Science.gov

Sample records for high redshifts characterizing

  1. High Redshift Quasars

    NASA Technical Reports Server (NTRS)

    Elvis, Martin S.

    1996-01-01

    The report for this period includes three papers: 'Associated Absorption at Low and High Redshift'; 'Strong X-ray Absorption in a Broad Absorption Line Quasar: PHL5200'; and 'ASCA and ROSAT X-ray Spectra of High-Redshift Radio-Loud Quasars'. The first gives examples from both low and high redshift for combining information on absorbing material in active galactic nuclei from both x-ray and the UV. The second presents ASCA observations of the z = 1.98 prototype broad absorption line quasar (BALQSO): PHL 5200, detected with both the solid-state imaging spectrometers and the gas imaging spectometers. The third paper presents results on the x-ray properties of 9 high-redshift radio-loud quasars observed by ASCA and ROSAT, including ASCA observations of S5 0014+81 (z = 3.38) and S5 0836+71 (z = 2.17) and ROSAT observations of PKS 2126-158.

  2. High redshift GRBs

    NASA Astrophysics Data System (ADS)

    Gehrels, Neil; Cannizzo, John K.

    2012-09-01

    The Swift mission has opened a new, high redshift window on the universe. In this review we provide an overview of gamma-ray burst (GRB) science, describe the Swift mission, discuss high-z GRBs and tools for high-z studies, and look forward at future capabilities. A new mission concept - Lobster - is described that would monitor the X-ray sky at order of magnitude higher sensitivity than current missions.

  3. High Redshift GRBs

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil; Cannizzo, John K.

    2012-01-01

    The Swift mission has opened a new, high redshift window on the universe. In this review we provide an overview of gamma-ray burst (GRB) science, describe the Swift mission, discuss high-z GRBs and tools for high-z studies, and look forward at future capabilities. A new mission concept - Lobster - is described that would monitor the X-ray sky at order of magnitude higher sensitivity than current missions.

  4. Searches for High Redshift Galaxies

    NASA Astrophysics Data System (ADS)

    Stevens, R.

    In recent years, the technique of Lyman break imaging has proven very effective at identifying large numbers of galaxies at high redshifts through deep multicolour imaging (Steidel et al 1996b; Steidel et al 1999). The combination of an intrinsic break in the spectra of star-forming galaxies below the rest-frame wavelength of Lyman-alpha and attenuation by intervening HI systems on the line of sight to high redshifts makes for a pronounced drop in the flux of high redshift galaxies between 912 Å and 1216 Å in the rest-frame. At redshifts z> 3, the break is shifted sufficiently far into the optical window accessible to ground-based telescopes for galaxies at such redshift to be distinguished from the foreground galaxy population through photometry alone. Through modelling of the expected colours of a wide range of galaxy types, ages and redshifts, taking into account the effects of reddening (Calzetti, Kinney and Storchi-Bergmann 1994) and intergalactic attenuation (Madau 1995), we assess the likely colours of high redshift galaxies and determine the redshift ranges most effectively probed by the imaging filters. We obtain multicolour imaging of the fields of four high redshift radio galaxies, covering around 40 arcmin2 in each, allowing us to attempt to find ordinary galaxies at similar redshifts to the central radio galaxies through photometric colour selection techniques. Some idea as to the effectiveness comes through additional colour and morphological information obtained from high-resolution Hubble Space Telescope images and from data taken in the near infra-red. While we do not have spectroscopic evidence for the redshifts of our candidates, given the available evidence we conclude that the number densities of Lyman break galaxies in the radio galaxy fields are in broad agreement with the data of Steidel et al (1999). Finally, we assess the prospects for future studies of the high redshift Universe, in particular the potential of the Oxford Deep Wide Field

  5. Very high redshift radio galaxies

    SciTech Connect

    van Breugel, W.J.M., LLNL

    1997-12-01

    High redshift radio galaxies (HzRGs) provide unique targets for the study of the formation and evolution of massive galaxies and galaxy clusters at very high redshifts. We discuss how efficient HzRG samples ae selected, the evidence for strong morphological evolution at near-infracd wavelengths, and for jet-induced star formation in the z = 3 800 HzRG 4C41 17

  6. Metals at high redshifts

    NASA Astrophysics Data System (ADS)

    Petitjean, Patrick

    The amount of metals present in the Universe and its cosmological evolution is a key issue for our understanding of how star formation proceeds from the collapse of the first objects to the formation of present day galaxies. We discuss here recent results at the two extremes of the density scale. 1. Part of the tenuous intergalactic medium (IGM) revealed by neutral hydrogen absorptions in the spectra of remote quasars (the so-called Lyman-α forest) contains metals. This is not surprising as there is a close interplay between the formation of galaxies and the evolution of the IGM. The IGM acts as the baryonic reservoir from which galaxies form, while star formation in the forming galaxies strongly influences the IGM by enrichment with metals and the emission of ionizing radiation. The spatial distribution of metals in the IGM is largely unknown however. The possibility remains that metals are associated with the filaments and sheets of the dark matter spatial distribution where stars are expected to form, whereas the space delineated by these features remains unpolluted. 2. Damped Lyman-α (DLA) systems observed in the spectra of high-redshift quasars are considered as the progenitors of present-day galaxies. Indeed, the large neutral hydrogen column densities observed and the presence of metals imply that the gas is somehow closely associated with regions of star formation. The nature of the absorbing objects is unclear however. It is probable that very different objects contribute to this population of absorption systems. Here we concentrate on summarizing the properties of the gas: presence of dust in small amount; nucleosynthesis signature and lack of H_2 molecules. The presence of H_2 molecules has been investigated in the course of a mini-survey with UVES at the VLT. The upper limits on the molecular fraction, f = 2N(H_2)/(2N(H_2)+N(HI)), derived in eight systems are in the range 1.2 ×10^-7 - 1.6 × 10^-5. There is no evidence in this sample for any

  7. High-redshift galaxy populations.

    PubMed

    Hu, Esther M; Cowie, Lennox L

    2006-04-27

    We now see many galaxies as they were only 800 million years after the Big Bang, and that limit may soon be exceeded when wide-field infrared detectors are widely available. Multi-wavelength studies show that there was relatively little star formation at very early times and that star formation was at its maximum at about half the age of the Universe. A small number of high-redshift objects have been found by targeting X-ray and radio sources and most recently, gamma-ray bursts. The gamma-ray burst sources may provide a way to reach even higher-redshift galaxies in the future, and to probe the first generation of stars. PMID:16641986

  8. Dusty Quasars at High Redshifts

    NASA Astrophysics Data System (ADS)

    Weedman, Daniel; Sargsyan, Lusine

    2016-09-01

    A population of quasars at z ˜ 2 is determined based on dust luminosities νL ν (7.8 μm) that includes unobscured, partially obscured, and obscured quasars. Quasars are classified by the ratio νL ν (0.25 μm)/νL ν (7.8 μm) = UV/IR, assumed to measure obscuration of UV luminosity by the dust that produces IR luminosity. Quasar counts at rest-frame 7.8 μm are determined for quasars in the Boötes field of the NOAO Deep Wide Field Survey using 24 μm sources with optical redshifts from the AGN and Galaxy Evolution Survey (AGES) or infrared redshifts from the Spitzer Infrared Spectrograph. Spectral energy distributions are extended to far-infrared wavelengths using observations from the Herschel Space Observatory Spectral and Photometric Imaging Receiver (SPIRE), and new SPIRE photometry is presented for 77 high-redshift quasars from the Sloan Digital Sky Survey. It is found that unobscured and obscured quasars have similar space densities at rest-frame 7.8 μm, but the ratio L ν (100 μm)/L ν (7.8 μm) is about three times higher for obscured quasars than for unobscured, so that far-infrared or submillimeter quasar detections are dominated by obscured quasars. We find that only ˜5% of high-redshift submillimeter sources are quasars and that existing 850 μm surveys or 2 mm surveys should already have detected sources at z ˜ 10 if quasar and starburst luminosity functions remain the same from z = 2 until z = 10.

  9. IONIZED NITROGEN AT HIGH REDSHIFT

    SciTech Connect

    Decarli, R.; Walter, F.; Neri, R.; Cox, P.; Bertoldi, F.; Carilli, C.; Kneib, J. P.; Lestrade, J. F.; Maiolino, R.; Omont, A.; Richard, J.; Riechers, D.; Thanjavur, K.; Weiss, A.

    2012-06-10

    We present secure [N II]{sub 205{mu}m} detections in two millimeter-bright, strongly lensed objects at high redshift, APM 08279+5255 (z = 3.911) and MM 18423+5938 (z = 3.930), using the IRAM Plateau de Bure Interferometer. Due to its ionization energy [N II]{sub 205{mu}m} is a good tracer of the ionized gas phase in the interstellar medium. The measured fluxes are S([N II]{sub 205{mu}m}) = (4.8 {+-} 0.8) Jy km s{sup -1} and (7.4 {+-} 0.5) Jy km s{sup -1}, respectively, yielding line luminosities of L([N II]{sub 205{mu}m}) = (1.8 {+-} 0.3) Multiplication-Sign 10{sup 9} {mu}{sup -1} L{sub Sun} for APM 08279+5255 and L([N II]{sub 205{mu}m}) = (2.8 {+-} 0.2) Multiplication-Sign 10{sup 9} {mu}{sup -1} L{sub Sun} for MM 18423+5938. Our high-resolution map of the [N II]{sub 205{mu}m} and 1 mm continuum emission in MM 18423+5938 clearly resolves an Einstein ring in this source and reveals a velocity gradient in the dynamics of the ionized gas. A comparison of these maps with high-resolution EVLA CO observations enables us to perform the first spatially resolved study of the dust continuum-to-molecular gas surface brightness ({Sigma}{sub FIR}{proportional_to}{Sigma}{sup N}{sub CO}, which can be interpreted as the star formation law) in a high-redshift object. We find a steep relation (N = 1.4 {+-} 0.2), consistent with a starbursting environment. We measure a [N II]{sub 205{mu}m}/FIR luminosity ratio in APM 08279+5255 and MM 18423+5938 of 9.0 Multiplication-Sign 10{sup -6} and 5.8 Multiplication-Sign 10{sup -6}, respectively. This is in agreement with the decrease of the [N II]{sub 205{mu}m}/FIR ratio at high FIR luminosities observed in local galaxies.

  10. Simulation of High-Redshift Galactic Images

    NASA Astrophysics Data System (ADS)

    Morgan, Robert J.; Scannapieco, E.; Windhorst, R. A.; Thacker, R.

    2009-12-01

    We construct an observational model of galaxies at high redshifts (z 3 - 13) from numerical N-body and SPH simulations of galaxy formation using the computing cluster "Saguaro” at Arizona State University. The model uses a concordance Lambda-CDM model including baryonic components with gas heating and cooling and star formation using Gadget-2 simulations. Snapshots at various redshifts yield star "particles” (populations) with a modeled metallicity and age of formation. The Bruzual-Charlot '03 stellar population models are used to compute a red-shifted flux for various filters for each simulated star population. The flux and spatial coordinates are then used to create a pixel image in a fits file format. The different redshift "slices” are shifted randomly in the simulation periodic box, and resized according to the comoving distance to correct for the angular pixel mapping. The various redshift corrected fits images are then combined into a single image for each filter to produce simulated observational images. This is to enable the use of observational imaging tools to detect galaxies and to aid observational proposals at high redshifts including the new WFC3 camera to be installed on the HST. This method also permits estimates of the luminosity function at z >6 directly from the simulated stellar populations rather than just the size of the Dark Matter haloes. With runs of higher resolution, this will permit exploration of the faint end of the luminosity function. The computing time was supplied by the ASU Fulton HPC center.

  11. Astronomical redshifts of highly ionized regions

    NASA Astrophysics Data System (ADS)

    Hansen, Peter M.

    2014-07-01

    Astronomical or cosmological redshifts are an observable property of extragalactic objects and have historically been wholly attributed to the recessional velocity of that object. The question of other, or intrinsic, components of the redshift has been highly controversial since it was first proposed. This paper investigates one theoretical source of intrinsic redshift that has been identified. The highly ionized regions of Active Galactic Nuclei (AGN) and Quasi-Stellar Objects (QSO) are, by definition, plasmas. All plasmas have electromagnetic scattering characteristics that could contribute to the observed redshift. To investigate this possibility, one region of a generalized AGN was selected, the so called Broad Line Region (BLR). Even though unresolvable with current instrumentation, physical estimates of this region have been published for years in the astronomical literature. These data, selected and then averaged, are used to construct an overall model that is consistent with the published data to within an order of magnitude. The model is then subjected to a theoretical scattering investigation. The results suggest that intrinsic redshifts, derivable from the characteristics of the ambient plasma, may indeed contribute to the overall observed redshift of these objects.

  12. High redshift quasars and high metallicities

    NASA Technical Reports Server (NTRS)

    Ferland, Gary J.

    1997-01-01

    A large-scale code called Cloudy was designed to simulate non-equilibrium plasmas and predict their spectra. The goal was to apply it to studies of galactic and extragalactic emission line objects in order to reliably deduce abundances and luminosities. Quasars are of particular interest because they are the most luminous objects in the universe and the highest redshift objects that can be observed spectroscopically, and their emission lines can reveal the composition of the interstellar medium (ISM) of the universe when it was well under a billion years old. The lines are produced by warm (approximately 10(sup 4)K) gas with moderate to low density (n less than or equal to 10(sup 12) cm(sup -3)). Cloudy has been extended to include approximately 10(sup 4) resonance lines from the 495 possible stages of ionization of the lightest 30 elements, an extension that required several steps. The charge transfer database was expanded to complete the needed reactions between hydrogen and the first four ions and fit all reactions with a common approximation. Radiative recombination rate coefficients were derived for recombination from all closed shells, where this process should dominate. Analytical fits to Opacity Project (OP) and other recent photoionization cross sections were produced. Finally, rescaled OP oscillator strengths were used to compile a complete set of data for 5971 resonance lines. The major discovery has been that high redshift quasars have very high metallicities and there is strong evidence that the quasar phenomenon is associated with the birth of massive elliptical galaxies.

  13. GLAST observation of high-redshift GRBs

    SciTech Connect

    Bissaldi, Elisabetta; Longo, Francesco; Barbiellini, Guido; Calura, Francesco; Matteucci, Francesca; Omodei, Nicola

    2007-07-12

    We compare predicted Type Ib/c supernova (SNIb/c) rates with the observed long-duration Gamma-Ray-Burst (GRB) rates both locally and as a function of redshift, by assuming different star formation histories in galaxies of different morphological types. Due to the high star formation in spheroids at high redshift, we predict a large number of GRBs beyond z > 7. Moreover, based on our studies and on the current LAT performance, an estimate of the detection possibility of this burst population is presented.

  14. SCUBA Observations of High Redshift Radio Galaxies

    SciTech Connect

    Reuland, M; Rottgering, H; van Breugel, W

    2003-03-11

    High redshift radio galaxies (HzRGs) are key targets for studies of the formation and evolution of massive galaxies.The role of dust in these processes is uncertain. We have therefore observed the dust continuum emission from a sample of z > 3 radio galaxies with the SCUBA bolometer array. We confirm and strengthen the result found by Archibald et al. (1), that HzRGs are massive starforming systems and that submillimeter detection rate appears to be primarily a strong function of redshift. We also observed HzRG-candidates that have so far eluded spectroscopic redshift determination. Four of these have been detected, and provide evidence that they may be extremely obscured radio galaxies, possibly in an early stage of their evolution.

  15. Stars and gas in high redshift galaxies

    NASA Astrophysics Data System (ADS)

    Pettini, Max

    Recent advances in instrumentation and observing techniques have made it possible to begin to study in detail the stellar populations and the interstellar media of galaxies at redshift z=3, when the universe was still in its "teen years". In keeping with the theme of this conference, I show how our knowledge of local star-forming regions can be applied directly to these distant galaxies to deduce their ages, metallicities, initial mass function, and masses. I also discuss areas where current limitations in stellar astrophysics have a direct bearing on the interpretation of the data being gathered, at an ever increasing rate, on the high redshift universe.

  16. High Energy Continuum of High Redshift Quasars

    NASA Technical Reports Server (NTRS)

    Elvis, Martin

    2000-01-01

    Discussion with the RXTE team at GSFC showed that a sufficiently accurate background subtraction procedure had now, been derived for sources at the flux level of PKS 2126-158. However this solution does not apply to observations carried out before April 1997, including our observation. The prospect of an improved solution becoming available soon is slim. As a result the RXTE team agreed to re-observe PKS2126-158. The new observation was carried out in April 1999. Quasi-simultaneous optical observations were obtained, as Service observing., at the 4-meter Anglo-Australian Telescope, and ftp-ed from the AAT on 22April. The RXTE data was processed in late June, arriving at SAO in early July. Coincidentally, our collaborative Beppo-SAX observation of PKS2126-158 was made later in 1999, and a GTO Chandra observation (with which we are involved) was made on November 16. Since this gives us a unique monitoring data for a high redshift quasar over a broad pass-band we are now combining all three observations into a single comprehensive study Final publication of the RXTE data will thus take place under another grant.

  17. Finding high-redshift voids using Lyman α forest tomography

    NASA Astrophysics Data System (ADS)

    Stark, Casey W.; Font-Ribera, Andreu; White, Martin; Lee, Khee-Gan

    2015-11-01

    We present a new method of finding cosmic voids using tomographic maps of Lyα forest flux. We identify cosmological voids with radii of 2-12 h-1 Mpc in a large N-body simulation at z = 2.5, and characterize the signal of the high-redshift voids in density and Lyα forest flux. The void properties are similar to what has been found at lower redshifts, but they are smaller and have steeper radial density profiles. Similarly to what has been found for low-redshift voids, the radial velocity profiles have little scatter and agree very well with the linear theory prediction. We run the same void finder on an ideal Lyα flux field and tomographic reconstructions at various spatial samplings. We compare the tomographic map void catalogues to the density void catalogue and find good agreement even with modest-sized voids (r > 6 h-1 Mpc). Using our simple void-finding method, the configuration of the ongoing COSMOS Lyman Alpha Mapping And Tomography Observations (CLAMATO) survey covering 1 deg2 would provide a sample of about 100 high-redshift voids. We also provide void-finding forecasts for larger area surveys, and discuss how these void samples can be used to test modified gravity models, study high-redshift void galaxies, and to make an Alcock-Paczynski measurement. To aid future work in this area, we provide public access to our simulation products, catalogues, and sample tomographic flux maps.

