mechanisms and methods to mitigate beam loss will also be discussed.

  6. High Power 35GHz Gyroklystron Amplifiers

    NASA Astrophysics Data System (ADS)

    Choi, Jin; McCurdy, A.; Wood, F.; Kyser, R.; Danly, B.; Levush, B.; Parker, R.

    1997-05-01

    High power coherent radiation sources at 35GHz are attractive for next generation high gradient particle accelerators. A multi-cavity gyroklystron amplifier is considered a promising candidate for high power millimeter wave generation. Experiments on two-cavity and three cavity gyroklystron amplifiers are underway to demonstrate a 140kW, 35GHz coherent radiation amplification. Though this power is low compared with that needed for colliders, many of the issues associated with the bandwidth of such devices can be addressed in the present experiments. High bandwidth is important to permit the rapid phase shifts required for RF pulse compression schemes presently under investigation. Large signal calculations (P.E. Latham, W. Lawson, V. Irwin, IEEE Trans. Plasma Sci., Vol. 22, No. 5, pp. 804-817, 1994.) predict that the two-cavity gyroklystron produces a peak power of 140kW, corresponding to 33% efficiency. Calculations also show that a stagger tuned three cavity circuit increases a bandwidth to more than 0.7%. Experimental results of the amplifier will be presented and compared with the theory.

  7. High power diode pumped alkali vapor lasers

    NASA Astrophysics Data System (ADS)

    Zweiback, J.; Krupke, B.

    2008-05-01

    Diode pumped alkali lasers have developed rapidly since their first demonstration. These lasers offer a path to convert highly efficient, but relatively low brightness, laser diodes into a single high power, high brightness beam. General Atomics has been engaged in the development of DPALs with scalable architectures. We have examined different species and pump characteristics. We show that high absorption can be achieved even when the pump source bandwidth is several times the absorption bandwidth. In addition, we present experimental results for both potassium and rubidium systems pumped with a 0.2 nm bandwidth alexandrite laser. These data show slope efficiencies of 67% and 72% respectively.

  8. High-Power, High-Thrust Ion Thruster (HPHTion)

    NASA Technical Reports Server (NTRS)

    Peterson, Peter Y.

    2015-01-01

    Advances in high-power photovoltaic technology have enabled the possibility of reasonably sized, high-specific power solar arrays. At high specific powers, power levels ranging from 50 to several hundred kilowatts are feasible. Ion thrusters offer long life and overall high efficiency (typically greater than 70 percent efficiency). In Phase I, the team at ElectroDynamic Applications, Inc., built a 25-kW, 50-cm ion thruster discharge chamber and fabricated a laboratory model. This was in response to the need for a single, high-powered engine to fill the gulf between the 7-kW NASA's Evolutionary Xenon Thruster (NEXT) system and a notional 25-kW engine. The Phase II project matured the laboratory model into a protoengineering model ion thruster. This involved the evolution of the discharge chamber to a high-performance thruster by performance testing and characterization via simulated and full beam extraction testing. Through such testing, the team optimized the design and built a protoengineering model thruster. Coupled with gridded ion thruster technology, this technology can enable a wide range of missions, including ambitious near-Earth NASA missions, Department of Defense missions, and commercial satellite activities.

  9. High power Ka band TWT amplifier

    SciTech Connect

    Golkowski, C.; Ivers, J.D.; Nation, J.A.; Wang, P.; Schachter, L.

    1999-07-01

    Two high power 35 GHz TWT amplifiers driven by a relativistic pencil, 850 kV, 200A electron beam have been assembled and tested. The first had a dielectric slow wave structure and was primarily used to develop diagnostics, and to gain experience in working with high power systems in Ka band. The source of the input power for the amplifier was a magnetron producing a 30 kW, 200ns long pulse of which 10 kW as delivered to the experiment. The 30 cm long dielectric (Teflon) amplifier produced output power levels of about 1 MW with a gain of about 23 dB. These results are consistent with expectations from PIC code simulations for this arrangement. The second amplifier, which is a single stage disk loaded slow wave structure, has been designed. It consists of one hundred uniform cells with two sets of ten tapered calls at the ends to lower the reflection coefficient. The phase advance per cell is {pi}/2. The amplifier passband extends from 28 to 40 GHz. It is designed to increase the output power to about 20 MW. The amplifier is in construction and will be tested in the near future. Details of the design of both systems will be provided and initial results from the new amplifier presented.

