Science.gov

Sample records for high precision experimental

  1. Experimental Study of Hypernuclei Electroproduction by High Precision Spectroscopy

    SciTech Connect

    Tomislav Seva

    2009-12-01

    Jlab experiment E01-011, carried out in 2005 in JLab Hall C, is the second generation of the hypernuclear spectroscopy experiments by the (e,e{prime}K{sup +}) reaction. The (e,e{prime}K{sup +}) reaction is complimentary to the associated production reactions (K{sup -},{pi}{sup -}), ({pi}{sup +},K{sup +}) since, due to a larger momentum transfer to a hyperon, excitations of both spin-non-flip and spin-flip states are possible. The experiment uses high quality and continuous primary electron beam to produce neutron rich hypernuclei on various targets by the electroproduction. The experimental setup consists of splitter magnet, high resolution kaon spectrometer (HKS) and electron spectrometer (Enge) implemented in new configuration, the so called 'Tilt Method'. Production data was taken on multiple targets: CH{sub 2}, {sup 6}Li, {sup 7}Li, {sup 9}Be, {sup 10}B, {sup 12}C and {sup 28}Si. In present study the analysis of CH{sub 2}, {sup 12}C and {sup 28}Si is presented. The elementary processes of p(e,e{prime}K{sup +}){Lambda}/{Sigma} from CH{sup 2} data were used for calibration of the spectrometer optics and kinematics. The hypernuclear spectra of {sup 12}{sub {Lambda}}B was obtained with ground state resolution of 0.47 {+-} 0.07 MeV (FWHM), the best ever achieved. Feasibility of the electroproduction reaction to study medium to heavy targets has been proven with the first high resolution beyond p-shell hypernuclear spectra from {sup 28}{sub {Lambda}}Al hypernuclei. The obtained results of the E01-011 experiment confirmed that hypernuclear spectroscopy by the (e,e{prime}K{sup +}) reaction is a very useful technique.

  2. MEASUREMENT AND PRECISION, EXPERIMENTAL VERSION.

    ERIC Educational Resources Information Center

    Harvard Univ., Cambridge, MA. Harvard Project Physics.

    THIS DOCUMENT IS AN EXPERIMENTAL VERSION OF A PROGRAMED TEXT ON MEASUREMENT AND PRECISION. PART I CONTAINS 24 FRAMES DEALING WITH PRECISION AND SIGNIFICANT FIGURES ENCOUNTERED IN VARIOUS MATHEMATICAL COMPUTATIONS AND MEASUREMENTS. PART II BEGINS WITH A BRIEF SECTION ON EXPERIMENTAL DATA, COVERING SUCH POINTS AS (1) ESTABLISHING THE ZERO POINT, (2)…

  3. Highly precise experimental device for determining the heat capacity of liquids under pressure.

    PubMed

    González-Salgado, D; Valencia, J L; Troncoso, J; Carballo, E; Peleteiro, J; Romaní, L; Bessières, D

    2007-05-01

    An experimental device for making isobaric heat capacity measurements of liquids under pressure is presented. The device is an adaptation of the Setaram micro-DSC II atmospheric-pressure microcalorimeter, including modifications of vessels and a pressure line allowing the pressure in the measurement system to be set, controlled, and stabilized. The high sensitivity of the apparatus combined with a suitable calibration procedure allows very accurate heat capacity measurements under pressure to be made. The relative uncertainty in the isobaric molar heat capacity measurements provided by the new device is estimated to be 0.08% at atmospheric pressure and 0.2% at higher levels. The device was validated from isobaric molar heat capacity measurements for hexane, nonane, decane, undecane, dodecane, and tridecane, all of which were highly consistent with reported data. It also possesses a high sensitivity as reflected in its response to changes in excess isobaric molar heat capacity with pressure, which were examined in this work for the first time by making heat capacity measurements throughout the composition range of the 1-hexanol+n-hexane system. Finally, preliminary measurements at several pressures near the critical conditions for the nitromethane+2-butanol binary system were made that testify to the usefulness of the proposed device for studying critical phenomena in liquids under pressure. PMID:17552856

  4. High precision laser sclerostomy

    NASA Astrophysics Data System (ADS)

    Góra, W. S.; Urich, A.; McIntosh, L.; Carter, R. M.; Wilson, C. G.; Dhillon, B.; Hand, D. P.; Shephard, J. D.

    2015-03-01

    Ultrafast lasers offer a possibility of removing soft ophthalmic tissue without introducing collateral damage at the ablation site or in the surrounding tissue. The potential for using ultrashort pico- and femtosecond pulse lasers for modification of ophthalmic tissue has been reported elsewhere and has resulted in the introduction of new, minimally invasive procedures into clinical practice. Our research aims to define the most efficient parameters to allow for the modification of scleral tissue without introducing collateral damage. Our experiments were carried out on hydrated porcine sclera in vitro. Porcine sclera, which has similar collagen organization, histology and water content (~70%) to human tissue was used. Supporting this work we present a 2D finite element blow-off model which employs a one-step heating process. It is assumed that the incident laser radiation that is not reflected is absorbed in the tissue according to the Beer-Lambert law and transformed into heat energy. The experimental setup uses an industrial picosecond laser (TRUMPF TruMicro 5x50) with 5.9 ps pulses at 1030 nm, with pulse energies up to 125 μJ and a focused spot diameter of 35 μm. Use of a beam steering scan head allows flexibility in designing complicated scanning patterns. In this study we have demonstrated that picosecond pulses are capable of removing scleral tissue without introducing any major thermal damage which offers a possible route for minimally invasive sclerostomy. In assessing this we have tested several different scanning patterns including single line ablation, square and circular cavity removal.

  5. High Precision Electon Beam Polarimetry

    NASA Astrophysics Data System (ADS)

    Dutta, D.

    2016-02-01

    Over the last three decades high precision electron beam polarimetry has been at the fore-front of progress made in leveraging the spin degrees of freedom in nuclear and particle physics experiments. We review the three main types of polarimeters, Compton, Møller and Mott, that are typically used in experiments. We discuss some of the recent results in high precision electron polarimetry and some of the new ideas that are being explored for future application at current and proposed accelerators.

  6. High Precision Pressure Measurement with a Funnel

    ERIC Educational Resources Information Center

    Lopez-Arias, T.; Gratton, L. M.; Oss, S.

    2008-01-01

    A simple experimental device for high precision differential pressure measurements is presented. Its working mechanism recalls that of a hydraulic press, where pressure is supplied by insufflating air under a funnel. As an application, we measure air pressure inside a soap bubble. The soap bubble is inflated and connected to a funnel which is…

  7. High-Precision Computation and Mathematical Physics

    SciTech Connect

    Bailey, David H.; Borwein, Jonathan M.

    2008-11-03

    At the present time, IEEE 64-bit floating-point arithmetic is sufficiently accurate for most scientific applications. However, for a rapidly growing body of important scientific computing applications, a higher level of numeric precision is required. Such calculations are facilitated by high-precision software packages that include high-level language translation modules to minimize the conversion effort. This paper presents a survey of recent applications of these techniques and provides some analysis of their numerical requirements. These applications include supernova simulations, climate modeling, planetary orbit calculations, Coulomb n-body atomic systems, scattering amplitudes of quarks, gluons and bosons, nonlinear oscillator theory, Ising theory, quantum field theory and experimental mathematics. We conclude that high-precision arithmetic facilities are now an indispensable component of a modern large-scale scientific computing environment.

  8. High precision redundant robotic manipulator

    DOEpatents

    Young, Kar-Keung David

    1998-01-01

    A high precision redundant robotic manipulator for overcoming contents imposed by obstacles or imposed by a highly congested work space. One embodiment of the manipulator has four degrees of freedom and another embodiment has seven degreed of freedom. Each of the embodiments utilize a first selective compliant assembly robot arm (SCARA) configuration to provide high stiffness in the vertical plane, a second SCARA configuration to provide high stiffness in the horizontal plane. The seven degree of freedom embodiment also utilizes kinematic redundancy to provide the capability of avoiding obstacles that lie between the base of the manipulator and the end effector or link of the manipulator. These additional three degrees of freedom are added at the wrist link of the manipulator to provide pitch, yaw and roll. The seven degrees of freedom embodiment uses one revolute point per degree of freedom. For each of the revolute joints, a harmonic gear coupled to an electric motor is introduced, and together with properly designed based servo controllers provide an end point repeatability of less than 10 microns.

  9. High precision redundant robotic manipulator

    DOEpatents

    Young, K.K.D.

    1998-09-22

    A high precision redundant robotic manipulator for overcoming contents imposed by obstacles or imposed by a highly congested work space is disclosed. One embodiment of the manipulator has four degrees of freedom and another embodiment has seven degrees of freedom. Each of the embodiments utilize a first selective compliant assembly robot arm (SCARA) configuration to provide high stiffness in the vertical plane, a second SCARA configuration to provide high stiffness in the horizontal plane. The seven degree of freedom embodiment also utilizes kinematic redundancy to provide the capability of avoiding obstacles that lie between the base of the manipulator and the end effector or link of the manipulator. These additional three degrees of freedom are added at the wrist link of the manipulator to provide pitch, yaw and roll. The seven degrees of freedom embodiment uses one revolute point per degree of freedom. For each of the revolute joints, a harmonic gear coupled to an electric motor is introduced, and together with properly designed based servo controllers provide an end point repeatability of less than 10 microns. 3 figs.

  10. Towards High Precision Deuteron Polarimetry

    SciTech Connect

    Silva e Silva, M. da

    2009-08-04

    A finite electric dipole moment (EDM) in any fundamental system would constitute a signal for new physics. The deuteron presents itself as an optimal candidate both experimentally and theoretically. A new storage ring technique is being developed for which a small change in the vertical polarization would be a signal of a non-zero EDM. A novel polarimeter concept is under investigation. Besides being highly efficient, this polarimeter should continuously monitor the beam polarization, guaranteeing optimal sensitivity. Detailed studies on systematic error control, in addition to the measurement of cross sections and analyzing powers, were carried out at KVI-Groningen in The Netherlands. Measurements were conducted at COSY-Juelich in Germany yielding high efficiencies. The (statistics limited) ability to track changes in polarization at the level of a few hundred parts-per-million has been demonstrated. Further studies and developments to meet the final goal of sub-part-per-million sensitivity are in progress.

  11. High precision anatomy for MEG☆

    PubMed Central

    Troebinger, Luzia; López, José David; Lutti, Antoine; Bradbury, David; Bestmann, Sven; Barnes, Gareth

    2014-01-01

    Precise MEG estimates of neuronal current flow are undermined by uncertain knowledge of the head location with respect to the MEG sensors. This is either due to head movements within the scanning session or systematic errors in co-registration to anatomy. Here we show how such errors can be minimized using subject-specific head-casts produced using 3D printing technology. The casts fit the scalp of the subject internally and the inside of the MEG dewar externally, reducing within session and between session head movements. Systematic errors in matching to MRI coordinate system are also reduced through the use of MRI-visible fiducial markers placed on the same cast. Bootstrap estimates of absolute co-registration error were of the order of 1 mm. Estimates of relative co-registration error were < 1.5 mm between sessions. We corroborated these scalp based estimates by looking at the MEG data recorded over a 6 month period. We found that the between session sensor variability of the subject's evoked response was of the order of the within session noise, showing no appreciable noise due to between-session movement. Simulations suggest that the between-session sensor level amplitude SNR improved by a factor of 5 over conventional strategies. We show that at this level of coregistration accuracy there is strong evidence for anatomical models based on the individual rather than canonical anatomy; but that this advantage disappears for errors of greater than 5 mm. This work paves the way for source reconstruction methods which can exploit very high SNR signals and accurate anatomical models; and also significantly increases the sensitivity of longitudinal studies with MEG. PMID:23911673

  12. High precision triangular waveform generator

    DOEpatents

    Mueller, Theodore R.

    1983-01-01

    An ultra-linear ramp generator having separately programmable ascending and descending ramp rates and voltages is provided. Two constant current sources provide the ramp through an integrator. Switching of the current at current source inputs rather than at the integrator input eliminates switching transients and contributes to the waveform precision. The triangular waveforms produced by the waveform generator are characterized by accurate reproduction and low drift over periods of several hours. The ascending and descending slopes are independently selectable.

  13. High precision Standard Model Physics

    SciTech Connect

    Magnin, J.

    2009-04-20

    The main goal of the LHCb experiment, one of the four large experiments of the Large Hadron Collider, is to try to give answers to the question of why Nature prefers matter over antimatter? This will be done by studying the decay of b quarks and their antimatter partners, b-bar, which will be produced by billions in 14 TeV p-p collisions by the LHC. In addition, as 'beauty' particles mainly decay in charm particles, an interesting program of charm physics will be carried on, allowing to measure quantities as for instance the D{sup 0}-D-bar{sup 0} mixing, with incredible precision.

  14. High precision Standard Model Physics

    NASA Astrophysics Data System (ADS)

    Magnin, J.

    2009-04-01

    The main goal of the LHCb experiment, one of the four large experiments of the Large Hadron Collider, is to try to give answers to the question of why Nature prefers matter over antimatter? This will be done by studying the decay of b quarks and their antimatter partners, b¯, which will be produced by billions in 14 TeV p-p collisions by the LHC. In addition, as "beauty" particles mainly decay in charm particles, an interesting program of charm physics will be carried on, allowing to measure quantities as for instance the D0-D¯0 mixing, with incredible precision.

  15. New High Precision Linelist of H_3^+

    NASA Astrophysics Data System (ADS)

    Hodges, James N.; Perry, Adam J.; Markus, Charles; Jenkins, Paul A., II; Kocheril, G. Stephen; McCall, Benjamin J.

    2014-06-01

    As the simplest polyatomic molecule, H_3^+ serves as an ideal benchmark for theoretical predictions of rovibrational energy levels. By strictly ab initio methods, the current accuracy of theoretical predictions is limited to an impressive one hundredth of a wavenumber, which has been accomplished by consideration of relativistic, adiabatic, and non-adiabatic corrections to the Born-Oppenheimer PES. More accurate predictions rely on a treatment of quantum electrodynamic effects, which have improved the accuracies of vibrational transitions in molecular hydrogen to a few MHz. High precision spectroscopy is of the utmost importance for extending the frontiers of ab initio calculations, as improved precision and accuracy enable more rigorous testing of calculations. Additionally, measuring rovibrational transitions of H_3^+ can be used to predict its forbidden rotational spectrum. Though the existing data can be used to determine rotational transition frequencies, the uncertainties are prohibitively large. Acquisition of rovibrational spectra with smaller experimental uncertainty would enable a spectroscopic search for the rotational transitions. The technique Noise Immune Cavity Enhanced Optical Heterodyne Velocity Modulation Spectroscopy, or NICE-OHVMS has been previously used to precisely and accurately measure transitions of H_3^+, CH_5^+, and HCO^+ to sub-MHz uncertainty. A second module for our optical parametric oscillator has extended our instrument's frequency coverage from 3.2-3.9 μm to 2.5-3.9 μm. With extended coverage, we have improved our previous linelist by measuring additional transitions. O. L. Polyansky, et al. Phil. Trans. R. Soc. A (2012), 370, 5014--5027. J. Komasa, et al. J. Chem. Theor. Comp. (2011), 7, 3105--3115. C. M. Lindsay, B. J. McCall, J. Mol. Spectrosc. (2001), 210, 66--83. J. N. Hodges, et al. J. Chem. Phys. (2013), 139, 164201.

  16. Development of precision measurement network of experimental advanced superconducting tokamak

    NASA Astrophysics Data System (ADS)

    Yu, Liandong; Zhao, Huining; Zhang, Wei; Li, Weishi; Deng, Huaxia; Song, Yuntao; Gu, Yongqi

    2014-12-01

    In order to obtain accurate position of the inner key components in the experimental advanced superconducting tokamak (EAST), a combined optical measurement method which is comprised of a laser tracker (LT) and articulated coordinate measuring machine (CMM) has been brought forward. LT, which is an optical measurement instrument and has a large measurement range and high accuracy, is employed for establishing the precision measurement network of EAST, and the articulated CMM is also employed for measuring the inner key components of EAST. The measurement uncertainty analyzed by the Unified Spatial Metrology Network (USMN) is 0.20 mm at a confidence probability of 95.44%. The proposed technology is appropriate for the inspection of the reconstruction of the EAST.

  17. High-rate precise point positioning (PPP) to measure seismic wave motions: An experimental comparison of GPS PPP with inertial measurement units

    NASA Astrophysics Data System (ADS)

    Xu, Peiliang; Shi, Chuang; Fang, Rongxin; Liu, Jingnan; Niu, Xiaoji; Zhang, Quan; Yanagidani, Takashi

    2013-04-01

    High-rate GPS has been widely used to construct displacement waveforms and to invert for source parameters of earthquakes. Almost all works on internal and external evaluation of high-rate GPS accuracy are based on GPS relative positioning. We build an experimental platform to externally evaluate the accuracy of 50 Hz PPP displacement waveforms. Since the shake table allows motion in any of six degrees of freedom, we install an inertial measurement unit (IMU) to measure the attitude of the platform and transform the IMU displacements into the GPS coordinate system. The experimental results have shown that high-rate PPP can produce absolute horizontal displacement waveforms at the accuracy of 2 to 4 millimeters and absolute vertical displacement waveforms at the sub-centimeter level of accuracy within a short period of time. The significance of the experiments indicates that high-rate PPP is capable of detecting absolute seismic displacement waveforms at the same high accuracy as GPS relative positioning techniques but requires no fixed datum station. We have also found a small scaling error of IMU and a small time offset of misalignment between high-rate PPP and IMU displacement waveforms by comparing the amplitudes of and cross-correlating both the displacement waveforms. For more details on this talk, one can now get access to the on-line-first version of our Journal of Geodesy paper: J Geod, DOI 10.1007/s00190-012-0606-z

  18. High-rate precise point positioning (PPP) to measure seismic wave motions: an experimental comparison of GPS PPP with inertial measurement units

    NASA Astrophysics Data System (ADS)

    Xu, Peiliang; Shi, Chuang; Fang, Rongxin; Liu, Jingnan; Niu, Xiaoji; Zhang, Quan; Yanagidani, Takashi

    2013-04-01

    High-rate GPS has been widely used to construct displacement waveforms and to invert for source parameters of earthquakes. Almost all works on internal and external evaluation of high-rate GPS accuracy are based on GPS relative positioning. We build an experimental platform to externally evaluate the accuracy of 50-Hz PPP displacement waveforms. Since the shake table allows motion in any of six degrees of freedom, we install an inertial measurement unit (IMU) to measure the attitude of the platform and transform the IMU displacements into the GPS coordinate system. The experimental results have shown that high-rate PPP can produce absolute horizontal displacement waveforms at the accuracy of 2-4 mm and absolute vertical displacement waveforms at the sub-centimeter level of accuracy within a short period of time. The significance of the experiments indicates that high-rate PPP is capable of detecting absolute seismic displacement waveforms at the same high accuracy as GPS relative positioning techniques, but requires no fixed datum station. We have also found a small scaling error of IMU and a small time offset of misalignment between high-rate PPP and IMU displacement waveforms by comparing the amplitudes of and cross-correlating both the displacement waveforms.

  19. Precision Crystal Calorimeters in High Energy Physics

    ScienceCinema

    Ren-Yuan Zhu

    2010-01-08

    Precision crystal calorimeters traditionally play an important role in high energy physics experiments. In the last two decades, it faces a challenge to maintain its precision in a hostile radiation environment. This paper reviews the performance of crystal calorimeters constructed for high energy physics experiments and the progress achieved in understanding crystal?s radiation damage as well as in developing high quality scintillating crystals for particle physics. Potential applications of new generation scintillating crystals of high density and high light yield, such as LSO and LYSO, in particle physics experiments is also discussed.

  20. High-precision arithmetic in mathematical physics

    DOE PAGESBeta

    Bailey, David H.; Borwein, Jonathan M.

    2015-05-12

    For many scientific calculations, particularly those involving empirical data, IEEE 32-bit floating-point arithmetic produces results of sufficient accuracy, while for other applications IEEE 64-bit floating-point is more appropriate. But for some very demanding applications, even higher levels of precision are often required. Furthermore, this article discusses the challenge of high-precision computation, in the context of mathematical physics, and highlights what facilities are required to support future computation, in light of emerging developments in computer architecture.

  1. Aerodynamic window for high precision laser drilling

    NASA Astrophysics Data System (ADS)

    Sommer, Steffen; Dausinger, Friedrich; Berger, Peter; Hügel, Helmuth

    2007-05-01

    High precision laser drilling is getting more and more interesting for industry. Main applications for such holes are vaporising and injection nozzles. To enhance quality, the energy deposition has to be accurately defined by reducing the pulse duration and thereby reducing the amount of disturbing melting layer. In addition, an appropriate processing technology, for example the helical drilling, yields holes in steel at 1 mm thickness and diameters about 100 μm with correct roundness and thin recast layers. However, the processing times are still not short enough for industrial use. Experiments have shown that the reduction of the atmospheric pressure down to 100 hPa enhances the achievable quality and efficiency, but the use of vacuum chambers in industrial processes is normally quite slow and thus expensive. The possibility of a very fast evacuation is given by the use of an aerodynamic window, which produces the pressure reduction by virtue of its fluid dynamic features. This element, based on a potential vortex, was developed and patented as out-coupling window for high power CO II lasers by IFSW 1, 2, 3. It has excellent tightness and transmission properties, and a beam deflection is not detectable. The working medium is compressed air, only. For the use as vacuum element for laser drilling, several geometrical modifications had to be realized. The prototype is small enough to be integrated in a micromachining station and has a low gas flow. During the laser pulse, which is focussed through the potential flow, a very high fluence is reached, but the measurements have not shown any beam deflection or focal shifting. The evacuation time is below 300 ms so that material treatment with changing ambient pressure is possible, too. Experimental results have proven the positive effect of the reduced ambient pressure on the drilling process for the regime of nano- and picosecond laser pulses. Plasma effects are reduced and, because of the less absorption, the drilling velocity is increased and widening effects are decreased. So the process is more efficient and precise. Furthermore, the necessary pulse energy for the drilling of a certain material thickness is reduced and so laser power can be saved.

  2. High-precision laser machining of ceramics

    NASA Astrophysics Data System (ADS)

    Toenshoff, Hans K.; von Alvensleben, Ferdinand; Graumann, Christoph; Willmann, Guido

    1998-09-01

    The increasing demand for highly developed ceramic materials for various applications calls for innovative machining technologies yielding high accuracy and efficiency. Associated problems with conventional, i.e. mechanical methods, are unacceptable tool wear as well as force induced damages on ceramic components. Furthermore, the established grinding techniques often meet their limits if accurate complex 2D or 3D structures are required. In contrast to insufficient mechanical processes, UV-laser precision machining of ceramics offers not only a valuable technological alternative but a considerable economical aspect as well. In particular, excimer lasers provide a multitude of advantages for applications in high precision and micro technology. Within the UV wavelength range and pulses emitted in the nano-second region, minimal thermal effects on ceramics and polymers are observed. Thus, the ablation geometry can be controlled precisely in the lateral and vertical directions. In this paper, the excimer laser machining technology developed at the Laser Zentrum Hannover is explained. Representing current and future industrial applications, examinations concerning the precision cutting of alumina (Al2O3), and HF-composite materials, the ablation of ferrite ceramics for precision inductors and the structuring of SiC sealing and bearing rings are presented.

  3. Precision control of high temperature furnaces

    SciTech Connect

    Pollock, G.G.

    1994-12-31

    It is an object of the present invention to provide precision control of high temperature furnaces. It is another object of the present invention to combine the power of two power supplies of greatly differing output capacities in a single furnace. This invention combines two power supplies to control a furnace. A main power supply heats the furnace in the traditional manner, while the power from the auxiliary supply is introduced as a current flow through charged particles existing due to ionized gas or thermionic emission. The main power supply provides the bulk heating power and the auxiliary supply provides a precise and fast power source such that the precision of the total power delivered to the furnace is improved. Further, this invention comprises a means for high speed measurement of temperature of the process by the method of measuring the amount of current flow in a deliberately induced charged particle current.

  4. High precision measurements in crustal dynamic studies

    NASA Technical Reports Server (NTRS)

    Wyatt, F.; Berger, J.

    1984-01-01

    The development of high-precision instrumentation for monitoring benchmark stability and evaluating coseismic strain and tilt signals is reviewed. Laser strainmeter and tilt observations are presented. Examples of coseismic deformation in several geographic locations are given. Evidence suggests that the Earth undergoes elastic response to abrupt faulting.

  5. High precision, rapid laser hole drilling

    DOEpatents

    Chang, Jim J.; Friedman, Herbert W.; Comaskey, Brian J.

    2007-03-20

    A laser system produces a first laser beam for rapidly removing the bulk of material in an area to form a ragged hole. The laser system produces a second laser beam for accurately cleaning up the ragged hole so that the final hole has dimensions of high precision.

  6. High precision, rapid laser hole drilling

    DOEpatents

    Chang, Jim J.; Friedman, Herbert W.; Comaskey, Brian J.

    2005-03-08

    A laser system produces a first laser beam for rapidly removing the bulk of material in an area to form a ragged hole. The laser system produces a second laser beam for accurately cleaning up the ragged hole so that the final hole has dimensions of high precision.

  7. High precision, rapid laser hole drilling

    DOEpatents

    Chang, Jim J.; Friedman, Herbert W.; Comaskey, Brian J.

    2013-04-02

    A laser system produces a first laser beam for rapidly removing the bulk of material in an area to form a ragged hole. The laser system produces a second laser beam for accurately cleaning up the ragged hole so that the final hole has dimensions of high precision.

  8. A precise experimental study of various affecting operational parameters in electrocoagulation-flotation process of high-load compost leachate in a batch reactor.

    PubMed

    Amani, T; Veysi, K; Elyasi, S; Dastyar, W

    2014-01-01

    The present study treated compost leachate, a high load organic and inorganic wastewater, using a batch electrocoagulation-flotation (ECF) process. ECF is an effective, fast, reliable, feasible, and economic technique for wastewater treatment. The interactive effects of operational factors such as influent chemical oxygen demand (COD), voltage, electrolysis time (ET), and electrodes distance (ED) on the efficiency of COD and total suspended solid (TSS) removal for various electrodes configurations (Al-Al, Al-Fe, Fe-Al, Fe-Fe) were analyzed and correlated. Al-Al was found to be the best configuration based on maximum removal of COD and TSS. Ultimately, analysis of associated results indicated that the best arrangement (Al-Al) possessed the following optimal factors: influent COD = 12,627 mg/L, voltage = 19 V, ET = 75 min, and ED = 3 cm for maximum removal of COD (96%) and TSS (99%). Confirmation tests indicated a 95% confidence interval for good agreement of the experimental results and predicted values from fitted correlations. Analysis of outcomes demonstrated that COD concentration was the most effective variable for COD and TSS removal, and, in addition, an increase in ET and a decrease in ED had positive effects. Total corrosion on the Al and Fe plates was 34.8 and 146.6 g, respectively. PMID:25353934

  9. Portable high precision pressure transducer system

    SciTech Connect

    Piper, T.C.; Morgan, J.P.; Marchant, N.J.; Bolton, S.M.

    1992-12-31

    A high precision pressure transducer system for checking the reliability of a second pressure transducer system used to monitor the level of a fluid confined in a holding tank. Since the response of the pressure transducer is temperature sensitive, it is continually housed in an battery powered oven which is configured to provide a temperature stable environment at specified temperature for an extended period of time. Further, a high precision temperature stabilized oscillator and counter are coupled to a single board computer to accurately determine the pressure transducer oscillation frequency and convert it to an applied pressure. All of the components are powered by the batteries which during periods of availability of line power are charged by an on board battery charger. The pressure readings outputs are transmitted to a line printer and a vacuum florescent display.

  10. Portable high precision pressure transducer system

    DOEpatents

    Piper, Thomas C.; Morgan, John P.; Marchant, Norman J.; Bolton, Steven M.

    1994-01-01

    A high precision pressure transducer system for checking the reliability of a second pressure transducer system used to monitor the level of a fluid confined in a holding tank. Since the response of the pressure transducer is temperature sensitive, it is continually housed in an battery powered oven which is configured to provide a temperature stable environment at specified temperature for an extended period of time. Further, a high precision temperature stabilized oscillator and counter are coupled to a single board computer to accurately determine the pressure transducer oscillation frequency and convert it to an applied pressure. All of the components are powered by the batteries which during periods of availability of line power are charged by an on board battery charger. The pressure readings outputs are transmitted to a line printer and a vacuum florescent display.

  11. Portable high precision pressure transducer system

    DOEpatents

    Piper, T.C.; Morgan, J.P.; Marchant, N.J.; Bolton, S.M.

    1994-04-26

    A high precision pressure transducer system is described for checking the reliability of a second pressure transducer system used to monitor the level of a fluid confined in a holding tank. Since the response of the pressure transducer is temperature sensitive, it is continually housed in an battery powered oven which is configured to provide a temperature stable environment at specified temperature for an extended period of time. Further, a high precision temperature stabilized oscillator and counter are coupled to a single board computer to accurately determine the pressure transducer oscillation frequency and convert it to an applied pressure. All of the components are powered by the batteries which during periods of availability of line power are charged by an on board battery charger. The pressure readings outputs are transmitted to a line printer and a vacuum fluorescent display. 2 figures.

  12. High precision radial velocities with GIANO spectra

    NASA Astrophysics Data System (ADS)

    Carleo, I.; Sanna, N.; Gratton, R.; Benatti, S.; Bonavita, M.; Oliva, E.; Origlia, L.; Desidera, S.; Claudi, R.; Sissa, E.

    2016-03-01

    Radial velocities (RV) measured from near-infrared (NIR) spectra are a potentially excellent tool to search for extrasolar planets around cool or active stars. High resolution infrared (IR) spectrographs now available are reaching the high precision of visible instruments, with a constant improvement over time. GIANO is an infrared echelle spectrograph at the Telescopio Nazionale Galileo (TNG) and it is a powerful tool to provide high resolution spectra for accurate RV measurements of exoplanets and for chemical and dynamical studies of stellar or extragalactic objects. No other high spectral resolution IR instrument has GIANO's capability to cover the entire NIR wavelength range (0.95-2.45 μm) in a single exposure. In this paper we describe the ensemble of procedures that we have developed to measure high precision RVs on GIANO spectra acquired during the Science Verification (SV) run, using the telluric lines as wavelength reference. We used the Cross Correlation Function (CCF) method to determine the velocity for both the star and the telluric lines. For this purpose, we constructed two suitable digital masks that include about 2000 stellar lines, and a similar number of telluric lines. The method is applied to various targets with different spectral type, from K2V to M8 stars. We reached different precisions mainly depending on the H-magnitudes: for H ˜ 5 we obtain an rms scatter of ˜ 10 m s-1, while for H ˜ 9 the standard deviation increases to ˜ 50 ÷ 80 m s-1. The corresponding theoretical error expectations are ˜ 4 m s-1 and 30 m s-1, respectively. Finally we provide the RVs measured with our procedure for the targets observed during GIANO Science Verification.

  13. Precision mass measurements of highly charged ions

    NASA Astrophysics Data System (ADS)

    Kwiatkowski, A. A.; Bale, J. C.; Brunner, T.; Chaudhuri, A.; Chowdhury, U.; Ettenauer, S.; Frekers, D.; Gallant, A. T.; Grossheim, A.; Lennarz, A.; Mane, E.; MacDonald, T. D.; Schultz, B. E.; Simon, M. C.; Simon, V. V.; Dilling, J.

    2012-10-01

    The reputation of Penning trap mass spectrometry for accuracy and precision was established with singly charged ions (SCI); however, the achievable precision and resolving power can be extended by using highly charged ions (HCI). The TITAN facility has demonstrated these enhancements for long-lived (T1/2>=50 ms) isobars and low-lying isomers, including ^71Ge^21+, ^74Rb^8+, ^78Rb^8+, and ^98Rb^15+. The Q-value of ^71Ge enters into the neutrino cross section, and the use of HCI reduced the resolving power required to distinguish the isobars from 3 x 10^5 to 20. The precision achieved in the measurement of ^74Rb^8+, a superallowed β-emitter and candidate to test the CVC hypothesis, rivaled earlier measurements with SCI in a fraction of the time. The 111.19(22) keV isomeric state in ^78Rb was resolved from the ground state. Mass measurements of neutron-rich Rb and Sr isotopes near A = 100 aid in determining the r-process pathway. Advanced ion manipulation techniques and recent results will be presented.

  14. Note: High precision measurements using high frequency gigahertz signals

    NASA Astrophysics Data System (ADS)

    Jin, Aohan; Fu, Siyuan; Sakurai, Atsunori; Liu, Liang; Edman, Fredrik; Pullerits, Tõnu; Öwall, Viktor; Karki, Khadga Jung

    2014-12-01

    Generalized lock-in amplifiers use digital cavities with Q-factors as high as 5 × 108 to measure signals with very high precision. In this Note, we show that generalized lock-in amplifiers can be used to analyze microwave (giga-hertz) signals with a precision of few tens of hertz. We propose that the physical changes in the medium of propagation can be measured precisely by the ultra-high precision measurement of the signal. We provide evidence to our proposition by verifying the Newton's law of cooling by measuring the effect of change in temperature on the phase and amplitude of the signals propagating through two calibrated cables. The technique could be used to precisely measure different physical properties of the propagation medium, for example, the change in length, resistance, etc. Real time implementation of the technique can open up new methodologies of in situ virtual metrology in material design.

  15. High-precision spectroscopy of hydrogen molecular ions

    NASA Astrophysics Data System (ADS)

    Zhong, Zhen-Xiang; Tong, Xin; Yan, Zong-Chao; Shi, Ting-Yun

    2015-05-01

    In this paper, we overview recent advances in high-precision structure calculations of the hydrogen molecular ions ( and HD+), including nonrelativistic energy eigenvalues and relativistic and quantum electrodynamic corrections. In combination with high-precision measurements, it is feasible to precisely determine a molecular-based value of the proton-to-electron mass ratio. An experimental scheme is presented for measuring the rovibrational transition frequency (v,L) : (0,0) → (6,1) in HD+, which is currently underway at the Wuhan Institute of Physics and Mathematics. Project supported by the National Natural Science Foundation of China (Grants Nos. 11474316, 11004221, 10974224, and 11274348), the “Hundred Talent Program” of Chinese Academy of Sciences. Yan Zong-Chao was supported by NSERC, SHARCnet, ACEnet of Canada, and the CAS/SAFEA International Partnership Program for Creative Research Teams.

  16. Recent high precision surveys at PEP

    SciTech Connect

    Sah, R.C.

    1980-12-01

    The task of surveying and aligning the components of PEP has provided an opportunity to develop new instruments and techniques for the purpose of high precision surveys. The new instruments are quick and easy to use, and they automatically encode survey data and read them into the memory of an on-line computer. When measurements of several beam elements have been taken, the on-line computer analyzes the measured data, compares them with desired parameters, and calculates the required adjustments to beam element support stands.

  17. Precision timing measurements for high energy photons

    SciTech Connect

    Anderson, Dustin; Apreysan, Artur; Bornheim, Adi; Duarte, Javier; Newman, Harvey; Pena, Cristian; Ronzhin, Anatoly; Spiropulu, Maria; Trevor, Jason; Xie, Si; Zhu, Ren-Yuan

    2014-11-21

    Particle colliders operating at high luminosities present challenging environments for high energy physics event reconstruction and analysis. We discuss how timing information, with a precision on the order of 10 ps, can aid in the reconstruction of physics events under such conditions. We present calorimeter based timing measurements from test beam experiments in which we explore the ultimate timing precision achievable for high energy photons or electrons of 10 GeV and above. Using a prototype calorimeter consisting of a 1.7×1.7×1.7 cm3 lutetium–yttrium oxyortho-silicate (LYSO) crystal cube, read out by micro-channel plate photomultipliers, we demonstrate a time resolution of 33.5±2.1 ps for an incoming beam energy of 32 GeV. In a second measurement, using a 2.5×2.5×20 cm3 LYSO crystal placed perpendicularly to the electron beam, we achieve a time resolution of 59±11 ps using a beam energy of 4 GeV. We also present timing measurements made using a shashlik-style calorimeter cell made of LYSO and tungsten plates, and demonstrate that the apparatus achieves a time resolution of 54±5 ps for an incoming beam energy of 32 GeV.

  18. High-precision IR molded lenses

    NASA Astrophysics Data System (ADS)

    Guimond, Yann M.; Bellec, Yann

    2004-02-01

    Umicore IR Glass is a company specialising in the production of chalcogenide glasses and moulded optics. The standard glass compositions are GASIR1 (Ge22As20Se58) and GASIR2 (Ge20Sb15Se65). These materials are transparent in the 3-5 ?m and 8-12 ?m bands. An industrial process has been developed to produce these two glasses with well controlled properties. The reproducibility of refractive index is for example better than 2.0 x 10-4 at 10 ?m. A unique and high precision moulding technology has been developed to produce low cost chalcogenide glass lenses with high performance levels. Spherical, aspherical and asphero-diffractive lenses are manufactured with very accurate surface precision. The form defect of the moulded surfaces can be less than 0.4 ?m with a typical roughness of 10 nm. When depositing an antireflection coating onto the moulded lenses, the reflection losses are reduced, raising the transmission to 98%, compared to 70% for uncoated lenses. A durable coating has also been developed as a protection for exposed lenses. Coated asphero-diffractive GASIR optics, used in infrared cameras give good quality images. The performance is comparable to that of an optical system with aspherical germanium. GASIR offers a cost-effective alternative to germanium for thermal imaging, especially for medium to high volume applications, both commercial and military.

  19. Research about the high precision temperature measurement

    NASA Astrophysics Data System (ADS)

    Lin, J.; Yu, J.; Zhu, X.; Zeng, Z.; Deng, Y.

    2012-12-01

    High precision temperature control system is one of most important support conditions for tunable birefringent filter.As the first step,we researched some high precision temperature measurement methods for it. Firstly, circuits with a 24 bit ADC as the sensor's reader were carefully designed; Secondly, an ARM porcessor is used as the centrol processing unit, it provides sufficient reading and procesing ability; Thirdly, three kinds of sensors, PT100, Dale 01T1002-5 thermistor, Wheatstone bridge(constructed by pure copper and manganin) as the senor of the temperature were tested respectively. The resolution of the measurement with these three kinds of sensors are all better than 0.001 that's enough for 0.01 stability temperature control. Comparatively, Dale 01T1002-5 thermistor could get the most accurate temperature of the key point, Wheatstone bridge could get the most accurate mean temperature of the whole layer, both of them will be used in our futrue temperature controll system.

  20. Experimental evaluation of active-member control of precision structures

    NASA Technical Reports Server (NTRS)

    Fanson, James; Blackwood, Gary; Chu, Cheng-Chih

    1989-01-01

    The results of closed loop experiments that use piezoelectric active-members to control the flexible motion of a precision truss structure are described. These experiments are directed toward the development of high-performance structural systems as part of the Control/Structure Interaction (CSI) program at JPL. The focus of CSI activity at JPL is to develop the technology necessary to accurately control both the shape and vibration levels in the precision structures from which proposed large space-based observatories will be built. Structural error budgets for these types of structures will likely be in the sub-micron regime; optical tolerances will be even tighter. In order to achieve system level stability and local positioning at this level, it is generally expected that some form of active control will be required.

  1. Precisely parameterized experimental and computational models of tissue organization.

    PubMed

    Molitoris, Jared M; Paliwal, Saurabh; Sekar, Rajesh B; Blake, Robert; Park, JinSeok; Trayanova, Natalia A; Tung, Leslie; Levchenko, Andre

    2016-02-15

    Patterns of cellular organization in diverse tissues frequently display a complex geometry and topology tightly related to the tissue function. Progressive disorganization of tissue morphology can lead to pathologic remodeling, necessitating the development of experimental and theoretical methods of analysis of the tolerance of normal tissue function to structural alterations. A systematic way to investigate the relationship of diverse cell organization to tissue function is to engineer two-dimensional cell monolayers replicating key aspects of the in vivo tissue architecture. However, it is still not clear how this can be accomplished on a tissue level scale in a parameterized fashion, allowing for a mathematically precise definition of the model tissue organization and properties down to a cellular scale with a parameter dependent gradual change in model tissue organization. Here, we describe and use a method of designing precisely parameterized, geometrically complex patterns that are then used to control cell alignment and communication of model tissues. We demonstrate direct application of this method to guiding the growth of cardiac cell cultures and developing mathematical models of cell function that correspond to the underlying experimental patterns. Several anisotropic patterned cultures spanning a broad range of multicellular organization, mimicking the cardiac tissue organization of different regions of the heart, were found to be similar to each other and to isotropic cell monolayers in terms of local cell-cell interactions, reflected in similar confluency, morphology and connexin-43 expression. However, in agreement with the model predictions, different anisotropic patterns of cell organization, paralleling in vivo alterations of cardiac tissue morphology, resulted in variable and novel functional responses with important implications for the initiation and maintenance of cardiac arrhythmias. We conclude that variations of tissue geometry and topology can dramatically affect cardiac tissue function even if the constituent cells are themselves similar, and that the proposed method can provide a general strategy to experimentally and computationally investigate when such variation can lead to impaired tissue function. PMID:26822672

  2. Precisely parameterized experimental and computational models of tissue organization†

    PubMed Central

    Sekar, Rajesh B.; Blake, Robert; Park, JinSeok; Trayanova, Natalia A.; Tung, Leslie; Levchenko, Andre

    2016-01-01

    Patterns of cellular organization in diverse tissues frequently display a complex geometry and topology tightly related to the tissue function. Progressive disorganization of tissue morphology can lead to pathologic remodeling, necessitating the development of experimental and theoretical methods of analysis of the tolerance of normal tissue function to structural alterations. A systematic way to investigate the relationship of diverse cell organization to tissue function is to engineer two-dimensional cell monolayers replicating key aspects of the in vivo tissue architecture. However, it is still not clear how this can be accomplished on a tissue level scale in a parameterized fashion, allowing for a mathematically precise definition of the model tissue organization and properties down to a cellular scale with a parameter dependent gradual change in model tissue organization. Here, we describe and use a method of designing precisely parameterized, geometrically complex patterns that are then used to control cell alignment and communication of model tissues. We demonstrate direct application of this method to guiding the growth of cardiac cell cultures and developing mathematical models of cell function that correspond to the underlying experimental patterns. Several anisotropic patterned cultures spanning a broad range of multicellular organization, mimicking the cardiac tissue organization of different regions of the heart, were found to be similar to each other and to isotropic cell monolayers in terms of local cell–cell interactions, reflected in similar confluency, morphology and connexin-43 expression. However, in agreement with the model predictions, different anisotropic patterns of cell organization, paralleling in vivo alterations of cardiac tissue morphology, resulted in variable and novel functional responses with important implications for the initiation and maintenance of cardiac arrhythmias. We conclude that variations of tissue geometry and topology can dramatically affect cardiac tissue function even if the constituent cells are themselves similar, and that the proposed method can provide a general strategy to experimentally and computationally investigate when such variation can lead to impaired tissue function. PMID:26822672

  3. Experimental analysis on the rapid measurement of a high precision Brillouin scattering spectrum in water using a Fabry-Pérot etalon

    NASA Astrophysics Data System (ADS)

    Zhou, Bo; Fan, Qiming; Ma, Yong; Yao, Yuan; Li, Hao; Huang, Jun; Liang, Kun

    2016-05-01

    The Brillouin lidar system with a Fabry-Pérot (F-P) etalon has been widely used in remote sensing to study ocean characteristics such as temperature, sound speed, etc. In this system, the measurement error stemming from the spectral broadening of an F-P etalon was typically neglected in applications where high measurement accuracy was not essential. In this paper, an integration method on radius and a convolution method on frequency are proposed to remove the broadening effect and improve the measurement accuracy, respectively. Experiments of underwater Brillouin scattering show that both fitting methods effectively reduce the measurement error due to the transmission function of an F-P etalon. A temperature accuracy of 0.1 °C and a salinity accuracy of 0.5‰ were achieved. Moreover, with the convolution method, the computational cost was reduced to 3 s, which enables rapid measurement of Brillouin shift and linewidth and makes the on-line remote sensing applications possible.

  4. High Precision Rovibrational Spectroscopy of OH+

    NASA Astrophysics Data System (ADS)

    Markus, Charles R.; Hodges, James N.; Perry, Adam J.; Kocheril, G. Stephen; Müller, Holger S. P.; McCall, Benjamin J.

    2016-02-01

    The molecular ion OH+ has long been known to be an important component of the interstellar medium. Its relative abundance can be used to indirectly measure cosmic ray ionization rates of hydrogen, and it is the first intermediate in the interstellar formation of water. To date, only a limited number of pure rotational transitions have been observed in the laboratory making it necessary to indirectly calculate rotational levels from high-precision rovibrational spectroscopy. We have remeasured 30 transitions in the fundamental band with MHz-level precision, in order to enable the prediction of a THz spectrum of OH+. The ions were produced in a water cooled discharge of O2, H2, and He, and the rovibrational transitions were measured with the technique Noise Immune Cavity Enhanced Optical Heterodyne Velocity Modulation Spectroscopy. These values have been included in a global fit of field free data to a 3Σ- linear molecule effective Hamiltonian to determine improved spectroscopic parameters which were used to predict the pure rotational transition frequencies.

  5. High precision innovative micropump for artificial pancreas

    NASA Astrophysics Data System (ADS)

    Chappel, E.; Mefti, S.; Lettieri, G.-L.; Proennecke, S.; Conan, C.

    2014-03-01

    The concept of artificial pancreas, which comprises an insulin pump, a continuous glucose meter and a control algorithm, is a major step forward in managing patient with type 1 diabetes mellitus. The stability of the control algorithm is based on short-term precision micropump to deliver rapid-acting insulin and to specific integrated sensors able to monitor any failure leading to a loss of accuracy. Debiotech's MEMS micropump, based on the membrane pump principle, is made of a stack of 3 silicon wafers. The pumping chamber comprises a pillar check-valve at the inlet, a pumping membrane which is actuated against stop limiters by a piezo cantilever, an anti-free-flow outlet valve and a pressure sensor. The micropump inlet is tightly connected to the insulin reservoir while the outlet is in direct communication with the patient skin via a cannula. To meet the requirement of a pump dedicated to closed-loop application for diabetes care, in addition to the well-controlled displacement of the pumping membrane, the high precision of the micropump is based on specific actuation profiles that balance effect of pump elasticity in low-consumption push-pull mode.

  6. Highly damped kinematic coupling for precision instruments

    DOEpatents

    Hale, Layton C.; Jensen, Steven A.

    2001-01-01

    A highly damped kinematic coupling for precision instruments. The kinematic coupling provides support while causing essentially no influence to its nature shape, with such influences coming, for example, from manufacturing tolerances, temperature changes, or ground motion. The coupling uses three ball-cone constraints, each combined with a released flexural degree of freedom. This arrangement enables a gain of higher load capacity and stiffness, but can also significantly reduce the friction level in proportion to the ball radius divided by the distance between the ball and the hinge axis. The blade flexures reduces somewhat the stiffness of the coupling and provides an ideal location to apply constrained-layer damping which is accomplished by attaching a viscoelastic layer and a constraining layer on opposite sides of each of the blade flexures. The three identical ball-cone flexures provide a damped coupling mechanism to kinematically support the projection optics system of the extreme ultraviolet lithography (EUVL) system, or other load-sensitive apparatus.

  7. High precision lunar tracking for laser ranging

    NASA Technical Reports Server (NTRS)

    Ricklefs, Randall L.; Wiant, Jerry R.; Shelus, Peter J.

    1989-01-01

    Laser ranging to lunar surface retroreflectors has provided a valuable source of data for the investigation of the lunar orbit, the earth's orientation in space, general relativity, and many other aspects of solar system dynamics. Due to the moon's relatively large distance, and the requirement to keep the beam from the relatively low-power laser very narrow, acquiring this data type requires very accurate telescope pointing and tracking capabilities. The nominal requirement is to keep the telescope on target within approximately 1 arcsec of its predicted location for at least several minutes. An expansion of this requirement and the methods used to accomplish this high precision pointing are presented. Difficulties encountered and a few future goals of automating the McDonald station are also discussed.

  8. Layered compression for high-precision depth data.

    PubMed

    Miao, Dan; Fu, Jingjing; Lu, Yan; Li, Shipeng; Chen, Chang Wen

    2015-12-01

    With the development of depth data acquisition technologies, access to high-precision depth with more than 8-b depths has become much easier and determining how to efficiently represent and compress high-precision depth is essential for practical depth storage and transmission systems. In this paper, we propose a layered high-precision depth compression framework based on an 8-b image/video encoder to achieve efficient compression with low complexity. Within this framework, considering the characteristics of the high-precision depth, a depth map is partitioned into two layers: 1) the most significant bits (MSBs) layer and 2) the least significant bits (LSBs) layer. The MSBs layer provides rough depth value distribution, while the LSBs layer records the details of the depth value variation. For the MSBs layer, an error-controllable pixel domain encoding scheme is proposed to exploit the data correlation of the general depth information with sharp edges and to guarantee the data format of LSBs layer is 8 b after taking the quantization error from MSBs layer. For the LSBs layer, standard 8-b image/video codec is leveraged to perform the compression. The experimental results demonstrate that the proposed coding scheme can achieve real-time depth compression with satisfactory reconstruction quality. Moreover, the compressed depth data generated from this scheme can achieve better performance in view synthesis and gesture recognition applications compared with the conventional coding schemes because of the error control algorithm. PMID:26415171

  9. Injection molded high precision freeform optics for high volume applications

    NASA Astrophysics Data System (ADS)

    Dick, Lars; Risse, Stefan; Tünnermann, Andreas

    2012-03-01

    Injection molding offers a cost-efficient method for manufacturing high precision plastic optics for high-volume applications. Optical surfaces such as flats, spheres and also aspheres are meanwhile state-of-the-art in the field of plastic optics. The demand for surfaces without symmetric properties, commonly referred to as freeform surfaces, continues to rise. Currently, new mathematical approaches are under consideration which allow for new complex optical designs. Such novel optical designs strongly encourage development of new manufacturing methods. Specifically, new surface descriptions without an axis of symmetry, new ultra precision machining methods and non-symmetrical shrinkage compensation strategies have to be developed to produce freeform optical surfaces with high precision for high-volume applications. This paper will illustrate a deterministic and efficient way for the manufacturing of ultra precision injection molding tool inserts with submicron precision and show the manufacturing of replicated freeform surfaces with micrometer range shape accuracy at diameters up to 40 mm with a surface roughness of approximately 2 nm.

  10. High precision optical surface metrology using deflectometry

    NASA Astrophysics Data System (ADS)

    Huang, Run

    Software Configurable Optical Test System (SCOTS) developed at University of Arizona is a highly efficient optical metrology technique based on the principle of deflectometry, which can achieve comparable accuracy with interferometry but with low-cost hardware. In a SCOTS test, an LCD display is used to generate structured light pattern to illuminate the test optics and the reflected light is captured by a digital camera. The surface slope of test optics is determined by triangulation of the display pixels, test optics, and the camera. The surface shape is obtained by the integration of the slopes. Comparing to interferometry, which has long served as an accurate non-contact optical metrology technology, SCOTS overcomes the limitation of dynamic range and sensitivity to environment. It is able to achieve high dynamic range slope measurement without requiring null optics. In this dissertation, the sensitivity and performance of the test system have been analyzed comprehensively. Sophisticated calibrations of system components have been investigated and implemented in different metrology projects to push this technology to a higher accuracy including low-order terms. A compact on-axis SCOTS system lowered the testing geometry sensitivity in the metrology of 1-meter highly aspheric secondary mirror of Large Binocular Telescope. Sub-nm accuracy was achieved in testing a high precision elliptical X-ray mirror by using reference calibration. A well-calibrated SCOTS was successfully constructed and is, at the time of writing this dissertation, being used to provide surface metrology feedback for the fabrication of the primary mirror of Daniel K. Inouye Solar Telescope which is a 4-meter off-axis parabola with more than 8 mm aspherical departure.

  11. High-Precision Computation: Mathematical Physics and Dynamics

    SciTech Connect

    Bailey, D. H.; Barrio, R.; Borwein, J. M.

    2010-04-01

    At the present time, IEEE 64-bit oating-point arithmetic is suficiently accurate for most scientic applications. However, for a rapidly growing body of important scientic computing applications, a higher level of numeric precision is required. Such calculations are facilitated by high-precision software packages that include high-level language translation modules to minimize the conversion e ort. This pa- per presents a survey of recent applications of these techniques and provides someanalysis of their numerical requirements. These applications include supernova simulations, climate modeling, planetary orbit calculations, Coulomb n-body atomic systems, studies of the one structure constant, scattering amplitudes of quarks, glu- ons and bosons, nonlinear oscillator theory, experimental mathematics, evaluation of orthogonal polynomials, numerical integration of ODEs, computation of periodic orbits, studies of the splitting of separatrices, detection of strange nonchaotic at- tractors, Ising theory, quantum held theory, and discrete dynamical systems. We conclude that high-precision arithmetic facilities are now an indispensable compo- nent of a modern large-scale scientic computing environment.

  12. Future high precision experiments and new physics beyond Standard Model

    SciTech Connect

    Luo, Mingxing.

    1993-01-01

    High precision (< 1%) electroweak experiments that have been done or are likely to be done in this decade are examined on the basis of Standard Model (SM) predictions of fourteen weak neutral current observables and fifteen W and Z properties to the one-loop level, the implications of the corresponding experimental measurements to various types of possible new physics that enter at the tree or loop level were investigated. Certain experiments appear to have special promise as probes of the new physics considered here.

  13. Future high precision experiments and new physics beyond Standard Model

    SciTech Connect

    Luo, Mingxing

    1993-04-01

    High precision (< 1%) electroweak experiments that have been done or are likely to be done in this decade are examined on the basis of Standard Model (SM) predictions of fourteen weak neutral current observables and fifteen W and Z properties to the one-loop level, the implications of the corresponding experimental measurements to various types of possible new physics that enter at the tree or loop level were investigated. Certain experiments appear to have special promise as probes of the new physics considered here.

  14. High-precision positioning of radar scatterers

    NASA Astrophysics Data System (ADS)

    Dheenathayalan, Prabu; Small, David; Schubert, Adrian; Hanssen, Ramon F.

    2016-05-01

    Remote sensing radar satellites cover wide areas and provide spatially dense measurements, with millions of scatterers. Knowledge of the precise position of each radar scatterer is essential to identify the corresponding object and interpret the estimated deformation. The absolute position accuracy of synthetic aperture radar (SAR) scatterers in a 2D radar coordinate system, after compensating for atmosphere and tidal effects, is in the order of centimeters for TerraSAR-X (TSX) spotlight images. However, the absolute positioning in 3D and its quality description are not well known. Here, we exploit time-series interferometric SAR to enhance the positioning capability in three dimensions. The 3D positioning precision is parameterized by a variance-covariance matrix and visualized as an error ellipsoid centered at the estimated position. The intersection of the error ellipsoid with objects in the field is exploited to link radar scatterers to real-world objects. We demonstrate the estimation of scatterer position and its quality using 20 months of TSX stripmap acquisitions over Delft, the Netherlands. Using trihedral corner reflectors (CR) for validation, the accuracy of absolute positioning in 2D is about 7 cm. In 3D, an absolute accuracy of up to ˜ 66 cm is realized, with a cigar-shaped error ellipsoid having centimeter precision in azimuth and range dimensions, and elongated in cross-range dimension with a precision in the order of meters (the ratio of the ellipsoid axis lengths is 1/3/213, respectively). The CR absolute 3D position, along with the associated error ellipsoid, is found to be accurate and agree with the ground truth position at a 99 % confidence level. For other non-CR coherent scatterers, the error ellipsoid concept is validated using 3D building models. In both cases, the error ellipsoid not only serves as a quality descriptor, but can also help to associate radar scatterers to real-world objects.

  15. High Precision Noise Measurements at Microwave Frequencies

    SciTech Connect

    Ivanov, Eugene; Tobar, Michael

    2009-04-23

    We describe microwave noise measurement system capable of detecting the phase fluctuations of rms amplitude of 2{center_dot}10{sup -11} rad/{radical}(Hz). Such resolution allows the study of intrinsic fluctuations in various microwave components and materials, as well as precise tests of fundamental physics. Employing this system we discovered a previously unknown phenomenon of down-conversion of pump oscillator phase noise into the low-frequency voltage fluctuations.

  16. High-precision triangular-waveform generator

    DOEpatents

    Mueller, T.R.

    1981-11-14

    An ultra-linear ramp generator having separately programmable ascending and decending ramp rates and voltages is provided. Two constant current sources provide the ramp through an integrator. Switching of the current at current source inputs rather than at the integrator input eliminates switching transients and contributes to the waveform precision. The triangular waveforms produced by the waveform generator are characterized by accurate reproduction and low drift over periods of several hours. The ascending and descending slopes are independently selectable.

  17. High-precision positioning of radar scatterers

    NASA Astrophysics Data System (ADS)

    Dheenathayalan, Prabu; Small, David; Schubert, Adrian; Hanssen, Ramon F.

    2016-02-01

    Remote sensing radar satellites cover wide areas and provide spatially dense measurements, with millions of scatterers. Knowledge of the precise position of each radar scatterer is essential to identify the corresponding object and interpret the estimated deformation. The absolute position accuracy of synthetic aperture radar (SAR) scatterers in a 2D radar coordinate system, after compensating for atmosphere and tidal effects, is in the order of centimeters for TerraSAR-X (TSX) spotlight images. However, the absolute positioning in 3D and its quality description are not well known. Here, we exploit time-series interferometric SAR to enhance the positioning capability in three dimensions. The 3D positioning precision is parameterized by a variance-covariance matrix and visualized as an error ellipsoid centered at the estimated position. The intersection of the error ellipsoid with objects in the field is exploited to link radar scatterers to real-world objects. We demonstrate the estimation of scatterer position and its quality using 20 months of TSX stripmap acquisitions over Delft, the Netherlands. Using trihedral corner reflectors (CR) for validation, the accuracy of absolute positioning in 2D is about 7 cm. In 3D, an absolute accuracy of up to ˜ 66 cm is realized, with a cigar-shaped error ellipsoid having centimeter precision in azimuth and range dimensions, and elongated in cross-range dimension with a precision in the order of meters (the ratio of the ellipsoid axis lengths is 1/3/213, respectively). The CR absolute 3D position, along with the associated error ellipsoid, is found to be accurate and agree with the ground truth position at a 99 % confidence level. For other non-CR coherent scatterers, the error ellipsoid concept is validated using 3D building models. In both cases, the error ellipsoid not only serves as a quality descriptor, but can also help to associate radar scatterers to real-world objects.

  18. High-precision thorium RIMS for geochemistry

    SciTech Connect

    Fearey, B.L.; Tissue, B.M.; Olivares, J.A.; Loge, G.W.; Murrell, M.T.; Miller, C.M.

    1992-01-01

    We present our latest results in the development of resonance ionization mass spectrometry (RIMS) using cw lasers to measure isotope ratios of importance in geochemistry and geochronology. The RIMS method provides a higher ionization efficiency than thermal ionization allowing analysis of smaller sample sizes, while maintaining equivalent internal precision. The bias introduced in {sup 230/232}Th ratio measurements by the RIMS method when using narrow-band and broad-band lasers is discussed. Spectra of {sup 239}Th, which can be used as an internal standard, are also presented.

  19. High-precision thorium RIMS for geochemistry

    SciTech Connect

    Fearey, B.L.; Tissue, B.M.; Olivares, J.A.; Loge, G.W.; Murrell, M.T.; Miller, C.M.

    1992-08-01

    We present our latest results in the development of resonance ionization mass spectrometry (RIMS) using cw lasers to measure isotope ratios of importance in geochemistry and geochronology. The RIMS method provides a higher ionization efficiency than thermal ionization allowing analysis of smaller sample sizes, while maintaining equivalent internal precision. The bias introduced in {sup 230/232}Th ratio measurements by the RIMS method when using narrow-band and broad-band lasers is discussed. Spectra of {sup 239}Th, which can be used as an internal standard, are also presented.

  20. Complete high-precision entropic sampling.

    PubMed

    Dickman, Ronald; Cunha-Netto, A G

    2011-08-01

    Monte Carlo simulations using entropic sampling to estimate the number of configurations of a given energy are a valuable alternative to traditional methods. We introduce tomographic entropic sampling, a scheme which uses multiple studies, starting from different regions of configuration space, to yield precise estimates of the number of configurations over the full range of energies, without dividing the latter into subsets or windows. Applied to the Ising model on the square lattice, the method yields the critical temperature to an accuracy of about 0.01%, and critical exponents to 1% or better. Predictions for system sizes L=10-160, for the temperature of the specific heat maximum, and of the specific heat at the critical temperature, are in very close agreement with exact results. For the Ising model on the simple cubic lattice the critical temperature is given to within 0.003% of the best available estimate; the exponent ratios β/ν and γ/ν are given to within about 0.04% and 1%, respectively, of the literature values. In both two and three dimensions, results for the antiferromagnetic critical point are fully consistent with those of the ferromagnetic transition. Application to the lattice gas with nearest-neighbor exclusion on the square lattice again yields the critical chemical potential and exponent ratios β/ν and γ/ν to good precision. PMID:21929138

  1. High precision fabrication of antennas and sensors

    NASA Astrophysics Data System (ADS)

    Balčytis, A.; Seniutinas, G.; Urbonas, D.; Gabalis, M.; Vaškevičius, K.; Petruškevičius, R.; Molis, G.; Valušis, G. `.; Juodkazis, S.

    2015-02-01

    Electron and ion beam lithographies were used to fabricate and/or functionalize large scale - millimetre footprint - micro-optical elements: coupled waveguide-resonator structures on silicon-on-insulator (SOI) and THz antennas on low temperature grown LT-GaAs. Waveguide elements on SOI were made without stitching errors using a fixed beam moving stage approach. THz antennas were created using a three-step litography process. First, gold THz antennas defined by standard mask projection lithography were annealed to make an ohmic contact on LT-GaAs and post-processing with Ga-ion beam was used to define nano-gaps and inter digitised contacts for better charge collection. These approaches show the possibility to fabricate large footprint patterns with nanoscale precision features and overlay accuracy. Emerging 3D nanofabrication trends are discussed.

  2. High precision measurement system based on coplanar XY-stage

    NASA Astrophysics Data System (ADS)

    Fan, Kuang-Chao; Miao, Jin-Wei; Gong, Wei; Zhang, You-Liang; Cheng, Fang

    2011-12-01

    A coplanar XY-stage, together with a high precise measurement system, is presented in this paper. The proposed coplanar XY-stage fully conforms to the Abbe principle. The symmetric structural design is considered to eliminate the structure deformation due to force and temperature changes. For consisting of a high precise measurement system, a linear diffraction grating interferometer(LDGI) is employed as the position feedback sensor with the resolution to 1 nm after the waveform interpolation, an ultrasonic motor HR4 is used to generate both the long stroke motion and the nano positioning on the same stage. Three modes of HR4 are used for positioning control: the AC mode in continuous motion control for the long stroke; the gate mode to drive the motor in low velocity for the short stroke; and the DC mode in which the motor works as a piezo actuator, enabling accurate positioning of a few nanometers. The stage calibration is carried out by comparing the readings of LDGI with a Renishaw laser interferometer and repeated 5 times. Experimental results show the XY-stage has achieved positioning accuracy in less than 20nm after the compensation of systematic errors, and standard deviation is within 20 nm for travels up to 20 mm.

  3. High precision gravity measurements using atom interferometry

    NASA Astrophysics Data System (ADS)

    Peters, Achim

    1998-10-01

    Using atom interferometry, we have measured g, the local acceleration due to gravity, with a resolution of /Delta g/g = 2 × 10-8 after a single 1.3s measurement cycle, 2 × 10-9 after 1 minute and 1 × 10-10 after 2 days of integration time. The difference between our value for g and one obtained by a 'falling corner-cube' optical interferometer is (7 /pm 7) × 10-9. The beam splitters and mirrors of the atom interferometer are implemented using velocity sensitive stimulated Raman transitions and laser cooled cesium atoms in an atomic fountain are used as a well defined source of atoms. We present experimental results, including the observation of tidal effects and a comparison with the 'falling corner-cube' absolute gravimeter. We extend previous methods of analyzing the interferometer to include the effects of a gravitational gradient and finite length Raman pulses. We also present a detailed experimental and theoretical study of potential systematic errors and noise sources.

  4. High precision systematic measurement of deeply bound pionic atoms

    NASA Astrophysics Data System (ADS)

    Itahashi, Kenta; piAF Collaboration

    2014-09-01

    We report results from our recent precision measurement of pionic Sn atoms in RIBF. The presentation will include results from our pilot run in 2010 and our first production series of measurement in June 2014. We have just finished data taking of the experimental spectroscopy of pionic 1s and 2s states in 121Sn atom. We employed 250 MeV/u deuteron beam impinged on the 122Sn target, and measured 3He emitted in the 122Sn(d,3He) nuclear reaction. We measured Q-value of the reaction to measure the pionic atom spectra. The experiment is aiming at first simultaneous measurement of 1s and 2s pionic state in Sn atom by a high resolution spectroscopy, that will benefit in improving the systematic errors arising in the absolute energy scale. The results will set stringent constraints on the deduced quantities of chiral condensate at the normal nuclear density.

  5. High precision fiber SINS with spin technology

    NASA Astrophysics Data System (ADS)

    Sun, Wei; Sun, Feng; Wang, Da-xue

    2013-10-01

    Fiber strapdown inertial navigation system (FSINS) is presently used in several applications related to marine navigation. However, the absolute position from FSINS contains the error that increases with time, which prevents its long-term use for the ship cruise. In order to improve the performance of FSINS based on our present inertial sensors, the spin technology was proposed in the system to mitigate the navigation errors and a prototype of the proposed system was developed in Navigation Lab. The prototype contains the IMU, temperature controller, rotating configuration, navigation and I/O electronics group, control and display, power supply subsystem and other modules. In the proposed spin technology, the IMU is rotated back and forth in azimuth through four orthogonal positions relative to the ship's longitudinal axis. Experimental testing was conducted for the prototype in the laboratory and the results showed that the RFSINS's navigation performance is improved 10 times.

  6. High precision applications of the global positioning system

    NASA Technical Reports Server (NTRS)

    Lichten, Stephen M.

    1991-01-01

    The Global Positioning System (GPS) is a constellation of U.S. defense navigation satellites which can be used for military and civilian positioning applications. A wide variety of GPS scientific applications were identified and precise positioning capabilities with GPS were already demonstrated with data available from the present partial satellite constellation. Expected applications include: measurements of Earth crustal motion, particularly in seismically active regions; measurements of the Earth's rotation rate and pole orientation; high-precision Earth orbiter tracking; surveying; measurements of media propagation delays for calibration of deep space radiometric data in support of NASA planetary missions; determination of precise ground station coordinates; and precise time transfer worldwide.

  7. High precision defocused observations of planetary transits

    NASA Astrophysics Data System (ADS)

    Baştürk, Ö.; Hinse, T. C.; Özavcı, İ.; Tezcan, C. T.; Şenavcı, H. V.; Burdanov, A.; Y&örükoǧlu, O.; Orhan, R.; Selam, S. O.

    2014-03-01

    It is only possible to measure physical properties of extrasolar planets, if they transit their host stars. One can determine the masses and the radii of this kind of objects, and hence, have constraints on their chemical composition, internal structure, formation and evolution. The availability of high quality light curves of planetary transits is essential in determining these properties within a few percent. In order to obtain high-quality transit light curves, we apply the well-established defocus technique on meter and sub-meter class telescopes in our project. This technique allows longer integration times, and hence collecting more photons to build up a higher S/N ratio. In this study, we present our first photometric results with the 1m Turkish telescope (T100) located at TÜBİTAK National Observatory (TUG) of Turkey, which proved to be a well suited instrument to these observations with its large field of view. %

  8. High precision mass measurements for wine metabolomics

    PubMed Central

    Roullier-Gall, Chloé; Witting, Michael; Gougeon, Régis D.; Schmitt-Kopplin, Philippe

    2014-01-01

    An overview of the critical steps for the non-targeted Ultra-High Performance Liquid Chromatography coupled with Quadrupole Time-of-Flight Mass Spectrometry (UPLC-Q-ToF-MS) analysis of wine chemistry is given, ranging from the study design, data preprocessing and statistical analyses, to markers identification. UPLC-Q-ToF-MS data was enhanced by the alignment of exact mass data from FTICR-MS, and marker peaks were identified using UPLC-Q-ToF-MS2. In combination with multivariate statistical tools and the annotation of peaks with metabolites from relevant databases, this analytical process provides a fine description of the chemical complexity of wines, as exemplified in the case of red (Pinot noir) and white (Chardonnay) wines from various geographic origins in Burgundy. PMID:25431760

  9. High precision mass measurements for wine metabolomics

    NASA Astrophysics Data System (ADS)

    Roullier-Gall, Chloé; Witting, Michael; Gougeon, Régis; Schmitt-Kopplin, Philippe

    2014-11-01

    An overview of the critical steps for the non-targeted Ultra-High Performance Liquid Chromatography coupled with Quadrupole Time-of-Flight Mass Spectrometry (UPLC-Q-ToF-MS) analysis of wine chemistry is given, ranging from the study design, data preprocessing and statistical analyses, to markers identification. UPLC-Q-ToF-MS data was enhanced by the alignment of exact mass data from FTICR-MS, and marker peaks were identified using UPLC-Q-ToF-MS². In combination with multivariate statistical tools and the annotation of peaks with metabolites from relevant databases, this analytical process provides a fine description of the chemical complexity of wines, as exemplified in the case of red (Pinot noir) and white (Chardonnay) wines from various geographic origins in Burgundy.

  10. System and method for high precision isotope ratio destructive analysis

    SciTech Connect

    Bushaw, Bruce A; Anheier, Norman C; Phillips, Jon R

    2013-07-02

    A system and process are disclosed that provide high accuracy and high precision destructive analysis measurements for isotope ratio determination of relative isotope abundance distributions in liquids, solids, and particulate samples. The invention utilizes a collinear probe beam to interrogate a laser ablated plume. This invention provides enhanced single-shot detection sensitivity approaching the femtogram range, and isotope ratios that can be determined at approximately 1% or better precision and accuracy (relative standard deviation).

  11. Experimental Dynamic Characterization of a Reconfigurable Adaptive Precision Truss

    NASA Technical Reports Server (NTRS)

    Hinkle, J. D.; Peterson, L. D.

    1994-01-01

    The dynamic behavior of a reconfigurable adaptive truss structure with non-linear joints is investigated. The objective is to experimentally examine the effects of the local non-linearities on the global dynamics of the structure. Amplitude changes in the frequency response functions are measured at micron levels of motion. The amplitude and frequency variations of a number of modes indicate a non-linear Coulomb friction response. Hysteretic bifurcation behavior is also measured at an amplitude approximately equal to the specified free-play in the joint. Under the 1 g pre-load, however, the non-linearity was dominantly characteristic of Coulomb friction with little evidence of free-play stiffening.

  12. An experimental assembly for precise measurement of thermal accommodation coefficients

    NASA Astrophysics Data System (ADS)

    Trott, Wayne M.; Castañeda, Jaime N.; Torczynski, John R.; Gallis, Michael A.; Rader, Daniel J.

    2011-03-01

    An experimental apparatus has been developed to determine thermal accommodation coefficients for a variety of gas-surface combinations. Results are obtained primarily through measurement of the pressure dependence of the conductive heat flux between parallel plates separated by a gas-filled gap. Measured heat-flux data are used in a formula based on Direct Simulation Monte Carlo (DSMC) simulations to determine the coefficients. The assembly also features a complementary capability for measuring the variation in gas density between the plates using electron-beam fluorescence. Surface materials examined include 304 stainless steel, gold, aluminum, platinum, silicon, silicon nitride, and polysilicon. Effects of gas composition, surface roughness, and surface contamination have been investigated with this system; the behavior of gas mixtures has also been explored. Without special cleaning procedures, thermal accommodation coefficients for most materials and surface finishes were determined to be near 0.95, 0.85, and 0.45 for argon, nitrogen, and helium, respectively. Surface cleaning by in situ argon-plasma treatment reduced coefficient values by up to 0.10 for helium and by ˜0.05 for nitrogen and argon. Results for both single-species and gas-mixture experiments compare favorably to DSMC simulations.

  13. Measurements of experimental precision for trials with cowpea (Vigna unguiculata L. Walp.) genotypes.

    PubMed

    Teodoro, P E; Torres, F E; Santos, A D; Corrêa, A M; Nascimento, M; Barroso, L M A; Ceccon, G

    2016-01-01

    The aim of this study was to evaluate the suitability of statistics as experimental precision degree measures for trials with cowpea (Vigna unguiculata L. Walp.) genotypes. Cowpea genotype yields were evaluated in 29 trials conducted in Brazil between 2005 and 2012. The genotypes were evaluated with a randomized block design with four replications. Ten statistics that were estimated for each trial were compared using descriptive statistics, Pearson correlations, and path analysis. According to the class limits established, selective accuracy and F-test values for genotype, heritability, and the coefficient of determination adequately estimated the degree of experimental precision. Using these statistics, 86.21% of the trials had adequate experimental precision. Selective accuracy and the F-test values for genotype, heritability, and the coefficient of determination were directly related to each other, and were more suitable than the coefficient of variation and the least significant difference (by the Tukey test) to evaluate experimental precision in trials with cowpea genotypes. PMID:27173351

  14. High-precision camera distortion measurements with a ``calibration harp''

    NASA Astrophysics Data System (ADS)

    Tang, Zhongwei; Grompone von Gioi, Rafael; Monasse, Pascal; Morel, Jean-Michel

    2012-10-01

    This paper addresses the high precision measurement of the distortion of a digital camera from photographs. Traditionally, this distortion is measured from photographs of a flat pattern which contains aligned elements. Nevertheless, it is nearly impossible to fabricate a very flat pattern and to validate its flatness. This fact limits the attainable measurable precisions. In contrast, it is much easier to obtain physically very precise straight lines by tightly stretching good quality strings on a frame. Taking literally "plumb-line methods", we built a "calibration harp" instead of the classic flat patterns to obtain a high precision measurement tool, demonstrably reaching 2/100 pixel precisions. The harp is complemented with the algorithms computing automatically from harp photographs two different and complementary lens distortion measurements. The precision of the method is evaluated on images corrected by state-of-the-art distortion correction algorithms, and by popular software. Three applications are shown: first an objective and reliable measurement of the result of any distortion correction. Second, the harp permits to control state-of-the art global camera calibration algorithms: It permits to select the right distortion model, thus avoiding internal compensation errors inherent to these methods. Third, the method replaces manual procedures in other distortion correction methods, makes them fully automatic, and increases their reliability and precision.

  15. High speed high precision ablation from ms to fs

    NASA Astrophysics Data System (ADS)

    Poprawe, Reinhart; Gillner, Arnold; Hoffmann, Dieter; Gottmann, Jens; Wawers, Welf; Schulz, Wolfgang

    2008-05-01

    In recent years new generations of precision lasers have been demonstrated and are increasingly available on an industrial level. For example high beam quality and diffraction limited Fiber lasers, Slab lasers, Disk lasers and still Rod lasers are used very successfully. This paper focuses on - ns and μs drilling of shaped holes by helical drilling1 - drilling of extreme aspect ratios in dielectrics/glass by ns-slab lasers2 - nm-size periodic structuring of polymers by interferometric approaches - ablation by ns- and ps-pulses for metal moulds - generation of waveguide structures in glass by fs-pulses.3 On the laboratory scale a next generation of diffraction limited short pulse lasers is at the horizon.4 In particular, ps-lasers at multi-hundred watts of average power with repetition rates of several MHz,2 fs-lasers at 400W2 average power and green, frequency doubled lasers at 200W are under construction. At the short end of pulses, attosecond lasers have been demonstrated and themselves shall open a new domain of interaction of light and matter5.

  16. An experimental search strategy retrieves more precise results than PubMed and Google for questions about medical interventions

    PubMed Central

    Dylla, Daniel P.; Megison, Susan D.

    2015-01-01

    Objective. We compared the precision of a search strategy designed specifically to retrieve randomized controlled trials (RCTs) and systematic reviews of RCTs with search strategies designed for broader purposes. Methods. We designed an experimental search strategy that automatically revised searches up to five times by using increasingly restrictive queries as long at least 50 citations were retrieved. We compared the ability of the experimental and alternative strategies to retrieve studies relevant to 312 test questions. The primary outcome, search precision, was defined for each strategy as the proportion of relevant, high quality citations among the first 50 citations retrieved. Results. The experimental strategy had the highest median precision (5.5%; interquartile range [IQR]: 0%–12%) followed by the narrow strategy of the PubMed Clinical Queries (4.0%; IQR: 0%–10%). The experimental strategy found the most high quality citations (median 2; IQR: 0–6) and was the strategy most likely to find at least one high quality citation (73% of searches; 95% confidence interval 68%–78%). All comparisons were statistically significant. Conclusions. The experimental strategy performed the best in all outcomes although all strategies had low precision. PMID:25922798

  17. High precision spectroscopy and imaging in THz frequency range

    NASA Astrophysics Data System (ADS)

    Vaks, Vladimir L.