  18. Morphologies at High Redshift from Galaxy Zoo

    NASA Astrophysics Data System (ADS)

    Masters, Karen; Melvin, Tom; Simmons, Brooke; Willett, Kyle; Lintott, Chris

    2015-08-01

    I will present results from Galaxy Zoo classification of galaxies observed in public observed frame optical HST surveys (e.g. COSMOS, GOODS) as well as in observed frame NIR with (ie. CANDELS). Early science results from these classifications have investigated the changing bar fraction in disc galaxies as a function of redshift (to z~1 in Melvin et al. 2014; and at z>1 in Simmons et al. 2015), as well as how the morphologies of galaxies on the red sequence have been changing since z~1 (Melvin et al. in prep.). These unique dataset of quantitative visual classifications for high redshift galaxies will be made public in forthcoming publications (planned as Willett et al. for Galaxy Zoo Hubble, and Simmons et al. for Galaxy Zoo CANDELS).

  19. High-redshift QSOs in GOODS

    NASA Astrophysics Data System (ADS)

    Fontanot, Fabio; Monaco, Pierluigi; Cristiani, Stefano; Nonino, Mario; Vanzella, Eros

    2004-12-01

    Multiwavelenght surveys are a key instrument in detecting AGNs. AGNs are recognizable from their color properties and/or their infrared/X-ray emission. We discuss the recent developments of the GOODS survey and our selection of candidates based on optical color criteria and on the matching of the optical ACS database with infrared and X-rays counterparts. We pay particular attention to the high-z QSOs search in those fields. From these observation we obtain a sample of QSOs at redshifts from 3.5 to 5.2 and we put new constraints on the faint end of the Luminosity Function at those redshift, which is particularly important to understand the interplay between the formation of galaxies and super-massive black holes inside Dark Matter Halos and to measure the QSOs contribution to the UV ionizing background.

  20. Dust Emission from High-Redshift QSOs.

    PubMed

    Carilli; Bertoldi; Menten; Rupen; Kreysa; Fan; Strauss; Schneider; Bertarini; Yun; Zylka

    2000-04-10

    We present detections of emission at 250 GHz (1.2 mm) from two high-redshift QSOs from the Sloan Digital Sky Survey sample using the bolometer array at the IRAM 30 m telescope. The sources are SDSSp 015048.83+004126.2 at z=3.7 and SDSSp J033829.31+002156.3 at z=5.0; the latter is the third highest redshift QSO known and the highest redshift millimeter-emitting source yet identified. We also present deep radio continuum imaging of these two sources at 1.4 GHz using the Very Large Array. The combination of centimeter and millimeter observations indicate that the 250 GHz emission is most likely thermal dust emission, with implied dust masses approximately 108 M middle dot in circle. We consider possible dust heating mechanisms, including UV emission from the active galactic nucleus (AGN) and a massive starburst concurrent with the AGN, with implied star formation rates greater than 103 M middle dot in circle yr-1. PMID:10727380

  1. Jets in AGN at extremely high redshifts

    NASA Astrophysics Data System (ADS)

    Gurvits, Leonid I.; Frey, Sándor; Paragi, Zsolt

    2015-03-01

    The jet phenomenon is a trademark of active galactic nuclei (AGN). In most general terms, the current understanding of this phenomenon explains the jet appearance by effects of relativistic plasma physics. The fundamental source of energy that feeds the plasma flow is believed to be the gravitational field of a central supermassive black hole. While the mechanism of energy transfer and a multitude of effects controlling the plasma flow are yet to be understood, major properties of jets are strikingly similar in a broad range of scales from stellar to galactic. They are supposed to be controlled by a limited number of physical parameters, such as the mass of a central black hole and its spin, magnetic field induction and accretion rate. In a very simplified sense, these parameters define the formation of a typical core-jet structure observed at radio wavelengths in the region of the innermost central tens of parsecs in AGN. These core-jet structures are studied in the radio domain by Very Long Baseline Interferometry (VLBI) with milli- and sub-milliarcsecond angular resolution. Such structures are detectable at a broad range of redshifts. If observed at a fixed wavelength, a typical core-jet AGN morphology would appear as having a steep-spectrum jet fading away with the increasing redshift while a flat-spectrum core becoming more dominant. If core-jet AGN constitute the same population of objects throughout the redshift space, the apparent ``prominence'' of jets at higher redshifts must decrease (Gurvits 1999): well pronounced jets at high z must appear less frequent than at low z.

  2. Spectra of High-Redshift Type Ia Supernovae and a Comparison withtheir Low-Redshift Counterparts

    SciTech Connect

    Hook, I.M.; Howell, D.A.; Aldering, G.; Amanullah, R.; Burns,M.S.; Conley, A.; Deustua, S.E.; Ellis, R.; Fabbro, S.; Fadeyev, V.; Folatelli, G.; Garavini, G.; Gibbons, R.; Goldhaber, G.; Goobar, A.; Groom, D.E.; Kim, A.G.; Knop, R.A.; Kowalski, M.; Lidman, C.; Nobili, S.; Nugent, P.E.; Pain, R.; Pennypacker, C.R.; Perlmutter, S.; Ruiz-Lapuente,P.; Sainton, G.; Schaefer, B.E.; Smith, E.; Spadafora, A.L.; Stanishev,V.; Thomas, R.C.; Walton, N.A.; Wang, L.; Wood-Vasey, W.M.

    2005-07-20

    We present spectra for 14 high-redshift (0.17 < z < 0.83) supernovae, which were discovered by the Supernova Cosmology Project as part of a campaign to measure cosmological parameters. The spectra are used to determine the redshift and classify the supernova type, essential information if the supernovae are to be used for cosmological studies. Redshifts were derived either from the spectrum of the host galaxy or from the spectrum of the supernova itself. We present evidence that these supernovae are of Type Ia by matching to spectra of nearby supernovae. We find that the dates of the spectra relative to maximum light determined from this fitting process are consistent with the dates determined from the photometric light curves, and moreover the spectral time-sequence for SNe Type Ia at low and high redshift is indistinguishable. We also show that the expansion velocities measured from blueshifted Ca H&K are consistent with those measured for low-redshift Type Ia supernovae. From these first-level quantitative comparisons we find no evidence for evolution in SNIa properties between these low- and high-redshift samples. Thus even though our samples may not be complete, we conclude that there is a population of SNe Ia at high redshift whose spectral properties match those at low redshift.

  3. Studying the high redshift Universe with Athena

    NASA Astrophysics Data System (ADS)

    O'Brien, P. T.

    2016-04-01

    Athena is the second large mission selected in the ESA Cosmic Vision plan. With its large collecting area, high spectral-energy resolution (X-IFU instrument) and impressive grasp (WFI instrument), Athena will truly revolutionise X-ray astronomy. The most prodigious sources of high-energy photons are often transitory in nature. Athena will provide the sensitivity and spectral resolution coupled with rapid response to enable the study of the dynamic sky. Potential sources include: distant Gamma-Ray Bursts to probe the reionisation epoch and find ‘missing’ baryons in the cosmic web; tidal disruption events to reveal dormant supermassive and intermediate-mass black holes; and supernova explosions to understand progenitors and their environments.Using detailed simulations, we illustrate Athena’s extraordinary capabilities for transients out to the highest redshifts and show how it will be able to constrain the nature of explosive transients including gas metallicity and dynamics, constraining environments and progenitors.

  4. A new method to search for high-redshift clusters using photometric redshifts

    SciTech Connect

    Castignani, G.; Celotti, A.; Chiaberge, M.; Norman, C.

    2014-09-10

    We describe a new method (Poisson probability method, PPM) to search for high-redshift galaxy clusters and groups by using photometric redshift information and galaxy number counts. The method relies on Poisson statistics and is primarily introduced to search for megaparsec-scale environments around a specific beacon. The PPM is tailored to both the properties of the FR I radio galaxies in the Chiaberge et al. sample, which are selected within the COSMOS survey, and to the specific data set used. We test the efficiency of our method of searching for cluster candidates against simulations. Two different approaches are adopted. (1) We use two z ∼ 1 X-ray detected cluster candidates found in the COSMOS survey and we shift them to higher redshift up to z = 2. We find that the PPM detects the cluster candidates up to z = 1.5, and it correctly estimates both the redshift and size of the two clusters. (2) We simulate spherically symmetric clusters of different size and richness, and we locate them at different redshifts (i.e., z = 1.0, 1.5, and 2.0) in the COSMOS field. We find that the PPM detects the simulated clusters within the considered redshift range with a statistical 1σ redshift accuracy of ∼0.05. The PPM is an efficient alternative method for high-redshift cluster searches that may also be applied to both present and future wide field surveys such as SDSS Stripe 82, LSST, and Euclid. Accurate photometric redshifts and a survey depth similar or better than that of COSMOS (e.g., I < 25) are required.

  5. High-redshift Insights from Low-redshift Galaxies

    NASA Astrophysics Data System (ADS)

    Hayes, Matthew; Östlin, Göran; Schaerer, Daniel; Mas-Hesse, J. Miguel; Melinder, Jens; Verhamme, Anne; Orlitova, Ivana; Cannon, John M.; Herenz, E. Christian; Adamo, Angela

    2015-08-01

    I will summarize results from an extensive multi-wavelength observational campaign to dissect local star-forming galaxies. The Lyman alpha Reference Sample, LARS, comprises ~55 local systems, selected in various ways (FUV luminosity, IR luminosity, H-alpha EW) to provide the closest analogues systems for galaxies that are routinely discovered in high-z surveys and dominate cosmic star formation at various epochs beyond z of 1. The data-set is complete with 8 band HST imaging (5 broadband, plus H-alpha, H-beta, and Ly-alpha narrowbands), HST/COS ultraviolet spectroscopy, direct HI measurements from 21 cm interferometry (GMRT and J-VLA), optical integral field spectroscopy (CAHA/PMAS or VLT/MUSE), far IR emission lines (Herschel or SOFIA), and more.For this talk I will focus on kinematic measurements in warm-ionized, warm-neutral, and cold-neutral interstellar media. I will discuss feedback from massive stars, and how local gas kinematics and ionization states is connected to the properties of the massive stellar population. I will also discuss the extended halos of Ly-alpha that arise when large HI envelopes scatter the radiation produced by recombinations in the HII. I will quantify the extents of Ly-alpha scattering halos, and contrast these with direct observations of HI, HII, and metal lines to show how the halos arise under certain conditions in the ionized and neutral media. With results from low-z galaxies in place I will discuss the validity of using Ly-alpha and UV absorption lines for measuring the properties of gas in the circumgalactic medium of high-z galaxies.

  6. Evolution of star formation conditions from high-redshift to low-redshift

    NASA Astrophysics Data System (ADS)

    Shirazi, Maryam

    2015-08-01

    There are some hints indicating extreme interstellar medium (ISM) conditions at high redshift e.g., harder ionsing radiation fields and higher electron densities. By analysing the ionisation state of galaxies using their [OIII]5007/[OII]3727 line ratios we recently showed that star-forming galaxies at z~ 1. 5 -- 3. 5 have higher ionisation parameters and higher gas densities relative to that of local galaxies with similar global properties (Shirazi et al. 2014). This means the intrinsic properties e.g., the density of star forming regions at high redshift is different from what we observe in the local Universe. Based on the distribution of galaxies in the BPT diagram, it is proposed that the transition to nearby like conditions happen at 0. 8 < z < 1. 5 (Kewley et al 2013). However, we do not know how star-forming regions of the intermediate redshift galaxies are compared to that of high redshift galaxies that have higher gas fractions and are close to the peak of star formation activity in the Universe. We use the unique capability of the MUSE to indirectly trace the ISM conditions at those redshifts. We measure the spatially-resolved ionisation parameter using [OIII ]5007/ [O II]3727 ratio and we measure the spatially resolved gas density using the [OII] 3727,3729 doublet. We probe the spatial distributions of the ionisation parameter and gas density and search for systematic differences between high, intermediate and low redshift galaxies in terms of their global galaxy properties.

  7. Broadband Observations of High Redshift Blazars

    NASA Astrophysics Data System (ADS)

    Paliya, Vaidehi S.; Parker, M. L.; Fabian, A. C.; Stalin, C. S.

    2016-07-01

    We present a multi-wavelength study of four high redshift blazars, S5 0014+81 (z = 3.37), CGRaBS J0225+1846 (z = 2.69), BZQ J1430+4205 (z = 4.72), and 3FGL J1656.2‑3303 (z = 2.40) using quasi-simultaneous data from the Swift, Nuclear Spectroscopic Telescope Array (NuSTAR) and the Fermi-Large Area Telescope (LAT) and also archival XMM-Newton observations. Other than 3FGL J1656.2‑3303, none of the sources were known as γ-ray emitters, and our analysis of ∼7.5 yr of LAT data reveals the first time detection of statistically significant γ-ray emission from CGRaBS J0225+1846. We generate the broadband spectral energy distributions (SED) of all the objects, centering at the epoch of NuSTAR observations and reproduce them using a one-zone leptonic emission model. The optical‑UV emission in all the objects can be explained by radiation from the accretion disk, whereas the X-ray to γ-ray windows of the SEDs are found to be dominated by inverse Compton scattering off the broad line region photons. All of them host black holes that are billions of solar masses. Comparing the accretion disk luminosity and the jet power of these sources with a large sample of blazars, we find them to occupy a high disk luminosity–jet power regime. We also investigate the X-ray spectral properties of the sources in detail with a major focus on studying the causes of soft X-ray deficit, a feature generally seen in high redshift radio-loud quasars. We summarize that this feature could be explained based on the intrinsic curvature in the jet emission rather than being due to the external effects predicted in earlier studies, such as host galaxy and/or warm absorption.

  8. The impact of foregrounds on redshift space distortion measurements with the highly redshifted 21-cm line

    NASA Astrophysics Data System (ADS)

    Pober, Jonathan C.

    2015-02-01

    The highly redshifted 21-cm line of neutral hydrogen has become recognized as a unique probe of cosmology from relatively low redshifts (z ˜ 1) up through the Epoch of Reionization (EoR) (z ˜ 8) and even beyond. To date, most work has focused on recovering the spherically averaged power spectrum of the 21-cm signal, since this approach maximizes the signal to noise in the initial measurement. However, like galaxy surveys, the 21-cm signal is affected by redshift space distortions, and is inherently anisotropic between the line of sight and transverse directions. A measurement of this anisotropy can yield unique cosmological information, potentially even isolating the matter power spectrum from astrophysical effects. However, in interferometric measurements, foregrounds also have an anisotropic footprint between the line of sight and transverse directions: the so-called foreground `wedge'. Although foreground subtraction techniques are actively being developed, a `foreground avoidance' approach of simply ignoring contaminated modes has arguably proven most successful to date. In this work, we analyse the effect of this foreground anisotropy in recovering the redshift space distortion signature in 21-cm measurements at both high and intermediate redshifts. We find the foreground wedge corrupts nearly all of the redshift space signal for even the largest proposed EoR experiments (Hydrogen Epoch of Reionization Array and the Square Kilometre Array), making cosmological information unrecoverable without foreground subtraction. The situation is somewhat improved at lower redshifts, where the redshift-dependent mapping from observed coordinates to cosmological coordinates significantly reduces the size of the wedge. Using only foreground avoidance, we find that a large experiment like Canadian Hydrogen Intensity Mapping Experiment can place non-trivial constraints on cosmological parameters.

  9. Stellar Population Maps of High-Redshift Galaxies

    NASA Astrophysics Data System (ADS)

    Fetherolf, Tara; Reddy, Naveen; MOSDEF

    2016-06-01

    A comprehensive study of resolved galaxy structure can shed light on the formation and evolution of galactic properties, such as the distribution of stars and interstellar dust that obscures starlight. This requires high-resolution, multi-waveband photometry and spectroscopy to completely characterize the galaxies. Previous studies lacked key spectroscopic information, were comprised of small samples, or focused on the local universe. We use HST ACS/WFC3 high-resolution, multi-waveband imaging from the CANDELS project in parallel with moderate-resolution Keck I MOSFIRE spectra from the MOSFIRE Deep Evolution Field (MOSDEF) survey to produce resolved stellar population and dust maps of ~500 galaxies at redshifts 1.4 < z < 2.6—covering the key epoch when galaxies accreted most of their mass. For data preparation and analysis we develop an automated Python program to process our large, comprehensive dataset. From the multi-waveband imaging and spectroscopic redshifts, we model the spectral energy distribution for every resolution element within each galaxy and compare these results to the spectroscopically measured global properties. From our stellar population and dust maps we identify resolved structures within these galaxies. We also investigate if spectroscopically measured galaxy properties are biased when compared with that of localized sub-galactic structures.

  10. Photometric Properties of the Most Massive High-Redshift Galaxies

    NASA Astrophysics Data System (ADS)

    Robertson, Brant; Li, Yuexing; Cox, Thomas J.; Hernquist, Lars; Hopkins, Philip F.