  10. Operation of Power Grids with High Penetration of Wind Power

    NASA Astrophysics Data System (ADS)

    Al-Awami, Ali Taleb

    The integration of wind power into the power grid poses many challenges due to its highly uncertain nature. This dissertation involves two main components related to the operation of power grids with high penetration of wind energy: wind-thermal stochastic dispatch and wind-thermal coordinated bidding in short-term electricity markets. In the first part, a stochastic dispatch (SD) algorithm is proposed that takes into account the stochastic nature of the wind power output. The uncertainty associated with wind power output given the forecast is characterized using conditional probability density functions (CPDF). Several functions are examined to characterize wind uncertainty including Beta, Weibull, Extreme Value, Generalized Extreme Value, and Mixed Gaussian distributions. The unique characteristics of the Mixed Gaussian distribution are then utilized to facilitate the speed of convergence of the SD algorithm. A case study is carried out to evaluate the effectiveness of the proposed algorithm. Then, the SD algorithm is extended to simultaneously optimize the system operating costs and emissions. A modified multi-objective particle swarm optimization algorithm is suggested to identify the Pareto-optimal solutions defined by the two conflicting objectives. A sensitivity analysis is carried out to study the effect of changing load level and imbalance cost factors on the Pareto front. In the second part of this dissertation, coordinated trading of wind and thermal energy is proposed to mitigate risks due to those uncertainties. The problem of wind-thermal coordinated trading is formulated as a mixed-integer stochastic linear program. The objective is to obtain the optimal tradeoff bidding strategy that maximizes the total expected profits while controlling trading risks. For risk control, a weighted term of the conditional value at risk (CVaR) is included in the objective function. The CVaR aims to maximize the expected profits of the least profitable scenarios, thus

  11. High-power, high-intensity laser propagation and interactions

    SciTech Connect

    Sprangle, Phillip; Hafizi, Bahman

    2014-05-15

    This paper presents overviews of a number of processes and applications associated with high-power, high-intensity lasers, and their interactions. These processes and applications include: free electron lasers, backward Raman amplification, atmospheric propagation of laser pulses, laser driven acceleration, atmospheric lasing, and remote detection of radioactivity. The interrelated physical mechanisms in the various processes are discussed.

  12. High Efficiency Microwave Power Amplifier (HEMPA) Design

    NASA Technical Reports Server (NTRS)

    Sims, W. Herbert

    2004-01-01

    This paper will focus on developing an exotic switching technique that enhances the DC-to-RF conversion efficiency of microwave power amplifiers. For years, switching techniques implemented in the 10 kHz to 30 MHz region have resulted in DC-to-RF conversion efficiencies of 90-95-percent. Currently amplifier conversion efficiency, in the 2-3 GHz region approaches, 10-20-percent. Using a combination of analytical modeling and hardware testing, a High Efficiency Microwave Power Amplifier was built that demonstrated conversion efficiencies four to five times higher than current state of the art.

  13. MI high power operation and future plans

    SciTech Connect

    Kourbanis, Ioanis; /Fermilab

    2008-09-01

    Fermilab's Main Injector on acceleration cycles to 120 GeV has been running a mixed mode operation delivering beam to both the antiproton source for pbar production and to the NuMI[1] target for neutrino production since 2005. On January 2008 the slip stacking process used to increase the beam to the pbar target was expanded to include the beam to the NuMI target increasing both the beam intensity and power. The current high power MI operation will be described along with the near future plans.

  14. High-power Ka-band amplifier

    NASA Technical Reports Server (NTRS)

    Cormier, R.

    1993-01-01

    Development of a high-power tube suitable to power a Ka-band (34.5-GHz) antenna transmitter located at the Goldstone, California, tracking station is continuing. The University of Maryland Laboratory for Plasma Research and JPL are conducting a joint effort to test the feasibility of phase locking a second-harmonic gyrotron both by direct injection at the output cavity and by using a priming cavity to bunch the electrons in the beam. This article describes several design options and the results of computer simulation testing.