    2014-03-01

    Application of microwave methods for development of the THz frequency range has resulted in elaboration of high precision THz spectrometers based on nonstationary effects. The spectrometers characteristics (spectral resolution and sensitivity) meet the requirements for high precision analysis. The gas analyzers, based on the high precision spectrometers, have been successfully applied for analytical investigations of gas impurities in high pure substances. These investigations can be carried out both in absorption cell and in reactor. The devices can be used for ecological monitoring, detecting the components of chemical weapons and explosive in the atmosphere. The great field of THz investigations is the medicine application. Using the THz spectrometers developed one can detect markers for some diseases in exhaled air.

  18. High-precision thermal and electrical characterization of thermoelectric modules

    SciTech Connect

    Kolodner, Paul

    2014-05-15

    This paper describes an apparatus for performing high-precision electrical and thermal characterization of thermoelectric modules (TEMs). The apparatus is calibrated for operation between 20 °C and 80 °C and is normally used for measurements of heat currents in the range 0–10 W. Precision thermometry based on miniature thermistor probes enables an absolute temperature accuracy of better than 0.010 °C. The use of vacuum isolation, thermal guarding, and radiation shielding, augmented by a careful accounting of stray heat leaks and uncertainties, allows the heat current through the TEM under test to be determined with a precision of a few mW. The fractional precision of all measured parameters is approximately 0.1%.

  19. High precision predictions for exclusive VH production at the LHC

    DOE PAGESBeta

    Li, Ye; Liu, Xiaohui

    2014-06-04

    We present a resummation-improved prediction for pp → VH + 0 jets at the Large Hadron Collider. We focus on highly-boosted final states in the presence of jet veto to suppress the tt¯ background. In this case, conventional fixed-order calculations are plagued by the existence of large Sudakov logarithms αnslogm(pvetoT/Q) for Q ~ mV + mH which lead to unreliable predictions as well as large theoretical uncertainties, and thus limit the accuracy when comparing experimental measurements to the Standard Model. In this work, we show that the resummation of Sudakov logarithms beyond the next-to-next-to-leading-log accuracy, combined with the next-to-next-to-leading ordermore » calculation, reduces the scale uncertainty and stabilizes the perturbative expansion in the region where the vector bosons carry large transverse momentum. Thus, our result improves the precision with which Higgs properties can be determined from LHC measurements using boosted Higgs techniques.« less

  20. New technique of machining high precision mirror surface press roller

    NASA Astrophysics Data System (ADS)

    Hongsen, Deng

    1991-03-01

    High precision mirror surface press roller machining technique of corrosion and grinding proof is one of the key techniques that the production enterprises as well as the machining and manufacturing of the following industries sought to resolve for a long time: plastics, papermaking, rubber, film, and chip production. In Oct. 1984, a new comprehensive machining technique of metal brush coating, grinding with abrasive belt, as well as buffing was used to conduct nearly 20 experiments. In Jan. 1985, a pair of middle convex high precision mirror surface press rollers was successfully machined. The technical process is described.

  1. Precision glass molding: an integrative approach for the production of high precision micro-optics

    NASA Astrophysics Data System (ADS)

    Hünten, Martin; Klocke, Fritz; Dambon, Olaf

    2010-02-01

    Miniaturization and integration are the dominating factors for the success of numerous optical devices. Conventional manufacturing processes for the fabrication of precise glass optics by means of grinding and polishing cannot cope the increasing demands in terms of precision, volume and costs. Here, precision glass molding is the enabling technology to meet these demands of the future optical products and applications. Since the market requests further miniaturization and integration of the micro optical components the possession of the entire sequence of processes is absolutely essential. With the accomplished and ongoing developments at the Fraunhofer IPT, the replication of double-sided (a)spherical and (a)cylindrical glass lenses with form accuracies of < 150 nm as well as lens arrays and even freeform optics could be realized. Therefore, a sequence of processes needs to be passed. The FEM-simulation of the molding process which was driven to a point capable to simulate even the molding of freeform optics is the first process step. Further on, new mold design concepts were generated to enable the replication of free formed optics. The research works focusing on the mold manufacturing led to sophisticated grinding process strategies able to realized complex mold geometries such as lens arrays. With regard to the coating of the molds, proceedings were developed assuring a defect free and uniform coating which enables the longevity of the molds and therewith helps reducing the final costs per lens. Thus, the precision glass molding becomes more and more interesting even for highly complex mid volume lots, characteristic for European or US optics manufacturer.

  2. High precision radial velocities: the case for NIR.

    NASA Astrophysics Data System (ADS)

    Carleo, I.; Gratton, R.

    In the context of the preparation for the high resolution spectrograph HIRES for E-ELT, we are studying the possibility to derive high-precision radial velocities (RV) on a prototype:GIANO, the near-infrared (NIR) echelle spectrograph now available at the Telescopio Nazionale Galileo. Radial velocities measured from near-infrared spectra are a potential tool to search for extrasolar planets around cool stars. High resolution infrared spectrographs now available are reaching the high precision of visible instruments, with a constant improvement over time. In particular, no other IR instruments have GIANO's capability to cover the entire NIR wavelength range. We have developed an ensemble of IDL procedures to measure high precision radial velocities on GIANO spectra. Taking into account the achieved precisions with GIANO, we constrain the sample of targets for which GIANO is better than HARPS-N, but with the advent of GIARPS (GIANO+HARPS-N), GIANO will improve its performances and include a much larger sample of stars. The NIR range is the future of RV measurements, especially because the jitter due to the star surface activities is reduced in the NIR. As a consequence, HIRES working in NIR range might be very useful, and for a wide range of cases, it will be more efficient than HIRES working in the visible range, for detection and characterization of planets using radial velocity technique.

  3. Research on high-precision hole measurement based on robot vision method

    NASA Astrophysics Data System (ADS)

    Song, Li-mei; Li, Da-peng; Qin, Ming-cui; Li, Zong-yan; Chang, Yu-lan; Xi, Jiang-tao

    2014-09-01

    A high-precision vision detection and measurement system using mobile robot is established for the industry field detection of motorcycle frame hole and its diameter measurement. The robot path planning method is researched, and the non-contact measurement method with high precision based on visual digital image edge extraction and hole spatial circle fitting is presented. The Canny operator is used to extract the edge of captured image, the Lagrange interpolation algorithm is utilized to determine the missing image edge points and calculate the centroid, and the least squares fitting method is adopted to fit the image edge points. Experimental results show that the system can be used for the high-precision real-time measurement of hole on motorcycle frame. The absolute standard deviation of the proposed method is 0.026 7 mm. The proposed method can not only improve the measurement speed and precision, but also reduce the measurement error.

  4. VIEW OF MICROMACHINING, HIGH PRECISION EQUIPMENT USED TO CUSTOM MAKE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF MICRO-MACHINING, HIGH PRECISION EQUIPMENT USED TO CUSTOM MAKE SMALL PARTS. LUMPS OF CLAY; SHOWN IN THE PHOTOGRAPH, WERE USED TO STABILIZE PARTS BEING MACHINED. (11/1/87) - Rocky Flats Plant, Stainless Steel & Non-Nuclear Components Manufacturing, Southeast corner of intersection of Cottonwood & Third Avenues, Golden, Jefferson County, CO

  5. Yale High Energy Physics Research: Precision Studies of Reactor Antineutrinos

    SciTech Connect

    Heeger, Karsten M.

    2014-09-13

    This report presents experimental research at the intensity frontier of particle physics with particular focus on the study of reactor antineutrinos and the precision measurement of neutrino oscillations. The experimental neutrino physics group of Professor Heeger and Senior Scientist Band at Yale University has had leading responsibilities in the construction and operation of the Daya Bay Reactor Antineutrino Experiment and made critical contributions to the discovery of non-zero$\\theta_{13}$. Heeger and Band led the Daya Bay detector management team and are now overseeing the operations of the antineutrino detectors. Postdoctoral researchers and students in this group have made leading contributions to the Daya Bay analysis including the prediction of the reactor antineutrino flux and spectrum, the analysis of the oscillation signal, and the precision determination of the target mass yielding unprecedented precision in the relative detector uncertainty. Heeger's group is now leading an R\\&D effort towards a short-baseline oscillation experiment, called PROSPECT, at a US research reactor and the development of antineutrino detectors with advanced background discrimination.

  6. Fabrication and metrology of high-precision freeform surfaces

    NASA Astrophysics Data System (ADS)

    Supranowitz, Chris; Dumas, Paul; Nitzsche, Tobias; DeGroote Nelson, Jessica; Light, Brandon B.; Medicus, Kate; Smith, Nathan

    2013-09-01

    Freeform applications are growing and include helmet-mounted displays, conformal optics (e.g. windows integrated into airplane wings), and those requiring the extreme precision of EUV. These non-rotationally symmetric surfaces pose challenges to optical fabrication, mostly in the areas of polishing and metrology. The varying curvature of freeform surfaces drives the need for smaller, more "conformal", tools for polishing and reference beams for interferometry. In this paper, we present fabrication results of a high-precision freeform surface. We will discuss the total manufacturing process, including generation, pre-polishing, MRF®, and metrology, highlighting the capabilities available in today's optical fabrication companies.

  7. GENERATION AND CONTROL OF HIGH PRECISION BEAMS AT LEPTON ACCELERATORS

    SciTech Connect

    Yu-Chiu Chao

    2007-06-25

    Parity violation experiments require precision manipulation of helicity-correlated beam coordinates on target at the nm/nrad-level. Achieving this unprecedented level of control requires a detailed understanding of the particle optics and careful tuning of the beam transport to keep anomalies from compromising the design adiabatic damping. Such efforts are often hindered by machine configuration and instrumentation limitations at the low energy end. A technique has been developed at CEBAF including high precision measurements, Mathematica-based analysis for obtaining corrective solutions, and control hardware/software developments for realizing such level of control at energies up to 5 GeV.

  8. High channel count and high precision channel spacing multi-wavelength laser array for future PICs

    PubMed Central

    Shi, Yuechun; Li, Simin; Chen, Xiangfei; Li, Lianyan; Li, Jingsi; Zhang, Tingting; Zheng, Jilin; Zhang, Yunshan; Tang, Song; Hou, Lianping; Marsh, John H.; Qiu, Bocang

    2014-01-01

    Multi-wavelength semiconductor laser arrays (MLAs) have wide applications in wavelength multiplexing division (WDM) networks. In spite of their tremendous potential, adoption of the MLA has been hampered by a number of issues, particularly wavelength precision and fabrication cost. In this paper, we report high channel count MLAs in which the wavelengths of each channel can be determined precisely through low-cost standard ?m-level photolithography/holographic lithography and the reconstruction-equivalent-chirp (REC) technique. 60-wavelength MLAs with good wavelength spacing uniformity have been demonstrated experimentally, in which nearly 83% lasers are within a wavelength deviation of 0.20?nm, corresponding to a tolerance of 0.032?nm in the period pitch. As a result of employing the equivalent phase shift technique, the single longitudinal mode (SLM) yield is nearly 100%, while the theoretical yield of standard DFB lasers is only around 33.3%. PMID:25488111

  9. High precision calibration for 2D optical standard

    NASA Astrophysics Data System (ADS)

    Sun, Shuanghua; Gan, Xiaochuan; Xue, Zi; Ye, Xiaoyou; Wang, Heyan; Gao, Hongtang

    2012-10-01

    Photomask is a kind of 2-D optical standard with etched orthogonal coordinates made of a glass substrate chrominged or filmed with other metal. In order to solve the problems of measurement and traceability of ultra precision photomasks used in advanced manufacturing industry, 2-D photomask optical standard was calibrated in high precision laser two coordinate standard device. A high precision differential laser interferometer system was used for a length standard, a high magnification optical micro vision system was used for precision optical positioning feedback. In this paper, a image measurement model was purposed; A sampling window auto identification algorithm was designed. Grid stripe image could be identified and aimed at automatically by this algorithm. An edge detection method based on bidirection progressive scanning and 3-sigma rule for eliminating outliers in sampling window was found. Dirty point could be removed with effect. Edge detection error could be lowered. By this means, the measurement uncertainty of 2-D optical standard's ruling span was less than 0.3 micrometer (k=2).

  10. Constant fraction discriminator for fast high-precision pulsed TOF laser rangefinder

    NASA Astrophysics Data System (ADS)

    Chen, Jian-yong; Shen, Dong-qing; Li, Wan-cai

    2011-08-01

    A low cost high performance constant fraction discriminator (CFD) for laser rangefinder using pulsed TOF (time of flight) is proposed with the accuracy and measuring speed been improved. A distance measuring system has been established and experimental evidence is presented to show the feasibility of solving the time walking error problem to amend the precision and improving the environmental applicability.

  11. Method of high precision interval measurement in pulse laser ranging system

    NASA Astrophysics Data System (ADS)

    Wang, Zhen; Lv, Xin-yuan; Mao, Jin-jin; Liu, Wei; Yang, Dong

    2013-09-01

    Laser ranging is suitable for laser system, for it has the advantage of high measuring precision, fast measuring speed,no cooperative targets and strong resistance to electromagnetic interference,the measuremen of laser ranging is the key paremeters affecting the performance of the whole system.The precision of the pulsed laser ranging system was decided by the precision of the time interval measurement, the principle structure of laser ranging system was introduced, and a method of high precision time interval measurement in pulse laser ranging system was established in this paper.Based on the analysis of the factors which affected the precision of range measure,the pulse rising edges discriminator was adopted to produce timing mark for the start-stop time discrimination,and the TDC-GP2 high precision interval measurement system based on TMS320F2812 DSP was designed to improve the measurement precision.Experimental results indicate that the time interval measurement method in this paper can obtain higher range accuracy. Compared with the traditional time interval measurement system,the method simplifies the system design and reduce the influence of bad weather conditions,furthermore,it satisfies the requirements of low costs and miniaturization.

  12. High Precision Photometry for the K2 Mission

    NASA Astrophysics Data System (ADS)

    Huang, Xu; Soares-Furtado, Melinda; Penev, Kaloyan; Hartman, Joel; Bakos, Gaspar; Bhatti, Waqas; Domsa, Istvan; de Val-Borro, Miguel

    2015-12-01

    The two reaction wheel K2 mission brings new challenges for the data reduction processes. We developed a reduction pipeline for extracting high precision photometry from the K2 dataset and we use this pipeline to generate light curves for the K2 Campaign 0 super-stamps and K2 Campaign 1 target pixel dataset. Key to our reduction technique is the derivation of global astrometric solutions from the target stamps from which accurate centroids are passed on for high precision photometry extraction. We also implemented the image subtraction method to reduce the K2 Campaign 0 super-stamps containing open clusters M35 and NGC2158. We extract target light curvesfor sources from a combined UCAC4 and EPIC catalogue -- this includes not only primary targets of the K2 Mission, but also other stars that happen to fall on the pixel stamps. Our astrometric solutions achieve a median residual of ~0.127". For bright stars, our best 6.5 hour precision for raw light curves is ~20 parts per million (ppm). For our detrended light curves, the best 6.5 hour precision achieved is ~15 ppm. We show that our detrended light curves have fewer systematic effects (or trends, or red-noise) than light curves produced by other groups from the same observations. We highlight the measurements of rotation curves using the K2 light curves of stars within open cluster M35 and NGC2158.

  13. Ion beam figuring (IBF) for high precision optics

    NASA Astrophysics Data System (ADS)

    Demmler, Marcel; Zeuner, Michael; Allenstein, Frank; Dunger, Thoralf; Nestler, Matthias; Kiontke, Sven

    2010-02-01

    Recently and upcoming optical applications depend more and more on the precision of the optical elements used. The last is especially driven by shorter wavelength, higher flux densities and imaging close to the diffraction limit. Therefore a dramatically increasing demand on high precision and high quality optical components in leading edge equipment as well as common devices and instruments is observed. So far a few methods have been introduced to provide an adequate manufacturing performance using mechanical grinding and polishing techniques. Up to now the very sophisticated ion beam figuring (IBF) has not been used for common optics. The reasons for this might be the perception of higher costs and less knowledge about the technique in the industry. Now an affordable ion beam figuring technique has been developed to address precision aspherical optics applications. This paper introduces ion beam figuring technology based on equipment which is widely used in semiconductor mass production for ultra precise film thickness trimming. Ion beam figuring works by raster-scanning a focused broad ion beam across an optical surface with variable velocity and dwell time in order to precisely and locally trim away surface contour errors. As a new and cost effective approach the ion beam figuring system used in this presentation applies a 3 axis movement system only (compared to expensive 5-axis movements in other applications). X-and y-axes are used for the areal scan, and the z-axis is used for focus adjustment due to the surface contour of the optical element. The system was intentionally designed without the 2 additional tilt axes for incident angle adjustment and cleverly reduces the complexity and size of the system. It is shown that curved spherical or aspherical surfaces can be corrected down to λ/50 or better by using the state of the art 3-axes trimming system. Even with high spatial frequency parts final processing qualities better than λ/10 are achieved.

  14. Highly Precise Measurements of Oxygen and Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Gupta, M.

    2012-12-01

    Highly-precise oxygen measurements have been used to constrain the carbon budget, study terrestrial photosynthesis and respiration, and estimate marine productivity. Measurements of the O2/N2 ratio have become more routine and have been recently used to detect strong increases in phytoplankton abundance (spring bloom), track seasonal changes in atmospheric potential oxygen, and prescribe individual pollution events to their point of origin. In most of these studies, O2/N2 ratios were measured with a 1? precision of 1.4 to 14 per meg (~ 0.3 - 3 ppm) in a measurement time of 10 - 20 minutes, and such high precision was required to discern typical oxygen concentrations changes of 20 ppm that occurred over several hours. In this work, we utilize near-infrared cavity-enhanced laser absorption spectroscopy (Off-Axis ICOS) to quantify ambient oxygen with a precision (1?, 100s) of 7 ppm. By periodically calibrating the instrument, the analyzer is capable of making oxygen measurements to better than 1 ppm (1?). The analyzer is highly linear (R2 > 0.9999) over a wide dynamic range (0 - 100 % oxygen). The sensor was combined with a commercial CO2/CH4/H2O Analyzer, and used to make measurements of respiration and fossil fuel pollution events with oxidative ratios ranging from 1.15 - 1.60. Future improvements will increase the analyzer precision to better than 1.4 ppm (1?, 100s), and decrease the periodic referencing interval to > 1 hour. Measurements of ?(O2/N2 ) versus CO2 for a constant gas source, laboratory air, and outdoor air in an urban environment during two different time periods. The slope of these lines can be used to determine the oxidative ratio and help identify CO2 sources.

  15. A novel power source for high-precision, highly efficient micro w-EDM

    NASA Astrophysics Data System (ADS)

    Chen, Shun-Tong; Chen, Chi-Hung

    2015-07-01

    The study presents the development of a novel power source for high-precision, highly efficient machining of micropart microstructures using micro wire electrical discharge machining (w-EDM). A novel power source based on a pluri resistance-capacitance (pRC) circuit that can generate a high-frequency, high-peak current with a short pulse train is proposed and designed to enhance the performance of micro w-EDM processes. Switching between transistors is precisely controlled in the designed power source to create a high-frequency short-pulse train current. Various microslot cutting tests in both aluminum and copper alloys are conducted. Experimental results demonstrate that the pRC power source creates instant spark erosion resulting in markedly less material for removal, diminishing discharge crater size, and consequently an improved surface finish. A new evaluation approach for spark erosion ability (SEA) to assess the merits of micro EDM power sources is also proposed. In addition to increasing the speed of micro w-EDM by increasing wire feed rates by 1.6 times the original feed rate, the power source is more appropriate for machining micropart microstructures since there is less thermal breaking. Satisfactory cutting of an elaborate miniature hook-shaped structure and a high-aspect ratio microstructure with a squared-pillar array also reveal that the developed pRC power source is effective, and should be very useful in the manufacture of intricate microparts.

  16. Experimental and numerical analysis of thermal forming processes for precision optics

    NASA Astrophysics Data System (ADS)

    Su, Lijuan

    Glass has been fabricated into different optical elements including aspherical lenses and freeform mirrors. However, aspherical lenses are very difficult to manufacture using traditional methods since they were specially developed for spherical lenses. On the other hand, large size mirrors are also difficult to make especially for high precision applications or if designed with complicated shapes. Recently developed two closely related thermal forming processes, i.e. compression molding and thermal slumping, have emerged as two promising methods for manufacturing aspherical lenses and freeform mirrors efficiently. Compression molding has already been used in industry to fabricate consumer products such as the lenses for digital cameras, while thermal slumping has been aggressively tested to create x-ray mirrors for space-based telescopes as well as solar panels. Although both process showed great potentials, there are a quite few technical challenges that prevent them from being readily implemented in industry for high volume production. This dissertation research seeks a fundamental understanding of the thermal forming processes for both precision glass lenses and freeform mirrors by using a combined experimental, analytical and numerical modeling approach. First, a finite element method (FEM) based methodology was presented to predict the refractive index change of glass material occurred during cooling. The FEM prediction was then validated using experimental results. Second, experiments were also conducted on glass samples with different cooling rates to study the refractive index variation caused by non-uniform cooling. A Shack-Hartmann Sensor (SHS) test setup was built to measure the index variations of thermally treated glass samples. Again, an FEM simulation model was developed to predict the refractive index variation. The prediction was compared with the experimental result, and the effects of different parameters were evaluated. In the last phase of this dissertation research, an FEM simulation model was developed to study the thin glass slumping processes on both concave and convex mandrels. Simulation of thin glass sheet slumping on convex mandrel was performed to study the effects of different process parameters, i.e. thickness of the glass sheet, cooling and heating rate, soaking time and soaking temperature. Finally, experiments of thermal slumping glass plates on a parabolic concave mandrel were performed to study the thickness effect on slumping process and the final surface contour of the upper surface of the glass plate. Simulation was again conducted to predict the surface contour. The comparison between simulation and experiments showed that the FEM simulation is adequate for predicting the surface contour if the glass was fully slumped. It was also discovered that for process conditions used, thinner glass sheets were not fully slumped.

  17. Flight Test Performance of a High Precision Navigation Doppler Lidar

    NASA Technical Reports Server (NTRS)

    Pierrottet, Diego; Amzajerdian, Farzin; Petway, Larry; Barnes, Bruce; Lockard, George

    2009-01-01

    A navigation Doppler Lidar (DL) was developed at NASA Langley Research Center (LaRC) for high precision velocity measurements from a lunar or planetary landing vehicle in support of the Autonomous Landing and Hazard Avoidance Technology (ALHAT) project. A unique feature of this DL is that it has the capability to provide a precision velocity vector which can be easily separated into horizontal and vertical velocity components and high accuracy line of sight (LOS) range measurements. This dual mode of operation can provide useful information, such as vehicle orientation relative to the direction of travel, and vehicle attitude relative to the sensor footprint on the ground. System performance was evaluated in a series of helicopter flight tests over the California desert. This paper provides a description of the DL system and presents results obtained from these flight tests.

  18. High-precision buffer circuit for suppression of regenerative oscillation

    NASA Technical Reports Server (NTRS)

    Tripp, John S.; Hare, David A.; Tcheng, Ping

    1995-01-01

    Precision analog signal conditioning electronics have been developed for wind tunnel model attitude inertial sensors. This application requires low-noise, stable, microvolt-level DC performance and a high-precision buffered output. Capacitive loading of the operational amplifier output stages due to the wind tunnel analog signal distribution facilities caused regenerative oscillation and consequent rectification bias errors. Oscillation suppression techniques commonly used in audio applications were inadequate to maintain the performance requirements for the measurement of attitude for wind tunnel models. Feedback control theory is applied to develop a suppression technique based on a known compensation (snubber) circuit, which provides superior oscillation suppression with high output isolation and preserves the low-noise low-offset performance of the signal conditioning electronics. A practical design technique is developed to select the parameters for the compensation circuit to suppress regenerative oscillation occurring when typical shielded cable loads are driven.

  19. Slow Control System for the NIFFTE High Precision TPC

    NASA Astrophysics Data System (ADS)

    Thornton, Remington

    2010-11-01

    The Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) has designed a Time Projection Chamber (TPC) to measure neutron induced fission cross-section measurements of the major actinides to sub-1% precision over a wide incident neutron energy range. These measurements are necessary to design the next generation of nuclear power plants. In order to achieve our high precision goals, an accurate and efficient slow control system must be implemented. Custom software has been created to control the hardware through Maximum Integration Data Acquisition System (MIDAS). This includes reading room and device temperature, setting the high voltage power supplies, and reading voltages. From hardware to software, an efficient design has been implemented and tested. This poster will present the setup and data from this slow control system.

  20. A high precision CMOS weak current readout circuit

    NASA Astrophysics Data System (ADS)

    Qisong, Wu; Haigang, Yang; Tao, Yin; Chong, Zhang

    2009-07-01

    This paper presents a high precision CMOS weak current readout circuit. This circuit is capable of converting a weak current into a frequency signal for amperometric measurements with high precision and further delivering a 10-bit digital output. A fast stabilization-enhanced potentiostat has been proposed in the design, which is used to maintain a constant bias potential for amperometric biochemical sensors. A technique based on source voltage shifting that reduces the leakage current of the MOS transistor to the reverse diode leakage level at room temperature was employed in the circuit. The chip was fabricated in the 0.35 μm chartered CMOS process, with a single 3.3 V power supply. The interface circuit maintains a dynamic range of more than 100 dB. Currents from 1 pA to 300 nA can be detected with a maximum nonlinearity of 0.3% over the full scale.

  1. High-precision Velocimetry Reveals δ Cephei's Secret Companion

    NASA Astrophysics Data System (ADS)

    Anderson, Richard I.; Sahlmann, Johannes; Holl, Berry; Eyer, Laurent

    2015-08-01

    The search for extra-solar planets has driven tremendous improvements in the precision of radial velocities measured with high-resolution echelle spectrographs. However, relatively few studies have as of yet exploited the present-day extreme (m/s) instrumental precision to study Cepheid variable stars.We have been observing the prototype of classical Cepheids, δ Cephei, since September 2011 using the HERMES spectrograph mounted to the Mercator telescope located at the Roque de los Muchachos Observatory on the island of La Palma. Being one of the most-studied variable stars, we originally chose δ Cephei as a maximum-precision reference for other Cepheids in our sample. To our great surprise however, we discovered a clear orbital signature in the homogeneous HERMES data. Adding in radial velocity data from the literature, we then determined δ Cephei's orbit (cf. Anderson et al. 2015, arXiv:1503.04116). The high orbital eccentricity (e=0.647) leads to close pericenter passages (rmin ~ 9.5 RδCep) which suggest an intriguing past that requires further study, since Cepheids are well-known magnifying glasses for stellar evolution (Kippenhahn & Weigert 1994). We furthermore determined a new parallax to δ Cephei (using Hipparcos data) that is in tension with previous estimates and shows that the orbit will have to be accounted for when measuring δ Cephei's parallax with Gaia.While some of our HERMES data are as precise as 9 m/s, we found correlated excess residuals when removing the reference pulsation model and orbital motion from the HERMES radial velocity data, leaving an RMS of 47 m/s. These higher-than-expected residuals are reminiscent of the "period-jitter" or "flickering" observed in high-precision photometry of Cepheids obtained with the Kepler and MOST satellites. This reveals a fortuitous synergy between variable stars studies and the field of exoplanet research and opens the window for a better understanding of Cepheid pulsations via high-precision velocimetry

  2. High-Precision Twist-Controlled Bilayer and Trilayer Graphene.

    PubMed

    Chen, Xu-Dong; Xin, Wei; Jiang, Wen-Shuai; Liu, Zhi-Bo; Chen, Yongsheng; Tian, Jian-Guo

    2016-04-01

    Twist-controlled bilayer graphene (tBLG) and double-twisted trilayer graphene (DTTG) with high precision are fabricated and their controllable optoelectronic properties are investigated for the first time. The successful fabrication of tBLG and DTTG with designated θ provides an attractive starting point for systematic studies of interlayer coupling in misoriented few-layer graphene systems with well-defined geometry. PMID:26822255

  3. High precision metrology of domes and aspheric optics

    NASA Astrophysics Data System (ADS)

    Murphy, Paul E.; Fleig, Jon; Forbes, Greg; Tricard, Marc

    2005-05-01

    Many defense systems have a critical need for high-precision, complex optics. However, fabrication of high quality, advanced optics is often seriously hampered by the lack of accurate and affordable metrology. QED's Subaperture Stitching Interferometer (SSI®) provides a breakthrough technology, enabling the automatic capture of precise metrology data for large and/or strongly curved (concave and convex) parts. QED"s SSI complements next-generation finishing technologies, such as Magnetorheological Finishing (MRF®), by extending the effective aperture, accuracy and dynamic range of a phase-shifting interferometer. This workstation performs automated sub-aperture stitching measurements of spheres, flats, and mild aspheres. It combines a six-axis precision stage system, a commercial Fizeau interferometer, and specially developed software that automates measurement design, data acquisition, and the reconstruction of the full-aperture figure error map. Aside from the correction of sub-aperture placement errors (such as tilts, optical power, and registration effects), our software also accounts for reference-wave error, distortion and other aberrations in the interferometer"s imaging optics. The SSI can automatically measure the full aperture of high numerical aperture surfaces (such as domes) to interferometric accuracy. The SSI extends the usability of a phase measuring interferometer and allows users with minimal training to produce full-aperture measurements of otherwise untestable parts. Work continues to extend this technology to measure aspheric shapes without the use of dedicated null optics. This SSI technology will be described, sample measurement results shown, and various manufacturing applications discussed.

  4. Photonic systems for high precision radial velocity measurements

    NASA Astrophysics Data System (ADS)

    Halverson, Samuel

    2016-01-01

    I will discuss new instrumentation and techniques designed to maximize the Doppler radial velocity (RV) measurement precision of next generation exoplanet discovery instruments. These systems include a novel wavelength calibration device based on an all-fiber fabry-perot interferometer, a compact and efficient optical fiber image scrambler based on a single high-index ball lens, and a unique optical fiber mode mixer. These systems have been developed specifically to overcome three technological hurdles that have classically hindered high precision RV measurements in both the optical and near-infrared (NIR), namely: lack of available wavelength calibration sources, inadequate decoupling of the spectrograph from variable telescope illumination, and speckle-induced noise due to mode interference in optical fibers. The instrumentation presented here will be applied to the Habitable-zone Planet Finder, a NIR RV instrument designed to detect rocky planets orbiting in the habitable zones of nearby M-dwarfs, and represents a critical technological step towards the detection of potentially habitable Earth-like planets. While primarily focused in the NIR, many of these systems will be adapted to future optical RV instruments as well, such as NASA's new Extreme Precision Doppler Spectrometer for the WIYN telescope.

  5. Strategies for high-precision Global Positioning System orbit determination

    NASA Technical Reports Server (NTRS)

    Lichten, Stephen M.; Border, James S.

    1987-01-01

    Various strategies for the high-precision orbit determination of the GPS satellites are explored using data from the 1985 GPS field test. Several refinements to the orbit determination strategies were found to be crucial for achieving high levels of repeatability and accuracy. These include the fine tuning of the GPS solar radiation coefficients and the ground station zenith tropospheric delays. Multiday arcs of 3-6 days provided better orbits and baselines than the 8-hr arcs from single-day passes. Highest-quality orbits and baselines were obtained with combined carrier phase and pseudorange solutions.

  6. High-precision photometry for K2 Campaign 1

    NASA Astrophysics Data System (ADS)

    Huang, C. X.; Penev, K.; Hartman, J. D.; Bakos, G. Á.; Bhatti, W.; Domsa, I.; de Val-Borro, M.

    2015-12-01

    The two reaction wheel K2 mission promises and has delivered new discoveries in the stellar and exoplanet fields. However, due to the loss of accurate pointing, it also brings new challenges for the data reduction processes. In this paper, we describe a new reduction pipeline for extracting high-precision photometry from the K2 data set, and present public light curves for the K2 Campaign 1 target pixel data set. Key to our reduction is the derivation of global astrometric solutions from the target stamps, from which accurate centroids are passed on for high-precision photometry extraction. We extract target light curves for sources from a combined UCAC4 and EPIC catalogue - this includes not only primary targets of the K2 campaign 1, but also any other stars that happen to fall on the pixel stamps. We provide the raw light curves, and the products of various detrending processes aimed at removing different types of systematics. Our astrometric solutions achieve a median residual of ˜0.127 arcsec. For bright stars, our best 6.5 h precision for raw light curves is ˜20 parts per million (ppm). For our detrended light curves, the best 6.5 h precision achieved is ˜15 ppm. We show that our detrended light curves have fewer systematic effects (or trends, or red-noise) than light curves produced by other groups from the same observations. Example light curves of transiting planets and a Cepheid variable candidate, are also presented. We make all light curves public, including the raw and detrended photometry, at http://k2.hatsurveys.org.

  7. Thermal design and flight validation for high precision camera

    NASA Astrophysics Data System (ADS)

    Meng, Henghui; Sun, Lixia; Zhang, Chuanqiang; Geng, Liyin

    2015-10-01

    High precision camera, designed for advanced optical system, with a wide field of vision, high resolution and fast response, has a wild range of applications. As the main payload for spacecraft, the optical remote sensor is mounted exposed to the space, which means it should have a reliable optical performance in harsh space environment during lifetime. Because of the special optical characteristic, imaging path should be accurate, and less thermal deformation for the optical parts is required in the working process, so the high precision camera has a high level requirement for temperature. High resolution space camera is generally required to own the capability of adapting to space thermal environments. The flexible satellite's change of rolling attitude affects the temperature distribution of the camera and makes a difference to optical performance. The thermal control design of space camera is presented, and analysis the temperature data in orbit to prove the thermal design correct. It is proved that the rolling attitude has more influence on outer parts and less influence on inner parts, and active thermal control can weaken the influence of rolling attitude.

  8. High Precision U/Th Dating of First Polynesian Settlement

    PubMed Central

    Burley, David; Weisler, Marshall I.; Zhao, Jian-xin

    2012-01-01

    Previous studies document Nukuleka in the Kingdom of Tonga as a founder colony for first settlement of Polynesia by Lapita peoples. A limited number of radiocarbon dates are one line of evidence supporting this claim, but they cannot precisely establish when this event occurred, nor can they afford a detailed chronology for sequent occupation. High precision U/Th dates of Acropora coral files (abraders) from Nukuleka give unprecedented resolution, identifying the founder event by 2838±8 BP and documenting site development over the ensuing 250 years. The potential for dating error due to post depositional diagenetic alteration of ancient corals at Nukuleka also is addressed through sample preparation protocols and paired dates on spatially separated samples for individual specimens. Acropora coral files are widely distributed in Lapita sites across Oceania. U/Th dating of these artifacts provides unparalleled opportunities for greater precision and insight into the speed and timing of this final chapter in human settlement of the globe. PMID:23144962

  9. High Precision Polarimetry of the Epsilon Aurigae Eclipse

    NASA Astrophysics Data System (ADS)

    Wiktorowicz, Sloane

    2013-07-01

    Polarimetry of the epsilon Aurigae eclipse has the potential to discern the stellar latitude occulted by the companion's dusty disk, which may directly test interferometric results. In addition, the limb polarization of the primary star may be measured, which is an effect predicted by S. Chandrasekhar and verified by spatially resolved observations of the Sun. I will present B band, polarimetric observations of epsilon Aurigae taken over six nights in September and October 2009 using the POLISH high precision polarimeter at the Lick 3-m telescope. Polarimetric precision achieved during each night is of order 1 part in 10^5. Extensive post-eclipse observations have been taken with the significantly upgraded POLISH2 polarimeter at Lick Observatory. This instrument simultaneously measures all four Stokes parameters (I, Q, U, and V) and achieves precision within 2.0 times the photon shot noise limit over an entire observing run. This work is supported by a NExScI Sagan Fellowship, UC Lab Fees Research Grant, and UCO/Lick Observatory.

  10. Precise thermodynamic control of high pressure jet expansions.

    PubMed

    Christen, Wolfgang; Krause, Tim; Rademann, Klaus

    2007-07-01

    We describe an experimental setup for supersonic jet expansions of supercritical fluids. It is characterized by well-defined thermodynamic values to allow systematic investigations of pressure and temperature effects on molecular beam parameters. The design permits stagnation temperatures T(0)=225-425 K with a thermal stability DeltaT(0)<30 mK and stagnation pressures p(0)=0.2-12 MPa that are measured with 0.05% precision. For optimum stability, gas reservoir, pressure transducer, and gauge amplifier are temperature-controlled, and a feedback loop permits active pressure stabilization using a pulseless syringe pump. With this approach stagnation pressures can be reproduced and kept constant to Deltap(0)<2.9 kPa. As a result, flow velocity and kinetic energy of molecular beams can be controlled with maximum accuracy. PMID:17672754

  11. High-precision ground-based photometry of exoplanets

    NASA Astrophysics Data System (ADS)

    de Mooij, Ernst J. W.; Jayawardhana, Ray

    2013-04-01

    High-precision photometry of transiting exoplanet systems has contributed significantly to our understanding of the properties of their atmospheres. The best targets are the bright exoplanet systems, for which the high number of photons allow very high signal-to-noise ratios. Most of the current instruments are not optimised for these high-precision measurements, either they have a large read-out overhead to reduce the readnoise and/or their field-of-view is limited, preventing simultaneous observations of both the target and a reference star. Recently we have proposed a new wide-field imager for the Observatoir de Mont-Megantic optimised for these bright systems (PI: Jayawardhana). The instruments has a dual beam design and a field-of-view of 17' by 17'. The cameras have a read-out time of 2 seconds, significantly reducing read-out overheads. Over the past years we have obtained significant experience with how to reach the high precision required for the characterisation of exoplanet atmospheres. Based on our experience we provide the following advice: Get the best calibrations possible. In the case of bad weather, characterise the instrument (e.g. non-linearity, dome flats, bias level), this is vital for better understanding of the science data. Observe the target for as long as possible, the out-of-transit baseline is as important as the transit/eclipse itself. A short baseline can lead to improperly corrected systematic and mis-estimation of the red-noise. Keep everything (e.g. position on detector, exposure time) as stable as possible. Take care that the defocus is not too strong. For a large defocus, the contribution of the total flux from the sky-background in the aperture could well exceed that of the target, resulting in very strict requirements on the precision at which the background is measured.

  12. High-Precision Floating-Point Arithmetic in ScientificComputation

    SciTech Connect

    Bailey, David H.

    2004-12-31

    At the present time, IEEE 64-bit floating-point arithmetic is sufficiently accurate for most scientific applications. However, for a rapidly growing body of important scientific computing applications, a higher level of numeric precision is required: some of these applications require roughly twice this level; others require four times; while still others require hundreds or more digits to obtain numerically meaningful results. Such calculations have been facilitated by new high-precision software packages that include high-level language translation modules to minimize the conversion effort. These activities have yielded a number of interesting new scientific results in fields as diverse as quantum theory, climate modeling and experimental mathematics, a few of which are described in this article. Such developments suggest that in the future, the numeric precision used for a scientific computation may be as important to the program design as are the algorithms and data structures.

  13. High-Precision Timing of Several Millisecond Pulsars

    NASA Astrophysics Data System (ADS)

    Ferdman, R. D.; Stairs, I. H.; Backer, D. C.; Ramachandran, R.; Demorest, P.; Nice, D. J.; Lyne, A. G.; Kramer, M.; Lorimer, D.; McLaughlin, M.; Manchester, D.; Camilo, F.; D'Amico, N.; Possenti, A.; Burgay, M.; Joshi, B. C.; Freire, P. C.

    2004-12-01

    The highest precision pulsar timing is achieved by reproducing as accurately as possible the pulse profile as emitted by the pulsar, in high signal-to-noise observations. The best profile reconstruction can be accomplished with several-bit voltage sampling and coherent removal of the dispersion suffered by pulsar signals as they traverse the interstellar medium. The Arecibo Signal Processor (ASP) and its counterpart the Green Bank Astronomical Signal Processor (GASP) are flexible, state-of-the-art wide-bandwidth observing systems, built primarily for high-precision long-term timing of millisecond and binary pulsars. ASP and GASP are in use at the 300-m Arecibo telescope in Puerto Rico and the 100-m Green Bank Telescope in Green Bank, West Virginia, respectively, taking advantage of the enormous sensitivities of these telescopes. These instruments result in high-precision science through 4 and 8-bit sampling and perform coherent dedispersion on the incoming data stream in real or near-real time. This is done using a network of personal computers, over an observing bandwidth of 64 to 128 MHz, in each of two polarizations. We present preliminary results of timing and polarimetric observations with ASP/GASP for several pulsars, including the recently-discovered relativistic double-pulsar binary J0737-3039. These data are compared to simultaneous observations with other pulsar instruments, such as the new "spigot card" spectrometer on the GBT and the Princeton Mark IV instrument at Arecibo, the precursor timing system to ASP. We also briefly discuss several upcoming observations with ASP/GASP.

  14. High-precision micro/nano-scale machining system

    DOEpatents

    Kapoor, Shiv G.; Bourne, Keith Allen; DeVor, Richard E.

    2014-08-19

    A high precision micro/nanoscale machining system. A multi-axis movement machine provides relative movement along multiple axes between a workpiece and a tool holder. A cutting tool is disposed on a flexible cantilever held by the tool holder, the tool holder being movable to provide at least two of the axes to set the angle and distance of the cutting tool relative to the workpiece. A feedback control system uses measurement of deflection of the cantilever during cutting to maintain a desired cantilever deflection and hence a desired load on the cutting tool.

  15. High-precision measurements of global stellar magnetic fields

    NASA Astrophysics Data System (ADS)

    Plachinda, S. I.

    2014-06-01

    This paper presents a brief history of the development of devices and techniques for high-precision measurements of stellar magnetic fields. Two main approaches for the processing of spectral-polarimetric observations are described: the method of least-squares deconvolution (LSD), which is used to find a mean-weighted average of the normalized polarization profile using a set of spectral lines, and a method in which each individual spectral line is used to determine the magnetic field, viz., the single line method (SL). The advantages and disadvantages of the LSD and SL methods are discussed.

  16. Experimental study on the precise orbit determination of the BeiDou navigation satellite system.

    PubMed

    He, Lina; Ge, Maorong; Wang, Jiexian; Wickert, Jens; Schuh, Harald

    2013-01-01

    The regional service of the Chinese BeiDou satellite navigation system is now in operation with a constellation including five Geostationary Earth Orbit satellites (GEO), five Inclined Geosynchronous Orbit (IGSO) satellites and four Medium Earth Orbit (MEO) satellites. Besides the standard positioning service with positioning accuracy of about 10 m, both precise relative positioning and precise point positioning are already demonstrated. As is well known, precise orbit and clock determination is essential in enhancing precise positioning services. To improve the satellite orbits of the BeiDou regional system, we concentrate on the impact of the tracking geometry and the involvement of MEOs, and on the effect of integer ambiguity resolution as well. About seven weeks of data collected at the BeiDou Experimental Test Service (BETS) network is employed in this experimental study. Several tracking scenarios are defined, various processing schemata are designed and carried out; and then, the estimates are compared and analyzed in detail. The results show that GEO orbits, especially the along-track component, can be significantly improved by extending the tracking network in China along longitude direction, whereas IGSOs gain more improvement if the tracking network extends in latitude. The involvement of MEOs and ambiguity-fixing also make the orbits better. PMID:23529116

  17. Experimental Study on the Precise Orbit Determination of the BeiDou Navigation Satellite System

    PubMed Central

    He, Lina; Ge, Maorong; Wang, Jiexian; Wickert, Jens; Schuh, Harald

    2013-01-01

    The regional service of the Chinese BeiDou satellite navigation system is now in operation with a constellation including five Geostationary Earth Orbit satellites (GEO), five Inclined Geosynchronous Orbit (IGSO) satellites and four Medium Earth Orbit (MEO) satellites. Besides the standard positioning service with positioning accuracy of about 10 m, both precise relative positioning and precise point positioning are already demonstrated. As is well known, precise orbit and clock determination is essential in enhancing precise positioning services. To improve the satellite orbits of the BeiDou regional system, we concentrate on the impact of the tracking geometry and the involvement of MEOs, and on the effect of integer ambiguity resolution as well. About seven weeks of data collected at the BeiDou Experimental Test Service (BETS) network is employed in this experimental study. Several tracking scenarios are defined, various processing schemata are designed and carried out; and then, the estimates are compared and analyzed in detail. The results show that GEO orbits, especially the along-track component, can be significantly improved by extending the tracking network in China along longitude direction, whereas IGSOs gain more improvement if the tracking network extends in latitude. The involvement of MEOs and ambiguity-fixing also make the orbits better. PMID:23529116

  18. The Texas High-Precision Radial-Velocity Program

    NASA Astrophysics Data System (ADS)

    Cochran, W. D.; Hatzes, A. P.

    The University of Texas program for the measurement of high precision stellar radial velocity variations has expanded considerably during the past few years, and now comprises four separate efforts: 1) The McDonald Observatory Planet Search (MOPS) program, using the coude spectrograph of the 2.7m Harlan Smith Telescope, now has eleven years of data. In addition to the companion to 16 Cygni B, several of the program stars are showing interesting variations, and may eventually be shown to have substellar companions. 2) The ESO Planet Search (ESOPS), using an I2 collaboration with Martin Kurster, Konrad Dennerl and Stefan Dobereiner, was the first high precision Southern Hemisphere radial velocity survey. This program now has accumulated five years of data on 37 target stars. Results on interesting objects, such as Proxima Centauri, will be shown. 3) In 1996 we started a search for substellar companions to Hyades dwarfs, using the Keck 1 HIRES spectrograph and I2 cell. The Hyades provide a homogeneous sample of stars formed at the same time with the same composition. The goal of this program is to determine the dependence of planet formation on the one remaining independent variable in the sample, the stellar mass. 4) The Hobby Eberly Telescope is now in the middle of its scientific commissioning. Its high resolution spectrograph will be installed in the fall of 1998. This queue scheduled telescope is an ideal facility to use for a detailed survey of a broad sample of stars in the solar neighborhood.

  19. High-precision genotyping by denaturing capillary electrophoresis.

    PubMed

    Wenz, H; Robertson, J M; Menchen, S; Oaks, F; Demorest, D M; Scheibler, D; Rosenblum, B B; Wike, C; Gilbert, D A; Efcavitch, J W

    1998-01-01

    Genotyping, as applied to linkage mapping, human identification, or mapping of genetic traits, mandates electrophoretic separation systems that enable a user to identify alleles with high precision to obtain a correct genotype. For 2-bp microsatellites or short tandem repeats (STRs), standard deviations of +/-0.3 nucleotide are required to ensure with 99.7% probability the identity or dissimilarity of tested alleles. A complete system, consisting of commercially available laser-induced fluorescence capillary electrophoresis (ABI PRISM 310) and performance optimized polymer 4 (POP-4), was evaluated for microsatellite separations. POP-4 is a low viscosity polymer for use in uncoated fused microbore silica capillaries. It separates DNA fragments that differ in size by 1 nucleotide up to 250 nucleotides and that differ in size by 2 nucleotides for fragments up to at least 350 nucleotides in length in about 30 min. The presence of denaturants and, more importantly, operation at 60 degrees C was mandatory for high-precision and high-resolution sizing operation. Reproducible separation performance was achieved in excess of 100 injections per capillary with resulting standard deviations in the range of 0.04 to 0.17 nucleotide. Comparative sizing of known CEPH (Centre d'Etudes du Polymorphisme Humaine) samples performed at 22 independent test sites showed the usefulness of the system for genotyping with standard deviations of 0.24 nucleotide, or better. PMID:9445489

  20. High precision Hugoniot measurements of D2 near maximum compression

    NASA Astrophysics Data System (ADS)

    Benage, John; Knudson, Marcus; Desjarlais, Michael

    2015-11-01

    The Hugoniot response of liquid deuterium has been widely studied due to its general importance and to the significant discrepancy in the inferred shock response obtained from early experiments. With improvements in dynamic compression platforms and experimental standards these results have converged and show general agreement with several equation of state (EOS) models, including quantum molecular dynamics (QMD) calculations within the Generalized Gradient Approximation (GGA). This approach to modeling the EOS has also proven quite successful for other materials and is rapidly becoming a standard approach. However, small differences remain among predictions obtained using different local and semi-local density functionals; these small differences show up in the deuterium Hugoniot at ~ 30-40 GPa near the region of maximum compression. Here we present experimental results focusing on that region of the Hugoniot and take advantage of advancements in the platform and standards, resulting in data with significantly higher precision than that obtained in previous studies. These new data may prove to distinguish between the subtle differences predicted by the various density functionals. Results of these experiments will be presented along with comparison to various QMD calculations. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  1. High Precision Oxygen Measurements as a Tool for CCS Monitoring

    NASA Astrophysics Data System (ADS)

    Trugman, A. T.; Dvonch, C.; Clegg, S. M.; Rahn, T.

    2011-12-01

    CO2 emissions from below ground carbon storage reservoirs can be difficult to discriminate from CO2 produced via natural plant and microbial respiration. However, because respiration produces CO2 and consumes O2 in an approximately 1:1 ratio, it is possible to characterize leakage sources by measurement of simultaneous changes of both O2 and CO2. This approach is complicated by the fact that O2 comprises approximately 21% of the atmosphere, while CO2 is only present in the background atmosphere at ~400 parts per million, making it necessary to accurately measure changes in O2 concentration to six significant figures. Here we describe a portable high precision oxygen measurement system that employs a modified commercial fuel cell analyzer to quantify small changes in O2 concentration. High precision is achieved through precise control of flow and pressure, allowing near part per million precision of O2 and CO2 concentrations. This system has been incorporated into a mobile laboratory and has been deployed to the ZERT controlled release site in Bozeman, Montana and to a natural analog CO2 leak at Soda Springs, Idaho. Samples were collected at ground level, 1 meter, and 3 meters above the CO2 source and are displayed as the ratio of the O2 difference relative to a reference to the CO2 difference in concentration relative to the same reference (ΔO2/ΔCO2). It was observed that at wind speeds ≤ 2 m/s, the ΔO2/ΔCO2 anomaly decreased with height and was still significantly different from background at 3 m. With increasing wind speed, ΔO2/ΔCO2 anomalies decreased to background levels at 1 and 3 m but remained detectable at the ground surface. We will discuss attempts to quantify the CO2 release rate utilizing the measured ΔO2/ΔCO2 elevation profiles and will present complementary eddy covariance data for comparison.

  2. High Precision Astrometry with Adaptive Optics aided Imaging

    NASA Astrophysics Data System (ADS)

    Meyer, Eva

    2010-05-01

    More than 450 exoplanets are known and this number increases nearly every day. Only a few constraints on their orbital parameters and physical characteristics can be determined, as most exoplanets are detected indirectly. Measuring the astrometric signal of a planet by measuring the wobble of the host star yields the full set of orbital parameters. With this information the true masses of the planet candidates can be determined, making it possible to establish the candidates as real planets, brown dwarfs (BD) or low mass stars. In the context of this thesis, an M-dwarf with a BD candidate companion, discovered by radial velocity measurements, was observed within a monitoring program to detect the astrometric signal. Ground based adaptive optics aided imaging with ESO/NACO was used to establish its true nature (BD vs. star) and to investigate the prospects of this technique for exoplanet detection. The astrometric corrections necessary to perform high precision astrometry are described and their contribution to the overall precision is investigated. Due to large uncertainties in the pixel-scale and the orientation of the detector, no detection of the astrometric orbit signal was possible. The image quality of ground-based telescopes is limited by the turbulence in Earth's atmosphere. The induced distortions of the light can be measured and corrected with the adaptive optics technique. However, the correction is only useful within a small angle around the guide star. The novel correction technique of multi conjugated adaptive optics uses several guide stars to correct a larger field of view. The VLT/MAD instrument was built to demonstrate this technique. Observations with MAD are analyzed in terms of astrometric precision in this work. Two sets of data are compared, which were obtained in different correction modes: pure ground layer correction and full multi conjugated correction.

  3. Electronics design for a high precision image stabilization system

    NASA Astrophysics Data System (ADS)

    Casas, A.; Roma, D.; Carmona, M.; Gómez, J. M.; Bosch, J.; López, M.; Sabater, J.; Herms, A.; Maue, T.; Nakai, E.; Volkmer, R.; Schmidt, W.

    2014-07-01

    A very high precision Image Stabilization System has been designed for the Solar Orbiter mission. The different components that have been designed are the Correlation Tracking Camera (CTC), Tip-Tilt controller (TTC) and the system control in order to achieve the specified requirements. For the CTC, in order to achieve the required resolution of 12 bits and reduced power consumption, we used an external ADC. For the TTC, a special focus has been dedicated to a 55 V linear regulator in a QUASI-LDO configuration and a Tip-Tilt driver in a transconductance amplifier architecture. Results show that the full system reaches an attenuation of 1/10th of a pixel at 10Hz. The TTC provides a high voltage span, enough slew-rate and the needed stability levels.

  4. High-precision analysis of the solar twin HIP 100963

    NASA Astrophysics Data System (ADS)

    Yana Galarza, Jhon; Meléndez, Jorge; Ramírez, Ivan; Yong, David; Karakas, Amanda I.; Asplund, Martin; Liu, Fan

    2016-04-01

    Context. HIP 100963 was one of the first solar twins identified. Although some high-precision analyses are available, a comprehensive high-precision study of chemical elements from different nucleosynthetic sources is still lacking from which to obtain potential new insights on planets, stellar evolution, and Galactic chemical evolution (GCE). Aims: We analyze and investigate the origin of the abundance pattern of HIP 100963 in detail, in particular the pattern of the light element Li, the volatile and refractory elements, and heavy elements from the s- and r-processes. Methods: We used the HIRES spectrograph on the Keck I telescope to acquire high-resolution (R ≈ 70 000) spectra with a high signal-to-noise ratio (S/N ≈ 400-650 per pixel) of HIP 100963 and the Sun for a differential abundance analysis. We measured the equivalent widths (EWs) of iron lines to determine the stellar parameters by employing the differential spectroscopic equilibrium. We determined the composition of volatile, refractory, and neutron-capture elements through a differential abundance analysis with respect to the Sun. Results: The stellar parameters we found are Teff = 5818 ± 4 K, log g = 4.49 ± 0.01 dex, vt = 1.03 ± 0.01km s-1, and [Fe/H] = -0.003 ± 0.004 dex. These low errors allow us to compute a precise mass (1.03+0.02-0.01 M⊙) and age (2.0 ± 0.4 Gyr), obtained using Yonsei-Yale isochrones. Using our [Y/Mg] ratio, we have determined an age of 2.1 ± 0.4 Gyr, in agreement with the age computed using isochrones. Our isochronal age also agrees with the age determined from stellar activity (2.4 ± 0.3 Gyr). We study the abundance pattern with condensation temperature (Tcond) taking corrections by the GCE into account. We show that the enhancements of neutron-capture elements are explained by contributions from both the s- and r-process. The lithium abundance follows the tight Li-age correlation seen in other solar twins. Conclusions: We confirm that HIP 100963 is a solar twin and demonstrate that its abundance pattern is about solar after corrections for GCE. The star also shows enrichment in s- and r-process elements, as well as depletion in lithium that is caused by stellar evolution.

  5. High Precision Measurements of Neutron Beta-Decay at LANSCE

    NASA Astrophysics Data System (ADS)

    Makela, Mark

    2009-10-01

    High precision measurements of neutron beta-decay can be used to study the standard model of particle physics by testing the unitarity condition of the CKM matrix. Precise measurements of the neutrons' lifetime and one of its angular correlations are needed to determine the necessary standard model parameters for a unitarity test from neutron decay alone. Several experiments are underway at the Los Alamos Neutron Science Center (LANSCE) to measure these parameters using Ultra-Cold Neutrons (UCN). During the last 10 year a program to study neutron physics with UCN has been under development at LANSCE by an international team of scientists. The first experiment of this program, UCNA; which measures the decay correlation between the polarized neutron and the resulting beta particle, is currently running. A neutron lifetime experiment that monitors the decay rate of UCN trapped in a magnetic bottle with a gravitational top is being built and scheduled to run later this year. A second decay correlation experiment; (UCNB), which will measure the decay correlation between the polarized neutron and the resulting anti-neutrino is currently in the research and development phase. This talk will give an overview of these experiments, as well as other highlights from the UCN program at LANSCE.

  6. Developing and implementing a high precision setup system

    NASA Astrophysics Data System (ADS)

    Peng, Lee-Cheng

    The demand for high-precision radiotherapy (HPRT) was first implemented in stereotactic radiosurgery using a rigid, invasive stereotactic head frame. Fractionated stereotactic radiotherapy (SRT) with a frameless device was developed along a growing interest in sophisticated treatment with a tight margin and high-dose gradient. This dissertation establishes the complete management for HPRT in the process of frameless SRT, including image-guided localization, immobilization, and dose evaluation. The most ideal and precise positioning system can allow for ease of relocation, real-time patient movement assessment, high accuracy, and no additional dose in daily use. A new image-guided stereotactic positioning system (IGSPS), the Align RT3C 3D surface camera system (ART, VisionRT), which combines 3D surface images and uses a real-time tracking technique, was developed to ensure accurate positioning at the first place. The uncertainties of current optical tracking system, which causes patient discomfort due to additional bite plates using the dental impression technique and external markers, are found. The accuracy and feasibility of ART is validated by comparisons with the optical tracking and cone-beam computed tomography (CBCT) systems. Additionally, an effective daily quality assurance (QA) program for the linear accelerator and multiple IGSPSs is the most important factor to ensure system performance in daily use. Currently, systematic errors from the phantom variety and long measurement time caused by switching phantoms were discovered. We investigated the use of a commercially available daily QA device to improve the efficiency and thoroughness. Reasonable action level has been established by considering dosimetric relevance and clinic flow. As for intricate treatments, the effect of dose deviation caused by setup errors remains uncertain on tumor coverage and toxicity on OARs. The lack of adequate dosimetric simulations based on the true treatment coordinates from the treatment planning system (TPS) has limited adaptive treatments. A reliable and accurate dosimetric simulation using TPS and in-house software in uncorrected errors has been developed. In SRT, the calculated dose deviation is compared to the original treatment dose with the dose-volume histogram to investigate the dose effect of rotational errors. In summary, this work performed a quality assessment to investigate the overall accuracy of current setup systems. To reach the ideal HPRT, the reliable dosimetric simulation, an effective daily QA program and effective, precise setup systems were developed and validated.

  7. Generation of High Resolution and High Precision Orthorectified Road Imagery from Mobile Mapping System

    NASA Astrophysics Data System (ADS)

    Sakamoto, M.; Tachibana, K.; Shimamura, H.

    2012-07-01

    In this paper, a novel technique to generate a high resolution and high precision Orthorectified Road Imagery (ORI) by using spatial information acquired from a Mobile Mapping System (MMS) is introduced. The MMS was equipped with multiple sensors such as GPS, IMU, odometer, 2-6 digital cameras and 2-4 laser scanners. In this study, a Triangulated Irregular Network (TIN) based approach, similar to general aerial photogrammetry, was adopted to build a terrain model in order to generate ORI with high resolution and high geometric precision. Compared to aerial photogrammetry, there are several issues that are needed to be addressed. ORI is generated by merging multiple time sequence images of a short section. Hence, the influence of occlusion due to stationary objects, such as telephone poles, trees, footbridges, or moving objects, such as vehicles, pedestrians are very significant. Moreover, influences of light falloff at the edges of cameras, tone adjustment among images captured from different cameras or a round trip data acquisition of the same path, and time lag between image exposure and laser point acquisition also need to be addressed properly. The proposed method was applied to generate ORI with 1 cm resolution, from the actual MMS data sets. The ORI generated by the proposed technique was more clear, occlusion free and with higher resolution compared to the conventional orthorectified coloured point cloud imagery. Moreover, the visual interpretation of road features from the ORI was much easier. In addition, the experimental results also validated the effectiveness of proposed radiometric corrections. In occluded regions, the ORI was compensated by using other images captured from different angles. The validity of the image masking process, in the occluded regions, was also ascertained.

  8. Thermal-mechanical behavior of high precision composite mirrors

    NASA Technical Reports Server (NTRS)

    Kuo, C. P.; Lou, M. C.; Rapp, D.

    1993-01-01

    Composite mirror panels were designed, constructed, analyzed, and tested in the framework of a NASA precision segmented reflector task. The deformations of the reflector surface during the exposure to space enviroments were predicted using a finite element model. The composite mirror panels have graphite-epoxy or graphite-cyanate facesheets, separated by an aluminum or a composite honeycomb core. It is pointed out that in order to carry out detailed modeling of composite mirrors with high accuracy, it is necessary to have temperature dependent properties of the materials involved and the type and magnitude of manufacturing errors and material nonuniformities. The structural modeling and analysis efforts addressed the impact of key design and materials parameters on the performance of mirrors.

  9. Monolithic interferometer for high precision radial velocity measurements

    NASA Astrophysics Data System (ADS)

    Wan, Xiaoke; Ge, Jian; Wang, Ji; Lee, Brian

    2009-08-01

    In high precision radial velocity (RV) measurements for extrasolar planets searching and studies, a stable wide field Michelson interferometer is very critical in Exoplanet Tracker (ET) instruments. Adopting a new design, monolithic interferometers are homogenous and continuous in thermal expansion, and field compensation and thermal compensation are both satisfied. Interferometer design and fabrication are decrypted in details. In performance evaluations, field angle is typically 22° and thermal sensitivity is typically -1.7 x 10-6/°C, which corresponds to ~500 m/s /°C in RV scale. In interferometer stability monitoring using a wavelength stabilized laser source, phase shift data was continuously recorded for nearly seven days. Appling a frequent calibration every 30 minutes as in typical star observations, the interferometer instability contributes less than 1.4 m/s in RV error, in a conservative estimation.

  10. Suppression of radiation damping for high precision quantitative NMR.

    PubMed

    Bayle, Kevin; Julien, Maxime; Remaud, Gérald S; Akoka, Serge

    2015-10-01

    True quantitative analysis of concentrated samples by (1)H NMR is made very difficult by Radiation Damping. A novel NMR sequence (inspired by the WET NMR sequence and by Outer Volume Saturation methods) is therefore proposed to suppress this phenomenon by reducing the spatial area and consequently the number of spins contributing to the signal detected. The size of the detected volume can be easily chosen in a large range and line shape distortions are avoided thanks to a uniform signal suppression of the outer volume. Composition of a mixture can as a result be determined with very high accuracy (precision and trueness) at the per mille level whatever the concentrations and without hardware modification. PMID:26319280

  11. Suppression of radiation damping for high precision quantitative NMR

    NASA Astrophysics Data System (ADS)

    Bayle, Kevin; Julien, Maxime; Remaud, Gérald S.; Akoka, Serge

    2015-10-01

    True quantitative analysis of concentrated samples by 1H NMR is made very difficult by Radiation Damping. A novel NMR sequence (inspired by the WET NMR sequence and by Outer Volume Saturation methods) is therefore proposed to suppress this phenomenon by reducing the spatial area and consequently the number of spins contributing to the signal detected. The size of the detected volume can be easily chosen in a large range and line shape distortions are avoided thanks to a uniform signal suppression of the outer volume. Composition of a mixture can as a result be determined with very high accuracy (precision and trueness) at the per mille level whatever the concentrations and without hardware modification.

  12. Thermal-mechanical behavior of high precision composite mirrors

    SciTech Connect

    Kuo, C.P.; Lou, M.C.; Rapp, D.

    1993-01-01

    Composite mirror panels were designed, constructed, analyzed, and tested in the framework of a NASA precision segmented reflector task. The deformations of the reflector surface during the exposure to space enviroments were predicted using a finite element model. The composite mirror panels have graphite-epoxy or graphite-cyanate facesheets, separated by an aluminum or a composite honeycomb core. It is pointed out that in order to carry out detailed modeling of composite mirrors with high accuracy, it is necessary to have temperature dependent properties of the materials involved and the type and magnitude of manufacturing errors and material nonuniformities. The structural modeling and analysis efforts addressed the impact of key design and materials parameters on the performance of mirrors. 4 refs.

  13. High-Precision Mass Measurements of Radionuclides with Penning Traps

    NASA Astrophysics Data System (ADS)

    Block, Michael

    The mass of an atom is directly related to the binding energy of all its constituents. Thus, it provides information about all the interactions inside the atom. High-precision mass measurements hence allow studies of fundamental interactions and are of great importance in many different fields in physics. The masses of radionuclides provide information on their stability and their structure and are therefore of particular interest for nuclear structure investigations and as input for nucleosynthesis models in nuclear astrophysics. Penning trap mass spectrometry provides masses of radionuclides with unprecedented accuracies on the order of 10^{-8} and can nowadays be applied even to nuclides with short half-lives and low production rates. Utilizing advanced ion manipulation techniques radionuclides from essentially all elements produced in a broad range of nuclear reactions can be accessed. In this chapter the standard procedures of on-line Penning trap mass spectrometry are introduced and some representative examples of recent mass measurements are given.

  14. Fast, High-Precision Readout Circuit for Detector Arrays

    NASA Technical Reports Server (NTRS)

    Rider, David M.; Hancock, Bruce R.; Key, Richard W.; Cunningham, Thomas J.; Wrigley, Chris J.; Seshadri, Suresh; Sander, Stanley P.; Blavier, Jean-Francois L.

    2013-01-01

    The GEO-CAPE mission described in NASA's Earth Science and Applications Decadal Survey requires high spatial, temporal, and spectral resolution measurements to monitor and characterize the rapidly changing chemistry of the troposphere over North and South Americas. High-frame-rate focal plane arrays (FPAs) with many pixels are needed to enable such measurements. A high-throughput digital detector readout integrated circuit (ROIC) that meets the GEO-CAPE FPA needs has been developed, fabricated, and tested. The ROIC is based on an innovative charge integrating, fast, high-precision analog-to-digital circuit that is built into each pixel. The 128×128-pixel ROIC digitizes all 16,384 pixels simultaneously at frame rates up to 16 kHz to provide a completely digital output on a single integrated circuit at an unprecedented rate of 262 million pixels per second. The approach eliminates the need for off focal plane electronics, greatly reducing volume, mass, and power compared to conventional FPA implementations. A focal plane based on this ROIC will require less than 2 W of power on a 1×1-cm integrated circuit. The ROIC is fabricated of silicon using CMOS technology. It is designed to be indium bump bonded to a variety of detector materials including silicon PIN diodes, indium antimonide (InSb), indium gallium arsenide (In- GaAs), and mercury cadmium telluride (HgCdTe) detector arrays to provide coverage over a broad spectral range in the infrared, visible, and ultraviolet spectral ranges.

  15. Globular Cluster Streams as Galactic High-Precision Scales

    NASA Astrophysics Data System (ADS)

    Kupper, Andreas Hans Wilhelm; Balbinot, Eduardo; Bonaca, Ana; Johnston, Kathryn V.; Hogg, David; Kroupa, Pavel; Santiago, Basilio

    2015-08-01

    Using the example of the tidal stream of the Milky Way globular cluster Palomar 5 (Pal 5), we demonstrate how observational data on tidal streams can be efficiently reduced in dimensionality and modeled in a Bayesian framework. Our approach combines detection of stream overdensities by a Difference-of-Gaussians process with fast streakline models of globular cluster streams and a continuous likelihood function built from these models. Inference is performed with Markov chain Monte Carlo. By generating ≈107 model streams, we show that the unique geometry of the Pal 5 debris yields powerful constraints on the solar position and motion, the Milky Way and Pal 5 itself. All 10 model parameters were allowed to vary over large ranges without additional prior information. Using only readily-available SDSS data and a few radial velocities from the literature, we find that the distance of the Sun from the Galactic Center is 8.30±0.25 kpc, and the transverse velocity is 253±16 km s-1. Both estimates are in excellent agreement with independent measurements of these two quantities. Assuming a standard disk and bulge model, we determine the Galactic mass within Pal 5's apogalactic radius of 19 kpc to be (2.1±0.4)×1011M⊙.Moreover, we find the potential of the dark halo with a flattening of qz = 0.95+0.16-0.12 to be essentially spherical - at least within the radial range that is effectively probed by Pal 5. We also determine Pal 5's mass, distance and proper motion independently from other methods, which enables us to perform vital cross-checks. Our inferred heliocentric distance of Pal 5 is 23.6+0.8-0.7 kpc, in perfect agreement with, and more precise than estimates from isochrone fitting of deep HST imaging data. We conclude that finding and modeling more globular cluster streams is an efficient way for mapping out the structure of our Galaxy to high precision. With more observational data and by using additional prior information, the precision of this mapping can be significantly increased.

  16. Precision, high dose radiotherapy: helium ion treatment of uveal melanoma

    SciTech Connect

    Saunders, W.M.; Char, D.H.; Quivey, J.M.; Castro, J.R.; Chen, G.T.Y.; Collier, J.M.; Cartigny, A.; Blakely, E.A.; Lyman, J.T.; Zink, S.R.

    1985-02-01

    The authors report on 75 patients with uveal melanoma who were treated by placing the Bragg peak of a helium ion beam over the tumor volume. The technique localizes the high dose region very tightly around the tumor volume. This allows critical structures, such as the optic disc and the macula, to be excluded from the high dose region as long as they are 3 to 4 mm away from the edge of the tumor. Careful attention to tumor localization, treatment planning, patient immobilization and treatment verification is required. With a mean follow-up of 22 months (3 to 60 months) the authors have had only five patients with a local recurrence, all of whom were salvaged with another treatment. Pretreatment visual acuity has generally been preserved as long as the tumor edge is at least 4 mm away from the macula and optic disc. The only serious complication to date has been an 18% incidence of neovascular glaucoma in the patients treated at our highest dose level. Clinical results and details of the technique are presented to illustrate potential clinical precision in administering high dose radiotherapy with charged particles such as helium ions or protons.

  17. Manufacturing of high-precision aspherical and freeform optics

    NASA Astrophysics Data System (ADS)

    Hoogstrate, André M.; van Drunen, Casper; van Venrooy, Bart; Henselmans, Rens

    2012-09-01

    Aspherical and freeform optical elements have a large potential in reducing optical aberrations and to reduce the number of elements in complex high performance optical systems. However, manufacturing a single piece or a small series of aspherical and freeform optics has for long been limited by the lack of flexible metrology tools. With the cooperative development of the NANOMEFOS metrology tool by TNO, TU/e and VSL, we are able to measure the form of aspheres and freeforms up to 500 mm in diameter with an accuracy better than 10 nm rms. This development opened the possibility to exploit a number of iterative, corrective manufacturing chains in which manufacturing technologies such as Single Point Diamond Turning, freeform grinding, deterministic polishing and classical polishing are combined in an iterative loop with metrology tools to measure form deviation (like CMM, LVDT contact measurement, interferometry and NANOMEFOS). This paper discusses the potentials, limitations and differences of iterative manufacturing chains used by TNO in the manufacturing of high performance optics for astronomical purposes such as the anufacturing of the L2 of the Optical Tube Assembly of the four laser-guide star facility of the ESO VLT, Manufacturing of Aluminium freeforms mirrors for the SCUBA-2 instrument. Based on these results we will give an outlook into the new challenges and solutions in manufacturing high-precision optics.

  18. Evaluation of High-Precision Sensors in Structural Monitoring

    PubMed Central

    Erol, Bihter

    2010-01-01

    One of the most intricate branches of metrology involves the monitoring of displacements and deformations of natural and anthropogenic structures under environmental forces, such as tidal or tectonic phenomena, or ground water level changes. Technological progress has changed the measurement process, and steadily increasing accuracy requirements have led to the continued development of new measuring instruments. The adoption of an appropriate measurement strategy, with proper instruments suited for the characteristics of the observed structure and its environmental conditions, is of high priority in the planning of deformation monitoring processes. This paper describes the use of precise digital inclination sensors in continuous monitoring of structural deformations. The topic is treated from two viewpoints: (i) evaluation of the performance of inclination sensors by comparing them to static and continuous GPS observations in deformation monitoring and (ii) providing a strategy for analyzing the structural deformations. The movements of two case study objects, a tall building and a geodetic monument in Istanbul, were separately monitored using dual-axes micro-radian precision inclination sensors (inclinometers) and GPS. The time series of continuous deformation observations were analyzed using the Least Squares Spectral Analysis Technique (LSSA). Overall, the inclinometers showed good performance for continuous monitoring of structural displacements, even at the sub-millimeter level. Static GPS observations remained insufficient for resolving the deformations to the sub-centimeter level due to the errors that affect GPS signals. With the accuracy advantage of inclination sensors, their use with GPS provides more detailed investigation of deformation phenomena. Using inclinometers and GPS is helpful to be able to identify the components of structural responses to the natural forces as static, quasi-static, or resonant. PMID:22163499

  19. Evaluation of high-precision sensors in structural monitoring.

    PubMed

    Erol, Bihter

    2010-01-01

    One of the most intricate branches of metrology involves the monitoring of displacements and deformations of natural and anthropogenic structures under environmental forces, such as tidal or tectonic phenomena, or ground water level changes. Technological progress has changed the measurement process, and steadily increasing accuracy requirements have led to the continued development of new measuring instruments. The adoption of an appropriate measurement strategy, with proper instruments suited for the characteristics of the observed structure and its environmental conditions, is of high priority in the planning of deformation monitoring processes. This paper describes the use of precise digital inclination sensors in continuous monitoring of structural deformations. The topic is treated from two viewpoints: (i) evaluation of the performance of inclination sensors by comparing them to static and continuous GPS observations in deformation monitoring and (ii) providing a strategy for analyzing the structural deformations. The movements of two case study objects, a tall building and a geodetic monument in Istanbul, were separately monitored using dual-axes micro-radian precision inclination sensors (inclinometers) and GPS. The time series of continuous deformation observations were analyzed using the Least Squares Spectral Analysis Technique (LSSA). Overall, the inclinometers showed good performance for continuous monitoring of structural displacements, even at the sub-millimeter level. Static GPS observations remained insufficient for resolving the deformations to the sub-centimeter level due to the errors that affect GPS signals. With the accuracy advantage of inclination sensors, their use with GPS provides more detailed investigation of deformation phenomena. Using inclinometers and GPS is helpful to be able to identify the components of structural responses to the natural forces as static, quasi-static, or resonant. PMID:22163499

  20. Developing Performance Estimates for High Precision Astrometry with TMT

    NASA Astrophysics Data System (ADS)

    Schoeck, Matthias; Do, Tuan; Ellerbroek, Brent; Herriot, Glen; Meyer, Leo; Suzuki, Ryuji; Wang, Lianqi; Yelda, Sylvana

    2013-12-01

    Adaptive optics on Extremely Large Telescopes will open up many new science cases or expand existing science into regimes unattainable with the current generation of telescopes. One example of this is high-precision astrometry, which has requirements in the range from 10 to 50 micro-arc-seconds for some instruments and science cases. Achieving these requirements imposes stringent constraints on the design of the entire observatory, but also on the calibration procedures, observing sequences and the data analysis techniques. This paper summarizes our efforts to develop a top down astrometry error budget for TMT. It is predominantly developed for the first-light AO system, NFIRAOS, and the IRIS instrument, but many terms are applicable to other configurations as well. Astrometry error sources are divided into 5 categories: Reference source and catalog errors, atmospheric refraction correction errors, other residual atmospheric effects, opto-mechanical errors and focal plane measurement errors. Results are developed in parametric form whenever possible. However, almost every error term in the error budget depends on the details of the astrometry observations, such as whether absolute or differential astrometry is the goal, whether one observes a sparse or crowded field, what the time scales of interest are, etc. Thus, it is not possible to develop a single error budget that applies to all science cases and separate budgets are developed and detailed for key astrometric observations. Our error budget is consistent with the requirements for differential astrometry of tens of micro-arc-seconds for certain science cases. While no show stoppers have been found, the work has resulted in several modifications to the NFIRAOS optical surface specifications and reference source design that will help improve the achievable astrometry precision even further.

  1. High precision astrometry with a Diffractive Pupil Telescope

    NASA Astrophysics Data System (ADS)

    Bendek, Eduardo; Guyon, O.; Shao, M.; Ammons, M.; Shaklan, S.; Belikov, R.; Woodruff, R.