    2007-09-01

    We calculate the observable properties of the most massive high-redshift galaxies in the hierarchical formation scenario where stellar spheroid and supermassive black hole growth are fueled by gas-rich mergers. Combining high-resolution hydrodynamical simulations of the hierarchical formation of a z~6 quasar, stellar population synthesis models, template active galactic nucleus (AGN) spectra, prescriptions for interstellar and intergalactic absorption, and the response of modern telescopes, the photometric evolution of galaxies destined to host z~6 quasars is modeled at redshifts z~4-14. These massive galaxies, with enormous stellar masses of M*~1011.5-1012 Msolar and star formation rates of SFR~103-104 Msolar yr-1 at z>~7, satisfy a variety of photometric selection criteria based on Lyman break techniques, including V-band dropouts at z>~5, i-band dropouts at z>~6, and z-band dropouts at z>~7. The observability of the most massive high-redshift galaxies is assessed and compared with a wide range of existing and proposed photometric surveys, including the Sloan Digital Sky Survey (SDSS), Great Observatories Origins Deep Survey (GOODS)/Hubble Ultra Deep Field (HUDF), National Optical Astronomy Observatory Deep Wide-Field Survey (NDWFS), UKIRT Infared Deep Sky Survey (UKIDSS), Infrared Array Camera (IRAC) Shallow Survey, Ultradeep Visible and Infrared Survey Telescope for Astronomy (VISTA), Dark Universe Explorer (DUNE), Panoramic Survey Telescope and Rapid Response System (Pan-STARRS), Large Synoptic Survey Telescope (LSST), and Supernova/Acceleration Probe (SNAP). Massive stellar spheroids descended from z~6 quasars will likely be detected at z~4 by existing surveys, but owing to their low number densities the discovery of quasar progenitor galaxies at z>7 will likely require future surveys of large portions of the sky (>~0.5%) at wavelengths λ>~1 μm. The detection of rare, starbursting, massive galaxies at redshifts z>~6 would provide support for the

  11. Spatial Distribution of Star Formation in High Redshift Galaxies

    NASA Astrophysics Data System (ADS)

    Cunnyngham, Ian; Takamiya, M.; Willmer, C.; Chun, M.; Young, M.

    2011-01-01

    Integral field unit spectroscopy taken of galaxies with redshifts between 0.6 and 0.8 utilizing Gemini Observatory’s GMOS instrument were used to investigate the spatial distribution of star-forming regions by measuring the Hβ and [OII]λ3727 emission line fluxes. These galaxies were selected based on the strength of Hβ and [OII]λ3727 as measured from slit LRIS/Keck spectra. The process of calibrating and reducing data into cubes -- possessing two spatial dimensions, and one for wavelength -- was automated via a custom batch script using the Gemini IRAF routines. Among these galaxies only the bluest sources clearly show [OII] in the IFU regardless of total galaxy luminosity. The brightest galaxies lack [OII] emission and it is posited that two different modes of star formation exist among this seemingly homogeneous group of z=0.7 star-forming galaxies. In order to increase the galaxy sample to include redshifts from 0.3 to 0.9, public Gemini IFU data are being sought. Python scripts were written to mine the Gemini Science Archive for candidate observations, cross-reference the target of these observations with information from the NASA Extragalactic Database, and then present the resultant database in sortable, searchable, cross-linked web-interface using Django to facilitate navigation. By increasing the sample, we expect to characterize these two different modes of star formation which could be high-redshift counterparts of the U/LIRGs and dwarf starburst galaxies like NGC 1569/NGC 4449. The authors acknowledge funds provided by the National Science Foundation (AST 0909240).

  12. Intensity correlation of ionizing background at high redshifts

    NASA Technical Reports Server (NTRS)

    Zuo, Lin

    1993-01-01

    Intensity correlation of ionizing background at high redshifts is discussed. The intensity correlation function xi(sub j) and the absorption line equivalent width correlation xi(sub 1/W) are discussed.

  13. First Detection of the [O(sub III)] 88 Micrometers Line at High Redshifts: Characterizing the Starburst and Narrow-Line Regions in Extreme Luminosity Systems

    NASA Technical Reports Server (NTRS)

    Ferkinhoff, C.; Hailey-Dunsheath, S.; Nikola, T.; Parshley, S. C.; Stacey, G. J.; Benford, D. J.; Staguhn, J. G.

    2010-01-01

    We have made the first detections of the 88 micrometers [O(sub III)] line from galaxies in the early universe, detecting the line from the lensed active galactic nucleus (AGN)/starburst composite systems APM 08279+5255 at z 3.911 and SMM J02399-0136 at z = 2.8076. The line is exceptionally bright from both systems, with apparent (lensed) luminosities approx.10(exp 11) Solar Luminosity, For APM 08279, the [O(sub III)] line flux can be modeled in a star formation paradigm, with the stellar radiation field dominated by stars with effective temperatures, T(sub eff) > 36,000 K, similar to the starburst found in M82. The model implies approx.35% of the total far-IR luminosity of the system is generated by the starburst, with the remainder arising from dust heated by the AGN. The 881,tm line can also be generated in the narrow-line region of the AGN if gas densities are around a few 1000 cu cm. For SMM J02399, the [O(sub III)] line likely arises from HII regions formed by hot (T(sub eff) > 40,000 K) young stars in a massive starburst that dominates the far-IR luminosity of the system. The present work demonstrates the utility of the [O(sub III)] line for characterizing starbursts and AGN within galaxies in the early universe. These are the first detections of this astrophysically important line from galaxies beyond a redshift of 0.05.s

  14. The growth of massive galaxies and clusters at high redshift

    NASA Astrophysics Data System (ADS)

    Lindner, Robert Raymond

    Massive galaxies and galaxy clusters gain much of their mass by merging with their neighbors; this hierarchical structure formation is the foundation of our understanding of galaxy evolution. Nevertheless, the detailed evolutionary processes needed to form the structures we see in the local Universe remain poorly understood. This thesis comprises four projects examining the growth of galaxies and clusters at high redshift by using radio, sub/millimeter, and X-ray observations to provide empirical constraints on their cosmic evolution. Chapter 2 presents deep 1.2mm imaging of the inner 20' x 20' of the Lockman Hole North (LHN) field to search for submillimeter galaxies (SMGs), rapidly star-forming, high-redshift galaxy mergers. We detect 41 SMGs with S/N>4.0 and use Monte Carlo simulations to estimate their number counts and angular clustering properties. Chapter 3 investigates the nuclear accretion properties of the LHN SMGs. In the sample's average rest-frame X-ray spectrum, we detect strong Fe K alpha emission (equivalent width EW >=1 keV) from highly-ionized Fe species -- evidence that beneath the galaxies' heavy obscuration, supermassive black holes may be growing rapidly. Chapter 4 describes a new 345 GHz and 2.1 GHz imaging campaign to study the intracluster media (ICM) of eleven massive Sunyaev Zel'dovich Effect (SZE)-detected clusters from the Atacama Cosmology Telescope (ACT) southern survey. In six of eleven, 345 GHz SZE increments are detected and used to characterize the spatial distribution and energy content of the ICM at high (19.2") resolution. This work helps us understand how SZE-mass scaling relations are affected by contamination from other sources along the line of sight and by dynamical properties of the ICM. Chapter 5 studies the non-thermal radio emission in one exceptional z=0.870 binary cluster merger (ACTJ0102-4915, ``El Gordo'') with the help of newly-acquired radio observations. El Gordo is the highest-redshift cluster known to host

  15. Infrared/optical energy distributions of high redshifted quasars

    NASA Technical Reports Server (NTRS)

    Soifer, B. T.; Neugebauer, G.; Oke, J. B.; Matthews, K.; Lacy, J. H.

    1982-01-01

    Measurements at 1.2, 1.6 and 2.2 microns were combined with visual spectrophotometry of 21 quasars having redshifts z or = 2.66. The primary result is that the rest frame visual/ultraviolet continua of the high redshift quasars are well described by a sum of a power law continuum with slope of approximately -0.4 and a 3000 A bump. The rest frame visual/ultraviolet continua of these quasars are quite similar to that of 3C273, the archetype of low redshift quasars. There does not appear to be any visual/ultraviolet properties distinguishing high redshift quasars selected via visual or radio techniques.

  16. The dust emission of high-redshift quasars

    NASA Astrophysics Data System (ADS)

    Leipski, C.; Meisenheimer, K.

    2012-07-01

    The detection of powerful near-infrared emission in high redshift (z > 5) quasars demonstrates that very hot dust is present close to the active nucleus also in the very early universe. A number of high-redshift objects even show significant excess emission in the rest frame NIR over more local AGN spectral energy distribution (SED) templates. In order to test if this is a result of the very high luminosities or redshifts, we construct mean SEDs from the latest SDSS quasar catalogue in combination with MIR data from the WISE preliminary data release for several redshift and luminosity bins. Comparing these mean SEDs with a large sample of z > 5 quasars we could not identify any significant trends of the NIR spectral slope with luminosity or redshift in the regime 2.5 < z lesssim 6 and 1045 < νLν (1350Å) lesssim 1047 erg/s. In addition to the NIR regime, our combined Herschel and Spitzer photometry provides full infrared SED coverage of the same sample of z > 5 quasars. These observations reveal strong FIR emission (LFIR gtrsim 1013 Lodot) in seven objects, possibly indicating star-formation rates of several thousand solar masses per year. The FIR excess emission has unusally high temperatures (T~65K) which is in contrast to the temperature typically expected from studies at lower redshift (T~45K). These objects are currently being investigated in more detail.

  17. Steep radio spectra in high-redshift radio galaxies

    NASA Technical Reports Server (NTRS)

    Krolik, Julian H.; Chen, Wan

    1991-01-01

    The generic spectrum of an optically thin synchrotron source steepens by 0.5 in spectral index from low frequencies to high whenever the source lifetime is greater than the energy-loss timescale for at least some of the radiating electrons. Three effects tend to decrease the frequency nu(b) of this spectral bend as the source redshift increases: (1) for fixed bend frequency nu* in the rest frame, nu(b) = nu*/(1 + z); (2) losses due to inverse Compton scattering the microwave background rise with redshift as (1 + z) exp 4, so that, for fixed residence time in the radiating region, the energy of the lowest energy electron that can cool falls rapidly with increasing redshift; and (3) if the magnetic field is proportional to the equipartition field and the emitting volume is fixed or slowly varying, flux-limited samples induce a selection effect favoring low nu* at high z because higher redshift sources require higher emissivity to be included in the sample, and hence have stronger implied fields and more rapid synchrotron losses. A combination of these effects may explain the trend observed in the 3CR sample for higher redshift radio galaxies to have steeper spectra, and the successful use of ultrasteep spectrum surveys to locate high-redshift galaxies.

  18. Early Star Formation and High-Redshift Quasars

    NASA Astrophysics Data System (ADS)

    Dietrich, Matthias; Peterson, B. M.

    2007-12-01

    We are investigating for a sample of about 30 high-redshift quasars, with redshifts up to z=6, the gas chemical metallicity based on emission line ratios and employing the FeII UV/MgII line ratio, we probe the differential metal enrichment timescale between iron and alpha-elements at these early epochs. The quasars show enhanced solar metallicities ( 5 times solar) in their broad emission-line region and no indication of a metallicity evolution up to redshifts z=6. The measured FeII UV/MgII ratios range from 3 to 5, typical for high redshift quasars, with a weighted mean of about 4. However, there is a weak tendency for a lower mean ratio at z>4.7. For the first time, we will compare the gas metallicity and the FeII UV/MgII ratio for high redshift quasars. In concert, the gas metallicity, the FeII UV/MgII ratio, and model-based estimated time scales for enriching the gas and building up the super-massive black holes suggest that a violent episode of star formation and the main growth of the black hole occur roughly contemporaneously beginning at redshifts z = 8 to 13. Support for this work was provided by NASA through grant HST-GO-10792 from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

  19. Lyman Break Analogs: Constraints on the Formation of Extreme Starbursts at Low and High Redshift

    NASA Technical Reports Server (NTRS)

    Goncalves, Thiago S.; Overzier, Roderik; Basu-Zych, Antara; Martin, D. Christopher

    2011-01-01

    Lyman Break Analogs (LBAs), characterized by high far-UV luminosities and surface brightnesses as detected by GALEX, are intensely star-forming galaxies in the low-redshift universe (z approximately equal to 0.2), with star formation rates reaching up to 50 times that of the Milky Way. These objects present metallicities, morphologies and other physical properties similar to higher redshift Lyman Break Galaxies (LBGs), motivating the detailed study of LBAs as local laboratories of this high-redshift galaxy population. We present results from our recent integral-field spectroscopy survey of LBAs with Keck/OSIRIS, which shows that these galaxies have the same nebular gas kinematic properties as high-redshift LBGs. We argue that such kinematic studies alone are not an appropriate diagnostic to rule out merger events as the trigger for the observed starburst. Comparison between the kinematic analysis and morphological indices from HST imaging illustrates the difficulties of properly identifying (minor or major) merger events, with no clear correlation between the results using either of the two methods. Artificial redshifting of our data indicates that this problem becomes even worse at high redshift due to surface brightness dimming and resolution loss. Whether mergers could generate the observed kinematic properties is strongly dependent on gas fractions in these galaxies. We present preliminary results of a CARMA survey for LBAs and discuss the implications of the inferred molecular gas masses for formation models.

  20. High redshift QSOs and the x ray background

    NASA Technical Reports Server (NTRS)

    Impey, Chris

    1993-01-01

    ROSAT pointed observations were made of 9 QSO's from the Large Bright Quasar Survey (LBQS). The LBQS is based on machine measurement of objective prism plates taken with the UK Schmidt Telescope. Software has been used to select QSO's by both color and by the presence of spectral features and continuum breaks. The probability of detection can be calculated as a function of magnitude, redshift and spectral features, and the completeness of the survey can be accurately estimated. Nine out of 1040 QSO's in the LBQS have z greater than 3. The observations will provide an important data point in the X-ray luminosity function of QSO's at high redshift. The QSO's with z greater than 3 span less than a magnitude in M(sub B), so can be combined as a homogeneous sample. This analysis is only possible with a sample drawn from a large and complete catalog such as the LBQS. Four of the 9 QSO's that were observed with the ROSAT PSPC for this proposal were detected, including one of the most luminous X-ray sources ever observed. The April 1992 version of the PROS DETECT package was used to reduce the data. The results have been used to search for evolution of the X-ray properties of QSO's in redshift. The 9 QSO's lie in the range -28.7 less than M(sub B) less than -27.8. When combined with data for 16 QSO's in a similar luminosity range at lower redshift correlations with luminosity and redshift can be separated out. The LBQS sample also yields a new constraint on the contribution of high redshift QSO's to the X-ray background. An initial requirement is knowledge of the X-ray properties (alpha(sub OX)) as a function of redshift. Integration over the evolving luminosity function of the LBQS then gives the QSO contribution to the source counts.

  1. Leveraging Spitzer's Legacy: Quasars and Feedback at High Redshift

    NASA Astrophysics Data System (ADS)

    Richards, Gordon; Anderson, Scott; Bauer, Franz; Deo, Rajesh; Fan, Xiaohui; Gallagher, Sarah; Myers, Adam; Strauss, Michael; Zakamska, Nadia

    2009-04-01

    Recent research efforts to understand the evolution of galaxies and quasars are beginning to form a consistent picture. Galaxies and their supermassive black holes grow through mergers, but with decreasing characteristic mass scales over time. Much less, however, is known about the evolution of galaxies at high redshifts and the role played by energy injection from the onset of active black hole growth. Understanding these events requires investigating a statistically significant number of high-redshift quasars and crossing the L* boundary in luminosity. To construct an appropriate data set requires both relatively wide-areas (to find these rare objects) and moderate-depth imaging (to probe below L* in luminosity). Unfortunately, existing optical and MIR surveys fail to meet both of these requirements. Furthermore, both optical and MIR quasar selection are blindest at the most crucial redshifts. Here we propose to address these gaps with targeted IRAC observations of a few hundred high-redshift quasars from the Sloan Digital Sky Survey. Such a sample will enable the construction of a proper training set for the discovery of 2.5high-redshift quasars in other fields over a large range in luminosity. With this knowledge, we will crack open the high-z quasar discovery space within existing IRAC legacy surveys (SWIRE, XFLS, Bootes, COSMOS). With a large sample of high-redshift quasars spanning a large range in luminosity, we can turn the quasar luminosity function and quasar clustering analysis into tools for distinguishing between different evolutionary models and feedback prescriptions. In all, we will observe 330 SDSS quasars using 307 pointings/AORs, totaling 48.5 hours of IRAC time.

  2. X-ray spectral evolution of high redshift quasars

    NASA Technical Reports Server (NTRS)

    Bechtold, Jill; Elvis, Martin; Fiore, Fabrizio; Kuhn, Olga; Cutri, Roc M.; Mcdowell, Jonathan C.; Rieke, Marcia; Siemiginowska, Aneta; Wilkes, Belinda J.

    1994-01-01

    At z approx. equals 3, the x-ray spectra of radio-loud and radio-quiet quasars are different. High-redshift radio-quiet quasars either have large absorbing columns, N(sub H), and steeper power law spectral indices, alpha(sub epsilon), than low redshift quasars, or no absorption and similar alpha(sub epsilon)'s. In contrast, the radio-loud quasars at high redshift have substantial absorption and similar alpha(sub epsilon)'s to low redshift quasars. Implications for the interpretation of the evolution of the luminosity function of quasars are discussed. If the absorption arises outside the central engine for both radio-loud and radio-quiet quasars, then radio-quiet quasars differ from the radio-loud quasars in that their emitted power law spectrum has evolved with redshift. We argue that this favors models where quasars are numerous and short-lived, rather than rare and long-lived.

  3. Using Morphology to Identify Galaxy Mergers at High Redshift

    NASA Astrophysics Data System (ADS)

    Blancato, Kirsten; Kartaltepe, J. S.; CANDELS Collaboration

    2014-01-01

    We analyzed a set of 22,003 galaxies in three of the five CANDELS fields: COSMOS, UDS, and GOODS-S, in order to determine how well automated image statistics did with classifying galaxy morphology and mergers at high redshifts (z > 1). For each galaxy in our set, we have multi-wavelength data, photometric redshifts from SED fitting, visual classifications from the CANDELS structure and morphology group, and automated image statistics. The redshifts of our sample range from z = .01 to 4 with = 1.33. We constructed a conservative set of 1,914 galaxies that we believe to be mergers and interactions. Of this set of merging galaxies, 1,343 were at a redshift greater than z = 1. We also identified a conservative set of 535 spheroids and a set of 2,902 disks. Several different quantitative methods were then used to attempt an automated classification of these visually classified samples. Of the different image statistics, we found M20 and Gini to be the most successful at picking out high redshift mergers and morphological characteristics. Blancato was supported by the NOAO/KPNO Research Experiences for Undergraduates (REU) Program which is funded by the National Science Foundation Research Experiences for Undergraduates Program (AST-1262829).