  15. High power bipolar lead-acid batteries

    NASA Technical Reports Server (NTRS)

    Halpert, Gerald; Attia, Alan

    1991-01-01

    The Jet Propulsion Laboratory (JPL), with interest in advanced energy storage systems, is involved in the development of a unique lead acid battery design. This battery utilizes the same combination of lead and lead dioxide active materials present in the automobile starting battery. However, it can provide 2 to 10 times the power while minimizing volume and weight. The typical starting battery is described as a monopolar type using one current collector for both the positive and negative plate of adjacent cells. Specific power as high as 2.5 kW/kg was projected for 30 second periods with as many as 2000 recharge cycles.

  16. MULTIPULSE - high resolution and high power in one TDEM system

    NASA Astrophysics Data System (ADS)

    Chen, Tianyou; Hodges, Greg; Miles, Philip

    2015-09-01

    An airborne time domain electromagnetic (TEM) system with high resolution and great depth of exploration is desired for geological mapping as well as for mineral exploration. The MULTIPULSE technology enables an airborne TEM system to transmit a high power pulse (a half-sine, for instance) and one or multiple low power pulse(s) (trapezoid or square) within a half-cycle. The high power pulse ensures good depth of exploration and the low power pulse allows a fast transmitter current turn off and earlier off-time measurement thus providing higher frequency signals, which allows higher near-surface resolution and better sensitivity to weak conductors. The power spectrum of the MULTIPULSE waveform comprising a half-sine and a trapezoid pulse clearly shows increased power in the higher frequency range (> ~2.3 kHz) compared to that of a single half-sine waveform. The addition of the low power trapezoid pulse extends the range of the sensitivity 10-fold towards the weak conductors, expanding the geological conductivity range of a system and increasing the scope of its applications. The MULTIPULSE technology can be applied to standard single-pulse airborne TEM systems on both helicopter and fixed-wing. We field tested the HELITEM MULTIPULSE system over a wire-loop in Iroquois Falls, demonstrating the different sensitivity of the high and low power pulses to the overburden and the wire-loop. We also tested both HELITEM and GEOTEM MULTIPULSE systems over a layered oil sand geologic setting in Fort McMurray, Alberta, Canada. The results show comparable shallow geologic resolution of the MULTIPULSE to that of the RESOLVE system while maintaining superior depth of exploration, confirming the increased geological conductivity range of a system employing MULTIPULSE compared to the standard single-pulse systems.

  17. High power disk lasers: advances and applications

    NASA Astrophysics Data System (ADS)

    Havrilla, David; Holzer, Marco

    2011-02-01

    Though the genesis of the disk laser concept dates to the early 90's, the disk laser continues to demonstrate the flexibility and the certain future of a breakthrough technology. On-going increases in power per disk, and improvements in beam quality and efficiency continue to validate the genius of the disk laser concept. As of today, the disk principle has not reached any fundamental limits regarding output power per disk or beam quality, and offers numerous advantages over other high power resonator concepts, especially over monolithic architectures. With well over 1000 high power disk lasers installations, the disk laser has proven to be a robust and reliable industrial tool. With advancements in running cost, investment cost and footprint, manufacturers continue to implement disk laser technology with more vigor than ever. This paper will explain important details of the TruDisk laser series and process relevant features of the system, like pump diode arrangement, resonator design and integrated beam guidance. In addition, advances in applications in the thick sheet area and very cost efficient high productivity applications like remote welding, remote cutting and cutting of thin sheets will be discussed.

  18. High Power MPD Thruster Performance Measurements

    NASA Technical Reports Server (NTRS)

    LaPointe, Michael R.; Strzempkowski, Eugene; Pencil, Eric

    2004-01-01

    High power magnetoplasmadynamic (MPD) thrusters are being developed as cost effective propulsion systems for cargo transport to lunar and Mars bases, crewed missions to Mars and the outer planets, and robotic deep space exploration missions. Electromagnetic MPD thrusters have demonstrated, at the laboratory level, the ability to process megawatts of electrical power while providing significantly higher thrust densities than electrostatic electric propulsion systems. The ability to generate higher thrust densities permits a reduction in the number of thrusters required to perform a given mission, and alleviates the system complexity associated with multiple thruster arrays. The specific impulse of an MPD thruster can be optimized to meet given mission requirements, from a few thousand seconds with heavier gas propellants up to 10,000 seconds with hydrogen propellant. In support of programs envisioned by the NASA Office of Exploration Systems, Glenn Research Center is developing and testing quasi-steady MW-class MPD thrusters as a prelude to steady state high power thruster tests. This paper provides an overview of the GRC high power pulsed thruster test facility, and presents preliminary performance data for a quasi-steady baseline MPD thruster geometry.