    2012-01-01

    A concept for high precision astrometry with a conventional wide field telescope is presented, enabling a space telescope to perform simultaneously coronagraphic imaging of exoplanets, astrometric measurement of their orbits and masses, and deep wide field imaging for a wide range of astrophysical investigations. The diffractive pupil telescope uses a regular grid of small sub millimeter spots on the primary mirror coating to produce wide field images containing both a large number of background stars and faint diffraction spikes emanating from the central bright star. The diffraction spikes encode instrumental astrometric distortions due to optics or the detector, allowing precise measurement of the central star against a large number of faint background stars. With up to a few percent of the primary mirror area covered by the dots, the fraction of the central starlight located in the diffraction spikes is kept sufficiently small to allow full sensitivity deep imaging over the telescope's field of view. Since the dots are regularly spaced, they do not diffract light at small angular separations, and therefore allow full coronagraphic imaging capability. We show that combining simultaneous astrometric and coronagraphic measurements allows improved detection and characterization of exoplanets by constraining the planet(s) characteristics with both measurements. Our preliminary astrometric accuracy error budget shows that sub-micro arcsecond astrometry can be achieved with a 1.4 m diameter telescope, and that astrometric accuracy improves rapidly with telescope diameter. At the University of Arizona, we have constructed a scaled-down testbed to demonstrate the concept with a diffractive pupil and a simulated star field in the laboratory.

  2. Highly precise and robust packaging of optical components

    NASA Astrophysics Data System (ADS)

    Leers, Michael; Winzen, Matthias; Liermann, Erik; Faidel, Heinrich; Westphalen, Thomas; Miesner, Jrn; Luttmann, Jrg; Hoffmann, Dieter

    2012-03-01

    In this paper we present the development of a compact, thermo-optically stable and vibration and mechanical shock resistant mounting technique by soldering of optical components. Based on this technique a new generation of laser sources for aerospace applications is designed. In these laser systems solder technique replaces the glued and bolted connections between optical component, mount and base plate. Alignment precision in the arc second range and realization of long term stability of every single part in the laser system is the main challenge. At the Fraunhofer Institute for Laser Technology ILT a soldering and mounting technique has been developed for high precision packaging. The specified environmental boundary conditions (e.g. a temperature range of -40 C to +50 C) and the required degrees of freedom for the alignment of the components have been taken into account for this technique. In general the advantage of soldering compared to gluing is that there is no outgassing. In addition no flux is needed in our special process. The joining process allows multiple alignments by remelting the solder. The alignment is done in the liquid phase of the solder by a 6 axis manipulator with a step width in the nm range and a tilt in the arc second range. In a next step the optical components have to pass the environmental tests. The total misalignment of the component to its adapter after the thermal cycle tests is less than 10 arc seconds. The mechanical stability tests regarding shear, vibration and shock behavior are well within the requirements.

  3. High-precision Ice Surface Topography Mapping Using Radar Interferometry

    NASA Astrophysics Data System (ADS)

    Moller, D.; Hensley, S.; Michel, T.; Rignot, E. J.; Simard, M.; Krabill, W. B.; Sonntag, J. G.

    2010-12-01

    In May 2009 a new radar technique for mapping ice surface topography was demonstrated in a Greenland campaign as part of the NASA International Polar Year activities. This was achieved with the airborne Glacier and Ice Surface Topography Interferometer (GLISTIN-A): a 35.6 GHz single-pass interferometer. Although the technique of using radar interferometry for mapping terrain has been demonstrated before, this is the first such application at millimeter-wave frequencies. Instrument performance indicates swath widths over the ice between 5-7km, with height precisions ranging from 30cm-3m at a posting of 3m x 3m. However, for this application the electromagnetic wave will penetrate an unknown amount into the snow cover thus producing an effective bias that must be calibrated. To evaluate this, GLISTIN-A flew a coordinated collection with the NASA Wallops Airborne Topographic Mapper (ATM) on a transect from Greenland’s Summit to its West coast. Two field calibration sites were established at Colorado Institute for Research in Environmental Science’s Swiss Camp and the National Science Foundation’s Summit station. Additional collections entailed flying a mosaic over Jakobshavn glacier which was repeated after 6 days to reveal surface dynamics. Through detailed calibration and inter-sensor comparisons we were able to observe penetration biases and compare them with theoretical expectations. We also demonstrated GLISTIN-A’s capability to measure the topography of large glacier systems in a seamless fashion and accurately measuring volume changes with a high level of spatial detail. In particular, repeating the airborne campaigns to observe elevation changes over time will allow very accurate volume change measurements. Not only is this very important for mass balance studies to have a precise mass-loss estimate, but the spatial pattern can reveal ice dynamics effects and surface mass balance effects. In this manner a high resolution, high-precision topographic mapping capability is an ideal complement to the ICESat, ICESat II and Cryosat altimeters. Interpolating between the high-accuracy elevation profiles from altimeters such as the ATM or ICESat II with the high-resolution GLISTIN-A swath will enable detailed ice-surface topography maps and extended spatial coverage. The result is the potential for higher fidelity mass-balance estimates and improved observational coverage. Upgrades are currently underway to improve the performance and portability of GLISTIN-A such that, onboard a long-range aircraft this radar can map Greenland’s significant glaciers in a few days. The upgraded GLISTIN-A will be compatible with GlobalHawk installation making, Antarctica basin and coastal mapping feasible. GLISTIN will make more topographic products available to glaciologists, initially through dedicated airborne campaigns or ultimately, perhaps, as a satellite mission.

  4. Progress Towards a High-Precision Infrared Spectroscopic Survey of the H_3^+ Ion

    NASA Astrophysics Data System (ADS)

    Perry, Adam J.; Hodges, James N.; Markus, Charles R.; Kocheril, G. Stephen; Jenkins, Paul A., II; McCall, Benjamin J.

    2015-06-01

    The trihydrogen cation, H_3^+, represents one of the most important and fundamental molecular systems. Having only two electrons and three nuclei, H_3^+ is the simplest polyatomic system and is a key testing ground for the development of new techniques for calculating potential energy surfaces and predicting molecular spectra. Corrections that go beyond the Born-Oppenheimer approximation, including adiabatic, non-adiabatic, relativistic, and quantum electrodynamic corrections are becoming more feasible to calculate. As a result, experimental measurements performed on the H_3^+ ion serve as important benchmarks which are used to test the predictive power of new computational methods. By measuring many infrared transitions with precision at the sub-MHz level it is possible to construct a list of the most highly precise experimental rovibrational energy levels for this molecule. Until recently, only a select handful of infrared transitions of this molecule have been measured with high precision (˜ 1 MHz). Using the technique of Noise Immune Cavity Enhanced Optical Heterodyne Velocity Modulation Spectroscopy, we are aiming to produce the largest high-precision spectroscopic dataset for this molecule to date. Presented here are the current results from our survey along with a discussion of the combination differences analysis used to extract the experimentally determined rovibrational energy levels. O. Polyansky, et al., Phil. Trans. R. Soc. A (2012), 370, 5014. M. Pavanello, et al., J. Chem. Phys. (2012), 136, 184303. L. Diniz, et al., Phys. Rev. A (2013), 88, 032506. L. Lodi, et al., Phys. Rev. A (2014), 89, 032505. J. Hodges, et al., J. Chem. Phys (2013), 139, 164201.

  5. A simple high-precision Jacob's staff design for the high-resolution stratigrapher

    USGS Publications Warehouse

    Elder, W.P.

    1989-01-01

    The new generation of high-resolution stratigraphic research depends upon detailed bed-by-bed analysis to enhance regional correlation potential. The standard Jacob's staff is not an efficient and precise tool for measuring thin-bedded strata. The high-precision Jacob's staff design presented and illustrated in this paper meets the qualifications required of such an instrument. The prototype of this simple design consists of a sliding bracket that holds a Brunton-type compass at right angles to a ruled-off staff. This instrument provides rapid and accurate measurement of both thick- or thin-bedded sequences, thus decreasing field time and increasing stratigraphic precision. -Author

  6. A highly precise fiber sensor by use of counting demodulation

    NASA Astrophysics Data System (ADS)

    He, Shiya; Li, Haijun; Hu, Shuyang; Liu, Wei; Yu, Kuanxin

    2007-11-01

    Wavelength encoding sensors, such as fiber Bragg grating, have the advantage of strong antijamming ability. However, the wavelength encoding signal is usually converted into electric intensity signal by demodulators in most measurements. The intensity signal is easy to be disturbed by environmental factors, so the advantage of wavelength encoding fails due to the instable intensity demodulation. In this paper, a novel wavelength demodulating method is presented. This method demodulates the wavelength encoding signal directly by means of counting using a Sagnac interferometer with birefringent fiber without the encoding conversion from wavelength to intensity. Through the interferometer, the changed wavelength signal from sensor becomes the kind of output light, the intensity of which is changed with wavelength periodically. The intensity can easy be disturbed, but its period is very stable. In other words, the change of wavelength in one intensity period is stable. With this character, we count the number when the rising edge and falling edge of intensity appear, and then calculate the accurate change of wavelength signal. In experiment, we get the 0.01 nm wavelength resolution by use of a Sagnac interferometer with 200 meter birefringent fiber. It can be proved that the intensity frequency (the reciprocal of intensity period) changed with wavelength is proportional to the length of birefringent fiber. The length is fixed, the frequency is determined. For farther increasing the wavelength resolution, it is only necessary to increase the length of birefringent fiber. The wavelength demodulator by counting method has high stability and high precision.

  7. High precision zinc isotopic measurements applied to mouse organs.

    PubMed

    Moynier, Frédéric; Le Borgne, Marie

    2015-01-01

    We present a procedure to measure with high precision zinc isotope ratios in mouse organs. Zinc is composed of 5 stable isotopes ((64)Zn, (66)Zn, (67)Zn, (68)Zn and (70)Zn) which are naturally fractionated between mouse organs. We first show how to dissolve the different organs in order to free the Zn atoms; this step is realized by a mixture of HNO3 and H2O2. We then purify the zinc atoms from all the other elements, in particular from isobaric interferences (e.g., Ni), by anion-exchange chromatography in a dilute HBr/HNO3 medium. These first two steps are performed in a clean laboratory using high purity chemicals. Finally, the isotope ratios are measured by using a multi-collector inductively-coupled-plasma mass-spectrometer, in low resolution. The samples are injected using a spray chamber and the isotopic fractionation induced by the mass-spectrometer is corrected by comparing the ratio of the samples to the ratio of a standard (standard bracketing technique). This full typical procedure produces an isotope ratio with a 50 ppm (2 s.d.) reproducibility. PMID:26065372

  8. High precision videogrammetric technique for structural dynamic response measurement

    NASA Astrophysics Data System (ADS)

    Chang, Chih-Chen; Ji, Yunfeng

    2005-05-01

    The past few years have seen unprecedented technological advancement in commercial digital cameras. The image resolution of these cameras has increased from below 1 million pixels a few years ago to over 10 million pixels today, with little increase in cost. These low cost high-resolution digital cameras have opened up new areas of application for various engineering disciplines, including civil engineering. The objective of this study is to investigate the application of videogrammetric principle for measuring structural response. A general videogrammetric framework for high precision measurement of three-dimensional structural response is proposed using two commercial digital cameras. Some important issues such as camera calibration, feature point detection and 3D point reconstruction are discussed. In order to evaluate the performance of the technique, three experiments involving capturing the trajectories of different types of motion are performed. The test results indicate that the videogrammetric technique can provide sub-pixel measurement accuracy and can be used to measure both static and dynamic responses of structures in laboratory.

  9. A high-precision synchronization circuit for clock distribution

    NASA Astrophysics Data System (ADS)

    Chong, Lu; Hongzhou, Tan; Zhikui, Duan; Yi, Ding

    2015-10-01

    In this paper, a novel structure of a high-precision synchronization circuit, HPSC, using interleaved delay units and a dynamic compensation circuit is proposed. HPSCs are designed for synchronization of clock distribution networks in large-scale integrated circuits, where high-quality clocks are required. The application of a hybrid structure of a coarse delay line and dynamic compensation circuit performs roughly the alignment of the clock signal in two clock cycles, and finishes the fine tuning in the next three clock cycles with the phase error suppressed under 3.8 ps. The proposed circuit is implemented and fabricated using a SMIC 0.13 μm 1P6M process with a supply voltage at 1.2 V. The allowed operation frequency ranges from 200 to 800 MHz, and the duty cycle ranges between [20%, 80%]. The active area of the core circuits is 245 × 134 μm2, and the power consumption is 1.64 mW at 500 MHz.

  10. New linear piezomotors for high-force precise positioning applications

    NASA Astrophysics Data System (ADS)

    Le Letty, Ronan; Claeyssen, Frank; Barillot, Francois; Six, Marc F.; Bouchilloux, Philippe

    1998-07-01

    Piezomotors are an increasingly competitive alternative to electromagnetic stepper motors, especially in applications where large bandwidths and/or precise positioning control are desired. Piezomotors use a combination of electromechanical and frictional forces and, compared to conventional electromagnetic motors, have the advantages that no power supply is required to maintain the motor in position and no lubrication is necessary in the device. The operating principle of these motors relies on the use of an ultrasonic vibration, which is created via the piezoelectric effect (at resonance in most cases), in order to generate vibration forces at the `stator/rotor' contact interface. A mechanical preload is also applied at this contact interface and is responsible for the motor's holding force at rest. To meet the specifications of an aerospace application, we developed a new design of Linear PiezoMotors (LPMs). The first prototype we built shows very promising results, and makes the LPM a serious candidate to replace conventional stepper motors. The LPM features the following characteristics: a standing force of 100 N, a blocked force of 37 N, a maximum actuation speed of 23 mm/s, a maximum run of 10 mm, a mass of 500 g, an electrical power of 2.2 W, and a position accuracy superior to 1 micrometers . To our knowledge, the driving force delivered by the LPM has never before been achieved in resonant devices. This paper describes the physical operating principles of the LPM, as well as the modeling tools and experimental techniques we used for its development. Several implementation schemes are also presented and show the wide range of possible applications offered by the linear piezomotor.

  11. A proposed experimental method for interpreting Doppler effect measurements and determining their precision

    NASA Technical Reports Server (NTRS)

    Klann, P. G.

    1973-01-01

    The principal problem in the measurement of the Doppler reactivity effect is separating it from the thermal reactivity effects of the expansion of the heated sample. It is shown in this proposal that the thermal effects of sample expansion can be experimentally determined by making additional measurements with porous samples having the same mass and/or volume as the primary sample. By combining these results with independent measurements of the linear temperature coefficient and the computed temperature dependence of the Doppler coefficient the magnitude of the Doppler coefficient may be extracted from the data. These addiational measurements are also useful to experimentally determine the precision of the reactivity oscillator technique used to measure the reactivity effects of the heated sample.

  12. A high-precision weight measurement system based on chaotic theory

    NASA Astrophysics Data System (ADS)

    Du, Liuqing; Feng, Wenjie; Zeng, Yudan

    2006-11-01

    Aimed at the traditional weight measurement system's shortcomings of bad stability, low precision and complicated circuit, a high precision based on chaotic circuit is put forward. One of its outstanding characteristics is to make use of the high sensitivity to initial values of chaotic system and apply chaotic theory to weight measurement. Besides, through adopting a voltage controlled by constant-current sourced to produce charge current or discharge current, linearity and stability of the measurement system is increased. In addition, the system has great adaptability and simple circuit. The theoretic error range of this system is less than +/-0.1μg, and the theoretic resolution is 0.01μg, which are verified approximately by experimental statistics.

  13. Precision cosmology with time delay lenses: high resolution imaging requirements

    NASA Astrophysics Data System (ADS)

    Meng, Xiao-Lei; Treu, Tommaso; Agnello, Adriano; Auger, Matthew W.; Liao, Kai; Marshall, Philip J.

    2015-09-01

    Lens time delays are a powerful probe of cosmology, provided that the gravitational potential of the main deflector can be modeled with sufficient precision. Recent work has shown that this can be achieved by detailed modeling of the host galaxies of lensed quasars, which appear as ``Einstein Rings'' in high resolution images. The distortion of these arcs and counter-arcs, as measured over a large number of pixels, provides tight constraints on the difference between the gravitational potential between the quasar image positions, and thus on cosmology in combination with the measured time delay. We carry out a systematic exploration of the high resolution imaging required to exploit the thousands of lensed quasars that will be discovered by current and upcoming surveys with the next decade. Specifically, we simulate realistic lens systems as imaged by the Hubble Space Telescope (HST), James Webb Space Telescope (JWST), and ground based adaptive optics images taken with Keck or the Thirty Meter Telescope (TMT). We compare the performance of these pointed observations with that of images taken by the Euclid (VIS), Wide-Field Infrared Survey Telescope (WFIRST) and Large Synoptic Survey Telescope (LSST) surveys. We use as our metric the precision with which the slope γ' of the total mass density profile ρtotpropto r-γ' for the main deflector can be measured. Ideally, we require that the statistical error on γ' be less than 0.02, such that it is subdominant to other sources of random and systematic uncertainties. We find that survey data will likely have sufficient depth and resolution to meet the target only for the brighter gravitational lens systems, comparable to those discovered by the SDSS survey. For fainter systems, that will be discovered by current and future surveys, targeted follow-up will be required. However, the exposure time required with upcoming facilitites such as JWST, the Keck Next Generation Adaptive Optics System, and TMT, will only be of order a few minutes per system, thus making the follow-up of hundreds of systems a practical and efficient cosmological probe.

  14. High-precision Mg isotopic systematics of bulk chondrites

    NASA Astrophysics Data System (ADS)

    Schiller, Martin; Handler, Monica R.; Baker, Joel A.

    2010-08-01

    Variations of the mass-independent abundance of 26Mg ( δ26Mg*) and stable Mg ( δ25Mg) isotope composition of chondrites are important because they constrain the homogeneity of 26Al and Mg isotopes in the proto-planetary disc and the validity of the short-lived 26Al-to- 26Mg chronometer applied to meteorites. We present high-precision Mg isotope data and Al/Mg ratios of chondrites representing nearly all major chondrite classes, including a step-leaching experiment on the CM2 chondrite Murchison. δ26Mg* variations in leachates of Murchison representing acid soluble material are ≤ 30 times smaller than reported for neutron-rich isotopes of Ti and Cr and do not reveal resolvable deficits in δ26Mg* (-0.002 to + 0.118‰). Very small variations in δ26Mg* anomalies in bulk chondrites (-0.006 to + 0.019‰) correlate with increasing 27Al/ 24Mg ratios and δ50Ti, reflecting the variable presence of calcium-aluminium-rich inclusions (CAIs) in some types of carbonaceous chondrites. Similarly, release of radiogenic 26Mg produced by 26Al decay from CAI material in the step-leaching of Murchison best explains the high δ26Mg* observed in the last, aggressive, leaching steps of this experiment. Overall, the observed variations in δ26Mg* are small and potential differences beyond that which result from the presence of CAI-like material cannot be detected within the analytical uncertainties of this study (± 0.004‰). The results do not allow radical heterogeneity of 26Al (≥±30%) or measurable Mg nucleosynthetic heterogeneity (≥±0.005‰) to have existed on a planetesimal scale in the proto-planetary disc. Combined with published δ26Mg* data for CAIs, the bulk chondrite data yield a precise initial ( 26Al/ 27Al) 0 = (5.21 ± 0.06) × 10 -5 and δ26Mg* = -0.0340 ± 0.0016‰ for the Solar System. However, it is not possible with the currently available data to determine with certainty whether CAIs and the material from which planetesimals accreted including chondrite parent bodies had precisely the same initial levels of 26Al, although planetesimals and planets appear to have accreted from material with a mean initial ( 26Al/ 27Al) 0 in the range of 2.1 to 6.7 × 10 - 5 . The average stable Mg isotope composition of all analysed chondrites, with the exception of a chondrule from the CBa chondrite Gujba ( δ25Mg DSM-3 = -0.032 ± 0.035‰), is δ25Mg DSM-3 = -0.152 ± 0.079‰ (2 sd) and is indistinguishable from that of the Earth's mantle.

  15. High precision optical finishing of lightweight silicon carbide aspheric mirror

    NASA Astrophysics Data System (ADS)

    Kong, John; Young, Kevin

    2010-10-01

    Critical to the deployment of large surveillance optics into the space environment is the generation of high quality optics. Traditionally, aluminum, glass and beryllium have been used; however, silicon carbide becomes of increasing interest and availability due to its high strength. With the hardness of silicon carbide being similar to diamond, traditional polishing methods suffer from slow material removal rates, difficulty in achieving the desired figure and inherent risk of causing catastrophic damage to the lightweight structure. Rather than increasing structural capacity and mass of the substrate, our proprietary sub-aperture aspheric surface forming technology offers higher material removal rates (comparable to that of Zerodur or Fused Silica), a deterministic approach to achieving the desired figure while minimizing contact area and the resulting load on the optical structure. The technology performed on computer-controlled machines with motion control software providing precise and quick convergence of surface figure, as demonstrated by optically finishing lightweight silicon carbide aspheres. At the same time, it also offers the advantage of ideal pitch finish of low surface micro-roughness and low mid-spatial frequency error. This method provides a solution applicable to all common silicon carbide substrate materials, including substrates with CVD silicon carbide cladding, offered by major silicon carbide material suppliers. This paper discusses a demonstration mirror we polished using this novel technology. The mirror is a lightweight silicon carbide substrate with CVD silicon carbide cladding. It is a convex hyperbolic secondary mirror with 104mm diameter and approximately 20 microns aspheric departure from best-fit sphere. The mirror has been finished with surface irregularity of better than 1/50 wave RMS @632.8 nm and surface micro-roughness of under 2 angstroms RMS. The technology has the potential to be scaled up for manufacturing capabilities of large silicon carbide optics due to its high material removal rate.

  16. High precision refractometry based on Fresnel diffraction from phase plates.

    PubMed

    Tavassoly, M Taghi; Naraghi, Roxana Rezvani; Nahal, Arashmid; Hassani, Khosrow

    2012-05-01

    When a transparent plane-parallel plate is illuminated at a boundary region by a monochromatic parallel beam of light, Fresnel diffraction occurs because of the abrupt change in phase imposed by the finite change in refractive index at the plate boundary. The visibility of the diffraction fringes varies periodically with changes in incident angle. The visibility period depends on the plate thickness and the refractive indices of the plate and the surrounding medium. Plotting the phase change versus incident angle or counting the visibility repetition in an incident-angle interval provides, for a given plate thickness, the refractive index of the plate very accurately. It is shown here that the refractive index of a plate can be determined without knowing the plate thickness. Therefore, the technique can be utilized for measuring plate thickness with high precision. In addition, by installing a plate with known refractive index in a rectangular cell filled with a liquid and following the described procedures, the refractive index of the liquid is obtained. The technique is applied to measure the refractive indices of a glass slide, distilled water, and ethanol. The potential and merits of the technique are also discussed. PMID:22555715

  17. Report on APMP supplementary comparison: high precision roundness measurement

    NASA Astrophysics Data System (ADS)

    Buajarern, J.; Naoi, K.; Baker, A.; Zi, X.; Tsai, C.-L.; Eom, T. B.; Leng, T. S.; Kruger, O.

    2016-01-01

    A regional supplementary comparison, APMP.L-S4, was held in 2012 to demonstrate the equivalence of routine calibration services offered by NMIs to clients. Participants in this APMP.L-S4 comparison agreed to apply multi-step method for spidle error separation in order to yield the high precision roundness measurement. Eight laboratories from NMIs participated in this supplementary comparison; NIMT, NMIJ, NMIA, NIM, CMS/ITRI, KRISS, NMC/A*STAR and NMISA. This report describes the measurement results of 2 glass hemispheres and 2 softgauges. The calibrations of this comparison were carried out by participants during the period from March 2012 to May 2013. The results show that there is a degree of equivalence within 0.8 for all measurands. Hence, there is a close agreement between the measurements. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCL, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  18. HST high-precision proper motions of globular clusters

    NASA Astrophysics Data System (ADS)

    Bellini, Andrea; Anderson, Jay; van der marel, roeland p.; piotto, gianpaolo; Watkins, Laura l.; Vesperini, Enrico; Milone, Antonino; Bedin, Luigi R.

    2015-08-01

    The stable environment of space makes HST an excellent astrometric tool. Its diffraction-limited resolution allows it to distinguish and measure positions and fluxes for stars all the way to the center of most globular clusters. There are now many clusters that have observations in the archive that span 13 years or more, and more observations are being taken all the time. We constructed high-precision proper-motion catalogs for over 20 clusters for which there exist two or more well-separated epochs in the archive, and we are extending the list to over 60 objects, thanks to the new observations taken within the ``HST UV Legacy Survey of Galactic Globular Clusters’’ treasury program. Each catalog contains astrometry and photometry for thousands of stars within two arcmin of the center. The catalogs are focused on the many stars within a few magnitudes of the turnoff and have typical proper-motion errors of 0.1 mas/yr, which translates to 2 km/s for the typical cluster. We are using proper motions to directly measure the clusters' anisotropy, equipartition and rotation on the plane of the sky, as well as to study internal kinematics of the different subpopulations and to probe the presence of an IMBH in their core.

  19. High-precision impedance spectroscopy: a strategy demonstrated on PZT.

    PubMed

    Boukamp, Bernard A; Blank, Dave H A

    2011-12-01

    Electrochemical impedance spectroscopy (EIS) has been recognized as a very powerful tool for studying charge and mass transport and transfer in a wide variety of electrically or electrochemically active systems. Sophisticated modeling programs make it possible to extract parameters from the impedance data, thus contributing to a better understanding of the system or material properties. For an accurate analysis, a correct modeling function is needed; this is often in the form of an equivalent circuit. It is not always possible to define the modeling function from visual inspection of the impedance dispersion. Small contributions to the overall dispersion can be masked, and hence overlooked. In this publication, a strategy is presented for high-precision impedance data analysis. A Kramers-Kronig test is used for the essential data validation. An iterative process of partial analysis and subtraction assists in deconvoluting the impedance spectrum, yielding both a vi- able model function and a set of necessary starting values for the full complex nonlinear least squares (CNLS) modeling. The advantage and possibilities of this strategy are demonstrated with an analysis of the ionic and electronic conductivity of lead zirconate titanate (PZT) as functions of temperature and oxygen partial pressure. PMID:23443688

  20. High Precision 40K/39K Ratio Determination

    NASA Astrophysics Data System (ADS)

    Naumenko, M. O.; Mezger, K.; Nagler, T. F.; Villa, I. M.

    2012-12-01

    Potassium is one of the eight most abundant chemical elements in the Earth's crust and a major element in many rock-forming minerals. The isotope 40K is radioactive and undergoes β- decay to 40Ca (ca. 89.3%) and electron capture to 40Ar (ca. 10.7%). Both decays can potentially be used as dating systems. The most commonly used branch is the decay of 40K to 40Ar because it can yield highly precise ages. Both decay schemes rely on the knowledge of the 40K branching ratio and the natural 40K abundance. A 40K abundance of 0.011672±41 % was measured on terrestrial material [1]. The relative uncertainty of 0.35 % has not been improved since. Recent improvements in the precision of mass spectrometric measurements have led to the situation that the uncertainties on the K decay constant and the abundance of 40K are a major source of uncertainty on the measured ages. A more precise definition of the 40K decay constant was attempted by different research groups within the last decade [2-9] but the goal of obtaining 0.1 % relative uncertainty on K-Ar ages for geological materials, as requested by the EARTHtime initiative, has not been achieved yet. In order to improve on this situation we studied the abundances of the K isotopes in terrestrial standards. A ThermoFischer Triton+ thermal ionisation mass spectrometer was used for K isotope ratio measurements of the NIST SRM 918b K standard loaded on Ta filaments with 0.1M phosphoric acid. Three techniques were applied: (A) dynamic measurement with in-run normalisation to the IUPAC value 41K/39K=0.072168; (B) a simple total evaporation procedure; (C) the "NBL-modified" total evaporation [10]. The 40K ion beam was measured in a Faraday cup with a 1E12 Ω resistor; 39K and 41K were collected in Faraday cups with 1E11 Ω resistors. Amplifier gains were intercalibrated by supplying fixed voltages off-line. Different measurement techniques were combined with different loading procedures. We also tested ionisation yields for the evaporation procedures (B) and (C). Our measured 40K/39K ratios are statistically indistinguishable from those reported by [1] but have lower uncertainties. Techniques A, B and C gave 1 standard error of 0.07 %, 0.2 %, and 0.14 %, respectively. 1. Garner E.L. et al. (1975) J.Res.Natl.Bur.Stand.79A, 713-725. 2. Grau Malonda A., Grau Carles A. (2002) Appl. Radiat. Isot. 56, 153-156. 3. Kossert K., Günter E. (2004) Appl.Radiat.Isot.60, 459-464. 4. Krumrei T.V. et al. (2006) Chem.Geol. 227, 258-273. 5. Kwon J. et al. (2002) Math.Geol. 34, 457-475. 6. Min K. et al. (2000) Geochim. Cosmochim. Acta 64, 73-98. 7. Nägler T.F., Villa I.M. (2000) Chem. Geol. 169, 5-16. 8. Renne P.R. et al. (2010) Geochim. Cosmochim. Acta 74, 5349-5367. 9. Schwarz W.H. et al. (2011) Geochim. Cosmochim. Acta 75, 5094-5096. 10. Richter S., Goldberg S.A. (2003) Int. J. Mass Spect. 229, 181-197.

  1. High-Precision Doppler Frequency Estimation for Ocean Applications

    NASA Astrophysics Data System (ADS)

    Engen, Geir; Johnsen, Harald

    2013-03-01

    A high-precision Doppler estimator is developed as part of the Sentinel-1 IPF Level-2 processor. The Doppler frequency is estimated from a full-bandwidth processed SLC image with no windowing applied to the data enabling the correction for side-band effects. The standard deviation of the Doppler frequency is also compupted on the same grid as the Doppler frequency. The performance is tested on ASAR SM data acquired in different swaths over coastal ocean areas and rain forest. The performance of the algorithm is evaluated in terms of the achieved doppler standard deviation as well as its ability to compensate for side-band effects (aliasing of energy from neigbour areas). Over homogenous ocean areas acquired in swath S3 a Doppler standard deviaton of around 2.49 Hz is achieved on grid with a spatial resolution of 2 × 2 km2 . This correspond to an accuracy in the radial velocity of less than 0.1 m/s. Over rain forest area acquired in swath S5 the standard deviation achieved is around 2.42 Hz. Over a mixed coastal scenes acquired in swath S4 containing large number of ships the achieved standard was 3.81 Hz. For a high wind scene acquired in S2, the achieved Doppler standard deviaton was 2.89 Hz. The predicted Doppler frequency standard deviation agrees well with the standard deviation computed from the estimated Doppler frequency grid. The impact of side-band correction on the Doppler frequency depend on the PRF used, and is thus swath dependent. For a typical coastal ocean scene acquired in swath S4, the impact of side-band correction on the Doppler frequency is observed to be up to 60 Hz close to the coastline.

  2. Experimental Hypersonic Aerodynamic Characteristics of the 2001 Mars Surveyor Precision Lander with Flap

    NASA Technical Reports Server (NTRS)

    Horvath, Thomas J.; OConnell, Tod F.; Cheatwood, F. McNeil; Prabhu, Ramadas K.; Alter, Stephen J.

    2002-01-01

    Aerodynamic wind-tunnel screening tests were conducted on a 0.029 scale model of a proposed Mars Surveyor 2001 Precision Lander (70 deg half angle spherically blunted cone with a conical afterbody). The primary experimental objective was to determine the effectiveness of a single flap to trim the vehicle at incidence during a lifting hypersonic planetary entry. The laminar force and moment data, presented in the form of coefficients, and shock patterns from schlieren photography were obtained in the NASA Langley Aerothermodynamic Laboratory for post-normal shock Reynolds numbers (based on forebody diameter) ranging from 2,637 to 92,350, angles of attack ranging from 0 tip to 23 degrees at 0 and 2 degree sideslip, and normal-shock density ratios of 5 and 12. Based upon the proposed entry trajectory of the 2001 Lander, the blunt body heavy gas tests in CF, simulate a Mach number of approximately 12 based upon a normal shock density ratio of 12 in flight at Mars. The results from this experimental study suggest that when traditional means of providing aerodynamic trim for this class of planetary entry vehicle are not possible (e.g. offset c.g.), a single flap can provide similar aerodynamic performance. An assessment of blunt body aerodynamic effects attributed to a real gas were obtained by synergistic testing in Mach 6 ideal-air at a comparable Reynolds number. From an aerodynamic perspective, an appropriately sized flap was found to provide sufficient trim capability at the desired L/D for precision landing. Inviscid hypersonic flow computations using an unstructured grid were made to provide a quick assessment of the Lander aerodynamics. Navier-Stokes computational predictions were found to be in very good agreement with experimental measurement.

  3. Precision optical slit for high heat load or ultra high vacuum

    DOEpatents

    Andresen, N.C.; DiGennaro, R.S.; Swain, T.L.

    1995-01-24

    This invention relates generally to slits used in optics that must be precisely aligned and adjusted. The optical slits of the present invention are useful in x-ray optics, x-ray beam lines, optical systems in which the entrance slit is critical for high wavelength resolution. The invention is particularly useful in ultra high vacuum systems where lubricants are difficult to use and designs which avoid the movement of metal parts against one another are important, such as monochromators for high wavelength resolution with ultra high vacuum systems. The invention further relates to optical systems in which temperature characteristics of the slit materials is important. The present invention yet additionally relates to precision slits wherein the opposing edges of the slit must be precisely moved relative to a center line between the edges with each edge retaining its parallel orientation with respect to the other edge and/or the center line. 21 figures.

  4. Precision optical slit for high heat load or ultra high vacuum

    DOEpatents

    Andresen, Nord C.; DiGennaro, Richard S.; Swain, Thomas L.

    1995-01-01

    This invention relates generally to slits used in optics that must be precisely aligned and adjusted. The optical slits of the present invention are useful in x-ray optics, x-ray beam lines, optical systems in which the entrance slit is critical for high wavelength resolution. The invention is particularly useful in ultra high vacuum systems where lubricants are difficult to use and designs which avoid the movement of metal parts against one another are important, such as monochrometers for high wavelength resolution with ultra high vacuum systems. The invention further relates to optical systems in which temperature characteristics of the slit materials is important. The present invention yet additionally relates to precision slits wherein the opposing edges of the slit must be precisely moved relative to a center line between the edges with each edge retaining its parallel orientation with respect to the other edge and/or the center line.

  5. The Mainz high-precision proton form factor measurement

    NASA Astrophysics Data System (ADS)

    Bernauer, Jan

    2011-04-01

    Form factors offer a direct approach to fundamental properties of the nucleons like the radius and charge distribution. Renewed interest was stirred up by the 5 sigma discrepancy between a recent determination of the proton radius from the Lamb shift in muonic hydrogen and preceding electron scattering results. The low-q shape of the form factors might also contain a direct signal of a pion cloud around the nucleus and is a strong test of hadron models. In my talk, I will discuss the electron scattering experiment performed with the 3-spectrometer-facility of the A1 collaboration at MAMI in Mainz, Germany. The data set covers the Q2-range from 0.004 to 1 (GeV / c) 2 and includes about 1400 separate cross section measurements, spanning the range of scattering angles from below 20° to above 120° at six beam energies between 180 and 855 MeV, with statistical uncertainties below 0.4%. The 3-spectrometer-setup allowed for a simultaneous monitoring of the luminosity and overlapping and redundant measurements of the cross section to achieve stringent control over systematic uncertainties. Beam stabilization systems and redundant current measurements further limit systematic effects. The measured cross sections were analyzed with the standard Rosenbluth separation technique and by employing direct fits of a large set of form factor models. The high redundancy of the data set allowed us to extract the form factors up to 0.6 (GeV / c) 2 with very small uncertainties and to give a new, precise value for the proton radius from electron scattering. From the form factors, the charge distribution and Zemach moments were calculated. The latter constitute important input for the theoretical corrections of the muonic Lamb shift experiment. However, the revised values can not explain the discrepancy. Further possible explanations include higher order QED-corrections, vacuum effects or even physics beyond the standard model.

  6. High Precision Prediction of Functional Sites in Protein Structures

    PubMed Central

    Buturovic, Ljubomir; Wong, Mike; Tang, Grace W.; Altman, Russ B.; Petkovic, Dragutin

    2014-01-01

    We address the problem of assigning biological function to solved protein structures. Computational tools play a critical role in identifying potential active sites and informing screening decisions for further lab analysis. A critical parameter in the practical application of computational methods is the precision, or positive predictive value. Precision measures the level of confidence the user should have in a particular computed functional assignment. Low precision annotations lead to futile laboratory investigations and waste scarce research resources. In this paper we describe an advanced version of the protein function annotation system FEATURE, which achieved 99% precision and average recall of 95% across 20 representative functional sites. The system uses a Support Vector Machine classifier operating on the microenvironment of physicochemical features around an amino acid. We also compared performance of our method with state-of-the-art sequence-level annotator Pfam in terms of precision, recall and localization. To our knowledge, no other functional site annotator has been rigorously evaluated against these key criteria. The software and predictive models are incorporated into the WebFEATURE service at http://feature.stanford.edu/wf4.0-beta. PMID:24632601

  7. Experimental method for determination of a suitable temperature range for glasses used in precision molding

    NASA Astrophysics Data System (ADS)

    Ma, Tao; Chen, Fan; Yu, Jingchi

    2010-10-01

    Viscosity of glass is one of its important technological properties. It is usually adopted as a mark in controlling and evaluating the workability of glass. The viscous features in a glass forming process are strongly relevant to the temperature distribution. Appropriate procedure setting and controlling of temperature is an essential issue for precision glass molding. But the characteristic viscosity of glass is difficult to be observed directly in a practical lens molding. It's not convenient to set up the molding conditions caused by the differences between theoretical data and actual system. The purpose of this experimental study is intended to provide a simple and reliable method for determination of suitable temperature intervals of glasses used in the precision molding fabrication which meets the requirements of process tolerances in the industrial productions. The average glass deforming force and center thickness of molded lens are taken as the two conditions of determination principle for molding temperature ranges. The average force should not less than the minimum value of measurement accuracy and the lens thickness should reach the design target in these temperature ranges. These two conditions are easy to be measured and fit for application in the engineering. The molding temperature ranges of several kinds of glass were obtained in this project. One of them is Schott optical glass P-LASF51 which is selected for evaluating and validating this method. Its suitable molding temperature range is from 590 to 614 . The results of molding experiments demonstrate the method is effective and feasible.

  8. Derivative properties from high-precision equations of state.

    PubMed

    Haghbakhsh, Reza; Konttorp, Morten; Raeissi, Sona; Peters, Cor J; O'Connell, John P

    2014-12-11

    In this study, the behavior of derivative properties estimated by equations of state, including isochoric heat capacity, isobaric heat capacity, speed of sound, and the Joule-Thomson coefficient for pure compounds and a mixture, has been investigated. The Schmidt-Wagner and Jacobsen-Stewart equations of state were used for predictions of derivative properties of 10 different pure compounds from various nonpolar hydrocarbons, nonpolar cyclic hydrocarbons, polar compounds, and refrigerants. The estimations were compared to experimental data. To evaluate the behavior of mixtures, the extended corresponding states principle (ECS) was studied. Analytical relationships were derived for isochoric heat capacity, isobaric heat capacity, the Joule-Thomson coefficient, and the speed of sound. The ECS calculations were compared to the reference surface data of methane + ethane. The ECS principle was found to generate data of high quality. PMID:25347617

  9. The interferometric method for measuring the generatrix straightness of high precision cone

    NASA Astrophysics Data System (ADS)

    Kang, Yanhui; Li, Huailu; Diao, Xiaofei; Zhang, Heng

    2015-10-01

    Cone parts are widely used in advanced manufacturing and precision mechanics, providing air proof, torque transmission and so on. The straightness of generatrix is one of the important parameters, and the required accuracy can be up to submicrometers. In order to realize the rapid and high precision generatrix measurement of smooth surface cone, a laser interferometric method is proposed based on the structure of typical Fizeau interferometer. The high precision optical flat is used for reference standard, and the surface of cone is the measured object. Two cylindrical lenses with different focal lengths realize unidirectional expansion of parallel beam, solving the problem of CCD camera fringe resolution. The interference fringes are curved because of the cone angle, and the peak is the basis for accurate determination of the generatrix. Two fringe processing techniques are described in detail, which are single-frame and phase-shifting methods. Single-frame method includes two steps, i.e. the calculation of integral part and decimal part. The advantage of this method is the simple measurement structure. Phase-shifting method needs piezoelectric transducer (PZT) to generate several steps for phase calculation, with the advantage of high accuracy. The experimental results show that the straightness measurement accuracy can be better than 0.2 μm.

  10. Precision Experiments With Stored And Cooled Highly Charged Ions

    SciTech Connect

    Kluge, H.-Juergen

    2006-11-07

    Accumulation, storing and cooling techniques play an increasingly important role in many areas of science. These procedures can be applied in Penning traps and storage rings to ions. In this way, quantum electrodynamics can be tested in extreme electromagnetic fields by measuring hyperfine structure splittings. Lamb shifts, or g-factors in hydrogen-like heavy systems such as U91+ or Pb81+. In addition, fundamental constants or nuclear properties like the atomic mass can be determined. In the case of a radioactive ion, the fate of an individual ion, undergoing a nuclear decay, can be studied in detail by observing the disappearance of the signal of the mother and the appearance of that of the daughter isotope. Presently, the Highly-charged Ion TRAP (HITRAP) facility is being built up at GSI. Stable or radioactive highly charged ions are produced by colliding relativistic ions with a target. After electron cooling and deceleration in the storage ring ESR at GSI, these ions are ejected, decelerated further, and injected into a Penning trap where cooling to 4 K takes place. From there, the cooled highly charged ions such as hydrogen-like uranium are transferred at low energy to different experimental set-ups which are being built up by the international HITRAP Collaboration.

  11. High-precision measurement of chlorine stable isotope ratios

    USGS Publications Warehouse

    Long, A.; Eastoe, C.J.; Kaufmann, R.S.; Martin, J.G.; Wirt, L.; Finley, J.B.

    1993-01-01

    We present an analysis procedure that allows stable isotopes of chlorine to be analyzed with precision sufficient for geological and hydrological studies. The total analytical precision is ?????0.09%., and the present known range of chloride in the surface and near-surface environment is 3.5???. As Cl- is essentially nonreactive in natural aquatic environments, it is a conservative tracer and its ??37Cl is also conservative. Thus, the ??37Cl parameter is valuable for quantitative evaluation of mixing of different sources of chloride in brines and aquifers. ?? 1993.

  12. High level continuity for coordinate generation with precise controls

    NASA Technical Reports Server (NTRS)

    Eiseman, P. R.

    1982-01-01

    Coordinate generation techniques with precise local controls have been derived and analyzed for continuity requirements up to both the first and second derivatives, and have been projected to higher level continuity requirements from the established pattern. The desired local control precision was obtained when a family of coordinate surfaces could be uniformly distributed without a consequent creation of flat spots on the coordinate curves transverse to the family. Relative to the uniform distribution, the family could be redistributed from an a priori distribution function or from a solution adaptive approach, both without distortion from the underlying transformation which may be independently chosen to fit a nontrivial geometry and topology.

  13. Seismicity analysis in Indonesia region from high precision hypocenter location

    NASA Astrophysics Data System (ADS)

    Nugraha, Andri; Shiddiqi, Hasbi; Widiyantoro, Sri; Ramdhan, Mohamad; Wandono, Wandono

    2015-04-01

    As a complex tectonic region, Indonesia has a high seismicity rate which is related to subduction and collision as well as strike-slip fault. High-precision earthquake locations with adequate relocation method and proper velocity model are necessary for seismicity analysis. We used nearly 25,000 earthquakes that were relocated using double-difference method. In our relocation process, we employed teleseismic, regional, and local P-wave arrival times. Furthermore, we employed regional-global nested velocity models that take into account the subduction slab in the study region by using a 3D model for area inside and a 1D model for area outside Indonesia. Relocation results show shifted hypocenters that are generally perpendicular to the trench. Beneath western Sunda arc, the Wadati-Benioff Zone (WBZ) extents to a depth of about 300 km and depicts a gently dipping slab. The WBZ beneath eastern Sunda arc extends deeper to about 500 km and depicts a steep slab geometry. In the Sunda-Banda transition zone, we found anomalously low seismicity beneath the oceanic-continental transition region. The WBZ of the severely curved Banda arc extends to a depth of about 600 km and depicts a two-slab model. In the Molucca collision zone, seismicity clearly depicts two opposing slabs of the Molucca sea plate, i.e. to the east and to the west. Around Sulawesi region, most earthquakes are related to the north Sulawesi trench and depict subducted slab beneath the northern part of the island. In Sumatra region, we identified a seismic gap in the WBZ between 70 km and 150 km. Seismicity gaps are also detected beneath particular regions, e.g. Mentawai region, and several parts along the subducted slab. Similar to the Sumatra region, beneath eastern Sunda arc, seismic gap in WBZ is also detected but deeper, i.e. at depths of 150 km to 250 km. Furthermore, we used global centroid moment tensor catalog data available for earthquakes with magnitude 5.0 or greater. In general, focal mechanism solutions for large earthquakes around the Indonesian region are thrusting that is related to subduction processes. However, large strike-slip earthquakes are also present in this region and are related to major strike-slip faults, e.g. Sumatra and Sorong faults. We also analysed the distribution of P- and T-axes of these solutions, and found that most of subducted slabs are under compression, where P-axes are perpendicular to the trench.

  14. Absolute ultra-precision measurement of high-numerical-aperture spherical surface by high-order shift-rotation method using Zernike polynomials

    NASA Astrophysics Data System (ADS)

    Yang, Zhongming; Gao, Zhishan; Zhu, Dan; Yuan, Qun

    2015-11-01

    We propose a high-order shift-rotation absolute ultra-precision measurement method to calibrate the misalignment aberration and reference surface deviation in high-numerical-aperture spherical surface testing. Based on high-order approximation, the high-order misalignment aberrations are deduced. Both the computer simulation and experimental results confirm the feasibility of the proposed absolute ultra-precision measurement method. The high-order misalignment aberrations and reference surface deviation can be removed from the measured results by our absolute measurement method. The high-order shift-rotation absolute measurement method can get the accuracy of nanometer level in high-numerical-aperture spherical surface testing.

  15. Ion source for high-precision mass spectrometry

    DOEpatents

    Todd, Peter J.; McKown, Henry S.; Smith, David H.

    1984-01-01

    The invention is directed to a method for increasing the precision of positive-ion relative abundance measurements conducted in a sector mass spectrometer having an ion source for directing a beam of positive ions onto a collimating slit. The method comprises incorporating in the source an electrostatic lens assembly for providing a positive-ion beam of circular cross section for collimation by the slit.

  16. Ion source for high-precision mass spectrometry

    DOEpatents

    Todd, P.J.; McKown, H.S.; Smith, D.H.

    1982-04-26

    The invention is directed to a method for increasing the precision of positive-ion relative abundance measurements conducted in a sector mass spectrometer having an ion source for directing a beam of positive ions onto a collimating slit. The method comprises incorporating in the source an electrostatic lens assembly for providing a positive-ion beam of circular cross section for collimation by the slit. 2 figures, 3 tables.

  17. Gauges for Highly Precise Metrology of a Compound Mirror

    NASA Technical Reports Server (NTRS)

    Gursel, Yekta

    2005-01-01

    Three optical gauges have been developed for guiding the assembly and measuring precisely the reflecting surfaces of a compound mirror that comprises a corner-cube retroreflector glued in a hole on a flat mirror. In the specific application for which the gauges were developed, the compound mirror is part of a siderostat in a stellar interferometer. The flat-mirror portion of the compound mirror is the siderostat mirror; the retroreflector portion of the compound mirror is to be used, during operation of the interferometer, to monitor the location of the siderostat mirror surface relative to other optical surfaces of the interferometer. Nominally, the optical corner of the retroreflector should lie precisely on the siderostat mirror surface, but this precision cannot be achieved in fabrication: in practice, there remains some distance between the optical corner and the siderostat mirror surface. For proper operation of the interferometer, it is required to make this distance as small as possible and to know this distance within 1 nm. The three gauges make it possible to satisfy these requirements.

  18. High precision dual frequency timing of millisecond pulsars

    NASA Astrophysics Data System (ADS)

    Sandhu, Jagmit S.

    2001-11-01

    The science of millisecond pulsar timing can yield the most precise astrometric measurements. This thesis describes the work and results from a precision timing project aimed at monitoring the brightest millisecond pulsar, PSR J0437-4715. The project required the construction and subsequent upgrade of the Fast Pulsar Timing Machine (FPTM) at Parkes observatory, Australia. With a 256 MHz bandwidth and 4 μs time resolution; a few minutes of integration with the 64 m Parkes radio telescope yield times of arrival for PSR J0437-4715 with a precision of 100 nanoseconds. The longer term residuals (3 years) show root-mean-square deviations of 500 nanoseconds. This excess noise has been traced to inaccurate polarization calibration, and a systematic trend of ~5 μs in the times of arrival as a function of baseband frequency. Software simulation has shown the latter effect to arise from the large dynamic range in the baseband spectrum. Despite the systematic errors, the precision in our measurements of the pulsar's astrometric and binary parameters matches the best obtained so far with other millisecond pulsars. We have measured the pulsar's parallax, and the secular change in the binary's projected semi-major axis due to the system's proper motion. The latter measurement restricts the inclination angle of the binary, i < 43°. The parallax, along with the period and orbital period derivatives, enables us to constrain the distance of the pulsar, 162 < d < 205 pc. Stability analysis of the time of arrival residuals demonstrates that this pulsar matches the long term stability of the best studied millisecond pulsars, PSRs B1937+21 and B1855+09, on the time scale of the data available so far. The precision in the pulsar position matches the amplitude of the modulation of position predicted from the pulsar's binary motion. Detection of this effect will require reduction of the systematic errors and further refinements in the timing software. Along with radio interferometric observations of the pulsar and optical detection of the white-dwarf companion, the timing position will provide the best constraints for frame tie between the ecliptic and extragalactic reference frames.

  19. Computational Calorimetry: High-Precision Calculation of Host–Guest Binding Thermodynamics

    PubMed Central

    2015-01-01

    We present a strategy for carrying out high-precision calculations of binding free energy and binding enthalpy values from molecular dynamics simulations with explicit solvent. The approach is used to calculate the thermodynamic profiles for binding of nine small molecule guests to either the cucurbit[7]uril (CB7) or β-cyclodextrin (βCD) host. For these systems, calculations using commodity hardware can yield binding free energy and binding enthalpy values with a precision of ∼0.5 kcal/mol (95% CI) in a matter of days. Crucially, the self-consistency of the approach is established by calculating the binding enthalpy directly, via end point potential energy calculations, and indirectly, via the temperature dependence of the binding free energy, i.e., by the van’t Hoff equation. Excellent agreement between the direct and van’t Hoff methods is demonstrated for both host–guest systems and an ion-pair model system for which particularly well-converged results are attainable. Additionally, we find that hydrogen mass repartitioning allows marked acceleration of the calculations with no discernible cost in precision or accuracy. Finally, we provide guidance for accurately assessing numerical uncertainty of the results in settings where complex correlations in the time series can pose challenges to statistical analysis. The routine nature and high precision of these binding calculations opens the possibility of including measured binding thermodynamics as target data in force field optimization so that simulations may be used to reliably interpret experimental data and guide molecular design. PMID:26523125

  20. High-Precision Nanoscale Temperature Sensing Using Single Defects in Diamond

    NASA Astrophysics Data System (ADS)

    Neumann, P.; Jakobi, I.; Dolde, F.; Burk, C.; Reuter, R.; Waldherr, G.; Honert, J.; Wolf, T.; Brunner, A.; Shim, J. H.; Suter, D.; Sumiya, H.; Isoya, J.; Wrachtrup, J.

    2013-06-01

    Measuring local temperature with a spatial resolution on the order of a few nanometers has a wide range of applications from semiconductor industry over material to life sciences. When combined with precision temperature measurement it promises to give excess to small temperature changes caused e.g. by chemical reactions or biochemical processes. However, nanoscale temperature measurements and precision have excluded each other so far owing to the physical processes used for temperature measurement of limited stability of nanoscale probes. Here we experimentally demonstrate a novel nanoscale temperature sensing technique based on single atomic defects in diamonds. Sensor sizes range from millimeter down to a few tens of nanometers. Utilizing the sensitivity of the optically accessible electron spin level structure to temperature changes we achieve a temperature noise floor of 5 mK Hz$^{-1/2}$ for single defects in bulk sensors. Using doped nanodiamonds as sensors yields temperature measurement with 130 mK Hz$^{-1/2}$ noise floor and accuracies down to 1 mK at length scales of a few ten nanometers. The high sensitivity to temperature changes together with excellent spatial resolution combined with outstanding sensor stability allows for nanoscale precision temperature determination enough to measure chemical processes of few or single molecules by their reaction heat even in heterogeneous environments like cells.

  1. Animal Experimentation in High Schools

    ERIC Educational Resources Information Center

    Ansevin, Kystyna D.

    1970-01-01

    Recommends that teacher and student be provided with the broadest possible spectrum of meaningful and feasible experiments in which the comfort of the experimental animal is protected by the design of the experiment. (BR)

  2. High-precision analysis of SF6 at ambient level

    NASA Astrophysics Data System (ADS)

    Lim, J. S.; Moon, D. M.; Kim, J. S.; Yun, W.-T.; Lee, J.

    2013-09-01

    This work reports on the development of a technique for the precise analysis of ambient SF6. This technique, which involves a gas chromatograph/electron capture detector (GC-ECD) coupled with an Activated Alumina-F1 (AA-F1) column, performed well in the measurements, particularly in terms of accuracy, which complies with the World Meteorological Organization (WMO)-recommended compatibility of 0.02 ppt. Compared to the Porapak Q technique, we observed a sharper peak shape for the SF6 stream, which substantiates the improvement in the analytical precision. The traceability to the WMO scale was tested by calibrating the GC-ECD/AA-F1 analyser using five SF6 standards provided by the WMO/Global Atmosphere Watch (GAW) Central Calibration Laboratory (CCL) for SF6 (NOAA, United States of America). After calibration by various methods, the GC-ECD/AA-F1 accurately estimated the mole fraction of SF6 in the working standard prepared by the World Calibration Centre for SF6 operated by the Korea Meteorological Administration (KMA)/Korea Research Institute of Standards and Science (KRISS). Among the calibration methods, the two-point calibration method emerged to be the most economical procedure in terms of the data quality and measurement time. It was found that the KRISS scale of SF6/N2 was biased by 0.13 ppt when compared to the WMO scale of SF6/air; this bias is probably due to a different matrix.

  3. Precision compression molding of glass microlenses and microlens arrays--an experimental study.

    PubMed

    Firestone, G C; Yi, A Y

    2005-10-10

    An innovative manufacturing process utilizing high-temperature compression molding to fabricate aspherical microlenses by using optical glasses, such as BK7, K-PG325, and soda-lime glass, is investigated. In a departure from conventional approaches, a unique hollow contactless mold design is adopted. Polished glass substrates and the mold assembly are heated above the glass transition temperature first, followed by initial forming, then annealing. The forming rate is controlled in real time to ensure mold position accuracy. Mold materials used include tungsten carbides, 316 stainless steel, 715 copper nickel, and aluminum alloys. The geometric control of the microlenses or microlens arrays can be precisely controlled by the forming temperature, forming speed, mold design, and annealing time. PMID:16237925

  4. Proceedings, High-Precision $\\alpha_s$ Measurements from LHC to FCC-ee

    SciTech Connect

    d'Enterria, David; Skands, Peter Z.

    2015-01-01

    This document provides a writeup of all contributions to the workshop on "High precision measurements of $\\alpha_s$: From LHC to FCC-ee" held at CERN, Oct. 12--13, 2015. The workshop explored in depth the latest developments on the determination of the QCD coupling $\\alpha_s$ from 15 methods where high precision measurements are (or will be) available. Those include low-energy observables: (i) lattice QCD, (ii) pion decay factor, (iii) quarkonia and (iv) $\\tau$ decays, (v) soft parton-to-hadron fragmentation functions, as well as high-energy observables: (vi) global fits of parton distribution functions, (vii) hard parton-to-hadron fragmentation functions, (viii) jets in $e^\\pm$p DIS and $\\gamma$-p photoproduction, (ix) photon structure function in $\\gamma$-$\\gamma$, (x) event shapes and (xi) jet cross sections in $e^+e^-$ collisions, (xii) W boson and (xiii) Z boson decays, and (xiv) jets and (xv) top-quark cross sections in proton-(anti)proton collisions. The current status of the theoretical and experimental uncertainties associated to each extraction method, the improvements expected from LHC data in the coming years, and future perspectives achievable in $e^+e^-$ collisions at the Future Circular Collider (FCC-ee) with $\\cal{O}$(1--100 ab$^{-1}$) integrated luminosities yielding 10$^{12}$ Z bosons and jets, and 10$^{8}$ W bosons and $\\tau$ leptons, are thoroughly reviewed. The current uncertainty of the (preliminary) 2015 strong coupling world-average value, $\\alpha_s(m_Z)$ = 0.1177 $\\pm$ 0.0013, is about 1\\%. Some participants believed this may be reduced by a factor of three in the near future by including novel high-precision observables, although this opinion was not universally shared. At the FCC-ee facility, a factor of ten reduction in the $\\alpha_s$ uncertainty should be possible, mostly thanks to the huge Z and W data samples available.

  5. High precision high voltage divider and its application to electron beam ion traps.

    PubMed

    Chen, W D; Xiao, J; Shen, Y; Fu, Y Q; Meng, F C; Chen, C Y; Zou, Y; Hutton, R

    2008-12-01

    A high precision high voltage divider has been developed for the electron beam ion trap in Shanghai. The uncertainty caused by the temperature coefficient of resistance (TCR) and the voltage coefficient of resistance has been studied in detail and was minimized to the level of ppm (10(-6)) range. Once the TCR was matched between the resistors, the precision of the dividing ratio finally reached the ppm range also. We measured the delay of the divider caused by the capacitor introduced to minimize voltage ripple to be 2.35 ms. Finally we applied the divider to an experiment to measure resonant energies for some dielectronic recombination processes for highly charged xenon ions. The final energies include corrections for both space charge and fringe field effects are mostly under 0.03%. PMID:19123559

  6. A high precision, compact electromechanical ground rotation sensor

    SciTech Connect

    Dergachev, V.; DeSalvo, R.; University of Sannio, C.so Garibaldi 107, Benevento 82100 ; Asadoor, M.; Oklahoma State University, 219 Student Union, Stillwater, Oklahoma 74074 ; Bhawal, A.; Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, Pennsylvania 15213 ; Gong, P.; School of Industrial and System Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0205 ; Kim, C.; Lottarini, A.; Department of Computer Science, Columbia University, 1214 Amsterdam Avenue, New York, New York 10027 ; Minenkov, Y.; Murphy, C.; University of Melbourne Grattan Street, Parkville VIC 3010 ; O'Toole, A.; Michigan Technological University, 1400 Townsend Dr, Houghton, Michigan 49931 ; Peña Arellano, F. E.; and others

    2014-05-15

    We present a mechanical rotation sensor consisting of a balance pivoting on a tungsten carbide knife edge. These sensors are important for precision seismic isolation systems, as employed in land-based gravitational wave interferometers and for the new field of rotational seismology. The position sensor used is an air-core linear variable differential transformer with a demonstrated noise floor of 1 × 10{sup −11}m/√( Hz ). We describe the instrument construction and demonstrate low noise operation with a noise floor upper bound of 5.7 × 10{sup −9} rad /√( Hz ) at 10 mHz and 6.4 × 10{sup −10} rad /√( Hz ) at 0.1 Hz. The performance of the knife edge hinge is compatible with a behaviorur free of noise from dislocation self-organized criticality.

  7. A high precision, compact electromechanical ground rotation sensor.

    PubMed

    Dergachev, V; DeSalvo, R; Asadoor, M; Bhawal, A; Gong, P; Kim, C; Lottarini, A; Minenkov, Y; Murphy, C; O'Toole, A; Peña Arellano, F E; Rodionov, A V; Shaner, M; Sobacchi, E

    2014-05-01

    We present a mechanical rotation sensor consisting of a balance pivoting on a tungsten carbide knife edge. These sensors are important for precision seismic isolation systems, as employed in land-based gravitational wave interferometers and for the new field of rotational seismology. The position sensor used is an air-core linear variable differential transformer with a demonstrated noise floor of 1 × 10⁻¹¹ m/√Hz. We describe the instrument construction and demonstrate low noise operation with a noise floor upper bound of 5.7 × 10⁻⁹ rad/√Hz at 10 mHz and 6.4 × 10⁻¹⁰ rad/√Hz at 0.1 Hz. The performance of the knife edge hinge is compatible with a behaviorur free of noise from dislocation self-organized criticality. PMID:24880388

  8. BAM: A metrology device for a high precision astrometric mission

    NASA Astrophysics Data System (ADS)

    Riva, A.; Gai, M.; Lattanzi, M. G.; Russo, F.; Buzzi, R.

    2014-12-01

    Gaia is ESA next-generation astrometric space mission, that will be launched in December 2013. The main objective of Gaia is to produce an astrometric census of one billion objects down to the 20th magnitude. The level of astrometric precision will be around the 10 microarcseconds. In order to achieve such demanding performances, the complexity of the satellite is huge, and a proper fully automated operation must be adopted. One of the essential parts of the satellite is the BAM instrument, an interferometric device with the task of monitoring the variation of the Basic Angle between the two telescope that compose the payload. In this paper we describe the main features of this sub-instrument and its performances.

  9. Aerospace Laser Ignition/Ablation Variable High Precision Thruster

    NASA Technical Reports Server (NTRS)

    Campbell, Jonathan W. (Inventor); Edwards, David L. (Inventor); Campbell, Jason J. (Inventor)

    2015-01-01

    A laser ignition/ablation propulsion system that captures the advantages of both liquid and solid propulsion. A reel system is used to move a propellant tape containing a plurality of propellant material targets through an ignition chamber. When a propellant target is in the ignition chamber, a laser beam from a laser positioned above the ignition chamber strikes the propellant target, igniting the propellant material and resulting in a thrust impulse. The propellant tape is advanced, carrying another propellant target into the ignition chamber. The propellant tape and ignition chamber are designed to ensure that each ignition event is isolated from the remaining propellant targets. Thrust and specific impulse may by precisely controlled by varying the synchronized propellant tape/laser speed. The laser ignition/ablation propulsion system may be scaled for use in small and large applications.

  10. HIGH-PRECISION DYNAMICAL MASSES OF VERY LOW MASS BINARIES

    SciTech Connect

    Konopacky, Q. M.; Ghez, A. M.; McLean, I. S.; Barman, T. S.; Rice, E. L.; Bailey, J. I.; White, R. J.; Duchene, G. E-mail: ghez@astro.ucla.ed E-mail: barman@lowell.ed E-mail: white@chara.gsu.ed

    2010-03-10

    We present the results of a three year monitoring program of a sample of very low mass (VLM) field binaries using both astrometric and spectroscopic data obtained in conjunction with the laser guide star adaptive optics system on the W. M. Keck II 10 m telescope. Among the 24 systems studied, 15 have undergone sufficient orbital motion, allowing us to derive their relative orbital parameters and hence their total system mass. These measurements more than double the number of mass measurements for VLM objects, and include the most precise mass measurement to date (<2%). Among the 11 systems with both astrometric and spectroscopic measurements, six have sufficient radial velocity variations to allow us to obtain individual component masses. This is the first derivation of the component masses for five of these systems. Altogether, the orbital solutions of these low mass systems show a correlation between eccentricity and orbital period, consistent with their higher mass counterparts. In our primary analysis, we find that there are systematic discrepancies between our dynamical mass measurements and the predictions of theoretical evolutionary models (TUCSON and LYON) with both models either underpredicting or overpredicting the most precisely determined dynamical masses. These discrepancies are a function of spectral type, with late-M through mid-L systems tending to have their masses underpredicted, while one T-type system has its mass overpredicted. These discrepancies imply that either the temperatures predicted by evolutionary and atmosphere models are inconsistent for an object of a given mass, or the mass-radius relationship or cooling timescales predicted by the evolutionary models are incorrect. If these spectral-type trends are correct and hold into the planetary mass regime, the implication is that the masses of directly imaged extrasolar planets are overpredicted by the evolutionary models.

  11. High Precision Cosmology with the Cosmic Background Radiation

    NASA Astrophysics Data System (ADS)

    Farhang, Marzieh

    In this thesis we investigate the two cosmic epochs of inflation and recombination, through their imprints on the temperature and polarization anisotropies of the cosmic microwave background radiation. To probe the early universe we develop a map-based maximum-likelihood estimator to measure the amplitude of inflation-induced gravity waves, parametrized by r, from the cosmic microwave background (CMB) polarization maps. Being optimal by construction, the estimator avoids E-B mixing, a possible source of contamination in the tiny B-mode detection, the target of many current and near future CMB experiments. We explore the leakage from the E- to the B-mode of polarization by using this estimator to study the linear response of the B-mode signal at different scales to variations in the E- mode power. Similarly, for various observational cases, we probe the dependence of r measurement on the signal from different scales of E and B polarization. The estimator is used to make forecasts for Spider-like and Planck-like experimental specifications and to investigate the sky-coverage optimization of the Spider-like case. We compare the forecast errors on r to the results from a similar multipole-based estimator which, by ignoring the mode-mixing, sets a lower limit on the achievable error on r. We find that an experiment with Spider-like specifications with fsky ˜ 0:02--0:2 could place a 2sigma r ≈ 0:014 bound (˜ 95% CL), which rises to 0:02 with an ℓ-dependent foreground residual left over from an assumed efficient component separation. For the Planck-like survey, a Galaxy-masked ( fsky = 0:75) sky would give 2sigmar ≈ 0:015, rising to ≈ 0:05 with the foreground residuals. We also use a novel information-based framework to compare how different generations of CMB experiments reveal information about the early universe, through their measurements of r. We also probe the epoch of recombination by investigating possible fluctuations in the free electron fraction Xe around the fiducial model of the standard recombination scenario. Though theoretically well studied, the detailed assumptions in the recombination history, based on standard atomic physics, have never been directly tested. However, for our CMB-based cosmological inferences to be reliable, the recombination scenario needs to be observationally verified. We approach this problem in a model-independent way and construct rank-ordered parameter eigen-modes with the highest power to probe Xe. We study various properties of these modes, including their convergence, fiducial model-dependence, dataset dependence, and the eigen-modes response to marginalization over different standard parameters. We demonstrate that, if enough modes are included, the eigen-modes form a practically complete set of basis function for expanding different physically motivated Xe perturbations. We also develop an information-based criterion to truncate the eigen-mode hierarchy, which can be used in similar hierarchical model selections as well. We show how our measurements of cosmic parameters will be affected if possible deviations in the recombination history are ignored. The method is applied to simulations of Planck+ACTPol and a cosmic variance limited survey with differing simulated recombination histories and the recovered Xe trajectories are constructed. We also apply the method to the best currently available CMB datasets, WMAP9+ACT/SPT. The first constructed eigen-mode turns out to be a direct measure of the damping envelope. Its current measurement with SPT slightly indicates a damping tail anomaly, while ACT data agree well with the standard scenario. High resolution Planck data will resolve this tension with high significance.

  12. High precision (14 bit), high density (octal) analog to digital converter for spectroscopy applications

    NASA Astrophysics Data System (ADS)

    Subramaniam, E. T.; Jain, Mamta; Bhowmik, R. K.; Tripon, Michel

    2008-10-01

    Nuclear and particle physics experiments with large number of detectors require signal processing and data collection strategies that call for the ability to collect large amount of data while not sacrificing the precision and accuracy of the data being collected. This paper deals with the development of a high precision pulse peak detection, analog to digital converter (ADC) module with eight independent channels in plug-in daughter card motherboard model, best suited for spectroscopy experiments. This module provides multiple channels without cross-talk and of 14 bit resolution, while maintaining high density (each daughter card has an area of just 4.2″×0.51″) and exhibiting excellent integral nonlinearity (≤±2 mV or ±0.02% full scale reading) and differential nonlinearity (≤±1%). It was designed, developed and tested, in house, and gives added advantages of cost effectiveness and ease of maintenance.

  13. New Insights into Stellar Astrophysics from High-Precision Photometry

    NASA Astrophysics Data System (ADS)

    Soderblom, David R.

    2013-01-01

    The rich harvest of information on the occurrence and nature of planets around solar-type stars is why Kepler was built, but equally profound from this mission are the insights and quantitative physical studies of stars. The Kepler sample is dominated by the ~100,000 stars that are like the Sun, yet the Kepler field includes examples of nearly every stellar type. Kepler's exquisite photometry - continuously over an extended time - has enabled the detection of new phenomena and has provided critical tests of stellar models. In this brief review I will summarize some of the exciting new findings that Kepler has made possible, including: Stellar surface granulation in late-type stars; Evidence for rapid rotation of the cores of some evolved stars; Flares on G, K and M stars; Precise ages for older solar-type stars; Evidence for "mixed" modes in evolved stars that couple p-modes to interior g-modes; Stellar differential rotation; Detection of stellar activity cycles from asteroseismology; Mixing processes in stars; Detailed studies of eclipsing binaries; A comparison of the Sun to similar stars; Pulsating stars; Stellar surface features revealed by planet transits.

  14. High-precision atomic structure measurements in thallium

    NASA Astrophysics Data System (ADS)

    Burkhardt, M. H.; Holmes, C. D.; Uhl, R.; Majumder, P. K.

    2004-05-01

    Using a thallium atomic beam apparatus, we are undertaking a series of laser spectroscopy measurements with the goal of providing precise, independent cross-checks on the accuracy of new calculations of parity nonconservation in thallium(M. Kozlov et al.), Phys Rev. A64, 053107 (2001). In our apparatus, a laser beam interacts transversely with a dense, 2-cm-wide thallium beam and reveals roughly tenfold Doppler narrowing of the absorption profile. Having completed a new 0.4% measurement of the Stark shift within the 378 nm 6P_1/2-7S_1/2 E1 transition, we have now begun to study the weak 1283 nm 6P_1/2-6P_3/2 transition in the atomic beam. We seek to determine both Stark shift components, as well as the various components of the Stark-induced amplitude within this mixed M1/E2 transition. Using these existing laser systems, we have also begun a vapor cell spectroscopy study of the 1301 nm 7S_1/2-7P_1/2 E1 transition by means of a two-step excitation from the ground state. To enhance the visibility of these weak absorption signals, we are employing an FM spectroscopy technique. The demodulated laser transmission spectrum provides a low-noise, zero-background signal, and includes replicas of the absorption spectrum separated by the well-known RF sideband frequency, offering built-in frequency scale calibration.

  15. High-speed precision weighing of pharmaceutical capsules

    NASA Astrophysics Data System (ADS)

    Bürmen, Miran; Pernuš, Franjo; Likar, Boštjan

    2009-11-01

    In this paper, we present a cost-effective method for fast and accurate in-line weighing of hard gelatin capsules based on the optimized capacitance sensor and real-time processing of the capsule capacitance profile resulting from 5000 capacitance measurements per second. First, the effect of the shape and size of the capacitive sensor on the sensitivity and stability of the measurements was investigated in order to optimize the performance of the system. The method was tested on two types of hard gelatin capsules weighing from 50 mg to 650 mg. The results showed that the capacitance profile was exceptionally well correlated with the capsule weight with the correlation coefficient exceeding 0.999. The mean precision of the measurements was in the range from 1 mg to 3 mg, depending on the size of the capsule and was significantly lower than the 5% weight tolerances usually used by the pharmaceutical industry. Therefore, the method was found feasible for weighing pharmaceutical hard gelatin capsules as long as certain conditions are met regarding the capsule fill properties and environment stability. The proposed measurement system can be calibrated by using only two or three sets of capsules with known weight. However, for most applications it is sufficient to use only empty and nominally filled capsules for calibration. Finally, a practical application of the proposed method showed that a single system is capable of weighing around 75 000 capsules per hour, while using multiple systems could easily increase the inspection rate to meet almost any requirements.

  16. Application of GPS in a high precision engineering survey network

    SciTech Connect

    Ruland, R.; Leick, A.

    1985-04-01

    A GPS satellite survey was carried out with the Macrometer to support construction at the Stanford Linear Accelerator Center (SLAC). The network consists of 16 stations of which 9 stations were part of the Macrometer network. The horizontal and vertical accuracy of the GPS survey is estimated to be 1 to 2 mm and 2 to 3 mm respectively. The horizontal accuracy of the terrestrial survey, consisting of angles and distances, equals that of the GPS survey only in the ''loop'' portion of the network. All stations are part of a precise level network. The ellipsoidal heights obtained from the GPS survey and the orthometric heights of the level network are used to compute geoid undulations. A geoid profile along the linac was computed by the National Geodetic Survey in 1963. This profile agreed with the observed geoid within the standard deviation of the GPS survey. Angles and distances were adjusted together (TERRA), and all terrestrial observations were combined with the GPS vector observations in a combination adjustment (COMB). A comparison of COMB and TERRA revealed systematic errors in the terrestrial solution. A scale factor of 1.5 ppM +- .8 ppM was estimated. This value is of the same magnitude as the over-all horizontal accuracy of both networks. 10 refs., 3 figs., 5 tabs.

  17. Futility of high-precision SO(10) calculations

    SciTech Connect

    Dixit, V.V. Department of Science and Mathematics, Parks College of St. Louis University, Cahokia, Illinois 62206 ); Sher, M. )

    1989-12-01

    In grand unified models, there are a large number of scalar bosons with masses of the order of the unification scale. Since the masses could be an order of magnitude or so above or below the vector-boson masses, they will affect the beta functions and thus low-energy predictions; the lack of knowledge of the masses translates into an uncertainty in these predictions. Although the effect is very small for a single scalar field, SO(10) models have hundreds of such fields, leading to very large uncertainties. We analyze this effect in SO(10) models with intermediate scales, and show that all such models have an {ital additional} uncertainty which can be as large as 4 orders of magnitude in the proton lifetime and as large as a factor of 0.02 in sin{sup 2}{theta}{sub w}. In models with 210-dimensional representations, the weak mixing angle is uncertain by as much as 0.06. As a result, we argue that precise calculations in SO(10) models with intermediate scales may not be possible.

  18. High-precision timeline for Earth's most severe extinction.

    PubMed

    Burgess, Seth D; Bowring, Samuel; Shen, Shu-zhong

    2014-03-01

    The end-Permian mass extinction was the most severe loss of marine and terrestrial biota in the last 542 My. Understanding its cause and the controls on extinction/recovery dynamics depends on an accurate and precise age model. U-Pb zircon dates for five volcanic ash beds from the Global Stratotype Section and Point for the Permian-Triassic boundary at Meishan, China, define an age model for the extinction and allow exploration of the links between global environmental perturbation, carbon cycle disruption, mass extinction, and recovery at millennial timescales. The extinction occurred between 251.941 ± 0.037 and 251.880 ± 0.031 Mya, an interval of 60 ± 48 ka. Onset of a major reorganization of the carbon cycle immediately precedes the initiation of extinction and is punctuated by a sharp (3‰), short-lived negative spike in the isotopic composition of carbonate carbon. Carbon cycle volatility persists for ∼500 ka before a return to near preextinction values. Decamillenial to millennial level resolution of the mass extinction and its aftermath will permit a refined evaluation of the relative roles of rate-dependent processes contributing to the extinction, allowing insight into postextinction ecosystem expansion, and establish an accurate time point for evaluating the plausibility of trigger and kill mechanisms. PMID:24516148

  19. High Precision Photometry of Bright Transiting Exoplanet Hosts

    NASA Astrophysics Data System (ADS)

    Wilson, Maurice; Eastman, Jason; Johnson, John A.

    2016-01-01

    Within the past two decades, the successful search for exoplanets and the characterization of their physical properties have shown the immense progress that has been made towards finding planets with characteristics similar to Earth. For most exoplanets with a radius about the size of Earth, evaluating their physical properties, such as the mass, radius and equilibrium temperature, cannot be determined with satisfactory precision. The MINiature Exoplanet Radial Velocity Array (MINERVA) was recently built to obtain spectroscopic and photometric measurements to find, confirm, and characterize Earth-like exoplanets. MINERVA's spectroscopic survey targets the brightest, nearby stars which are well-suited to the array's capabilities, while its primary photometric goal is to search for transits around these bright targets. Typically, it is difficult to find satisfactory comparison stars within a telescope's field of view when the primary target is very bright. This issue is resolved by using one of MINERVA's telescopes to observe the primary bright star while the other telescopes observe a distinct field of view that contains satisfactory bright comparison stars. We describe the code used to identify nearby comparison stars, schedule the four telescopes, produce differential photometry from multiple telescopes, and show the first results from this effort.This work has been funded by the Ronald E. McNair Post-Baccalaureate Achievement Program, the ERAU Honors Program, the ERAU Undergraduate Research Spark Fund, and the Banneker Institute at the Harvard-Smithsonian Center for Astrophysics.