  4. Pushing the Limits: High Redshift Fermi-LAT Blazars

    NASA Astrophysics Data System (ADS)

    Ojha, Roopesh; Gasparrini, Dario; Lott, Benoit; Cutini, Sara; Fermi-LAT Collaboration

    2016-01-01

    High-redshift blazars detected by the Fermi Large Area Telescope (LAT) are of great astrophysical import as they are extreme objects whose energetics remain a mystery. Such blazars are intrinsically interesting since they inform us about the evolution of gamma-ray blazars and are, by definition, some of the more luminous blazars in the LAT sample. They are also an excellent tool to study the EBL and thus the gamma-ray horizon. We present the latest high redshift blazar detections in the LAT and discuss some of their implications.

  5. Detectability of Gravitational Waves from High-Redshift Binaries

    NASA Astrophysics Data System (ADS)

    Rosado, Pablo A.; Lasky, Paul D.; Thrane, Eric; Zhu, Xingjiang; Mandel, Ilya; Sesana, Alberto

    2016-03-01

    Recent nondetection of gravitational-wave backgrounds from pulsar timing arrays casts further uncertainty on the evolution of supermassive black hole binaries. We study the capabilities of current gravitational-wave observatories to detect individual binaries and demonstrate that, contrary to conventional wisdom, some are, in principle, detectable throughout the Universe. In particular, a binary with rest-frame mass ≳1010M⊙ can be detected by current timing arrays at arbitrarily high redshifts. The same claim will apply for less massive binaries with more sensitive future arrays. As a consequence, future searches for nanohertz gravitational waves could be expanded to target evolving high-redshift binaries. We calculate the maximum distance at which binaries can be observed with pulsar timing arrays and other detectors, properly accounting for redshift and using realistic binary waveforms.

  6. Detectability of Gravitational Waves from High-Redshift Binaries.

    PubMed

    Rosado, Pablo A; Lasky, Paul D; Thrane, Eric; Zhu, Xingjiang; Mandel, Ilya; Sesana, Alberto

    2016-03-11

    Recent nondetection of gravitational-wave backgrounds from pulsar timing arrays casts further uncertainty on the evolution of supermassive black hole binaries. We study the capabilities of current gravitational-wave observatories to detect individual binaries and demonstrate that, contrary to conventional wisdom, some are, in principle, detectable throughout the Universe. In particular, a binary with rest-frame mass ≳10^{10}M_{⊙} can be detected by current timing arrays at arbitrarily high redshifts. The same claim will apply for less massive binaries with more sensitive future arrays. As a consequence, future searches for nanohertz gravitational waves could be expanded to target evolving high-redshift binaries. We calculate the maximum distance at which binaries can be observed with pulsar timing arrays and other detectors, properly accounting for redshift and using realistic binary waveforms. PMID:27015470

  7. Spectroscopy of Moderately High Redshift RCS-1 Clusters

    NASA Astrophysics Data System (ADS)

    Gilbank, David G.; Yee, H. K. C.; Ellingson, E.; Gladders, M. D.; Barrientos, L. F.; Blindert, K.

    2007-07-01

    We present spectroscopic observations of 11 moderately high-redshift (z~0.7-1.0) clusters from the first Red-Sequence Cluster Survey (RCS-1). We confirm that at least 10 of the 11 systems represent genuine overdensities in redshift space and show that for the remaining system, the spectroscopy was not deep enough to confirm a cluster. This is in good agreement with the estimated false positive rate of <5% at these redshifts from simulations. We find excellent agreement between the red-sequence-estimated redshift and the spectroscopic redshift, with a scatter of 10% at z>0.7. At the high-redshift end (z>~0.9) of the sample, we find that two of the systems selected are projections of pairs of comparably rich systems, with red sequences too close to discriminate in (R-z') color. In one of these systems, the two components are close enough to be physically associated. For a subsample of clusters with sufficient spectroscopic members, we examine the correlation between BgcR (optical richness) and the dynamical mass inferred from the velocity dispersion. We find these measurements to be compatible, within the relatively large uncertainties, with the correlation established at lower redshift for the X-ray-selected Canadian Network for Observational Cosmology clusters and also for a lower redshift sample of RCS-1 clusters. Confirmation of this and calibration of the scatter in the relation will require larger samples of clusters at these and higher redshifts. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile. This work is based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy (AURA), Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Particle Physics and Astronomy Research Council (United Kingdom), the National Research Council (Canada), CONICYT

  8. A Catalog of Candidate High-redshift Blazars for GLAST

    SciTech Connect

    Arias, Tersi M.; /SLAC /San Francisco State U.

    2006-09-27

    High-redshift blazars are promising candidates for detection by the Gamma-ray Large Area Space Telescope (GLAST). GLAST, expected to be launched in the Fall of 2007, is a high-energy gamma-ray observatory designed for making observations of celestial gamma-ray sources in the energy band extending from 10 MeV to more than 200 GeV. It is estimated that GLAST will find several thousand blazars. The motivations for measuring the gamma-ray emission from distant blazars include the study of the high-energy emission processes occurring in these sources and an indirect measurement of the extragalactic background light. In anticipation of the launch of GLAST we have compiled a catalog of candidate high-redshift blazars. The criteria for sources chosen for the catalog were: high radio emission, high redshift, and a flat radio spectrum. A preliminary list of 307 radio sources brighter than 70mJy with a redshift z {ge} 2.5 was acquired using data from the NASA Extragalactic Database. Flux measurements of each source were obtained at two or more radio frequencies from surveys and catalogs to calculate their radio spectral indices {alpha}. The sources with a flat-radio spectrum ({alpha} {le} 0.5) were selected for the catalog, and the final catalog includes about 200 sources.

  9. Radio-loud high-redshift protogalaxy canidates in Bootes

    SciTech Connect

    Croft, S; van Breugel, W; Brown, M J; de Vries, W; Dey, A; Eisenhardt, P; Jannuzi, B; Rottgering, H; Stanford, S A; Stern, D; Willner, S P

    2007-07-20

    We used the Near Infrared Camera (NIRC) on Keck I to obtain K{sub s}-band images of four candidate high-redshift radio galaxies selected using optical and radio data in the NOAO Deep Wide-Field Survey in Bootes. Our targets have 1.4 GHz radio flux densities greater than 1 mJy, but are undetected in the optical. Spectral energy distribution fitting suggests that three of these objects are at z > 3, with radio luminosities near the FR-I/FR-II break. The other has photometric redshift z{sub phot} = 1.2, but may in fact be at higher redshift. Two of the four objects exhibit diffuse morphologies in K{sub s}-band, suggesting that they are still in the process of forming.

  10. Large scale magnetic fields in galaxies at high redshifts

    NASA Astrophysics Data System (ADS)

    Bernet, M. L.; Miniati, F.; Lilly, S. J.; Kronberg, P. P.; Dessauges-Zavadsky, M.

    2012-09-01

    In a recent study we have used a large sample of extragalactic radio sources to investigate the redshift evolution of the Rotation Measure (RM) of polarized quasars up to z ≈ 3.0. We found that the dispersion in the RM distribution of quasars increases at higher redshifts and hypothesized that MgII intervening systems were responsible for the observed trend. To test this hypothesis, we have recently obtained high-resolution UVES/VLT spectra for 76 quasars in our sample and in the redshift range 0.6 < z < 2.0. We found a clear correlation between the presence of strong MgII systems and large RMs. This implies that normal galaxies at z ≈ 1 already had large-scale magnetic fields comparable to those seen today.

  11. High-redshift Gamma-Ray Burst Studies with GLAST

    SciTech Connect

    Bissaldi, Elisabetta; Longo, Francesco; Barbiellini, Guido; Calura, Francesco; Matteucci, Francesca

    2007-05-01

    We compare predicted Type Ib/c supernova (SN) rates with the observed long-duration gamma-ray burst (GRB) rates both locally and as a function of redshift. To do that, we assume different star formation histories in galaxies of different morphological type: ellipticals, spirals and irregulars. In particular, the predicted Type Ib/c SN rate (SNRIb/c) is always higher than the GRB rate, as expected, suggesting that only a small fraction (0.1-1%) of them become GRBs. We predict a ratio between the cosmic GRB rate and the cosmic SNRIb/c in the range 10-2 - 10-3, in agreement with previous estimates. Finally, due to the high star formation in spheroids at high redshift, we predict more GRBs at high redshift than previous estimates, a prediction which awaits to be proven by future observations by GLAST. Based on our studies and on the current LAT performance, an estimate of the detection possibility of this high-redshift burst population is finally presented.

  12. Bimodal star formation - Constraints from galaxy colors at high redshift

    NASA Technical Reports Server (NTRS)

    Wyse, Rosemary F. G.; Silk, Joseph

    1987-01-01

    The possibility that at early epochs the light from elliptical galaxies is dominated by stars with an initial mass function (IMF) which is deficient in low-mass stars, relative to the solar neighborhood is investigated. V-R colors for the optical counterparts of 3CR radio sources offer the most severe constraints on the models. Reasonable fits are obtained to both the blue, high-redshift colors and the redder, low-redshift colors with a model galaxy which forms with initially equal star formation rates in each of two IMF modes: one lacking low-mass stars, and one with stars of all masses. The net effect is that the time-integrated IMF has twice as many high-mass stars as the solar neighborhood IMF, relative to low mass stars. A conventional solar neighborhood IMF does not simultaneously account for both the range in colors at high redshift and the redness of nearby ellipticals, with any single star formation epoch. Models with a standard IMF require half the stellar population to be formed in a burst at low redshift z of about 1.

  13. Optical signatures of high-redshift galaxy clusters

    NASA Technical Reports Server (NTRS)

    Evrard, August E.; Charlot, Stephane

    1994-01-01

    We combine an N-body and gasdynamic simulation of structure formation with an updated population synthesis code to explore the expected optical characteristics of a high-redshift cluster of galaxies. We examine a poor (2 keV) cluster formed in a biased, cold dark matter cosmology and employ simple, but plausible, threshold criteria to convert gas into stars. At z = 2, the forming cluster appears as a linear chain of very blue (g-r approximately equals 0) galaxies, with 15 objects brighter than r = 25 within a 1 square arcmin field of view. After 2 Gyr of evolution, the cluster viewed at z = 1 displays both freshly infalling blue galaxies and red galaxies robbed of recent accretion by interaction with the hot intracluster medium. The range in G-R colors is approximately 3 mag at z = 1, with the reddest objects lying at sites of highest galaxy density. We suggest that red, high-redshift galaxies lie in the cores of forming clusters and that their existence indicates the presence of a hot intracluster medium at redshifts z approximately equals 2. The simulated cluster viewed at z = 2 has several characteristics similar to the collection of faint, blue objects identified by Dressler et al. in a deep Hubble Space Telescope observation. The similarities provide some support for the interpretation of this collection as a high-redshift cluster of galaxies.

  14. Identifying high-redshift gamma-ray bursts with RATIR

    SciTech Connect

    Littlejohns, O. M.; Butler, N. R.; Cucchiara, A.; Watson, A. M.; Lee, W. H.; Richer, M. G.; De Diego, J. A.; Georgiev, L.; González, J.; Román-Zúñiga, C. G.; Kutyrev, A. S.; Troja, E.; Gehrels, N.; Moseley, H.; Klein, C. R.; Fox, O. D.; Bloom, J. S.; Prochaska, J. X.; Ramirez-Ruiz, E.

    2014-07-01

    We present a template-fitting algorithm for determining photometric redshifts, z {sub phot}, of candidate high-redshift gamma-ray bursts (GRBs). Using afterglow photometry, obtained by the Reionization and Transients InfraRed (RATIR) camera, this algorithm accounts for the intrinsic GRB afterglow spectral energy distribution, host dust extinction, and the effect of neutral hydrogen (local and cosmological) along the line of sight. We present the results obtained by this algorithm and the RATIR photometry of GRB 130606A, finding a range of best-fit solutions, 5.6 < z {sub phot} < 6.0, for models of several host dust extinction laws (none, the Milky Way, Large Magellanic Clouds, and Small Magellanic Clouds), consistent with spectroscopic measurements of the redshift of this GRB. Using simulated RATIR photometry, we find that our algorithm provides precise measures of z {sub phot} in the ranges of 4 < z {sub phot} ≲ 8 and 9 < z {sub phot} < 10 and can robustly determine when z {sub phot} > 4. Further testing highlights the required caution in cases of highly dust-extincted host galaxies. These tests also show that our algorithm does not erroneously find z {sub phot} < 4 when z {sub sim} > 4, thereby minimizing false negatives and allowing us to rapidly identify all potential high-redshift events.

  15. CMB quenching of high-redshift radio-loud AGNs

    NASA Astrophysics Data System (ADS)

    Ghisellini, G.; Haardt, F.; Ciardi, B.; Sbarrato, T.; Gallo, E.; Tavecchio, F.; Celotti, A.

    2015-10-01

    The very existence of more than a dozen of high-redshift (z ≳ 4) blazars indicates that a much larger population of misaligned powerful jetted active galactic nucleus (AGN) was already in place when the Universe was ≲1.5 Gyr old. Such parent population proved to be very elusive, and escaped direct detection in radio surveys so far. High-redshift blazars themselves seem to be failing in producing extended radio lobes, raising questions about the connection between such class and the vaster population of radio galaxies. We show that the interaction of the jet electrons with the intense cosmic microwave background (CMB) radiation explains the lack of extended radio emission in high-redshift blazars and in their parent population, helping to explain the apparently missing misaligned counterparts of high-redshift blazars. On the other hand, the emission from the more compact and more magnetized hotspots are less affected by the enhanced CMB energy density. By modelling the spectral energy distribution of blazar lobes and hotspots, we find that most of them should be detectable by low-frequency deep radio observations, e.g. by LOw-Frequency ARray for radio astronomy and by relatively deep X-ray observations with good angular resolution, e.g. by the Chandra satellite. At high redshifts, the emission of a misaligned relativistic jet, being debeamed, is missed by current large sky area surveys. The isotropic flux produced in the hotspots can be below ˜1 mJy and the isotropic lobe radio emission is quenched by the CMB cooling. Consequently, even sources with very powerful jets can go undetected in current radio surveys, and misclassified as radio-quiet AGNs.

  16. On the Evolution of High-redshift Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Mao, Jirong; Kim, Minsun

    2016-09-01

    We build a simple physical model to study the high-redshift active galactic nucleus (AGN) evolution within the co-evolution framework of central black holes (BHs) and their host galaxies. The correlation between the circular velocity of a dark halo V c and the velocity dispersion of a galaxy σ is used to link the dark matter halo mass and BH mass. The dark matter halo mass function is converted to the BH mass function for any given redshift. The high-redshift optical AGN luminosity functions (LFs) are constructed. At z∼ 4, the flattening feature is not shown at the faint end of the optical AGN LF. This is consistent with observational results. If the optical AGN LF at z∼ 6 can be reproduced in the case in which central BHs have the Eddington-limited accretion, it is possible for the AGN lifetime to have a small value of 2× {10}5 {{years}}. The X-ray AGN LFs and X-ray AGN number counts are also calculated at 2.0\\lt z\\lt 5.0 and z\\gt 3, respectively, using the same parameters adopted in the calculation for the optical AGN LF at z∼ 4. It is estimated that about 30 AGNs per {{{\\deg }}}2 at z\\gt 6 can be detected with a flux limit of 3× {10}-17 {erg} {{cm}}-2 {{{s}}}-1 in the 0.5–2 keV band. Additionally, the cosmic reionization is also investigated. The ultraviolet photons emitted from the high-redshift AGNs mainly contribute to the cosmic reionization, and the central BHs of the high-redshift AGNs have a mass range of {10}6{--}{10}8{M}ȯ . We also discuss some uncertainties in both the AGN LFs and AGN number counts originating from the {M}{{BH}}{--}σ relation, Eddington ratio, AGN lifetime, and X-ray attenuation in our model.

  17. Local Analogs for High-redshift Galaxies: Resembling the Physical Conditions of the Interstellar Medium in High-redshift Galaxies

    NASA Astrophysics Data System (ADS)

    Bian, Fuyan; Kewley, Lisa J.; Dopita, Michael A.; Juneau, Stephanie

    2016-05-01

    We present a sample of local analogs for high-redshift galaxies selected in the Sloan Digital Sky Survey (SDSS). The physical conditions of the interstellar medium (ISM) in these local analogs resemble those in high-redshift galaxies. These galaxies are selected based on their positions in the [O iii]/Hβ versus [N ii]/Hα nebular emission-line diagnostic diagram. We show that these local analogs share similar physical properties with high-redshift galaxies, including high specific star formation rates (sSFRs), flat UV continuums, and compact galaxy sizes. In particular, the ionization parameters and electron densities in these analogs are comparable to those in z ≃ 2–3 galaxies, but higher than those in normal SDSS galaxies by ≃0.6 dex and ≃0.9 dex, respectively. The mass–metallicity relation (MZR) in these local analogs shows ‑0.2 dex offset from that in SDSS star-forming galaxies at the low-mass end, which is consistent with the MZR of the z˜ 2{--}3 galaxies. We compare the local analogs in this study with those in other studies, including Lyman break analogs (LBA) and green pea (GP) galaxies. The analogs in this study share a similar star formation surface density with LBAs, but the ionization parameters and electron density in our analogs are higher than those in LBAs by factors of 1.5 and 3, respectively. The analogs in this study have comparable ionization parameters and electron densities to the GP galaxies, but our method can select galaxies in a wider redshift range. We find the high sSFR and SFR surface density can increase the electron density and ionization parameters, but still cannot fully explain the difference in ISM condition between nearby galaxies and the local analogs/high-redshift galaxies.