  19. High power density solid oxide fuel cells

    DOEpatents

    Pham, Ai Quoc; Glass, Robert S.

    2004-10-12

    A method for producing ultra-high power density solid oxide fuel cells (SOFCs). The method involves the formation of a multilayer structure cells wherein a buffer layer of doped-ceria is deposited intermediate a zirconia electrolyte and a cobalt iron based electrode using a colloidal spray deposition (CSD) technique. For example, a cobalt iron based cathode composed of (La,Sr)(Co,Fe)O (LSCF) may be deposited on a zirconia electrolyte via a buffer layer of doped-ceria deposited by the CSD technique. The thus formed SOFC have a power density of 1400 mW/cm.sup.2 at 600.degree. C. and 900 mW/cm.sup.2 at 700.degree. C. which constitutes a 2-3 times increased in power density over conventionally produced SOFCs.

  20. High power performance limits of fiber components

    NASA Astrophysics Data System (ADS)

    Holehouse, Nigel; Magné, Julien; Auger, Mathieu

    2015-03-01

    High power combiners are essential for practical fiber lasers, recent developments in pump technology has increased the available brightness and power of pumps significantly, enabling multi kW lasers and pushing combiner designs to new limits. I will present the challenges, measurements and some solutions to these issues. Traditional calculations for combiners underestimate the issues associated with the `tails' of the pump NA distribution, losses in fully filled combiners increase rapidly as pump NA blooms, and subsequent heating effects dominate the combiner's power handling. Acrylate coated pump fibers are reaching their limits and devices and measurements on double clad pump combiners with losses <0.05dB, will be presented enabling multi kW operation, The use of triple clad fibers in the gain section will discussed as a solution for multi kW applications. Results on ultra-low background loss FBG's will be presented, along with developed measurement techniques.

  1. High-power ultrawideband electromagnetic pulse radiation

    NASA Astrophysics Data System (ADS)

    Koshelev, Vladimir I.; Buyanov, Yuri I.; Koval'chuk, Boris M.; Andreev, Yuri A.; Belichenko, Victor P.; Efremov, Anatoly M.; Plisko, Vyacheslav V.; Sukhushin, Konstantin N.; Vizir, Vadim A.; Zorin, Valery B.

    1997-10-01

    Basing on energetic processes studying in the near-field radiator zone, a new concept of antenna synthesizing for ultrawideband electromagnetic pulse radiation has been suggested. The results of experimental investigations of the antennae developed with using of this concept for high-power applications are presented. The antennae have small dimensions, high electrical strength, cardioid pattern with linear polarization of the pulse radiated and they are ideally adapted to be used as a steering antenna array element. A high-voltage nanosecond bipolar pulse generator design to excite antennae is described.

  2. High-altitude solar power platform

    SciTech Connect

    Bailey, M.D.; Bower, M.V.

    1992-04-01

    Solar power is a preeminent alternative to conventional aircraft propulsion. With the continued advances in solar cells, fuel cells, and composite materials technology, the solar powered airplane is no longer a simple curiosity constrained to flights of several feet in altitude or minutes of duration. A high altitude solar powered platform (HASPP) has several potential missions, including communications and agriculture. In remote areas, a HASPP could be used as a communication link. In large farming areas, a HASPP could perform remote sensing of crops. The impact of HASPP in continuous flight for one year on agricultural monitoring mission is presented. This mission provides farmers with near real-time data twice daily from an altitude which allows excellant resolution on water conditions, crop diseases, and insect infestation. Accurate, timely data will enable farmers to increase their yield and efficiency. A design for HASPP for the foregoing mission is presented. In the design power derived from solar cells covering the wings is used for propulsion, avionics, and sensors. Excess power produced midday will be stored in fuel cells for use at night to maintain altitude and course.