  20. High-precision control of piezoelectric nanopositioning stages using hysteresis compensator and disturbance observer

    NASA Astrophysics Data System (ADS)

    Gu, Guo-Ying; Zhu, Li-Min; Su, Chun-Yi

    2014-10-01

    This paper proposes a novel high-performance control scheme with hysteresis compensator and disturbance observer for high-precision motion control of a nanopositioning stage driven by a piezoelectric stack actuator (PSA). In the developed control scheme, a real-time inverse hysteresis compensator (IHC) with the modified Prandtl-Ishlinskii model is firstly designed to compensate for the asymmetric hysteresis nonlinearity of the PSA. Due to the imperfect compensation, the dynamics behaviors of the PSA-actuated stage with the IHC can be treated as a linear dynamic system plus a lumped disturbance term. Owing to the unknown nature of this lumped disturbance term, a disturbance observer (DOB) is used as a means for disturbance rejection. With the DOB, a tracking controller is finally designed and implemented to stabilize the position error. To verify the proposed control scheme, a real-time experimental platform with a PSA-actuated nanopositioning stage is built, and extensive experimental tests are performed. The comparative experimental results demonstrate the effectiveness and improved performance of the developed control approach in terms of the maximum-value errors, root-mean-square-value errors and hysteresis compensation.

  1. Design and realization of high precision FBG rain gauge based on triangle cantilever beam and its performance research

    NASA Astrophysics Data System (ADS)

    Lan, Ruo-ming; Cao, Yu-qiang

    2015-05-01

    A novel fiber Bragg grating (FBG) rain gauge is proposed in this paper to achieve high precision rainfall measurement. One core sensitive FBG, a temperature compensation FBG and a mechanical transition system construct this novel FBG rain gauge. Sensing principle of this FBG rain gauge is explained in detail, and its theoretical calculation model is also established, which shows that the relationship between center wavelength of sensitive FBG and external rainfall has very good linearity. To verify its detection performance, the calibration experiment on one prototype of this FBG rain gauge is carried out. After experiment data analysis, the detection precision of this FBG rain gauge is 15.4 μm which is almost two orders of magnitude higher than that of the existing rainfall measurement device. The experimental data confirm that this FBG rain gauge can achieve rainfall measurement with high precision.

  2. Design and development of a high-precision, high-payload telescope dual-drive system

    NASA Astrophysics Data System (ADS)

    Worthington, Michael S.; Beets, Timothy A.; Beno, Joseph H.; Mock, Jason R.; Murphy, Brian T.; South, Brian J.; Good, John M.

    2010-07-01

    A high precision, dual drive system has been designed and developed for the Wide Field Upgrade to the Hobby-Eberly Telescope* at McDonald Observatory in support of the Hobby-Eberly Telescope Dark Energy Experiment‡. Analysis, design and controls details will be of interest to designers of large scale, high precision robotic motion devices. The drive system positions the 19,000 kg star tracker to a precision of less than 5 microns along its 4-meter travel. While positioning requirements remain essentially equal to the existing HET, tracker mass increases by a factor greater than 5. The 10.5-meter long tracker is driven at each end by planetary roller screws, each having two distinct drive sources dictated by the desired operation: one slowly rotates the screw when tracking celestial objects and the second rotates the nut for rapid displacements. Key results of the roller screw rotordynamics analysis are presented. A description of the complex bearing arrangement providing required degrees of freedom as well as the impact of a detailed Failure Modes and Effects Analysis addressing necessary safety systems is also presented. Finite element analysis results demonstrate how mechanical springs increase the telescope's natural frequency response by 22 percent. The critical analysis and resulting design is provided.

  3. High-Precision Angle-Resolved Magnetometry with Uniaxial Quantum Centers in Silicon Carbide

    NASA Astrophysics Data System (ADS)

    Simin, D.; Fuchs, F.; Kraus, H.; Sperlich, A.; Baranov, P. G.; Astakhov, G. V.; Dyakonov, V.

    2015-07-01

    We show that uniaxial color centers in silicon carbide with hexagonal lattice structure can be used to measure not only the strength but also the polar angle of the external magnetic field with respect to the defect axis with high precision. The method is based on the optical detection of multiple spin resonances in the silicon vacancy defect with quadruplet ground state and suggests significant improvement of the angle sensitivity compared to spin-1 color centers. We demonstrate a good agreement between the experimental and calculated spin resonance spectra, providing angle resolution better than 1° per Hz1 /2 in submillitesla magnetic fields. Our approach is suitable for ensemble as well as single spin-3 /2 color centers, allowing for angle-resolved magnetometry on the nanoscale at ambient conditions.

  4. High-precision control of LSRM based X-Y table for industrial applications.

    PubMed

    Pan, J F; Cheung, Norbert C; Zou, Yu

    2013-01-01

    The design of an X-Y table applying direct-drive linear switched reluctance motor (LSRM) principle is proposed in this paper. The proposed X-Y table has the characteristics of low cost, simple and stable mechanical structure. After the design procedure is introduced, an adaptive position control method based on online parameter identification and pole-placement regulation scheme is developed for the X-Y table. Experimental results prove the feasibility and its priority over a traditional PID controller with better dynamic response, static performance and robustness to disturbances. It is expected that the novel two-dimensional direct-drive system find its applications in high-precision manufacture area. PMID:22981303

  5. High precision surface metrology of x-ray optics with an interferometric microscope

    NASA Astrophysics Data System (ADS)

    Lacey, Ian; Artemiev, Nikolay A.; McKinney, Wayne R.; Merthe, Daniel J.; Yashchuk, Valeriy V.

    2013-09-01

    We describe a systematic procedure developed for surface characterization of super polished x-ray optical components with an interferometric microscope. In this case, obtaining trustworthy metrology data requires thorough accounting of the instrument's optical aberrations, its spatial resolution, and random noise. We analyze and cross compare two general experimental approaches to eliminate the aberration contribution. The reference surface approach relies on aberration evaluation with successive measurements of a high quality reference mirror. The so called super smooth measurement mode consists of subtracting two surface profiles measured over two statistically uncorrelated areas of the optics under test. The precisely measured instrument's modulation transfer function (MTF) and random noise spectrum allows us to correct the aberration-amended surface topography in the spatial frequency domain. While the developed measurement procedure is general and can be applied to various metrology instruments, the specific results presented are from a Zygo NewView™ 7300 microscope.

  6. A Low-cost Robotic Imaging Systems for High Precision Photometry

    NASA Astrophysics Data System (ADS)

    Guyon, Olivier; Walawender, Josh

    2011-03-01

    We present early results of an experimental low cost robotic imaging system recently deployed at the Mauna Loa observatory (Hawaii). A key goal of this system is to explore the suitability of a low-cost approach using mass produced imaging components for scientific astronomical imaging. A commercial digital single lens reflex (DSLR) camera body and lens are mounted on a commercial equatorial mount. The system produces 3-color images with an etendue (product of field of view and collecting area) equal to 1 deg^2.m^2 for a total hardware cost below $10k. Measurement of the detector characteristics shows that the CMOS array used in the DSLR is of sufficient quality for scientific imaging. Custom data reduction algorithms are developed to make scientific use of the color images, exploring in particular algorithms to perform high precision photometry for study of variable stars and exoplanet transits

  7. High-Precision Measurement of the Rydberg Constant

    NASA Astrophysics Data System (ADS)

    Moore, Kaitlin; Raithel, Georg

    2013-05-01

    A new spectroscopic method is proposed to couple circular Rydberg states of rubidium using lattice modulation. This excitation strategy could allow for a competitive measurement of the Rydberg constant while relying very little on the accuracy of QED calculations and being insensitive to nuclear charge distribution. The spectroscopic method requires preparing circular-state Rydberg atoms via an RF adiabatic passage method and confining prepared atoms in an optical lattice. Excitation of a two-photon electric quadrupole transition between circular Rydberg states can be accomplished through electro-optic modulation of the lattice at the microwave transition frequency between these states. Detection of the target-state population as a function of the modulation frequency can be accomplished through state-selective electric-field ionization. We discuss frequency shift corrections that will contribute to determining the Rydberg constant from this frequency, along with theoretical and experimental progress. Supported by NSF, NIST.

  8. High speed, precision motion strategies for lightweight structures

    NASA Technical Reports Server (NTRS)

    Book, Wayne J.

    1987-01-01

    Abstracts of published papers and dissertations generated during the reporting period are compiled. Work on fine motion control was completed. Specifically, real time control of flexible manipulator vibrations were experimentally investigated. A linear model based on the application of Lagrangian dynamics to a rigid body mode and a series of separable flexible modes was examined with respect to model order requirements, and modal candidate selection. State feedback control laws were implemented based upon linear quadratic regulator design. Specification of the closed loop poles in the regulator design process was obtained by inclusion of a prescribed degree of stability in the manipulator model. Work on gross motion planning and control is also summarized. A systematic method to symbolically derive the full nonlinear dynamic equations of motion of multi-link flexible manipulators was developed.

  9. High precision speed measurement by using interferometric techniques

    NASA Astrophysics Data System (ADS)

    Rodríguez Ávila, M. A.; Ochoa Valiente, R.; García Trujillo, L. A.

    2015-01-01

    In this work we present the experimental realization of speed measurement by the use of a two wave interferometer and digital signal processing techniques. We built an automated Michelson interferometer and using an He-Ne laser and with the use of the Fast Fourier Transform (FFT) and computer algorithms we derived a method for finding the speed of displacement. We report uncertainties in the order of 2-3 μm/s. with the use of this procedure. This brings the potential of another physical variable measurement like distance or pressure by this indirect measurement method. This approach is compared with an ultrasonic Logger Pro ® speed measurement system, and the results are compared between systems.

  10. High Precision Fe Isotope Analysis in low Concentration Samples by High Resolution MC-ICPMS

    NASA Astrophysics Data System (ADS)

    Chung, C.; Wu, J.; You, C.

    2009-12-01

    Iron availability has been shown to be the main limitation factor for phytoplankton growth in the ocean. However, due to the limitation of analytical technique, the database of dissolved Fe concentrations and isotope ratio distribution in the ocean is still very limited. In particular, the iron sources to the ocean remain uncertain. Aeolian dust from the continental is considered as the primary source, also the digenetic dissolution at the continental margins is proposed to contribute significant portion of iron content of the sea surface water. The field of Fe isotope geochemistry has seen important developments in methodology and scope since the advent of Multi-Collector Inductively Coupled Plasma Mass Spectrometry (MC-ICPMS). Although increasing the number of replicates in High Resolution MC-ICPMS reduces the uncertainty related to instability in instrumental mass bias and counting statistics, many other parameters include mass fractionation during column separation, matrix effect in ICPMS analysis and the presence of isobaric interferences can affect the precision and accuracy of Fe isotopic analyses. In this study, a high precision analytical method of Fe isotope measurement for low concentration samples was developed using HR-MC-ICPMS. Several parameters that may affect the accuracy and precision of 56Fe/54Fe result such as background, instrumental mass discrimination, isobaric interferences, type of introduction system and acid molarity were identified and evaluated. External precisions better than 0.04‰ for δ56Fe can be achieve using only 10ng of iron sample with APEX and X-cone as introduction system. Significant improvement in terms of sample size was made. This method can be applied on very low concentration samples such as coral and seawater.

  11. Pointing Control System for a High Precision Flight Telescope

    SciTech Connect

    BENTLEY,ANTHONY E.; WILCOXEN,JEFFREY LEE

    2000-12-01

    A pointing control system is developed and tested for a flying gimbaled telescope. The two-axis pointing system is capable of sub-microradian pointing stability and high accuracy in the presence of large host vehicle jitter. The telescope also has high agility--it is capable of a 50-degree retarget (in both axes simultaneously) in less than 2 seconds. To achieve the design specifications, high-accuracy, high-resolution, two-speed resolvers were used, resulting in gimbal-angle measurements stable to 1.5 microradians. In addition, on-axis inertial angle displacement sensors were mounted on the telescope to provide host-vehicle jitter cancellation. The inertial angle sensors are accurate to about 100 nanoradians, but do not measure low frequency displacements below 2 Hz. The gimbal command signal includes host-vehicle attitude information, which is band-limited. This provides jitter data below 20 Hz, but includes a variable latency between 15 and 25 milliseconds. One of the most challenging aspects of this design was to combine the inertial-angle-sensor data with the less perfect information in the command signal to achieve maximum jitter reduction. The optimum blending of these two signals, along with the feedback compensation were designed using Quantitative Feedback Theory.

  12. High Precision Iron Isotope Measurements With High Mass Resolution MC-ICPMS

    NASA Astrophysics Data System (ADS)

    Weyer, S.; Johannes, S.; Gerhard, J.

    2001-12-01

    The interest in Fe isotope compositions in Geo- and Cosmoscience has increased within the last few years, since improved analytical techniques led to the discovery of natural mass dependent isotope fractionation. Relative mass differences of the various Fe isotopes are relatively small, resulting in small isotopic fractionations (typically in the range of a few per mill), requiring precise and reliable methods to detect natural isotope fractionations. The preferred techniques for such measurements are thermal ionization mass spectrometry (TIMS) and multiple collector inductively coupled plasma mass spectrometry (MC-ICPMS). Compared to TIMS, MC-ICPMS has a larger mass bias, about 3% per a.m.u for Fe. However the mass bias is stable, at least for short term measurements, and fast sample/standard switching is possible. Unfortunately, most Fe-isotope peaks suffer from molecular interferences, e.g. 40Ar14N on 54Fe, 40Ar16O on 56Fe, 40Ar16OH on 57Fe, and 40Ar18O on 58Fe, respectively. These interferences can effectively be excluded by high mass resolution. The Thermo Finnigan NEPTUNE is the first commercial high mass resolution MC-ICPMS instrument that can perform high mass resolution measurements with flat top peaks on multiple collectors. The dynamic range of the NEPTUNE's current amplifiers is extended to 50V, improving the precision for large isotopic ratio measurements (e.g. 58Fe/56Fe). Samples were introduced either using a dual glass spray chamber, giving a high signal stability and low memory, or using a CETAC Aridus desolvating nebulizer, that gave a 3-4 fold increase in sensitivity (ca. 10V/ppm on 56Fe in high resolution mode). Only about 500ng of Fe is necessary for a high precision measurement (with internal precision of better than 20ppm 1RSD for 56Fe/54Fe and 57Fe/54Fe). The external precision of the method was tested by measuring several samples with various isotopic compositions. Accuracy was checked by adding variable amounts of an isotopically enriched (in 57Fe) tracer to the standard (IRMM014). All samples were measured using an alternating sample - standard method. In high mass resolution mode blank subtraction has only to be performed if there are large concentration differences between the standard and the sample solutions, since the small blank is mainly iron itself and isotopic variations are rather small. The reproducibility of the delta 56Fe/54Fe and delta 57Fe/54Fe was below 0.1 \\permil (1RSD). The results for the spiked samples agreed within uncertainties with the values calculated from the certified spike values. For external mass bias correction, Ni was added to some sample solutions. For purified samples this correction method did not significantly improve precision and accuracy. However, for matrix-containing samples this technique could be used to some extent to correct for matrix introduced instrumental drift.

  13. Development of a High Precision Body Surface Electrocardiogram

    NASA Astrophysics Data System (ADS)

    Inui, Shigeru; Toyosu, Yasushi; Akutagawa, Masatake; Kinouchi, Yosuke

    In the 12-lead electrocardiograph currently being used general medical practice, electrodes are positioned at 6 locations in the chest region and the cardiac potential is measured. This research increases the number of electrode to 124 at evenly-spaced intervals over the body surface of the chest, side and back. The commonly used band elimination filter is not used as a countermeasure for exclusion of the noise from such electrodes, and a body surface electrocardiograph has been developed that makes it possible to perform high-speed sampling of the cardiac potential at 80-100 times the conventional rate. From the sampling data obtained with high spatial resolution, maps and animations of the body surface potential distribution are created and displayed from the 1dimension waveform as well as from the 2dimensions/3dimensions waveforms.

  14. High-precision horizontally directed force measurements for high dead loads based on a differential electromagnetic force compensation system

    NASA Astrophysics Data System (ADS)

    Vasilyan, Suren; Rivero, Michel; Schleichert, Jan; Halbedel, Bernd; Fröhlich, Thomas

    2016-04-01

    In this paper, we present an application for realizing high-precision horizontally directed force measurements in the order of several tens of nN in combination with high dead loads of about 10 N. The set-up is developed on the basis of two identical state-of-the-art electromagnetic force compensation (EMFC) high precision balances. The measurement resolution of horizontally directed single-axis quasi-dynamic forces is 20 nN over the working range of  ±100 μN. The set-up operates in two different measurement modes: in the open-loop mode the mechanical deflection of the proportional lever is an indication of the acting force, whereas in the closed-loop mode it is the applied electric current to the coil inside the EMFC balance that compensates deflection of the lever to the offset zero position. The estimated loading frequency (cutoff frequency) of the set-up in the open-loop mode is about 0.18 Hz, in the closed-loop mode it is 0.7 Hz. One of the practical applications that the set-up is suitable for is the flow rate measurements of low electrically conducting electrolytes by applying the contactless technique of Lorentz force velocimetry. Based on a previously developed set-up which uses a single EMFC balance, experimental, theoretical and numerical analyses of the thermo-mechanical properties of the supporting structure are presented.

  15. Precision Spectroscopy on Highly-Excited Vibrational Levels of H_2

    NASA Astrophysics Data System (ADS)

    Niu, Ming Li; Salumbides, Edcel John; Ubachs, Wim

    2015-06-01

    The ground electronic energy levels of H_2 have been used as a benchmark system for the most precise comparisons between ab initio calculations and experimental investigations. Recent examples include the determinations of the ionization energy [1], fundamental vibrational energy splitting [2], and rotational energy progression extending to J=16 [3]. In general, the experimental and theoretical values are in excellent agreement with each other. The energy calculations, however, reduce in accuracy with the increase in rotational and vibrational excitation, limited by the accuracy of non-Born Oppenheimer corrections, as well as the higher-order QED effects. While on the experimental side, it remains difficult to sufficiently populate these excited levels in the ground electronic state. We present here our high-resolution spectroscopic study on the X ^1σ^+_g electronic ground state levels with very high vibrational quanta (ν=10,11,12). Vibrationally-excited H_2 are produced from the photodissociation of H_2S [4], and subsequently probed by a narrowband pulsed dye laser system. The experimental results are consistent with and more accurate than the best theoretical values [5]. These vibrationally-excited level energies are also of interest to studies that extract constraints on the possible new interactions that extend beyond the Standard Model [6]. [1] J. Liu et al., J. Chem. Phys. 130, 174306 (2009). [2] G. Dickenson et al., Phys. Rev. Lett. 110, 193601 (2013). [3] E.J. Salumbides et al., Phys. Rev. Lett. 107, 143005 (2011). [4] J. Steadman and T. Baer, J. Chem. Phys. 91, 6113 (1989). [5] J. Komasa et al., J. Chem. Theory Comp. 7, 3105 (2011). [6] E.J. Salumbides et al., Phys. Rev. D 87, 112008 (2013).

  16. A high-precision pulse-width modulator source.

    SciTech Connect

    Lenkszus, F.; Laird, R.

    1999-09-30

    A novel high-resolution pulse-width modulator (PWM) is being developed for a new digital regulator for the Advanced Photon Source power converters. The circuit features 82-ps setability over an 80-{micro}s range. Our application requires a 50-{micro}s fill-scale range; therefore the 82-ps setability is equivalent to better than 19 bits. The circuit is presently implemented as a VME module and is an integral part of the digital regulator prototype. The design concept and performance results will be presented.

  17. High speed precision motion strategies for lightweight structures

    NASA Technical Reports Server (NTRS)

    Book, Wayne J.

    1987-01-01

    Work during the recording period proceeded along the lines of the proposal, i.e., three aspects of high speed motion planning and control of flexible structures were explored: fine motion control, gross motion planning and control, and automation using light weight arms. In addition, modeling the large manipulator arm to be used in experiments and theory has lead to some contributions in that area. These aspects are reported below. Conference, workshop and journal submissions, and presentations related to this work were seven in number, and are listed. Copies of written papers and abstracts are included.

  18. High Precision SC Cavity alignment Measurements with Higher Order Modes

    SciTech Connect

    Molloy, Stephen; Frisch, Josef; Hendrickson, Linda; McCormick, Douglas; May, Justin; Ross, Marc; Smith, Tonee; Eddy, Nathan; Nagaitsev, Sergei; Baboi, Nicoleta; Hensler, Olaf; Petrosyan, Lyudvig; Napoly, Olivier; Paparella, Rita; Simon, Claire; /DSM, DAPNIA, Saclay

    2007-06-14

    Experiments at the FLASH linac at DESY have demonstrated that the higher order modes (HOMs) induced in superconducting cavities can be used to provide a variety of beam and cavity diagnostics. The centers of the cavities can be determined from the beam orbit which produces minimum power in the dipole HOM modes. The phase and amplitude of the dipole modes can be used as a high resolution beam position monitor. For most superconducting accelerators, the existing HOM couplers provide the necessary signals, and the downmix and digitizing electronics are straightforward, similar to those for a conventional BPM.

  19. Combination spindle-drive system for high precision machining

    DOEpatents

    Gerth, Howard L.

    1977-07-26

    A combination spindle-drive is provided for fabrication of optical quality surface finishes. Both the spindle-and-drive utilize the spindle bearings for support, thereby removing the conventional drive-means bearings as a source of vibration. An airbearing spindle is modified to carry at the drive end a highly conductive cup-shaped rotor which is aligned with a stationary stator to produce torque in the cup-shaped rotor through the reaction of eddy currents induced in the rotor. This arrangement eliminates magnetic attraction forces and all force is in the form of torque on the cup-shaped rotor.

  20. Precision mass spectrometry of highly charged ions with TITAN. Status and outlook

    NASA Astrophysics Data System (ADS)

    Simon, V. V.; Chaudhuri, A.; Chowdhury, U.; Gallant, A. T.; Kwiatkowski, A. A.; Lennarz, A.; Macdonald, T. D.; Schultz, B. E.; Simon, M. C.; Andreoiu, C.; Gwinner, G.; Dilling, J.

    2014-06-01

    High-precision and accurate atomic mass measurements are vital for the description of nuclear structure, investigations of nuclear astrophysical processes, and tests of fundamental symmetries. We report on mass measurements of short-lived highly charged ions using the TITAN Penning-trap mass spectrometer at TRIUMF. To increase the overall efficiency and precision of the mass measurement of highly charged ions, an addition to the TITAN system, the novel cooler Penning trap CPET is discussed.

  1. High precision moving magnet chopper for variable operation conditions

    NASA Technical Reports Server (NTRS)

    Aicher, Winfried; Schmid, Manfred

    1994-01-01

    In the context of an ESTEC technology contract, a Chopping Mechanism was developed and built with the Far Infrared and Submillimeter Telescope (FIRST) astronomy mission as a reference. The task of the mechanism is to tilt the subreflector of the telescope with an assumed mass of 2.5 kg about one chopping axis at nominal frequencies of up to 5 Hz and chopping angles of up to +/- 11.25 mrad with high efficiency (minimum time for position change). The chopping axis is required to run through the subreflector vertex. After performing a concept trade-off also considering the low operational temperatures in the 130 K range, a design using moving magnet actuators was found to be the favorite one. In addition, a bearing concept using flexible pivots was chosen to meet the high chopping accuracy required. With this approach, a very reliable design could be realized, since the actuators work without any mechanical contact between its moving and fixed parts, and the only bearings used are two flexible pivots supporting the subreflector mounting interface. The mechanism was completely built in titanium in a lightweight and stiff design. The moving magnet actuators were designed to meet the stringent requirements for minimum risetime (time necessary to move from one angular position to a new one) in the 20 msec range. The angular position and the corresponding chopping frequency as well can be arbitrarily selected by the user.

  2. A high-precision mechanical absolute-rotation sensor.

    PubMed

    Venkateswara, Krishna; Hagedorn, Charles A; Turner, Matthew D; Arp, Trevor; Gundlach, Jens H

    2014-01-01

    We have developed a mechanical absolute-rotation sensor capable of resolving ground rotation angle of less than 1 nrad/√Hz above 30 mHz and 0.2 nrad/√Hz above 100 mHz about a single horizontal axis. The device consists of a meter-scale beam balance, suspended by a pair of flexures, with a resonance frequency of 10.8 mHz. The center of mass is located 3 μm above the pivot, giving an excellent horizontal displacement rejection of better than 3 × 10(-5) rad/m. The angle of the beam is read out optically using a high-sensitivity autocollimator. We have also built a tiltmeter with better than 1 nrad/√Hz sensitivity above 30 mHz. Co-located measurements using the two instruments allowed us to distinguish between background rotation signal at low frequencies and intrinsic instrument noise. The rotation sensor is useful for rotational seismology and for rejecting background rotation signal from seismometers in experiments demanding high levels of seismic isolation, such as Advanced Laser Interferometer Gravitational-wave Observatory. PMID:24517804

  3. A high precision radiation-tolerant LVDT conditioning module

    NASA Astrophysics Data System (ADS)

    Masi, A.; Danzeca, S.; Losito, R.; Peronnard, P.; Secondo, R.; Spiezia, G.

    2014-05-01

    Linear variable differential transformer (LVDT) position sensors are widely used in particle accelerators and nuclear plants, thanks to their properties of contact-less sensing, radiation tolerance, infinite resolution, good linearity and cost efficiency. Many applications require high reading accuracy, even in environments with high radiation levels, where the conditioning electronics must be located several hundred meters away from the sensor. Sometimes even at long distances the conditioning module is still exposed to ionizing radiation. Standard off-the-shelf electronic conditioning modules offer limited performances in terms of reading accuracy and long term stability already with short cables. A radiation tolerant stand-alone LVDT conditioning module has been developed using Commercial Off-The-Shelf (COTS) components. The reading of the sensor output voltages is based on a sine-fit algorithm digitally implemented on an FPGA ensuring few micrometers reading accuracy even with low signal-to-noise ratios. The algorithm validation and board architecture are described. A full metrological characterization of the module is reported and radiation tests results are discussed.

  4. High-precision covariant one-boson-exchange potentials for np scattering below 350 MeV

    SciTech Connect

    Franz Gross; Alfred Stadler

    2007-09-10

    Using the Covariant Spectator Theory (CST), we have found One-Boson-Exchange (OBE) potentials that fit the 2006 world np data below 350 MeV with a chi2/Ndata very close to 1, for a total of 3788 data. Our potentials have significantly fewer adjustable parameters than previous high-precision potentials, and they also reproduce the experimental triton binding energy without introducing additional irreducible three-nucleon forces.

  5. High Precision Superconducting Cavity Diagnostics With Higher Order Mode Measurements

    SciTech Connect

    Molloy, S.; Frisch, J.; McCormick, D.; May, J.; Ross, M.; Smith, T.; Baboi, N.; Hensler, O.; Petrosian, L.; Napoly, O.; Paparella, R.C.; Simon, C.; Eddy, N.; Nagaitsev, S.; Wendt, M.; /Fermilab

    2007-02-12

    Experiments at the FLASH facility at DESY have demonstrated that the higher order modes induced in superconducting cavities can be used to provide a variety of beam and cavity diagnostics. The axes of the modes can be determined from the beam orbit that produces minimum power in the dipole HOM modes. The phase and amplitude of the dipole modes can be used to obtain high resolution beam position information, and the phase of the monopole modes to measure the beam phase relative to the accelerator rf. For most superconducting accelerators, the existing higher order mode couplers provide the necessary signals, and the downmix and digitizing electronics are straightforward, similar to those for a conventional beam position monitor.

  6. Development of Large Current High Precision Pulse Power Supply

    NASA Astrophysics Data System (ADS)

    Takayanagi, Tomohiro; Koseki, Shoichiro; Kubo, Hiroshi; Katoh, Shuji; Ogawa, Shinichi

    JAEA and KEK are jointly constructing a high intensity proton accelerator project J-PARC. Its main accelerator is 3GeV synchrotron. Its injection bump magnets, especially horizontal paint bump magnets, are excited by large pulse currents. Their rated currents are over 10kA and pulse widths are about 1ms. Tracking errors are required to be less than 1%. Multiple connected two-quadrant IGBT choppers are adopted for their power supplies. Their output currents are controlled by feedback control with minor loop voltage control (m-AVR). When output current of a chopper intermits at small current, its output voltage rises up and current control becomes difficult. In this paper response of m-AVR and output voltage characteristics at current intermittent region are studied and an improved control scheme is proposed. The performance is confirmed by a test.

  7. A study of the high-precision displacement laser probe

    NASA Astrophysics Data System (ADS)

    Fan, Yuming; Zhang, Guoxiong

    2006-06-01

    On the basis of the measuring principle of the dynamic active optical confocal probe based on time difference measurement that has a reference path, a dynamic active optical confocal probe based on time difference measurement but has no reference path is developed. In this paper, the working principle of this optical confocal probe is dissertated. A large-scale integrated measuring system is designed to simplify the structure of the probe and to enhance the stability of the probe. Single-chip microcomputer system with a high-speed ADC is selected in the measurement and control system of the probe. At the end of the paper, experiments on the performance of the optical confocal probe based on time difference measurement with no reference path are carried out. Experiment results show that the probe has a measuring resolution of 0.05?m, a measuring range of 0.2mm and a linearity of 0.4?m.

  8. High precision pointing with a multiline spectrometer at the VTT

    NASA Astrophysics Data System (ADS)

    Staiger, J.

    2012-12-01

    We are investigating the pointing quality of the VTT, Tenerife under the aspect of suitability for long-term heliosesimological observations. Tests have shown that thermal and mechanical loads within the telescope may create spurious image drifts with shift rates of up to 5 arcsec per hour. During daylong recordings this will reduce significantly the effective size of the field-of-view and may infer artificial lateral movements into the data. The underlying problem that not all image position offsets developing during a measurement may be compensated for is common to most high-resolution solar telescopes independently of the type of pointing system used. We are developing new approaches to address this problem which are to be tested in the near future at the VTT. The simulations established so far show that the problem may be reduced by more than 90 %.

  9. High Precision SC Cavity Diagnostics with HOM Measurements

    SciTech Connect

    Frisch, Josef; Hendrickson, Linda; McCormick, Douglas; May, Justin; Molloy, Stephen; Ross, Marc; /SLAC

    2006-08-18

    Experiments at the FLASH linac at DESY have demonstrated that the Higher Order Modes induced in Superconducting Cavities can be used to provide a variety of beam and cavity diagnostics. The centers of the cavities can be determined from the beam orbit which produces minimum power in the dipole HOM modes. The phase and amplitude of the dipole modes can be used as a high resolution beam position monitor, and the phase of the monopole modes to measure the beam phase relative to the accelerator RF. Beam orbit feedback which minimizes the dipole HOM power in a set of structures has been demonstrated. For most SC accelerators, the existing HOM couplers provide the necessary signals, and the down mix and digitizing electronics are straightforward, similar to those for a conventional BPM.

  10. Conditional DNA repair mutants enable highly precise genome engineering

    PubMed Central

    Nyerges, Ákos; Csörgő, Bálint; Nagy, István; Latinovics, Dóra; Szamecz, Béla; Pósfai, György; Pál, Csaba

    2014-01-01

    Oligonucleotide-mediated multiplex genome engineering is an important tool for bacterial genome editing. The efficient application of this technique requires the inactivation of the endogenous methyl-directed mismatch repair system that in turn leads to a drastically elevated genomic mutation rate and the consequent accumulation of undesired off-target mutations. Here, we present a novel strategy for mismatch repair evasion using temperature-sensitive DNA repair mutants and temporal inactivation of the mismatch repair protein complex in Escherichia coli. Our method relies on the transient suppression of DNA repair during mismatch carrying oligonucleotide integration. Using temperature-sensitive control of methyl-directed mismatch repair protein activity during multiplex genome engineering, we reduced the number of off-target mutations by 85%, concurrently maintaining highly efficient and unbiased allelic replacement. PMID:24500200

  11. Precision high energy liner implosion experiments PHELIX [1

    SciTech Connect

    Reass, William A; Baca, David M; Griego, Jeffrey R; Reinovsky, Robert E; Rousculp, Christopher L; Turchi, Peter J

    2009-01-01

    This paper describes the hardware design of a small megajoule sized transformer coupled pulse power system utilized to drive hydrodynamic liner experiments with a nominal current capability of 10 megAmperes. The resulting liner velocities and characteristics provide properties of physics interest. The capacitor banks utilize the ''Atlas'' plastic cased 60 kV, 60 kJ capacitors [2] and railgaps [3]. The air insulated marx'S are configured to dive a multi-filar toroidal transformer. The 4:1 multi-filar toroidal transformer is mechanically part of a circular disc line and this feature results in an attractive inductance budget. Because of the compact size, re-usable transformer, and resulting low maintenance cost, shot rates can be high compared to other ''large'' machines or explosively driven hydrodynamic methods. The PHELIX modeling, construction status, and test results will also be provided.

  12. High range precision laser radar system using a Pockels cell and a quadrant photodiode

    NASA Astrophysics Data System (ADS)

    Jo, Sungeun; Kong, Hong Jin; Bang, Hyochoong; Kim, Jae-Wan; Jeon, Byoung Goo

    2016-05-01

    We have proposed and demonstrated a novel technique to measure distance with high range precision. To meet the stringent requirements of a variety of applications, range precision is an important specification for laser radar systems. Range precision in conventional laser radar systems is limited by several factors, namely laser pulse width, the bandwidth of a detector, the timing resolution of the time to digital converter, shot noise and timing jitters generated by electronics. The proposed laser radar system adopts a Pockels cell and a quadrant photodiode and only measures the energy of a laser pulse to obtain range so that the effect of those factors is reduced in comparison to conventional systems. In the proposed system, the measured range precision was 5.7 mm with 100 laser pulses. The proposed method is expected to be an alternative method for laser radar system requiring high range precision in many applications.

  13. Creating high-stability high-precision bipolar trim power supply

    SciTech Connect

    Chen, Zhe; Merz, William A.

    2012-07-01

    Thomas Jefferson National Accelerator Facility (TJNAF) is founded by the US Department of Energy (DOE) office of science for the technology advancement and physics research in electron beam accelerator. This facility has the state of the art technology to carry out world-class cutting-edge experiments for the nucleus composition and atomic characteristics identification and exploration for the nature of the matter in the universe. A continuous wave electron beam is featured for such experiments, thus precise and stable trim power supply is required to meet such purpose. This paper demonstrates the challenges and solutions to design, assemble, fabrication and test such high-precision high-stability power supplies. This paper presents the novel design and first article test of the ±20A ±75V bipolar, 100ppm stability level current-regulated high-power trim power supplies for the beam manipulation. This special design can provide valuable documentation and reference values for future designs and special applications in particle accelerator power supply creation.

  14. High Precision Ti stable Isotope Measurement of Terrestrial Rocks

    NASA Astrophysics Data System (ADS)

    Millet, M. A.; Dauphas, N.; Williams, H. M.; Burton, K. W.; Nowell, G. M.

    2014-12-01

    Advances in multi-collection plasma source mass spectrometry have allowed the determination of stable isotope composition of transition metals to address questions relevant to both high and low temperature geochemistry. However, titanium has received only very limited attention. Here we present a new technique allowing the determination of the stable isotope composition of titanium in geological samples (d49Ti or deviation of the 49Ti/47Ti ratio from the OL-Ti in-house standard of reference) using double-spike methodology and high-resolution MC-ICP-MS. We have carried out a range analytical tests for a wide spectrum of samples matrices to demonstrate a external reproducibility of ±0.02‰ on the d49Ti while using as little as 150ng of natural Ti for a single analysis. We have analysed a comprehensive selection of mantle-derived samples covering a range of geodynamic contexts (MORB, IAB, OIB, adakites, eclogites, serpentines) and geographical distribution (MORB: Mid-Atlantic Ridge, Southwest Indian Ridge and Eastern Pacific Ridge; IAB: New Britain reference suite and Marianas Arc). The samples show a very limited range from -0.06‰ to +0.04‰ with a main mode at +0.004‰ relative to the OL-Ti standard. Average values for MORB, IAB and eclogites are similar within uncertainty and thus argue for limited mobility of Ti during subduction zone processes and homogeneity of the Ti stable isotope composition of the upper mantle. However, preliminary data for more evolved igneous rocks suggest that they display heavier Ti stable isotope compositions, which may reflect the removal of isotopically light Ti as a function of Fe-Ti oxide crystallisation. This is in good agreement with Ti being present in 5-fold and 6-fold coordination in basaltic melts and preferential uptake of 6-folded Ti by Ti-bearing oxides [1]. This dataset will be complemented by analysis of abyssal peridotites to confirm the homogeneity of the mantle as well as data for a range of ferromanganese crusts in order to explore the potential applications of Ti stable isotopes as a new tracer in paleoceanography. [1] Farges F. and Brown G.E., 1997, GCA, 1863-1870

  15. High Resolution Airborne Digital Imagery for Precision Agriculture

    NASA Technical Reports Server (NTRS)

    Herwitz, Stanley R.

    1998-01-01

    The Environmental Research Aircraft and Sensor Technology (ERAST) program is a NASA initiative that seeks to demonstrate the application of cost-effective aircraft and sensor technology to private commercial ventures. In 1997-98, a series of flight-demonstrations and image acquisition efforts were conducted over the Hawaiian Islands using a remotely-piloted solar- powered platform (Pathfinder) and a fixed-wing piloted aircraft (Navajo) equipped with a Kodak DCS450 CIR (color infrared) digital camera. As an ERAST Science Team Member, I defined a set of flight lines over the largest coffee plantation in Hawaii: the Kauai Coffee Company's 4,000 acre Koloa Estate. Past studies have demonstrated the applications of airborne digital imaging to agricultural management. Few studies have examined the usefulness of high resolution airborne multispectral imagery with 10 cm pixel sizes. The Kodak digital camera integrated with ERAST's Airborne Real Time Imaging System (ARTIS) which generated multiband CCD images consisting of 6 x 106 pixel elements. At the designated flight altitude of 1,000 feet over the coffee plantation, pixel size was 10 cm. The study involved the analysis of imagery acquired on 5 March 1998 for the detection of anomalous reflectance values and for the definition of spectral signatures as indicators of tree vigor and treatment effectiveness (e.g., drip irrigation; fertilizer application).

  16. A high precision ultrasonic system for vibration measurements

    NASA Astrophysics Data System (ADS)

    Young, M. S.; Li, Y. C.

    1992-11-01

    A microcomputer-aided ultrasonic system that can be used to measure the vibratory displacements of an object is presented. A pair of low cost 40-kHz ultrasonic transducers is used to transmit ultrasound toward an object and receive the ultrasound reflected from the object. The relative motion of the object modulates the phase angle difference between the transmitted and received ultrasound signals. A single-chip microcomputer-based phase detector was designed to record and analyze the phase shift information which is then sent to a PC-AT microcomputer for processing. We have developed an ingenious method to reconstruct the relative motion of an object from the acquired data of the phase difference changes. A digital plotter based experiment was also designed for testing the performance of the whole system. The measured accuracy of the system in the reported experiments is within +/- 0.4 mm and the theoretical maximal measurable speed of the object is 89.6 cm/s. The main advantages of this ultrasonic vibration measurement system are high resolution, low cost, noncontact measurement, and easy installation.

  17. High-Precision Measurements of the Brightness Variation of Nereid

    NASA Astrophysics Data System (ADS)

    Terai, Tsuyoshi; Itoh, Yoichi

    2013-04-01

    Nereid, the outer satellite of Neptune, has a highly eccentric prograde orbit with a semimajor axis of larger than 200 in units of Neptune's radius, and is classified as an irregular satellite. Although the capture origin of irregular satellites has been widely accepted, several previous studies suggest that Nereid was formed in the circumplanetary disk of Neptune and ejected outward to the present location by Triton. A series of our photometric observations confirm that Nereid's rotation period, 11.5 hr, is stable and nonchaotic, as indicated by Grav, Holman, and Kavelaars (2003, ApJ, 591, L71). The optical colors of Nereid are indistinguishable from those of trans-Neptunian objects and Centaurs, especially from these objects with neutral colors. We also found the consistency of Nereid's rotation period based on the size-rotation distribution of small outer bodies. It is likely that Nereid originated as an immigrant body captured from the heliocentric orbit that was 4-5 AU away from Neptune's orbit.

  18. A research of a high precision multichannel data acquisition system

    NASA Astrophysics Data System (ADS)

    Zhong, Ling-na; Tang, Xiao-ping; Yan, Wei

    2013-08-01

    The output signals of the focusing system in lithography are analog. To convert the analog signals into digital ones which are more flexible and stable to process, a desirable data acquisition system is required. The resolution of data acquisition, to some extent, affects the accuracy of focusing. In this article, we first compared performance between the various kinds of analog-to-digital converters (ADC) available on the market at the moment. Combined with the specific requirements (sampling frequency, converting accuracy, numbers of channels etc) and the characteristics (polarization, amplitude range etc) of the analog signals, the model of the ADC to be used as the core chip in our hardware design was determined. On this basis, we chose other chips needed in the hardware circuit that would well match with ADC, then the overall hardware design was obtained. Validation of our data acquisition system was verified through experiments and it can be demonstrated that the system can effectively realize the high resolution conversion of the multi-channel analog signals and give the accurate focusing information in lithography.

  19. A precision timing discriminator for high density detector systems

    SciTech Connect

    Turko, B.T. ); Smith, R.C. )

    1992-10-01

    Most high resolution time measurement techniques require discriminators that accurately make the time arrival of events regardless of their intensity. Constant fraction discriminators or zero-crossing discriminators are generally used. In this paper, the authors describe a zero-crossing discriminator that accurately determines the peak of a quasi-Gaussian waveform by differentiating it and detecting the resulting zero-crossing. Basically, it consists of a fast voltage comparator and tow integrating networks: an RC section and an LR section used in a way that keeps the input impedance purely resistive. A time walk of 100 ps in an amplitude range exceeding 100:1 has been achieved for wave-forms from 1.5 ns to 15 ns FWHM. An arming level discriminator is added to eliminate triggering by noise. Easily implemented in either monolithic or hybrid technology, the circuit is suitable for large multichannel detector systems where size and power dissipation are crucial. Circuit diagrams and typical measured data are also presented.

  20. Development of a facility for high-precision irradiation of cells with carbon ions

    SciTech Connect

    Goethem, Marc-Jan van; Niemantsverdriet, Maarten; Brandenburg, Sytze; Langendijk, Johannes A.; Coppes, Robert P.; Luijk, Peter van

    2011-01-15

    Purpose: Compared to photons, using particle radiation in radiotherapy reduces the dose and irradiated volume of normal tissues, potentially reducing side effects. The biological effect of dose deposited by particles such as carbon ions, however, differs from that of dose deposited by photons. The inaccuracy in models to estimate the biological effects of particle radiation remains the most important source of uncertainties in particle therapy. Improving this requires high-precision studies on biological effects of particle radiation. Therefore, the authors aimed to develop a facility for reproducible and high-precision carbon-ion irradiation of cells in culture. The combined dose nonuniformity in the lateral and longitudinal direction should not exceed {+-}1.5%. Dose to the cells from particles than other carbon ions should not exceed 5%. Methods: A uniform lateral dose distribution was realized using a single scatter foil and quadrupole magnets. A modulator wheel was used to create a uniform longitudinal dose distribution. The choice of beam energy and the optimal design of these components was determined using GEANT4 and SRIM Monte Carlo simulations. Verification of the uniformity of the dose distribution was performed using a scintillating screen (lateral) and a water phantom (longitudinal). The reproducibility of dose delivery between experiments was assessed by repeated measurements of the spatial dose distribution. Moreover, the reproducibility of dose-response measurements was tested by measuring the survival of irradiated HEK293 cells in three independent experiments. Results: The relative contribution of dose from nuclear reaction fragments to the sample was found to be <5% when using 90 MeV/u carbon ions. This energy still allows accurate dosimetry conforming to the IAEA Report TRS-398, facilitating comparison to dose-effect data obtained with other radiation qualities. A 1.3 mm long spread-out Bragg peak with a diameter of 30 mm was created, allowing the irradiation of cell samples with the specified accuracy. Measurements of the transverse and longitudinal dose distribution showed that the dose variation over the sample volume was {+-}0.8% and {+-}0.7% in the lateral and longitudinal directions, respectively. The track-averaged LET of 132{+-}10 keV/{mu}m and dose-averaged LET of 189{+-}15 keV/{mu}m at the position of the sample were obtained from a GEANT4 simulation, which was validated experimentally. Three separately measured cell-survival curves yielded nearly identical results. Conclusions: With the new facility, high-precision carbon-ion irradiations of biological samples can be performed with highly reproducible results.

  1. Research on the high-precision non-contact optical detection technology for banknotes

    NASA Astrophysics Data System (ADS)

    Jin, Xiaofeng; Liang, Tiancai; Luo, Pengfeng; Sun, Jianfeng

    2015-09-01

    The technology of high-precision laser interferometry was introduced for optical measurement of the banknotes in this paper. Taking advantage of laser short wavelength and high sensitivity, information of adhesive tape and cavity about the banknotes could be checked efficiently. Compared with current measurement devices, including mechanical wheel measurement device, Infrared measurement device, ultrasonic measurement device, the laser interferometry measurement has higher precision and reliability. This will improve the ability of banknotes feature information in financial electronic equipment.

  2. Design of high precision motor driving system for circular scanning ultrasonic endoscopic imaging equipment

    NASA Astrophysics Data System (ADS)

    Deng, Haoran; Bai, Baoping; Chen, Xiaodong; Zhao, Qiang; Li, Yanan; Wang, Yi; Yu, Daoyin

    2013-12-01

    This paper describes the development of a motor driving system for circular scanning ultrasonic endoscopic imaging equipment. It was designed to guarantee the motor rotating at a relatively constant speed in load fluctuation conditions, which result from the bending and twisting of the flexible shaft which connects the probe to the motor. A hardware feedback circuit based on Frequency-To-Voltage Converter LM331 and Step-Down Voltage Regulator LM2576-ADJ was designed to ensure steady rotation of motor in load fluctuation conditions, and a D/A module offered by MCU was used to regulate the real-time rotary speed. The feedback response cycle is about 20 μs according to theoretical analysis. Experimental results show that the maximum error is +/-1 r/min under the normal running environment (300 ~1500 r/min) and load fluctuation conditions, which means the average instability is reduced to 0.11% as compared with that of the motor drive simply based on MCU which is 0.94%. Both theoretical analysis and experimental results indicate that the motor driving system has high accuracy, fast response, excellent reliability and good versatility and portability, and can precisely guarantee the smooth movement of load-changing PMW (Pulse Width Modulation) motor, so as to ensure the imaging quality, and can effectively improve the efficiency and accuracy of the diagnosis.

  3. Atomic Hydrogen as High-Precision Field Standard for High-Field EPR

    PubMed Central

    Stoll, Stefan; Ozarowski, Andrew; Britt, R. David; Angerhofer, Alexander

    2010-01-01

    We introduce atomic hydrogen trapped in an octaisobutylsilsesquioxane nanocage (H@iBuT8) as a new molecular high-precision magnetic field standard for high-field EPR spectroscopy of organic radicals and other systems with signals around g = 2. Its solid-state EPR spectrum consists of two narrow lines separated by about 51 mT and centered at g ≈ 2. The isotropic g factor is 2.00294(3) and essentially temperature independent. The isotopic 1H hyperfine coupling constant is 1416.8(2) MHz below 70 K and decreases slightly with increasing temperature to 1413.7(1) MHz at room temperature. The spectrum of the standard does not overlap with those of most organic radicals, and it can be easily prepared and is stable at room temperature. PMID:20813570

  4. Atomic hydrogen as high-precision field standard for high-field EPR.

    PubMed

    Stoll, Stefan; Ozarowski, Andrew; Britt, R David; Angerhofer, Alexander

    2010-11-01

    We introduce atomic hydrogen trapped in an octaisobutylsilsesquioxane nanocage (H@iBuT₈) as a new molecular high-precision magnetic field standard for high-field EPR spectroscopy of organic radicals and other systems with signals around g=2. Its solid-state EPR spectrum consists of two 0.2 mT wide lines separated by about 51 mT and centered at g≈2. The isotropic g factor is 2.00294(3) and essentially temperature independent. The isotropic ¹H hyperfine coupling constant is 1416.8(2) MHz below 70 K and decreases slightly with increasing temperature to 1413.7(1) MHz at room temperature. The spectrum of the standard does not overlap with those of most organic radicals, and it can be easily prepared and is stable at room temperature. PMID:20813570

  5. Ion-beam figuring (IBF) for high-precision optics becomes affordable

    NASA Astrophysics Data System (ADS)

    Kiontke, Sven; Demmler, Marcel; Zeuner, Michael; Allenstein, Frank; Dunger, Thoralf; Nestler, Matthias

    2010-08-01

    The success of many advanced technologies increasingly depends on the precision of the optical lenses used. Therefore the demand for high precision optical elements in more common devices and instruments is increasing as well. Concurrently the need to make devices smaller and lighter weight is also driving the demand for precision optical elements. Therefore, the use of aspherical glass lenses is growing tremendously and has become the standard for many applications. So far most methods for manufacturing aspherical glass surfaces use grinding and polishing. Very sophisticated methods such as Ion Beam Figuring have not been used for common precision optics. The reasons for this might be perceptions of high costs, doubt about the ablation rate and limited knowledge about the technique within the optical industry. Now Asphericon has set up its first ion beam correction system for precision aspherical optics (asphericon ION-Finish). This presentation will show how the ion beam technology has matured and become affordable enough for common precision applications. In some examples we will show how ion beam systems are used to correct aspheres to precisions of better than lambda/60 rms (10nm). Together with a flexible measurement technique, the manufacturing of aspherical glass lenses becomes very fast and cost-efficient. Furthermore, advantages and disadvantages will be discussed. In connection with that the required quality of the pre-polishing will be addressed too. Finally it will be shown how fast the correction process can be and how flexibly the size of the tool can be changed.

  6. Closed-loop high-precision position control system with two modes

    NASA Astrophysics Data System (ADS)

    Ge, Cheng-liang; Fan, Guo-bin; Huang, Zhi-wei; Liu, Zhi-qiang; Li, Zhen-dong; Wu, Jian-tao; Wan, Min; Hu, Xiao-yang; Liang, Zheng

    2008-08-01

    Based on fine optical grating and micrometer, one closed-loop high-precision position control system with two modes has been made. The system is used to control the optical elements moving in two ways. That is, one control mode is automatically control with optical grating feedback system and the other mode is manually control with micrometer. Under the support of conservative PID control algorithm, the precision of the system is up to +/-0.1?m while operating on automatically way, otherwise, the position precision is +/-1?m.

  7. Experimental design: computer simulation for improving the precision of an experiment.

    PubMed

    van Wilgenburg, Henk; Zillesen, Piet G van Schaick; Krulichova, Iva

    2004-06-01

    An interactive computer-assisted learning program, ExpDesign, that has been developed for simulating animal experiments, is introduced. The program guides students through the steps for designing animal experiments and estimating optimal sample sizes. Principles are introduced for controlling variation, establishing the experimental unit, selecting randomised block and factorial experimental designs, and applying the appropriate statistical analysis. Sample Power is a supporting tool that visualises the process of estimating the sample size. The aim of developing the ExpDesign program has been to make biomedical research workers more familiar with some basic principles of experimental design and statistics and to facilitate discussions with statisticians. PMID:23581147

  8. A High-Precision, Optical Polarimeter to Measure Inclinations of High Mass X-Ray Binaries

    NASA Astrophysics Data System (ADS)

    Wiktorowicz, Sloane; Matthews, K.; Kulkarni, S. R.

    2007-12-01

    While most astrophysical objects require many parameters in order to be fully described, black holes are unique in that only three parameters are required: mass, spin, and charge. Of these, mass and spin are enough to describe the black hole's gravitational field and event horizon location. Therefore, theory and observation may jointly pursue one or two quantities to uncover the progenitor star's history. Constraints on black hole mass exist for high mass X-ray binaries, such as Cygnus X-1, which is thought to consist of a 40 ± 10 solar mass O9.7Iab star and a 13.5-29 solar mass black hole (Ziolkowski 2005). While the constraints on the mass of the compact object are tight enough to declare that it is a black hole, they are sufficiently loose as to prohibit precise modeling of the progenitor star's mass. We have built an optical polarimeter for the Hale 5-m telescope at Mt. Palomar to provide an independent method for determining black hole mass. Degree of polarization will vary for an edge-on system, while position angle of net polarization will vary for a face-on system. Therefore, by monitoring the linear polarimetric variability of the binary, inclination can be estimated. Coupled with the known mass function of the binary from radial velocity work (Gies et al. 2003), inclination estimates constrain the mass of the black hole. Our polarimeter, POLISH (POLarimeter for Inclination Studies of High mass x-ray binaries), has achieved linear polarimetric precision of less than 10 parts per million on bright, unpolarized standard stars. We will also present results for polarized standard stars and Cygnus X-1 itself. This instrument has been funded by an endowment from the Moore Foundation.

  9. HIGH PRECISION K-SHELL PHOTOABSORPTION CROSS SECTIONS FOR ATOMIC OXYGEN: EXPERIMENT AND THEORY

    SciTech Connect

    McLaughlin, B. M.; Ballance, C. P.; Bowen, K. P.; Gardenghi, D. J.; Stolte, W. C. E-mail: ballance@physics.auburn.edu E-mail: dgardenghi@gmail.com

    2013-07-01

    Photoabsorption of atomic oxygen in the energy region below the 1s {sup -1} threshold in X-ray spectroscopy from Chandra and XMM-Newton is observed in a variety of X-ray binary spectra. Photoabsorption cross sections determined from an R-matrix method with pseudo-states and new, high precision measurements from the Advanced Light Source (ALS) are presented. High-resolution spectroscopy with E/{Delta}E Almost-Equal-To 4250 {+-} 400 was obtained for photon energies from 520 eV to 555 eV at an energy resolution of 124 {+-} 12 meV FWHM. K-shell photoabsorption cross section measurements were made with a re-analysis of previous experimental data on atomic oxygen at the ALS. Natural line widths {Gamma} are extracted for the 1s {sup -1}2s {sup 2}2p {sup 4}({sup 4} P)np {sup 3} P Degree-Sign and 1s {sup -1}2s {sup 2}2p {sup 4}({sup 2} P)np {sup 3} P Degree-Sign Rydberg resonances series and compared with theoretical predictions. Accurate cross sections and line widths are obtained for applications in X-ray astronomy. Excellent agreement between theory and the ALS measurements is shown which will have profound implications for the modeling of X-ray spectra and spectral diagnostics.

  10. High precision quantum-chemical treatment of adsorption: Benchmarking physisorption of molecular hydrogen on graphane

    NASA Astrophysics Data System (ADS)

    Usvyat, Denis

    2015-09-01

    A multilevel hierarchical ab initio protocol for calculating adsorption on non-conducting surfaces is presented. It employs fully periodic treatment, which reaches local Møller-Plesset perturbation theory of second order (MP2) with correction for the basis set incompleteness via the local F12 technique. Post-MP2 corrections are calculated using finite clusters. That includes the coupled cluster treatment in the local and canonical frameworks (up to perturbative quadruples) and correlated core (with MP2). Using this protocol, the potential surface of hydrogen molecules adsorbed on graphane was computed. According to the calculations, hydrogen molecules are adsorbed on graphane in a perpendicular to the surface orientation with the minimum of the potential surface of around -3.6 kJ/mol located at the distance of 3.85 Å between the bond center of the hydrogen molecule and the mid-plane of graphane. The adsorption sites along the path from the downward-pointing carbon to the ring center of the graphane are energetically virtually equally preferable, which can enable nearly free translations of hydrogen molecules along these paths. Consequently, the hydrogen molecules on graphane most likely form a non-commensurate monolayer. The analysis of the remaining errors reveals a very high accuracy of the computed potential surface with an error bar of a few tenths of a kJ/mol. The obtained results are a high-precision benchmark for further theoretical and experimental studies of hydrogen molecules interacting with graphane.

  11. Use of Terrestrial Laser Scanning Technology for Long Term High Precision Deformation Monitoring

    PubMed Central

    Vezočnik, Rok; Ambrožič, Tomaž; Sterle, Oskar; Bilban, Gregor; Pfeifer, Norbert; Stopar, Bojan

    2009-01-01

    The paper presents a new methodology for high precision monitoring of deformations with a long term perspective using terrestrial laser scanning technology. In order to solve the problem of a stable reference system and to assure the high quality of possible position changes of point clouds, scanning is integrated with two complementary surveying techniques, i.e., high quality static GNSS positioning and precise tacheometry. The case study object where the proposed methodology was tested is a high pressure underground pipeline situated in an area which is geologically unstable. PMID:22303152

  12. Machine vision for high-precision volume measurement applied to levitated containerless material processing

    SciTech Connect

    Bradshaw, R.C.; Schmidt, D.P.; Rogers, J.R.; Kelton, K.F.; Hyers, R.W.

    2005-12-15

    By combining the best practices in optical dilatometry with numerical methods, a high-speed and high-precision technique has been developed to measure the volume of levitated, containerlessly processed samples with subpixel resolution. Containerless processing provides the ability to study highly reactive materials without the possibility of contamination affecting thermophysical properties. Levitation is a common technique used to isolate a sample as it is being processed. Noncontact optical measurement of thermophysical properties is very important as traditional measuring methods cannot be used. Modern, digitally recorded images require advanced numerical routines to recover the subpixel locations of sample edges and, in turn, produce high-precision measurements.

  13. High-precision thickness setting models for titanium alloy plate cold rolling without tension

    NASA Astrophysics Data System (ADS)

    Wang, Xiaochen; Yang, Quan; He, Fei; Sun, Youzhao; Xiao, Huifang

    2015-03-01

    Due to its highly favorable physical and chemical properties, titanium and titanium alloy are widely used in a variety of industries. Because of the low output of a single batch, plate cold rolling without tension is the most common rolling production method for titanium alloy. This method is lack of on-line thickness closed-loop control, with carefully thickness setting models for precision. A set of high-precision thickness setting models are proposed to suit the production method. Because of frequent variations in rolling specification, a model structural for the combination of analytical models and statistical models is adopted to replace the traditional self-learning method. The deformation resistance and friction factor, the primary factors which affect model precision, are considered as the objectives of statistical modeling. Firstly, the coefficient fitting of deformation resistance analytical model based on over-determined equations set is adopted. Additionally, a support vector machine(SVM) is applied to the modeling of the deformation resistance and friction factor. The setting models are applied to a 1450 plate-coiling mill for titanium alloy plate rolling, and then thickness precision is found consistently to be within 3%, exceeding the precision of traditional setting models with a self-learning method based on a large number of stable rolling data. Excellent application performance is obtained. The proposed research provides a set of high-precision thickness setting models which are well adapted to the characteristics of titanium alloy plate cold rolling without tension.

  14. Precision-mechanisms for high accuracy beamline instruments at the ESRF: A review

    NASA Astrophysics Data System (ADS)

    Dabin, Y.; Rostaing, G.; Gagliardini, E.; Nicola, M.; Barrett, R.; Susini, J.

    2003-03-01

    High accuracy beamline instruments have been designed and developed for 12 years at the ESRF with an increasing demand of static and dynamic qualities. Over the last five years, microscopy beamlines, and more generally, the need for micro positioning when using small X-ray beams, has been a driving force for improving instrument compactness when combining movements, and a consequence has lead to a high level of intricacy. Even if resolutions of 0.1μ m, and high quality guiding (70μrd), are easily found in commercially available translation stages, overall sizes and lever arms can lead to larger spheres of confusion. Moreover, environmental considerations such as vacuum compatibility can further restrict the choice of appropriate translations. To meet the various needs of the micro-focusing beamlines, compact and high-resolution micro-jacks, and xyz vacuum compatible cross tables have been developed in-house. A series of “standard” low profile components such as elevators (1 μm, 10mm). μrotary tables (Laue angle rocking curve), sample slits, inserted with either pico motors or stepper ujacks are now available. Using this approach an integrated “all in one” experimental station was designed for X-ray microscopy beamlines, like the scanning X-ray microscope for ID21, (10 sub-micron axes operated at 10-6mbars). Other versions are currently being developed for micro-fluorescence beamlines or post monochromators. The development programme has benefited greatly from the presence of the ESRF precision engineering laboratory (PEL), which allowed high quality metrology measurements to be performed on both the prototype and the final Systems.

  15. Flexible, non-contact and high-precision measurements of optical components

    NASA Astrophysics Data System (ADS)

    Beutler, A.

    2016-06-01

    A high-accuracy cylindrical coordinate measuring instrument developed for the measurement of optical components is presented. It is equipped with an optical point sensor system including a high aperture probe. This setup allows measurements to be performed with high accuracy in a flexible way. Applications include the measurement of the topography of high-precision aspheric and freeform lenses and diffractive structures. High measuring speeds guarantee the implementation in a closed-loop production process.

  16. Research on high-precision laser displacement sensor-based error compensation model

    NASA Astrophysics Data System (ADS)

    Zhang, Zhifeng; Zhai, Yusheng; Su, Zhan; Qiao, Lin; Tang, Yiming; Wang, Xinjie; Su, Yuling; Song, Zhijun

    2015-08-01

    The triangulation measurement is a kind of active vision measurement. The laser triangulation displacement is widely used with advantages of non-contact, high precision, high sensitivity. The measuring error will increase with the nonlinear and noise disturbance when sensors work in large distance. The paper introduces the principle of laser triangulation measurement and analyzes the measuring error and establishes the compensation error. Spot centroid is extracted with digital image processing technology to increase noise-signal ratio. Results of simulation and experiment show the method can meet requirement of large distance and high precision.

  17. Simulated and experimental study of laser-beam-induced thermal aberrations in precision optical systems.

    PubMed

    Chen, Hua; Yang, Huaijiang; Yu, Xinfeng; Shi, Zhenguang

    2013-06-20

    Precision optical systems that utilize laser beams as working media usually suffer from thermal aberrations caused by absorbed energy. Based on a specially designed three-lens system, the causes and contributions of mechanical structures to the system's thermal aberrations are studied. The contribution of three thermal effects, surface deformation, change of refractive index, and stress birefringence on the system's thermal aberrations, is analyzed respectively through an integrated optomechanical simulation method. The impact of the structure's thermal dissipating capability and structure configuration on the system's thermal aberrations is analyzed, too. Experiments have been carried out to validate the correctness and accuracy of the simulation method. Both the simulated and tested results can provide a reference for structure design and thermal aberration analysis of the similar optical systems. PMID:23842181

  18. A simple breathing circuit allowing precise control of inspiratory gases for experimental respiratory manipulations

    PubMed Central

    2014-01-01

    Background Respiratory manipulations modulating blood flow and oxygenation levels have become an important component of modern functional MRI applications. Manipulations often consist of temporarily switching inspired fractions of CO2 and O2; and have typically been performed using simple oxygen masks intended for applications in respiratory therapy. However, precise control of inspired gas composition is difficult using this type of mask due to entrainment of room air and resultant dilution of inspired gases. We aimed at developing a gas delivery apparatus allowing improved control over the fractional concentration of inspired gases, to be used in brain fMRI studies. Findings The breathing circuit we have conceived allowed well controlled step changes in FiO2 and FiCO2, at moderate flow rates achievable on standard clinical flow regulators. In a two run test inside the scanner we demonstrate that tightly controlled simple gas switching manipulations can afford good intra-subject reproducibility of induced hyperoxia/hypercapnia responses. Although our approach requires a non-vented mask fitting closely to the subject’s face, the circuit ensures a continuous supply of breathable air even if the supply of medical gases is interrupted, and is easily removable in case of an emergency. The apparatus we propose is also compact and MRI compatible, allowing subject placement in confined spaces such as an MRI scanner for brain examinations. Conclusions We have reported a new approach for the controlled administration of medical gases, and describe an implementation of the breathing circuit that is MRI compatible and uses commercially available parts. The resultant apparatus allows simple, safe and precise manipulations of FiO2 and FiCO2. PMID:24725848

  19. Methods for high precision 14C AMS measurement of atmospheric CO2 at LLNL

    SciTech Connect

    Graven, H D; Guilderson, T P; Keeling, R F

    2006-10-18

    Development of {sup 14}C analysis with precision better than 2{per_thousand} has the potential to expand the utility of {sup 14}CO{sub 2} measurements for carbon cycle investigations as atmospheric gradients currently approach traditional measurement precision of 2-5{per_thousand}. The AMS facility at the Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, produces high and stable beam currents that enable efficient acquisition times for large numbers of {sup 14}C counts. One million {sup 14}C atoms can be detected in approximately 25 minutes, suggesting that near 1{per_thousand} counting precision is economically feasible at LLNL. The overall uncertainty in measured values is ultimately determined by the variation between measured ratios in several sputtering periods of the same sample and by the reproducibility of replicate samples. Experiments on the collection of one million counts on replicate samples of CO{sub 2} extracted from a whole air cylinder show a standard deviation of 1.7{per_thousand} in 36 samples measured over several wheels. This precision may be limited by the reproducibility of Oxalic Acid I standard samples, which is considerably poorer. We outline the procedures for high-precision sample handling and analysis that have enabled reproducibility in the cylinder extraction samples at the <2{per_thousand} level and describe future directions to continue increasing measurement precision at LLNL.

  20. Experimental approaches for addressing fundamental biological questions in living, functioning cells with single molecule precision

    PubMed Central

    Lenn, Tchern; Leake, Mark C.

    2012-01-01

    In recent years, single molecule experimentation has allowed researchers to observe biological processes at the sensitivity level of single molecules in actual functioning, living cells, thereby allowing us to observe the molecular basis of the key mechanistic processes in question in a very direct way, rather than inferring these from ensemble average data gained from traditional molecular and biochemical techniques. In this short review, we demonstrate the impact that the application of single molecule bioscience experimentation has had on our understanding of various cellular systems and processes, and the potential that this approach has for the future to really address very challenging and fundamental questions in the life sciences. PMID:22773951

  1. High precision predictions for exclusive VH production at the LHC

    SciTech Connect

    Li, Ye; Liu, Xiaohui

    2014-06-04

    We present a resummation-improved prediction for pp → VH + 0 jets at the Large Hadron Collider. We focus on highly-boosted final states in the presence of jet veto to suppress the tt¯ background. In this case, conventional fixed-order calculations are plagued by the existence of large Sudakov logarithms αnslogm(pvetoT/Q) for Q ~ mV + mH which lead to unreliable predictions as well as large theoretical uncertainties, and thus limit the accuracy when comparing experimental measurements to the Standard Model. In this work, we show that the resummation of Sudakov logarithms beyond the next-to-next-to-leading-log accuracy, combined with the next-to-next-to-leading order calculation, reduces the scale uncertainty and stabilizes the perturbative expansion in the region where the vector bosons carry large transverse momentum. Thus, our result improves the precision with which Higgs properties can be determined from LHC measurements using boosted Higgs techniques.

  2. Laser ablation and high precision patterning of biomaterials and intraocular lenses

    NASA Astrophysics Data System (ADS)

    Serafetinides, A. A.; Spyratou, E.; Makropoulou, M.

    2010-10-01

    The use of intraocular lenses (IOL) is the most promising method for restoring excellent vision in cataract surgery. In addition, multifocal intraocular lenses for good distant and near vision are investigated. Several new materials, techniques and patterns are studied for the formation and etching of intraocular lenses in order to improve their optical properties and reduce the diffractive aberrations. As pulsed laser ablation is well established as a universal tool for surface processing of organic polymer materials, this study was focused in using laser ablation with short and ultra short laser pulses for surface modification of PMMA and intraocular lenses, instead of using other conventional techniques. The main advantage of using very short laser pulses, e.g. of ns, ps or fs duration, is that heat diffusion into the polymer material is negligible. As a result high precision patterning of the sample, without thermal damage of the surroundings, becomes possible. In this study, laser ablation was performed using commercially available hydrophobic acrylic IOLs, hydrophilic acrylic IOLs, and PMMA IOLs, with various diopters. We investigated the ablation efficiency and the phenomenology of the etched patterns by testing the ablation rate, versus laser energy fluence, at several wavelengths and the surface modification with atomic force microscopy (AFM), or scanning electron microscopy (SEM). The irradiated polymers have different optical properties, at the applied wavelengths, and therefore, present different ablation behaviour and morphology of the laser ablated crater walls and surrounding surfaces. The experimental results, some theoretical assumptions for mathematical modeling of the relevant ablation mechanisms are discussed.

  3. Development of a low cost high precision three-layer 3D artificial compound eye.

    PubMed

    Zhang, Hao; Li, Lei; McCray, David L; Scheiding, Sebastian; Naples, Neil J; Gebhardt, Andreas; Risse, Stefan; Eberhardt, Ramona; Tünnermann, Andreas; Yi, Allen Y

    2013-09-23

    Artificial compound eyes are typically designed on planar substrates due to the limits of current imaging devices and available manufacturing processes. In this study, a high precision, low cost, three-layer 3D artificial compound eye consisting of a 3D microlens array, a freeform lens array, and a field lens array was constructed to mimic an apposition compound eye on a curved substrate. The freeform microlens array was manufactured on a curved substrate to alter incident light beams and steer their respective images onto a flat image plane. The optical design was performed using ZEMAX. The optical simulation shows that the artificial compound eye can form multiple images with aberrations below 11 μm; adequate for many imaging applications. Both the freeform lens array and the field lens array were manufactured using microinjection molding process to reduce cost. Aluminum mold inserts were diamond machined by the slow tool servo method. The performance of the compound eye was tested using a home-built optical setup. The images captured demonstrate that the proposed structures can successfully steer images from a curved surface onto a planar photoreceptor. Experimental results show that the compound eye in this research has a field of view of 87°. In addition, images formed by multiple channels were found to be evenly distributed on the flat photoreceptor. Additionally, overlapping views of the adjacent channels allow higher resolution images to be re-constructed from multiple 3D images taken simultaneously. PMID:24104115

  4. Precision of FLEET Velocimetry Using High-Speed CMOS Camera Systems

    NASA Technical Reports Server (NTRS)

    Peters, Christopher J.; Danehy, Paul M.; Bathel, Brett F.; Jiang, Naibo; Calvert, Nathan D.; Miles, Richard B.

    2015-01-01

    Femtosecond laser electronic excitation tagging (FLEET) is an optical measurement technique that permits quantitative velocimetry of unseeded air or nitrogen using a single laser and a single camera. In this paper, we seek to determine the fundamental precision of the FLEET technique using high-speed complementary metal-oxide semiconductor (CMOS) cameras. Also, we compare the performance of several different high-speed CMOS camera systems for acquiring FLEET velocimetry data in air and nitrogen free-jet flows. The precision was defined as the standard deviation of a set of several hundred single-shot velocity measurements. Methods of enhancing the precision of the measurement were explored such as digital binning (similar in concept to on-sensor binning, but done in post-processing), row-wise digital binning of the signal in adjacent pixels and increasing the time delay between successive exposures. These techniques generally improved precision; however, binning provided the greatest improvement to the un-intensified camera systems which had low signal-to-noise ratio. When binning row-wise by 8 pixels (about the thickness of the tagged region) and using an inter-frame delay of 65 microseconds, precisions of 0.5 meters per second in air and 0.2 meters per second in nitrogen were achieved. The camera comparison included a pco.dimax HD, a LaVision Imager scientific CMOS (sCMOS) and a Photron FASTCAM SA-X2, along with a two-stage LaVision HighSpeed IRO intensifier. Excluding the LaVision Imager sCMOS, the cameras were tested with and without intensification and with both short and long inter-frame delays. Use of intensification and longer inter-frame delay generally improved precision. Overall, the Photron FASTCAM SA-X2 exhibited the best performance in terms of greatest precision and highest signal-to-noise ratio primarily because it had the largest pixels.

  5. Precision of FLEET Velocimetry Using High-speed CMOS Camera Systems

    NASA Technical Reports Server (NTRS)

    Peters, Christopher J.; Danehy, Paul M.; Bathel, Brett F.; Jiang, Naibo; Calvert, Nathan D.; Miles, Richard B.

    2015-01-01

    Femtosecond laser electronic excitation tagging (FLEET) is an optical measurement technique that permits quantitative velocimetry of unseeded air or nitrogen using a single laser and a single camera. In this paper, we seek to determine the fundamental precision of the FLEET technique using high-speed complementary metal-oxide semiconductor (CMOS) cameras. Also, we compare the performance of several different high-speed CMOS camera systems for acquiring FLEET velocimetry data in air and nitrogen free-jet flows. The precision was defined as the standard deviation of a set of several hundred single-shot velocity measurements. Methods of enhancing the precision of the measurement were explored such as digital binning (similar in concept to on-sensor binning, but done in post-processing), row-wise digital binning of the signal in adjacent pixels and increasing the time delay between successive exposures. These techniques generally improved precision; however, binning provided the greatest improvement to the un-intensified camera systems which had low signal-to-noise ratio. When binning row-wise by 8 pixels (about the thickness of the tagged region) and using an inter-frame delay of 65 micro sec, precisions of 0.5 m/s in air and 0.2 m/s in nitrogen were achieved. The camera comparison included a pco.dimax HD, a LaVision Imager scientific CMOS (sCMOS) and a Photron FASTCAM SA-X2, along with a two-stage LaVision High Speed IRO intensifier. Excluding the LaVision Imager sCMOS, the cameras were tested with and without intensification and with both short and long inter-frame delays. Use of intensification and longer inter-frame delay generally improved precision. Overall, the Photron FASTCAM SA-X2 exhibited the best performance in terms of greatest precision and highest signal-to-noise ratio primarily because it had the largest pixels.

  6. Research on high precision centering assembly method of roll edge optical elements

    NASA Astrophysics Data System (ADS)

    Liu, Hua; Liu, Xiaomei

    2015-08-01

    In order to improve the imaging quality of target imaging optical system, in the special environment of large temperature difference, the centering assembly precision of roll edge optical elements was studied. According to the hole-axis coordinate error theory of mechanics, by analyzing the factors affected the precision of mechanical heating surface, combining with the existing method to eliminate error and centering assembly process, a new kind of high precision centering assembly method was put forward. Using additional grinding device to grinding roll edge of optical element, eliminate the machining error on the surface of the mechanical hot working, thus improve the centering assembly precision between the roll edge optical element and lens tube. The result of experiment shows that the centering precision can reach less than 3μm when assembled optical element after roll edge using new centering assembly method, and improved by 25% compared to the traditional method of roll edge optical elements are assembled directly after hot working. New assembly method with additional grinding device can improve the centering assembly precision of roll edge optical elements, and greatly reduce the difficulty of optical design of such optical imaging system using in large temperature difference environment, when meet the same image quality.

  7. Experimental Characterization of Hysteresis in a Revolute Joint for Precision Deployable Structures

    NASA Technical Reports Server (NTRS)

    Lake, Mark S.; Fung, Jimmy; Gloss, Kevin; Liechty, Derek S.

    1997-01-01

    Recent studies of the micro-dynamic behavior of a deployable telescope metering truss have identified instabilities in the equilibrium shape of the truss in response to low-energy dynamic loading. Analyses indicate that these micro-dynamic instabilities arise from stick-slip friction within the truss joints (e.g., hinges and latches). The present study characterizes the low-magnitude quasi-static load cycle response of the precision revolute joints incorporated in the deployable telescope metering truss, and specifically, the hysteretic response of these joints caused by stick-slip friction within the joint. Detailed descriptions are presented of the test setup and data reduction algorithms, including discussions of data-error sources and data-filtering techniques. Test results are presented from thirteen specimens, and the effects of joint preload and manufacturing tolerances are investigated. Using a simplified model of stick-slip friction, a relationship is made between joint load-cycle behavior and micro-dynamic dimensional instabilities in the deployable telescope metering truss.

  8. High precision measurement of the proton charge radius: The PRad experiment

    SciTech Connect

    Meziane, Mehdi

    2013-11-01

    The recent high precision measurements of the proton charge radius performed at PSI from muonic hydrogen Lamb shift puzzled the hadronic physics community. A value of 0.8418 {+-} 0.0007 fm was extracted which is 7{sigma} smaller than the previous determinations obtained from electron-proton scattering experiments and based on precision spectroscopy of electronic hydrogen. An additional extraction of the proton charge radius from electron scattering at Mainz is also in good agreement with these "electronic" determinations. An independent measurement of the proton charge radius from unpolarized elastic ep scattering using a magnetic spectrometer free method was proposed and fully approved at Jefferson Laboratory in June 2012. This novel technique uses the high precision calorimeter HyCal and a windowless hydrogen gas target which makes possible the extraction of the charge radius at very forward angles and thus very low momentum transfer Q{sup 2} up to 10{sup -4} (GeV/c){sup 2} with an unprecedented sub-percent precision for this type of experiment. In this paper, after a review of the recent progress on the proton charge radius extraction and the new high precision experiment PRad will be presented.