  18. Local Analogs for High-redshift Galaxies: Resembling the Physical Conditions of the Interstellar Medium in High-redshift Galaxies

    NASA Astrophysics Data System (ADS)

    Bian, Fuyan; Kewley, Lisa J.; Dopita, Michael A.; Juneau, Stephanie

    2016-05-01

    We present a sample of local analogs for high-redshift galaxies selected in the Sloan Digital Sky Survey (SDSS). The physical conditions of the interstellar medium (ISM) in these local analogs resemble those in high-redshift galaxies. These galaxies are selected based on their positions in the [O iii]/Hβ versus [N ii]/Hα nebular emission-line diagnostic diagram. We show that these local analogs share similar physical properties with high-redshift galaxies, including high specific star formation rates (sSFRs), flat UV continuums, and compact galaxy sizes. In particular, the ionization parameters and electron densities in these analogs are comparable to those in z ≃ 2–3 galaxies, but higher than those in normal SDSS galaxies by ≃0.6 dex and ≃0.9 dex, respectively. The mass–metallicity relation (MZR) in these local analogs shows ‑0.2 dex offset from that in SDSS star-forming galaxies at the low-mass end, which is consistent with the MZR of the z∼ 2{--}3 galaxies. We compare the local analogs in this study with those in other studies, including Lyman break analogs (LBA) and green pea (GP) galaxies. The analogs in this study share a similar star formation surface density with LBAs, but the ionization parameters and electron density in our analogs are higher than those in LBAs by factors of 1.5 and 3, respectively. The analogs in this study have comparable ionization parameters and electron densities to the GP galaxies, but our method can select galaxies in a wider redshift range. We find the high sSFR and SFR surface density can increase the electron density and ionization parameters, but still cannot fully explain the difference in ISM condition between nearby galaxies and the local analogs/high-redshift galaxies.

  19. Evolution of high-redshift Lyman-limit absorption systems

    SciTech Connect

    Lanzetta, K.M. )

    1991-07-01

    Results are presented of a new spectroscopic survey of high-redshift Lyman-limit absorption systems. Based on this data set, the rate of incidence of the Lyman-limit systems with z greater than about 2.5 is found to evolve strongly with redshift in the sense that the product of the number density per unit comoving volume and the absorption cross section increases with increasing redshift. If the observed evolution indicates intrinsic evolution of the absorbers, this result suggests that the evolution detected previously for the C IV-selected absorbers over a similar redshift range is not naturally interpreted as evolution of the ionization level of the absorbers rather than as a chemical enrichment effect. The data are also used to investigate the H I column density distribution and to examine the multiple-component structure of the absorbing complexes. The H I column density distribution is found to be well fitted by a power-law form. 35 refs.

  20. Close companions to two high-redshift quasars

    SciTech Connect

    McGreer, Ian D.; Fan, Xiaohui; Bian, Fuyan; Strauss, Michael A.; Haiman, Zoltàn; Richards, Gordon T.; Jiang, Linhua; Schneider, Donald P.

    2014-10-01

    We report the serendipitous discoveries of companion galaxies to two high-redshift quasars. SDSS J025617.7+001904 is a z = 4.79 quasar included in our recent survey of faint quasars in the SDSS Stripe 82 region. The initial MMT slit spectroscopy shows excess Lyα emission extending well beyond the quasar's light profile. Further imaging and spectroscopy with LBT/MODS1 confirms the presence of a bright galaxy (i {sub AB} = 23.6) located 2'' (12 kpc projected) from the quasar with strong Lyα emission (EW{sub 0} ≈ 100 Å) at the redshift of the quasar, as well as faint continuum. The second quasar, CFHQS J005006.6+344522 (z = 6.25), is included in our recent HST SNAP survey of z ∼ 6 quasars searching for evidence of gravitational lensing. Deep imaging with ACS and WFC3 confirms an optical dropout ∼4.5 mag fainter than the quasar (Y {sub AB} = 25) at a separation of 0.''9. The red i {sub 775} – Y {sub 105} color of the galaxy and its proximity to the quasar (5 kpc projected if at the quasar redshift) strongly favor an association with the quasar. Although it is much fainter than the quasar, it is remarkably bright when compared to field galaxies at this redshift, while showing no evidence for lensing. Both systems may represent late-stage mergers of two massive galaxies, with the observed light for one dominated by powerful ongoing star formation and for the other by rapid black hole growth. Observations of close companions are rare; if major mergers are primarily responsible for high-redshift quasar fueling then the phase when progenitor galaxies can be observed as bright companions is relatively short.

  1. Magnetic fields in galaxies at high redshifts

    NASA Astrophysics Data System (ADS)

    Bernet, Martin Leo; Gaensler, Bryan; Lilly, Simon; O'Sullivan, Shane; Miniati, Francesco

    2013-04-01

    We have recently demonstrated an association between high Faraday Rotation of radio quasars and the presence of intervening strong MgII absorption and determined that the magnetized plasma in the associated galaxies extends up to 60 kpc. These findings are based on Rotation Measure (RM) observations typically performed at 5 GHz, but they can not be reproduced using RMs obtained at lower frequencies, e.g. using the Taylor et al. (2009) RM catalogue at 1.4 GHz. This apparent discrepancy can be explained by a model which takes into account the depolarization of the sources due to inhomogeneous Faraday Rotation screens and their partial coverage of the sources. We propose here to observe 27 sources of our sample which are accessible by the ATCA to test this hypothesis. Our goal is to observe the selected sources over the broad frequency range 1.1 -10.8 GHz to obtain depolarization curves and to perform Faraday Rotation Measure Synthesis. With this sample we will be able to determine the homogeneity of the Faraday screens in the intervening galaxies and to further strengthen the original result. Finally the outcome of this experiment has important implications for the design of future RM surveys.

  2. Formation of elongated galaxies with low masses at high redshift

    NASA Astrophysics Data System (ADS)

    Ceverino, Daniel; Primack, Joel; Dekel, Avishai

    2015-10-01

    We report the identification of elongated (triaxial or prolate) galaxies in cosmological simulations at z ≃ 2. These are preferentially low-mass galaxies (M* ≤ 109.5 M⊙), residing in dark matter (DM) haloes with strongly elongated inner parts, a common feature of high-redshift DM haloes in the Λ cold dark matter cosmology. Feedback slows formation of stars at the centres of these haloes, so that a dominant and prolate DM distribution gives rise to galaxies elongated along the DM major axis. As galaxies grow in stellar mass, stars dominate the total mass within the galaxy half-mass radius, making stars and DM rounder and more oblate. A large population of elongated galaxies produces a very asymmetric distribution of projected axis ratios, as observed in high-z galaxy surveys. This indicates that the majority of the galaxies at high redshifts are not discs or spheroids but rather galaxies with elongated morphologies.

  3. X-RAY ABSORPTION OF HIGH-REDSHIFT QUASARS

    SciTech Connect

    Eitan, Assaf; Behar, Ehud E-mail: behar@physics.technion.ac.il

    2013-09-01

    The soft X-ray photoelectric absorption of high-z quasars has been known for two decades, but has no unambiguous astrophysical context. We construct the largest sample to date of 58 high-redshift quasars (z > 0.45) selected from the XMM-Newton archive based on a high photon count criterion (>1800). We measure the optical depth {tau} at 0.5 keV and find that 43% of the quasars show significant absorption. We aim to find which physical parameters of the quasars, e.g., redshift, radio luminosity, radio loudness, or X-ray luminosity, drive their observed absorption. We compare the absorption behavior with redshift with the pattern expected if the diffuse intergalactic medium (IGM) is responsible for the observed absorption. We also compare the absorption with a comparison sample of gamma-ray burst (GRB) X-ray afterglows. Although the z > 2 quasar opacity is consistent with diffuse IGM absorption, many intermediate-z (0.45 < z < 2) quasars are not sufficiently absorbed for this scenario, and are appreciably less absorbed than GRBs. Only 10/37 quasars at z < 2 are absorbed, and only 5/30 radio-quiet quasars are absorbed. We find a weak correlation between {tau} and z, and an even weaker correlation between {tau} and radio luminosity. These findings lead to the conclusion that although a diffuse IGM origin for the quasar absorption is unlikely, the optical depth does seem to increase with redshift, roughly as (1 + z){sup 2.2{+-}0.6}, tending to {tau} Almost-Equal-To 0.4 at high redshifts, similar to the high-z GRBs. This result can be explained by an ionized and clumpy IGM at z < 2, and a cold, diffuse IGM at higher redshift. If, conversely, the absorption occurs at the quasar, and owing to the steep L{sub x} {proportional_to}(1 + z){sup 7.1{+-}0.5} correlation in the present sample, the host column density scales as N{sub H}{proportional_to}L{sub x}{sup 0.7{+-}0.1}.

  4. Radio continuum polarimetric imaging of high redshift radio galaxies

    NASA Technical Reports Server (NTRS)

    Carilli, C. L.; Owen, F. N.; Harris, D. E.

    1994-01-01

    Multifrequency images of total and polarized radio continuum emission from the two high redshift radio galaxies 0902+343 (z = 3.40) and 0647+415 (4C 41.17, z = 3.80) are presented. These images represent the most sensitive polarimetric study of high redshift ratio galaxies to date. The emission from both galaxies is substantially polarized, up to 30% in some regions, and both sources sit behind deep 'Faraday screens,' producing large rotation measures, over 10(exp 3) rad/sq. m in magnitude, and large rotation measure gradients across the sources. Such large rotation measures provide further evidence that high redshift radio galaxies are situated in very dense environments. Drawing the analogy to a class of low redshift powerful radio galaxies with similarly large rotation measures, we suggest that 0902+343 and 0647+415 are situated at the centers of dense, x-ray 'colling flow' clusters, and that the cluster gas is substantially magnetized. The remarkable similarity between the optical and radio morphologies of 0647+415 on scales as small as 0.1 sec is presented. We consider, and reject, both synchrotron and inverse Compton radiation as possible sources of the optical emission. We also consider both scattering of light out of a 'cone' of radiation from an obscured nucleus, and jet-induced star formation, and find that both models encounter difficulties in explaining this remarkably close radio-optical alignment. High resolution spectral index images reveal compact, flat spectrum components in both sources. We suggest that these components are the active nuclei of the galaxies. Lastly, high resolution images of 0902+343 show that the southernmost component forms a 'ring' of 0.2 sec radius. We discuss the possibility that this ring is the result of gravitational lensing, along the lines proposed by Kochanek & Lawrence (1990).

  5. Testing the CMB Quenching for High-Redshift Radio Galaxies

    NASA Astrophysics Data System (ADS)

    Wu, Jianfeng; Gallo, Elena

    2016-04-01

    The identification of a dozen of high-redshift (z > 4) blazars implies that a much larger population of powerful, but mis-aligned jetted AGNs already exists in the early Universe. However, this parent population remains elusive, although they are expected to be within the sensitivity threshold of modern wide-field radio surveys. One appealing mechanism is that the CMB photons upscatter the diffuse synchrotron radio emission in the lobes to the X-ray band. In this scenario, the lobes will turn into luminous X-ray sources. We analyzed the extended X-ray emission around several radio galaxies at z~4 and constructed their broad-band spectral energy distributions (SEDs). Modeling their SEDs will test this CMB quenching scenario for high-redshift radio galaxies.

  6. Bulge Growth Through Disc Instabilities in High-Redshift Galaxies

    NASA Astrophysics Data System (ADS)

    Bournaud, Frédéric

    The role of disc instabilities, such as bars and spiral arms, and the associated resonances, in growing bulges in the inner regions of disc galaxies have long been studied in the low-redshift nearby Universe. There it has long been probed observationally, in particular through peanut-shaped bulges (Chap. 14 10.1007/978-3-319-19378-6_14"). This secular growth of bulges in modern disc galaxies is driven by weak, non-axisymmetric instabilities: it mostly produces pseudobulges at slow rates and with long star-formation timescales. Disc instabilities at high redshift (z > 1) in moderate-mass to massive galaxies (1010 to a few 1011 M⊙ of stars) are very different from those found in modern spiral galaxies. High-redshift discs are globally unstable and fragment into giant clumps containing 108-9 M⊙ of gas and stars each, which results in highly irregular galaxy morphologies. The clumps and other features associated to the violent instability drive disc evolution and bulge growth through various mechanisms on short timescales. The giant clumps can migrate inward and coalesce into the bulge in a few 108 years. The instability in the very turbulent media drives intense gas inflows toward the bulge and nuclear region. Thick discs and supermassive black holes can grow concurrently as a result of the violent instability. This chapter reviews the properties of high-redshift disc instabilities, the evolution of giant clumps and other features associated to the instability, and the resulting growth of bulges and associated sub-galactic components.

  7. Theoretical considerations for star formation at low and high redshifts

    NASA Astrophysics Data System (ADS)

    Elmegreen, Bruce G.

    2015-08-01

    Star formation processes in strongly self-gravitating cloud cores should be similar at all redshifts, forming single or multiple stars with a range of masses determined by local magneto-hydrodynamics. The formation processes for these cores, however, as well as their structures, temperatures, Mach numbers, etc., and the boundedness and mass distribution functions of the resulting stars, should depend on environment, as should the characteristic mass, density, and column density at which cloud self-gravity dominates other forces. Because the environments for high and low redshift star formation differ significantly, we expect the resulting gas to stellar conversion details to differ also. At high redshift, the universe is denser and more gas-rich, so the active parts of galaxies are denser and more gas rich too, leading to shorter gas consumption timescales, higher cloud pressures, and denser, more massive, bound stellar clusters at the high mass end. With shorter consumption times corresponding to higher relative cosmic accretion rates, and with the resulting higher star formation rates and their higher feedback powers, the ISM has greater turbulent speeds relative to the rotation speeds, thicker gas disks, and larger cloud and star complex sizes at the characteristic Jeans length. The result is a more chaotic appearance at high redshift, bridging the morphology gap between today’s quiescent spirals and today’s major-mergers, with neither spiral nor major-merger processes actually in play at that time. The result is also a thick disk at early times, and after in-plane accretion from relatively large clump torques, a classical bulge. Today’s disks are much thinner and torque-driven accretion is much slower outside of the inner barred regions. This talk will review the basic theoretical processes involved with star formation in order to illustrate its evolution over time and environment.

  8. Implications of multiple high-redshift galaxy clusters

    SciTech Connect

    Hoyle, Ben; Jimenez, Raul; Verde, Licia

    2011-05-15

    To date, 14 high-redshift (z>1.0) galaxy clusters with mass measurements have been observed, spectroscopically confirmed, and are reported in the literature. These objects should be exceedingly rare in the standard {Lambda} cold dark matter ({Lambda}CDM) model. We conservatively approximate the selection functions of these clusters' parent surveys and quantify the tension between the abundances of massive clusters as predicted by the standard {Lambda}CDM model and the observed ones. We alleviate the tension, considering non-Gaussian primordial perturbations of the local type, characterized by the parameter f{sub NL}, and derive constraints on f{sub NL} arising from the mere existence of these clusters. At the 95% confidence level, f{sub NL}>467, with cosmological parameters fixed to their most likely WMAP5 values, or f{sub NL} > or approx. 123 (at 95% confidence) if we marginalize over prior WMAP5 parameters. In combination with f{sub NL} constraints from cosmic microwave background and halo bias, this determination implies a scale dependence of f{sub NL} at {approx_equal}3{sigma}. Given the assumptions made in the analysis, we expect any future improvements to the modeling of the non-Gaussian mass function, survey volumes, or selection functions to increase the significance of f{sub NL}>0 found here. In order to reconcile these massive, high-z clusters with f{sub NL}=0, their masses would need to be systematically lowered by 1.5{sigma}, or the {sigma}{sub 8} parameter should be {approx}3{sigma} higher than cosmic microwave background (and large-scale structure) constraints. The existence of these objects is a puzzle: it either represents a challenge to the {Lambda}CDM paradigm or it is an indication that the mass estimates of clusters are dramatically more uncertain than we think.

  9. A Global Probe of Cosmic Magnetic Fields to High Redshifts

    NASA Astrophysics Data System (ADS)

    Kronberg, P. P.; Bernet, M. L.; Miniati, F.; Lilly, S. J.; Short, M. B.; Higdon, D. M.

    2008-03-01

    Faraday rotation (rotation measure [RM]) probes of magnetic fields in the universe are sensitive to cosmological and evolutionary effects as z increases beyond ~1 because of the scalings of electron density and magnetic fields, and the growth in the number of expected intersections with galaxy-scale intervenors, dN/dz. In this new global analysis of an unprecedented large sample of RMs of high-latitude quasars extending out to z ~ 3.7, we find that the distribution of RM broadens with redshift in the 20-80 rad m-2 range, despite the (1 + z)-2 wavelength dilution expected in the observed Faraday rotation. Our results indicate that the universe becomes increasingly "Faraday-opaque" to sources beyond z ~ 2; that is, as z increases, progressively fewer sources are found with a "small" RM in the observer's frame. This is in contrast to sources at zlesssim 1. They suggest that the environments of galaxies were significantly magnetized at high redshifts, with magnetic field strengths that were at least as strong within a few Gyr of the big bang as at the current epoch. We separately investigate a simple unevolving toy model in which the RM is produced by Mg II absorber systems, and find that it can approximately reproduce the observed trend with redshift. An additional possibility is that the intrinsic RM associated with the radio sources was much higher in the past, and we show that this is not a trivial consequence of the higher radio luminosities of the high-redshift sources.

  10. Far-Infrared Line Emission from High Redshift Quasars

    NASA Technical Reports Server (NTRS)

    Benford, D. J.; Cox, P.; Hunter, T. R.; Malhotra, S.; Phillips, T. G.; Yun, M. S.

    2002-01-01

    Recent millimeter and submillimeter detections of line emission in high redshift objects have yielded new information and constraints on star formation at early epochs. Only CO transitions and atomic carbon transitions have been detected from these objects, yet bright far-infrared lines such as C+ at 158 microns and N+ at 205 microns should be fairly readily detectable when redshifted into a submillimeter atmospheric window. We have obtained upper limits for C+ emission &om two high redshift quasars, BR1202-0725 at z=4.69 and BRI1335-0415 at z=4.41. These limits show that the ratio of the C+ line luminosity to the total far-infrared luminosity is less than 0.0l%, ten times smaller than has been observed locally. Additionally, we have searched for emission in the N+ 205 micron line from the Cloverleaf quasar, H1413+117, and detected emission in CO J=7-6. The N+ emission is found to be below the amount predicted based on comparison to the only previous detection of this line, in the starburst galaxy M82.