  3. On life assessment of high reliability high power optical switch

    NASA Astrophysics Data System (ADS)

    Xu, Yuanjian; Chu, Peter

    2014-09-01

    High data rate and long range free space lasercom links require multi-watt optical transmitter power, which creates a need for high power redundancy switches to ensure high payload reliability. A high power optical switch (HPOS) with less than 0.15 dB loss and capable of switching more than 40 watts of optical power in a single mode fiber has been previously demonstrated in the Transformational Satellite Communication System program. Prototype switches, in either 1x2 or 2x2 configuration, have been subjected to pyro-shock test, vibration test, and vacuum operation. These switches showed no performance degradation as a result of these tests. Three prototypes went through 60,000 35-watt switching cycles and over 30 million low power switching cycles, and the switches showed no mechanical failure. The HPOS life is about 3.2 million switching cycles with a definition of 3-dB degradation in on/off extinction ratio, which is well suited for space applications.

  4. High Power UV LED Industrial Curing Systems

    SciTech Connect

    Karlicek, Robert, F., Jr; Sargent, Robert

    2012-05-14

    UV curing is a green technology that is largely underutilized because UV radiation sources like Hg Lamps are unreliable and difficult to use. High Power UV LEDs are now efficient enough to replace Hg Lamps, and offer significantly improved performance relative to Hg Lamps. In this study, a modular, scalable high power UV LED curing system was designed and tested, performing well in industrial coating evaluations. In order to achieve mechanical form factors similar to commercial Hg Lamp systems, a new patent pending design was employed enabling high irradiance at long working distances. While high power UV LEDs are currently only available at longer UVA wavelengths, rapid progress on UVC LEDs and the development of new formulations designed specifically for use with UV LED sources will converge to drive more rapid adoption of UV curing technology. An assessment of the environmental impact of replacing Hg Lamp systems with UV LED systems was performed. Since UV curing is used in only a small portion of the industrial printing, painting and coating markets, the ease of use of UV LED systems should increase the use of UV curing technology. Even a small penetration of the significant number of industrial applications still using oven curing and drying will lead to significant reductions in energy consumption and reductions in the emission of green house gases and solvent emissions.

  5. High speed micromachining with high power UV laser

    NASA Astrophysics Data System (ADS)

    Patel, Rajesh S.; Bovatsek, James M.

    2013-03-01

    Increasing demand for creating fine features with high accuracy in manufacturing of electronic mobile devices has fueled growth for lasers in manufacturing. High power, high repetition rate ultraviolet (UV) lasers provide an opportunity to implement a cost effective high quality, high throughput micromachining process in a 24/7 manufacturing environment. The energy available per pulse and the pulse repetition frequency (PRF) of diode pumped solid state (DPSS) nanosecond UV lasers have increased steadily over the years. Efficient use of the available energy from a laser is important to generate accurate fine features at a high speed with high quality. To achieve maximum material removal and minimal thermal damage for any laser micromachining application, use of the optimal process parameters including energy density or fluence (J/cm2), pulse width, and repetition rate is important. In this study we present a new high power, high PRF QuasarR 355-40 laser from Spectra-Physics with TimeShiftTM technology for unique software adjustable pulse width, pulse splitting, and pulse shaping capabilities. The benefits of these features for micromachining include improved throughput and quality. Specific example and results of silicon scribing are described to demonstrate the processing benefits of the Quasar's available power, PRF, and TimeShift technology.

  6. High power THz sources for nonlinear imaging

    SciTech Connect

    Tekavec, Patrick F.; Kozlov, Vladimir G.

    2014-02-18

    Many biological and chemical compounds have unique absorption features in the THz (0.1 - 10 THz) region, making the use of THz waves attractive for imaging in defense, security, biomedical imaging, and monitoring of industrial processes. Unlike optical radiation, THz frequencies can pass through many substances such as paper, clothing, ceramic, etc. with little attenuation. The use of currently available THz systems is limited by lack of highpower, sources as well as sensitive detectors and detector arrays operating at room temperature. Here we present a novel, high power THz source based on intracavity downconverison of optical pulses. The source delivers 6 ps pulses at 1.5 THz, with an average power of >300 μW and peak powers >450 mW. We propose an imaging method based on frequency upconverison that is ideally suited to use the narrow bandwidth and high peak powers produced by the source. By upconverting the THz image to the infrared, commercially available detectors can be used for real time imaging.