  9. High precision measurement of the proton charge radius: The PRad experiment

    SciTech Connect

    Meziane, Mehdi; Collaboration: PRad Collaboration

    2013-11-07

    The recent high precision measurements of the proton charge radius performed at PSI from muonic hydrogen Lamb shift puzzled the hadronic physics community. A value of 0.8418 ± 0.0007 fm was extracted which is 7σ smaller than the previous determinations obtained from electron-proton scattering experiments and based on precision spectroscopy of electronic hydrogen. An additional extraction of the proton charge radius from electron scattering at Mainz is also in good agreement with these 'electronic' determinations. An independent measurement of the proton charge radius from unpolarized elastic ep scattering using a magnetic spectrometer free method was proposed and fully approved at Jefferson Laboratory in June 2012. This novel technique uses the high precision calorimeter HyCal and a windowless hydrogen gas target which makes possible the extraction of the charge radius at very forward angles and thus very low momentum transfer Q{sup 2} up to 10{sup −4} (GeV/c){sup 2} with an unprecedented sub-percent precision for this type of experiment. In this paper, after a review of the recent progress on the proton charge radius extraction and the new high precision experiment PRad will be presented.

  10. A high precision attitude determination and control system for the UYS-1 nanosatellite

    NASA Astrophysics Data System (ADS)

    Chaurais, J. R.; Ferreira, H. C.; Ishihara, J. Y.; Borges, R. A.; Kulabukhov, A. M.; Larin, V. A.; Belikov, V. V.

    This paper presents the design of a high precision attitude determination and control system for the UYS-1 Ukrainian nanosatellite. Its main task is the 3-axis stabilization with less than 0.5° angle errors, so the satellite may take high precision photos of Earth's surface. To accomplish this task, this system comprises a star tracker and three reaction wheels. To avoid external disturbances and actuators faults, a PD-type and a PID-type robust controllers are simulated and the results are compared to an empirically adjusted PD controller.

  11. Fabrication and Assembly of High-Precision Hinge and Latch Joints for Deployable Optical Instruments

    NASA Technical Reports Server (NTRS)

    Phelps, James E.

    1999-01-01

    Descriptions are presented of high-precision hinge and latch joints that have been co-developed, for application to deployable optical instruments, by NASA Langley Research Center and Nyma/ADF. Page-sized versions of engineering drawings are included in two appendices to describe all mechanical components of both joints. Procedures for assembling the mechanical components of both joints are also presented. The information herein is intended to facilitate the fabrication and assembly of the high-precision hinge and latch joints, and enable the incorporation of these joints into the design of deployable optical instrument systems.

  12. A high-precision calculation method for interface normal and curvature on an unstructured grid

    NASA Astrophysics Data System (ADS)

    Ito, Kei; Kunugi, Tomoaki; Ohno, Shuji; Kamide, Hideki; Ohshima, Hiroyuki

    2014-09-01

    In the volume-of-fluid algorithm, the calculations of the interface normal and curvature are crucially important for accurately simulating interfacial flows. However, few methods have been proposed for the high-precision interface calculation on an unstructured grid. In this paper, the authors develop a height function method that works appropriately on an unstructured grid. In the process, the definition of the height function is discussed, and the high-precision calculation method of the interface normal is developed to meet the necessary condition for a second-order method. This new method has highly reduced computational cost compared with a conventional high-precision method because the interface normal calculation is completed by solving relatively simple algebraic equations. The curvature calculation method is also discussed and the approximated quadric curve of an interface is employed to calculate the curvature. Following a basic verification, the developed height function method is shown to successfully provide superior calculation accuracy and highly reduced computational cost compared with conventional calculation methods in terms of the interface normal and curvature. In addition, the height function method succeeds in calculating accurately the slotted-disk revolution problem and the oscillating drop on unstructured grids. Therefore, the developed height function method is confirmed to be an efficient technique for the high-precision numerical simulation of interfacial flows on an unstructured grid.

  13. Structures Formed in Experimentally Sheared Artificial Fault Gouge: Precise Statistical Measurements

    NASA Astrophysics Data System (ADS)

    Dilov, T.; Yoshida, S.; Kato, A.; Nakatani, M.; Mochizuki, H.; Otsuki, K.

    2004-12-01

    The physical parameters governing earthquakes change with the ongoing formation and evolution of structures, formed in the course of a single or multiple earthquakes, within a particular fault zone or in a broad volume containing interacting tectonic faults. Our precise knowledge of these complex phenomena is still elusive. Especially, works considering geometrical evolution of shear structures under controlled conditions are rare. In order to gain some insights we accomplished a set of 12 laboratory experiments using a servo-controlled direct-shear apparatus, under room temperature and without controlling the air humidity. Two fault gouge layers (industrially produced quartz powder, average particle size of 5 μ m, and pre-shear thickness of 1.5, 2.0 and 3.0 mm,) were sandwiched between three granite blocks. The middle block was slid in order to create frictional structures within the simulated gouge. The total imposed shear strain varies between 0.14 and 11.80. The post-shear gouge layer thickness ranges from 0.99-2.11 mm. Each experiment was run under a constant normal stress (varying from 10-44 MPa through the experiments) and at a constant shear velocity (0.07, 0.7 and 7 μ m/s, through the experiments). Later, in cross-sections of solidified by epoxy glue gouge (parallel to the shear direction, normal to the gouge walls,) we quantified the numerous R-shears, according to their density distribution, fracture thickness (measured perpendicularly to the fracture walls), fracture angle and morphology, and fracture length. In gouge views parallel to the sliding blocks, we measured fracture length and along-strike R-shear morphology. Although the latter data are with lower quality, both observational sets provide precise statistical fracture data as well snapshots of evolving 3D structures. We observe shear localization with decreasing gouge layer thickness and with increasing normal stress. The average density of major fractures increases from 2.83 to 3.67 [fracture/cm] for decrease of the post-shear gouge layer thickness. This is at the expense of a considerable decrease of visible more diffusive minor fractures. On the other hand, the fractures formed at lower normal stress are more irregular and show average fracture density of 4.48 [fracture/cm]. The latter decreases down to 3.64 at higher normal stress, as the fracture morphology becomes more regular. The fracture density increases abruptly from zero, after a small total shear strain (0.15-0.50), and later the change is slower or none with the increase of the total shear strain; the fractures are already localized and they accommodate most of the brittle deformation. Also we observe weak polarity in fracture development in accordance to the sliding sense, especially in the subset of fractures starting from the gouge wall and dying out within the gouge layer. More such fractures are developed along the leading part of the sliding blocks. Our results throw new light over the formation and development of fault-related structures and their dependency on the earthquake-governing physical parameters.

  14. Technical Note: Millimeter precision in ultrasound based patient positioning: Experimental quantification of inherent technical limitations

    SciTech Connect

    Ballhausen, Hendrik Hieber, Sheila; Li, Minglun; Belka, Claus; Reiner, Michael

    2014-08-15

    Purpose: To identify the relevant technical sources of error of a system based on three-dimensional ultrasound (3D US) for patient positioning in external beam radiotherapy. To quantify these sources of error in a controlled laboratory setting. To estimate the resulting end-to-end geometric precision of the intramodality protocol. Methods: Two identical free-hand 3D US systems at both the planning-CT and the treatment room were calibrated to the laboratory frame of reference. Every step of the calibration chain was repeated multiple times to estimate its contribution to overall systematic and random error. Optimal margins were computed given the identified and quantified systematic and random errors. Results: In descending order of magnitude, the identified and quantified sources of error were: alignment of calibration phantom to laser marks 0.78 mm, alignment of lasers in treatment vs planning room 0.51 mm, calibration and tracking of 3D US probe 0.49 mm, alignment of stereoscopic infrared camera to calibration phantom 0.03 mm. Under ideal laboratory conditions, these errors are expected to limit ultrasound-based positioning to an accuracy of 1.05 mm radially. Conclusions: The investigated 3D ultrasound system achieves an intramodal accuracy of about 1 mm radially in a controlled laboratory setting. The identified systematic and random errors require an optimal clinical tumor volume to planning target volume margin of about 3 mm. These inherent technical limitations do not prevent clinical use, including hypofractionation or stereotactic body radiation therapy.

  15. Determination of standard sample purity using the high-precision 1H-NMR process.

    PubMed

    Schoenberger, Torsten

    2012-04-01

    This paper discusses the technique for high-precision quantification using (1)H-NMR to determine the purity of analytical standard samples. The procedure described is based on the use of internal reference samples in an (1)H NMR experiment in our laboratories. The sample preparation and all relevant NMR parameters were optimized for minimum uncertainty. The validation of accuracy and precision was performed by comparing different certified reference materials. It was shown that the high-precision measurement is applicable even for relatively small sample amounts down to 2.5 mg. The relative combined uncertainty of measurement was found to be 0.15%. Two different approaches for uncertainty calculation were compared; a complete uncertainty budget was calculated. PMID:22327969

  16. Figures deduction method for mast valuating interpolation errors of encoder with high precision

    NASA Astrophysics Data System (ADS)

    Yi, Jie; An, Li-min; Liu, Chun-xia

    2011-08-01

    With the development of technology, especially the need of fast accurately running after and orientating the aim of horizon and air, the photoelectrical rotary encoder with high precision has become the research hotspot in the fields of international spaceflight and avigation, the errors evaluation of encoder with high precision is the one of the key technology that must to be resolved. For the encoder with high precision, the interpolation errors is the main factor which affects its precision. Existing interpolation errors detection adopts accurate apparatus such as little angle measurement apparatus and optics polyhedron, requesting under the strict laboratory condition to carry on. The detection method is also time-consuming, hard to tackle and easy to introduce detect errors. This paper mainly studies the fast evaluation method of interpolation errors of encoder with high precision which is applied to the working field. Taking the Lissajou's figure produced by moiré fringe as foundation, the paper sets up the radius vector's mathematical model to represent figure's form deviation, analyses the implied parameters information of moiré fringe, the relation of the radius vector deviation and interpolation errors in the figures and puts forward the method of interpolation errors figures evaluation. Adopting figure deduction method, and directly from harmonic component of radius vector deviation toward harmonic component of interpolation errors, the interpolation errors can be gotten in the paper. Through data collecting card, the Moiré fringe signal is transmitted into the computer, then, the computer storages the data, using figures evaluation method to analyses the data, drawing the curve of interpolation errors. Comparing with interpolation errors drawing from traditional detect method, the change trend of the interpolation errors curve is similar, peak-peak value is almost equality. The result of experiment indicates: the method of the paper can be applied to evaluate interpolation errors of high precision encoder, which need simple equipment and the examination method is efficient and feasible; Apart from these, the data processing can be realized by valuation analysis software, and the time is short, the result manifestation is intuitionistic; the system can be used in the working field, avert the influence of the speed, and has important meaning to the research of high precision encoder's dynamic precision characteristics.

  17. High-precision half-life measurements for the superallowed Fermi β+ emitter 18Ne

    NASA Astrophysics Data System (ADS)

    Laffoley, A. T.; Svensson, C. E.; Andreoiu, C.; Ball, G. C.; Bender, P. C.; Bidaman, H.; Bildstein, V.; Blank, B.; Cross, D. S.; Deng, G.; Varela, A. Diaz; Dunlop, M. R.; Dunlop, R.; Garnsworthy, A. B.; Garrett, P. E.; Giovinazzo, J.; Grinyer, G. F.; Grinyer, J.; Hackman, G.; Hadinia, B.; Jamieson, D. S.; Jigmeddorj, B.; Kisliuk, D.; Leach, K. G.; Leslie, J. R.; MacLean, A. D.; Miller, D.; Mills, B.; Moukaddam, M.; Radich, A. J.; Rajabali, M. M.; Rand, E. T.; Thomas, J. C.; Turko, J.; Unsworth, C.; Voss, P.

    2015-08-01

    The half-life of the superallowed Fermi β+ emitter 18Ne has been determined via two high-precision β counting experiments at TRIUMF's Isotope Separator and Accelerator facility. Using two different 4 π continuous-flow gas-proportional counters, two independent measurements were made, yielding a weighted average of T1 /2=1 .66400-0.00048+0.00057 s, which is consistent with but approximately 2 times more precise than a previous high-precision measurement based on γ -ray counting. The present work achieves ±0.034 % precision for the 18Ne half-life and will enable the inclusion of 18Ne among the set of precisely measured superallowed Fermi β -decay f t values once improved measurements are made for its Q value and superallowed branching ratio. As a test of systematic uncertainties, the half-life of 23Ne was measured and the world average has been improved, by a factor of 1.7, to 37.148 ±0.032 s.

  18. High precision position control of voice coil motor based on single neuron PID

    NASA Astrophysics Data System (ADS)

    Li, Liyi; Chen, Qiming; Tan, Guangjun; Zhu, He

    2013-01-01

    Voice coil motor(VCM) is widely used in high-speed and high-precision positioning control system in recent years. However, there are system uncertainty, nonlinear, modeling error, and external disturbances in the high-precision positioning control system, traditional PID control method is difficult to achieve precise positioning control. In this paper, a new position control strategy with a single neuron controller which has the capability of self-studying and self-adapting composed with PID controller is put forward, and the feedforward compensator is added to improve the dynamic response of the system in the position loop. Moreover, the disturbance observer is designed to suppress model parameter uncertainty and external disturbance signal in the current loop. In addition, the problem of high precision position control of VCM under the influence of significant disturbances is addressed, which including the gas-lubricated damping, the spring, the back EMF and ripple forces, on the basis, the mathematical model of VCM is established accurately. The simulation results show that this kind of controller can improve the dynamic characteristic and strengthen the robustness of the system, and the current loop with disturbance observer can also restrain disturbance and high frequency.

  19. Remote and high precision step height measurement with an optical fiber multiplexing interferometric system

    NASA Astrophysics Data System (ADS)

    Wang, Yunzhi; Xie, Fang; Ma, Sen; Chen, Liang

    2015-03-01

    An optical fiber multiplexing low coherence and high coherence interferometric system, which includes a Fizeau interferometer as the sensing element and a Michelson interferometer as the demodulating element, is designed for remote and high precision step height measurement. The Fizeau interferometer is placed in the remote field for sensing the measurand, while the Michelson interferometer which works in both modes of low coherence interferometry and high coherence interferometry is employed for demodulating the measurand. The range of the step height is determined by the low coherence interferometry and the value of it is measured precisely by the high coherence interferometry. High precision has been obtained by searching precisely the peak of the low coherence interferogram symmetrically from two sides of the low coherence interferogram and stabilizing the Michelson interferometer with a feedback loop. The maximum step height that could be measured is 6 mm while the measurement resolution is less than 1 nm. The standard deviation of 10 times measurement results of a step height of 1 mm configurated with two gauge blocks is 0.5 nm.

  20. High-precision covariant one-boson-exchange potentials for np scattering below 350 MeV

    SciTech Connect

    Franz Gross; Alfred Stadler

    2007-12-01

    All realistic potential models for the two-nucleon interaction are to some extent based on boson exchange. However, in order to achieve an essentially perfect fit to the scattering data, characterized by a chi2/Ndata~ 1, previous potentials have abandoned a pure one boson-exchange mechanism (OBE). Using a covariant theory, we have found a true OBE potential that fits the 2006 world np data below 350 MeV with a chi2/Ndata = 1.00 for 3612 data. Our potential has fewer adjustable parameters than previous high precision potentials, and also reproduces the experimental triton binding energy without introducing additional irreducible three-nucleon forces.

  1. High-power and high-brightness solid state laser systems for precise and fast micromachining

    NASA Astrophysics Data System (ADS)

    Binder, Alexander; Jaber, Houssam; Ashkenasi, David; Riesbeck, Thomas; Eichler, Hans-J.

    2004-07-01

    To meet the industry's demand for reducing machine cycle lengths concerning laser-drilling a laser was developed at the LMTB-laboratories that emits high-power peak-pulses at excellent beam-quality. In co-operation with Technical University of Berlin (TU Berlin) a Nd:YAG Master-Oscillator Power-Amplifier (MOPA) laser system is undergoing permanent enhancements aiming at shorter pulse duration, higher fluence and improved long-term stability. Presently, the output power of the oscillator (10W@1064nm) with a beam-quality of M2=1.3 is amplified to more than 100W@1064nm with M2=2.3 and a single pulse energy up to 800 mJ. The pulse duration can be varied between 31 and 230ns. On account of the excellent beam quality, frequency conversion was carried out down to 266nm. The MOPA-System was used for laser micro scribing and drilling experiments into metals and ceramics where the influence of the beam quality on the geometrical shape of the hole is investigated and compared with applications conducted with similar laser systems. Additionally means in optimizing the drilling process such as burr-minimizing and melt-reduction were introduced. Furthermore, experiments using tapered drilling technique are undertaken. A maximum aspect ratio of 1:180 in sapphire was obtained. We achieved high ablation rates and precise structures in Al2O3 (ceramic and sapphire), AlN, ZrO2, Ni-base alloy, platinum, tungsten and many more materials. Further improvement of the system was undertaken by means of multimode fibers as phase conjugate mirrors (PCM) using the effect of stimulated brillouin scattering (SBS).

  2. Peculiarities of high-overtone transition probabilities in carbon monoxide revealed by high-precision calculation

    NASA Astrophysics Data System (ADS)

    Medvedev, Emile S.; Meshkov, Vladimir V.; Stolyarov, Andrey V.; Gordon, Iouli E.

    2015-10-01

    In the recent work devoted to the calculation of the rovibrational line list of the CO molecule [G. Li et al., Astrophys. J., Suppl. Ser. 216, 15 (2015)], rigorous validation of the calculated parameters including intensities was carried out. In particular, the Normal Intensity Distribution Law (NIDL) [E. S. Medvedev, J. Chem. Phys. 137, 174307 (2012)] was employed for the validation purposes, and it was found that, in the original CO line list calculated for large changes of the vibrational quantum number up to Δn = 41, intensities with Δn > 11 were unphysical. Therefore, very high overtone transitions were removed from the published list in Li et al. Here, we show how this type of validation is carried out and prove that the quadruple precision is indispensably required to predict the reliable intensities using the conventional 32-bit computers. Based on these calculations, the NIDL is shown to hold up for the 0 → n transitions till the dissociation limit around n = 83, covering 45 orders of magnitude in the intensity. The low-intensity 0 → n transition predicted in the work of Medvedev [Determination of a new molecular constant for diatomic systems. Normal intensity distribution law for overtone spectra of diatomic and polyatomic molecules and anomalies in overtone absorption spectra of diatomic molecules, Institute of Chemical Physics, Russian Academy of Sciences, Chernogolovka, 1984] at n = 5 is confirmed, and two additional "abnormal" intensities are found at n = 14 and 23. Criteria for the appearance of such "anomalies" are formulated. The results could be useful to revise the high-overtone molecular transition probabilities provided in spectroscopic databases.

  3. Precise comparison of experimental and theoretical SNRs in CO2 laser heterodyne systems.

    PubMed

    Foord, R; Jones, R; Vaughan, J M; Willetts, D V

    1983-12-01

    A detailed comparison of experimental and theoretical SNR in an IR laser heterodyne system has been made with three different signal analyzers. Good agreement, considerably better than a factor of 1.5, is reported. Accurate allowance was made for transmission in the receiver optics, the effective quantum efficiency of the detector due to shot noise domination by the local oscillator, and for coherent speckle effects across the collection aperture. The evaluation of SNR with a surface acoustic wave spectrum analyzer and digital integrator is described in some detail. As an illustration an absolute measurement of backscattering strength in the atmosphere from an airborne equipment at altitudes up to 13.1 km is provided. PMID:18200264

  4. High-precision Stark shift measurements using an indium atomic beam

    NASA Astrophysics Data System (ADS)

    Majumder, Protik; Bricault, Nathan; Augenbraun, Benjamin

    2014-05-01

    In recent years, we have pursued a series of precise atomic structure measurements in Group III elements-currently thallium and indium-in order to test recent ab initio theory calculations in these three-valence-electron systems. We recently completed a precision measurement of the indium scalar polarizability within the 410 nm 5p1 / 2 --> 6s1 / 2 transition using a GaN semiconductor laser interacting transversely with a collimated indium atomic beam in the presence of a large, precisely-calibrated electric field. Our result is in excellent agreement with a new atomic theory calculation. By combining the experimental result and theory expressions, new, precise values for the indium 6p-state lifetimes have been extracted. Currently we are extending this measurement using a second, 1343 nm infrared laser to reach the indium 6p1 / 2 state by locking the 410 nm laser and performing two-step spectroscopy. The small infrared absorption in our atomic beam is detected using two-tone FM spectroscopy. The characteristic sideband features in our RF-demodulated spectrum offer built in frequency calibration. For electric fields of order 10 kV/cm, we expect Stark shifts of order 100 MHz for this excited state. Supported by NSF grant no. 0969781.

  5. An optical fiber multiplexing interferometric system for measuring remote and high precision step height

    NASA Astrophysics Data System (ADS)

    Wang, Yunzhi; Xie, Fang; Ma, Sen; Chen, Liang

    2015-02-01

    In this paper, an optical fiber multiplexing interferometric system including a Fizeau interferometer and a Michelson interferometer is designed for remote and high precision step height measurement. The Fizeau interferometer which is inserted in the remote sensing field is used for sensing the measurand, while the Michelson interferometer which is stabilized by a feedback loop works in both modes of low coherence interferometry and high coherence interferometry to demodulate the measurand. The range of the step height is determined by the low coherence interferometry and the value of it is measured precisely by the high coherence interferometry. High precision has been obtained by using the symmetrical peak-searching method to address the peak of the low coherence interferogram precisely and stabilizing the Michelson interferometer with a feedback loop. The maximum step height that could be measured is 6 mm while the measurement resolution is less than 1 nm. The standard deviation of 10 times measurement results of a step height of 1 mm configurated with two gauge blocks is 0.5 nm.

  6. High-Precise Spectrometry of the Terahertz Frequency Range: The Methods, Approaches and Applications

    NASA Astrophysics Data System (ADS)

    Vaks, Vladimir

    2012-01-01

    In the paper we present a high precise THz technique (frequency synthesizers and spectrometer) and its applications for noninvasive medical diagnostics and security systems. The cornerstone of the presented devices is multipliers and mixers based on quantum superlattice structures. The multipliers based on superlattice structures are shown to be more effective than Schottky diodes and provide THz radiation up to 8.1 THz.

  7. Generalized lock-in amplifier for precision measurement of high frequency signals

    NASA Astrophysics Data System (ADS)

    Fu, Siyuan; Sakurai, Atsunori; Liu, Liang; Edman, Fredrik; Pullerits, Tõnu; Öwall, Viktor; Karki, Khadga Jung

    2013-11-01

    We herein formulate the concept of a generalized lock-in amplifier for the precision measurement of high frequency signals based on digital cavities. Accurate measurement of signals higher than 200 MHz using the generalized lock-in is demonstrated. The technique is compared with a traditional lock-in and its advantages and limitations are discussed. We also briefly point out how the generalized lock-in can be used for precision measurement of giga-hertz signals by using parallel processing of the digitized signals.

  8. Accurate and emergent applications for high precision light small aerial remote sensing system

    NASA Astrophysics Data System (ADS)

    Pei, Liu; Yingcheng, Li; Yanli, Xue; Qingwu, Hu; Xiaofeng, Sun

    2014-03-01

    In this paper, we focus on the successful applications of accurate and emergent surveying and mapping for high precision light small aerial remote sensing system. First, the remote sensing system structure and three integrated operation modes will be introduced. It can be combined to three operation modes depending on the application requirements. Second, we describe the preliminary results of a precision validation method for POS direct orientation in 1:500 mapping. Third, it presents two fast response mapping products- regional continuous three-dimensional model and digital surface model, taking the efficiency and accuracy evaluation of the two products as an important point. The precision of both products meets the 1:2 000 topographic map accuracy specifications in Pingdingshan area. In the end, conclusions and future work are summarized.

  9. High precision astrometry with HST/WFC3 Scanning mode: parallaxes of two Galactic Cepheids

    NASA Astrophysics Data System (ADS)

    Casertano, Stefano; Riess, Adam G.

    2016-01-01

    We present astrometric results obtained by using the spatial scan capability of HST/WFC3. By scanning the telescope during an observation, we are able to measure the relative position of sources in the direction perpendicular to the scan with precision of 0.5 milli-pixels (about 20 micro-arcseconds). We will use this capability to measure the trigonometric parallax of eighteen Galactic Cepheids with periods long enough to serve as calibrators of the Period-Luminosity relation. This calibration will support a determination of the Hubble Constant with an expected accuracy of 2 percent. We present the measurements of the first two of these Cepheids, SS CMa and VY Car, with an accuracy of 30 micro-arcseconds each. We also discuss some of the difficulties inherent in milli-pixel precision measurements, and the requirements for high-precision astrometry with HST.

  10. High precision tuning of state for memristive devices by adaptable variation-tolerant algorithm.

    PubMed

    Alibart, Fabien; Gao, Ligang; Hoskins, Brian D; Strukov, Dmitri B

    2012-02-24

    Using memristive properties common for titanium dioxide thin film devices, we designed a simple write algorithm to tune device conductance at a specific bias point to 1% relative accuracy (which is roughly equivalent to seven-bit precision) within its dynamic range even in the presence of large variations in switching behavior. The high precision state is nonvolatile and the results are likely to be sustained for nanoscale memristive devices because of the inherent filamentary nature of the resistive switching. The proposed functionality of memristive devices is especially attractive for analog computing with low precision data. As one representative example we demonstrate hybrid circuitry consisting of an integrated circuit summing amplifier and two memristive devices to perform the analog multiply-and-add (dot-product) computation, which is a typical bottleneck operation in information processing. PMID:22260949

  11. Acoustic grating fringe projector for high-speed and high-precision three-dimensional shape measurements

    SciTech Connect

    Yin Xuebing; Zhao Huijie; Zeng Junyu; Qu Yufu

    2007-05-20

    A new acoustic grating fringe projector (AGFP) was developed for high-speed and high-precision 3D measurement. A new acoustic grating fringe projection theory is also proposed to describe the optical system. The AGFP instrument can adjust the spatial phase and period of fringes with unprecedented speed and accuracy. Using rf power proportional-integral-derivative (PID) control and CCD synchronous control, we obtain fringes with fine sinusoidal characteristics and realize high-speed acquisition of image data. Using the device, we obtained a precise phase map for a 3D profile. In addition, the AGFP can work in running fringe mode, which could be applied in other measurement fields.

  12. High-Precision Microwave Spectroscopy of Muonium for Determination of Muonic Magnetic Moment

    NASA Astrophysics Data System (ADS)

    Torii, H. A.; Higashi, Y.; Higuchi, T.; Matsuda, Y.; Mizutani, T.; Tajima, M.; Tanaka, K. S.; Ueno, Y.; Fukao, Y.; Iinuma, H.; Ikedo, Y.; Kadono, R.; Kawamura, N.; Koda, A.; Kojima, K. M.; Mibe, T.; Miyake, Y.; Nagamine, K.; Nishiyama, K.; Ogitsu, T.; Okubo, R.; Saito, N.; Sasaki, K.; Shimomura, K.; Strasser, P.; Sugano, M.; Toyoda, A.; Ueno, K.; Yamamoto, A.; Yoshida, M.; Ishida, K.; Iwasaki, M.; Kamigaito, O.; Tomono, D.; Kanda, S.; Kubo, K.; Aoki, M.; Torikai, E.; Kawall, D.

    2016-02-01

    The muonium atom is a system suitable for precision measurements for determination of muon’s fundamental properties as well as for the test of quantum electrodynamics (QED). A microwave spectroscopy experiment of this exotic atom is being prepared at J-PARC, jointly operated by KEK and JAEA in Japan, aiming at an improved relative precision at a level of 10‑8 in determination of the muonic magnetic moment. A major improvement of statistical uncertainty is expected with the higher muon intensity of the pulsed beam at J-PARC, while reduction of various sources of systematic uncertainties are being studied: those arising from microwave power fluctuations, magnetic field inhomogeneity, muon stopping distribution and atomic collisional shift of resonance frequencies. Experimental strategy and methods are presented in this paper, with an emphasis on our recent development of apparatuses and evaluation of systematic uncertainties.

  13. Electromagnetic Controlled Cortical Impact Device for Precise, Graded Experimental Traumatic Brain Injury

    PubMed Central

    BRODY, DAVID L.; DONALD, CHRISTINE Mac; KESSENS, CHAD C.; YUEDE, CARLA; PARSADANIAN, MAIA; SPINNER, MIKE; KIM, EDDIE; SCHWETYE, KATHERINE E.; HOLTZMAN, DAVID M.; BAYLY, PHILIP V.

    2008-01-01

    Genetically modified mice represent useful tools for traumatic brain injury (TBI) research and attractive preclinical models for the development of novel therapeutics. Experimental methods that minimize the number of mice needed may increase the pace of discovery. With this in mind, we developed and characterized a prototype electromagnetic (EM) controlled cortical impact device along with refined surgical and behavioral testing techniques. By varying the depth of impact between 1.0 and 3.0 mm, we found that the EM device was capable of producing a broad range of injury severities. Histologically, 2.0-mm impact depth injuries produced by the EM device were similar to 1.0-mm impact depth injuries produced by a commercially available pneumatic device. Behaviorally, 2.0-, 2.5-, and 3.0-mm impacts impaired hidden platform and probe trial water maze performance, whereas 1.5-mm impacts did not. Rotorod and visible platform water maze deficits were also found following 2.5- and 3.0-mm impacts. No impairment of conditioned fear performance was detected. No differences were found between sexes of mice. Inter-operator reliability was very good. Behaviorally, we found that we could statistically distinguish between injury depths differing by 0.5 mm using 12 mice per group and between injury depths differing by 1.0 mm with 7-8 mice per group. Thus, the EM impactor and refined surgical and behavioral testing techniques may offer a reliable and convenient framework for preclinical TBI research involving mice. PMID:17439349

  14. Method of curved surface abnormal holes vision measurement based on high precision turntable

    NASA Astrophysics Data System (ADS)

    Lyu, Laipeng; Bi, Chao; Fang, Jianguo; Zhu, Yong; Wang, Liping

    2015-10-01

    For solving the difficult problem that there is no effective way to measure abnormal holes located at blade erection loop of aero-engine case, an image measurement system based on high precision air-bearing turntable is established in this paper. The issue that monocular vision can't measure curved surface has overcome by using high precision turntable to make sure high positioning accuracy of the surface abnormal holes and high-resolution microscope lens which is used to image local tiny features. Besides, an algorithm of determining the boundary points of a trailing edge on the contour of abnormal hole is proposed to achieve a rapid fitting and accuracy. After experiments and analysis, results show that the system can be used to measure local tiny features on curved surfaces validly and efficiently.

  15. A high-precision tunable millimeter-wave photonic LO reference for the ALMA telescope

    NASA Astrophysics Data System (ADS)

    Shillue, W.; Grammer, W.; Jacques, C.; Meadows, H.; Castro, J.; Banda, J.; Treacy, R.; Masui, Y.; Brito, R.; Huggard, P.; Ellison, B.; Cliche, J.-F.; Ayotte, S.; Babin, A.; Costin, F.; Latrasse, C.; Pelletier, F.; Picard, M.-J.; Poulin, M.; Poulin, P.

    2013-06-01

    The Atacama Large Millimeter Array is a radio telescope array of 66 antennas designed for high performance scientific imaging, covering a frequency range of 27-950 GHz. Each antenna has a front end with ten receiving bands, and each band has a local oscillator which is synchronized between all antennas. We describe a high precision tunable millimeter-wave photonic local oscillator reference system, which is used as the synchronizing reference for all ten bands on each receiver.

  16. High-precision and high-speed laser microjoining for electronics and microsystems

    NASA Astrophysics Data System (ADS)

    Gillner, Arnold; Olowinsky, Alexander; Klages, Kilian; Gedicke, Jens; Sari, Fahri

    2006-02-01

    The joining processes in electronic device manufacturing are today still dominated by conventional joining techniques like press fitting, crimping and resistance welding. Laser beam joining techniques have been under intensive investigations and subsequently new processes for mass manufacturing and high accuracy assembling were established. With the newly developed SHADOW (R) welding technology technical aspects such as tensile strength, geometry and precision of the weld could be improved. This technology provides highest flexibility in weld geometry with a minimum welding time as well as new possibilities in using application adapted materials. Different parts and even different metals can be joined by a non-contact process. The application of a relative movement between the laser beam and the part to be joined at feed rates of up to 60 m/min produces weld seams with a length from 0.6 mm to 15.7 mm using a pulsed Nd:YAG laser with a pulse duration of up to 50 ms. Due to the low energy input, typically 1 J to 6 J, a weld width as small as 50 μm and a weld depth as small as 20 pm have been attained. This results in low distortion of the joined watch components. Within this paper this new welding process will be explained and several examples of joined components will be presented with respect to fundamentals and the sustainable implementation of the SHADOW (R) welding technique into watch manufacturing and electronic industry. For microsystem applications the laser joining technology is modified to join even silicon and glass parts without any melting based on the formation of a thermally induced oxygen bond. New fields of applications for joining different materials such as steel to brass or steel to copper for electrical interconnects will be discussed. Here the SHADOW (R) welding technique offers new possibilities for the combination of good electrical properties of copper with high mechanical stiffness of steel. The paper will give a closer look to microjoining applications especially using the SHADOW (R) welding technique. Basics of the process as well as its application on dedicated examples will be shown for small parts such as axis-wheel combinations and electrical connectors.

  17. Experimental and theoretical investigation of the precise transduction mechanism in giant magnetoresistive biosensors

    PubMed Central

    Lee, Jung-Rok; Sato, Noriyuki; Bechstein, Daniel J. B.; Osterfeld, Sebastian J.; Wang, Junyi; Gani, Adi Wijaya; Hall, Drew A.; Wang, Shan X.

    2016-01-01

    Giant magnetoresistive (GMR) biosensors consisting of many rectangular stripes are being developed for high sensitivity medical diagnostics of diseases at early stages, but many aspects of the sensing mechanism remain to be clarified. Using e-beam patterned masks on the sensors, we showed that the magnetic nanoparticles with a diameter of 50 nm located between the stripes predominantly determine the sensor signals over those located on the sensor stripes. Based on computational analysis, it was confirmed that the particles in the trench, particularly those near the edges of the stripes, mainly affect the sensor signals due to additional field from the stripe under an applied field. We also demonstrated that the direction of the average magnetic field from the particles that contributes to the signal is indeed the same as that of the applied field, indicating that the particles in the trench are pivotal to produce sensor signal. Importantly, the same detection principle was validated with a duplex protein assay. Also, 8 different types of sensor stripes were fabricated and design parameters were explored. According to the detection principle uncovered, GMR biosensors can be further optimized to improve their sensitivity, which is highly desirable for early diagnosis of diseases. PMID:26728870

  18. Experimental and theoretical investigation of the precise transduction mechanism in giant magnetoresistive biosensors

    NASA Astrophysics Data System (ADS)

    Lee, Jung-Rok; Sato, Noriyuki; Bechstein, Daniel J. B.; Osterfeld, Sebastian J.; Wang, Junyi; Gani, Adi Wijaya; Hall, Drew A.; Wang, Shan X.

    2016-01-01

    Giant magnetoresistive (GMR) biosensors consisting of many rectangular stripes are being developed for high sensitivity medical diagnostics of diseases at early stages, but many aspects of the sensing mechanism remain to be clarified. Using e-beam patterned masks on the sensors, we showed that the magnetic nanoparticles with a diameter of 50 nm located between the stripes predominantly determine the sensor signals over those located on the sensor stripes. Based on computational analysis, it was confirmed that the particles in the trench, particularly those near the edges of the stripes, mainly affect the sensor signals due to additional field from the stripe under an applied field. We also demonstrated that the direction of the average magnetic field from the particles that contributes to the signal is indeed the same as that of the applied field, indicating that the particles in the trench are pivotal to produce sensor signal. Importantly, the same detection principle was validated with a duplex protein assay. Also, 8 different types of sensor stripes were fabricated and design parameters were explored. According to the detection principle uncovered, GMR biosensors can be further optimized to improve their sensitivity, which is highly desirable for early diagnosis of diseases.

  19. Experimental and theoretical investigation of the precise transduction mechanism in giant magnetoresistive biosensors.

    PubMed

    Lee, Jung-Rok; Sato, Noriyuki; Bechstein, Daniel J B; Osterfeld, Sebastian J; Wang, Junyi; Gani, Adi Wijaya; Hall, Drew A; Wang, Shan X

    2016-01-01

    Giant magnetoresistive (GMR) biosensors consisting of many rectangular stripes are being developed for high sensitivity medical diagnostics of diseases at early stages, but many aspects of the sensing mechanism remain to be clarified. Using e-beam patterned masks on the sensors, we showed that the magnetic nanoparticles with a diameter of 50 nm located between the stripes predominantly determine the sensor signals over those located on the sensor stripes. Based on computational analysis, it was confirmed that the particles in the trench, particularly those near the edges of the stripes, mainly affect the sensor signals due to additional field from the stripe under an applied field. We also demonstrated that the direction of the average magnetic field from the particles that contributes to the signal is indeed the same as that of the applied field, indicating that the particles in the trench are pivotal to produce sensor signal. Importantly, the same detection principle was validated with a duplex protein assay. Also, 8 different types of sensor stripes were fabricated and design parameters were explored. According to the detection principle uncovered, GMR biosensors can be further optimized to improve their sensitivity, which is highly desirable for early diagnosis of diseases. PMID:26728870

  20. High-precision measurements of the 87Rb D -line tune-out wavelength

    NASA Astrophysics Data System (ADS)

    Leonard, R. H.; Fallon, A. J.; Sackett, C. A.; Safronova, M. S.

    2015-11-01

    We report an experimental measurement of a light wavelength at which the ac electric polarizability equals zero for 87Rb atoms in the F =2 ground hyperfine state. The experiment uses a condensate interferometer both to find this "tune-out" wavelength and to accurately determine the light polarization for it. The wavelength lies between the D 1 and D 2 spectral lines at 790.032388(32) nm. The measurement is sensitive to the tensor contribution to the polarizability, which has been removed so that the reported value is the zero of the scalar polarizability. The precision is 50 times better than previous tune-out wavelength measurements. Our result can be used to determine the ratio of matrix elements |<5 P3 /2||d ||5 S1 /2>/<5 P1 /2||d ||5 S1 /2>|2=1.99221 (3 ) , a 100-fold improvement over previous experimental values. New theoretical calculations for the tune-out wavelength and matrix element ratio are presented. The results are consistent with the experiment, with uncertainty estimates for the theory about an order of magnitude larger than the experimental precision.

  1. Experimental study of the fabrication of chalcogenide glass lenses by using precision glass molding

    NASA Astrophysics Data System (ADS)

    Cha, Du Hwan; Kim, Jeong-Ho; Kim, Hye-Jeong

    2014-11-01

    Although the development of small formats (640 × 480 pixel arrays) and amorphous silicon microbolometers has greatly decreased detector cost, another important component of a thermal camera, the optics, still prohibit a breakthrough for high-volume commercial systems. The aspheric lenses used in thermal imaging are typically made using the costly single-point diamond turning (SPDT) process with expensive single-crystal materials (Ge, ZnS, etc.). As a potential solution to reduce cost, the compression molding method using chalcogenide glass has become attractive for fabricating IR optics. The present paper reports the fabrication of a mold and a molded chalcogenide glass lens for a thermal security camera. In addition, the molded chalcogenide glass lens was evaluated using the form error, roughness and decentration for each surface of the molded lens. From the evaluation results, we verified that the molded lens was capable of being used for thermal imaging applications.

  2. High-Precision U-Pb Zircon Dates as Benchmarks in Absolute Time

    NASA Astrophysics Data System (ADS)

    Schmitz, M. D.; Bowring, S. A.; Schoene, B.

    2003-12-01

    High-precision IDTIMS U-Pb zircon dates provide the most precise and accurate isotopic benchmarks in absolute time, due to the concordancy check of the paired U-Pb decay schemes, the precisely measured 235U and 238U decay constants, very high initial parent/daughter ratios, and the robust nature of zircon to loss or gain of U and Pb over geologic time. However, caveats to the use of such zircon dates include the accurate assessment and minimization of random and systematic errors in the analytical methods, and decay constant uncertainties. Unfortunately, there exists little consensus within the U-Pb geochronological community regarding an international zircon standard for the external assessment of interlaboratory reproducibility, while residual questions remain regarding the potential for systematic error in the single available high-precision counting experiment of the U decay constants1. Stringent criteria are imposed on candidates for zircon geochronology standards including the absence of inheritance and Pb-loss at both the single grain scale and the resolution of microbeam techniques. We present an example of the potential and limitations of a possible zircon standard, AS3, from the Duluth Complex, North American Midcontinent Rift2. New data for 27 single zircons are indistinguishable from prior results, with 207Pb/206Pb and upper intercept dates identical within error to a U-Pb concordia date of 1099.1+/-0.2 Ma (+/-1.2 Ma with systematic errors) based on 12 concordant and equivalent analyses. However, we must reiterate that a zircon population exhibiting consistent concordancy remains elusive, as AS3 and all Paleozoic and older standard candidates so far examined contain grains exhibiting Pb-loss, although rigorous selection and preparation of zircons through diamagnetic separation and aggressive abrasion can mitigate this phenomenon. The continued screening of candidate standards by both IDTIMS and SHRIMP techniques should be an organized, international endeavor involving all high-precision geochronology laboratories. Under the single assumption that the equivalent data represent the approach to closed system behavior, the correspondence of the AS3 zircons with the presently defined concordia curve suggests the accuracy of the ratio of the presently accepted decay constants1 to within their 0.1% (2σ ) counting errors. While a proposed revision of the 235U decay constant3 is apparently unnecessary, additional high-precision, high n, statistically equivalent zircon population samplings are necessary to further evaluate decay constants and their uncertainties at the per mil level. When measured on appropriate lithologies, high-precision U-Pb dates also become powerful tools for the intercalibration of other radioisotope decay rates more difficult to measure through counting or accumulation (e.g. 40K, 176Lu, 187Re). We will present several new high-precision data sets for quickly cooled Oligocene to Archean extrusive and intrusive rocks, and assess their usefulness as benchmarks for the intercalibration of radiometric time; a growing number of high-precision U-Pb zircon and 40Ar/39Ar feldspar, biotite or hornblende pairs spanning more than 3 Ga in absolute time indicate a consistently younger bias in 40Ar/39Ar dates of between 0.7 and 1%. 1Jaffey et al. (1974) Phys Rev C 4:1889-1906; 2Paces and Miller (1993) J Geophys Res 98:13997-14013; 3Mattinson (2000) EOS 81:S444

  3. High-precision radius automatic measurement using laser differential confocal technology

    NASA Astrophysics Data System (ADS)

    Jiang, Hongwei; Zhao, Weiqian; Yang, Jiamiao; Guo, Yongkui; Xiao, Yang

    2015-02-01

    A high precision radius automatic measurement method using laser differential confocal technology is proposed. Based on the property of an axial intensity curve that the null point precisely corresponds to the focus of the objective and the bipolar property, the method uses the composite PID (proportional-integral-derivative) control to ensure the steady movement of the motor for process of quick-trigger scanning, and uses least-squares linear fitting to obtain the position of the cat-eye and confocal positions, then calculates the radius of curvature of lens. By setting the number of measure times, precision auto-repeat measurement of the radius of curvature is achieved. The experiment indicates that the method has the measurement accuracy of better than 2 ppm, and the measuring repeatability is better than 0.05 μm. In comparison with the existing manual-single measurement, this method has a high measurement precision, a strong environment anti-interference capability, a better measuring repeatability which is only tenth of former's.

  4. Charge breeding rare isotopes for high precision mass measurements: challenges and opportunities

    NASA Astrophysics Data System (ADS)

    Simon, M. C.; Macdonald, T. D.; Bale, J. C.; Chowdhury, U.; Eberhardt, B.; Eibach, M.; Gallant, A. T.; Jang, F.; Lennarz, A.; Luichtl, M.; Ma, T.; Robertson, D.; Simon, V. V.; Andreoiu, C.; Brodeur, M.; Brunner, T.; Chaudhuri, A.; Crespo Lpez-Urrutia, J. R.; Delheij, P.; Ettenauer, S.; Frekers, D.; Grossheim, A.; Gwinner, G.; Kwiatkowski, A. A.; Lapierre, A.; Man, E.; Pearson, M. R.; Ringle, R.; Schultz, B. E.; Dilling, J.

    2013-09-01

    Ion charge breeding for Penning-trap mass spectrometry has been established as providing a precision increase that scales linearly with the charge state of the ion. Fast and efficient charge breeding is a precondition for the application of this approach to rare isotopes. However, in view of low yields and short half-lives the precision boost is partly compromised by unavoidable ion losses inherent to the charge breeding process. The mass spectrometer TRIUMFs ion trap for atomic and nuclear science is pioneering this field by coupling a Penning trap and an electron beam ion trap to the rare-isotope beam facility ISAC at TRIUMF. Here we present simulations that calculate and maximize the effective precision gain of time-of-flight ion-cyclotron-resonance measurements with highly charged ions of short-lived nuclides. In addition we compare the characteristics of measurements with singly and highly charged ions, and we summarize recent results that explored benefits of charge breeding that go beyond the precision increase.

  5. High-precision optical systems with inexpensive hardware: a unified alignment and structural design approach

    NASA Astrophysics Data System (ADS)

    Winrow, Edward G.; Chavez, Victor H.

    2011-09-01

    High-precision opto-mechanical structures have historically been plagued by high costs for both hardware and the associated alignment and assembly process. This problem is especially true for space applications where only a few production units are produced. A methodology for optical alignment and optical structure design is presented which shifts the mechanism of maintaining precision from tightly toleranced, machined flight hardware to reusable, modular tooling. Using the proposed methodology, optical alignment error sources are reduced by the direct alignment of optics through their surface retroreflections (pips) as seen through a theodolite. Optical alignment adjustments are actualized through motorized, sub-micron precision actuators in 5 degrees of freedom. Optical structure hardware costs are reduced through the use of simple shapes (tubes, plates) and repeated components. This approach produces significantly cheaper hardware and more efficient assembly without sacrificing alignment precision or optical structure stability. The design, alignment plan and assembly of a 4" aperture, carbon fiber composite, Schmidt-Cassegrain concept telescope is presented.

  6. High-precision predictions for the light CP-even Higgs boson mass of the minimal supersymmetric standard model.

    PubMed

    Hahn, T; Heinemeyer, S; Hollik, W; Rzehak, H; Weiglein, G

    2014-04-11

    For the interpretation of the signal discovered in the Higgs searches at the LHC it will be crucial in particular to discriminate between the minimal Higgs sector realized in the standard model (SM) and its most commonly studied extension, the minimal supersymmetric standard model (MSSM). The measured mass value, having already reached the level of a precision observable with an experimental accuracy of about 500 MeV, plays an important role in this context. In the MSSM the mass of the light CP-even Higgs boson, Mh, can directly be predicted from the other parameters of the model. The accuracy of this prediction should at least match the one of the experimental result. The relatively high mass value of about 126 GeV has led to many investigations where the scalar top quarks are in the multi-TeV range. We improve the prediction for Mh in the MSSM by combining the existing fixed-order result, comprising the full one-loop and leading and subleading two-loop corrections, with a resummation of the leading and subleading logarithmic contributions from the scalar top sector to all orders. In this way for the first time a high-precision prediction for the mass of the light CP-even Higgs boson in the MSSM is possible all the way up to the multi-TeV region of the relevant supersymmetric particles. The results are included in the code FEYNHIGGS. PMID:24765944

  7. High Speed Atomic Force Microscope with Precise Surface Tracking and Force Control

    NASA Astrophysics Data System (ADS)

    Huang, Lin; Kjoller, Kevin; Su, Chanmin; Babcock, Ken; Adderton, Dennis; Minne, Steve

    2002-03-01

    One of the main drawbacks of conventional atomic force microscopes is their low throughput, and interest in improving their scanning speed has grown [1]. In conventional AFMs, increasing the scanning speed usually introduces large feedback errors due to the limited bandwidths of the Z-actuator and feedback loop. These in turn lead to inaccurate surface tracking and tip wear. Here we describe a high speed AFM that achieves precise surface tracking by using a high-bandwidth actuator integrated with the probe and a nested feedback architecture. Measurements on various samples with the high speed AFM will be shown in this presentation. The results demonstrate that the improved AFM system is capable of imaging many different samples at scan rates up to an order of magnitude faster than conventional AFMs while maintaining data accuracy, precise tip interaction force control, and image resolution. [1] S.C. Minne et al. “Bring scanning probe microscopy up to speed”, Kluwer Academic Publishers, 1999.

  8. Microfabricated clamps for high-precision passive alignment and packaging of optical fibres in optoelectronics devices

    NASA Astrophysics Data System (ADS)

    Dai, Xuhan; Zhao, Xiaolin; Ding, Guifu; Wang, Hong; Cai, Bingchu

    2005-11-01

    A novel micro-mechanical structure has been put forwarded. It is designed for high precision passive alignment and packaging of optical fibres in optoelectronics devices. The electroplated nickel micro clamp has been fabricated above the silicon V grooves. The clamps, work together with the V groove, fix the optical fibers with high precision for optical alignment when the fibers are inserted into the grooves. The fabrication of the micro clamp involves only one more photolithography and electroplating process. two single mode optical fibers have been fixed into the silicon V-groove by the nickel clamp; the measured insertion loss is lower than 0.1dB. The proposed nickel micro clamp is proved to be a low cost, high performance approach that could be widely applied in passive alignment and packaging of fiber in opto-electronics devices.

  9. High Precision Isotope Analyses Using Multi-Collector SIMS: Applications to Earth and Planetary Science.

    NASA Astrophysics Data System (ADS)

    Kita, N. T.; Ushikubo, T.; Valley, J. W.

    2008-05-01

    The CAMECA IMS-1280 large radius, multicollector ion microprobe at the Wisc-SIMS National Facility is capable of high accuracy and precision for in situ analysis of isotope ratios. With improved hardware stability and software capability, high precision isotope analyses are routinely performed, typically 5 min per spot. We have developed analytical protocols for stable isotope analyses of oxygen, carbon, Mg, Si and Sulfur using multi-collector Faraday Cups (MCFC) and achieved precision of 0.1-0.2 ‰ (1SD) from a typically 10μm spot analyses. A number of isotopically homogeneous mineral standards have been prepared and calibrated in order to certify the accuracy of analyses in the same level. When spatial resolution is critical, spot size is reduced down to sub- μm for δ 18O to obtain better than 0.5‰ (1SD) precision by using electron multiplier (EM) on multi-collection system. Multi-collection EM analysis is also applied at 10 ppm level to Li isotope ratios in zircon with precision better than 2‰ (1SD). A few applications will be presented. (1) Oxygen three isotope analyses of chondrules in ordinary chondrites revealed both mass dependent and mass independent oxygen isotope fractionations among chondrules as well as within individual chondrules. The results give constraints on the process of chondrule formation and origin of isotope reservoirs in the early solar system. (2) High precision 26Al-26Mg (half life of 0.73 Ma) chronology is applied to zoned melilite and anorthite from Ca, Al-rich inclusions (CAI) in Leoville meteorite, and a well-defined internal isochron is obtained. The results indicate the Al- Mg system was remained closed within 40ky of the crystallization of melilite and anorthite in this CAI. (3) Sub- μm spot analyses of δ18O in isotopically zoned zircon from high-grade metamorphism reveals a diffusion profile of ~6‰ over 2μm, indicating slow diffusion of oxygen in zircon. This result also implies that old Archean detrital zircons (> 4Ga) might preserve their primary oxygen isotopic records, which allows us to trace the geological processes of the early earth [1]. Lithium isotope analyses of pre- 4Ga zircon from Jack Hills show high Li abundance and low δ 7Li, indicating existence of highly weathered crustal material as early as 4.3Ga. In conclusion, these new techniques allow us to study small natural variations of stable isotopes at μm-scale that permit exciting and fundamental research where samples are small, precious, or zoned. [1] Page FZ et al. (2007) Am Min 92, 1772-1775.

  10. Precisely Controlled Ultrathin Conjugated Polymer Films for Large Area Transparent Transistors and Highly Sensitive Chemical Sensors.

    PubMed

    Khim, Dongyoon; Ryu, Gi-Seong; Park, Won-Tae; Kim, Hyunchul; Lee, Myungwon; Noh, Yong-Young

    2016-04-01

    A uniform ultrathin polymer film is deposited over a large area with molecularlevel precision by the simple wire-wound bar-coating method. The bar-coated ultrathin films not only exhibit high transparency of up to 90% in the visible wavelength range but also high charge carrier mobility with a high degree of percolation through the uniformly covered polymer nanofibrils. They are capable of realizing highly sensitive multigas sensors and represent the first successful report of ethylene detection using a sensor based on organic field-effect transistors. PMID:26849096

  11. Direct high-precision measurement of the magnetic moment of the proton.

    PubMed

    Mooser, A; Ulmer, S; Blaum, K; Franke, K; Kracke, H; Leiteritz, C; Quint, W; Rodegheri, C C; Smorra, C; Walz, J

    2014-05-29

    One of the fundamental properties of the proton is its magnetic moment, µp. So far µp has been measured only indirectly, by analysing the spectrum of an atomic hydrogen maser in a magnetic field. Here we report the direct high-precision measurement of the magnetic moment of a single proton using the double Penning-trap technique. We drive proton-spin quantum jumps by a magnetic radio-frequency field in a Penning trap with a homogeneous magnetic field. The induced spin transitions are detected in a second trap with a strong superimposed magnetic inhomogeneity. This enables the measurement of the spin-flip probability as a function of the drive frequency. In each measurement the proton's cyclotron frequency is used to determine the magnetic field of the trap. From the normalized resonance curve, we extract the particle's magnetic moment in terms of the nuclear magneton: μp = 2.792847350(9)μN. This measurement outperforms previous Penning-trap measurements in terms of precision by a factor of about 760. It improves the precision of the forty-year-old indirect measurement, in which significant theoretical bound state corrections were required to obtain µp, by a factor of 3. By application of this method to the antiproton magnetic moment, the fractional precision of the recently reported value can be improved by a factor of at least 1,000. Combined with the present result, this will provide a stringent test of matter/antimatter symmetry with baryons. PMID:24870545

  12. High-precision, automated integration of multiple isothermal titration calorimetric thermograms: new features of NITPIC.

    PubMed

    Scheuermann, Thomas H; Brautigam, Chad A

    2015-04-01

    Isothermal titration calorimetry (ITC) has become a standard and widely available tool to measure the thermodynamic parameters of macromolecular associations. Modern applications of the method, including global analysis and drug screening, require the acquisition of multiple sets of data; sometimes these data sets number in the hundreds. Therefore, there is a need for quick, precise, and automated means to process the data, particularly at the first step of data analysis, which is commonly the integration of the raw data to yield an interpretable isotherm. Herein, we describe enhancements to an algorithm that previously has been shown to provide an automated, unbiased, and high-precision means to integrate ITC data. These improvements allow for the speedy and precise serial integration of an unlimited number of ITC data sets, and they have been implemented in the freeware program NITPIC, version 1.1.0. We present a comprehensive comparison of the performance of this software against an older version of NITPIC and a current version of Origin, which is commonly used for integration. The new methods recapitulate the excellent performance of the previous versions of NITPIC while speeding it up substantially, and their precision is significantly better than that of Origin. This new version of NITPIC is therefore well suited to the serial integration of many ITC data sets. PMID:25524420

  13. High-precision, automated integration of multiple isothermal titration calorimetric thermograms: new features of NITPIC

    PubMed Central

    Scheuermann, Thomas H.; Brautigam, Chad A.

    2014-01-01

    Isothermal titration calorimetry (ITC) has become a standard and widely available tool to measure the thermodynamic parameters of macromolecular associations. Modern applications of the method, including global analysis and drug screening, require the acquisition of multiple sets of data; sometimes these data sets number in the hundreds. Therefore, there is a need for quick, precise, and automated means to process the data, particularly at the first step of data analysis, which is commonly the integration of the raw data to yield an interpretable isotherm. Herein, we describe enhancements to an algorithm that previously has been shown to provide an automated, unbiased, and high-precision means to integrate ITC data. These improvements allow for the speedy and precise serial integration of an unlimited number of ITC data sets, and they have been implemented in the freeware program NITPIC, version 1.1.0. We present a comprehensive comparison of the performance of this software against an older version of NITPIC and a current version of Origin, which is commonly used for integration. The new methods recapitulate the excellent performance of the previous versions of NITPIC while speeding it up substantially, and their precision is significantly better than that of Origin. This new version of NITPIC is therefore well suited to the serial integration of many ITC data sets. PMID:25524420

  14. High Precision Tracking Control based on Pseudo-Inverse Feedforward Control System for Next-Generation Optical Disks

    NASA Astrophysics Data System (ADS)

    Ogata, Tokoku; Nakazaki, Tatsuya; Sakimura, Naohide; Ohishi, Kiyoshi; Miyazaki, Toshimasa; Koide, Daiichi; Tokumaru, Haruki; Takano, Yoshimichi

    2012-08-01

    Optical disk drive systems must realize high-precision tracking control. For this purpose, we have already proposed a tracking control system that is composed of a high gain servo controller (HGSC) and a perfect tracking controller (PTC). The conventional feedforward tracking control system adequately suppresses the tracking error caused by track eccentricity. However, the PTC system in the conventional system is complicated. Therefore, the PTC system embedded on a digital signal processor (DSP) cannot realize fast sampling time and the conventional system has a speedup limitation in the optical disk tracking control system. Hence, in this paper, we propose a new high-speed and high-precision feedforward tracking control system that uses a pseudo-inverse matrix. The proposed system consists of the pseudo-inverse feedforward control (P-IFFC). The proposed system realizes simple and quick execution in a digital signal processor software servo. Our experimental results confirm that the proposed system effectively suppresses the tracking error under a condition of the 7200 rpm disk rotation speed of DVD+R. In addition, the conventional systems and the proposed system with a pseudo-inverse matrix are compared in terms of processing time and tracking error.

  15. The υ Andromedae Planetary System - Hubble Space Telescope Astrometry and High-precision Radial Velocities

    NASA Astrophysics Data System (ADS)

    Benedict, George F.; McArthur, B. E.; Bean, J. L.

    2007-05-01

    We report on our investigation of the upsilon Andromedae planetary system. Using high-cadence, high-precision, iodine-cell radial velocities from the Hobby-Eberly Telescope to confirm the existence of previously known companions, and to search for previously unknown companions, we determine period, time of periastron passage, eccentricity, RV amplitude, and longitude of periastron for each attendant planet. Simultaneously, we make use of Hubble Space Telescope Fine Guidance Sensor millisecond of arc precision astrometry to establish perturbation size, orbital inclination, and actual mass for the outer-most, longest-period companion. We discuss progress made towards establishing the degree of co-planarity of two of the planetary mass companions to upsilon Andromedae. This work is supported by NASA through the Space Telescope Science Institute General Observer program; grants GO-09407, -09971, -10103, -10610, and -10989.

  16. Optical timing receiver for the NASA laser ranging system. Part 2: High precision time interval digitizer

    NASA Technical Reports Server (NTRS)

    Leskovar, B.; Turko, B.

    1977-01-01

    The development of a high precision time interval digitizer is described. The time digitizer is a 10 psec resolution stop watch covering a range of up to 340 msec. The measured time interval is determined as a separation between leading edges of a pair of pulses applied externally to the start input and the stop input of the digitizer. Employing an interpolation techniques and a 50 MHz high precision master oscillator, the equivalent of a 100 GHz clock frequency standard is achieved. Absolute accuracy and stability of the digitizer are determined by the external 50 MHz master oscillator, which serves as a standard time marker. The start and stop pulses are fast 1 nsec rise time signals, according to the Nuclear Instrument means of tunnel diode discriminators. Firing level of the discriminator define start and stop points between which the time interval is digitized.

  17. Fast-response, high-precision carbon monoxide sensor using a tunable diode laser absorption technique

    NASA Technical Reports Server (NTRS)

    Sachse, Glen W.; Hill, Gerald F.; Wade, Larry O.; Perry, Murray G.

    1987-01-01

    A tunable diode laser instrument, denoted as DACOM (Differential Absorption CO Measurement), has been developed to meet the fast-response, high-precision CO measurement needs of the GTE (Global Tropospheric Experiment) program. Under the GTE program, DACOM participated in the three field missions of CITE 1 (Chemical Instrumentation Test and Evaluation 1), a project involving the intercomparison of trace gas measurement techniques. DACOM performance, including analyses of measurement error sources, is discussed for the ground-based mission at Wallops Island, VA (summer 1983), and two missions on the NASA CV-990 (fall 1983 and spring 1984). Examples of fast-response (about 1 s), high-precision (+ or - 1 part per billion by volume, + or - 1.5 percent of reading) airborne data are included to illustrate the capability of this instrument.

  18. High-precision image aided inertial navigation with known features: observability analysis and performance evaluation.

    PubMed

    Jiang, Weiping; Wang, Li; Niu, Xiaoji; Zhang, Quan; Zhang, Hui; Tang, Min; Hu, Xiangyun

    2014-01-01

    A high-precision image-aided inertial navigation system (INS) is proposed as an alternative to the carrier-phase-based differential Global Navigation Satellite Systems (CDGNSSs) when satellite-based navigation systems are unavailable. In this paper, the image/INS integrated algorithm is modeled by a tightly-coupled iterative extended Kalman filter (IEKF). Tightly-coupled integration ensures that the integrated system is reliable, even if few known feature points (i.e., less than three) are observed in the images. A new global observability analysis of this tightly-coupled integration is presented to guarantee that the system is observable under the necessary conditions. The analysis conclusions were verified by simulations and field tests. The field tests also indicate that high-precision position (centimeter-level) and attitude (half-degree-level)-integrated solutions can be achieved in a global reference. PMID:25330046

  19. Determination of the half-life of 213Fr with high precision

    NASA Astrophysics Data System (ADS)

    Fisichella, M.; Musumarra, A.; Farinon, F.; Nociforo, C.; Del Zoppo, A.; Figuera, P.; La Cognata, M.; Pellegriti, M. G.; Scuderi, V.; Torresi, D.; Strano, E.

    2013-07-01

    High-precision measurement of half-life and Qα value of neutral and highly charged α emitters is a major subject of investigation currently. In this framework, we recently pushed half-life measurements of neutral emitters to a precision of a few per mil. This result was achieved by using different techniques and apparatuses at Istituto Nazionale di Fisica Nucleare Laboratori Nazionali del Sud (INFN-LNS) and GSI Darmstadt. Here we report on 213Fr half-life determination [T1/2(213Fr) = 34.14±0.06 s] at INFN-LNS, detailing the measurement protocol used. Direct comparison with the accepted value in the literature shows a discrepancy of more than three sigma. We propose this new value as a reference, discussing previous experiments.

  20. Using femtosecond laser to fabricate highly precise interior three-dimensional microstructures in polymeric flow chip

    PubMed Central

    Lee, Chia-Yu; Chang, Ting-Chou; Wang, Shau-Chun; Chien, Chih-Wei; Cheng, Chung-Wei

    2010-01-01

    This paper reports using femtosecond laser marker to fabricate the three-dimensional interior microstructures in one closed flow channel of plastic substrate. Strip-like slots in the dimensions of 800 μm×400 μm×65 μm were ablated with pulse Ti:sapphire laser at 800 nm (pulse duration of ∼120 fs with 1 kHz repetition rate) on acrylic slide. After ablation, defocused beams were used to finish the surface of microstructures. Having finally polished with sonication, the laser fabricated structures are highly precise with the arithmetic roughness of 1.5 and 4.5 nm. Fabricating such highly precise microstructures cannot be accomplished with nanosecond laser marking or other mechanical drilling methods. In addition, since laser ablation can directly engrave interior microstructures in one closed chip, glue smearing problems to damage molded microstructures possibly to occur during the chip sealing procedures can be avoided too. PMID:21079695

  1. High-Precision Image Aided Inertial Navigation with Known Features: Observability Analysis and Performance Evaluation

    PubMed Central

    Jiang, Weiping; Wang, Li; Niu, Xiaoji; Zhang, Quan; Zhang, Hui; Tang, Min; Hu, Xiangyun

    2014-01-01

    A high-precision image-aided inertial navigation system (INS) is proposed as an alternative to the carrier-phase-based differential Global Navigation Satellite Systems (CDGNSSs) when satellite-based navigation systems are unavailable. In this paper, the image/INS integrated algorithm is modeled by a tightly-coupled iterative extended Kalman filter (IEKF). Tightly-coupled integration ensures that the integrated system is reliable, even if few known feature points (i.e., less than three) are observed in the images. A new global observability analysis of this tightly-coupled integration is presented to guarantee that the system is observable under the necessary conditions. The analysis conclusions were verified by simulations and field tests. The field tests also indicate that high-precision position (centimeter-level) and attitude (half-degree-level)-integrated solutions can be achieved in a global reference. PMID:25330046

  2. A novel high precision adaptive equalizer in digital coherent optical receivers

    NASA Astrophysics Data System (ADS)

    Ma, Xiurong; Xu, Yujun; Wang, Xiao; Ding, Zhaocai

    2015-10-01

    A novel high precision adaptive equalization method is introduced and applied to dynamic equalization for quadrature phase shift keying (QPSK) coherent optical communication system in this paper. A frequency-domain constant modulus algorithm (CMA) method is used to equalize the received signal roughly. Then, some non-ideal output signals will be picked out through the error measurement, and they will be equalized accurately further in a fixed time-domain CMA equalizer. This high precision equalization method can decrease the equalization error, then it can reduce the bit error ratio (BER) of coherent communication system. Simulation results show that there is a 6% decrease for computation complexity by proposed scheme when compared with time-domain CMA. Furthermore, compared with time-domain CMA and frequency-domain CMA, about 2 dB and 2.2 dB in OSNR improvement can be obtained by proposed scheme at the BER value of 1e-3, respectively.

  3. High-precision gravity network to monitor temporal variations in gravity across Yucca Mountain, Nevada

    SciTech Connect

    Harris, R.N.; Ponce, D.A.

    1988-12-31

    Repeatable high-precision gravity surveys provide a method of monitoring temporal variations in the gravity field. Fluctuations in the gravity field may indicate water table changes, crustal deformation, or precursors to volcanism and earthquakes. This report describes a high-precision gravity loop which has been established across Yucca Mountain, Nevada in support of the Nevada Nuclear Waste Storage Investigations (NNWSI) program. The purpose of this gravity loop is to monitor temporal variations in gravity across Yucca Mountain in an effort to interpret and predict the stability of the tectonic framework and changes in the subsurface density field. Studies of the tectonic framework which include volcanic hazard seismicity, and faulting studies are in progress. Repeat high-precision gravity surveys are less expensive and can be made more rapidly than a corresponding leveling survey. High-precision gravity surveys are capable of detecting elevation changes of 3 to 5 cm, and thus can be employed as an efficient tool for monitoring vertical crustal movements while supplementing or partially replacing leveling data. The Yucca Mountain gravity network has been tied to absolute gravity measurements established in southern Nevada. These ties provide an absolute datum for comparing repeat occupations of the gravity network, and provide a method of monitoring broad-scale changes in gravity. Absolute gravity measurements were also made at the bottom and top of the Charleston Peak calibration loop in southern Nevada. These absolute gravity measurements provide local control of calibrating gravity meters over the gravity ranges observed at Yucca Mountain. 13 refs., 7 figs., 3 tabs.

  4. Thermo-optic noise in coated mirrors for high-precision optical measurements

    SciTech Connect

    Evans, M.; Fritschel, P.; Harry, G.; Ballmer, S.; Ogin, G.; Fejer, M.

    2008-11-15

    Thermal fluctuations in the coatings used to make high reflectors are becoming significant noise sources in precision optical measurements and are particularly relevant to advanced gravitational-wave detectors. There are two recognized sources of coating thermal noise; mechanical loss and thermal dissipation. Thermal dissipation causes thermal fluctuations in the coating which produce noise via the thermoelastic and thermorefractive mechanisms. We treat these mechanisms coherently, give a correction for finite coating thickness, and evaluate the implications for Advanced LIGO.

  5. Approach for designing and developing high-precision integrative systems for strip flatness detection.

    PubMed

    Ouyang, Qi; Wen, Cong; Song, Yongduan; Dong, Xingchen; Zhang, Xinglan

    2015-10-01

    In this paper, we propose an approach for designing and developing high-precision integrative systems for strip flatness detection. Algorithms are developed for camera calibration, which are more accurate than the general method calculating all the camera parameters. On the basis of this method, a detection system is developed including an integrative device for easy calculation and repeated usage. On-site experiment results confirm that the proposed method works well under hostile environmental conditions in mills. PMID:26479620

  6. Dimethyl ether reviewed: New results on using this gas in a high-precision drift chamber

    NASA Astrophysics Data System (ADS)

    Basile, M.; Bonvicini, G.; Cara Romeo, G.; Cifarelli, L.; Contin, A.; D'Alí, G.; Del Papa, C.; Maccarrone, G.; Massam, T.; Motta, F.; Nania, R.; Palmonari, F.; Rinaldi, G.; Sartorelli, G.; Spinetti, M.; Susinno, G.; Villa, F.; Votano, L.; Zichichi, A.

    1985-09-01

    Two years ago, dimethyl ether (DME) was presented, for the first time, as a suitable gas for high-precision drift chambers. In fact our tests show that resolutions can be obtained which are better by at least a factor of 2 compared to what one can get with conventional gases. Moreover, DME is very well quenched. The feared formation of whiskers on the wires has not occurred, at least after months of use with a 10 μCi 106Ru source.

  7. A highly efficient, compact Yb:KYW laser for mobile precision systems

    SciTech Connect

    Kuznetsov, S A; Pivtsov, V S

    2014-05-30

    We have developed a promising scheme of a multimodediode-pumped ytterbium laser. The Yb:KYW laser in the cw regime demonstrates record-high differential (40%) and total optical (35%) efficiencies. Mode locking is realised, which allows the scheme to be used for the development of compact laser systems, such as mobile femtosecond precision synthesisers. The peculiarities of the laser operation and ways of further improving its efficiency are discussed. (lasers)

  8. A high precision gamma-ray spectrometer for the Mars-94 mission

    SciTech Connect

    Mitrofanov, I.G.; Anfimov, D.S.; Chernenko, A.M.

    1994-06-01

    The high precision gamma-ray spectrometer (PGS) is scheduled to be launched on the Mars-94 mission in October 1994, and to go into an elliptical polar orbit around Mars. The PGS consists of two high-purity germanium (Ge) detectors, associated electronics, and a passive cooler and will be mounted on one of the solar panels. The PGS will measure nuclear gamma-ray emissions from the martian surface, cosmic gamma-ray bursts, and the high-energy component of solar flares in the broad energy range from 50 KeV to 8 MeV using 4096 energy channels.

  9. Vibration suppression and damage detection in smart composite laminate using high precision finite element

    NASA Astrophysics Data System (ADS)

    Kumar, Anand; Fleming, Peter J.; Bhattacharya, Bishakh

    2011-04-01

    The present work has proposed a 2-D triangular high precision finite element (HPFE) based on Classical Laminated Plate Theory (CLPT). This high precision plate element with 38 degrees of freedom is used to obtain fundamental frequencies and the mode shapes of a passive composite plate. A standard FEM package-ABAQUS is used to verify the FEM code and to validate the results. The same element is subsequently used with piezoelectric sensory network to develop an active damping matrix that tends to suppress vibration. Control algorithm based on classical negative velocity feedback is used. Simulations are carried out on smart composite plates in time domain for effective vibration suppression. The effect of size and location of PVDF film on settling time and damping ratio at different control gains is studied. The high precision piezoelectric finite element is later used to identify damage signals in a ribbon-reinforced composite. In order to identify the damage, voltage profile is obtained for healthy and delaminated composite plates. A change in sensing voltage is observed at simulated damage locations in comparison to the healthy laminate for two different configurations used in the numerical analysis.

  10. Next generation KATRIN high precision voltage divider for voltages up to 65kV

    NASA Astrophysics Data System (ADS)

    Bauer, S.; Berendes, R.; Hochschulz, F.; Ortjohann, H.-W.; Rosendahl, S.; Thümmler, T.; Schmidt, M.; Weinheimer, C.

    2013-10-01

    The KATRIN (KArlsruhe TRItium Neutrino) experiment aims to determine the mass of the electron antineutrino with a sensitivity of 200 meV by precisely measuring the electron spectrum of the tritium beta decay. This will be done by the use of a retarding spectrometer of the MAC-E-Filter type. To achieve the desired sensitivity the stability of the retarding potential of -18.6 kV has to be monitored with a precision of 3 ppm over at least two months. Since this is not feasible with commercial devices, two ppm-class high voltage dividers were developed, following the concept of the standard divider for DC voltages of up to 100 kV of the Physikalisch-Technische Bundesanstalt (PTB). In order to reach such high accuracies different effects have to be considered. The two most important ones are the temperature dependence of resistance and leakage currents, caused by insulators or corona discharges. For the second divider improvements were made concerning the high-precision resistors and the thermal design of the divider. The improved resistors are the result of a cooperation with the manufacturer. The design improvements, the investigation and the selection of the resistors, the built-in ripple probe and the calibrations at PTB will be reported here. The latter demonstrated a stability of about 0.1 ppm/month over a period of two years.

  11. High Precision Topographic Mapping at Chang'E-3 Landing Site with Multi-Source Data

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Liu, B.; Xu, B.; Liu, Z.; Di, K.; Zhou, J.

    2014-04-01

    Chang'e-3 (CE-3) is the first lander and rover of China following the success of Chang'e-1 and Chang'e-2 (CE-2) orbiters. High precision topographic mapping can provide detailed terrain information to ensure the safety of the rover as well as to support scientific investigations. In this research, multi-source data are co-registered into a uniform geographic framework for high precision topographic mapping at the CE-3 landing site. CE-2 CCD images with 7 m- and 1.5 m- resolutions are registered using selfcalibration bundle adjustment method with ground control points (GCPs) selected from LRO WAC mosaic map and LOLA DTM. The trajectory of CE-3 descent images are recovered using self-calibration free net bundle adjustment, and then the topographic data is rectified by absolute orientation with GCPs selected from the adjusted CE-2 DEM and DOM. Finally, these topographic data are integrated into the same geographic framework for unified, multi-scale, high precision mapping of the CE-3 landing site. Key technologies and the mapping products of this research have been used to support the surface operations of CE-3 mission.

  12. "Modal Noise" in Single-mode Fibers: A Cautionary Note for High Precision Radial Velocity Instruments

    NASA Astrophysics Data System (ADS)

    Halverson, Samuel; Roy, Arpita; Mahadevan, Suvrath; Schwab, Christian

    2015-12-01

    Exploring the use of single-mode fibers (SMFs) in high precision Doppler spectrometers has become increasingly attractive since the advent of diffraction-limited adaptive optics systems on large-aperture telescopes. Spectrometers fed with these fibers can be made significantly smaller than typical “seeing-limited” instruments, greatly reducing cost and overall complexity. Importantly, classical mode interference and speckle issues associated with multi-mode fibers, also known as “modal noise,” are mitigated when using SMFs, which also provide perfect radial and azimuthal image scrambling. However, SMFs do support multiple polarization modes, an issue that is generally ignored for larger-core fibers given the large number of propagation modes. Since diffraction gratings used in most high resolution astronomical instruments have dispersive properties that are sensitive to incident polarization changes, any birefringence variations in the fiber can cause variations in the efficiency profile, degrading illumination stability. Here we present a cautionary note outlining how the polarization properties of SMFs can affect the radial velocity (RV) measurement precision of high resolution spectrographs. This work is immediately relevant to the rapidly expanding field of diffraction-limited, extreme precision RV spectrographs that are currently being designed and built by a number of groups.

  13. Accurate time delay technology in simulated test for high precision laser range finder

    NASA Astrophysics Data System (ADS)

    Chen, Zhibin; Xiao, Wenjian; Wang, Weiming; Xue, Mingxi

    2015-10-01

    With the continuous development of technology, the ranging accuracy of pulsed laser range finder (LRF) is higher and higher, so the maintenance demand of LRF is also rising. According to the dominant ideology of "time analog spatial distance" in simulated test for pulsed range finder, the key of distance simulation precision lies in the adjustable time delay. By analyzing and comparing the advantages and disadvantages of fiber and circuit delay, a method was proposed to improve the accuracy of the circuit delay without increasing the count frequency of the circuit. A high precision controllable delay circuit was designed by combining the internal delay circuit and external delay circuit which could compensate the delay error in real time. And then the circuit delay accuracy could be increased. The accuracy of the novel circuit delay methods proposed in this paper was actually measured by a high sampling rate oscilloscope actual measurement. The measurement result shows that the accuracy of the distance simulated by the circuit delay is increased from +/- 0.75m up to +/- 0.15m. The accuracy of the simulated distance is greatly improved in simulated test for high precision pulsed range finder.