  11. The growth efficiency of high-redshift black holes

    NASA Astrophysics Data System (ADS)

    Pacucci, Fabio; Volonteri, Marta; Ferrara, Andrea

    2015-09-01

    The observational evidence that Super-Massive Black Holes (M• ˜ 109-10 M⊙) are already in place less than 1 Gyr after the big bang poses stringent time constraints on the growth efficiency of their seeds. Among proposed possibilities, the formation of massive (˜103-6 M⊙) seeds and/or the occurrence of super-Eddington (dot{M}>dot{M}_{Edd}) accretion episodes may contribute to the solution of this problem. In this work, using a set of astrophysically motivated initial conditions, we analytically and numerically investigate the accretion flow on to high-redshift (z ˜ 10) black holes to understand the physical requirements favouring rapid and efficient growth. Our model identifies a `feeding-dominated' accretion regime and a `feedback-limited' one, the latter being characterized by intermittent (duty cycles D ≲ 0.5) and inefficient growth, with recurring outflow episodes. We find that low-mass seeds (≲103-4 M⊙) evolve in the feedback-limited regime, while more massive seeds (≳105-6 M⊙) grow very rapidly as they are found in the feeding-dominated regime. In addition to the standard accretion model with a fixed matter-energy conversion factor (ɛ = 0.1), we have also explored slim disc models, appropriate for super-Eddington accretion, where radiation is trapped in the disc and the radiative efficiency is reduced (ɛ ≲ 0.04), which may ensure a continuous growth with dot{M} ≫ dot{M}_{Edd} (up to {˜ } 300 dot{M}_{Edd} in our simulations). Under these conditions, outflows play a negligible role and a black hole can accrete 80-100 per cent of the gas mass of the host halo (˜107 M⊙) in ˜10 Myr, while in feedback-limited systems we predict that black holes can accrete only up to ˜15 per cent of the available mass.

  12. High redshift galaxies in the ALHAMBRA survey . I. Selection method and number counts based on redshift PDFs

    NASA Astrophysics Data System (ADS)

    Viironen, K.; Marín-Franch, A.; López-Sanjuan, C.; Varela, J.; Chaves-Montero, J.; Cristóbal-Hornillos, D.; Molino, A.; Fernández-Soto, A.; Vilella-Rojo, G.; Ascaso, B.; Cenarro, A. J.; Cerviño, M.; Cepa, J.; Ederoclite, A.; Márquez, I.; Masegosa, J.; Moles, M.; Oteo, I.; Pović, M.; Aguerri, J. A. L.; Alfaro, E.; Aparicio-Villegas, T.; Benítez, N.; Broadhurst, T.; Cabrera-Caño, J.; Castander, J. F.; Del Olmo, A.; González Delgado, R. M.; Husillos, C.; Infante, L.; Martínez, V. J.; Perea, J.; Prada, F.; Quintana, J. M.

    2015-04-01

    Context. Most observational results on the high redshift restframe UV-bright galaxies are based on samples pinpointed using the so-called dropout technique or Ly-α selection. However, the availability of multifilter data now allows the dropout selections to be replaced by direct methods based on photometric redshifts. In this paper we present the methodology to select and study the population of high redshift galaxies in the ALHAMBRA survey data. Aims: Our aim is to develop a less biased methodology than the traditional dropout technique to study the high redshift galaxies in ALHAMBRA and other multifilter data. Thanks to the wide area ALHAMBRA covers, we especially aim at contributing to the study of the brightest, least frequent, high redshift galaxies. Methods: The methodology is based on redshift probability distribution functions (zPDFs). It is shown how a clean galaxy sample can be obtained by selecting the galaxies with high integrated probability of being within a given redshift interval. However, reaching both a complete and clean sample with this method is challenging. Hence, a method to derive statistical properties by summing the zPDFs of all the galaxies in the redshift bin of interest is introduced. Results: Using this methodology we derive the galaxy rest frame UV number counts in five redshift bins centred at z = 2.5,3.0,3.5,4.0, and 4.5, being complete up to the limiting magnitude at mUV(AB) = 24, where mUV refers to the first ALHAMBRA filter redwards of the Ly-α line. With the wide field ALHAMBRA data we especially contribute to the study of the brightest ends of these counts, accurately sampling the surface densities down to mUV(AB) = 21-22. Conclusions: We show that using the zPDFs it is easy to select a very clean sample of high redshift galaxies. We also show that it is better to do statistical analysis of the properties of galaxies using a probabilistic approach, which takes into account both the incompleteness and contamination issues in a

  13. Accessing the population of high-redshift Gamma Ray Bursts

    NASA Astrophysics Data System (ADS)

    Ghirlanda, G.; Salvaterra, R.; Ghisellini, G.; Mereghetti, S.; Tagliaferri, G.; Campana, S.; Osborne, J. P.; O'Brien, P.; Tanvir, N.; Willingale, D.; Amati, L.; Basa, S.; Bernardini, M. G.; Burlon, D.; Covino, S.; D'Avanzo, P.; Frontera, F.; Götz, D.; Melandri, A.; Nava, L.; Piro, L.; Vergani, S. D.

    2015-04-01

    Gamma Ray Bursts (GRBs) are a powerful probe of the high-redshift Universe. We present a tool to estimate the detection rate of high-z GRBs by a generic detector with defined energy band and sensitivity. We base this on a population model that reproduces the observed properties of GRBs detected by Swift, Fermi and CGRO in the hard X-ray and γ-ray bands. We provide the expected cumulative distributions of the flux and fluence of simulated GRBs in different energy bands. We show that scintillator detectors, operating at relatively high energies (e.g. tens of keV to the MeV), can detect only the most luminous GRBs at high redshifts due to the link between the peak spectral energy and the luminosity (Epeak-Liso) of GRBs. We show that the best strategy for catching the largest number of high-z bursts is to go softer (e.g. in the soft X-ray band) but with a very high sensitivity. For instance, an imaging soft X-ray detector operating in the 0.2-5 keV energy band reaching a sensitivity, corresponding to a fluence, of ˜10-8 erg cm-2 is expected to detect ≈40 GRBs yr-1 sr-1 at z ≥ 5 (≈3 GRBs yr-1 sr-1 at z ≥ 10). Once high-z GRBs are detected the principal issue is to secure their redshift. To this aim we estimate their NIR afterglow flux at relatively early times and evaluate the effectiveness of following them up and construct usable samples of events with any forthcoming GRB mission dedicated to explore the high-z Universe.

  14. Metal-rich absorbers at high redshifts: abundance patterns

    NASA Astrophysics Data System (ADS)

    Levshakov, S. A.; Agafonova, I. I.; Molaro, P.; Reimers, D.; Hou, J. L.

    2009-11-01

    Aims: To study chemical composition of metal-rich absorbers at high redshifts in order to understand their nature and to determine sources of their metal enrichment. Methods: From six spectra of high-z QSOs, we select eleven metal-rich, Z ⪆ Z_⊙, and optically-thin to the ionizing radiation, N(H i) < 1017 cm-2, absorption systems ranging between z = 1.5 and z = 2.9 and revealing lines of different ions in subsequent ionization stages. Computations are performed using the Monte Carlo inversion (MCI) procedure complemented with the adjustment of the spectral shape of the ionizing radiation. This procedure along with selection criteria for the absorption systems guarantee the accuracy of the ionization corrections and of the derived element abundances (C, N, O, Mg, Al, Si, Fe). Results: The majority of the systems (10 from 11) show abundance patterns which relate them to outflows from low and intermediate mass stars. One absorber is enriched prevalently by SNe II, however, a low percentage of such systems in our sample is conditioned by the selection criteria. All systems have sub-kpc linear sizes along the line-of-sight with many less than 20 pc. In several systems, silicon is deficient, presumably due to the depletion onto dust grains in the envelopes of dust-forming stars and the subsequent gas-dust separation. At any value of [C/H], nitrogen can be either deficient, [N/C] < 0, or enhanced, [N/C] > 0, which supposes that the nitrogen enrichment occurs irregularly. In some cases, the lines of Mg ii λλ2796, 2803 appear to be shifted, probably as a result of an enhanced content of heavy isotopes 25Mg and 26Mg in the absorbing gas relative to the solar isotopic composition. Seven absorbers are characterized by low mean ionization parameter U, logU < - 2.3, among them only one system has a redshift z > 2 (z_abs = 2.5745) whereas all others are found at z 1.8. This statistics is not affected by any selection criteria and reflects the real rise in number of such

  15. High-redshift galaxy populations and their descendants

    NASA Astrophysics Data System (ADS)

    Guo, Qi; White, Simon D. M.

    2009-06-01

    We study predictions in the concordance Λ cold dark matter cosmology for the abundance and clustering of high-redshift galaxies and for the properties of their descendants. We focus on three high-redshift populations: Lyman break galaxies (LBGs) at z ~ 3, optically selected star-forming galaxies at z ~ 2 (BXs) and distant red galaxies (DRGs) at z ~ 2. We select galaxies from mock catalogues based on the Millennium Simulation using the observational colour and apparent magnitude criteria. With plausible dust assumptions, our galaxy formation model can simultaneously reproduce the abundances, redshift distributions and clustering of all three observed populations. The star formation rates (SFRs) of model LBGs and BXs are lower than those quoted for the real samples, reflecting differing initial mass functions and scatter in model dust properties. About 85 per cent of model galaxies selected as DRGs are star forming, with SFRs in the range 1 to ~100Msolaryr-1. Model LBGs, BXs and DRGs together account for less than half of all star formation over the range 1.5 < z < 3.2; many massive, star-forming galaxies are predicted to be too heavily obscured to appear in these populations. Model BXs have metallicities which agree roughly with observation, but model LBGs are only slightly more metal poor, in disagreement with recent observational results. The model galaxies are predominantly disc dominated. Stellar masses for LBGs and BXs are ~109.9Msolar, and for DRGs are ~1010.7Msolar. Only about 30 per cent of model galaxies with M* > 1011Msolar are classified as LBGs or BXs at the relevant redshifts, while 65 per cent are classified as DRGs. Almost all model LBGs and BXs are the central galaxies of their dark haloes, but fewer than half of the haloes of any given mass have an LBG or BX central galaxy. Half of all LBG descendants at z = 2 would be identified as BXs, but very few as DRGs. Clustering increases with decreasing redshift for descendants of all three populations

  16. The rest-frame submillimeter spectrum of high-redshift, dusty, star-forming galaxies

    SciTech Connect

    Spilker, J. S.; Marrone, D. P.; Aguirre, J. E.; Aravena, M.; Ashby, M. L. N.; Béthermin, M.; Bothwell, M. S.; Brodwin, M.; Carlstrom, J. E.; Crawford, T. M.; Chapman, S. C.; De Breuck, C.; Gullberg, B.; Fassnacht, C. D.; Gonzalez, A. H.; Greve, T. R.; Hezaveh, Y.; Holzapfel, W. L.; and others

    2014-04-20

    We present the average rest-frame spectrum of high-redshift dusty, star-forming galaxies from 250 to 770 GHz. This spectrum was constructed by stacking Atacama Large Millimeter/submillimeter Array (ALMA) 3 mm spectra of 22 such sources discovered by the South Pole Telescope and spanning z = 2.0-5.7. In addition to multiple bright spectral features of {sup 12}CO, [C I], and H{sub 2}O, we also detect several faint transitions of {sup 13}CO, HCN, HNC, HCO{sup +}, and CN, and use the observed line strengths to characterize the typical properties of the interstellar medium of these high-redshift starburst galaxies. We find that the {sup 13}CO brightness in these objects is comparable to that of the only other z > 2 star-forming galaxy in which {sup 13}CO has been observed. We show that the emission from the high-critical density molecules HCN, HNC, HCO{sup +}, and CN is consistent with a warm, dense medium with T {sub kin} ∼ 55 K and n{sub H{sub 2}}≳10{sup 5.5} cm{sup –3}. High molecular hydrogen densities are required to reproduce the observed line ratios, and we demonstrate that alternatives to purely collisional excitation are unlikely to be significant for the bulk of these systems. We quantify the average emission from several species with no individually detected transitions, and find emission from the hydride CH and the linear molecule CCH for the first time at high redshift, indicating that these molecules may be powerful probes of interstellar chemistry in high-redshift systems. These observations represent the first constraints on many molecular species with rest-frame transitions from 0.4 to 1.2 mm in star-forming systems at high redshift, and will be invaluable in making effective use of ALMA in full science operations.

  17. High Redshift Radio Galaxies at Low Redshift, and Some Other Issues

    NASA Astrophysics Data System (ADS)

    Antonucci, Robert

    Cygnus A is the only high redshift radio galaxy at low redshift, that is it's the only nearby object with radio power in the range of the high redshift 3C objects. It is clear now that this is somewhat misleading in that Cyg A is an overachiever in the radio, and that its actual bolometric luminosity is much more modest than this would indicate. (This point has been explored and generalized in Barthel and Arnaud 1996; also see Carilli and Barthel 1996 for a detailed review of Cyg A). But the energy content of the lobes is famously large. There is a whole history of attempts to show that Cygnus A fits the Unified Model, and our particular contribution was detecting an apparent broad MgII line with the HST (Antonucci, Kinney and Hurt 1994, which includes references to previous work). The spectral signal-to-noise ratio (SNR) was less than amazing; furthermore an unflagged dead diode took out ~12 Å from the line profile; and there was an uncertain ``noise" contribution from confusing narrow lines (gory details in Antonucci 1994). One of the referees of our paper - the favorable one - stated that ``only a mother could love that line." Thus we reobserved it with somewhat better SNR and with the bad diode flagged, and the old and new data are presented to the same scale in Figure 1. Most of the bins are within the combined 1 σ statistical errors, and the many statistically significant wiggles are almost all present in NGC1068 as well (Antonucci, Hurt and Miller 1994). The point is that the errors are believable, and that the continuum should be set low. I believe the MgII line is there and is broader than we thought originally. (A detailed discussion of the spectrum is in prep.) In the 1994 paper we also stated that the polarization in the UV (F320W FOC filter) is ~6 %, and perpendicular to the radio axis, indicating that there is a fairly large contribution from scattered light from a quasar in this region. This is consistent with the scenario of Jackson and Tadhunter

  18. POPULATION III STARS AND REMNANTS IN HIGH-REDSHIFT GALAXIES

    SciTech Connect

    Xu Hao; Norman, Michael L.; Wise, John H. E-mail: mlnorman@ucsd.edu

    2013-08-20

    Recent simulations of Population III star formation have suggested that some fraction form in binary systems, in addition to having a characteristic mass of tens of solar masses. The deaths of metal-free stars result in the initial chemical enrichment of the universe and the production of the first stellar-mass black holes. Here we present a cosmological adaptive mesh refinement simulation of an overdense region that forms a few 10{sup 9} M{sub Sun} dark matter halos and over 13,000 Population III stars by redshift 15. We find that most halos do not form Population III stars until they reach M{sub vir} {approx} 10{sup 7} M{sub Sun} because this biased region is quickly enriched from both Population III and galaxies, which also produce high levels of ultraviolet radiation that suppress H{sub 2} formation. Nevertheless, Population III stars continue to form, albeit in more massive halos, at a rate of {approx}10{sup -4} M{sub Sun} yr{sup -1} Mpc{sup -3} at redshift 15. The most massive starless halo has a mass of 7 Multiplication-Sign 10{sup 7} M{sub Sun }, which could host massive black hole formation through the direct gaseous collapse scenario. We show that the multiplicity of the Population III remnants grows with halo mass above 10{sup 8} M{sub Sun }, culminating in 50 remnants located in 10{sup 9} M{sub Sun} halos on average. This has implications that high-mass X-ray binaries and intermediate-mass black holes that originate from metal-free stars may be abundant in high-redshift galaxies.

  19. Cosmic Lighthouses : Unveiling the nature of high-redshift galaxies

    NASA Astrophysics Data System (ADS)

    Dayal, Pratika

    2011-01-01

    We are in the golden age for the search for high-redshift galaxies, made possible by a combination of new instruments and innovative search techniques. One of the major aims of such searches is to constrain the epoch of reionization (EoR), which marks the second major change in the ionization state of the Universe. Understanding the EoR is difficult since whilst it is galaxy evolution which drives reionization, reionization itself influences galaxy evolution through feedback effects. Unraveling the interplay of reionization and galaxy evolution is further complicated by of a lack of understanding of the metal enrichment and dust distribution in high redshift galaxies. To this end, a class of galaxies called Lyman Alpha Emitters (LAEs) have been gaining enormous popularity as probes of all these three processes. In this thesis, we couple state of the art cosmological SPH simulations (GADGET-2) with a physically motivated, self-consistent model for LAEs, so as to be able to understand the importance of the intergalactic medium (IGM) ionization state, dust and peculiar velocities in shaping their observed properties. By doing so, the aim is to gain insight on the nature of LAEs, put precious constraints on their elusive physical properties and make predictions for future instruments such as the Atacama Large Millimeter Array (ALMA). Using our LAE model in conjunction with a code that builds the MW merger tree (GAMETE), we build a bridge between the high-redshift and the local Universe. We also use SPH simulations (GADGET-2) to study the nature of the earliest galaxies that have been detected as of yet, place constraints on their contribution to reionization, and predict their detectability using the next generation of instruments, such as the James Web Space Telescope (JWST).