  7. High power, high efficiency diode pumped Raman fiber laser

    NASA Astrophysics Data System (ADS)

    Glick, Yaakov; Fromzel, Viktor; Zhang, Jun; Dahan, Asaf; Ter-Gabrielyan, Nikolay; Pattnaik, Radha K.; Dubinskii, Mark

    2016-06-01

    We demonstrate a high power high efficiency Raman fiber laser pumped directly by a laser diode module at 976 nm. 80 Watts of CW power were obtained at a wavelength of 1020 nm with an optical-to-optical efficiency of 53%. When working quasi-CW, at a duty cycle of 30%, 85 W of peak power was produced with an efficiency of 60%. A commercial graded-index (GRIN) core fiber acts as the Raman fiber in a power oscillator configuration, which includes spectral selection to prevent generation of the 2nd Stokes. In addition, significant brightness enhancement of the pump beam is attained due to the Raman gain distribution profile in the GRIN fiber. To the best of our knowledge, this is the highest power Raman fiber laser directly pumped by laser diodes, which also exhibits a record efficiency for such a laser. In addition, it is the highest power Raman fiber laser (regardless of pumping source) demonstrated based on a GRIN fiber.

  8. Calibration of a compact XUV soft X-ray monochromator with a digital autocollimator in situ.

    PubMed

    Yuh, Jih Young; Lin, Shang Wei; Huang, Liang Jen; Lee, Long Life

    2016-09-01

    A digital autocollimator of resolution 0.1 µrad (0.02 arcsec) serves as a handy correction tool for calibrating the angular uncertainty during angular and lateral movements of gratings inside a monochromator chamber under ultra-high vacuum. The photon energy dispersed from the extreme ultraviolet (XUV) to the soft X-ray region of the synchrotron beamline at the Taiwan Light Source was monitored using molecular ionization spectra at high resolution as energy references that correlate with the fine angular steps during grating rotation. The angular resolution of the scanning mechanism was <0.3 µrad, which results in an energy shift of 80 meV at 867 eV. The angular uncertainties caused by the lateral movement during a grating exchange were decreased from 2.2 µrad to 0.1 µrad after correction. The proposed method provides a simple solution for on-site beamline diagnostics of highly precise multi-axis optical manipulating instruments at synchrotron facilities and in-house laboratories. PMID:27577780

  9. Gate Drive For High Speed, High Power IGBTs

    SciTech Connect

    Nguyen, M.N.; Cassel, R.L.; de Lamare, J.E.; Pappas, G.C.; /SLAC

    2007-06-18

    A new gate drive for high-voltage, high-power IGBTs has been developed for the SLAC NLC (Next Linear Collider) Solid State Induction Modulator. This paper describes the design and implementation of a driver that allows an IGBT module rated at 800A/3300V to switch up to 3000A at 2200V in 3{micro}S with a rate of current rise of more than 10000A/{micro}S, while still being short circuit protected. Issues regarding fast turn on, high de-saturation voltage detection, and low short circuit peak current will be presented. A novel approach is also used to counter the effect of unequal current sharing between parallel chips inside most high-power IGBT modules. It effectively reduces the collector-emitter peak current, and thus protects the IGBT from being destroyed during soft short circuit conditions at high di/dt.

  10. High power steady state MPD thrusters

    NASA Astrophysics Data System (ADS)

    Auweter-Kurtz, Monika; Habiger, Harald; Kurtz, Helmut; Schrade, Herbert; Sleziona, Cristian

    1993-04-01

    At the Institut fuer Raumfahrtsysteme (IRS) rotation symmetric magnetoplasmadynamic thrusters with self induced magnetic fields are investigated at high current levels in a steady state operation mode. MPD thrusters with different geometrics were compared, and the influence of mass flow rate and power input on the operating conditions of the thrusters explored. By optical and probe measurements, a systematic investigation of the plasma plume has been started. The investigation of the various instabilities of the arc and the plasma flow appearing at high power levels was continued. The computer code development for the geometry optimization of continuous self-field MPD thrusters, running with argon, was modified by considering higher degrees of ionization, which showed better agreement with the experiment.