  14. Experimental needs of high temperature concrete

    SciTech Connect

    Chern, J.C.; Marchertas, A.H.

    1985-01-01

    The needs of experimental data on concrete structures under high temperature, ranging up to about 370/sup 0/C for operating reactor conditions and to about 900/sup 0/C and beyond for hypothetical accident conditions, are described. This information is required to supplement analytical methods which are being implemented into the finite element code TEMP-STRESS to treat reinforced concrete structures. Recommended research ranges from material properties of reinforced/prestressed concrete, direct testing of analytical models used in the computer codes, to investigations of certain aspects of concrete behavior, the phenomenology of which is not well understood. 10 refs.

  15. [Experimental and theoretical high energy physics program

    SciTech Connect

    Finley, J.; Gaidos, J.A.; Loeffler, F.J.; McIlwain, R.L.; Miller, D.H.; Palfrey, T.R.; Shibata, E.I.; Shipsey, I.P.

    1993-04-01

    Experimental and theoretical high-energy physics research at Purdue is summarized in a number of reports. Subjects treated include the following: the CLEO experiment for the study of heavy flavor physics; gas microstrip detectors; particle astrophysics; affine Kac{endash}Moody algebra; nonperturbative mass bounds on scalar and fermion systems due to triviality and vacuum stability constraints; resonance neutrino oscillations; e{sup +}e{sup {minus}} collisions at CERN; {bar p}{endash}p collisions at FNAL; accelerator physics at Fermilab; development work for the SDC detector at SSC; TOPAZ; D-zero physics; physics beyond the standard model; and the Collider Detector at Fermilab. (RWR)

  16. Recent Operational Improvements To High Precision Photometric Observations With Warm IRAC

    NASA Astrophysics Data System (ADS)

    Carey, Sean J.; Krick, J.; Ingalls, J.; von Braun, K.; Stauffer, J.; Charbonneau, D.; Ballard, S.; Fisher, M.; Olds, R.

    2012-01-01

    We present recent improvements to the data taking for high precision photometric observations with warm IRAC. The IRAC 3.6 and 4.5 ?m observations have significant photometric systematics due to a coupling of telescope motions with intra-pixel gain variations. These systematics are being trended with increasingly sophisticated techniques by the community (e.g. Ballard et al. 2010). A significant systematic due to a pointing wobble was reduced by 50% permitting observers to achieve precisions of 60 ppm (Demory et al. 2011). Most recently, use of the optical peakup instrument aboard Spitzer has been tested to place all IRAC staring mode observations on the same portion of a pixel. These tests have been effective in placing repeated epochs in the same 0.24 by 0.24 arcsec region of a pixel which has a minimal gain variation (sweet-spot). Preliminary high precision ( 10-4) gain maps of the sweet-spots will be presented. Coupled with science data taken at these sweet-spots, the gain maps will improve the ability to remove systematics from photometry. Results from demonstration observations of KOI-069 will be presented. The peakup mode has been tested for targets with V magnitude between 7 and 12.5. In limited testing, peakups using guide stars have been shown effective for stars outside this magnitude range. Full commissioning of the mode is ongoing with the expectation that all high-precision photometric observations will use peakups by the beginning of 2012. Use of the mode can continue as long as Spitzer is operating and should permit photon-limited follow-up and characteriztion of all Kepler discoveries. This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech.

  17. High-precision comparison of the antiproton-to-proton charge-to-mass ratio

    NASA Astrophysics Data System (ADS)

    Ulmer, S.; Smorra, C.; Mooser, A.; Franke, K.; Nagahama, H.; Schneider, G.; Higuchi, T.; van Gorp, S.; Blaum, K.; Matsuda, Y.; Quint, W.; Walz, J.; Yamazaki, Y.

    2015-08-01

    Invariance under the charge, parity, time-reversal (CPT) transformation is one of the fundamental symmetries of the standard model of particle physics. This CPT invariance implies that the fundamental properties of antiparticles and their matter-conjugates are identical, apart from signs. There is a deep link between CPT invariance and Lorentz symmetry--that is, the laws of nature seem to be invariant under the symmetry transformation of spacetime--although it is model dependent. A number of high-precision CPT and Lorentz invariance tests--using a co-magnetometer, a torsion pendulum and a maser, among others--have been performed, but only a few direct high-precision CPT tests that compare the fundamental properties of matter and antimatter are available. Here we report high-precision cyclotron frequency comparisons of a single antiproton and a negatively charged hydrogen ion (H-) carried out in a Penning trap system. From 13,000 frequency measurements we compare the charge-to-mass ratio for the antiproton to that for the proton and obtain . The measurements were performed at cyclotron frequencies of 29.6 megahertz, so our result shows that the CPT theorem holds at the atto-electronvolt scale. Our precision of 69 parts per trillion exceeds the energy resolution of previous antiproton-to-proton mass comparisons as well as the respective figure of merit of the standard model extension by a factor of four. In addition, we give a limit on sidereal variations in the measured ratio of <720 parts per trillion. By following the arguments of ref. 11, our result can be interpreted as a stringent test of the weak equivalence principle of general relativity using baryonic antimatter, and it sets a new limit on the gravitational anomaly parameter of < 8.7 × 10-7.

  18. GNSS tropospheric gradients with high temporal resolution and their effect on precise positioning

    NASA Astrophysics Data System (ADS)

    Lu, Cuixian; Li, Xingxing; Li, Zhenhong; Heinkelmann, Robert; Nilsson, Tobias; Dick, Galina; Ge, Maorong; Schuh, Harald

    2016-01-01

    The tropospheric horizontal gradients with high spatiotemporal resolutions provide important information to describe the azimuthally asymmetric delays and significantly increase the ability of ground-based GNSS (Global Navigation Satellite Systems) within the field of meteorological studies, like the nowcasting of severe rainfall events. The recent rapid development of multi-GNSS constellations has potential to provide such high-resolution gradients with a significant degree of accuracy. In this study, we develop a multi-GNSS process for the precise retrieval of high-resolution tropospheric gradients. The tropospheric gradients with different temporal resolutions, retrieved from both single-system and multi-GNSS solutions, are validated using independent numerical weather models (NWM) data and water vapor radiometer (WVR) observations. The benefits of multi-GNSS processing for the retrieval of tropospheric gradients, as well as for the improvement of precise positioning, are demonstrated. The multi-GNSS high-resolution gradients agree well with those derived from the NWM and WVR, especially for the fast-changing peaks, which are mostly associated with synoptic fronts. The multi-GNSS gradients behave in a much more stable manner than the single-system estimates, especially in cases of high temporal resolution, benefiting from the increased number of observed satellites and improved observation geometry. The high-resolution multi-GNSS gradients show higher correlation with the NWM and WVR gradients than the low-resolution gradients. Furthermore, the precision of station positions can also be noticeably improved by multi-GNSS fusion, and enhanced results can be achieved if the high-resolution gradient estimation is performed, instead of the commonly used daily gradient estimation in the multi-GNSS data processing.

  19. High efficiency positron accumulation for high-precision magnetic moment experiments.

    PubMed

    Fogwell Hoogerheide, S; Dorr, J C; Novitski, E; Gabrielse, G

    2015-05-01

    Positrons are accumulated within a Penning trap designed to make more precise measurements of the positron and electron magnetic moments. The retractable radioactive source used is weak enough to require no license for handling radioactive material, and the radiation dosage 1 m from the source gives an exposure several times smaller than the average radiation dose on the earth's surface. The 100 mK trap is mechanically aligned with the 4.2 K superconducting solenoid that produces a 6 T magnetic trapping field with a direct mechanical coupling. PMID:26026516

  20. High efficiency positron accumulation for high-precision magnetic moment experiments

    NASA Astrophysics Data System (ADS)

    Fogwell Hoogerheide, S.; Dorr, J. C.; Novitski, E.; Gabrielse, G.

    2015-05-01

    Positrons are accumulated within a Penning trap designed to make more precise measurements of the positron and electron magnetic moments. The retractable radioactive source used is weak enough to require no license for handling radioactive material, and the radiation dosage 1 m from the source gives an exposure several times smaller than the average radiation dose on the earth's surface. The 100 mK trap is mechanically aligned with the 4.2 K superconducting solenoid that produces a 6 T magnetic trapping field with a direct mechanical coupling.

  1. High Precision Oxygen Three Isotope Analysis of Wild-2 Particles and Anhydrous Chondritic Interplanetary Dust Particles

    NASA Technical Reports Server (NTRS)

    Nakashima, D.; Ushikubo, T.; Zolensky, Michael E.; Weisberg, M. K.; Joswiak, D. J.; Brownlee, D. E.; Matrajt, G.; Kita, N. T.

    2011-01-01

    One of the most important discoveries from comet Wild-2 samples was observation of crystalline silicate particles that resemble chondrules and CAIs in carbonaceous chondrites. Previous oxygen isotope analyses of crystalline silicate terminal particles showed heterogeneous oxygen isotope ratios with delta(sup 18)O to approx. delta(sup 17)O down to -50% in the CAI-like particle Inti, a relict olivine grain in Gozen-sama, and an olivine particle. However, many Wild-2 particles as well as ferromagnesian silicates in anhydrous interplanetary dust particles (IDPs) showed Delta(sup 17)O values that cluster around -2%. In carbonaceous chondrites, chondrules seem to show two major isotope reservoirs with Delta(sup 17)O values at -5% and -2%. It was suggested that the Delta(sup 17)O = -2% is the common oxygen isotope reservoir for carbonaceous chondrite chondrules and cometary dust, from the outer asteroid belt to the Kuiper belt region. However, a larger dataset with high precision isotope analyses (+/-1-2%) is still needed to resolve the similarities or distinctions among Wild-2 particles, IDPs and chondrules in meteorites. We have made signifi-cant efforts to establish routine analyses of small particles (< or =10micronsm) at 1-2% precision using IMS-1280 at WiscSIMS laboratory. Here we report new results of high precision oxygen isotope analyses of Wild-2 particles and anhydrous chondritic IDPs, and discuss the relationship between the cometary dust and carbonaceous chondrite chondrules.

  2. A flexile and high precision calibration method for binocular structured light scanning system.

    PubMed

    Yuan, Jianying; Wang, Qiong; Li, Bailin

    2014-01-01

    3D (three-dimensional) structured light scanning system is widely used in the field of reverse engineering, quality inspection, and so forth. Camera calibration is the key for scanning precision. Currently, 2D (two-dimensional) or 3D fine processed calibration reference object is usually applied for high calibration precision, which is difficult to operate and the cost is high. In this paper, a novel calibration method is proposed with a scale bar and some artificial coded targets placed randomly in the measuring volume. The principle of the proposed method is based on hierarchical self-calibration and bundle adjustment. We get initial intrinsic parameters from images. Initial extrinsic parameters in projective space are estimated with the method of factorization and then upgraded to Euclidean space with orthogonality of rotation matrix and rank 3 of the absolute quadric as constraint. Last, all camera parameters are refined through bundle adjustment. Real experiments show that the proposed method is robust, and has the same precision level as the result using delicate artificial reference object, but the hardware cost is very low compared with the current calibration method used in 3D structured light scanning system. PMID:25202736

  3. New Insights for High-precision Asteroseismology: Acoustic Radius of KIC 6225718

    NASA Astrophysics Data System (ADS)

    Wu, Tao; Li, Yan

    2016-02-01

    Asteroseismology is a powerful tool for probing stellar interiors and determining stellar fundamental parameters. In previous works, the {χ }2-minimization method is usually used to find the best-matching model to characterize observations. In this Letter, we adopt the {χ }2-minimization method but only use the observed high-precision oscillation to constrain theoretical models for solar-like oscillating star KIC 6225718, which is observed by the Kepler satellite. We also take into account the influence of model precision. Finally, we find that the time resolution of stellar evolution cannot be ignored in high-precision asteroseismic analysis. Based on this, we find the acoustic radius {τ }0 is the only global parameter that can be accurately measured by the {χ }ν 2-matching method between observed frequencies and theoretical model calculations. We obtain {τ }0={4601.5}-8.3+4.4 s. In addition, we analyze the distribution of {χ }ν 2-minimization models (CMMs) and find that the distribution range of CMMs is slightly enlarged by some extreme cases, which possess both a larger mass and a higher (or lower) heavy element abundance, at the lower acoustic radius end.

  4. A Flexile and High Precision Calibration Method for Binocular Structured Light Scanning System

    PubMed Central

    Yuan, Jianying; Wang, Qiong; Li, Bailin

    2014-01-01

    3D (three-dimensional) structured light scanning system is widely used in the field of reverse engineering, quality inspection, and so forth. Camera calibration is the key for scanning precision. Currently, 2D (two-dimensional) or 3D fine processed calibration reference object is usually applied for high calibration precision, which is difficult to operate and the cost is high. In this paper, a novel calibration method is proposed with a scale bar and some artificial coded targets placed randomly in the measuring volume. The principle of the proposed method is based on hierarchical self-calibration and bundle adjustment. We get initial intrinsic parameters from images. Initial extrinsic parameters in projective space are estimated with the method of factorization and then upgraded to Euclidean space with orthogonality of rotation matrix and rank 3 of the absolute quadric as constraint. Last, all camera parameters are refined through bundle adjustment. Real experiments show that the proposed method is robust, and has the same precision level as the result using delicate artificial reference object, but the hardware cost is very low compared with the current calibration method used in 3D structured light scanning system. PMID:25202736

  5. Limiting Energy Dissipation Induces Glassy Kinetics in Single-Cell High-Precision Responses.

    PubMed

    Das, Jayajit

    2016-03-01

    Single cells often generate precise responses by involving dissipative out-of-thermodynamic-equilibrium processes in signaling networks. The available free energy to fuel these processes could become limited depending on the metabolic state of an individual cell. How does limiting dissipation affect the kinetics of high-precision responses in single cells? I address this question in the context of a kinetic proofreading scheme used in a simple model of early-time T cell signaling. Using exact analytical calculations and numerical simulations, I show that limiting dissipation qualitatively changes the kinetics in single cells marked by emergence of slow kinetics, large cell-to-cell variations of copy numbers, temporally correlated stochastic events (dynamic facilitation), and ergodicity breaking. Thus, constraints in energy dissipation, in addition to negatively affecting ligand discrimination in T cells, can create a fundamental difficulty in determining single-cell kinetics from cell-population results. PMID:26958894

  6. Communication: High precision sub-Doppler infrared spectroscopy of the HeH{sup +} ion

    SciTech Connect

    Perry, Adam J.; Hodges, James N.; Markus, Charles R.; Kocheril, G. Stephen; McCall, Benjamin J.

    2014-09-14

    The hydrohelium cation, HeH{sup +}, serves as an important benchmark for ab initio calculations that take into account non-adiabatic, relativistic, and quantum electrodynamic effects. Such calculations are capable of predicting molecular transitions to an accuracy of ∼300 MHz or less. However, in order to continue to push the boundaries on these calculations, new measurements of these transitions are required. Here we measure seven rovibrational transitions in the fundamental vibrational band to a precision of ∼1 MHz using the technique of Noise Immune Cavity Enhanced Optical Heterodyne Velocity Modulation Spectroscopy. These newly measured transitions are included in a fit to the rotation-vibration term values to derive refined spectroscopic constants in the v = 0 and v = 1 vibrational states, as well as to calculate rotation-vibration energy levels with high precision.

  7. The design of a stepper motor control-based high-precision varifocal imaging optical system

    NASA Astrophysics Data System (ADS)

    Xiang, Bai

    2012-11-01

    This study, while introducing the theories and makeup of conventional cam varifocal system, indicates the two faults stemming from their inherent mechanism and potentiometer-based focal-length measurement: 1) inability to stop optic axis vibration and 2) considerable error in real-time output of focal-length value. As a result, a stepper motor, instead of cam mechanism, was employed to control mirrors of variofocus and mirrors of compensation in moving accurately along straight-ling rails so that continuous focal-length variation and surface image positioning were accomplished; a linear encoder was substituted for potentiometer in realizing real-time output of focal-length value and also in closed-loop control of stepper motor. Compared with the cam mechanism, this system provides 90% less vibration and 80% more positioning precision, thereby basically solving the problems of the cam system and enabling the high-precision angular measurement.

  8. Interacting sources for high-precision atom interferometry - a theoretical study

    NASA Astrophysics Data System (ADS)

    Posso Trujillo, Katerine; Ahlers, Holger; Schubert, Christian; Ertmer, Wolfgang; Rasel, Ernst; Gaaloul, Naceur

    2014-05-01

    We theoretically study the possibilities to use binary quantum mixtures as sources for high-precision atom interferometers with interferometry times ranging over several seconds. Such schemes are of timely interest in the context of inertial navigation or fundamental physics laws tests. The mixture expansion dynamics are solved by integrating a set of two coupled Gross-Pitaevskii equations. In order to satisfy the severe requirements of a precise differential interferometer, a common delta-kick cooling stage is applied to the two ensembles simultaneously to induce ultra-slow expansion (~ 50 pk regime). Other systematic effects are analysed and mitigation strategies identified. To illustrate this study, we consider the case of three mixtures of 87Rb/85Rb, 87Rb/39Kand87Rb/41K widely used in atom interferometry measurements. The advantages and drawbacks of every pair are highlighted and discussed. K. Posso-Trujillo. thanks the German Academic Exchange Service - DAAD (research grant No. A/10/74250).

  9. Investigation of high-precision {Lambda} hypernuclear spectroscopy via the (e,e'K{sup +}) reaction

    SciTech Connect

    Kawama, Daisuke

    2012-03-31

    The study of {Lambda} hypernuclear structure is very interesting in point of the understanding of the interaction between {Lambda} and nucleon ({Lambda}-N interaction) and its ”strange” structure itself due to the containment of a {Lambda} hyperon which has a strangeness as a new degree of freedom. In the several way to study the Lamda hypernuclei, the (e,e'K{sup +}) reaction spectroscopy is a powerful tool for the precise investigation of {Lamda} hypernuclear structure. The purpose of the preset thesis is the establishment of the experimental design with the efficient data analysis method for the (e,e'K{sup +}) hypernuclear spectroscopic experiment in the wide mass region (from A=7 to A=52). It is very challenging to perform the (e,e'K{sup +}) spectroscopic experiment with such a heavy target, because of the huge electron background due to the bremsstrahlung process. In the experiment, it is required to obtain the necessary hypernuclear yield, suppressing the background event ratio. We achieved these requirements by newly constructing the high resolution electron spectrometer (HES) and splitter magnet (SPL) dedicated to the (e,e'K{sup +}) spectroscopic experiment. The HES consists of two quadrupole magnets and a dipole magnets (Q-Q-D) with a momentum resolution of dp/p = 3x10^-4 at p = 0.84 GeV/c. It was used being vertically tilted by 6.5 degree so as to optimize signal to noise ratio and hypernuclear yield. The SPL is a dipole magnet. The experimental target was placed at the entrance of this magnet. The role of the SPL is to separate four kind of particles; scattered kaons, photons created by the bremsstrahlung, the post beam and scattered electrons. In addition, since the SPL is a part of the kaon and electron spectrometers. We designed the magnet shape carefully considering these points. The experiment was performed with 2.344 GeV/c electron beam from CEBAF at Jefferson Lab. The experimental setup consists of the HES, SPL and HKS (high momentum resolution kaon spectrometer). The HKS is also a Q-Q-D type spectrometer with the momentum resolution of dp/p = 2x10^-4 at p = 1.2 GeV/c. In the data analysis, the particle momentum calibration was the most important procedure. At the initial point, the particle momentum was obtained from the calculated magnetic field map of the spectrometer whose accuracy is an order of 10^-2. The initial momentum was calibrated by two step, the the magnetic field map improvement and the calibration with known masses of {Lambda}/{Sigma}{sup 0} which were observed by the CH{sub 2} target data. As a result of the calibration, the momentum resolutions of HKS and HES were estimated as 4x10^-4 and 6x10^-4, respectively. Though these values are the double of the designed value, it was achieved to obtain the {Lambda}/{Sigma}{sup 0} peaks with the same order of the designed energy from the original calculated magnetic field. The cross section was calculated with the several estimated factors. The averaged p({gamma}*, K{sup +}){Lamda} cross section in the HKS acceptance, (0.90 < cos({theta}^CM_K{sup +}) < 1.0) was calculated as 227 ± 12 ±26 [nb/sr], which is consistent within the error bar with the other experiment results of p({gamma}, K{sup +}){Lamda}. The obtained yield of the peak was almost same as the designed value with the considered detector efficiencies. The observed hypernuclear spectrum of ^12_{Lambda} B was also consistent with the other experimental results. These analysis result represents that the experimental setup including the newly constructed HES and SPL worked and the calibration procedure of this unique experimental setup is basically established.

  10. High precision atomic data for halo nuclei and related nuclear structure

    SciTech Connect

    Noertershaeuser, Wilfried

    2013-07-11

    Nuclear charge radii of the lightest neutron-halo isotopes {sup 6,8}He, {sup 11}Li, and {sup 11}Be have been measured during the last decade using tailored laser-spectroscopic techniques for the needs of high-accuracy isotope shift measurements on millisecond-isotopes with very low production yields. Nuclear charge radii can be extracted using high-precision calculations of the mass-shift contribution and the electronic factor of the finite-nuclear-size effect. These results are important benchmarks for nuclear structure theory and give access to the correlations between halo neutrons and average distances of the halo neutrons from the core nucleus.

  11. Lightweight Metal Matrix Composite Segmented for Manufacturing High-Precision Mirrors

    NASA Technical Reports Server (NTRS)

    Vudler, Vladimir

    2012-01-01

    High-precision mirrors for space applications are traditionally manufactured from one piece of material, such as lightweight glass sandwich or beryllium. The purpose of this project was to develop and test the feasibility of a manufacturing process capable of producing mirrors out of welded segments of AlBeMet(Registered Trademark) (AM162H). AlBeMet(Registered Trademark) is a HIP'd (hot isostatic pressed) material containing approximately 62% beryllium and 38% aluminum. As a result, AlBeMet shares many of the benefits of both of those materials for use in high performance mirrors, while minimizing many of their weaknesses.

  12. A New High-precision Correction Method of Temperature Distribution in Model Stellar Atmospheres

    NASA Astrophysics Data System (ADS)

    Sapar, A.; Poolamäe, R.; Sapar, L.

    The main features of the temperature correction methods, suggested and used in modeling of plane-parallel stellar atmospheres, are discussed. The main features of the new method are described. Derivation of the formulae for a version of the Unsöld-Lucy method, used by us in the SMART (Stellar Model Atmospheres and Radiative Transport) software for modeling stellar atmospheres, is presented. The method is based on a correction of the model temperature distribution based on minimizing differences of flux from its accepted constant value and on the requirement of the lack of its gradient, meaning that local source and sink terms of radiation must be equal. The final relative flux constancy obtainable by the method with the SMART code turned out to have the precision of the order of 0.5 %. Some of the rapidly converging iteration steps can be useful before starting the high-precision model correction. The corrections of both the flux value and of its gradient, like in Unsöld-Lucy method, are unavoidably needed to obtain high-precision flux constancy. A new temperature correction method to obtain high-precision flux constancy for plane-parallel LTE model stellar atmospheres is proposed and studied. The non-linear optimization is carried out by the least squares, in which the Levenberg-Marquardt correction method and thereafter additional correction by the Broyden iteration loop were applied. Small finite differences of temperature (δ T/T=10-3) are used in the computations. A single Jacobian step appears to be mostly sufficient to get flux constancy of the order 10-2 %. The dual numbers and their generalization -- the dual complex numbers (the duplex numbers) -- enable automatically to get the derivatives in the nilpotent part of the dual numbers. A version of the SMART software is in the stage of refactorization to dual and duplex numbers, what enables to get rid of the finite differences, as an additional source of lowering precision of the computed results.

  13. Acoustic grating fringe projector for high-speed and high-precision three-dimensional shape measurements.

    PubMed

    Yin, Xuebing; Zhao, Huijie; Zeng, Junyu; Qu, Yufu

    2007-05-20

    A new acoustic grating fringe projector (AGFP) was developed for high-speed and high-precision 3D measurement. A new acoustic grating fringe projection theory is also proposed to describe the optical system. The AGFP instrument can adjust the spatial phase and period of fringes with unprecedented speed and accuracy. Using rf power proportional-integral-derivative (PID) control and CCD synchronous control, we obtain fringes with fine sinusoidal characteristics and realize high-speed acquisition of image data. Using the device, we obtained a precise phase map for a 3D profile. In addition, the AGFP can work in running fringe mode, which could be applied in other measurement fields. PMID:17514256

  14. A High-Precision Optical Polarimeter to Measure Inclinations of High-Mass X-Ray Binaries

    NASA Astrophysics Data System (ADS)

    Wiktorowicz, Sloane J.; Matthews, Keith

    2008-12-01

    We present commissioning data for the POLISH instrument obtained on the Hale 5-m telescope. The goal of this high-precision polarimeter is to constrain orbital inclination of high-mass X-ray binaries and therefore to obtain independent mass estimates for their black-hole companions. We have obtained photon shot-noise-limited precision on standard stars, and we have measured the polarization of bright stars at the part-per-million level on a nightly basis. Systematic effects have been reduced to less than 1% of the measured polarization for polarized sources and to the part-per-million level for weakly polarized sources. The high sensitivity of this instrument to asymmetry suggests that valuable contributions will be made in many other fields, including studies of extrasolar planets, debris disks, and stellar astrophysics.

  15. Development of a low cost high precision fabrication process for glass hybrid aspherical diffractive lenses

    NASA Astrophysics Data System (ADS)

    He, Peng; Wang, Fei; Li, Likai; Georgiadis, K.; Dambon, O.; Klocke, F.; Yi, A. Y.

    2011-08-01

    The hybrid aspherical diffractive singlet achromat design can be used to reduce chromatic aberration in compact optical systems. In this paper, the development of a compression molded, low cost and high precision hybrid diffractive glass lens is described. Specifically, an aspherical diffractive lens designed to compensate for chromatic aberration was fabricated by precision glass molding. The diffractive features are integrated on the aspherical surface to avoid mold alignment during fabrication. As part of the effort to lower manufacturing cost, the diffractive profiles were directly fabricated by single-point diamond turning without polishing. A thin layer of platinum-iridium coating was applied to the mold surfaces to protect the mold inserts from degradation during the molding process. In order to reduce thermal shrinkage error, the hybrid lens was fabricated using a two-step precision molding process on a commercial glass molding machine. The geometry of the molded hybrid aspherical diffractive lens was measured using an optical profilometer and the results demonstrated a match to the design mold profile with a replication error of 0.16% in the radial direction and 6.3% in the axial direction. In addition, an optical metrology system to evaluate the diffraction efficiency and chromatic focal shift was constructed and the measured results showed that the hybrid lenses indeed function as designed.

  16. Modelling of the Earth orientation and high precision astrometric observation techniques

    NASA Astrophysics Data System (ADS)

    Yao, K.; Capitaine, N.

    2011-10-01

    Earth Orientation Parameters (EOP) are needed to locate an object in the celestial or terrestrial reference systems. IERS provides EOP series at 1-day interval and standard numerical models for some variations of the EOP. High precision EOP are requested in many research and application domains, i.e. geodesy, satellite orbitography, astronomical observations. Several techniques contribute to estimate the EOP: VLBI, GPS, SLR, LLR, and DORIS. Their contributions vary while their precisions evolve. It is interesting to investigate their potentiality to determine the various components of the Earth's rotation and especially precession-nutation. The purpose of this work is to investigate the potentiality of VLBI and GPS techniques to determine the various components of precession-nutation, and to compare the performance and precision of their results, for long term components and short term components respectively. This paper recalls the IERS modeling of Earth rotation and the method used for estimating the EOP by VLBI and GPS; it also presents a new option to estimate short-period nutations.

  17. [Spectral scanning measurement of high-precision solar irradiance-meter].

    PubMed

    Liu, En-Chao; Li, Xin; Zhang, Yan-Na; Li, Wen-Wei; Zheng, Xiao-Bing

    2014-03-01

    In order to measure the radiation of the sun absolutely and retrieve the characterization of the atmosphere precisely, a high-precision solar spectral irradiance meter working in 0.4-1.0 microm band was developed. A Fèry prism was employed to disperse the incident sunlight and a closed-loop control method was adopted for spectral scanning in this solar irradiance meter. The design of spectral scanning measurement was depicted in detail. The design requirements of Fèry prism were given and spectral dispersion was achieved by single element. The trap detectors were used to ensure precise spectral measurement. According to the parameters of the trap detectors, the demands and method of temperature control were introduced. The design of spectral scanning structure was introduced, and wavelengths were positioned accurately. The requirements for parameters, stability and power supply of voice coil actuator were given and the wavelength position error of 0. 025% was achieved. Spectral scanning measurement of 0.4-1.0 microm was accomplished in outdoor experiments. A comparison was carried out with visible-short wave infrared spectrometer and auto-sunphotometer (CE318). Results indicate that absorption peak locations of spectral scanning measurement of irradiance meter are correct, and the relative deviation from CE318 measurements is less than 0.13% for all day, and the relative deviation of optical depth in visible and near infrared band is less than 2% and 5%, respectively. PMID:25208375

  18. High-precision mass measurements of 25Al and 30P at JYFLTRAP

    NASA Astrophysics Data System (ADS)

    Canete, L.; Kankainen, A.; Eronen, T.; Gorelov, D.; Hakala, J.; Jokinen, A.; Kolhinen, V. S.; Koponen, J.; Moore, I. D.; Reinikainen, J.; Rinta-Antila, S.

    2016-05-01

    The masses of the astrophysically relevant nuclei 25Al and 30P have been measured with a Penning trap for the first time. The mass-excess values for 25Al ( Δ = -8915.962(63) keV) and 30P ( Δ = -20200.854(64) keV) obtained with the JYFLTRAP double Penning trap mass spectrometer are in good agreement with the Atomic Mass Evaluation 2012 values but ≈ 5-10 times more precise. A high precision is required for calculating resonant proton-capture rates of astrophysically important reactions 25Al ( p, γ)26Si and 30P( p, γ)31S . In this work, Q_{(p,γ)} = 5513.99(13) keV and Q_{(p,γ)} = 6130.64(24) keV were obtained for 25Al and 30P , respectively. The effect of the more precise values on the resonant proton-capture rates has been studied. In addition to nuclear astrophysics, the measured QEC value of 25Al , 4276.805(45) keV, is relevant for studies of T = 1/2 mirror beta decays which have a potential to be used to test the Conserved Vector Current hypothesis.

  19. ACT3: A High-speed, High-Precision Electrical Impedance Tomograph

    PubMed Central

    Cook, Raymond D.; Saulnier, Gary J.; Gisser, David G.; Goble, John C.; Newell, JC.; Isaacson, David

    2016-01-01

    This paper presents the design, implementation, and performance of Rensselaer’s third-generation Adaptive Current Tomograph, ACT3. This system uses 32 current sources and 32 phase-sensitive voltmeters to make a 32-electrode system that is capable of applying arbitrary spatial patterns of current. The instrumentation provides 16 b precision on both the current values and the real and reactive voltage readings and can collect the data for a single image in 133 ms. Additionally, the instrument is able to automatically calibrate its voltmeters and current sources and adjust the current source output impedance under computer control. The major system components are discussed in detail and performance results are given. Images obtained using stationary agar targets and a moving pendulum in a phantom as well as in vivo resistivity profiles showing human respiration are shown. PMID:7927393

  20. High-precision orbit determination for high-earth elliptical orbiters using the Global Positioning System

    NASA Technical Reports Server (NTRS)

    Lichten, S. M.; Estefan, J. A.

    1990-01-01

    Orbit covariance analyses pertaining to the Japanese VLBI Space Observatory Program (VSOP) MUSES-B satellite and to the International VLBI Satellite are presented. It is determined that a combination of Doppler and GPS measurements can provide the orbit accuracy required to support advanced radio interferometric experiments. For the VSOP, the required orbit accuracy of 130 m is easily met with two-way Doppler as the primary type of data; the 0.4 cm/s VSOP velocity requirement is also feasible provided that precise ground calibrations of tropospheric delays and station coordinates are available. It is concluded that combining the data from a VSOP GPS flight instrument with the ground GPS and two-way Doppler data will significantly enhance orbit determination accuracy in position and velocity.

  1. High throughput proteome-wide precision measurements of protein expression using mass spectrometry

    SciTech Connect

    Pasa-Tolic, L.; Jensen, P.K.; Anderson, G.A.; Lipton, M.S.; Peden, K.K.; Martinovic, S.; Tolic, N.; Bruce, J.E.; Smith, R.D.

    1999-09-01

    In contrast to a cell's virtually static genome, the proteome, the protein complement expressed by an organism, continually changes in response to external stimuli and internal processes. Global gene expression analysis at the mRNA level (i.e., transcriptome) has recently become feasible based on the serial analysis of gene expression and oligonucleotide micro-array assays. These techniques allow the activation states of thousands of genes to be polled simultaneously for a tissue or cell population. However, assays that measure mRNA abundances rather than the functional gene products (i.e., proteins) are uninformative with regard to protein modifications, and can poorly reflect protein abundances due to differences in stabilities, expression rates, etc., for both the mRNAs and proteins. The authors have developed an approach utilizing organisms cultured in stable-isotope labeled media (e.g., rare-isotope depleted and normal) to provide effective internal calibrants for all detected proteins, thus enabling precise proteome-wide measurement of changes in protein abundances resulting from cellular perturbations. The two (or more) isotopically distinctive cell populations are mixed prior to sample processing steps, eliminating all experimental variables associated with cell lysis, separation, and mass spectrometric analysis. Changes in relative protein abundances are thus precisely reflected by the ratio of two isotopically different and resolvable versions of each protein.

  2. High-precision determination of iron oxidation state in silicate glasses using XANES

    SciTech Connect

    Cottrell, Elizabeth; Kelley, Katherine A.; Lanzirotti, Antonio; Fischer, Rebecca A.

    2009-11-04

    Fe K-edge X-ray absorption near-edge structure (XANES) and Moessbauer spectra were collected on natural basaltic glasses equilibrated over a range of oxygen fugacity (QFM - 3.5 to QFM + 4.5). The basalt compositions and fO{sub 2} conditions were chosen to bracket the natural range of redox conditions expected for basalts from mid-ocean ridge, ocean island, back-arc basin, and arc settings, in order to develop a high-precision calibration for the determination of Fe{sup 3+}/{Sigma}Fe in natural basalts. The pre-edge centroid energy, corresponding to the 1s {yields} 3d transition, was determined to be the most robust proxy for Fe oxidation state, affording significant advantages compared to the use of other spectral features. A second-order polynomial models the correlation between the centroid and Fe{sup 3+}/{Sigma}Fe, yielding a precision of {+-} 0.0045 in Fe{sup 3+}/{Sigma}Fe for glasses with Fe{sup 3+}/{Sigma}Fe > 8%, which is comparable to the precision of wet chemistry. This high precision relies on a Si (311) monochromator to better define the Fe{sup 2+} and Fe{sup 3+} transitions, accurate and robust modeling of the pre-edge feature, dense fO{sub 2}-coverage and compositional appropriateness of reference glasses, and application of a non-linear drift correction. Through re-analysis of the reference glasses across three synchrotron beam sessions, we show that the quoted precision can be achieved (i.e., analyses are reproducible) across multiple synchrotron beam sessions, even when spectral collection conditions (detector parameters or sample geometry) change. Rhyolitic glasses were also analyzed and yield a higher centroid energy at a given Fe{sup 3+}/{Sigma}Fe than basalts, implying that major variations in melt structure affect the relationship between centroid position and Fe{sup 3+}/{Sigma}Fe, and that separate calibrations are needed for the determination of oxidation state in basalts and rhyolites.

  3. High precision relative attitude measurement for inner payload of new photoelectric platform.

    PubMed

    Wang, Y Y; Wang, L; Bai, X G; Ma, T W; Dai, M

    2016-03-01

    A new method for measuring the relative attitude of a load on an airborne photoelectric platform supported by three-axis universal joint structure is proposed. The mathematical model for angle measurement is established, based on which the linear relation between the angle and distance is derived by using the eccentric method. Furthermore, the relative attitude measurement method for a load rotating along the yaw and pitch directions is also proposed based on a unique eccentric structure. Finally, to validate the proposed new method, a comprehensive experiment for measurement angle from -5° to +5° in increments of 0.5° was performed by using the angular capacitive sensor. The experimental results show that the precision of the angular measurement is better than 15″ with maximum 1.24 kHz bandwidth, which meets the relative attitude measurement requirements of the internal load on the airborne photoelectric platform. PMID:27036812

  4. High precision relative attitude measurement for inner payload of new photoelectric platform

    NASA Astrophysics Data System (ADS)

    Wang, Y. Y.; Wang, L.; Bai, X. G.; Ma, T. W.; Dai, M.

    2016-03-01

    A new method for measuring the relative attitude of a load on an airborne photoelectric platform supported by three-axis universal joint structure is proposed. The mathematical model for angle measurement is established, based on which the linear relation between the angle and distance is derived by using the eccentric method. Furthermore, the relative attitude measurement method for a load rotating along the yaw and pitch directions is also proposed based on a unique eccentric structure. Finally, to validate the proposed new method, a comprehensive experiment for measurement angle from -5° to +5° in increments of 0.5° was performed by using the angular capacitive sensor. The experimental results show that the precision of the angular measurement is better than 15″ with maximum 1.24 kHz bandwidth, which meets the relative attitude measurement requirements of the internal load on the airborne photoelectric platform.

  5. High precision pulsar timing: Nancay and the european pulsar timing array

    NASA Astrophysics Data System (ADS)

    Cognard, I.; Desvignes, G.; Theureau, G.

    2011-10-01

    Pulsars are highly stable celestial rotators used in many different applications, from tests of the theories describing the gravitation to the search for a Gravitational Waves background. They could even play a role in time scales definition and those point sources are also used to link the different reference frames. Nancay radiotelescope is involved in high precision timing since 20 years. Since 2004, a coherent dedispersion instrumentation enables numerous routine observations on more than 200 pulsars using half of the time of this 100-meters class radiotelescope. Two main programs are currently conducted. A large set of young and old pulsars is timed for a multi-wavelength approach, complementary to the very successful high energy observations of pulsars done by the instrument FERMI/LAT (Abdo et al., 2009). A set of highly stable millisecond pulsars is monitored as our contribution to the European Pulsar Timing Array in order to probe any kind of Gravitational Waves background.

  6. High-Precision Distribution of Highly Stable Optical Pulse Trains with 8.8 × 10−19 instability

    PubMed Central

    Ning, B.; Zhang, S. Y.; Hou, D.; Wu, J. T.; Li, Z. B.; Zhao, J. Y.

    2014-01-01

    The high-precision distribution of optical pulse trains via fibre links has had a considerable impact in many fields. In most published work, the accuracy is still fundamentally limited by unavoidable noise sources, such as thermal and shot noise from conventional photodiodes and thermal noise from mixers. Here, we demonstrate a new high-precision timing distribution system that uses a highly precise phase detector to obviously reduce the effect of these limitations. Instead of using photodiodes and microwave mixers, we use several fibre Sagnac-loop-based optical-microwave phase detectors (OM-PDs) to achieve optical-electrical conversion and phase measurements, thereby suppressing the sources of noise and achieving ultra-high accuracy. The results of a distribution experiment using a 10-km fibre link indicate that our system exhibits a residual instability of 2.0 × 10−15 at1 s and8.8 × 10−19 at 40,000 s and an integrated timing jitter as low as 3.8 fs in a bandwidth of 1 Hz to 100 kHz. This low instability and timing jitter make it possible for our system to be used in the distribution of optical-clock signals or in applications that require extremely accurate frequency/time synchronisation. PMID:24870442

  7. A novel approach for high precision rapid potentiometric titrations: Application to hydrazine assay

    NASA Astrophysics Data System (ADS)

    Sahoo, P.; Malathi, N.; Ananthanarayanan, R.; Praveen, K.; Murali, N.

    2011-11-01

    We propose a high precision rapid personal computer (PC) based potentiometric titration technique using a specially designed mini-cell to carry out redox titrations for assay of chemicals in quality control laboratories attached to industrial, R&D, and nuclear establishments. Using this technique a few microlitre of sample (50-100 μl) in a total volume of ˜2 ml solution can be titrated and the waste generated after titration is extremely low comparing to that obtained from the conventional titration technique. The entire titration including online data acquisition followed by immediate offline analysis of data to get information about concentration of unknown sample is completed within a couple of minutes (about 2 min). This facility has been created using a new class of sensors, viz., pulsating sensors developed in-house. The basic concept in designing such instrument and the salient features of the titration device are presented in this paper. The performance of the titration facility was examined by conducting some of the high resolution redox titrations using dilute solutions--hydrazine against KIO3 in HCl medium, Fe(II) against Ce(IV) and uranium using Davies-Gray method. The precision of titrations using this innovative approach lies between 0.048% and 1.0% relative standard deviation in different redox titrations. With the evolution of this rapid PC based titrator it was possible to develop a simple but high precision potentiometric titration technique for quick determination of hydrazine in nuclear fuel dissolver solution in the context of reprocessing of spent nuclear fuel in fast breeder reactors.

  8. High-Precision Dispensing of Nanoliter Biofluids on Glass Pedestal Arrays for Ultrasensitive Biomolecule Detection.

    PubMed

    Chen, Xiaoxiao; Liu, Yang; Xu, QianFeng; Zhu, Jing; Poget, Sébastien F; Lyons, Alan M

    2016-05-01

    Precise dispensing of nanoliter droplets is necessary for the development of sensitive and accurate assays, especially when the availability of the source solution is limited. Conventional approaches are limited by imprecise positioning, large shear forces, surface tension effects, and high costs. To address the need for precise and economical dispensing of nanoliter volumes, we developed a new approach where the dispensed volume is dependent on the size and shape of defined surface features, thus freeing the dispensing process from pumps and fine-gauge needles requiring accurate positioning. The surface we fabricated, called a nanoliter droplet virtual well microplate (nVWP), achieves high-precision dispensing (better than ±0.5 nL or ±1.6% at 32 nL) of 20-40 nL droplets using a small source drop (3-10 μL) on isolated hydrophilic glass pedestals (500 μm on a side) bonded to arrays of polydimethylsiloxane conical posts. The sharp 90° edge of the glass pedestal pins the solid-liquid-vapor triple contact line (TCL), averting the wetting of the glass sidewalls while the fluid is prevented from receding from the edge. This edge creates a sufficiently large energy barrier such that microliter water droplets can be poised on the glass pedestals, exhibiting contact angles greater >150°. This approach relieves the stringent mechanical alignment tolerances required for conventional dispensing techniques, shifting the control of dispensed volume to the area circumscribed by the glass edge. The effects of glass surface chemistry and dispense velocity on droplet volume were studied using optical microscopy and high-speed video. Functionalization of the glass pedestal surface enabled the selective adsorption of specific peptides and proteins from synthetic and natural biomolecule mixtures, such as venom. We further demonstrate how the nVWP dispensing platform can be used for a variety of assays, including sensitive detection of proteins and peptides by fluorescence microscopy or MALDI-TOF. PMID:27070413

  9. Improving suppression ratio of microwave photonic filters using high-precision spectral shaping

    NASA Astrophysics Data System (ADS)

    Yu, Yang; Li, Shangyuan; Liao, Jinxin; Zheng, Xiaoping; Zhang, Hanyi; Zhou, Bingkun

    2015-05-01

    The main-to-sidelobe suppression ratio (MSSR) is significant to filters. The tap weight errors worsen the MSSR of the finite impulse response (FIR) microwave photonic filters (MPFs). The MSSR can be improved by shaping the multicarrier optical source spectra with high precision. By compensating the errors with an iteration method, the sidelobes of the amplitude response can be optimized to increase the MSSR. Such a method is simple, effective, and compatible with all FIR MPF approaches. In the experiment, optical spectra of Gaussian profiles were taken as an example, and an MSSR improvement from 50 to 63 dB was demonstrated.

  10. Signatures of planet formation in high-precision elemental abundances of twin stars

    NASA Astrophysics Data System (ADS)

    Ramirez, Ivan

    2016-01-01

    The process of planet formation is likely to have left a detectable signature in the chemical composition of stars. Highly precise abundance analyses of stars which are very similar to each other (stellar twins) have revealed interesting correlations between relative elemental abundance and dust condensation temperature, which can be interpreted as signatures of the formation of gas giant and/or terrestrial planets. The proposed connection between host star chemical abundances and planet formation will be discussed, as well as how it could be used to find or confirm the presence of exoplanets and what these findings could tell us about the way stars and planets form.

  11. Asynchronous RTK precise DGNSS positioning method for deriving a low-latency high-rate output

    NASA Astrophysics Data System (ADS)

    Liang, Zhang; Hanfeng, Lv; Dingjie, Wang; Yanqing, Hou; Jie, Wu

    2015-07-01

    Low-latency high-rate (1 Hz) precise real-time kinematic (RTK) can be applied in high-speed scenarios such as aircraft automatic landing, precise agriculture and intelligent vehicle. The classic synchronous RTK (SRTK) precise differential GNSS (DGNSS) positioning technology, however, is not able to obtain a low-latency high-rate output for the rover receiver because of long data link transmission time delays (DLTTD) from the reference receiver. To overcome the long DLTTD, this paper proposes an asynchronous real-time kinematic (ARTK) method using asynchronous observations from two receivers. The asynchronous observation model (AOM) is developed based on undifferenced carrier phase observation equations of the two receivers at different epochs with short baseline. The ephemeris error and atmosphere delay are the possible main error sources on positioning accuracy in this model, and they are analyzed theoretically. In a short DLTTD and during a period of quiet ionosphere activity, the main error sources decreasing positioning accuracy are satellite orbital errors: the "inverted ephemeris error" and the integration of satellite velocity error which increase linearly along with DLTTD. The cycle slip of asynchronous double-differencing carrier phase is detected by TurboEdit method and repaired by the additional ambiguity parameter method. The AOM can deal with synchronous observation model (SOM) and achieve precise positioning solution with synchronous observations as well, since the SOM is only a specific case of AOM. The proposed method not only can reduce the cost of data collection and transmission, but can also support the mobile phone network data link transfer mode for the data of the reference receiver. This method can avoid data synchronizing process besides ambiguity initialization step, which is very convenient for real-time navigation of vehicles. The static and kinematic experiment results show that this method achieves 20 Hz or even higher rate output in real time. The ARTK positioning accuracy is better and more robust than the combination of phase difference over time (PDOT) and SRTK method at a high rate. The ARTK positioning accuracy is equivalent to SRTK solution when the DLTTD is 0.5 s, and centimeter level accuracy can be achieved even when DLTTD is 15 s.

  12. Graphic overlays in high-precision teleoperation: Current and future work at JPL

    NASA Technical Reports Server (NTRS)

    Diner, Daniel B.; Venema, Steven C.

    1989-01-01

    In space teleoperation additional problems arise, including signal transmission time delays. These can greatly reduce operator performance. Recent advances in graphics open new possibilities for addressing these and other problems. Currently a multi-camera system with normal 3-D TV and video graphics capabilities is being developed. Trained and untrained operators will be tested for high precision performance using two force reflecting hand controllers and a voice recognition system to control two robot arms and up to 5 movable stereo or non-stereo TV cameras. A number of new techniques of integrating TV and video graphics displays to improve operator training and performance in teleoperation and supervised automation are evaluated.

  13. High school driver education using peer tutors, direct instruction, and precision teaching.

    PubMed

    Bell, K E; Young, K R; Salzberg, C L; West, R P

    1991-01-01

    The authors investigated the combined effects of direct instruction and precision teaching by peer tutors in a high school driver education curriculum. Learners (N = 4) included students with intellectual and learning disabilities and students without disabilities. Peer tutoring was associated with immediate increases in correct responding and a simultaneous and rapid deceleration of errors. Three learners passed the written tests in the driver education classroom, obtained driver's licenses, and produced similar or better driving records than students who did not require assistance. This program is being continued and expanded by school personnel without assistance from the authors. PMID:2055802

  14. High precision measurements of the neutron spin structure in Hall A at Jlab

    SciTech Connect

    Annand, R M; Cates, G; Cisbani, E; Franklin, G B; Liyanage, N; Puckett, A; Rosner, G; Wojtsekhowski, B

    2012-04-01

    Conclusions of this presentation are: (1) JLab energy upgrade will offer new exciting opportunities to study the nucleon (spin) structure such as high precision, unexplored phase space, flavor decomposition; (2) Large technological efforts is in progress to optimally exploit these opportunities; (3) HallA will be the first hall to get the new beam, first experiment expected to run in 2014; (4) A1n likely one of the first experiments to take data in the new 12 GeV era; and (5) SIDIS exp. will follow in couple of years.

  15. High-precision gamma-ray spectroscopy for enhancing production and application of medical isotopes

    NASA Astrophysics Data System (ADS)

    McCutchan, E. A.; Sonzogni, A. A.; Smith, S. V.; Muench, L.; Nino, M.; Greene, J. P.; Carpenter, M. P.; Zhu, S.; Chillery, T.; Chowdhury, P.; Harding, R.; Lister, C. J.

    2015-10-01

    Nuclear medicine is a field which requires precise decay data for use in planning radionuclide production and in imaging and therapeutic applications. To address deficiencies in decay data, sources of medical isotopes were produced and purified at the Brookhaven Linear Isotope Producer (BLIP) then shipped to Argonne National Laboratory where high-precision, gamma-ray measurements were performed using Gammasphere. New decay schemes for a number of PET isotopes and the impact on dose calculations will be presented. To investigate the production of next-generation theranostic or radiotherapeutic isotopes, cross section measurements with high energy protons have also been explored at BLIP. The 100-200 MeV proton energy regime is relatively unexplored for isotope production, thus offering high discovery potential but at the same time a challenging analysis due to the large number of open channels at these energies. Results of cross sections deduced from Compton-suppressed, coincidence gamma-ray spectroscopy performed at Lowell will be presented, focusing on the production of platinum isotopes by irradiating natural platinum foils with 100 to 200 MeV protons. DOE Isotope Program is acknowledged for funding ST5001030. Work supported by the US DOE under Grant DE-FG02-94ER40848 and Contracts DE-AC02-98CH10946 and DE-AC02-06CH11357.

  16. Design of a fast and high-precision polygonal scanner for HDTV

    NASA Astrophysics Data System (ADS)

    Risse, Stefan; Guyenot, Volker

    1997-07-01

    With the continuing development of laser-display-technology, a new possibility for the production high level image projection is forwarded and with it the beginning of a new era in television: TV picture formats previously thought impossible, the sharpness, color intensity and unsurpassed resolution of which make the dream of home cinema a reality. The key to this experience is visible laser light in red, green and blue, projected on a screen with the aid of horizontal and vertical deflection units. In this paper, a primarily horizontal deflection system in the form of a rotating polygonal scanner is described. The design of this scanner assembly combines a double spherical air bearing with an integrated polygonal mirror for deflection and a high torque inside drive for quickly reaching high rotation. The Fraunhofer Institute of Applied Optics and Precision Engineering (IOF Jena) develops, from conception to assembled prototype, new self-acting precision bearing systems. This new scanner solution developed out of IOF's previous developments resulting in the first ever sealed, minimal-maintenance, self- acting bearing.

  17. High-precision photometry by telescope defocusing - VII. The ultrashort period planet WASP-103

    NASA Astrophysics Data System (ADS)

    Southworth, John; Mancini, L.; Ciceri, S.; Budaj, J.; Dominik, M.; Figuera Jaimes, R.; Haugbølle, T.; Jørgensen, U. G.; Popovas, A.; Rabus, M.; Rahvar, S.; von Essen, C.; Schmidt, R. W.; Wertz, O.; Alsubai, K. A.; Bozza, V.; Bramich, D. M.; Calchi Novati, S.; D'Ago, G.; Hinse, T. C.; Henning, Th.; Hundertmark, M.; Juncher, D.; Korhonen, H.; Skottfelt, J.; Snodgrass, C.; Starkey, D.; Surdej, J.

    2015-02-01

    We present 17 transit light curves of the ultrashort period planetary system WASP-103, a strong candidate for the detection of tidally-induced orbital decay. We use these to establish a high-precision reference epoch for transit timing studies. The time of the reference transit mid-point is now measured to an accuracy of 4.8 s, versus 67.4 s in the discovery paper, aiding future searches for orbital decay. With the help of published spectroscopic measurements and theoretical stellar models, we determine the physical properties of the system to high precision and present a detailed error budget for these calculations. The planet has a Roche lobe filling factor of 0.58, leading to a significant asphericity; we correct its measured mass and mean density for this phenomenon. A high-resolution Lucky Imaging observation shows no evidence for faint stars close enough to contaminate the point spread function of WASP-103. Our data were obtained in the Bessell RI and the SDSS griz passbands and yield a larger planet radius at bluer optical wavelengths, to a confidence level of 7.3σ. Interpreting this as an effect of Rayleigh scattering in the planetary atmosphere leads to a measurement of the planetary mass which is too small by a factor of 5, implying that Rayleigh scattering is not the main cause of the variation of radius with wavelength.

  18. Precise Polymerization of a Highly Tumor Microenvironment-Responsive Nanoplatform for Strongly Enhanced Intracellular Drug Release.

    PubMed

    Wang, Yi; Zhang, Lei; Zhang, Xiaobin; Wei, Xiao; Tang, Zhaomin; Zhou, Shaobing

    2016-03-01

    The importance of achieving a high content of responsive groups of drug carriers is well-known for achieving rapid intracellular drug release; however, very little research has been published on this subject. Here, we present an entirely new strategy to synthesize a highly reduction-sensitive polymer-drug conjugate with one disulfide bond corresponding to each resultant copolymer through a precise ring-opening polymerization of ε-caprolactone that is initiated by a monoprotected cystamine. Simultaneously, the anticancer drug doxorubicin is chemically conjugated to the polymer via pH-responsive hydrazone bonds, which effectively prevent premature drug release in the blood circulation. The 3-aminophenylboronic acid (PBA) targeting ligands endow an active-targeting ability that significantly prompts the specific internalization of nanocarriers by tumor cells and thus results in excellent cytotoxicity against tumor cells. The concept of precise polymerization is put forward to achieve multifunctional nanocarriers for the first time. This study is expected to inspire the development of a highly environment-responsive nanoplatform for drug delivery in future clinical applications. PMID:26889562

  19. Diode laser-based sensor for high precision measurements of ambient CO2 in network applications

    NASA Astrophysics Data System (ADS)

    Sonnenfroh, D.; Parameswaran, K.

    2011-02-01

    The increasing need for better spatial and temporal measurements of greenhouse gases, especially CO2, to support global climate change modeling is driving the expansion of monitoring networks. Currently, networks making ambient CO2 measurements use environmentally stabilized sensors based on non-dispersive infrared absorption spectroscopy. To expand both measurement capability and coverage, much work is underway to develop highly accurate, reliable yet economical sensors for the greenhouse gases. The US Department of Energy has created specifications for a new sensor that has high performance but at a cost that permits widespread deployment. We report on a sensor designed to meet this need. We have demonstrated a compact, automated, high precision sensor for ambient CO2 that offers good performance in an economical package. The sensor is a near-IR diode laser-based absorption spectrometer operating near 2 μm and using Integrated Cavity Output Spectroscopy (ICOS). Field demonstrations were carried out at both the UNH/AirMap Thompson Farm Observatory and the NOAA Boulder Atmospheric Observatory. The sensor has a demonstrated precision of between 0.090 and 0.125 ppmv for a 30 sec acquisition, or 1 part in 3000 to 4000.

  20. High-precision comparison of the antiproton-to-proton charge-to-mass ratio.

    PubMed

    Ulmer, S; Smorra, C; Mooser, A; Franke, K; Nagahama, H; Schneider, G; Higuchi, T; Van Gorp, S; Blaum, K; Matsuda, Y; Quint, W; Walz, J; Yamazaki, Y

    2015-08-13

    Invariance under the charge, parity, time-reversal (CPT) transformation is one of the fundamental symmetries of the standard model of particle physics. This CPT invariance implies that the fundamental properties of antiparticles and their matter-conjugates are identical, apart from signs. There is a deep link between CPT invariance and Lorentz symmetry--that is, the laws of nature seem to be invariant under the symmetry transformation of spacetime--although it is model dependent. A number of high-precision CPT and Lorentz invariance tests--using a co-magnetometer, a torsion pendulum and a maser, among others--have been performed, but only a few direct high-precision CPT tests that compare the fundamental properties of matter and antimatter are available. Here we report high-precision cyclotron frequency comparisons of a single antiproton and a negatively charged hydrogen ion (H(-)) carried out in a Penning trap system. From 13,000 frequency measurements we compare the charge-to-mass ratio for the antiproton (q/m)p- to that for the proton (q/m)p and obtain (q/m)p-/(q/m)p − 1 =1(69) × 10(-12). The measurements were performed at cyclotron frequencies of 29.6 megahertz, so our result shows that the CPT theorem holds at the atto-electronvolt scale. Our precision of 69 parts per trillion exceeds the energy resolution of previous antiproton-to-proton mass comparisons as well as the respective figure of merit of the standard model extension by a factor of four. In addition, we give a limit on sidereal variations in the measured ratio of <720 parts per trillion. By following the arguments of ref. 11, our result can be interpreted as a stringent test of the weak equivalence principle of general relativity using baryonic antimatter, and it sets a new limit on the gravitational anomaly parameter of |α − 1| < 8.7 × 10(-7). PMID:26268189

  1. First high-precision differential abundance analysis of extremely metal-poor stars

    NASA Astrophysics Data System (ADS)

    Reggiani, Henrique; Meléndez, Jorge; Yong, David; Ramírez, Ivan; Asplund, Martin

    2016-02-01

    Context. Studies of extremely metal-poor stars indicate that chemical abundance ratios [X/Fe] have a root mean square scatter as low as 0.05 dex (12%). It remains unclear whether this reflects observational uncertainties or intrinsic astrophysical scatter arising from physical conditions in the interstellar medium at early times. Aims: We measure differential chemical abundance ratios in extremely metal-poor stars to investigate the limits of precision and to understand whether cosmic scatter or observational errors are dominant. Methods: We used high-resolution (R ~ 95 000) and high signal-to-noise (S/N = 700 at 5000 Å) HIRES/Keck spectra to determine high-precision differential abundances between two extremely metal-poor stars through a line-by-line differential approach. We determined stellar parameters for the star G64-37 with respect to the standard star G64-12. We performed EW measurements for the two stars for the lines recognized in both stars and performed spectral synthesis to study the carbon abundances. Results: The differential approach allowed us to obtain errors of σ(Teff) = 27 K, σ(log g) = 0.06 dex, σ( [Fe/H] ) = 0.02 dex and σ(vt) = 0.06 km s-1. We estimated relative chemical abundances with a precision as low as σ([X/Fe]) ≈ 0.01 dex. The small uncertainties demonstrate that there are genuine abundance differences larger than the measurement errors. The observed Li difference cannot be explained by the difference in mass because the less massive star has more Li. Conclusions: It is possible to achieve an abundance precision around ≈ 0.01-0.05 dex for extremely metal-poor stars, which opens new windows on the study of the early chemical evolution of the Galaxy. Table A.1 is also available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/586/A67

  2. The research of the high precision universal stable reconnaissance platform in near space

    NASA Astrophysics Data System (ADS)

    Yang, Hong-tao; Cao, Jian-zhong; Fan, Zhe-yuan; Chen, Wei-ning

    2011-08-01

    The appliance of military was recognized more and more ,It is important that pod can bear the weight of the availability payload achieve the observation to the earth in 20km-100km area and work in the all-weather. The stable platform can load high imaging spectrometer, the thermal infrared imager, the infrared radiometer, the millimeter waves radar, the laser weapon and so on,in order to realize reconnaissance and attacking integrative and warning the long-distant missile. The stabilization accuracy of platform is prior to 20μrad and burden heavy load to the best of one's abilities. It used high precision velocity and acceleration gyroscope to fulfill the stabilization of the platform. Light-weight design by using new composite material and optimizing design. It was adapt to the near space environment better by structure design and simulation analysis.Enhance its basic frequency and sure the rigid of the frame platform .In addition, the structure of platform apply the two-axis and four-frame and use the method of FEA to fulfill the optimum design in order to attain the object of light-weight.In consider to the precision of the platform I establish the math model and make use of the monte carlo method to appraise and analysis the error that affect the precision of the platform. After emulating by the software of the Matlab to verify the results. It is apply the method that link the platform and aerocraft by mounting the no angular displacement shock absorbers on the elevator mechanism. This kind of design insulate the angular vibration and minish the linear vibration to ensure the image quality.

  3. Optical test bench for high precision metrology and alignment of zoom sub-assembly components

    NASA Astrophysics Data System (ADS)

    Leprêtre, F.; Levillain, E.; Wattellier, B.; Delage, P.; Brahmi, D.; Gascon, A.

    2013-09-01

    Thales Angénieux (TAGX) designs and manufactures zoom lens assemblies for cinema applications. These objectives are made of mobile lens assemblies. These need to be precisely characterized to detect alignment, polishing or glass index homogeneity errors, which amplitude may range to a few hundreds of nanometers. However these assemblies are highly aberrated with mainly spherical aberration (>30 μm PV). PHASICS and TAGX developed a solution based on the use of a PHASICS SID4HR wave front sensor. This is based on quadri-wave lateral shearing interferometry, a technology known for its high dynamic range. A 100-mm diameter He:Ne source illuminates the lens assembly entrance pupil. The transmitted wave front is then directly measured by the SID4- HR. The measured wave front (WFmeas) is then compared to a simulation from the lens sub-assembly optical design (WFdesign). We obtain a residual wave front error (WFmanufactured), which reveals lens imperfections due to its manufacturing. WFmeas=WFdesign+(WFEradius+WFEglass+WFEpolish)=WF design + WFmanufactured The optical test bench was designed so that this residual wave front is measured with a precision below 100 nm PV. The measurement of fast F-Number lenses (F/2) with aberrations up to 30 μm, with a precision of 100 nm PV was demonstrated. This bench detects mismatches in sub-assemblies before the final integration step in the zoom. Pre-alignment is also performed in order to overpass the mechanical tolerances. This facilitates the completed zoom alignment. In final, productivity gains are expected due to alignment and mounting time savings.

  4. High precision hg isotope measurement by MC-ICP-MS coupled with a gold trap technique

    NASA Astrophysics Data System (ADS)

    Xie, Q.; Lu, S.; Evans, D.; Dillon, P.; Hintelmann, H.

    2003-04-01

    We report a method for high precision Hg isotope ratio measurement using a conventional gold trap technique coupled with an MC-ICP-MS. Hg in samples was collected onto a gold trap by high temperature pyrolysis. The gold trap was then heated and the Hg released into the plasma using Ar as the nebulization gas. In a previous study, thermally-desorbed Hg vapour that was introduced directly into the plasma produced a transient signal of about 30 s duration (1) . Subsequently, a modification was made such that thermally-desorbed Hg was released into a series of glass jars, homogenized and introduced into the plasma. This configuration produced a steady Hg signal and minimized isotope fractionation during the thermal desorption from the gold trap. Typically, ratios from 3--5 blocks (25 cycles/block) can be obtained with internal precision between 30--50 ppm (2 RSD) when a gold trap with 1 ng Hg is used. The instrumental bias was corrected using Tl introduced simultaneously as dry aerosol via a Cetac Aridus desolvating nebulizer. Recent studies have demonstrated that such external mass bias correction does not account fully for the mass bias behaviour of the analytes in question (e.g., Tl for Pb, Zn for Cu) (2, 3, 4). A modified mass bias correction protocol was employed which utilized the correlation of βTl and βHg for mass bias correction. Using this technique, Hg isotopes of various natural samples were measured. The external precision will be assessed based on the replicate analyses of natural samples, and the implications of natural Hg isotope variation will be discussed. (1) Evans et. al., 2001, JAAS, 16:1064-1069; (2) Marechal et al., 1999, Chem. Geol., 156:251-273; (3) Vance and Thirlwall, 2002, Chem. Geol., 185:227-240; (4) Woodhead, 2002, JAAS, 17:1381-1385

  5. A low noise and high precision linear power supply with thermal foldback protection

    NASA Astrophysics Data System (ADS)

    Carniti, P.; Cassina, L.; Gotti, C.; Maino, M.; Pessina, G.

    2016-05-01

    A low noise and high precision linear power supply was designed for use in rare event search experiments with macrobolometers. The circuit accepts at the input a "noisy" dual supply voltage up to ±15 V and gives at the output precise, low noise, and stable voltages that can be set between ±3.75 V and ±12.5 V in eight 1.25 V steps. Particular care in circuit design, component selection, and proper filtering results in a noise spectral density of 50 nV / √{ Hz } at 1 Hz and 20 nV / √{ Hz } white when the output is set to ±5 V. This corresponds to 125 nV RMS (0.8 μV peak to peak) between 0.1 Hz and 10 Hz, and 240 nV RMS (1.6 μV peak to peak) between 0.1 Hz and 100 Hz. The power supply rejection ratio (PSRR) of the circuit is 100 dB at low frequency, and larger than 40 dB up to high frequency, thanks to a proper compensation design. Calibration allows to reach a precision in the absolute value of the output voltage of ±70 ppm, or ±350 μV at ±5 V, and to reduce thermal drifts below ±1 ppm/∘C in the expected operating range. The maximum peak output current is about 6 A from each output. An original foldback protection scheme was developed that dynamically limits the maximum output current to keep the temperature of the output transistors within their safe operating range. An add-on card based on an ARM Cortex-M3 microcontroller is devoted to the monitoring and control of all circuit functionalities and provides remote communication via CAN bus.

  6. DSP-based high precision real-time inline PMD monitoring

    NASA Astrophysics Data System (ADS)

    Yuan, Xueguang; Zhang, Yangan; Zhang, MingLun; Zhang, Jinnan; Huang, Yongqing

    2010-12-01

    Polarization mode dispersion is considered to be one of the main obstacles for high speed long-haul optical fiber communication systems. It is necessary to realize PMD monitoring. This paper theoretically analyzed the principle of polarization mode dispersion monitoring with degree of polarization as monitoring signal. Using the degree of polarization method, the scheme of DSP based high precision real-time inline PMD monitoring is designed and implemented. An experiment system is set up to monitor polarization mode dispersion of 40Gbit/s DQPSK system. The experiment results show that the range of input optical power is -20~0dBm, the response time is 1μs and the states of polarization accuracy degree is 1%. It has high sensitivity and can be used in a variety of modulation formats and it is independent of optical signal rate.

  7. Improved GPS-based coseismic displacement monitoring using high-precision oscillators

    NASA Astrophysics Data System (ADS)

    Weinbach, U.; Schön, S.

    2015-05-01

    The determination of high-frequency displacements using Global Navigation Satellite Systems (GNSS) observations with sampling frequencies > 1 Hz has attracted much interest in recent years, e.g., in seismology. We propose a new concept for GPS Precise Point Positioning (PPP) that takes advantage of a highly stable oscillator connected to the GPS receiver by modeling its behavior. We show that the high-frequency noise of kinematic GPS height estimates can be reduced by a factor of up to 4 to the level of 2-3 mm and the overall standard deviation including systematic long periodic errors by a factor of up to 2 to the 1 cm level. Consequently, valuable small and currently hidden vertical displacements can be detected that are not visible with classical PPP. Using data of the 2010 Chile earthquake, we demonstrate that coseismic vertical displacements with an amplitude of only 5 mm can be recovered using PPP with the proposed clock modeling strategy.

  8. A novel approach for pulse width measurements with a high precision (8 ps RMS) TDC in an FPGA

    NASA Astrophysics Data System (ADS)

    Ugur, C.; Linev, S.; Michel, J.; Schweitzer, T.; Traxler, M.

    2016-01-01

    High precision time measurements are a crucial element in particle identification experiments, which likewise require pulse width information for Time-over-Threshold (ToT) measurements and charge measurements (correlated with pulse width). In almost all of the FPGA-based TDC applications, pulse width measurements are implemented using two of the TDC channels for leading and trailing edge time measurements individually. This method however, requires twice the number of resources. In this paper we present the latest precision improvements in the high precision TDC (8 ps RMS) developed before [1], as well as the novel way of measuring ToT using a single TDC channel, while still achieving high precision (as low as 11.7 ps RMS). The effect of voltage, generated by a DC-DC converter, over the precision is also discussed. Finally, the outcome of the temperature change over the pulse width measurement is shown and a correction method is suggested to limit the degradation.

  9. Study of highly precise outdoor characterization technique for photovoltaic modules in terms of reproducibility

    NASA Astrophysics Data System (ADS)

    Fukabori, Akihiro; Takenouchi, Takakazu; Matsuda, Youji; Tsuno, Yuki; Hishikawa, Yoshihiro

    2015-08-01

    In this study, novel outdoor measurements were conducted for highly precise characterization of photovoltaic (PV) modules by measuring current-voltage (I-V) curves with fast sweep speeds and module’s temperature, and with a PV sensor for reference. Fast sweep speeds suppressed the irradiance variation. As a result, smooth I-V curves were obtained and the PV parameter deviation was suppressed. The module’s temperature was measured by attaching resistive temperature detector sensors on the module’s backsheet. The PV sensor was measured synchronously with the PV module. The PV parameters including Isc, Pmax, Voc, and FF were estimated after correcting the I-V curves using the IEC standards. The reproducibility of Isc, Pmax, Voc, and FF relative to the outdoor fits was evaluated as 0.43, 0.58, 0.24, and 0.23%, respectively. The results demonstrate that highly precise measurements are possible using a PV measurement system with the three above-mentioned features.

  10. Aspects of ultra-high-precision diamond machining of RSA 443 optical aluminium

    NASA Astrophysics Data System (ADS)

    Mkoko, Z.; Abou-El-Hossein, K.

    2015-08-01

    Optical aluminium alloys such as 6061-T6 are traditionally used in ultra-high precision manufacturing for making optical mirrors for aerospace and other applications. However, the optics industry has recently witnessed the development of more advanced optical aluminium grades that are capable of addressing some of the issues encountered when turning with single-point natural monocrystalline diamond cutters. The advent of rapidly solidified aluminium (RSA) grades has generally opened up new possibilities for ultra-high precision manufacturing of optical components. In this study, experiments were conducted with single-point diamond cutters on rapidly solidified aluminium RSA 443 material. The objective of this study is to observe the effects of depth of cut and feed rate at a fixed rotational speed on the tool wear rate and resulting surface roughness of diamond turned specimens. This is done to gain further understanding of the rate of wear on the diamond cutters versus the surface texture generated on the RSA 443 material. The diamond machining experiments yielded machined surfaces which are less reflective but with consistent surface roughness values. Cutting tools were observed for wear through scanning microscopy; relatively low wear pattern was evident on the diamond tool edge. The highest tool wear were obtained at higher depth of cut and increased feed rate.

  11. A high-precision sampling scheme to assess persistence and transport characteristics of micropollutants in rivers.

    PubMed

    Schwientek, Marc; Guillet, Gaëlle; Rügner, Hermann; Kuch, Bertram; Grathwohl, Peter

    2016-01-01

    Increasing numbers of organic micropollutants are emitted into rivers via municipal wastewaters. Due to their persistence many pollutants pass wastewater treatment plants without substantial removal. Transport and fate of pollutants in receiving waters and export to downstream ecosystems is not well understood. In particular, a better knowledge of processes governing their environmental behavior is needed. Although a lot of data are available concerning the ubiquitous presence of micropollutants in rivers, accurate data on transport and removal rates are lacking. In this paper, a mass balance approach is presented, which is based on the Lagrangian sampling scheme, but extended to account for precise transport velocities and mixing along river stretches. The calculated mass balances allow accurate quantification of pollutants' reactivity along river segments. This is demonstrated for representative members of important groups of micropollutants, e.g. pharmaceuticals, musk fragrances, flame retardants, and pesticides. A model-aided analysis of the measured data series gives insight into the temporal dynamics of removal processes. The occurrence of different removal mechanisms such as photooxidation, microbial degradation, and volatilization is discussed. The results demonstrate, that removal processes are highly variable in time and space and this has to be considered for future studies. The high precision sampling scheme presented could be a powerful tool for quantifying removal processes under different boundary conditions and in river segments with contrasting properties. PMID:26283620

  12. A High Precision Position Sensor Design and Its Signal Processing Algorithm for a Maglev Train

    PubMed Central

    Xue, Song; Long, Zhiqiang; He, Ning; Chang, Wensen

    2012-01-01

    High precision positioning technology for a kind of high speed maglev train with an electromagnetic suspension (EMS) system is studied. At first, the basic structure and functions of the position sensor are introduced and some key techniques to enhance the positioning precision are designed. Then, in order to further improve the positioning signal quality and the fault-tolerant ability of the sensor, a new kind of discrete-time tracking differentiator (TD) is proposed based on nonlinear optimal control theory. This new TD has good filtering and differentiating performances and a small calculation load. It is suitable for real-time signal processing. The stability, convergence property and frequency characteristics of the TD are studied and analyzed thoroughly. The delay constant of the TD is figured out and an effective time delay compensation algorithm is proposed. Based on the TD technology, a filtering process is introduced in to improve the positioning signal waveform when the sensor is under bad working conditions, and a two-sensor switching algorithm is designed to eliminate the positioning errors caused by the joint gaps of the long stator. The effectiveness and stability of the sensor and its signal processing algorithms are proved by the experiments on a test train during a long-term test run. PMID:22778582

  13. A high precision position sensor design and its signal processing algorithm for a maglev train.

    PubMed

    Xue, Song; Long, Zhiqiang; He, Ning; Chang, Wensen

    2012-01-01

    High precision positioning technology for a kind of high speed maglev train with an electromagnetic suspension (EMS) system is studied. At first, the basic structure and functions of the position sensor are introduced and some key techniques to enhance the positioning precision are designed. Then, in order to further improve the positioning signal quality and the fault-tolerant ability of the sensor, a new kind of discrete-time tracking differentiator (TD) is proposed based on nonlinear optimal control theory. This new TD has good filtering and differentiating performances and a small calculation load. It is suitable for real-time signal processing. The stability, convergence property and frequency characteristics of the TD are studied and analyzed thoroughly. The delay constant of the TD is figured out and an effective time delay compensation algorithm is proposed. Based on the TD technology, a filtering process is introduced in to improve the positioning signal waveform when the sensor is under bad working conditions, and a two-sensor switching algorithm is designed to eliminate the positioning errors caused by the joint gaps of the long stator. The effectiveness and stability of the sensor and its signal processing algorithms are proved by the experiments on a test train during a long-term test run. PMID:22778582

  14. Application of high-precision matching about multisensor in fast stereo imaging

    NASA Astrophysics Data System (ADS)

    Zhang, Huijing; Zhou, Mei; Wu, Haohao; Zhang, Dandan

    2015-10-01

    High precision matching of linear array multi-sensor is the key to ensure fast stereo imaging. This paper has presented the general principle of active and passive imaging sensor, designed a high precision matching calibration system of linear array multi-sensor based on large-diameter collimator combined with assisted laser light source, and put forward an optical axis parallelism calibration technology suitable for linear array active and passive imaging sensor. This technology makes use of image acquisition system to obtain spot center, in order to match multi-linear array laser receive and transmit optical axes. At the same time, this paper uses linear visible light sources to extract the optical axis of the laser, then completes the parallelism calibration between lasers receive and transmit optical axes of multi-linear array sensors and active and passive optical axis. The matching relationship between the visible pixel and laser radar detecting element can be obtained when using this technique to calibrate the active and passive imaging sensor. And this relationship is applied to the fast stereo imaging experiment of active and passive imaging sensor and gained good imaging effect.

  15. High-precision micro-through-hole array in quartz glass machined by infrared picosecond laser

    NASA Astrophysics Data System (ADS)

    Ji, Lingfei; Hu, Yan; Li, Jian; Wang, Wenhao; Jiang, Yijian

    2015-11-01

    Circle and triangle micro-through-hole arrays without cracks, chips, and debris were machined in 0.3-mm-thick quartz glass by picosecond laser (wavelength = 1064 nm, pulse width ~12 ps) in air ambient. The diameter of each circle through-hole was 550 μm, and the side length of each triangle hole is 500 μm; 30 μm spacing between the adjacent hole edges and the smooth machined surface with R a = 0.8 μm roughness depicted the high precision of the high-density micro-through-hole arrays. The fundamental properties of the ps laser processing of quartz glass were investigated. The laser ablation threshold fluence of the quartz glass was determined as 3.49 J/cm2. Based on the fundamental investigation, a quantitative design of the cutting path for micro-machining of the through-holes with various geometries in quartz glass was developed. The work presents a more practical ps laser micro-machining technique for micro-through-hole arrays in glass-like materials for industrial application due to the precise quality, flexibility in geometries, ease of manipulation, and large-scale application.