  20. The High Redshift Universe Seen Through the Eyes of ALMA

    NASA Astrophysics Data System (ADS)

    Wiklind, Tommy

    2012-07-01

    The Atacama Large Millimeter/submm Array (ALMA) is an interferometric telescope currently under construction on the Chajnantor Plateau in northern Chile. It is situated at an altitude of 5000m, in one of the driest places in the world. The combination of the meteorological conditions, increased total collecting area and the use of state-of-the-art receivers means that the fully operational ALMA is a factor 10-1000 more sensitive than existing facilities, depending on the wavelength. When completed in 2013, ALMA will consists of 66 antennas, with maximum baselines of up to 15 km and it will be able to observe at wavelengths from 10 millimeter to ~350micron. ALMA will be able to provide an angular resolution of ~0.05 arcseconds. ALMA is still under construction, but has started producing science in an 'Early Science' phase. The goal with ALMA has from the beginning been to provide very high sensitivity as well as an angular resolution matching that of space based optical observatories such as the HST. One of three main drivers when designing ALMA has been the ability to study the high redshift universe. The main reason behind this is that almost half of the integrated background radiation comes from the far-infrared wavelength regime. This emission is interpreted as originating from dust re-radiated stellar emission in high redshift galaxies. Interstellar dust is almost invariably associated with molecular gas, that can be studied using molecular rotational transitions. The shape of the dust spectral energy distribution ensures that the observed flux at a fixed wavelength long-ward of the far-infrared peak (about 100micron) remains more or less constant over a redshift range z=1-10. This aspect makes dust continuum emission extraordinarily important for studying galaxies and Active Galactic Nuclei at high redshift. Through observations of line emission from molecular transitions it is possible to study the associated molecular gas distribution and its kinematics. The

  1. Candidate High Redshift Clusters of Dusty Galaxies from Herschel & Planck

    NASA Astrophysics Data System (ADS)

    Clements, David L.

    2015-08-01

    The cross identification of Planck compact sources with objects in karger area Herschel surveys, such as HerMES and H-ATLAS, has led to the discovery of candidate high redshift (out to z~3) clusters of far-IR luminous star forming galaxies. These objects are not easily reproduced in the current generations of galaxy and large scale formation simulations and are thus a potentially powerful new tool for comnstraining galaxy and cluster formation models. We will review the current results on these sources and examine future prospects for progress in this novel and potentially important new field.

  2. THE FIRST HIGH-REDSHIFT QUASAR FROM Pan-STARRS

    SciTech Connect

    Morganson, Eric; De Rosa, Gisella; Decarli, Roberto; Walter, Fabian; Rix, Hans-Walter; Chambers, Ken; Burgett, William; Flewelling, Heather; Hodapp, Klaus; Kaiser, Nick; Magnier, Eugene; Sweeney, Bill; Waters, Christopher; McGreer, Ian; Fan, Xiaohui; Greiner, Jochen; Price, Paul

    2012-06-15

    We present the discovery of the first high-redshift (z > 5.7) quasar from the Panoramic Survey Telescope and Rapid Response System 1 (Pan-STARRS1 or PS1). This quasar was initially detected as an i{sub P1} dropout in PS1, confirmed photometrically with the SAO Wide-field InfraRed Camera at Arizona's Multiple Mirror Telescope (MMT) and the Gamma-Ray Burst Optical/Near-Infrared Detector at the MPG 2.2 m telescope in La Silla. The quasar was verified spectroscopically with the MMT Spectrograph, Red Channel and the Cassegrain Twin Spectrograph at the Calar Alto 3.5 m telescope. Its near-infrared spectrum was taken at the Large Binocular Telescope Observatory (LBT) with the LBT Near-Infrared Spectroscopic Utility with Camera and Integral Field Unit for Extragalactic Research. It has a redshift of 5.73, an AB z{sub P1} magnitude of 19.4, a luminosity of 3.8 Multiplication-Sign 10{sup 47} erg s{sup -1}, and a black hole mass of 6.9 Multiplication-Sign 10{sup 9} M{sub Sun }. It is a broad absorption line quasar with a prominent Ly{beta} peak and a very blue continuum spectrum. This quasar is the first result from the PS1 high-redshift quasar search that is projected to discover more than 100 i{sub P1} dropout quasars and could potentially find more than 10 z{sub P1} dropout (z > 6.8) quasars.

  3. Photometric Selection of High-Redshift Type Ia Supernova Candidates

    NASA Astrophysics Data System (ADS)

    Sullivan, M.; Howell, D. A.; Perrett, K.; Nugent, P. E.; Astier, P.; Aubourg, E.; Balam, D.; Basa, S.; Carlberg, R. G.; Conley, A.; Fabbro, S.; Fouchez, D.; Guy, J.; Hook, I.; Lafoux, H.; Neill, J. D.; Pain, R.; Palanque-Delabrouille, N.; Pritchet, C. J.; Regnault, N.; Rich, J.; Taillet, R.; Aldering, G.; Baumont, S.; Bronder, J.; Filiol, M.; Knop, R. A.; Perlmutter, S.; Tao, C.

    2006-02-01

    We present a method for selecting high-redshift Type Ia supernovae (SNe Ia) located via rolling SN searches. The technique, using both color and magnitude information of events from only two to three epochs of multiband real-time photometry, is able to discriminate between SNe Ia and core-collapse SNe. Furthermore, for SNe Ia the method accurately predicts the redshift, phase, and light-curve parameterization of these events based only on pre-maximum-light data. We demonstrate the effectiveness of the technique on a simulated survey of SNe Ia and core-collapse SNe, where the selection method effectively rejects most core-collapse SNe while retaining SNe Ia. We also apply the selection code to real-time data acquired as part of the Canada-France-Hawaii Telescope Supernova Legacy Survey (SNLS). During the period 2004 May to 2005 January in the SNLS, 440 SN candidates were discovered, of which 70 were confirmed spectroscopically as SNe Ia and 15 as core-collapse events. For this test data set, the selection technique correctly identifies 100% of the identified SNe II as non-SNe Ia with only a 1%-2% false rejection rate. The predicted parameterization of the SNe Ia has a precision of Δz/(1+zspec)<0.09 in redshift and +/-2-3 rest-frame days in phase, providing invaluable information for planning spectroscopic follow-up observations. We also investigate any bias introduced by this selection method on the ability of surveys such as SNLS to measure cosmological parameters (e.g., w and ΩM) and find any effect to be negligible.

  4. Probing Gravity in the High-Redshift Universe with HETDEX

    NASA Astrophysics Data System (ADS)

    Malz, A. I.; Shandera, S.

    2014-01-01

    The addition of dark matter and dark energy to general relativity is degenerate with a modification of the dependence of curvature on the stress-energy tensor in the absence of exotic sources of matter and energy; it is thus valuable to explore the latter as a potential improvement over the former. Though it is inherently difficult to distinguish existing evidence for the general relativity paradigm from that of its more promising alternatives, such theories are associated with different histories for the largely unexplored growth of structure. Zhang, et al. (2007) have enabled discrimination of these possibilities via a new observable parameter EG and have predicted the efficacy of several future astronomical surveys to determine its value. In this work, we examine the ability of the Hobby Eberly Telescope Dark Energy Experiment (HETDEX) to contribute to calculations of this indicator of gravity at the highest redshifts (1.9 < z < 3.5). We show that a prerequisite of such a measurement is a deeper understanding of the nature of Lyman-α emitting galaxies (LAEs). If HETDEX can constrain the statistical properties of the typical LAE velocity dispersion, then it will not be necessary to wait for the (as yet unplanned) next generation of high-resolution spectrographs to obtain a test of general relativity in the high-redshift universe.

  5. First broadband characterization and redshift determination of the VHE blazar MAGIC J2001+439

    NASA Astrophysics Data System (ADS)

    Aleksić, J.; Ansoldi, S.; Antonelli, L. A.; Antoranz, P.; Babic, A.; Bangale, P.; Barres de Almeida, U.; Barrio, J. A.; Becerra González, J.; Bednarek, W.; Bernardini, E.; Biland, A.; Blanch, O.; Bonnefoy, S.; Bonnoli, G.; Borracci, F.; Bretz, T.; Carmona, E.; Carosi, A.; Carreto Fidalgo, D.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Covino, S.; da Vela, P.; Dazzi, F.; de Angelis, A.; de Caneva, G.; de Lotto, B.; Delgado Mendez, C.; Doert, M.; Domínguez, A.; Dominis Prester, D.; Dorner, D.; Doro, M.; Einecke, S.; Eisenacher, D.; Elsaesser, D.; Farina, E.; Ferenc, D.; Fonseca, M. V.; Font, L.; Frantzen, K.; Fruck, C.; García López, R. J.; Garczarczyk, M.; Garrido Terrats, D.; Gaug, M.; Godinović, N.; González Muñoz, A.; Gozzini, S. R.; Hadasch, D.; Hayashida, M.; Herrera, J.; Herrero, A.; Hildebrand, D.; Hose, J.; Hrupec, D.; Idec, W.; Kadenius, V.; Kellermann, H.; Kodani, K.; Konno, Y.; Krause, J.; Kubo, H.; Kushida, J.; La Barbera, A.; Lelas, D.; Lewandowska, N.; Lindfors, E.; Lombardi, S.; López, M.; López-Coto, R.; López-Oramas, A.; Lorenz, E.; Lozano, I.; Makariev, M.; Mallot, K.; Maneva, G.; Mankuzhiyil, N.; Mannheim, K.; Maraschi, L.; Marcote, B.; Mariotti, M.; Martínez, M.; Mazin, D.; Menzel, U.; Meucci, M.; Miranda, J. M.; Mirzoyan, R.; Moralejo, A.; Munar-Adrover, P.; Nakajima, D.; Niedzwiecki, A.; Nilsson, K.; Nishijima, K.; Noda, K.; Nowak, N.; Orito, R.; Overkemping, A.; Paiano, S.; Palatiello, M.; Paneque, D.; Paoletti, R.; Paredes, J. M.; Paredes-Fortuny, X.; Partini, S.; Persic, M.; Prada, F.; Prada Moroni, P. G.; Prandini, E.; Preziuso, S.; Puljak, I.; Reinthal, R.; Rhode, W.; Ribó, M.; Rico, J.; Rodriguez Garcia, J.; Rügamer, S.; Saggion, A.; Saito, T.; Saito, K.; Satalecka, K.; Scalzotto, V.; Scapin, V.; Schultz, C.; Schweizer, T.; Shore, S. N.; Sillanpää, A.; Sitarek, J.; Snidaric, I.; Sobczynska, D.; Spanier, F.; Stamatescu, V.; Stamerra, A.; Steinbring, T.; Storz, J.; Strzys, M.; Sun, S.; Surić, T.; Takalo, L.; Takami, H.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Tescaro, D.; Teshima, M.; Thaele, J.; Tibolla, O.; Torres, D. F.; Toyama, T.; Treves, A.; Uellenbeck, M.; Vogler, P.; Wagner, R. M.; Zandanel, F.; Zanin, R.; MAGIC Collaboration

    2014-12-01

    Aims: We aim to characterize the broadband emission from 2FGL J2001.1+4352, which has been associated with the unknown-redshift blazar MG4 J200112+4352. Based on its gamma-ray spectral properties, it was identified as a potential very high energy (VHE; E> 100 GeV) gamma-ray emitter. We investigate whether this object is aVHE emitter, characterize its gamma-ray spectrum, and study the broadband emission within the one-zone synchrotron self-Compton (SSC) scenario, which is commonly used to describe the emission in blazars. Moreover, we also intend to determine the redshift of this object, which is a crucial parameter for its scientific interpretation. Methods: The source was observed with MAGIC first in 2009 and later in 2010 within a multi-instrument observation campaign. The MAGIC observations yielded 14.8 h of good quality stereoscopic data. Besides MAGIC, the campaign involved, observations with Fermi-LAT, Swift-XRT/UVOT, the optical telescopes KVA, Goddard Robotic Telescope, Galaxy View observatory, Crimean Astrophysical observatory, St. Petersburg observatory, and the Owens Valley Radio Observatory. The object was monitored at radio, optical and gamma-ray energies during the years 2010 and 2011. We characterize the radio to VHE spectral energy distribution and quantify the multiband variability and correlations over short (few days) and long (many months) timescales. We also organized deep imaging optical observations with the Nordic Optical Telescope in 2013 to determine the source redshift. Results: The source, named MAGIC J2001+439, is detected for the first time at VHE with MAGIC at a statistical significance of 6.3σ (E > 70 GeV) during a 1.3 h long observation on 2010 July 16. The multi-instrument observations show variability in all energy bands with the highest amplitude of variability in the X-ray and VHE bands. Besides the variability on few-day timescales, the long-term monitoring of MAGIC J2001+439 shows that, the gamma-ray, optical, and radio

  6. Star formation and mass assembly in high redshift galaxies

    NASA Astrophysics Data System (ADS)

    Santini, P.; Fontana, A.; Grazian, A.; Salimbeni, S.; Fiore, F.; Fontanot, F.; Boutsia, K.; Castellano, M.; Cristiani, S.; de Santis, C.; Gallozzi, S.; Giallongo, E.; Menci, N.; Nonino, M.; Paris, D.; Pentericci, L.; Vanzella, E.

    2009-09-01

    Aims: The goal of this work is to infer the star formation properties and the mass assembly process of high redshift (0.3 ≤ z < 2.5) galaxies from their IR emission using the 24 μm band of MIPS-Spitzer. Methods: We used an updated version of the GOODS-MUSIC catalog, which has multiwavelength coverage from 0.3 to 24 μm and either spectroscopic or accurate photometric redshifts. We describe how the catalog has been extended by the addition of mid-IR fluxes derived from the MIPS 24 μm image. We compared two different estimators of the star formation rate (SFR hereafter). One is the total infrared emission derived from 24 μm, estimated using both synthetic and empirical IR templates. The other one is a multiwavelength fit to the full galaxy SED, which automatically accounts for dust reddening and age-star formation activity degeneracies. For both estimates, we computed the SFR density and the specific SFR. Results: We show that the two SFR indicators are roughly consistent, once the uncertainties involved are taken into account. However, they show a systematic trend, IR-based estimates exceeding the fit-based ones as the star formation rate increases. With this new catalog, we show that: a) at z>0.3, the star formation rate is correlated well with stellar mass, and this relationship seems to steepen with redshift if one relies on IR-based estimates of the SFR; b) the contribution to the global SFRD by massive galaxies increases with redshift up to ≃ 2.5, more rapidly than for galaxies of lower mass, but appears to flatten at higher z; c) despite this increase, the most important contributors to the SFRD at any z are galaxies of about, or immediately lower than, the characteristic stellar mass; d) at z≃ 2, massive galaxies are actively star-forming, with a median {SFR} ≃ 300 M_⊙ yr-1. During this epoch, our targeted galaxies assemble a substantial part of their final stellar mass; e) the specific SFR (SSFR) shows a clear bimodal distribution. Conclusions

  7. OPTIMAL MASS CONFIGURATIONS FOR LENSING HIGH-REDSHIFT GALAXIES

    SciTech Connect

    Wong, Kenneth C.; Zabludoff, Ann I.; Ammons, S. Mark; Keeton, Charles R.

    2012-06-20

    We investigate the gravitational lensing properties of lines of sight containing multiple cluster-scale halos, motivated by their ability to lens very high redshift (z {approx} 10) sources into detectability. We control for the total mass along the line of sight, isolating the effects of distributing the mass among multiple halos and of varying the physical properties of the halos. Our results show that multiple-halo lines of sight can increase the magnified source-plane region compared to the single cluster lenses typically targeted for lensing studies and thus are generally better fields for detecting very high redshift sources. The configurations that result in optimal lensing cross sections benefit from interactions between the lens potentials of the halos when they overlap somewhat on the sky, creating regions of high magnification in the source plane not present when the halos are considered individually. The effect of these interactions on the lensing cross section can even be comparable to changing the total mass of the lens from 10{sup 15} M{sub Sun} to 3 Multiplication-Sign 10{sup 15} M{sub Sun }. The gain in lensing cross section increases as the mass is split into more halos, provided that the lens potentials are projected close enough to interact with each other. A nonzero projected halo angular separation, equal halo mass ratio, and high projected halo concentration are the best mass configurations, whereas projected halo ellipticity, halo triaxiality, and the relative orientations of the halos are less important. Such high-mass, multiple-halo lines of sight exist in the Sloan Digital Sky Survey.

  8. THE DARK SIDE OF QSO FORMATION AT HIGH REDSHIFTS

    SciTech Connect

    Romano-Diaz, Emilio; Shlosman, Isaac; Trenti, Michele; Hoffman, Yehuda

    2011-07-20

    Observed high-redshift QSOs, at z {approx} 6, may reside in massive dark matter (DM) halos of more than 10{sup 12} M{sub sun} and are thus expected to be surrounded by overdense regions. In a series of 10 constrained simulations, we have tested the environment of such QSOs. The usage of constrained realizations has enabled us to address the issue of cosmic variance and to study the statistical properties of the QSO host halos. Comparing the computed overdensities with respect to the unconstrained simulations of regions empty of QSOs, assuming there is no bias between the DM and baryon distributions, and invoking an observationally constrained duty cycle for Lyman break galaxies, we have obtained the galaxy count number for the QSO environment. We find that a clear discrepancy exists between the computed and observed galaxy counts in the Kim et al. samples. Our simulations predict that on average eight z {approx} 6 galaxies per QSO field should have been observed, while Kim et al. detect on average four galaxies per QSO field compared to an average of three galaxies in a control sample (GOODS fields). While we cannot rule out a small number of statistics for the observed fields to high confidence, the discrepancy suggests that galaxy formation in the QSO neighborhood proceeds differently than in the field. We also find that QSO halos are the most massive of the simulated volume at z {approx} 6 but this is no longer true at z {approx} 3. This implies that QSO halos, even in a case where they are the most massive ones at high redshifts, do not evolve into the most massive galaxy clusters at z = 0.

  9. The KMOS AGN Survey at High Redshift (KASHz)

    NASA Astrophysics Data System (ADS)

    Harrison, C.; Alexander, D.; Mullaney, J.; Stott, J.; Swinbank, M.; Arumugam, V.; Bauer, F.; Bower, R.; Bunker, A.; Sharples, R.

    2016-03-01

    The KMOS AGN Survey at High Redshift (KASHz) is an extensive observational programme to obtain spatially resolved spectroscopy of distant galaxies that host rapidly growing supermassive black holes (i.e., active galactic nuclei [AGN]). By exploiting the unique capabilities of KMOS we will spatially resolve the ionised gas kinematics in around 200 such galaxies. A fundamental prediction of galaxy formation models is that AGN inject considerable energy into their host galaxies and ultimately destroy or remove star-forming material via outflows. However, until now, observational constraints of this prediction have been limited to only a small number of distant galaxies. KASHz will provide the strongest constraints to date on the prevalence, properties and impact of ionised outflows in the host galaxies of distant AGN. The survey is described and our first results presented.