  16. Error compensation via signal correlation in high-precision closed-loop fiber optic gyros

    NASA Astrophysics Data System (ADS)

    Spahlinger, Guenter; Kemmler, Manfred W.; Ruf, Markus; Ribes, Mauricio A.; Zimmermann, Steffen

    1996-11-01

    Fiber optic gyroscopes (FOGs) are preferably driven as closed-loop controlled systems, if linearity and dynamic range are of major concern. Proper modulation of the Sagnac interferometer (SIF) feedback signal is necessary to minimize low frequency signal perturbation and to reliably detect luminance intensity in the linear regions of the sinusoidal Sagnac phase to intensity mapping. Deterministic modulation however, is accompanied by well known 'dead zones' and bias errors due to unavoidable crosstalk between the modulator and the optical detector. In the paper we propose a high precision closed-loop FOG system with deadbeat control and pseudorandom modulation of the SIF feedback signal. The random modulation principle completely eliminates 'dead zones' in the detection of small rotation rates, and bears an inherent potential for compensation and control of several error sources encountered in non-ideal systems by means of signal correlation. The principle of correlation based control is introduced in a general context and applied to a set of dedicated control loops within the proposed closed-loop FOG. Results obtained form several prototype realizations of the correlation controlled high precision FOG indicate a potential for bias error reduction by two orders of magnitude and considerable decrease in random walk.

  17. Typing dinucleotide repeats under nondenaturing conditions with single-base resolution and high sizing precision.

    PubMed

    Rodríguez, Santiago; Zapata, Carlos

    2002-06-01

    Dinucleotide repeats are genetic markers that are useful for many purposes, including genetic epidemiology, population genetics, and genetic diagnostics. The accuracy of analyses based on dinucleotide repeat polymorphisms is highly dependent on the success achieved in minimizing genotyping errors. Genotyping errors in dinucleotide repeat typing may arise for various reasons, including polymerase chain reaction (PCR) processing errors and the use of unsuitable electrophoretic conditions for resolving amplification products (i.e., lack of single-base resolution and inadequate precision in allele sizing). We have recently described a nondenaturing electrophoretic system useful for detecting PCR processing errors that lead to misidentification of heterozygotes as homozygotes in (AC)n repeat typing. Here, we show that this system also allows resolution of (AC)n repeats in native conditions with single-base resolution and high sizing precision, on the basis of an analysis of seven human (AC)n repeats ranging in size from 72 to 217 bp. This PAGE system is thus also useful for reducing the likelihood both of allele misidentification due to the absence of single-base resolution and of inaccuracies in allele sizing due to anomalous electrophoretic migrations among the alleles within an (AC)n repeat. PMID:12059111

  18. High-precision work distributions for extreme non-equilibrium processes in large systems

    NASA Astrophysics Data System (ADS)

    Hartmann, Alexander

    2014-03-01

    The distributions of work for strongly non-equilibrium processes are studied using a very general form of a large-deviation approach, which allows one to study distributions down to extremely small probabilities of almost arbitrary quantities of interest for equilibrium, non-equilibrium stationary and even non-stationary processes. The method is applied to varying quickly the external field in a wide range B = 3 <--> 0 for critical (T = 2 . 269) two-dimensional Ising system of size L × L = 128 × 128 . To obtain free energy differences from the work distributions, they must be studied in ranges where the probabilities are as small as 10-240, which is not possible using direct simulation approaches. By comparison with the exact free energies, one sees that the present approach allows one to obtain the free energy with a very high relative precision of 10-4. This works well also for non-zero field, i.e., for a case where standard umbrella-sampling methods seem to be not so efficient to calculate free energies. Furthermore, for the present case it is verified that the resulting distributions of work fulfill Crooks theorem with high precision. Finally, the free energy for the Ising magnet as a function of the field strength is obtained.

  19. High-Precision Half-Life Measurements for the Superallowed Fermi β+ Emitters 14O and 18Ne

    NASA Astrophysics Data System (ADS)

    Laffoley, A. T.; Andreoiu, C.; Austin, R. A. E.; Ball, G. C.; Bender, P. C.; Bidaman, H.; Bildstein, V.; Blank, B.; Bouzomita, H.; Cross, D. S.; Deng, G.; Diaz Varela, A.; Dunlop, M. R.; Dunlop, R.; Finlay, P.; Garnsworthy, A. B.; Garrett, P.; Giovinazzo, J.; Grinyer, G. F.; Grinyer, J.; Hadinia, B.; Jamieson, D. S.; Jigmeddorj, B.; Ketelhut, S.; Kisliuk, D.; Leach, K. G.; Leslie, J. R.; MacLean, A.; Miller, D.; Mills, B.; Moukaddam, M.; Radich, A. J.; Rajabali, M. M.; Rand, E. T.; Svensson, C. E.; Tardiff, E.; Thomas, J. C.; Turko, J.; Voss, P.; Unsworth, C.

    High-precision half-life measurements, at the level of ±0.04%, for the superallowed Fermi emitters 14O and 18Ne have been performed at TRIUMF's Isotope Separator and Accelerator facility. Using 3 independent detector systems, a gas-proportional counter, a fast plastic scintillator, and a high-purity germanium array, a series of direct β and γ counting measurements were performed for each of the isotopes. In the case of 14O, these measurements were made to help resolve an existing discrepancy between detection methods, whereas for 18Ne the half-life precision has been improved in anticipation of forthcoming high-precision branching ratio measurements.

  20. A demonstration of high precision GPS orbit determination for geodetic applications

    NASA Technical Reports Server (NTRS)

    Lichten, S. M.; Border, J. S.

    1987-01-01

    High precision orbit determination of Global Positioning System (GPS) satellites is a key requirement for GPS-based precise geodetic measurements and precise low-earth orbiter tracking, currently under study at JPL. Different strategies for orbit determination have been explored at JPL with data from a 1985 GPS field experiment. The most successful strategy uses multi-day arcs for orbit determination and includes fine tuning of spacecraft solar pressure coefficients and station zenith tropospheric delays using the GPS data. Average rms orbit repeatability values for 5 of the GPS satellites are 1.0, 1.2, and 1.7 m in altitude, cross-track, and down-track componenets when two independent 5-day fits are compared. Orbit predictions up to 24 hours outside the multi-day arcs agree within 4 m of independent solutions obtained with well tracked satellites in the prediction interval. Baseline repeatability improves with multi-day as compared to single-day arc orbit solutions. When tropospheric delay fluctuations are modeled with process noise, significant additional improvement in baseline repeatability is achieved. For a 246-km baseline, with 6-day arc solutions for GPS orbits, baseline repeatability is 2 parts in 100 million (0.4-0.6 cm) for east, north, and length components and 8 parts in 100 million for the vertical component. For 1314 and 1509 km baselines with the same orbits, baseline repeatability is 2 parts in 100 million for the north components (2-3 cm) and 4 parts in 100 million or better for east, length, and vertical components.

  1. A High-Precision Protocol for Identification of Preschool Children at Risk for Persisting Obesity

    PubMed Central

    Timpka, Toomas; Angbratt, Marianne; Bolme, Per; Hermansson, Göran; Häger, Anders; Valter, Lars

    2007-01-01

    Background Recent studies suggest that adolescent adiposity is established already in preadolescence. Earlier studies have confirmed a strong tracking of obesity from adolescence to adulthood. Our aim was to examine the diagnostic accuracy of a population-derived protocol for identification of preschool children at risk for obesity in preadolescence. Methodology/Principal Findings We analysed data obtained for child health surveillance up to age 5 from 5778 children born in a Swedish county in 1991. The basic data set included age, sex, and weight and height measurements from the regular checkups between ages 1.5 and 5. Data not routinely collected in the child health centre setting were disregarded. The children were at age 10 randomly assigned to protocol derivation and validation cohorts and assessed for obesity according to IOTF criteria. The accuracy of predicting obesity in the validation cohort was measured using decision precision, specificity, and sensitivity. The decision protocol selected 1.4% of preschool children as being at obesity risk. The precision of the protocol at age 10 was 82% for girls and 80% for boys, and the specificity was 100% for both boys and girls. The sensitivity was higher for girls (41%) than for boys (21%). The relative risk for obesity at age 10 estimated by the odds ratio for individuals selected by the protocol compared to non-selected peers was 212.6 (95% confidence interval 56.6 to 798.4) for girls and 120.3 (95% CI 24.5 to 589.9) for boys. Conclusion/Significance A simple and inexpensive decision protocol based on BMI values proved to have high precision and specificity for identification of preschool children at risk for obesity persisting into adolescence, while the sensitivity was low especially for boys. Implementation and further evaluations of the protocol in child health centre settings are warranted. PMID:17579709

  2. High-Precision Simulation of the Gravity Field of Rapidly-Rotating Barotropes in Hydrostatic Equilibrium

    NASA Astrophysics Data System (ADS)

    Hubbard, W. B.

    2013-12-01

    The so-called theory of figures (TOF) uses potential theory to solve for the structure of highly distorted rotating liquid planets in hydrostatic equilibrium. TOF is noteworthy both for its antiquity (Maclaurin 1742) and its mathematical complexity. Planned high-precision gravity measurements near the surfaces of Jupiter and Saturn (possibly detecting signals ~ microgal) will place unprecedented requirements on TOF, not because one expects hydrostatic equilibrium to that level, but because nonhydrostatic components in the surface gravity, at expected levels ~ 1 milligal, must be referenced to precise hydrostatic-equilibrium models. The Maclaurin spheroid is both a useful test of numerical TOF codes (Hubbard 2012, ApJ Lett 756:L15), and an approach to an efficient TOF code for arbitrary barotropes of variable density (Hubbard 2013, ApJ 768:43). For the latter, one trades off vertical resolution by replacing a continuous barotropic pressure-density relation with a stairstep relation, corresponding to N concentric Maclaurin spheroids (CMS), each of constant density. The benefit of this trade-off is that two-dimensional integrals over the mass distributions at each interface are reduced to one-dimensional integrals, quickly and accurately evaluated by Gaussian quadrature. The shapes of the spheroids comprise N level surfaces within the planet and at its surface, are gravitationally coupled to each other, and are found by self-consistent iteration, relaxing to a final configuration to within the computer's precision limits. The angular and radial variation of external gravity (using the usual geophysical expansion in multipole moments) can be found to the limit of typical floating point precision (~ 1.e-14), much better than the expected noise/signal for either the Juno or Cassini gravity experiments. The stairstep barotrope can be adjusted to fit a prescribed continuous or discontinuous interior barotrope, and can be made to approximate it to any required precision by increasing N. One can insert a higher density of CMSs toward the surface of an interior model in order to more accurately model high-order gravitational moments. The magnitude of high-order moments predicted by TOF declines geometrically with order number, and falls below the magnitude of expected non-hydrostatic terms produced by interior dynamics at ~ order 10 and above. Juno's sensitivity is enough to detect tidal gravity signals from Galilean satellites. The CMS method can be generalized to predict tidal zonal and tesseral terms consistent with an interior model fitted to measured zonal harmonics. For this purpose, two-dimensional Gaussian quadrature is necessary at each CMS interface. However, once the model is relaxed to equilibrium, one need not refit the model to the average zonal harmonics because of the smallness of the tidal terms. I will describe how the CMS method has been validated through comparisons with standard TOF models for which fully or partially analytic solutions exist, as well as through consistency checks. At this stage in software development in preparation for Jupiter orbit, we are focused on increasing the speed of the code in order to more efficiently search the parameter space of acceptable Jupiter interior models, as well as to interface it with advanced hydrogen-helium equations of state.

  3. Versatile, kinetically controlled, high precision electrohydrodynamic writing of micro/nanofibers

    PubMed Central

    Huang, YongAn; Duan, Yongqing; Ding, Yajiang; Bu, Ningbin; Pan, Yanqiao; Lu, Nanshu; Yin, Zhouping

    2014-01-01

    Direct writing of hierarchical micro/nanofibers have recently gained popularity in flexible/stretchable electronics due to its low cost, simple process and high throughput. A kinetically controlled mechanoelectrospinning (MES) is developed to directly write diversified hierarchical micro/nanofibers in a continuous and programmable manner. Unlike conventional near-field electrospinning, our MES method introduces a mechanical drawing force, to simultaneously enhance the positioning accuracy and morphology controllability. The MES is predominantly controlled by the substrate speed, the nozzle-to-substrate distance, and the applied voltage. As a demonstration, smooth straight, serpentine, self-similar, and bead-on-string structures are direct-written on silicon/elastomer substrates with a resolution of 200 nm. It is believed that MES can promote the low-cost, high precision fabrication of flexible/stretchable electronics or enable the direct writing of the sacrificial structures for nanoscale lithography. PMID:25091829

  4. High precision mapping of kidney stones using μ-IR spectroscopy to determine urinary lithogenesis.

    PubMed

    Blanco, Francisco; Ortiz-Alías, Pilar; López-Mesas, Montserrat; Valiente, Manuel

    2015-06-01

    Evolution of urinary lithiasis is determined by the metabolism and life-style of the related patient. The appropriate classification of the stone is mandatory for the identification of the lithogenic process. In this study, cros-sections from a single stone of each of the most frequent urolithiasis types (calcium oxalate mono and dihydrate and carbonate apatite) have been selected and imaged using IR microspectroscopy. Moreover, the use of high definition sFTIR (synchrotron source) has revealed hidden information to the conventional FTIR. This work has demonstrated that minor components become key factors on the description of the stages of stone formation. Intensity map for COM (1630 cm(-1) peak). The high spatial definition achieved is key for the precise description of the kidney stone history. PMID:25091212

  5. A Repository of Precision Flat Fields for High-Resolution MDI Continuum Data

    NASA Astrophysics Data System (ADS)

    Potts, H. E.; Diver, D. A.

    2009-09-01

    We describe an archive of high-precision MDI flat fields that can be used to refine most MDI high-resolution continuum data. The archive consists of many flat-field images representing different time ranges over the full operating period of SOHO. The residual flat-field error on the standard level 1.5/1.8 calibrated continuum images represents a significant proportion (25% - 100%) of the true data variation data on the quiet sun. Using the flat fields in this archive will reduce that error by a factor of 10 - 30, greatly increasing the accuracy of any tracking or photometric operations. The access, use and accuracy of these flat fields are described in this paper.

  6. High-precision soft x-ray polarimeter at Diamond Light Source.

    PubMed

    Wang, H; Dhesi, S S; Maccherozzi, F; Cavill, S; Shepherd, E; Yuan, F; Deshmukh, R; Scott, S; van der Laan, G; Sawhney, K J S

    2011-12-01

    The development and performance of a high-precision polarimeter for the polarization analysis in the soft x-ray region is presented. This versatile, high-vacuum compatible instrument is supported on a hexapod to simplify the alignment with a resolution less than 5 μrad, and can be moved with its own independent control system easily between different beamlines and synchrotron facilities. The polarimeter can also be used for the characterization of reflection and transmission properties of optical elements. A W/B(4)C multilayer phase retarder was used to characterize the polarization state up to 1200 eV. A fast and accurate alignment procedure was developed, and complete polarization analysis of the APPLE II undulator at 712 eV has been performed. PMID:22225209

  7. A high-precision cryogenically-cooled crystal monochromator for the APS diagnostics beamline

    SciTech Connect

    Rotela, E.; Yang, B.; Sharma, s.; Barcikowski, A.

    2000-07-24

    A high-precision cryogenically-cooled crystal monochromator has been developed for the APS diagnostics beamline. The design permits simultaneous measurements of the particle beam size and divergence. It provides for a large rotation angle, {minus}15{degree} to 180{degree}, with a resolution of 0.0005{degree}. The roll angle of the crystal can be adjusted by up to {+-}3{degree} with a resolution of 0.0001{degree}. A vertical translational stage, with a stroke of {+-}25 mm and resolution of 8 {micro}m, is provided to enable using different parts of the same crystal or to retract the crystal from the beam path. The modular design will allow optimization of cooling schemes to minimize thermal distortions of the crystal under high heat loads.

  8. Note: High precision angle generator using multiple ultrasonic motors and a self-calibratable encoder

    NASA Astrophysics Data System (ADS)

    Kim, Jong-Ahn; Kim, Jae Wan; Kang, Chu-Shik; Jin, Jonghan; Bong Eom, Tae

    2011-11-01

    We present an angle generator with high resolution and accuracy, which uses multiple ultrasonic motors and a self-calibratable encoder. A cylindrical air bearing guides a rotational motion, and the ultrasonic motors achieve high resolution over the full circle range with a simple configuration. The self-calibratable encoder can compensate the scale error of a divided circle (signal period: 20?) effectively by applying the equal-division-averaged method. The angle generator configures a position feedback control loop using the readout of the encoder. By combining the ac and dc operation mode, the angle generator produced stepwise angular motion with 0.005? resolution. We also evaluated the performance of the angle generator using a precision angle encoder and an autocollimator. The expanded uncertainty (k = 2) in the angle generation was estimated less than 0.03?, which included the calibrated scale error and the nonlinearity error.

  9. The first high-precision gravity survey in the North Pole region

    NASA Astrophysics Data System (ADS)

    Sokolov, A. V.; Krasnov, A. A.; Koneshov, V. N.; Glazko, V. V.

    2016-03-01

    The experience with conducting a marine gravity survey onboard a surface vessel under complicated ice conditions at high latitude is described. In 2014, a high-precision marine gravity survey with two modifications of the Chekan-AM gravimeter was carried out in the North Pole region. The measurements were conducted during two months from aboard the Akademik Fedorov research vessel on a given grid with a total length of 10000 km of the routes. As a result, 70000 gravity points at Arctic latitudes including the region of the geographical North Pole itself are acquired. In this paper, we discuss the methodical aspects of conducting the survey and present the accuracy estimates of the gravity measurements. The comparison of the obtained results with the Earth's gravity models demonstrates the absence of systematic errors and the higher spatial resolution of the measurements with the Chekan-AM gravimeters.

  10. Flow-Based Systems for Rapid and High-Precision Enzyme Kinetics Studies

    PubMed Central

    Hartwell, Supaporn Kradtap; Grudpan, Kate

    2012-01-01

    Enzyme kinetics studies normally focus on the initial rate of enzymatic reaction. However, the manual operation of steps of the conventional enzyme kinetics method has some drawbacks. Errors can result from the imprecise time control and time necessary for manual changing the reaction cuvettes into and out of the detector. By using the automatic flow-based analytical systems, enzyme kinetics studies can be carried out at real-time initial rate avoiding the potential errors inherent in manual operation. Flow-based systems have been developed to provide rapid, low-volume, and high-precision analyses that effectively replace the many tedious and high volume requirements of conventional wet chemistry analyses. This article presents various arrangements of flow-based techniques and their potential use in future enzyme kinetics applications. PMID:22577614

  11. High precision tune and coupling measurements and tune/coupling feedback in RHIC

    SciTech Connect

    Minty, M.; Curcio, A.; Dawson, C.; Degen, C.; Luo, Y.; Marr, G.; Martin, B.; Marusic, A.; Mernick, K.; Oddo, P.; Russo, T.; Schoefer, V.; Schroeder, R.; Schulthiess, C.; Wilinski, M.

    2010-08-01

    Precision measurement and control of the betatron tunes and betatron coupling in RHIC are required for establishing and maintaining both good operating conditions and, particularly during the ramp to high beam energies, high proton beam polarization. While the proof-of-principle for simultaneous tune and coupling feedback was successfully demonstrated earlier, routine application of these systems has only become possible recently. Following numerous modifications for improved measurement resolution and feedback control, the time required to establish full-energy beams with the betatron tunes and coupling regulated by feedback was reduced from several weeks to a few hours. A summary of these improvements, select measurements benefitting from the improved resolution and a review of system performance are the subject of this report.

  12. GPS inland water buoys for precise and high temporal resolution water level and movement monitoring

    NASA Astrophysics Data System (ADS)

    Apel, Heiko; Nghia Hung, Nguyen; Thoss, Heiko; Güntner, Andreas

    2010-05-01

    Monitoring of river and lake stages is one of the basic issues in understanding catchment hydrology and hydraulic systems. There are numerous techniques available for this, but in case of large water bodies technical as well as financial problems may restrict the use of traditional techniques. Therefore we explored the potential of GPS based altimetry for stage monitoring by developing small and easy to handle buoys with mounted high precision GPS devices. The advantages of the buoys are the freedom of positioning over the whole water body and their quick and easy deployment. The developed devices were tested in the Mekong Delta, Vietnam in two different locations: On the Mekong river where high currents over the flood season occur and in a small lake with hydraulic connections to a major channel with hardly any currents present. The collected GPS data were processed differentially and tested against standard pressure gauge data. The recorded stages proved to be of high quality and a valuable resource for flood monitoring and modeling. In addition to the stage data, the high-precision GPS positioning data could also be used for monitoring the movement of the buoys, from which alternating currents caused by ocean tides and flood waves could be detected, thus providing an additional information on the hydraulic system. We conclude that the developed buoys add well to the existing hydrological monitoring pool and are a goof option for the monitoring in large water bodies where a) traditional methods are technically difficult to deploy or are too costly, and b) where additional information about flow direction is needed.

  13. The Generation of Higher-order Laguerre-Gauss Optical Beams for High-precision Interferometry

    PubMed Central

    Carbone, Ludovico; Fulda, Paul; Bond, Charlotte; Brueckner, Frank; Brown, Daniel; Wang, Mengyao; Lodhia, Deepali; Palmer, Rebecca; Freise, Andreas

    2013-01-01

    Thermal noise in high-reflectivity mirrors is a major impediment for several types of high-precision interferometric experiments that aim to reach the standard quantum limit or to cool mechanical systems to their quantum ground state. This is for example the case of future gravitational wave observatories, whose sensitivity to gravitational wave signals is expected to be limited in the most sensitive frequency band, by atomic vibration of their mirror masses. One promising approach being pursued to overcome this limitation is to employ higher-order Laguerre-Gauss (LG) optical beams in place of the conventionally used fundamental mode. Owing to their more homogeneous light intensity distribution these beams average more effectively over the thermally driven fluctuations of the mirror surface, which in turn reduces the uncertainty in the mirror position sensed by the laser light. We demonstrate a promising method to generate higher-order LG beams by shaping a fundamental Gaussian beam with the help of diffractive optical elements. We show that with conventional sensing and control techniques that are known for stabilizing fundamental laser beams, higher-order LG modes can be purified and stabilized just as well at a comparably high level. A set of diagnostic tools allows us to control and tailor the properties of generated LG beams. This enabled us to produce an LG beam with the highest purity reported to date. The demonstrated compatibility of higher-order LG modes with standard interferometry techniques and with the use of standard spherical optics makes them an ideal candidate for application in a future generation of high-precision interferometry. PMID:23962813

  14. A Lightweight, Precision-Deployable, Optical Bench for High Energy Astrophysics Missions

    NASA Astrophysics Data System (ADS)

    Danner, Rolf; Dailey, D.; Lillie, C.

    2011-09-01

    The small angle of total reflection for X-rays, forcing grazing incidence optics with large collecting areas to long focal lengths, has been a fundamental barrier to the advancement of high-energy astrophysics. Design teams around the world have long recognized that a significant increase in effective area beyond Chandra and XMM-Newton requires either a deployable optical bench or separate X-ray optics and instrument module on formation flying spacecraft. Here, we show that we have in hand the components for a lightweight, precision-deployable optical bench that, through its inherent design features, is the affordable path to the next generation of imaging high-energy astrophysics missions. We present our plans for a full-scale engineering model of a deployable optical bench for Explorer-class missions. We intend to use this test article to raise the technology readiness level (TRL) of the tensegrity truss for a lightweight, precision-deployable optical bench for high-energy astrophysics missions from TRL 3 to TRL 5 through a set of four well-defined technology milestones. The milestones cover the architecture's ability to deploy and control the focal point, characterize the deployed dynamics, determine long-term stability, and verify the stowed load capability. Our plan is based on detailed design and analysis work and the construction of a first prototype by our team. Building on our prior analysis and the high TRL of the architecture components we are ready to move on to the next step. The key elements to do this affordably are two existing, fully characterized, flight-quality, deployable booms. After integrating them into the test article, we will demonstrate that our architecture meets the deployment accuracy, adjustability, and stability requirements. The same test article can be used to further raise the TRL in the future.

  15. Design and characteristics of a high-precision chopper wheel motor driver

    SciTech Connect

    Gu Xibin; Guo Ying; Chan, Henry; Kawamura, Ed; Kaiser, Ralf I.

    2005-11-15

    The circuit diagram and design principles of a high-stability chopper wheel motor driver are presented. Experimental results show that this unit can be interfaced to molecular-beam machines to generate supersonic beams with extremely stable root-mean-square and peak velocities fluctuating on a day-to-day basis by less than 0.2%.

  16. High precision 11B/10B analysis with a simplified MC-ICP-MS

    NASA Astrophysics Data System (ADS)

    Tanimizu, M.; Nagaishi, K.

    2012-04-01

    Boron isotope ratio is a powerful tracer in the fields of geochemistry, biochemistry, and environmental chemistry. One important application of 11B/10B isotope ratio in geochemistry is as an indicator for paleo pH of seawater recorded in marine carbonates in deep-sea sediments. Boron isotope ratios are determined by TIMS or MC-ICP-MS with precisions of better than 0.1 % RSD, but a large inter-lab discrepancy of 0.6 % is still observed for actual carbonate samples (Foster, 2008). Here, we tried to determine B isotope ratio by MC-ICP-MS with a simple and common analytical techniques using a quartz sample introduction system with a PFA nebulizer, and compared to recently developed precise B isotope ratio analysis techniques by TIMS in positive ion detection mode determined as Cs2BO2+ ions with sample amount of <100 ng (Ishikawa and Nagaishi, 2011) and by MC-ICP-MS (Foster, 2008, Louvat et al., 2011). 11B/10B isotope ratios of a 50 ppb B solution dissolved in a HNO3, mannitol, HF-mixed solution were determined against an isotopic reference NIST-SRM 951 with a standard sample bracketing technique in the wet plasma condition. Resultant analytical reproducibility (twice standard deviation) was +/-0.02 % with a consumption of 50 ng B, and the washout time was comparable to that of NH3 gas addition to the introduction system (Foster, 2008). 11B/10B isotope ratios of actual carbonate sample and seawater were determined after simple chemical purification with a common cation exchange resin instead of a boron selective resin. Their relative differences from the standard were consistent with those determined by the positive TIMS within analytical uncertainty. Current potential of MC-ICP-MS for precise B isotopic analysis will be discussed. Foster, G., 2008. Seawater pH, pCO2 and [CO32-] variations in the Caribbean Sea over the last 130kyr: A boron isotope and B/Ca study of planktic foraminifera, Earth Planet. Sci. Lett., 271, 254-266. Ishikawa, T. and Nagaishi, K., 2011. High-precision isotopic analysis of boron by positive thermal ionization mass spectrometry with sample preheating, J. Anal. At. Spectrom., 26, 359-365. Louvat, P., Bouchez, J, and Paris, G., 2011. MC-ICP-MS isotope measurements with direct injection nebulisation (d-DIHEN): Optimisation and application to boron in seawater and carbonate samples., Geostand. Geoanal. Res., 35, 75-88.

  17. High-precision percolation thresholds and Potts-model critical manifolds from graph polynomials

    NASA Astrophysics Data System (ADS)

    >Jesper Lykke Jacobsen,

    2014-04-01

    The critical curves of the q-state Potts model can be determined exactly for regular two-dimensional lattices G that are of the three-terminal type. This comprises the square, triangular, hexagonal and bow-tie lattices. Jacobsen and Scullard have defined a graph polynomial PB(q, v) that gives access to the critical manifold for general lattices. It depends on a finite repeating part of the lattice, called the basis B, and its real roots in the temperature variable v = eK - 1 provide increasingly accurate approximations to the critical manifolds upon increasing the size of B. Using transfer matrix techniques, these authors computed PB(q, v) for large bases (up to 243 edges), obtaining determinations of the ferromagnetic critical point vc > 0 for the (4, 82), kagome, and (3, 122) lattices to a precision (of the order 10-8) slightly superior to that of the best available Monte Carlo simulations. In this paper we describe a more efficient transfer matrix approach to the computation of PB(q, v) that relies on a formulation within the periodic Temperley-Lieb algebra. This makes possible computations for substantially larger bases (up to 882 edges), and the precision on vc is hence taken to the range 10-13. We further show that a large variety of regular lattices can be cast in a form suitable for this approach. This includes all Archimedean lattices, their duals and their medials. For all these lattices we tabulate high-precision estimates of the bond percolation thresholds pc and Potts critical points vc. We also trace and discuss the full Potts critical manifold in the (q, v) plane, paying special attention to the antiferromagnetic region v < 0. Finally, we adapt the technique to site percolation as well, and compute the polynomials PB(p) for certain Archimedean and dual lattices (those having only cubic and quartic vertices), using very large bases (up to 243 vertices). This produces the site percolation thresholds pc to a precision of the order of 10-9.

  18. High-precision correlative fluorescence and electron cryo microscopy using two independent alignment markers☆

    PubMed Central

    Schellenberger, Pascale; Kaufmann, Rainer; Siebert, C. Alistair; Hagen, Christoph; Wodrich, Harald; Grünewald, Kay

    2014-01-01

    Correlative light and electron microscopy (CLEM) is an emerging technique which combines functional information provided by fluorescence microscopy (FM) with the high-resolution structural information of electron microscopy (EM). So far, correlative cryo microscopy of frozen-hydrated samples has not reached better than micrometre range accuracy. Here, a method is presented that enables the correlation between fluorescently tagged proteins and electron cryo tomography (cryoET) data with nanometre range precision. Specifically, thin areas of vitrified whole cells are examined by correlative fluorescence cryo microscopy (cryoFM) and cryoET. Novel aspects of the presented cryoCLEM workflow not only include the implementation of two independent electron dense fluorescent markers to improve the precision of the alignment, but also the ability of obtaining an estimate of the correlation accuracy for each individual object of interest. The correlative workflow from plunge-freezing to cryoET is detailed step-by-step for the example of locating fluorescence-labelled adenovirus particles trafficking inside a cell. PMID:24262358

  19. High-precision radiocarbon dating and historical biblical archaeology in southern Jordan.

    PubMed

    Levy, Thomas E; Higham, Thomas; Bronk Ramsey, Christopher; Smith, Neil G; Ben-Yosef, Erez; Robinson, Mark; Münger, Stefan; Knabb, Kyle; Schulze, Jürgen P; Najjar, Mohammad; Tauxe, Lisa

    2008-10-28

    Recent excavations and high-precision radiocarbon dating from the largest Iron Age (IA, ca. 1200-500 BCE) copper production center in the southern Levant demonstrate major smelting activities in the region of biblical Edom (southern Jordan) during the 10th and 9th centuries BCE. Stratified radiocarbon samples and artifacts were recorded with precise digital surveying tools linked to a geographic information system developed to control on-site spatial analyses of archaeological finds and model data with innovative visualization tools. The new radiocarbon dates push back by 2 centuries the accepted IA chronology of Edom. Data from Khirbat en-Nahas, and the nearby site of Rujm Hamra Ifdan, demonstrate the centrality of industrial-scale metal production during those centuries traditionally linked closely to political events in Edom's 10th century BCE neighbor ancient Israel. Consequently, the rise of IA Edom is linked to the power vacuum created by the collapse of Late Bronze Age (LB, ca. 1300 BCE) civilizations and the disintegration of the LB Cypriot copper monopoly that dominated the eastern Mediterranean. The methodologies applied to the historical IA archaeology of the Levant have implications for other parts of the world where sacred and historical texts interface with the material record. PMID:18955702

  20. Evaluation of an ultra-high-precision x-ray optics

    NASA Astrophysics Data System (ADS)

    Kitamoto, Shunji; Yamamoto, Norimasa; Kohmura, Takayoshi; Suga, Kazuharu; Sekiguchi, Hiroyuki; Ohkawa, Youhei; Kanai, Junichi; Chiba, Shigeto; Sato, Junichi; Sudo, Keisuke; Watanabe, Takeshi

    2004-10-01

    We are developing an ultra high precision soft X-ray telescope. The design of the telescope is a normal incident one for 13.5nm band using Mo/Si multilayers. Two ideas are introduced. One is the optical measurement system in order to monitor the precision of the optics system. The other is the adaptive optics system with a deformable mirror. Using an X-ray-optical separation filter, we can always monitor the deformation of the optics by optical light. With this information, we can control the deformable mirror to compensate the system distortion as a closed loop system. The telescope system is now integrating and checking by optical light. The shape of the primary mirror is an off-axis paraboloid with a focal length of 2m and an effective diameter of 80mm. This primary mirror was coated by Mo/Si multilayers. The reflectivity of the primary mirror at 13.5nm was ranging from 30 to 50 %. The secondary mirror is a basically flat mirror but actually an deformable mirror with 31 piezo-actuators. The detector is now a wave front sensor (shack-hartmann type). The closed loop control has been performed and factor of 2.4 improvement of the wave front shape has been performed comparing to the un-control case.

  1. Ultra-high accuracy thermal expansion measurements with PTB's precision interferometer

    NASA Astrophysics Data System (ADS)

    Schödel, R.

    2008-08-01

    Demands on dimensional stability and on the detailed knowledge of thermal expansion properties of 'high-tech' materials are growing considerably. One application is the further development of photolithography towards EUV—lithography where it is very important to know the thermal expansion properties of the substrates used for the masks but also for the mirrors used as main optical components. This paper describes the recent state of length/thermal expansion measurements with PTB's precision interferometer. The measurements are based on the observation of the absolute length of gauge-block-shaped or cylindrically material samples as a function of temperature using phase stepping interferometry. As reported earlier, in the precision interferometer alignment errors and errors involving the assignment of the sample's position within the camera pixel array are reduced to a negligible level [1, 2]. As a further improvement, in this paper corrections for the temperature-dependent effect of platen flexing are suggested. Measurement examples are shown to demonstrate CTE-measurement capabilities with uncertainties in the range of 10-9 K-1 or less.

  2. High-precision radiocarbon dating and historical biblical archaeology in southern Jordan

    PubMed Central

    Levy, Thomas E.; Higham, Thomas; Bronk Ramsey, Christopher; Smith, Neil G.; Ben-Yosef, Erez; Robinson, Mark; Münger, Stefan; Knabb, Kyle; Schulze, Jürgen P.; Najjar, Mohammad; Tauxe, Lisa

    2008-01-01

    Recent excavations and high-precision radiocarbon dating from the largest Iron Age (IA, ca. 1200–500 BCE) copper production center in the southern Levant demonstrate major smelting activities in the region of biblical Edom (southern Jordan) during the 10th and 9th centuries BCE. Stratified radiocarbon samples and artifacts were recorded with precise digital surveying tools linked to a geographic information system developed to control on-site spatial analyses of archaeological finds and model data with innovative visualization tools. The new radiocarbon dates push back by 2 centuries the accepted IA chronology of Edom. Data from Khirbat en-Nahas, and the nearby site of Rujm Hamra Ifdan, demonstrate the centrality of industrial-scale metal production during those centuries traditionally linked closely to political events in Edom's 10th century BCE neighbor ancient Israel. Consequently, the rise of IA Edom is linked to the power vacuum created by the collapse of Late Bronze Age (LB, ca. 1300 BCE) civilizations and the disintegration of the LB Cypriot copper monopoly that dominated the eastern Mediterranean. The methodologies applied to the historical IA archaeology of the Levant have implications for other parts of the world where sacred and historical texts interface with the material record. PMID:18955702

  3. Research progress on metrological uses of high precision millisecond pulsar timing data

    NASA Astrophysics Data System (ADS)

    Yang, Ting-Gao; Pan, Lian-De; Ni, Guan-Gren; Ke, Xi-Zheng

    2002-06-01

    We reviewed the research progress on time keeping meterology using millisecond pulsars. Millisecond pulsars exhibit a very stable spinning period, so that their rotational phase may be used as a time reference, named pular time (PT). The analyses of high precision timing data for two millisecond pulsars showed that the long-term stability of TA-PT may be compared to atomic time TA. It is possible that an average pulsar time scale PTens may be deduced through a long-term stability algorithm using precision timing data from more millisecond pulsars. Such an ensemble average can reduce the level of the instabilities originating from individual pulsar and other sources of noise. By comparison between ensemble pulsar time and terrestrial atomic time, one will get some insight on long term stability of atomic time. The orbital motion of close binary pulsar can be used for generation of an astronomical ephemeris time scale BPT. An introduction on the definition of binary pulsar time BPT was given.

  4. Control of binocular gaze in a high-precision manual task.

    PubMed

    Valsecchi, Matteo; Gegenfurtner, Karl R

    2015-05-01

    We investigated the precision of binocular gaze control while observers performed a high-precision manual movement, which involved hitting a target hole in a plate with a hand-held needle. Binocular eye movements and the 3D-position of the needle tip were tracked. In general the observers oriented their gaze to the target before they reached it with the needle. The amplitude of microsaccades scaled with the distance of the needle tip. We did not find evidence for the coordination of version and vergence during microsaccades which could be expected if those movements displaced gaze between the needle and the target hole. In a control experiment observers executed small saccades between marks on a slanted plane. Even when the observers executed saccades as small as the microsaccades in the needle experiment, we observed a coordinated displacement of the point of gaze on the horizontal and depth axis. Our results show that the characteristics of eye movements such as the frequency and amplitude of microsaccades are adapted online to the task demands. However, a coordinated control of version and vergence in small saccades is only observed if a movement of gaze on a slanted trajectory is explicitly instructed. PMID:25250983

  5. Three-dimensional microscopic elemental analysis using an automated high-precision serial sectioning system.

    PubMed

    Fujisaki, Kazuhiro; Yokota, Hideo; Furushiro, Naomichi; Komatani, Shintaro; Ohzawa, Sumito; Sato, Yoshimichi; Matsunaga, Daisuke; Himeno, Ryutaro; Higuchi, Toshiro; Makinouchi, Akitake

    2011-04-01

    The elemental composition and microscopic-level shape of inclusions inside industrial materials are considered important factors in fracture analytical studies. In this work, a three-dimensional (3D) microscopic elemental analysis system based on a serial sectioning technique was developed to observe the internal structure of such materials. This 3D elemental mapping system included an X-ray fluorescence analyzer and a high-precision milling machine. Control signals for the X-ray observation process were automatically sent from a data I/O system synchronized with the precision positioning on the milling machine. Composite specimens were used to confirm the resolution and the accuracy of 3D models generated from this system. Each of the two specimens was composed of three metal wires of 0.5 mm diameter braided into a single twisted wire that was placed inside a metal pipe; the pipe was then filled with either epoxy resin or Sn. The milling machine was used to create a mirror-finish cross-sectional surface on these specimens, and elemental analyses were performed. The twisted wire structure was clearly observed in the resulting 3D models. This system enables automated investigation of the 3D internal structure of materials as well as the identification of their elemental components. PMID:21362208

  6. Rapid analysis of high-precision Sr/Ca ratios in corals and other marine carbonates

    NASA Astrophysics Data System (ADS)

    Schrag, Daniel P.

    1999-04-01

    A method for rapid determination of high-precision Sr/Ca ratios in scleractinian corals is presented. Using an inductively coupled plasma atomic emission spectrophotometer, samples are corrected for instrument drift using a reference solution, similar to the approach used for analysis of stable isotopes using gas-source mass spectrometry. Further correction for variation of the Sr/Ca ratio with Ca concentration is accomplished using internal standards. The precision, once all corrections have been made, is better than 0.1% (relative standard deviation, 1?) for samples of similar Ca concentration and better than 0.2% for samples with variable Ca concentrations. This method increases the sample throughput by approximately a factor of 20 relative to thermal ionization mass spectrometry and significantly reduces instrument and per sample costs. Comparison of Sr/Ca data for a coral from the Galapagos Islands with an instrumental temperature record shows excellent agreement and demonstrates the potential for application of this technique to samples of modern and fossil scleractinian corals and other marine carbonates, including foraminifera.

  7. High Precision Bright-Star Astrometry with the USNO Astrometric CMOS Hybrid Camera System

    NASA Astrophysics Data System (ADS)

    Secrest, Nathan; Dudik, Rachel; Berghea, Ciprian T.; Hennessy, Greg; Dorland, Bryan

    2015-05-01

    While GAIA will provide excellent positional measurements of hundreds of millions of stars between 5 < mag < 20, an ongoing challenge in the field of high-precision differential astrometry is the positional accuracy of very bright stars (mag < 5), due to the enormous dynamic range between bright stars of interest, such as those in the Hipparcos catalog, and their background field stars, which are especially important for differential astrometry. Over the past few years, we have been testing the USNO Astrometric CMOS Hybrid Camera System (UAHC), which utilizes an H4RG-10 detector in windowing mode, as a possible solution to the NOFS USNO Bright Star Astrometric Database (UBAD). In this work, we discuss the results of an astrometric analysis of single-epoch Hipparcos data taken with the UAHC from the 1.55m Kaj Strand Astrometric Reflector at NOFS from June 27-30, 2014. We discuss the calibration of this data, as well as an astrometric analysis pipeline we developed that will enable multi-epoch differential and absolute astrometry with the UAHC. We find that while the overall differential astrometric stability of data taken with the UAHC is good (5-10 mas single-measurement precision) and comparable to other ground-based astrometric camera systems, bright stars in the detector window suffer from several systematic effects, such as insufficient window geometry and centroiding failures due to read-out artifacts - both of which can be significantly improved with modifications to the electronics, read-out speed and microcode.

  8. Two Fabry-Perot interferometers for high precision wavelength calibration in the near-infrared

    NASA Astrophysics Data System (ADS)

    Schäfer, Sebastian; Reiners, Ansgar

    2012-09-01

    The most frequently used standard light sources for spectroscopic high precision wavelength calibration are hollow cathode lamps. These lamps, however, do not provide homogeneous line distribution and intensities. Particularly in the infrared, the number of useful lines is severely limited and the spectrum is contaminated by lines of the filler gas. With the goal of achieving sub m/s stability in the infrared, as required for detecting earthlike extra-solar planets, we are developing two passively stabilized Fabry-Perot interferometers for the red visible (600-1050nm) and near infrared wavelength regions (900-1350nm). Each of the two interferometers can produce ~15,000 lines of nearly constant brightness. The Fabry-Perot interferometers aim at a RV calibration precision of 10cm/s and are optimized in line shape and spacing for the infrared planet hunting CARMENES spectrograph that is currently being built for the Calar Alto 3.5m telescope. Here we present the first results of our work.

  9. High-precision positioning system of four-quadrant detector based on the database query

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Deng, Xiao-guo; Su, Xiu-qin; Zheng, Xiao-qiang

    2015-02-01

    The fine pointing mechanism of the Acquisition, Pointing and Tracking (APT) system in free space laser communication usually use four-quadrant detector (QD) to point and track the laser beam accurately. The positioning precision of QD is one of the key factors of the pointing accuracy to APT system. A positioning system is designed based on FPGA and DSP in this paper, which can realize the sampling of AD, the positioning algorithm and the control of the fast swing mirror. We analyze the positioning error of facular center calculated by universal algorithm when the facular energy obeys Gauss distribution from the working principle of QD. A database is built by calculation and simulation with MatLab software, in which the facular center calculated by universal algorithm is corresponded with the facular center of Gaussian beam, and the database is stored in two pieces of E2PROM as the external memory of DSP. The facular center of Gaussian beam is inquiry in the database on the basis of the facular center calculated by universal algorithm in DSP. The experiment results show that the positioning accuracy of the high-precision positioning system is much better than the positioning accuracy calculated by universal algorithm.

  10. Surface-Enhanced Resonance Raman Scattering Nanostars for High Precision Cancer Imaging

    PubMed Central

    Harmsen, Stefan; Huang, Ruimin; Wall, Matthew A.; Karabeber, Hazem; Samii, Jason M.; Spaliviero, Massimiliano; White, Julie R.; Monette, Sébastien; O’Connor, Rachael; Pitter, Kenneth L.; Sastra, Stephen A.; Saborowski, Michael; Holland, Eric C.; Singer, Samuel; Olive, Kenneth P.; Lowe, Scott W.; Blasberg, Ronald G.; Kircher, Moritz F.

    2015-01-01

    The inability to visualize the true extent of cancers represents a significant challenge in many areas of oncology. The margins of most cancer types are not well demarcated because the cancer diffusely infiltrates the surrounding tissues. Furthermore, cancers may be multifocal and characterized by the presence of microscopic satellite lesions. Such microscopic foci represent a major reason for persistence of cancer, local recurrences, and metastatic spread and are usually impossible to visualize with currently available imaging technologies. An imaging method to reveal the tumor extent is desired clinically and surgically. Here we show the precise visualization of tumor margins, microscopic tumor invasion, and multifocal loco-regional tumor spread using a new generation of surface-enhanced resonance Raman scattering (SERRS) nanoparticles, which are termed here SERRS-nanostars. The SERRS-nanostars feature a star-shaped gold core, a Raman reporter resonant in the near-infrared spectrum, and a primer-free silication method. In mouse models of pancreatic cancer, breast cancer, prostate cancer, and sarcoma, SERRS-nanostars enabled accurate detection of macroscopic malignant lesions as well as microscopic disease, without the need for a targeting moiety. Moreover, the sensitivity (1.5 femtomolar limit of detection under in vivo Raman imaging conditions) of SERRS-nanostars allowed imaging of premalignant lesions of pancreatic and prostatic neoplasias. High sensitivity and broad applicability, in conjunction with their inert gold-silica composition, render SERRS-nanostars a promising imaging agent for more precise cancer imaging and resection. PMID:25609167

  11. High-precision magnetic field measurements of Ap and Bp stars

    NASA Astrophysics Data System (ADS)

    Wade, G. A.; Donati, J.-F.; Landstreet, J. D.; Shorlin, S. L. S.

    2000-04-01

    In this paper we describe a new approach for measuring the mean longitudinal magnetic field and net linear polarization of Ap and Bp stars. As was demonstrated by Wade et al., least-squares deconvolution (LSD; Donati et al.) provides a powerful technique for detecting weak Stokes V, Q and U Zeeman signatures in stellar spectral lines. These signatures have the potential to apply strong new constraints to models of stellar magnetic field structure. Here we point out two important uses of LSD Stokes profiles. First, they can provide very precise determinations of the mean longitudinal magnetic field. In particular, this method allows one frequently to obtain 1σ error bars better than 50G, and smaller than 20G in some cases. This method is applicable to both broad- and sharp-lined stars, with both weak and strong magnetic fields, and effectively redefines the quality standard of longitudinal field determinations. Secondly, LSD profiles can in some cases provide a measure of the net linear polarization, a quantity analogous to the broad-band linear polarization recently used to derive detailed magnetic field models for a few stars (e.g. Leroy et al.). In this paper we report new high-precision measurements of the longitudinal fields of 14 magnetic Ap/Bp stars, as well as net linear polarization measurements for four of these stars, derived from LSD profiles.

  12. High-throughput, subpixel-precision analysis of bacterial morphogenesis and intracellular spatio-temporal dynamics

    PubMed Central

    Sliusarenko, Oleksii; Heinritz, Jennifer; Emonet, Thierry; Jacobs-Wagner, Christine

    2011-01-01

    Bacteria display various shapes and rely on complex spatial organization of their intracellular components for many cellular processes. This organization changes in response to internal and external cues. Quantitative, unbiased study of these spatio-temporal dynamics requires automated image analysis of large microscopy datasets. We have therefore developed MicrobeTracker, a versatile and high-throughput image analysis program that outlines and segments cells with subpixel precision, even in crowded images and mini-colonies, enabling cell lineage tracking. MicrobeTracker comes with an integrated accessory tool, SpotFinder, that precisely tracks foci of fluorescently labeled molecules inside cells. Using MicrobeTracker, we discover that the dynamics of the extensively-studied Escherichia coli Min oscillator depends on Min protein concentration, unveiling critical limitations in robustness within the oscillator. We also find that the fraction of MinD proteins oscillating increases with cell length, indicating that the oscillator has evolved to be most effective when cells attain an appropriate length. MicrobeTracker was also used to uncover novel aspects of morphogenesis and cell cycle regulation in Caulobacter crescentus. By tracking filamentous cells, we show that the chromosomal origin at the old pole is responsible for most replication/separation events while the others remain largely silent despite contiguous cytoplasm. This surprising position-dependent silencing is regulated by division. PMID:21414037

  13. Artificial Incoherent Speckles Enable Precision Astrometry and Photometry in High-contrast Imaging

    NASA Astrophysics Data System (ADS)

    Jovanovic, N.; Guyon, O.; Martinache, F.; Pathak, P.; Hagelberg, J.; Kudo, T.

    2015-11-01

    State-of-the-art coronagraphs employed on extreme adaptive optics enabled instruments are constantly improving the contrast detection limit for companions at ever-closer separations from the host star. In order to constrain their properties and, ultimately, compositions, it is important to precisely determine orbital parameters and contrasts with respect to the stars they orbit. This can be difficult in the post-coronagraphic image plane, as by definition the central star has been occulted by the coronagraph. We demonstrate the flexibility of utilizing the deformable mirror in the adaptive optics system of the Subaru Coronagraphic Extreme Adaptive Optics system to generate a field of speckles for the purposes of calibration. Speckles can be placed up to 22.5 λ/D from the star, with any position angle, brightness, and abundance required. Most importantly, we show that a fast modulation of the added speckle phase, between 0 and π, during a long science integration renders these speckles effectively incoherent with the underlying halo. We quantitatively show for the first time that this incoherence, in turn, increases the robustness and stability of the adaptive speckles, which will improve the precision of astrometric and photometric calibration procedures. This technique will be valuable for high-contrast imaging observations with imagers and integral field spectrographs alike.

  14. High-precision measurements of the 24-beam UV-OMEGA laser

    NASA Astrophysics Data System (ADS)

    Jaanimagi, Paul A.; Hestdalen, C.; Kelly, John H.; Seka, Wolf D.

    1991-04-01

    The achievement of high density implosions of direct-drive laser fusion targets with the 24-beam TJV-OMEGA laser system places very stringent requirements on the irradiation uniformity on target. Non-uniformities in the irradiation pattern must not exceed -1% mis. One of the prerequisites for establishing the level of uniformity attained is the very precise measurement of the laser power balance. This entails that the laser power in each of the 24 beamlines be diagnosed simultaneously with a precision of 1%, over a dynamic range of 1000. The nominal laser pulse shape is a 600-ps FWHM Gaussian, but this can vary between individual beamlines due to beam-to-beam differences in the nonlinear processes of frequency conversion or gain saturation in the laser amplifiers. We have set up a pulse-shape measurement system in which we pick off a small fraction of the energy in each OMEGA beamline, linearly attenuate it, and couple the light into a multi-mode optical fiber for transport to a 24-channel streak camera. The signals are multiplexed in 2 groups of 12 beams each. The streak-camera output is amplified with a dual intensifier system and recorded on a photometric quality, cooled CCD camera. In this paper, we will report on the system performance and progress to date.

  15. Closed tubes preparation of graphite for high-precision AMS radiocarbon analysis

    NASA Astrophysics Data System (ADS)

    Hajdas, I.; Michczynska, D.; Bonani, G.; Maurer, M.; Wacker, L.

    2009-04-01

    Radiocarbon dating is an established tool applied in Geochronology. Technical developments of Accelerator Mass Spectrometry AMS, which allow measurements of samples containing less than 1 mg of carbon, opened opportunities for new applications. Moreover, high resolution records of the past changes require high-resolution chronologies i.e. sampling for 14C dating. In result, the field of applications is rapidly expanding and number of radiocarbon analysis is growing rapidly. Nowadays dedicated 14C AMS machines have great capacity for analysis but in order to keep up with the demand for analysis and provide the results as fast as possible a very efficient way of sample preparation is required. Sample preparation for 14C AMS analysis consists of two steps: separation of relevant carbon from the sample material (removing contamination) and preparation of graphite for AMS analysis. The last step usually involves reaction of CO2 with H2, in the presence of metal catalyst (Fe or Co) of specific mesh size heated to 550-625°C, as originally suggested by Vogel et al. (1984). Various graphitization systems have been built in order to fulfil the requirement of sample quality needed for high-precision radiocarbon data. In the early 90ties another method has been proposed (Vogel 1992) and applied by few laboratories mainly for environmental or biomedical samples. This method uses TiH2 as a source of H2 and can be easily and flexibly applied to produce graphite. Sample of CO2 is frozen in to the tube containing pre-conditioned Zn/TiH2 and Fe catalyst. Torch sealed tubes are then placed in the stepwise heated oven at 500/550°C and left to react for several hours. The greatest problem is the lack of control of the reaction completeness and considerable fractionation. However, recently reported results (Xu et al. 2007) suggest that high precision dating using graphite produced in closed tubes might be possible. We will present results of radiocarbon dating of the set of standards and secondary IAEA standards to demonstrate to what level this method can be used for high precision radiocarbon dating. References Vogel JS. 1992. Rapid Production of Graphite without Contamination for Biomedical Ams. Radiocarbon 34: 344-350. Vogel JS, Southon JR, Nelson DE, and Brown TA. 1984. Performance of Catalytically Condensed Carbon for Use in Accelerator Mass-Spectrometry. Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms 233: 289-293. Xu X, Trumbore SE, Zheng S, Southon JR, McDuffee KE, Luttgen M, and Liu JC. 2007. Modifying a sealed tube zinc reduction method for preparation of AMS graphite targets: Reducing background and attaining high precision. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms Accelerator Mass Spectrometry - Proceedings of the Tenth International Conference on Accelerator Mass Spectrometry 259: 320-329.

  16. Fabrication and testing of a high-precision concave spherical mirror

    NASA Astrophysics Data System (ADS)

    Burke, Jan; Green, Katie; Stuart, Wayne; Puhanic, Edita; Leistner, Achim; Oreb, Bob

    2008-08-01

    CSIRO's Australian Centre for Precision Optics has recently finished the production of a high-precision concave spherical mirror. The specifications were very ambitious: numerical aperture 0.75; asphericity below 5.5 nm rms and 27.3 nm P-V. The available reference transmission sphere had to be calibrated to enable adequate accuracy. Due to the high numerical aperture of the mirror, sub-aperture measurements had to be stitched together to form a complete surface map of the mirror. Phase-shifting interferometry at high numerical aperture suffers from phase-step non-uniformity because of the large off-axis angles. We present what we believe to be a new interpretation of this phenomenon as a focus error, which clarifies where in the interferometer the phase-shift error occurs. We discuss the ball-averaging method for calibrating the reference transmission sphere and present results from the averaging process to ensure an uncertainty commensurate with the certification requirement. For carrying out the sub-aperture measurements, we constructed a two-axis gimbal mount to swivel the mirror around the focus of the test wavefront. If the centers of curvature of the transmission sphere and the mirror coincide, the mirror can be tilted without losing the interferogram. We present a simple and effective alignment method, which can be generally applied to optical tests where the wavefront comes to a focus. The mirror was coated with protected aluminum and tested in its mount. No effect on the sphericity error from the coating was found, and the specifications were exceeded by approximately 30%. We discuss subtleties of the stitching process on curved surfaces and report final results.

  17. High Sensitive Precise 3D Accelerometer for Solar System Exploration with Unmanned Spacecrafts

    NASA Astrophysics Data System (ADS)

    Savenko, Y. V.; Demyanenko, P. O.; Zinkovskiy, Y. F.

    Solutions of several space and geophysical tasks require creating high sensitive precise accelerometers with sensitivity in order of 10 -13 g. These several tasks are following: inertial navigation of the Earth and Space; gravimetry nearby the Earth and into Space; geology; geophysics; seismology etc. Accelerometers (gravimeters and gradientmeters) with required sensitivity are not available now. The best accelerometers in the world have sensitivity worth on 4-5 orders. It has been developed a new class of fiber-optical sensors (FOS) with light pulse modulation. These sensors have super high threshold sensitivity and wide (up to 10 orders) dynamic range, and can be used as a base for creating of measurement units of physical values as 3D superhigh sensitive precise accelerometers of linear accelerations that is suitable for highest requirements. The principle of operation of the FOS is organically combined with a digital signal processing. It allows decreasing hardware of the accelerometer due to using a usual air-borne or space-borne computer; correcting the influence of natural, design, technological drawbacks of FOS on measured results; neutralising the influence of extraordinary situations available during using of FOS; decreasing the influence of internal and external destabilising factors (as for FOS), such as oscillation of environment temperature, instability of pendulum cycle frequency of sensitive element of the accelerometer etc. We were conducted a quantitative estimation of precise opportunities of analogue FOS in structure of fiber optical measuring devices (FOMD) for elementary FOMD with analogue FOS built on modern element basis of fiber optics (FO), at following assumptions: absolute parameter stability of devices of FOS measuring path; single transmission band of registration path; maximum possible inserted in optical fiber (OF) a radiated power. Even at such idealized assumptions, a calculated value in limit reached minimum inaccuracy of measuring, by analogue FOS, has been ˜ 10-4 %. Substantially accessible values are yet worse on 2-3 order. The reason of poor precise performances of measurers on the basis of analogue FOS is metrologically poor quality of a stream of optical radiation carrying out role of the carrier and receptor of the information. It is a high level of photon noise and a small blanket intensity level. First reason reflects the fact of discreteness of flow of high-energy photons, and it is consequence of second one - smallness, on absolute value, of inserted power into OF from available radiation sources (RS). Works on improvement of FO elements are carrying out. Certainly, it will be created RS allow to insert enough of power into standard OF. But simple increasing of optical flow power in measuring path of FOS will not be able to decide radically the problem of increasing of measuring prices: with raising of power in proportion of square root of its value there is raising a power of photon noises - 1000-times increase of power promises only 30-times increase of measuring precise; insertion into OF more large power (˜ 1 W for standard silicon OF) causes an appearance of non-linear effects in it, which destroying an operating principle of analogue FOS. Thus, it is needed to constatate impossibility of building, at that time, measurers of analogue FOS, concurated with traditional (electrical) measurers on measuring precise. At that all, advantages of FO, as basis of building of FO MD requires to find ways for decision of these problems. Analysis of problem of sensitivity of usual (analogue) FOS has brought us to conclusion about necessity of reviewing of principles of information signal forming in FOS and principles its next electronic processing. For radical increasing of accuracy of measurements with using FOS it is necessary to refuse analogue modulation of optical flow and to transfer to discreet its modulations, entering thus in optical flow new, non-optical, parameters, which will serve as recipients of the information. It allows to save up all advantages of FOS (carrier of information, as earlier, remains an optical flow), but problem of accuracy of measurements now will not be more connected with problem of measurement of low power intensity of optical flow - it is transferred from area of optical measurements in other, non-optical area, where there is no this problem, or it had been solved duly. It had been developed a new class of FOS with pulse modulation of radiation flow intensity at the Department of Design and Production of Redioelectronic Systems of National Technical University of Ukraine ``Kiev Polytechnic Institute''. PFOS have benefit differ from usual analogue FOS on high threshold sensitivity and wide dynamic range of measured values. As example there are described design and performances of proposed 3D accelerometer. High precision of accelerometer measurements on PFOS is provided by following: possibility of high precision measurements of time intervals, which serve as informative parameters in output pulse signal of PFOS; possibility of creating a high quality quartz oscillating system, which serves as sensitive element of PFOS; insensitiveness of metrological performances of the accelerometer to any parameter instabilities (time, temperature, etc.) of optical and electrical elements in measuring path of PFOS; digital processing of PFOS signal practically excludes processing errors; principle insensitiveness of PFOS to electromagnetic noises of any nature and any intensity; possibility of direct correction of measuring results, during their processing, for taking into account and excluding undesirable influences of any destabilizing factors are acting on PFOS. Quasi stationary approach The developed 3D accelerometer on PFOS of extra low accelerations has unique technical performances, that confirms our conclusions about potentially high metrological abilities of pulse FOS. It has the following performances (calculated): threshold sensitivity is (10 -9 ldots 10 -13) g (threshold is determine by customer with determination of sizes of sensor and electronic processing unit); dynamic range is 10 7 ldots 10 9 ; frequency range is 0 ldots 10 Hz; mass is 50 grams; size: length is 120 mm and diameter is 20 mm In addition, that it can be used as accelerometer properly, on its base it is possible to create the strapdown inertial systems (SIS) for spacecraft. Flight control is carried out in accordance to flight programe of spacecraft without support connection with external reference objects. These SIS allow: - direct control over changes of orbital parameter or flight track, caused by action of extra low but long time external force factors (braking action of planet atmosphere remains, sun wind pressure, etc.) on spacecraft; - checking correction of orbital parameters (spacecraft track) by including of low power spaceborne engine; The developed accelerometer can be also used as high sensitive gravimeter for geophysical investigations and geological explorations - anywhere, where it is required to measure extra low deviation of terrestrial gravity value. High sensitivity of described accelerometers allows to create, on its base, gradientometers of real system for investigation of Planet gravity field heterogeneity from spacecraft orbit. This opens possibilities of practical solution of number important tasks of Planet physics.

  18. High precision series solutions of differential equations: Ordinary and regular singular points of second order ODEs

    NASA Astrophysics Data System (ADS)

    Noreen, Amna; Olaussen, Kåre

    2012-10-01

    A subroutine for a very-high-precision numerical solution of a class of ordinary differential equations is provided. For a given evaluation point and equation parameters the memory requirement scales linearly with precision P, and the number of algebraic operations scales roughly linearly with P when P becomes sufficiently large. We discuss results from extensive tests of the code, and how one, for a given evaluation point and equation parameters, may estimate precision loss and computing time in advance. Program summary Program title: seriesSolveOde1 Catalogue identifier: AEMW_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEMW_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 991 No. of bytes in distributed program, including test data, etc.: 488116 Distribution format: tar.gz Programming language: C++ Computer: PC's or higher performance computers. Operating system: Linux and MacOS RAM: Few to many megabytes (problem dependent). Classification: 2.7, 4.3 External routines: CLN — Class Library for Numbers [1] built with the GNU MP library [2], and GSL — GNU Scientific Library [3] (only for time measurements). Nature of problem: The differential equation -s2({d2}/{dz2}+{1-ν+-ν-}/{z}{d}/{dz}+{ν+ν-}/{z2})ψ(z)+{1}/{z} ∑n=0N vnznψ(z)=0, is solved numerically to very high precision. The evaluation point z and some or all of the equation parameters may be complex numbers; some or all of them may be represented exactly in terms of rational numbers. Solution method: The solution ψ(z), and optionally ψ'(z), is evaluated at the point z by executing the recursion A(z)={s-2}/{(m+1+ν-ν+)(m+1+ν-ν-)} ∑n=0N Vn(z)A(z), ψ(z)=ψ(z)+A(z), to sufficiently large m. Here ν is either ν+ or ν-, and Vn(z)=vnz. The recursion is initialized by A(z)=δzν,for n=0,1,…,N ψ(z)=A0(z). Restrictions: No solution is computed if z=0, or s=0, or if ν=ν- (assuming Reν+≥Reν-) with ν+-ν- an integer, except when ν+-ν-=1 and v =0 (i.e. when z is an ordinary point for zψ(z)). Additional comments: The code of the main algorithm is in the file seriesSolveOde1.cc, which "#include" the file checkForBreakOde1.cc. These routines, and the programs using them, must "#include" the file seriesSolveOde1.cc. Running time: On a Linux PC that is a few years old, at y=√{10} to an accuracy of P=200 decimal digits, evaluating the ground state wavefunction of the anharmonic oscillator (with the eigenvalue known in advance); (cf. Eq. (6)) takes about 2 ms, and about 40 min at an accuracy of P=100000 decimal digits. References: [1] B. Haible and R.B. Kreckel, CLN — Class Library for Numbers, http://www.ginac.de/CLN/ [2] T. Granlund and collaborators, GMP — The GNU Multiple Precision Arithmetic Library, http://gmplib.org/ [3] M. Galassi et al., GNU Scientific Library Reference Manual (3rd Ed.), ISBN 0954612078., http://www.gnu.org/software/gsl/

  19. Crystal optics for precision x-ray spectroscopy on highly charged ions—conception and proof

    NASA Astrophysics Data System (ADS)

    Beyer, H. F.; Gassner, T.; Trassinelli, M.; Heß, R.; Spillmann, U.; Banaś, D.; Blumenhagen, K.-H.; Bosch, F.; Brandau, C.; Chen, W.; Dimopoulou, Chr; Förster, E.; Grisenti, R. E.; Gumberidze, A.; Hagmann, S.; Hillenbrand, P.-M.; Indelicato, P.; Jagodzinski, P.; Kämpfer, T.; Kozhuharov, Chr; Lestinsky, M.; Liesen, D.; Litvinov, Yu A.; Loetzsch, R.; Manil, B.; Märtin, R.; Nolden, F.; Petridis, N.; Sanjari, M. S.; Schulze, K. S.; Schwemlein, M.; Simionovici, A.; Steck, M.; Stöhlker, Th; Szabo, C. I.; Trotsenko, S.; Uschmann, I.; Weber, G.; Wehrhan, O.; Winckler, N.; Winters, D. F. A.; Winters, N.; Ziegler, E.

    2015-07-01

    The experimental investigation of quantum-electrodydamic contributions to the binding energies of inner shells of highly charged heavy ions requires an accurate spectroscopy in the region of hard x-rays suitable at a limited source strength. For this purpose the focusing compensated asymmetric Laue crystal optics has been developed and a twin-spectrometer assembly has been built and commissioned at the experimental storage ring of the GSI Helmholtzzentrum Darmstadt. We characterize the crystal optics and demonstrate the usefulness of the instrumentation for accurate spectroscopy of both stationary and fast moving x-ray sources. The experimental procedures discussed here may also be applied for other spectroscopic studies where a transition from conventional germanium x-ray detectors to crystal spectrometers seems too demanding because of low source intensity.

  20. TRB3: a 264 channel high precision TDC platform and its applications

    NASA Astrophysics Data System (ADS)

    Neiser, A.; Adamczewski-Musch, J.; Hoek, M.; Koenig, W.; Korcyl, G.; Linev, S.; Maier, L.; Michel, J.; Palka, M.; Penschuck, M.; Traxler, M.; Uğur, C.; Zink, A.

    2013-12-01

    The TRB3 features four FPGA-based TDCs with < 20 ps RMS time precision between two channels and 256+4+4 channels in total. One central FPGA provides flexible trigger functionality and GbE connectivity including powerful slow control. We present recent users' applications of this platform following the COME&KISS principle: successful test beamtimes at CERN (CBM), in Jülich and Mainz with an FPGA-based discriminator board (PaDiWa), a charge-to-width FEE board with high dynamic range, read-out of the n-XYTER ASIC and software for data unpacking and TDC calibration in ROOT. We conclude with an outlook on future developments.

  1. A high-precision multi-channel TAC and QAC module for the neutron detection wall

    NASA Astrophysics Data System (ADS)

    She, Qian-Shun; Su, Hong; Qian, Yi; Yu, Yu-Hong

    2015-02-01

    A single width NIM module that includes eight channels of the time-to-amplitude converter (TAC) and the charge-to-amplitude converter (QAC) is introduced in the paper, which is designed for the large neutron wall detector to measure charge (energy) and time interval simultaneously. The module adopts a high precision gated integration circuit to realize TAC and QAC. The input range of TAC is from 30 ns to 1 ?s, and the input range of QAC is from 40 pC to 600 pC. The linearity error of TAC is lower than 1.28%, and the time resolution of TAC is less than 0.871%. The linearity error of QAC is lower than 0.81%, and the resolution of QAC is better than 0.936%. Supported by National Natural Science Foundation of China (11005135, 11079045) and National Instruments Special of China (2011YQ12009604)

  2. Niphargus: A silicon band-gap sensor temperature logger for high-precision environmental monitoring

    NASA Astrophysics Data System (ADS)

    Burlet, C.; Vanbrabant, Y.; Piessens, K.; Welkenhuysen, K.; Verheyden, S.

    2015-01-01

    A temperature logger, named "Niphargus", was developed at the Geological Survey of Belgium to monitor temperature of local natural processes. It has a sensitivity of the order of a few hundredths of degrees on temperature variability in open air, caves, soils and river environment. The newly developed instrument uses a state-of-the-art band-gap silicon temperature sensor with integrated digital output. This sensor reduces the risk of drift associated with thermistor-based sensing devices, especially in humid environments. The Niphargus is designed to be highly reliable, low-cost and powered by a single lithium cell with up to several years autonomy, depending on the sampling rate and environmental conditions. A batch of Niphargus loggers was also compared to a precision thermistor to assess absolute temperature accuracy. Further characterization came from two field case studies in Belgium: monitoring of a mineralized water stream near the town of Spa and air temperature monitoring inside Han-sur-Lesse cave.

  3. High-Precision Determination of the Pion-Nucleon ? Term from Roy-Steiner Equations

    NASA Astrophysics Data System (ADS)

    Hoferichter, Martin; Ruiz de Elvira, Jacobo; Kubis, Bastian; Meiner, Ulf-G.

    2015-08-01

    We present a determination of the pion-nucleon (? N ) ? term ?? N based on the Cheng-Dashen low-energy theorem (LET), taking advantage of the recent high-precision data from pionic atoms to pin down the ? N scattering lengths as well as of constraints from analyticity, unitarity, and crossing symmetry in the form of Roy-Steiner equations to perform the extrapolation to the Cheng-Dashen point in a reliable manner. With isospin-violating corrections included both in the scattering lengths and the LET, we obtain ?? N=(59.1 1.9 3.0 ) MeV =(59.1 3.5 ) MeV , where the first error refers to uncertainties in the ? N amplitude and the second to the LET. Consequences for the scalar nucleon couplings relevant for the direct detection of dark matter are discussed.

  4. High-precision calculation of the strange nucleon electromagnetic form factors

    SciTech Connect

    Green, Jeremy; Meinel, Stefan; Engelhardt, Michael G.; Krieg, Stefan; Laeuchli, Jesse; Negele, John W.; Orginos, Kostas; Pochinsky, Andrew; Syritsyn, Sergey

    2015-08-26

    We report a direct lattice QCD calculation of the strange nucleon electromagnetic form factors GsE and GsM in the kinematic range 0 ≤ Q2 ≤ 1.2GeV2. For the first time, both GsE and GsM are shown to be nonzero with high significance. This work uses closer-to-physical lattice parameters than previous calculations, and achieves an unprecented statistical precision by implementing a recently proposed variance reduction technique called hierarchical probing. We perform model-independent fits of the form factor shapes using the z-expansion and determine the strange electric and magnetic radii and magnetic moment. As a result, we compare our results to parity-violating electron-proton scattering data and to other theoretical studies.

  5. Classical Cepheids: High-precision Velocimetry, Cluster Membership, and the Effect of Rotation

    NASA Astrophysics Data System (ADS)

    Anderson, Richard I.

    2013-12-01

    Classical Cepheids are crucial calibrators of the extragalactic distance scale. Despite the adjective 'classical' and their use as 'standard candles', many open problems remain and ensure a steady scientific interest in these objects. This thesis has contributed to the understanding of Cepheids via three different topics: (1) an unprecedented observational program dedicated to studying highly precise Doppler measurements (velocimetry), which as has enabled several observational discoveries; (2) a newly-developed astro-statistical method for conducting an all-sky census of Cepheids belonging to Galactic open clusters, which is suitable for the era of large surveys (big data) such as the ESA's Gaia space mission; (3) the first detailed investigation of the effect of rotation on populations of classical Cepheids using Geneva stellar evolution models, which provides an explanation for the 45-year old Cepheid mass discrepancy problem. Last, but not least, I investigated the implications of my work for the extragalactic distance scale.

  6. Composite-Light-Pulse Technique for High-Precision Atom Interferometry

    NASA Astrophysics Data System (ADS)

    Berg, P.; Abend, S.; Tackmann, G.; Schubert, C.; Giese, E.; Schleich, W. P.; Narducci, F. A.; Ertmer, W.; Rasel, E. M.

    2015-02-01

    We realize beam splitters and mirrors for atom waves by employing a sequence of light pulses rather than individual ones. In this way we can tailor atom interferometers with improved sensitivity and accuracy. We demonstrate our method of composite pulses by creating a symmetric matter-wave interferometer which combines the advantages of conventional Bragg- and Raman-type concepts. This feature leads to an interferometer with a high immunity to technical noise allowing us to devise a large-area Sagnac gyroscope yielding a phase shift of 6.5 rad due to the Earth's rotation. With this device we achieve a rotation rate precision of 120 nrad s-1 Hz-1 /2 and determine the Earth's rotation rate with a relative uncertainty of 1.2%.

  7. High-power copper vapor lasers and their application to precision drilling and cutting

    SciTech Connect

    Warner, B.E.; Weber, P.D.

    1993-07-27

    High-power copper vapor lasers (CVLs) have been under development at Lawrence Livermore National Laboratory (LLNL) for more than 15 years in support of the DOE`s Program in Laser Isotope Separation. The technology is now quite mature, having met many of its goals in system architecture, power, reliability, and maintainability. Over the past several years we have begun an effort to utilize this technology in other industrial applications, such as metals processing, and have found a number of unique processes. In this paper we describe briefly the general characteristics of the CVL, our recent progress in developing the laser as an industrial tool, and our progress in using the laser in precision drilling and cutting.

  8. The Use of Industrial Robot Arms for High Precision Patient Positioning

    SciTech Connect

    Katuin, J.E.; Schreuder, A.N.; Starks, W.M.; Doskow, J.

    2003-08-26

    The Indiana University Cyclotron Facility (IUCF) is in the process of designing and building the Midwest Proton Radiation Institute (MPRI) [1]. The design process includes the development of several patient treatment systems. This paper discusses the use of two such systems that provide for the high precision positioning of a patient. They are the Patient Positioner System and the X-ray system. The Patient Positioner System positions an immobilized patient on a support device to a treatment position based on a prescribed Treatment Plan. The X-ray system uses an industrial robot arm to position a Digital Radiography Panel to acquire an X-ray image to verify the location of the prescribed treatment volume in a patient by comparing the acquired images with reference images obtained from the patient's Treatment plan.

  9. LEBIT II: Upgrades and developments for high precision Penning trap mass measurements with rare isotopes

    NASA Astrophysics Data System (ADS)

    Redshaw, M.; Bollen, G.; Bustabad, S.; Kwiatkowski, A. A.; Lincoln, D. L.; Novario, S. J.; Ringle, R.; Schwarz, S.; Valverde, A. A.

    2013-12-01

    During the next several years and decades the extension of high-precision Penning trap mass spectrometry measurements to more-exotic isotopes, lying far from the valley of stability will continue to provide significant contributions to nuclear physics. However, such measurements must overcome the challenges of working with isotopes that have low production rates and short lifetimes. At the Low Energy Beam and Ion Trap (LEBIT) facility at the National Superconducting Cyclotron Laboratory, a number of developments have been implemented or are underway to meet these challenges by minimizing rare-isotope preparation and measurement time, maximizing use of available beam time, and increasing sensitivity. These developments and the current status of the LEBIT facility will be discussed.

  10. The high precision measurement of the 144Ce activity in the SOX experiment

    NASA Astrophysics Data System (ADS)

    Di Noto, L.; Agostini, M.; Althenmüller, K.; Appel, S.; Bellini, G.; Benziger, J.; Berton, N.; Bick, D.; Bonfini, G.; Bravo—Berguño, D.; Caccianiga, B.; Calaprice, F.; Caminata, A.; Cavalcante, P.; Cereseto, R.; Chepurnov, A.; Choi, K.; Cribier, M.; DAngelo, D.; Davini, S.; Derbin, A.; Drachnev, I.; Durero, M.; Etenko, A.; Farinon, S.; Fischer, V.; Fomenko, K.; Franco, D.; Gabriele, F.; Gaffiot, J.; Galbiati, C.; Ghiano, C.; Giammarchi, M.; Göeger-Neff, M.; Goretti, A.; Gromov, M.; Hagner, C.; Houdy, Th; Hungerford, E.; Ianni, Aldo; Ianni, Andrea; Jonquères, N.; Jedrzejczak, K.; Kaiser, M.; Kobychev, V.; Korablev, D.; Korga, G.; Kornoukhov, V.; Kryn, D.; Lachenmaier, T.; Lasserre, T.; Laubenstein, M.; Lehnert, T.; Link, J.; Litvinovich, E.; Lombardi, F.; Lombardi, P.; Ludhova, L.; Lukyanchenko, G.; Machulin, I.; Manecki, S.; Maneschg, W.; Marcocci, S.; Maricic, J.; Mention, G.; Meroni, E.; Meyer, M.; Miramonti, L.; Misiaszek, M.; Montuschi, M.; Mosteiro, P.; Muratova, V.; Musenich, R.; Neumair, B.; Oberauer, L.; Obolensky, M.; Ortica, F.; Pallavicini, M.; Papp, L.; Perasso, L.; Pocar, A.; Ranucci, G.; Razeto, A.; Re, A.; Romani, A.; Roncin, R.; Rossi, C.; Rossi, N.; Schönert, S.; Scola, L.; Semenov, D.; Simgen, H.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Sukhotin, S.; Suvorov, Y.; Tartaglia, R.; Testera, G.; Thurn, J.; Toropova, M.; Veyssière, C.; Vivier, M.; Unzhakov, E.; Vogelaar, R. B.; von Feilitzsch, F.; Wang, H.; Weinz, S.; Winter, J.; Wojcik, M.; Wurm, M.; Yokley, Z.; Zaimidoroga, O.; Zavatarelli, S.; Zuber, K.; Zuzel, G.

    2016-02-01

    In order to perform a resolutive measurement to clarify the neutrino anomalies and to observe possible short distance neutrino oscillations, the SOX (Short distance neutrino Oscillations with BoreXino) experiment is under construction. In the first phase, a 100 kCi 144Ce-144Pr antineutrino source will be placed under the Borexino detector at the Laboratori Nazionali del Gran Sasso (LNGS), in center of Italy, and the rate measurement of the antineutrino events, observed by the very low radioactive background Borexino detector, will be compared with the high precision (< 1%) activity measurement performed by two calorimeters. The source will be embedded in a 19 mm thick tungsten alloy shield and both the calorimeters have been conceived for measuring the thermal heat absorbed by a water flow. In this report the design of the calorimeters will be described in detail and very preliminary results will be also shown.

  11. High Precision Measurement of the Proton Elastic Form Factor Ratio at Low Q2

    SciTech Connect

    Xiaohui Zhan

    2009-12-01

    A high precision measurement of the proton elastic form factor ratio µpGEp/GMp in the range Q2 = 0.3–0.7 GeV2/c2 was performed using recoil polarimetry in Jefferson Lab Hall A. In this low Q2 range, previous data from LEDEX [5] along with many fits and calculations [2, 3, 4] indicate substantial deviations of the ratio from unity. In this new measurement, with 80% polarized electron beam for 24 days, we are able to achieve <1% statistical uncertainty. Preliminary results are a few percent lower than expected from previous world data and fits, indicating a smaller GEp at this region. Beyond the intrinsic interest in nucleon structure, the improved form factor measurements also have implications for DVCS, determinations of the proton Zemach radius and strangeness form factors through parity violation experiments.

  12. High precision electric gate for time-of-flight ion mass spectrometers

    NASA Technical Reports Server (NTRS)

    Sittler, Edward C. (Inventor)

    2011-01-01

    A time-of-flight mass spectrometer having a chamber with electrodes to generate an electric field in the chamber and electric gating for allowing ions with a predetermined mass and velocity into the electric field. The design uses a row of very thin parallel aligned wires that are pulsed in sequence so the ion can pass through the gap of two parallel plates, which are biased to prevent passage of the ion. This design by itself can provide a high mass resolution capability and a very precise start pulse for an ion mass spectrometer. Furthermore, the ion will only pass through the chamber if it is within a wire diameter of the first wire when it is pulsed and has the right speed so it is near all other wires when they are pulsed.

  13. High Precision Measurement of the Proton Elastic Form Factor Ratio at Low Q{sup 2}

    SciTech Connect

    Zhan Xiaohui

    2009-12-17

    A high precision measurement of the proton elastic form factor ratio {mu}{sub p}G{sub Ep}/G{sub Mp} in the range Q{sup 2} = 0.3-0.7 GeV{sup 2}/c{sup 2} was performed using recoil polarimetry in Jefferson Lab Hall A. In this low Q{sup 2} range, previous data from LEDEX [5] along with many fits and calculations [2, 3, 4] indicate substantial deviations of the ratio from unity. In this new measurement, with 80% polarized electron beam for 24 days, we are able to achieve <1% statistical uncertainty. Preliminary results are a few percent lower than expected from previous world data and fits, indicating a smaller G{sub Ep} at this region. Beyond the intrinsic interest in nucleon structure, the improved form factor measurements also have implications for DVCS, determinations of the proton Zemach radius and strangeness form factors through parity violation experiments.

  14. Probing active-edge silicon sensors using a high precision telescope

    NASA Astrophysics Data System (ADS)

    Akiba, K.; Artuso, M.; van Beveren, V.; van Beuzekom, M.; Boterenbrood, H.; Buytaert, J.; Collins, P.; Dumps, R.; van der Heijden, B.; Hombach, C.; Hynds, D.; Hsu, D.; John, M.; Koffeman, E.; Leflat, A.; Li, Y.; Longstaff, I.; Morton, A.; Pérez Trigo, E.; Plackett, R.; Reid, M. M.; Rodríguez Perez, P.; Schindler, H.; Tsopelas, P.; Vázquez Sierra, C.; Wysokiński, M.

    2015-03-01

    The performance of prototype active-edge VTT sensors bump-bonded to the Timepix ASIC is presented. Non-irradiated sensors of thicknesses 100-200 μm and pixel-to-edge distances of 50 μm and 100 μm were probed with a beam of charged hadrons with sub-pixel precision using the Timepix telescope assembled at the SPS at CERN. The sensors are shown to be highly efficient up to a few micrometers from the physical edge of the sensor. The distortion of the electric field lines at the edge of the sensors is studied by reconstructing the streamlines of the electric field using two-pixel clusters. These results are supported by TCAD simulations. The reconstructed streamlines are used to study the field distortion as a function of the bias voltage and to apply corrections to the cluster positions at the edge.

  15. High-precision gravimetric survey in support of lunar laser ranging at Haleakala, Maui, 1976 - 1978

    NASA Technical Reports Server (NTRS)

    Schenck, B. E.; Laurila, S. H.

    1978-01-01

    The planning, observations and adjustment of high-precision gravity survey networks established on the islands of Maui and Oahu as part of the geodetic-geophysical program in support of lunar laser ranging at Haleakala, Maui, Hawaii are described. The gravity survey networks include 43 independently measured gravity differences along the gravity calibration line from Kahului Airport to the summit of Mt. Haleakala, together with some key points close to tidal gauges on Maui, and 40 gravity differences within metropolitan Honolulu. The results of the 1976-1978 survey are compared with surveys made in 1961 and in 1964-1965. All final gravity values are given in the system of the international gravity standardization net 1971 (IGSN 71); values are obtained by subtracting 14.57 mgal from the Potsdam value at the gravity base station at the Hickam Air Force Base, Honolulu.

  16. Composite-light-pulse technique for high-precision atom interferometry.

    PubMed

    Berg, P; Abend, S; Tackmann, G; Schubert, C; Giese, E; Schleich, W P; Narducci, F A; Ertmer, W; Rasel, E M

    2015-02-13

    We realize beam splitters and mirrors for atom waves by employing a sequence of light pulses rather than individual ones. In this way we can tailor atom interferometers with improved sensitivity and accuracy. We demonstrate our method of composite pulses by creating a symmetric matter-wave interferometer which combines the advantages of conventional Bragg- and Raman-type concepts. This feature leads to an interferometer with a high immunity to technical noise allowing us to devise a large-area Sagnac gyroscope yielding a phase shift of 6.5 rad due to the Earth's rotation. With this device we achieve a rotation rate precision of 120  nrad s(-1) Hz(-1/2) and determine the Earth's rotation rate with a relative uncertainty of 1.2%. PMID:25723216

  17. Third-eye guided telemeter for high-precision positional measurement

    NASA Astrophysics Data System (ADS)

    Pettiti, Giuseppe; Cumani, Aldo; Grattoni, Paolo; Guiducci, Antonio; Pollastri, Fabrizio; Rebaglia, Bruno

    1994-02-01

    The telemeter is a high precision positional tracking device that works by triangulation over the angular measurements provided by two or more telegoniometers. Each of the latter is composed of a TV camera with a teleobjective, looking at the working space through a pair of orthogonal mirrors. A problem with this kind of structure is the automation of the initial pointing of the telegoniometers on the target. We propose to add a third camera with a wide- angle lens framing the whole workspace to provide the line of sight on which the target must lie. In this work we present this `three-eyes' structure and discuss its calibration, as well as the problems related to the strategy for scanning the line of sight and for detecting the tracking condition. Two possible applications to robot qualification and autonomous navigation also are presented.

  18. Procedures for accurate U and Th isotope measurements by high precision MC-ICPMS

    NASA Astrophysics Data System (ADS)

    Hoffmann, Dirk L.; Prytulak, Julie; Richards, David A.; Elliott, Tim; Coath, Christopher D.; Smart, Peter L.; Scholz, Denis

    2007-07-01

    We present multi-collector (MC) inductively coupled plasma mass spectrometry (ICPMS) protocols developed to obtain high precision, accurate determinations of U and Th isotope ratios that are applicable to a wide range of geological materials. MC-ICPMS provides a means to make high precision measurements but a recent laboratory inter-comparison, Regular European Inter-laboratory Measurement Evaluation Programme (REIMEP)-18, indicates that accurate results for U isotope ratios are not currently achieved by all facilities using MC-ICPMS. We detail a suite of protocols that can be used for a wide variety of U and Th isotope ratios and total loads. Particular attention is devoted to instrument optimisation, instrumental backgrounds, stability and memory effects, multiplier nonlinearity and yield determinations. Our results indicate that the extent of mass fractionation of U and Th analyses run under similar instrumental conditions is 0.48% per amu and 0.45% per amu, respectively, but cannot be distinguished at per mil precision levels. However, we note that multiplier-Faraday cup gain can be significantly different for U and Th by 1% and thus a U standard should not be used to correct Th measurements. For this reason, a combination of thermal ionisation mass spectrometry (TIMS) and MC-ICPMS methods have been used to determine the isotopic ratio of an in-house Th standard (TEDDi). As part of our methods, TEDDi and the U standard NBL-112a are used as bracketing standards for Th and U samples, respectively. While the in-house Th standard has 229Th-230Th-232Th composition specific for bracketing low 232Th analyses, the methods have been also successful for silicates with 230Th/232Th <10-5. Using NBL-112a, TEDDi and a gravimetrically calibrated mixed 229Th-236U spike, we demonstrate secular equilibrium in natural materials such as Table Mountain Latite and a Long Valley Glass Mountain sample with a reproducibility of 3.8 per mil for 230Th/238U and 2.8 per mil for 234U/238U. We also present results for a variety of U and Th certified reference materials as well as carbonate and silicate standards such as ANU coral (AC-1) and Basalt Columbia River (BCR-2). Furthermore, we find the 230Th-238U ratio of Harwell uraninite slightly greater than unity. This is important because many laboratories use only uraninite for the calibration of their spikes.

  19. High-Precision Stable Isotope Analyses with the NanoSIMS 50L (Invited)

    NASA Astrophysics Data System (ADS)

    Hauri, E. H.; Wang, J.; Papineau, D.; Hillion, F.

    2009-12-01

    The in situ measurement of isotope ratios at high precision has always been a goal of secondary ion mass spectrometery (SIMS). The NanoSIMS 50L is a third-generation ion microprobe developed by Cameca and modified in collaboration with the Carnegie Institution of Washington. This instrument encorporates a number of design and functional improvements over the stock NS50, including precise stepper motor control over all slits, apertures and stage movements, a larger magnet, and a modified multicollector (6 moveable and 1 fixed) capable of holding both Faraday cups and miniature multi-dynode electron multipliers. The instrument is capable of attaining a minimum beam diameter of <50 nanometers with Cs and <200 nanometers with oxygen, a factor of 5-10 improvement over the IMS6F/7F/1280 generation of instruments. The CIW instrument is also the first NanoSIMS to be fitted with multiple Faradays and associated high-precision electrometers. Most tests to date have been performed on conductive Fe-bearing sulfides mouted in indium and polished with near-zero relief. With Cs, a routine primary beam diameter of 100 nm is obtained with 1-2pA of current, sufficient to yield 1MHz of 32S from pyrite at >6000 MRP. A 2.5 nA Cs beam with a diameter of 700 nm yields 90 pA of 32S from pyrite at >6000 MRP, sufficient to analyze 32S-33S-34S on Faraday cups and 36S in EM @ >10,000 cps. Specification tests immediately after installation in 2005 demonstrated a reproducibility of <0.3‰ (1σ) in 10 analyses within a single sputter crater on Balmat pyrite, and this was subsequently improved to 0.15‰ (1σ) in 2006. Further tests showed that reproducibility on separate craters of a single grain, and separate craters in separate Balmat pyrite grains located in different holes of the sample holder, were improved to better than 0.2‰ (1σ) through careful attention to reproducibility of sample height (Z-axis control) and centering of the secondary ion beam in the entrance slit of the mass spectrometer. These results were found to be independent on the X-Y position of the sample holder. Further results will be presented at the meeting.

  20. Influence of sulfur-bearing polyatomic species on high precision measurements of Cu isotopic composition

    USGS Publications Warehouse

    Pribil, M.J.; Wanty, R.B.; Ridley, W.I.; Borrok, D.M.

    2010-01-01

    An increased interest in high precision Cu isotope ratio measurements using multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) has developed recently for various natural geologic systems and environmental applications, these typically contain high concentrations of sulfur, particularly in the form of sulfate (SO42-) and sulfide (S). For example, Cu, Fe, and Zn concentrations in acid mine drainage (AMD) can range from 100??g/L to greater than 50mg/L with sulfur species concentrations reaching greater than 1000mg/L. Routine separation of Cu, Fe and Zn from AMD, Cu-sulfide minerals and other geological matrices usually incorporates single anion exchange resin column chromatography for metal separation. During chromatographic separation, variable breakthrough of SO42- during anion exchange resin column chromatography into the Cu fractions was observed as a function of the initial sulfur to Cu ratio, column properties, and the sample matrix. SO42- present in the Cu fraction can form a polyatomic 32S-14N-16O-1H species causing a direct mass interference with 63Cu and producing artificially light ??65Cu values. Here we report the extent of the mass interference caused by SO42- breakthrough when measuring ??65Cu on natural samples and NIST SRM 976 Cu isotope spiked with SO42- after both single anion column chromatography and double anion column chromatography. A set of five 100??g/L Cu SRM 976 samples spiked with 500mg/L SO42- resulted in an average ??65Cu of -3.50?????5.42??? following single anion column separation with variable SO42- breakthrough but an average concentration of 770??g/L. Following double anion column separation, the average SO42-concentration of 13??g/L resulted in better precision and accuracy for the measured ??65Cu value of 0.01?????0.02??? relative to the expected 0??? for SRM 976. We conclude that attention to SO42- breakthrough on sulfur-rich samples is necessary for accurate and precise measurements of ??65Cu and may require the use of a double ion exchange column procedure. ?? 2010.

  1. A high-precision five-degree-of-freedom measurement system based on laser collimator and interferometry techniques

    SciTech Connect

    Kuang Cuifang; Hong En; Ni Jun

    2007-09-15

    A novel sensitivity improving method for simultaneously measuring five-degree-of-freedom errors of a moving linear stage is proposed based on collimator and interferometry techniques. The measuring principle and parameters of the system are analyzed theoretically. The experimental results proved that the resolution of the linear displacement of the proposed method has twice that of the current linear interferometer, and the resolutions of the two-dimensional straightness error measurement can be improved by a factor of 8 compared with the movement of the retroreflector itself by using multireflection and lens magnification. The resolutions of the pitch and yaw angular error measurement have been improved by a factor of 10 compared with the rotation of the plane mirror itself by using expander lenses. The whole measuring system is characterized of simple structure, small volume, and high precision. The moving component of the measurement system is wireless, which eliminates the errors and inconvenience introduced by the wire connection. Calibration and comparison tests of this system compared with Renishaw laser interferometer system have been carried out. Experimental results show good consistency for measuring a linear guide way.

  2. A high precision micropositioner with five degrees of freedom based on an electromagnetic driving principle

    NASA Astrophysics Data System (ADS)

    Wang, Wanjun; He, Tian

    1996-01-01

    A five degrees of freedom high precision micropositioner based on spring suspension and electromagnetic driving has been designed, constructed, and tested. The device consists of two parts: a moving part and a stationary part. The moving part, named as ``motor'', is formed with a rigid frame and three groups of coils fixed on it. The stationary part of the device, called ``stator'', includes a chassis and twelve U-shaped magnetic ``shoes''. The motor is attached to the stator with flat springs whose linear suspension allows it to move in all dimensions except the rotation around z axis. The coils have been laid out in such a way that fractions of them pass through the air gaps between the facing magnets in the magnetic shoes. When electrical currents are supplied to the coils, the resulting Lorenz forces drive the motor to move in the five degrees of freedom allowed by the spring suspension. Since the system is inherently stable and there is no mechanical friction, the open-loop resolutions of the device are found to be limited only by that of the 12-bit D/A board used. A closed-loop translation resolution of 0.3 μm has been achieved over a working space of 180 μm by 180 μm by 680 μm. A closed-loop rotation resolution of 2.73×10-6 rad has been achieved over a working space of 1.38×10-3 rad. Potentially the device can be used for high precision microprobing and testing, cellular biology, microsurgery, and testing of micromechanical devices in the fast developing MEMS area.

  3. Verification program for a high-precision large cryogenic lens holder

    NASA Astrophysics Data System (ADS)

    Boesz, A.; Grupp, F.; Leberle, T.; Mottaghibonab, A.; Geis, N.; Bender, R.

    2011-09-01

    For the Euclid mission a Pre-Development phase is implemented to prove feasibility of individual components of the system. The Near Infrared Spectrometer and Photometer (NISP) of EUCLID requires high precision and large lens holders (Ø170 mm) at cryogenic temperatures (120K - 150K). The four lenses of the optical system are made of different materials: fused silica, CaF2, and LF5G15 that are mounted in a separate lens barrel design. Each lens has its separate mechanical interface to the lens barrel, the so called adaption ring. The performance of the lens holder design shall be verified by an adapted test facility including an optical metrology system. The characterization of the lens deformation and displacement due to thermally induced loads are driven by the required micrometer precision range and by the operational thermal condition. The surface deformation of the lens and its holder is verified by interferometric measurements, while tilt and position accuracy are measured by fiber based distance sensors. The applied distance measurement sensors have the capability to measure in a few mm range with submicron resolution at ultra high vacuum, in vibration environments and at liquid nitrogen temperatures and below. The calibration of the measurement system is of crucial importance; therefore the sensors shall be mounted on a stiff and well characterized reference structure made of nearly zero-CTE ceramic material. The verification program is currently under development at Kayser-Threde in the context of a contract with Max-Planck-Institute for Extraterrestrial Physics. The paper presents the vacuum chamber design, the metrology system, the used Ground Support Equipment, and the detailed verification program.

  4. [High Precision Identification of Igneous Rock Lithology by Laser Induced Breakdown Spectroscopy].

    PubMed

    Wang, Chao; Zhang, Wei-gang; Yan, Zhi-quan

    2015-09-01

    In the field of petroleum exploration, lithology identification of finely cuttings sample, especially high precision identification of igneous rock with similar property, has become one of the geological problems. In order to solve this problem, a new method is proposed based on element analysis of Laser-Induced Breakdown Spectroscopy (LIBS) and Total Alkali versus Silica (TAS) diagram. Using independent LIBS system, factors influencing spectral signal, such as pulse energy, acquisition time delay, spectrum acquisition method and pre-ablation are researched through contrast experiments systematically. The best analysis conditions of igneous rock are determined: pulse energy is 50 mJ, acquisition time delay is 2 μs, the analysis result is integral average of 20 different points of sample's surface, and pre-ablation has been proved not suitable for igneous rock sample by experiment. The repeatability of spectral data is improved effectively. Characteristic lines of 7 elements (Na, Mg, Al, Si, K, Ca, Fe) commonly used for lithology identification of igneous rock are determined, and igneous rock samples of different lithology are analyzed and compared. Calibration curves of Na, K, Si are generated by using national standard series of rock samples, and all the linearly dependent coefficients are greater than 0.9. The accuracy of quantitative analysis is investigated by national standard samples. Element content of igneous rock is analyzed quantitatively by calibration curve, and its lithology is identified accurately by the method of TAS diagram, whose accuracy rate is 90.7%. The study indicates that LIBS can effectively achieve the high precision identification of the lithology of igneous rock. PMID:26669148

  5. Redefining ALL classification: toward detecting high-risk ALL and implementing precision medicine.

    PubMed

    Hunger, Stephen P; Mullighan, Charles G

    2015-06-25

    Acute lymphoblastic leukemia (ALL) is the commonest childhood tumor and remains a leading cause of cancer death in the young. In the last decade, microarray and sequencing analysis of large ALL cohorts has revolutionized our understanding of the genetic basis of this disease. These studies have identified new ALL subtypes, each characterized by constellations of structural and sequence alterations that perturb key cellular pathways, including lymphoid development, cell-cycle regulation, and tumor suppression; cytokine receptor, kinase, and Ras signaling; and chromatin modifications. Several of these pathways, particularly kinase-activating lesions and epigenetic alterations, are logical targets for new precision medicine therapies. Genomic profiling has also identified important interactions between inherited genetic variants that influence the risk of leukemia development and the somatic genetic alterations that are required to establish the leukemic clone. Moreover, sequential sequencing studies at diagnosis, remission, and relapse have provided important insights into the relationship among genetic variants, clonal heterogeneity, and the risk of relapse. Ongoing studies are extending our understanding of coding and noncoding genetic alterations in B-progenitor and T-lineage ALL and using these insights to inform the development of faithful experimental models to test the efficacy of new treatment approaches. PMID:25999453

  6. Multi-Repeated Projection Lithography for High-Precision Linear Scale Based on Average Homogenization Effect

    PubMed Central

    Ren, Dongxu; Zhao, Huiying; Zhang, Chupeng; Yuan, Daocheng; Xi, Jianpu; Zhu, Xueliang; Ban, Xinxing; Dong, Longchao; Gu, Yawen; Jiang, Chunye

    2016-01-01

    A multi-repeated photolithography method for manufacturing an incremental linear scale using projection lithography is presented. The method is based on the average homogenization effect that periodically superposes the light intensity of different locations of pitches in the mask to make a consistent energy distribution at a specific wavelength, from which the accuracy of a linear scale can be improved precisely using the average pitch with different step distances. The method’s theoretical error is within 0.01 µm for a periodic mask with a 2-µm sine-wave error. The intensity error models in the focal plane include the rectangular grating error on the mask, static positioning error, and lithography lens focal plane alignment error, which affect pitch uniformity less than in the common linear scale projection lithography splicing process. It was analyzed and confirmed that increasing the repeat exposure number of a single stripe could improve accuracy, as could adjusting the exposure spacing to achieve a set proportion of black and white stripes. According to the experimental results, the effectiveness of the multi-repeated photolithography method is confirmed to easily realize a pitch accuracy of 43 nm in any 10 locations of 1 m, and the whole length accuracy of the linear scale is less than 1 µm/m. PMID:27089348

  7. Multi-Repeated Projection Lithography for High-Precision Linear Scale Based on Average Homogenization Effect.

    PubMed

    Ren, Dongxu; Zhao, Huiying; Zhang, Chupeng; Yuan, Daocheng; Xi, Jianpu; Zhu, Xueliang; Ban, Xinxing; Dong, Longchao; Gu, Yawen; Jiang, Chunye

    2016-01-01

    A multi-repeated photolithography method for manufacturing an incremental linear scale using projection lithography is presented. The method is based on the average homogenization effect that periodically superposes the light intensity of different locations of pitches in the mask to make a consistent energy distribution at a specific wavelength, from which the accuracy of a linear scale can be improved precisely using the average pitch with different step distances. The method's theoretical error is within 0.01 µm for a periodic mask with a 2-µm sine-wave error. The intensity error models in the focal plane include the rectangular grating error on the mask, static positioning error, and lithography lens focal plane alignment error, which affect pitch uniformity less than in the common linear scale projection lithography splicing process. It was analyzed and confirmed that increasing the repeat exposure number of a single stripe could improve accuracy, as could adjusting the exposure spacing to achieve a set proportion of black and white stripes. According to the experimental results, the effectiveness of the multi-repeated photolithography method is confirmed to easily realize a pitch accuracy of 43 nm in any 10 locations of 1 m, and the whole length accuracy of the linear scale is less than 1 µm/m. PMID:27089348

  8. An Efficient, Compact, and Versatile Fiber Double Scrambler for High Precision Radial Velocity Instruments

    NASA Astrophysics Data System (ADS)

    Halverson, Samuel; Roy, Arpita; Mahadevan, Suvrath; Ramsey, Lawrence; Levi, Eric; Schwab, Christian; Hearty, Fred; MacDonald, Nick

    2015-06-01

    We present the design and test results of a compact optical fiber double-scrambler for high-resolution Doppler radial velocity instruments. This device consists of a single optic: a high-index n ∼ 2 ball lens that exchanges the near and far fields between two fibers. When used in conjunction with octagonal fibers, this device yields very high scrambling gains (SGs) and greatly desensitizes the fiber output from any input illumination variations, thereby stabilizing the instrument profile of the spectrograph and improving the Doppler measurement precision. The system is also highly insensitive to input pupil variations, isolating the spectrograph from telescope illumination variations and seeing changes. By selecting the appropriate glass and lens diameter the highest efficiency is achieved when the fibers are practically in contact with the lens surface, greatly simplifying the alignment process when compared to classical double-scrambler systems. This prototype double-scrambler has demonstrated significant performance gains over previous systems, achieving SGs in excess of 10,000 with a throughput of ∼87% using uncoated Polymicro octagonal fibers. Adding a circular fiber to the fiber train further increases the SG to >20,000, limited by laboratory measurement error. While this fiber system is designed for the Habitable-zone Planet Finder spectrograph, it is more generally applicable to other instruments in the visible and near-infrared. Given the simplicity and low cost, this fiber scrambler could also easily be multiplexed for large multi-object instruments.

  9. HPMSS(High Precision Magnetic Survey System) and InterRidge

    NASA Astrophysics Data System (ADS)

    Isezaki, N.; Sayanagi, K.

    2012-12-01

    From the beginning of 1990s to the beginning of 2000s, the Japanese group of IntreRidge conducted many cruises for three component magnetic survey using Shipboard Three Component Magnetometer (STCM) and Deep Towed Three Component Magnetometer (DTCM) in the world wide oceans. We have been developing HPMSS during this time with support of Dr.Tamaki(the late representative of InterRidge Japan) who understood the advantages of three component geomagnetic anomalies (TCGA). TCGA measured by STCM determines the direction of geomagnetic anomaly lineations precisely at every point where TCGA were observed, which playes the important role in magnetic anomaly lineation analysis. Even in the beginning of 2000s, almost all marine magnetic scientists believed that the total intensity anomly (TIA) is the better data than TCGA for analysis because the scalar magnetometers (e.g. proton precession magnetometer) have the better accuracy than any other magnetometers (e.g.flux gate magnetometer (FGM)). We employed the high accrate gyroscope (e.g.ring lase gyroscope (RLG)/optical fiber gyroscope (OFG)) to improve the accuracy of STCM/DTCM equipped with FGM. Moreover we employed accurate and precise FGM which was selected among the market. Finally we developed the new magnetic survey system with high precision usable as airborn, shipboard and dee-ptowed magnetometers which we call HPMSS(High Precision Magnetic Survey System). As an optional equipment, we use LAN to communicate between a data aquisiitin part and a data logging part, and GPS for a position fix. For the deep-towed survey, we use the acoustic position fix (super short base line method) and the acoustic communication to monitor the DTCM status. First we used HPMSS to obtain the magnetization structure of the volcanic island, Aogashima located 300km south of Tokyo using a hellcopter in 2006 and 2009. Next we used HPMSS installed in DTCM in 2010,2011 and 2012 using R/V Bosei-maru belonging to Tokai University. Also we used HPMSS installed in AUV (automonous undersea vehicle), belonging to JAMSTEC in 2009,2010 and 2011. We have been emphasizing the importnace of TCGA compared to TIA because TIA does not obey the Laplace equation which means TIA is not harmonic, then we cannot apply the Fourier analysis on TIA. We will show the structure of three component magnetization of the mineral deposit in the volcanic thermal area in Izu-Ogasawara island Arc, called Hakurei Deposit. TCGA of DTCM and AUV survey data were used and the depth section and the vertical section of three components of magnetization of Hakurei Deposit area will be presented. We emphasize that reliable 3D structure of three component of magnetization was obtained from TCGA using HPMSS as the result of deep support of InterRidge Japan, especially deep support of Dr. Tamaki.

  10. High-precision molecular dynamics simulation of UO2-PuO2: Anion self-diffusion in UO2

    NASA Astrophysics Data System (ADS)

    Potashnikov, S. I.; Boyarchenkov, A. S.; Nekrasov, K. A.; Kupryazhkin, A. Ya.

    2013-02-01

    Our series of articles is devoted to high-precision molecular dynamics simulation of mixed actinide-oxide (MOX) fuel in the approximation of rigid ions and pair interactions (RIPI) using high-performance graphics processors (GPU). In this article we study self-diffusion mechanisms of oxygen anions in uranium dioxide (UO2) with the 10 recent and widely used sets of interatomic pair potentials (SPP) under periodic (PBC) and isolated (IBC) boundary conditions. Wide range of measured diffusion coefficients (from 10-3 cm2/s at melting point down to 10-12 cm2/s at 1400 K) made possible a direct comparison (without extrapolation) of the simulation results with the experimental data, which have been known only at low temperatures (T < 1500 K). A highly detailed (with the temperature step of 1 K) calculation of the diffusion coefficient allowed us to plot temperature dependences of the diffusion activation energy and its derivative, both of which show a wide (˜1000 K) superionic transition region confirming the broad λ-peaks of heat capacity obtained by us earlier. It is shown that regardless of SPP the anion self-diffusion in model crystals without surface or artificially embedded defects goes on via exchange mechanism, rather than interstitial or vacancy mechanisms suggested by the previous works. The activation energy of exchange diffusion turned out to coincide with the anti-Frenkel defect formation energy calculated by the lattice statics.

  11. Ultra-high-precision alignment technology for lens manufacturing used for high-end optics

    NASA Astrophysics Data System (ADS)

    Schiffner, Sebastian; Sure, Thomas

    2013-09-01

    This article describes the progress in the area of modern centration technology by using digital image processing. This work is motivated by the continuously increasing demand for high-end optics. During the last years the surface lens quality has been continuously improved. Today the image quality is more determined by the manufacturing tolerances for the mechanical interface which is responsible for decenter and tilt of the lenses respectively the subgroups. Some of the aberrations are directly linked to the decenter of the lenses, Coma for example. Hence it is necessary to realize the subgroups with tolerances below lpm. To determine the decenter of a lens an auto collimation telescope is used to image the reflex of the lens surfaces onto a detector, commonly a half covert photodiode. Rotating the lens generates a sinusoidal signal, which is evaluated by a lock-in amplifier to drive two actuators to adjust the alignment chuck. Typical internal reflections caused by stray light for example disturb the current procedure in such a way that it is impossible to get a stable alignment process. Digital image processing allows us to fix these problems with image recognition. We will demonstrate how a modified auto collimation telescope in combination with the developed software algorithms made the manufacturing process more accurate, faster and useable for a broad spectrum of lenses. It has been proofed by some thousand diverse lenses that with these new technique subgroups can be centered within 0.25μm.

  12. Theoretical and experimental research on error analysis and optimization of tool path in fabricating aspheric compound eyes by precision micro milling

    NASA Astrophysics Data System (ADS)

    Chen, Mingjun; Xiao, Yong; Tian, Wenlan; Wu, Chunya; Chu, Xin

    2014-05-01

    Structure design and fabricating methods of three-dimensional (3D) artificial spherical compound eyes have been researched by many scholars. Micro-nano optical manufacturing is mostly used to process 3D artificial compound eyes. However, spherical optical compound eyes are less at optical performance than the eyes of insects, and it is difficult to further improve the imaging quality of compound eyes by means of micro-nano optical manufacturing. In this research, nonhomogeneous aspheric compound eyes (ACEs) are designed and fabricated. The nonhomogeneous aspheric structure is applied to calibrate the spherical aberration. Micro milling with advantages in processing three-dimensional micro structures is adopted to manufacture ACEs. In order to obtain ACEs with high imaging quality, the tool paths are optimized by analyzing the influence factors consisting of interpolation allowable error, scallop height and tool path pattern. In the experiments, two kinds of ACEs are manufactured by micro-milling with different too path patterns and cutting parameter on the miniature precision five-axis milling machine tool. The experimental results indicate that the ACEs of high surface quality can be achieved by circularly milling small micro-lens individually with changeable cutting depth. A prototype of the aspheric compound eye (ACE) with surface roughness ( R a) below 0.12 ?m is obtained with good imaging performance. This research ameliorates the imaging quality of 3D artificial compound eyes, and the proposed method of micro-milling can improve surface processing quality of compound eyes.

  13. QCD Precision Measurements and Structure Function Extraction at a High Statistics, High Energy Neutrino Scattering Experiment: NuSOnG

    SciTech Connect

    Adams, T.; Batra, P.; Bugel, Leonard G.; Camilleri, Leslie Loris; Conrad, Janet Marie; de Gouvea, A.; Fisher, Peter H.; Formaggio, Joseph Angelo; Jenkins, J.; Karagiorgi, Georgia S.; Kobilarcik, T.R.; /Fermilab /Texas U.

    2009-06-01

    We extend the physics case for a new high-energy, ultra-high statistics neutrino scattering experiment, NuSOnG (Neutrino Scattering On Glass) to address a variety of issues including precision QCD measurements, extraction of structure functions, and the derived Parton Distribution Functions (PDFs). This experiment uses a Tevatron-based neutrino beam to obtain a sample of Deep Inelastic Scattering (DIS) events which is over two orders of magnitude larger than past samples. We outline an innovative method for fitting the structure functions using a parameterized energy shift which yields reduced systematic uncertainties. High statistics measurements, in combination with improved systematics, will enable NuSOnG to perform discerning tests of fundamental Standard Model parameters as we search for deviations which may hint of 'Beyond the Standard Model' physics.

  14. Globular Cluster Streams as Galactic High-Precision Scales—the Poster Child Palomar 5

    NASA Astrophysics Data System (ADS)

    Küpper, Andreas H. W.; Balbinot, Eduardo; Bonaca, Ana; Johnston, Kathryn V.; Hogg, David W.; Kroupa, Pavel; Santiago, Basilio X.

    2015-04-01

    Using the example of the tidal stream of the Milky Way globular cluster Palomar 5 (Pal 5), we demonstrate how observational data on tidal streams can be efficiently reduced in dimensionality and modeled in a Bayesian framework. Our approach combines detection of stream overdensities by a Difference-of-Gaussians process with fast streakline models of globular cluster streams and a continuous likelihood function built from these models. Inference is performed with Markov chain Monte Carlo. By generating ≈ {{10}7} model streams, we show that the unique geometry of the Pal 5 debris yields powerful constraints on the solar position and motion, the Milky Way and Pal 5 itself. All 10 model parameters were allowed to vary over large ranges without additional prior information. Using only readily available SDSS data and a few radial velocities from the literature, we find that the distance of the Sun from the Galactic Center is 8.30 ± 0.25 kpc, and the transverse velocity is 253 ± 16 km s-1. Both estimates are in excellent agreement with independent measurements of these two quantities. Assuming a standard disk and bulge model, we determine the Galactic mass within Pal 5's apogalactic radius of 19 kpc to be (2.1+/- 0.4)× {{10}11} {{M}⊙ }. Moreover, we find the potential of the dark halo with a flattening of {{q}z}=0.95-0.12+0.16 to be essentially spherical—at least within the radial range that is effectively probed by Pal 5. We also determine Pal 5's mass, distance, and proper motion independently from other methods, which enables us to perform vital cross-checks. Our inferred heliocentric distance of Pal 5 is 23.6-0.7+0.8 kpc, in perfect agreement with, and more precise than, estimates from isochrone fitting of deep Hubble Space Telescope (HST) imaging data. We conclude that finding and modeling more globular cluster streams is an efficient way to map out the structure of our Galaxy to high precision. With more observational data and by using additional prior information, the precision of this mapping can be significantly increased.

  15. 1μm adjustment-tolerance for high-precision helical laser drilling

    NASA Astrophysics Data System (ADS)

    Zibner, F.; Fornaroli, C.; Holtkamp, J.; Ryll, J.; Gillner, A.

    2015-09-01

    High-precision micro laser drilling with high aspect ratios requires laser imaging effects such as optical double rotation. Optical double rotation is an effect where the laser beam is guided through any optical elements with a total amount of reflections that remains uneven. Those optical elements need to be mounted in a rotary stage that spins the elements with a certain velocity. In an ideal case the optical axis is identically with the rotational axis. Few optical elements such as the Dove-prism show the effect that the beam is rotated in itself while it is moving on a helical path. That offers an independency of the beam profile. However the Dove-prism alone can not be adjusted in a way that the two axis match. This is based on geometrical errors of the Dove-prism due to manufacturing technologies. Certain deviation in length and angle lead to a helical error. Additional optical elements can compensate this effect. Alignment that only takes place in one 2D plane (e.g. the focal plane) leads most likely to a cross-over of both axes (x-alignment) in that one plane. In order to match both axes the alignment needs to be done at least in two 2D planes. That requires the opportunity to both influence the optical angle and the optical position (parallel shift) in both planes. The highly complex optical alignment method as well as the mechanical storage of the optical elements will be shown in this paper.

  16. THE APPLICATION OF MULTIVIEW METHODS FOR HIGH-PRECISION ASTROMETRIC SPACE VLBI AT LOW FREQUENCIES

    SciTech Connect

    Dodson, R.; Rioja, M.; Imai, H.; Asaki, Y.; Hong, X.-Y.; Shen, Z.

    2013-06-15

    High-precision astrometric space very long baseline interferometry (S-VLBI) at the low end of the conventional frequency range, i.e., 20 cm, is a requirement for a number of high-priority science goals. These are headlined by obtaining trigonometric parallax distances to pulsars in pulsar-black hole pairs and OH masers anywhere in the Milky Way and the Magellanic Clouds. We propose a solution for the most difficult technical problems in S-VLBI by the MultiView approach where multiple sources, separated by several degrees on the sky, are observed simultaneously. We simulated a number of challenging S-VLBI configurations, with orbit errors up to 8 m in size and with ionospheric atmospheres consistent with poor conditions. In these simulations we performed MultiView analysis to achieve the required science goals. This approach removes the need for beam switching requiring a Control Moment Gyro, and the space and ground infrastructure required for high-quality orbit reconstruction of a space-based radio telescope. This will dramatically reduce the complexity of S-VLBI missions which implement the phase-referencing technique.

  17. Study of Optical Mode Scrambling of Fiber Optics for High Precision Radial Velocity Measurements

    NASA Astrophysics Data System (ADS)

    Cassette, Anthony; Ge, Jian; Jeram, Sarik; Klanot, Khaya; Ma, Bo; Varosi, Frank

    2016-01-01

    Optical Fibers have been used throughout Astronomy for spectroscopy with spectrographs located some distance away from the telescope. This fiber-fed design has greatly increased precision for radial velocity (RV) measurements. However, due to the incomplete fiber illumination mode scrambling in the radial direction, high resolution spectrographs with regular circular fibers have suffered RV uncertainties on the order of a few to tens of m/s with stellar observations, which largely limited their sensitivity in detecting and characterizing low mass planets around stars. At the University of Florida, we studied mode scrambling gain of a few different optical devices, such as three-lens optical double scramblers, octagonal fibers and low numerical aperture fibers with a goal to find an optimal mode scrambling solution for the TOU optical very high resolution spectrograph (R=100,000, 0.38-0.9 microns) and FIRST near infrared high resolution spectrograph (R=60,000, 0.9-1.8 microns) for the on-going Dharma Planet Survey. This presentation will report our lab measurement results and also stellar RV measurements at the observatories.

  18. Fluorescence lifetime plate reader: Resolution and precision meet high-throughput

    NASA Astrophysics Data System (ADS)

    Petersen, Karl J.; Peterson, Kurt C.; Muretta, Joseph M.; Higgins, Sutton E.; Gillispie, Gregory D.; Thomas, David D.

    2014-11-01

    We describe a nanosecond time-resolved fluorescence spectrometer that acquires fluorescence decay waveforms from each well of a 384-well microplate in 3 min with signal-to-noise exceeding 400 using direct waveform recording. The instrument combines high-energy pulsed laser sources (5-10 kHz repetition rate) with a photomultiplier and high-speed digitizer (1 GHz) to record a fluorescence decay waveform after each pulse. Waveforms acquired from rhodamine or 5-((2-aminoethyl)amino) naphthalene-1-sulfonic acid dyes in a 384-well plate gave lifetime measurements 5- to 25-fold more precise than the simultaneous intensity measurements. Lifetimes as short as 0.04 ns were acquired by interleaving with an effective sample rate of 5 GHz. Lifetime measurements resolved mixtures of single-exponential dyes with better than 1% accuracy. The fluorescence lifetime plate reader enables multiple-well fluorescence lifetime measurements with an acquisition time of 0.5 s per well, suitable for high-throughput fluorescence lifetime screening applications.

  19. New technology enables high precision multislit collimators for microbeam radiation therapy

    NASA Astrophysics Data System (ADS)

    Bräuer-Krisch, E.; Requardt, H.; Brochard, T.; Berruyer, G.; Renier, M.; Laissue, J. A.; Bravin, A.

    2009-07-01

    During the past decade microbeam radiation therapy has evolved from preclinical studies to a stage in which clinical trials can be planned, using spatially fractionated, highly collimated and high intensity beams like those generated at the x-ray ID17 beamline of the European Synchrotron Radiation Facility. The production of such microbeams typically between 25 and 100 μm full width at half maximum (FWHM) values and 100-400 μm center-to-center (c-t-c) spacings requires a multislit collimator either with fixed or adjustable microbeam width. The mechanical regularity of such devices is the most important property required to produce an array of identical microbeams. That ensures treatment reproducibility and reliable use of Monte Carlo-based treatment planning systems. New high precision wire cutting techniques allow the fabrication of these collimators made of tungsten carbide. We present a variable slit width collimator as well as a single slit device with a fixed setting of 50 μm FWHM and 400 μm c-t-c, both able to cover irradiation fields of 50 mm width, deemed to meet clinical requirements. Important improvements have reduced the standard deviation of 5.5 μm to less than 1 μm for a nominal FWHM value of 25 μm. The specifications of both devices, the methods used to measure these characteristics, and the results are presented.

  20. High-Precision Ephemerides of Planets—EPM and Determination of Some Astronomical Constants

    NASA Astrophysics Data System (ADS)

    Pitjeva, E. V.

    2005-05-01

    The latest version of the planetary part of the numerical ephemerides EPM (Ephemerides of Planets and the Moon) developed at the Institute of Applied Astronomy of the Russian Academy of Sciences is presented. The ephemerides of planets and the Moon were constructed by numerical integration in the post-Newtonian metric over a 140-year interval (from 1880 to 2020). The dynamical model of EPM2004 ephemerides includes the mutual perturbations from major planets and the Moon computed in terms of General Relativity with allowance for effects due to lunar physical libration, perturbations from 301 big asteroids, and dynamic perturbations due to the solar oblateness and the massive asteroid ring with uniform mass distribution in the plane of the ecliptic. The EPM2004 ephemerides resulted from a least-squares adjustment to more than 317000 position observations (1913 2003) of various types, including radiometric measurements of planets and spacecraft, CCD astrometric observations of the outer planets and their satellites, and meridian and photographic observations. The high-precision ephemerides constructed made it possible to determine, from modern radiometric measurements, a wide range of astrometric constants, including the astronomical unit AU = (149597870.6960 ± 0.0001) km, parameters of the rotation of Mars, the masses of the biggest asteroids, the solar quadrupole moment J 2 = (1.9 ± 0.3) × 10-7, and the parameters of the PPN formalism β and γ. Also given is a brief summary of the available state-of-the-art ephemerides with the same precision: various versions of EPM and DE ephemerides from the Jet Propulsion Laboratory (JPL) (USA) and the recent versions of these ephemerides—EPM2004 and DE410—are compared. EPM2004 ephemerides are available via FTP at ftp://qua-sar.ipa.nw.ru/incoming/EPM2004.

  1. Project GeoWSN: High precision but low-cost GNSS landslide monitoring in Austria

    NASA Astrophysics Data System (ADS)

    Koch, Daniel; Brandstätter, Michael; Kühtreiber, Norbert

    2014-05-01

    At present, GNSS monitoring of landslides is an accepted and approved method to detect movements of slopes at risk in the sub-centimetre level. However, high-precision geodetic GNSS-receivers are expensive, therefore this monitoring method is not widely applied. Recently low-cost GNSS-receivers are conquering the geodetic market and are well suited for a cost effective and yet precise GNSS-monitoring. During the project GeoWSN, which was funded by the Austrian Research Promotion Agency (FFG), an applicable low-cost monitoring system was developed at Graz University of Technology. The system is based on a so-called Wireless Sensor Network (WSN) consisting of low-cost GNSS-receivers, temperature and humidity sensors and inertial measurement units. Additionally energy-harvesting technologies and power-saving algorithms provide that the system is energy- autarkic. For real-time applications, a communication link between the sensor nodes is implemented. The relative positioning method RTK (Real Time Kinematic) is applied to reach the highest possible accuracy. The GeoWSN sensor nodes enable the detection of possible movements in the real-time processed positions of the sensor nodes. To ensure a real-time evaluation and interpretation of the data, the current status of the slope can be acquired by a local warning centre. Therefore, affected people can be warned within a short latency. Several test-scenarios have shown the acceptance of the system at the warning centre of Styria, Austria. This contribution should give an overview of the main idea of a low-cost warning system and results of the project GeoWSN.

  2. Measuring High-Precision Astrometry with the Infrared Array Camera on the Spitzer Space Telescope

    NASA Astrophysics Data System (ADS)

    Esplin, T. L.; Luhman, K. L.

    2016-01-01

    The Infrared Array Camera (IRAC) on the Spitzer Space Telescope currently offers the greatest potential for high-precision astrometry of faint mid-IR sources across arcminute-scale fields, which would be especially valuable for measuring parallaxes of cold brown dwarfs in the solar neighborhood and proper motions of obscured members of nearby star-forming regions. To more fully realize IRAC's astrometric capabilities, we have sought to minimize the largest sources of uncertainty in astrometry with its 3.6 and 4.5 μm bands. By comparing different routines that estimate stellar positions, we have found that Point Response Function (PRF) fitting with the Spitzer Science Center's Astronomical Point Source Extractor produces both the smallest systematic errors from varying intra-pixel sensitivity and the greatest precision in measurements of positions. In addition, self-calibration has been used to derive new 7th and 8th order distortion corrections for the 3.6 and 4.5 μm arrays of IRAC, respectively. These corrections are suitable for data throughout the mission of Spitzer when a time-dependent scale factor is applied to the corrections. To illustrate the astrometric accuracy that can be achieved by combining PRF fitting with our new distortion corrections, we have applied them to archival data for a nearby star-forming region, arriving at total astrometric errors of ∼20 and 70 mas at signal to noise ratios of 100 and 10, respectively. Based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA.

  3. High-Precision Sub-Doppler Infrared Spectroscopy of HeH^+

    NASA Astrophysics Data System (ADS)

    Perry, Adam J.; Hodges, James N.; Markus, Charles; Kocheril, G. Stephen; Jenkins, Paul A., II; McCall, Benjamin J.

    2014-06-01

    The helium hydride ion, HeH^+, is the simplest heteronuclear diatomic, and is composed of the two most abundant elements in the universe. It is widely believed that this ion was among the first molecules to be formed; thus it has been of great interest to scientists studying the chemistry of the early universe. HeH^+ is also isoelectronic to H_2 which makes it a great target ion for theorists to include adiabatic and non-adiabatic corrections to its Born-Oppenheimer potential energy surface. The accuracy of such calculations is further improved by incorporating electron relativistic and quantum electrodynamic effects. Using the highly sensitive spectroscopic technique of Noise Immune Cavity Enhanced Optical Heterodyne Velocity Modulation Spectroscopy (NICE-OHVMS) we are able to perform sub-Doppler spectroscopy on ions of interest. When combined with frequency calibration from an optical frequency comb we fit line centers with sub-MHz precision as has previously been shown for the H3^+, HCO+, and CH5+ ions. Here we report a list of the most precisely measured rovibrational transitions of HeH^+ to date. These measurements should allow theorists to continue to push the boundaries of ab initio calculations in order to further study this important fundamental species. S. Lepp, P. C. Stancil, A. Dalgarno J. Phys. B (2002), 35, R57. S. Lepp, Astrophys. Space Sci. (2003), 285, 737. K. Pachucki, J. Komasa, J. Chem. Phys (2012), 137, 204314. J. N. Hodges, A. J. Perry, P. A. Jenkins II, B. M. Siller, B. J. McCall J. Chem. Phys. (2013), 139, 164201.

  4. High Precision Bright-Star Astrometry with the USNO Astrometric CMOS Hybrid Camera System

    NASA Astrophysics Data System (ADS)

    Secrest, Nathan; Dudik, Rachel; Berghea, Ciprian; Hennessy, Greg; Dorland, Bryan

    2015-08-01

    While GAIA will provide excellent positional measurements of hundreds of millions of stars between 5 < mag < 20, an ongoing challenge in the field of high-precision differential astrometry is the positional accuracy of very bright stars (mag < 5), due to the enormous dynamic range between bright stars of interest, such as those in the Hipparcos catalog, and their background field stars, which are especially important for differential astrometry. Over the past few years, we have been testing the USNO Astrometric CMOS Hybrid Camera System (UAHC), which utilizes an H4RG-10 detector in windowing mode, as a possible solution to the NOFS USNO Bright Star Astrometric Database (UBAD). In this work, we discuss the results of an astrometric analysis of single-epoch Hipparcos data taken with the UAHC from the 1.55m Kaj Strand Astrometric Reflector at NOFS from June 27-30, 2014. We discuss the calibration of this data, as well as an astrometric analysis pipeline we developed that will enable multi-epoch differential and absolute astrometry with the UAHC. We find that while the overall differential astrometric stability of data taken with the UAHC is good (5-10 mas single-measurement precision) and comparable to other ground-based astrometric camera systems, bright stars in the detector window suffer from several systematic effects, such as insufficient window geometry and centroiding failures due to read-out artifacts—both of which can be significantly improved with modifications to the electronics, read-out speed and microcode.

  5. High Precision and High Sensitivity Measurements of Osmium Isotopes in Natural Waters

    NASA Astrophysics Data System (ADS)

    Chen, C.; Sharma, M.

    2008-12-01

    Direct measurements of Os in water are critical in understanding the geochemical cycle of Os in the environment. However, measurements of Os isotopes in natural waters are challenging due to a) low concentrations (~10 fg/g or less; 1 fg/g = 10-15 g/g) and b) the differences in oxidation states of naturally occurring and tracer Os that prevent accurate determination of Os concentration by isotope dilution [Sharma et al., GCA 61:5411, 1997]. It has been recognized for more than a decade that the best way to chemically separate and purify Os and at the same time achieve tracer-sample equilibration is to oxidize Os in sample-tracer mixture to OsO4. Three techniques have been developed: 1) heating of sample-tracer mixture with Br2 and Cr6+ in Teflon bombs at 90°C and solvent-extraction of OsO4 with Br2 [Levasseur et al., Science 282:272, 1998]; 2) heating to 180°C with Cr6+ in sealed glass (carius) tubes and its extraction by distillation [Sharma et al., GCA 63:4005, 1999]; 3) heating of water in the presence of H2O2 and H2SO4 and distillation of OsO4 [Woodhouse et al., EPSL 173:223, 1999]. The blanks for these techniques are [Os] = 22 fg 187Os/188Os = 0.47, [Os] = 19 fg 187Os/188Os = 0.27, and [Os] = 120 fg 187Os/188Os = 0.31, respectively. We have modified the carius tube technique by using a High Pressure Asher at 300°C and a confining pressure of 100 bars. This method is an improvement over previous techniques because the time required to achieve complete oxidation is much shorter due to the increased temperature of reaction and the blanks are significantly lower ([Os] = 2.2 fg, 187Os/188Os = 0.18) due to smaller amounts of reagents used. Additionally, we have modified the mass spectrometry associated with measuring low level Os samples. Typically, Os is measured on a single Pt filament as OsO3-, but we have modified the technique to include a double filament geometry. We use Ta for the ionization filament and Pt for the evaporation filament. The double filament geometry allows us to run samples at a lower temperature, thus reducing the blank contribution from the Pt filament. Not only do we find total Re counts to be reduced, but organic interferences on mass 233 (185Re.16O4-) are no longer present, allowing for more accurate Re correction. Repeated measurements of a 200 fg standard gives 2σ uncertainty of 1.38% for 187Os/188Os and 0.32% for 190Os/188Os. The improvements in chemistry and mass spectrometry allow the analysis of low level water samples such as snow from Antarctica and to understand the transport of Os from atmosphere to the oceans. We have applied this technique to surface and deep seawater samples collected from the Atlantic Ocean through GEOTRACES (Summer '08) and find that the surface seawater has been impacted by inputs of anthropogenic Os.

  6. High-Precision Measurement of the Ne19 Half-Life and Implications for Right-Handed Weak Currents

    NASA Astrophysics Data System (ADS)

    Triambak, S.; Finlay, P.; Sumithrarachchi, C. S.; Hackman, G.; Ball, G. C.; Garrett, P. E.; Svensson, C. E.; Cross, D. S.; Garnsworthy, A. B.; Kshetri, R.; Orce, J. N.; Pearson, M. R.; Tardiff, E. R.; Al-Falou, H.; Austin, R. A. E.; Churchman, R.; Djongolov, M. K.; D'Entremont, R.; Kierans, C.; Milovanovic, L.; O'Hagan, S.; Reeve, S.; Sjue, S. K. L.; Williams, S. J.

    2012-07-01

    We report a precise determination of the Ne19 half-life to be T1/2=17.262±0.007s. This result disagrees with the most recent precision measurements and is important for placing bounds on predicted right-handed interactions that are absent in the current standard model. We are able to identify and disentangle two competing systematic effects that influence the accuracy of such measurements. Our findings prompt a reassessment of results from previous high-precision lifetime measurements that used similar equipment and methods.

  7. High Precision, Directly Determined Radii and Effective Temperatures for Giant Stars

    NASA Astrophysics Data System (ADS)

    van Belle, Gerard

    Mission Statement. The radius and temperature scale of giant stars across the Hertzsprung-Russell diagram from red giant branch stars to horizontal branch stars is understood well enough to enable an accurate prediction of temperature and size for a given star to no better than ~2.5% and ~20%, respectively, based upon photometry. The primary reason for this is the lack of empirically determined radii and temperatures across the giant branches. One of the long-running strengths of optical interferometry has been the empirical determination of fundamental stellar parameters. Through direct measurements of effective temperature and linear radius, methods such as photometric colors that indirectly predict such values can be calibrated. A substantial body of data on this topic collected for giant stars remains unpublished and stands to benefit from the advances in ancillary data sources and computational techniques of the last dozen years. Previous efforts in this regard have been limited by data sample breadth and depth. The Experiment. We will use multi-technique and multi-wavelength data available in NASA's Archives to directly measure angular sizes and bolometric fluxes for giant stars, establishing the radius-temperature scale across the giant branches. Interferometric data from NASA's Palomar Testbed Interferometer (PTI) Archive in conjunction with recent advances in calibration techniques will allow us to directly establish fundamental parameters of temperature and radius for 425 giant stars at unprecedented levels of accuracy. The majority of these objects was observed repeatedly over the 11-year run of this well- understood instrument, allowing for exquisite control of observational systematics. Optical, near-infrared and mid-infrared data from NASA Archives, including 2MASS, COBE, MSX, and WISE will constrain the bolometric fluxes; the recent reanalysis of the Hipparcos data will provide unparalleled distances to each of the 425 giant stars in the sample. We have demonstrated the potential of all aspects of this program, and through the proposed effort will unify the diverse components to study these giants. A homogenous catalog of linear radii and effective temperatures for hundreds of giants will be generated, which in turn will be used to calibrate radius and temperature scales for application to the broad population of giants. Significance. Fundamental temperature and radius scales are used throughout stellar astrophysics, including stellar structure studies, stellar modeling, galactic spectral synthesis, planet detection studies, and star formation theory. We expect to reduce the error in effective temperature calibration by 2-4x, and the error in linear radius by 2-3x or more. A high- precision improvement to these scales will, in turn, broadly advance a wide swath of studies that depend on precisely knowing the radii and temperature of stars. This proposal aims to produce the definitive linear radius and effective temperature scales for giants. A significant improvement in the determinations of the radii and effective temperatures of giant stars across the HR diagram will have far reaching consequences across the broad expanse of astrophysical research. Relevance to NASA. High-precision calibrations of temperature scales are essential to flux calibrations of past and ongoing NASA science satellite observations, such as those from Spitzer and WISE, and a significantly improved linear radius reference markedly improves Kepler discoveries in both the exoplanet and asteroseismology areas. In addition to the high scientific potential of this program, it also provides technical benefits by furthering interferometric techniques that will be critical for future high angular resolution astronomy.

  8. High-precision half-life measurement for the superallowed β+ emitter ²⁶Al(m).

    PubMed

    Finlay, P; Ettenauer, S; Ball, G C; Leslie, J R; Svensson, C E; Andreoiu, C; Austin, R A E; Bandyopadhyay, D; Cross, D S; Demand, G; Djongolov, M; Garrett, P E; Green, K L; Grinyer, G F; Hackman, G; Leach, K G; Pearson, C J; Phillips, A A; Sumithrarachchi, C S; Triambak, S; Williams, S J

    2011-01-21

    A high-precision half-life measurement for the superallowed β+ emitter 26Al(m) was performed at the TRIUMF-ISAC radioactive ion beam facility yielding T 1/2 6346.54 ± 0.46(stat) ± 0.60 (syst) ms, consistent with, but 2.5 times more precise than, the previous world average. The 26Al(m) half-life and ft value, 3037.53(61) s, are now the most precisely determined for any superallowed β decay. Combined with recent theoretical corrections for isospin-symmetry-breaking and radiative effects, the corrected Ft value for (26)Al(m), 3073.0(12) s, sets a new benchmark for the high-precision superallowed Fermi β-decay studies used to test the conserved vector current hypothesis and determine the V(ud) element of the Cabibbo-Kobayashi-Maskawa quark mixing matrix. PMID:21405268

  9. Finding the "true" age: ways to read high-precision U-Pb zircon dates

    NASA Astrophysics Data System (ADS)

    Schaltegger, U.; Schoene, B.; Ovtcharova, M.; Sell, B. K.; Broderick, C. A.; Wotzlaw, J.

    2011-12-01

    Refined U-Pb dating techniques, applying an empirical chemical abrasion treatment prior to analysis [1], and using a precisely calibrated double isotope Pb, U EARTHTIME tracer solution, have led to an unprecedented <0.1% precision and accuracy of obtained 206Pb/238U dates of single zircon crystals or fragments. Results very often range over 10e4 to 10e6 years and cannot be treated as statistically singular age populations. The interpretation of precise zircon U-Pb ages is biased by two problems: (A) Post-crystallization Pb loss from decay damaged areas is considered to be mitigated by applying chemical abrasion techniques. The success of such treatment can, however, not be assumed a priori. The following examples demonstrate that youngest zircons are not biased by lead loss but represent close-to-youngest zircon growth: (i) coincidence of youngest zircon dates with co-magmatic titanite in tonalite; (ii) coincidence with statistically equivalent clusters of 206Pb/238U dates from zircon in residual melts of cogenetic mafic magmas; (iii) youngest zircons in ash beds of sedimentary sequences do not violate the stratigraphic superposition, whereas conventional statistical interpretation (mean or median values) does; (iv) results of published inter-laboratory cross-calibration tests using chemical abrasion on natural zircon crystals of the same sample arrive at the same 206Pb/238U result within <0.1% (e.g., [2]); (v) Youngest crystals coincide in age with the astronomical age of hosting cyclic sediments. Residual lead loss may, however, still be identified in the case of single, significantly younger dates (>3 sigma), and are common in many pre-Triassic and hydrothermally altered rocks. (B) Pre-eruptive/pre-intrusive growth is found to be the main reason for scattered zircon ages in igneous rocks. Zircons crystallizing from the final magma batch are called autocrystic [3]. Autocrystic growth will happen in a moving or stagnant magma shortly before or after the rheological lockup by the crystals. Last crystallizing zircons in the interstitial melt may therefore postdate emplacement of the magma. The range of 206Pb/238U ages may yield a time frame for the cooling of a given magma batch, which could be added to quantitative thermal models of magma emplacement and cooling. Hf isotopes and trace elements of the dated zircon are used to trace the nature of the dated grains [4], specifically for identification of crystals that form earlier at lower crustal levels (antecrysts). Autocrystic zircons typically show, e.g., distinctly different (higher or lower) Th/U ratios. Cautiously interpreted high-precision U-Pb data of chemically abraded zircons may resolve the evolution of a magmatic system from its roots to final emplacement or eruption, trace fractional crystallization of zircon and other accessory and major phases in a magma batch, and add quantitative temporal constraints to thermal models. The proposed interpretation scheme thus adds significant information compared to conventional statistics. [1] Mattinson J., 2005, Chem. Geol. 200, 47-66; ; [2] Slama et al., 2008, Chem. Geol. 249, 1-35; [3] Miller et al., 2007, J. Volc. Geotherm. Res. 167, 282-299; [4] Schoene et al., 2010, Geochim. Cosmochim. Acta 74, 7144-7159

  10. Precision control of lesions by high-intensity focused ultrasound cavitation-based histotripsy through varying pulse duration.

    PubMed

    Xu, Jin; Bigelow, Timothy A; Nagaraju, Ravindra

    2013-07-01

    The goal of this experimental study was to explore the feasibility of acquiring controllable precision through varying pulse duration for lesions generated by cavitation-based histotripsy. Histotripsy uses high-intensity focused ultrasound (HIFU) at low duty factor to create energetic bubble clouds inside tissue to liquefy a region. It uses cavitation-mediated mechanical effects while minimizing heating, and has the advantages of real-time monitoring and lesion fidelity to treatment planning. In our study, histotripsy was applied to three groups of tissue-mimicking agar samples of different stiffnesses (29.4 ± 5.3, 44.8 ± 5.9, and 66.4 ± 7.1 kPa). B-mode imaging was used first to quantify bubble cluster dimensions in both water and agar. Then, a 4.5-mm-wide square (lateral to the focal plane) was scanned in a raster pattern with a step size of 0.75 mm in agar histotripsy experiments to estimate equivalent bubble cluster dimensions based on the histotripsyinduced damage. The 15-s exposure at each treatment location comprised 5000 sine-wave tone bursts at a spatial-peak pulseaverage intensity of 41.1 kW/cm2, with peak compressional and rarefactional pressures of 102 and 17 MPa, respectively. The results showed that bubble cluster width and length increased with pulse duration and decreased with agar stiffness. Therefore, a significant improvement in histotripsy precision could be achieved by reducing the pulse duration. PMID:25004507

  11. A modified time-of-flight method for precise determination of high speed ratios in molecular beams.

    PubMed

    Salvador Palau, A; Eder, S D; Kaltenbacher, T; Samelin, B; Bracco, G; Holst, B

    2016-02-01

    Time-of-flight (TOF) is a standard experimental technique for determining, among others, the speed ratio S (velocity spread) of a molecular beam. The speed ratio is a measure for the monochromaticity of the beam and an accurate determination of S is crucial for various applications, for example, for characterising chromatic aberrations in focussing experiments related to helium microscopy or for precise measurements of surface phonons and surface structures in molecular beam scattering experiments. For both of these applications, it is desirable to have as high a speed ratio as possible. Molecular beam TOF measurements are typically performed by chopping the beam using a rotating chopper with one or more slit openings. The TOF spectra are evaluated using a standard deconvolution method. However, for higher speed ratios, this method is very sensitive to errors related to the determination of the slit width and the beam diameter. The exact sensitivity depends on the beam diameter, the number of slits, the chopper radius, and the chopper rotation frequency. We present a modified method suitable for the evaluation of TOF measurements of high speed ratio beams. The modified method is based on a systematic variation of the chopper convolution parameters so that a set of independent measurements that can be fitted with an appropriate function are obtained. We show that with this modified method, it is possible to reduce the error by typically one order of magnitude compared to the standard method. PMID:26931829

  12. Impact evaluation of environmental and geometrical parasitic effects on high-precision position measurement of the LHC collimator jaws

    NASA Astrophysics Data System (ADS)

    Danisi, Alessandro; Losito, Roberto; Masi, Alessandro

    2015-09-01

    Measuring the apertures of the Large Hadron Collider (LHC) collimators, as well as the positions of their axes, is a challenging task. The LHC collimators are equipped with high-precision linear position sensors, the linear variable differential transformers (LVDTs). The accuracy of such sensors is limited by the peculiar parasitic effect of being rather sensitive to external magnetic fields. A new type of inductive sensor, the Ironless Inductive Position Sensor (I2PS), that keeps the advantages of the LVDTs but is insensitive to external magnetic fields has been designed, constructed, and tested at CERN. For this sensor, a detailed description of parasitic effects such as high-frequency capacitances and the presence of conductive shields and electric motor, in the surroundings is given, from analytical, numerical, and experimental viewpoints. In addition, proof is given of the I2PS’s radiation hardness. The aim of this paper is to give a complete and exhaustive impact evaluation, from the metrological viewpoint, of these parasitic effects on these two fundamental sensor solutions.

  13. A modified time-of-flight method for precise determination of high speed ratios in molecular beams

    NASA Astrophysics Data System (ADS)

    Salvador Palau, A.; Eder, S. D.; Kaltenbacher, T.; Samelin, B.; Bracco, G.; Holst, B.

    2016-02-01

    Time-of-flight (TOF) is a standard experimental technique for determining, among others, the speed ratio S (velocity spread) of a molecular beam. The speed ratio is a measure for the monochromaticity of the beam and an accurate determination of S is crucial for various applications, for example, for characterising chromatic aberrations in focussing experiments related to helium microscopy or for precise measurements of surface phonons and surface structures in molecular beam scattering experiments. For both of these applications, it is desirable to have as high a speed ratio as possible. Molecular beam TOF measurements are typically performed by chopping the beam using a rotating chopper with one or more slit openings. The TOF spectra are evaluated using a standard deconvolution method. However, for higher speed ratios, this method is very sensitive to errors related to the determination of the slit width and the beam diameter. The exact sensitivity depends on the beam diameter, the number of slits, the chopper radius, and the chopper rotation frequency. We present a modified method suitable for the evaluation of TOF measurements of high speed ratio beams. The modified method is based on a systematic variation of the chopper convolution parameters so that a set of independent measurements that can be fitted with an appropriate function are obtained. We show that with this modified method, it is possible to reduce the error by typically one order of magnitude compared to the standard method.

  14. The Spring 1985 high precision baseline test of the JPL GPS-based geodetic system

    NASA Technical Reports Server (NTRS)

    Davidson, John M.; Thornton, Catherine L.; Stephens, Scott A.; Blewitt, Geoffrey; Lichten, Stephen M.; Sovers, Ojars J.; Kroger, Peter M.; Skrumeda, Lisa L.; Border, James S.; Neilan, Ruth E.

    1987-01-01

    The Spring 1985 High Precision Baseline Test (HPBT) was conducted. The HPBT was designed to meet a number of objectives. Foremost among these was the demonstration of a level of accuracy of 1 to 2:10 to the 7th power, or better, for baselines ranging in length up to several hundred kilometers. These objectives were all met with a high degree of success, with respect to the demonstration of system accuracy in particular. The results from six baselines ranging in length from 70 to 729 km were examined for repeatability and, in the case of three baselines, were compared to results from colocated VLBI systems. Repeatability was found to be 5:10 to the 8th power (RMS) for the north baseline coordinate, independent of baseline length, while for the east coordinate RMS repeatability was found to be larger than this by factors of 2 to 4. The GPS-based results were found to be in agreement with those from colocated VLBI measurements, when corrected for the physical separations of the VLBI and CPG antennas, at the level of 1 to 2:10 to the 7th power in all coordinates, independent of baseline length. The results for baseline repeatability are consistent with the current GPA error budget, but the GPS-VLBI intercomparisons disagree at a somewhat larger level than expected. It is hypothesized that these differences may result from errors in the local survey measurements used to correct for the separations of the GPS and VLBI antenna reference centers.

  15. High precision materials processing using a novel Q-switched CO2 laser

    NASA Astrophysics Data System (ADS)

    Gräf, Stephan; Staupendahl, Gisbert; Krämer, André; Müller, Frank A.

    2015-03-01

    Holes with diameters of about 400 μm have been laser trepanned in Ti6Al4V and carbon fibre reinforced polymer (CFRP) thin sheets with a thickness of 0.5 mm. A commercial CO2 laser (SM1500E, FEHA LaserTec, Germany) and a novel Q-switched CO2 laser (μ-storm, IAI, Netherlands) were used as radiation sources. Optical microscopy, scanning electron microscopy and replicas of the processed holes were used to investigate the influence of the CO2 laser pulse parameters (e.g. pulse energy, duration and peak power) on the processing quality. It was shown that melt formation and high temperature oxidation reactions of Ti6Al4V during thermal laser processing were reduced significantly by using short and high intense Q-switched CO2 laser pulses. During trepanning of CFRP heat affected zones resulting from the extremely different thermal properties (melting and vaporisation temperature, heat conduction) of the reinforcing carbon fibres and the polymer matrix were reduced significantly by using the Q-switched CO2 laser. The results demonstrate that Ti6Al4V and CFRP can be processed very precisely with CO2 laser radiation and air as processing gas without melt formation and thermal damage.

  16. Precision interferometric measurements of mirror birefringence in high-finesse optical resonators

    NASA Astrophysics Data System (ADS)

    Fleisher, Adam J.; Long, David A.; Liu, Qingnan; Hodges, Joseph T.

    2016-01-01

    High-finesse optical resonators found in ultrasensitive laser spectrometers utilize supermirrors ideally consisting of isotropic high-reflectivity coatings. Strictly speaking, however, the optical coatings are often nonuniformly stressed during the deposition process and therefore do possess some small amount of birefringence. When physically mounted the cavity mirrors can be additionally stressed in such a way that large optical birefringence is induced. Here we report a direct measurement of optical birefringence in a two-mirror Fabry-Pérot cavity with R =99.99 % by observing TEM00 mode beating during cavity decays. Experiments were performed at a wavelength of 4.53 μ m , with precision limited by both quantum and technical noise sources. We report a splitting of δν=618 (1 ) Hz, significantly less than the intrinsic cavity line width of δcav≈3 kHz. With a cavity free spectral range of 96.9 MHz, the equivalent fractional change in mirror refractive index due to birefringence is therefore Δ n /n =6.38 (1 ) ×10-6 .

  17. High precision landing site mapping and rover localization for Chang'e-3 mission

    NASA Astrophysics Data System (ADS)

    Liu, ZhaoQin; Di, KaiChang; Peng, Man; Wan, WenHui; Liu, Bin; Li, LiChun; Yu, TianYi; Wang, BaoFeng; Zhou, JianLiang; Chen, HongMin

    2015-01-01

    This paper presents the comprehensive results of landing site topographic mapping and rover localization in Chang'e-3 mission. High-precision topographic products of the landing site with extremely high resolutions (up to 0.05 m) were generated from descent images and registered to CE-2 DOM. Local DEM and DOM with 0.02 m resolution were produced routinely at each waypoint along the rover traverse. The lander location was determined to be (19.51256°W, 44.11884°N, -2615.451 m) using a method of DOM matching. In order to reduce error accumulation caused by wheel slippage and IMU drift in dead reckoning, cross-site visual localization and DOM matching localization methods were developed to localize the rover at waypoints; the overall traveled distance from the lander is 114.8 m from cross-site visual localization and 111.2 m from DOM matching localization. The latter is of highest accuracy and has been verified using a LRO NAC image where the rover trajeactory is directly identifiable. During CE-3 mission operations, landing site mapping and rover localization products including DEMs and DOMs, traverse maps, vertical traverse profiles were generated timely to support teleoperation tasks such as obstacle avoidance and rover path planning.

  18. Frontend electronics for high-precision single photo-electron timing using FPGA-TDCs

    NASA Astrophysics Data System (ADS)

    Cardinali, M.; Dzyhgadlo, R.; Gerhardt, A.; Götzen, K.; Hohler, R.; Kalicy, G.; Kumawat, H.; Lehmann, D.; Lewandowski, B.; Patsyuk, M.; Peters, K.; Schepers, G.; Schmitt, L.; Schwarz, C.; Schwiening, J.; Traxler, M.; Ugur, C.; Zühlsdorf, M.; Dodokhov, V. Kh.; Britting, A.; Eyrich, W.; Lehmann, A.; Uhlig, F.; Düren, M.; Föhl, K.; Hayrapetyan, A.; Kröck, B.; Merle, O.; Rieke, J.; Cowie, E.; Keri, T.; Montgomery, R.; Rosner, G.; Achenbach, P.; Corell, O.; Ferretti Bondy, M. I.; Hoek, M.; Lauth, W.; Rosner, C.; Sfienti, C.; Thiel, M.; Bühler, P.; Gruber, L.; Marton, J.; Suzuki, K.

    2014-12-01

    The next generation of high-luminosity experiments requires excellent particle identification detectors which calls for Imaging Cherenkov counters with fast electronics to cope with the expected hit rates. A Barrel DIRC will be used in the central region of the Target Spectrometer of the planned PANDA experiment at FAIR. A single photo-electron timing resolution of better than 100 ps is required by the Barrel DIRC to disentangle the complicated patterns created on the image plane. R&D studies have been performed to provide a design based on the TRB3 readout using FPGA-TDCs with a precision better than 20 ps RMS and custom frontend electronics with high-bandwidth pre-amplifiers and fast discriminators. The discriminators also provide time-over-threshold information thus enabling walk corrections to improve the timing resolution. Two types of frontend electronics cards optimised for reading out 64-channel PHOTONIS Planacon MCP-PMTs were tested: one based on the NINO ASIC and the other, called PADIWA, on FPGA discriminators. Promising results were obtained in a full characterisation using a fast laser setup and in a test experiment at MAMI, Mainz, with a small scale DIRC prototype.

  19. High precision Compton backscatter maps of myocardial wall dynamics. Theory and applications

    SciTech Connect

    McInerney, J.J.; Copenhaver, G.L.; Herr, M.D.; Morris, D.L.; Zelis, R. )

    1989-09-01

    Compton backscatter imaging (CBI) is a technique that uses x-rays scattered from the closed-chest surface of the heart to obtain high frequency (5 msec) and high precision (+/- 0.1 mm SD) measurements of regional surface displacements and velocities. These measurements are acquired in a three-dimensional format that allows the reconstruction of the epicardial surface and the creation of color coded displacement and velocity maps at many time points during the cardiac cycle. Applications of the technique are shown to characterize detailed regional normal wall displacement and velocity patterns, and the significant alteration of those patterns after coronary embolization. The technique is also applied to the characterization of early diastolic wall dynamics. CBI measurements show that a brief and somewhat paradoxical inward displacement of the anterior ventricular wall occurs during early diastole in normal canines. The wall dynamics associated with this inward displacement suggest a brief collapse of the ventricle subsequent to aortic valve closure. Diastolic collapse velocities and displacements are significantly altered subsequent to coronary occlusion with mean and maximum collapse velocities decreasing by 50% and concomitant inward displacements decreasing by 40%. Data acquisition with CBI is non-invasive, does not require contrast agents or radioisotopes, and uses low irradiation levels (125 kVp, 3-5 ma). The average radiation dose to the heart for a typical study is 250 mrem, significantly lower than that of other radiation based imaging techniques.

  20. Precision Interferometric Measurements of Mirror Birefringence in High-Finesse Optical Resonators

    PubMed Central

    Fleisher, Adam J.; Long, David A.; Liu, Qingnan; Hodges, Joseph T.

    2016-01-01

    High-finesse optical resonators found in ultrasensitive laser spectrometers utilize supermirrors ideally consisting of isotropic high-reflectivity coatings. Strictly speaking, however, the optical coatings are often non-uniformly stressed during the deposition process and therefore do possess some small amount of birefringence. When physically mounted the cavity mirrors can be additionally stressed in such a way that large optical birefringence is induced. Here we report a direct measurement of optical birefringence in a two-mirror Fabry-Pérot cavity with R = 99.99 % by observing TEM00 mode beating during cavity decays. Experiments were performed at a wavelength of 4.53 μm, with precision limited by both quantum and technical noise sources. We report a splitting of δν = 618(1) Hz, significantly less than the intrinsic cavity linewidth of δcav ≈ 3 kHz. With a cavity free spectral range of 96.9 MHz, the equivalent fractional change in mirror refractive index due to birefringence is therefore Δn/n = 6.38(1) × 10−6. PMID:27088133