  10. Relativistic jet feedback in high-redshift galaxies I: Dynamics

    NASA Astrophysics Data System (ADS)

    Mukherjee, Dipanjan; Bicknell, Geoffrey V.; Sutherland, Ralph; Wagner, Alex

    2016-06-01

    We present the results of three dimensional relativistic hydrodynamic simulations of interaction of AGN jets with a dense turbulent two-phase interstellar medium, which would be typical of high redshift galaxies. We describe the effect of the jet on the evolution of the density of the turbulent ISM. The jet driven energy bubble affects the gas to distances up to several kiloparsecs from the injection region. The shocks resulting from such interactions create a multi-phase ISM and radial outflows. One of the striking result of this work is that low power jets (Pjet ≲ 1043ergs-1) although less efficient in accelerating clouds, are trapped in the ISM for a longer time and hence affect the ISM over a larger volume. Jets of higher power drill through with relative ease. Although the relativistic jets launch strong outflows, there is little net mass ejection to very large distances, supporting a galactic fountain scenario for local feedback.

  11. Relativistic jet feedback in high-redshift galaxies - I. Dynamics

    NASA Astrophysics Data System (ADS)

    Mukherjee, Dipanjan; Bicknell, Geoffrey V.; Sutherland, Ralph; Wagner, Alex

    2016-09-01

    We present the results of 3D relativistic hydrodynamic simulations of interaction of active galactic nucleus jets with a dense turbulent two-phase interstellar medium, which would be typical of high-redshift galaxies. We describe the effect of the jet on the evolution of the density of the turbulent interstellar medium (ISM). The jet-driven energy bubble affects the gas to distances up to several kiloparsecs from the injection region. The shocks resulting from such interactions create a multiphase ISM and radial outflows. One of the striking result of this work is that low-power jets (Pjet ≲ 1043 ergs-1), although less efficient in accelerating clouds, are trapped in the ISM for a longer time and hence affect the ISM over a larger volume. Jets of higher power drill through with relative ease. Although the relativistic jets launch strong outflows, there is little net mass ejection to very large distances, supporting a galactic fountain scenario for local feedback.

  12. Non-steller light from high-redshift radiogalaxies

    NASA Technical Reports Server (NTRS)

    Rawlings, Steve; Eales, Stephen A.

    1990-01-01

    With the aid of a new IRCAM image of 3C356, researchers question the common assumption that radiosource-stimulated starbursts are responsible for the extended optical emission aligned with radio structures in high-redshift radiogalaxies. They propose an alternative model in which the radiation from a hidden luminous quasar is beamed along the radio axis and illuminates dense clumps of cool gas to produce both extended narrow emission line regions and, by Thomson scattering, extended optical continua. Simple observational tests of this model are possible and necessary if we are to continue to accept that the color, magnitude and shape evolution of radiogalaxies are controlled by the active evolution of stellar populations.

  13. Superwind Model of Extended Lyalpha Emitters at High Redshift.

    PubMed

    Taniguchi; Shioya

    2000-03-20

    We propose a new model for the extended Lyalpha blobs found recently at high redshift (z approximately 3). The observational properties of these blobs are as follows: (1) the observed Lyalpha luminosities are approximately 1043 h-2 ergs s-1, (2) they appear elongated morphologically, (3) their sizes amount to approximately 100 kpc, (4) the observed line widths amount to approximately 1000 km s-1, and (5) they are not associated with strong radio continuum sources. All these observational properties seem to be explained in terms of galactic winds driven by successive supernova explosions shortly after the initial burst of massive star formation in the galactic centers. The observed number density of Lyalpha blobs ( approximately 3.4x10-5 h3 Mpc-3) may be explained if their present-day counterparts are elliptical galaxies with a luminosity above approximately 1L*. PMID:10702121

  14. Can quasars photoionize the intergalactic medium at high redshift?

    NASA Technical Reports Server (NTRS)

    Meiksin, Avery; Madau, Piero

    1993-01-01

    The reionization of the intergalactic medium (IGM) by quasar sources at high redshift are discussed. The integrated UV background from observed QSO's, taking into account the hydrogen opacity associated with intervening Ly-alpha clouds and Lyman limit systems are computed. It is noted that the published data appear to indicate a significant underdensity of absorption systems in the Ly-alpha forest with column densities N(sub HI) greater than 10(exp 15) cm(sup -2). This deficit results in a reduction of the opacity of the universe by a factor of 1.5-3 at z = 3-5 relative to previous estimates. The QSO contribution to the metagalactic flux at the Lyman edge may be as large as J(sub 912)(z) is approximately 6((1 + z)/4.5)(sup 0.5) x 10(exp -22) erg cm(sup -2) s(sup -1) Hz(sup -1) sr(sup -1) for q(sup o) = O, and slightly lower for q(sub o) = 1/2. For a density of the diffuse component of the IGM of omega(sub D)(h(sub 50)(sup 2)) less than 0.025, QSO's could photoionize a smooth IGM sufficiently to satisfy the constraints imposed by the Gunn-Peterson effect. The epoch of reionization could be as recent as z is approximately greater than 5. As a result, neutral patches of IGM would be detectable in the spectra of high redshift quasars. The patches would appear as absorption line systems with typical column densities of 10(exp 19) - 10(exp 20) cm(sup -2), and velocity widths of 100 - 1000 km s(sup -1).

  15. An empirical SFR estimator for high redshift galaxies:

    NASA Astrophysics Data System (ADS)

    Arnouts, Stephane

    2015-08-01

    At high redshift, most of the SFR indicators are limited to the most massive galaxies (Far-IR, radio) and out of reach of optical spectroscopy (Halpha). The UV continuum is the only one available at all redshifts and for galaxies within a large range of mass. The main question is then to properly account for dust absorption. The SED fitting are always limited in the choice of popular attenuation laws (if not only one, starburst) which relies on the slope of the UV continuum. The alternative is to measure the net budget between the absorbed vs un-absorbed UV light i.e. the infrared excess (IRX= Lir/Luv).By using the deep 24 micron in the COSMOS field, we have observed a remarkable behaviour of IRX stripes within the (NUV-r)o vs (r-K)o color diagram which can be used to derive robust SFR estimates just with the Luv, Lr and Lk luminosities (Arnouts et al, 2013). We have shown that we can explain the correlation if we consider a two component models for the birth clouds and the ISM and also a complete model for galaxy inclination to explain the extrem IRX values. We are now extended the method with Herschel data at higher redshift (z~2) and lower masses (M~10^8Mo) by using stacking techniques and find that the IRX-NUVrK correlation persists (Le Floc’h , in prep). This method allows us to derive an accurate SFR for each individual galaxy based on its location in the NUVrK diagram and with no assumption on dust attenuation law, a main caveat for SED fitting technique.We investigated the behavior of the scatter of the SFR-Mass in GOODS and COSMOS fields and find that both SFR (Lir+Luv) or SFR(NUVrK) estimatesare consistent (Ilbert et al., 2015). Finally will investigate the dust-free UV luminosity functions in between 0

  16. FRONTIER FIELDS: HIGH-REDSHIFT PREDICTIONS AND EARLY RESULTS

    SciTech Connect

    Coe, Dan; Bradley, Larry; Zitrin, Adi

    2015-02-20

    The Frontier Fields program is obtaining deep Hubble and Spitzer Space Telescope images of new ''blank'' fields and nearby fields gravitationally lensed by massive galaxy clusters. The Hubble images of the lensed fields are revealing nJy sources (AB mag > 31), the faintest galaxies yet observed. The full program will transform our understanding of galaxy evolution in the first 600 million years (z > 9). Previous programs have yielded a dozen or so z > 9 candidates, including perhaps fewer than expected in the Ultra Deep Field and more than expected in shallower Hubble images. In this paper, we present high-redshift (z > 6) number count predictions for the Frontier Fields and candidates in three of the first Hubble images. We show the full Frontier Fields program may yield up to ∼70 z > 9 candidates (∼6 per field). We base this estimate on an extrapolation of luminosity functions observed between 4 < z < 8 and gravitational lensing models submitted by the community. However, in the first two deep infrared Hubble images obtained to date, we find z ∼ 8 candidates but no strong candidates at z > 9. We defer quantitative analysis of the z > 9 deficit (including detection completeness estimates) to future work including additional data. At these redshifts, cosmic variance (field-to-field variation) is expected to be significant (greater than ±50%) and include clustering of early galaxies formed in overdensities. The full Frontier Fields program will significantly mitigate this uncertainty by observing six independent sightlines each with a lensing cluster and nearby blank field.

  17. Obscured Starburst Activity in High Redshift Clusters and Groups

    NASA Astrophysics Data System (ADS)

    Kocevski, Dale; Lemaux, B.; Lubin, L.; Gal, R.

    2011-01-01

    Using Spitzer MIPS 24um imaging and extensive Keck spectroscopy we have found evidence for environmentally triggered starburst activity within six clusters and groups at z 0.9. I will show that the density of 24um-detected galaxies in the cluster environment is nearly twice that of the surrounding field at this redshift and that this overdensity scales with the cluster's dynamical state. The 24um-bright members often appear optically unremarkable and exhibit only moderate [OII] line emission due to severe obscuration. Although their spatial distribution suggests they are an infalling population, a close examination of their spectral properties, morphologies and optical colors indicate they are not simply analogs of the field population that have yet to be quenched. Using stacked DEIMOS spectra, we find the 24um-detected cluster and group galaxies exhibit elevated levels of Balmer absorption compared to galaxies undergoing normal, continuous star formation. A similar excess is not observed in field galaxies with equivalent infrared luminosities, indicating a greater fraction of the detected cluster and group members have experienced a burst of star formation in the recent past compared to their counterparts in the field. Our results suggest that gas-rich galaxies at high redshift experience a temporary increase in their star formation activity as they assemble into denser environments. Using HST ACS imaging we find that disturbed morphologies are common among the obscured starburst population and become more prevalent in regions of higher galaxy density. We conclude that mergers are the dominant triggering mechanism responsible for the enhanced star formation found in the group galaxies, while a mix of harassment and mergers are likely driving the activity of the cluster galaxies.

  18. Obscured Starburst Activity in High-redshift Clusters and Groups

    NASA Astrophysics Data System (ADS)

    Kocevski, Dale D.; Lemaux, Brian C.; Lubin, Lori M.; Gal, Roy; McGrath, Elizabeth J.; Fassnacht, Christopher D.; Squires, Gordon K.; Surace, Jason A.; Lacy, Mark

    2011-07-01

    Using Spitzer-Multiband Imaging Photometer 24 μm imaging and extensive Keck spectroscopy, we examine the nature of the obscured star-forming population in three clusters and three groups at z ~ 0.9. These six systems are the primary components of the Cl1604 supercluster, the largest structure imaged by Spitzer at redshifts approaching unity. We find that the average density of 24 μm detected galaxies within the Cl1604 clusters is nearly twice that of the surrounding field and that this overdensity scales with the cluster's dynamical state. The 24 μm bright members often appear optically unremarkable and exhibit only moderate [O II] line emission due to severe obscuration. Their spatial distribution suggests that they are an infalling population, but an examination of their spectral properties, morphologies, and optical colors indicates that they are not simply analogs of the field population that have yet to be quenched. Using stacked composite spectra, we find that the 24 μm detected cluster and group galaxies exhibit elevated levels of Balmer absorption compared with galaxies undergoing normal, continuous star formation. A similar excess is not observed in field galaxies with equivalent infrared luminosities, indicating a greater fraction of the detected cluster and group members have experienced a burst of star formation in the recent past compared to their counterparts in the field. Our results suggest that gas-rich galaxies at high redshift experience a temporary increase in their star formation activity as they assemble into denser environments. Using Hubble Space Telescope Advanced Camera for Surveys imaging, we find that disturbed morphologies are common among the 24 μm detected cluster and group members and become more prevalent in regions of higher galaxy density. We conclude that mergers are the dominant triggering mechanism responsible for the enhanced star formation found in the Cl1604 groups, while a mix of harassment and mergers are likely

  19. Probing the Intergalactic Medium with high-redshift quasars

    NASA Astrophysics Data System (ADS)

    Calverley, Alexander Peter

    2011-11-01

    Clues about the timing of reionization and the nature of the ionizing sources responsible are imprinted in the ionization and thermal state of the IGM. In this thesis, I use high-resolution quasar spectra in conjunction with state-of-the-art hydrodynamical simulations to probe the IGM at high redshift, focusing on the ionization and thermal state of the gas. After reionization, the ionization state of the IGM is set by the intensity of the ultraviolet background (UVB), quantified by the hydrogen photoionization rate, Γ_bkg. At high redshifts this has been estimated by measuring the mean flux in the Lyα forest, and scaling Γ_bkg in simulations such that the simulated mean flux matches the observed value. In Chapter 3 I investigate whether the precision of these estimates can be improved by using the entire flux probability distribution function (PDF) instead of only the mean flux. Although I find it cannot improve the precision directly, the flux PDF can potentially be used to constrain other sources of error in observational estimates of Γ_bkg, and so may increase the precision indirectly. The ionizing output of a quasar will locally dominate over the UVB, and this leads to enhanced transmission bluewards of the quasar Lyα line, known as the proximity effect. In Chapter 4 I present the first measurements of Γ_bkg at z > 5 from the proximity effect. The UVB intensity declines smoothly with redshift over 4.6 < z < 6.4, implying a smooth evolution in the mean free path of ionizing photons. This suggests that reionization ends at z > 6.4. There is a drop in Γ_bkg by roughly a factor of five, which corresponds to a drop in the ionizing emissivity by about a factor of two. Such a redshift evolution in the emissivity cannot continue to much higher redshift without reionization failing to complete, which suggests that reionization cannot have ended much higher than z = 6.4. Estimates of Γ_bkg from the proximity effect and the mean flux are generally discrepant

  20. X-Ray Absorption of High- Redshift Quasars

    NASA Astrophysics Data System (ADS)

    Behar, Ehud; Eitan, Assaf

    2012-09-01

    Soft X-ray absorption of high-z quasars has been known for more than a decade, but its astrophysical context remains a mystery. In order to better understand this absorption, we have constructed the largest to date high-S/N sample of high-z quasars (z > 0.5) from the XMM-Newton archive. We find that generally, z<2 and radio quiet objects provide only upper limits for the 0.5 keV optical depth (tau). Thus, we use censored statistics methods to seek correlations between tau and other quasar parameters. We find a dramatic increase of tau with z [(1+z)^{2.5}], although the correlation is rather weak. The correlation of tau with radio luminosity (or loudness) is even weaker. We also compare the absorption behavior with redshift with a large sample of GRBs, and with the pattern expected if the diffuse intergalactic medium (IGM) is responsible for the observed absorption. We find that although the z > 2 quasar opacity is consistent with a diffuse IGM effect and with the high-z GRB opacities, absorption of intermediate z (0.5 < z < 2) quasars is too low for this scenario, which leads to the conclusion that a simple IGM origin for this absorption is unlikely.

  1. Sources and Evolution of Dust in the High Redshift Universe

    NASA Astrophysics Data System (ADS)

    Dwek, Eli

    2015-08-01

    Understanding the sources and evolution of dust in the very high redshift universe (z > 8-9) poses unique challenges to observers and theorists alike.The peak of the infrared emission from the dust falls in the ~ 80-120 micron region in the rest frame of the galaxy, or about 850 micron to 2 mm in the observers' frame. Sensitivity and background confusion are the main obstacles for the detection of these high-z galaxies and their association with optical and near-IR counterparts. Observations with instruments such as the SCUBA-2, AzTEC, Mambo, Laboca, and GISMO2 offer the best hope for detecting such sources.On the theoretical side, the sources of dust in these galaxies are confined to massive stars with main sequence lifetimes that are shorter than the age of the universe. This leaves core collapse supernovae (CCSNe) as the main source of thermally-condensed dust in these objects. Dust is not only produced by CCSNe, but also destroyed by them in the remnant phase of their evolution. Accounting for the mass of dust inferred from the far-IR/millimeter observations requires therefore an understanding of the various physical processes affecting the evolution of dust in the very high-z universe, and a carefull evaluation of the balance between their different dust formation and destruction mechanisms.

  2. Stellar Populations. A User Guide from Low to High Redshift

    NASA Astrophysics Data System (ADS)

    Greggio, Laura; Renzini, Alvio

    2011-09-01

    This textbook is meant to illustrate the specific role played by stellar population diagnostics in our attempt to understand galaxy formation and evolution. The book starts with a rather unconventional summary of the results of stellar evolution theory (Chapter 1), as they provide the basis for the construction of synthetic stellar populations. Current limitations of stellar models are highlighted, which arise from the necessity to parametrize all those physical processes that involve bulk mass motions, such as convection, mixing, mass loss, etc. Chapter 2 deals with the foundations of the theory of synthetic stellar populations, and illustrates their energetics and metabolic functions, providing basic tools that will be used in subsequent chapters. Chapters 3 and 4 deal with resolved stellar populations, first addressing some general problems encountered in photometric studies of stellar fields. Then some highlights are presented illustrating our current capacity of measuring stellar ages in Galactic globular clusters, in the Galactic bulge and in nearby galaxies. Chapter 5 is dedicated to the exemplification of synthetic spectra of simple as well as composite stellar populations, drawing attention to those spectral features that may depend on less secure results of stellar evolution models. Chapter 6 illustrates how synthetic stellar populations are used to derive basic galaxy properties, such as star formation rates, stellar masses, ages and metallicities, and does so for galaxies at low as well as at high redshifts. Chapter 7 is dedicated to supernovae, distinguishing them in core collapse and thermonuclear cases, describing the evolution of their rates for various star formation histories, and estimating the supernova productivity of stellar populations and their chemical yields. In Chapter 8 the stellar initial mass function (IMF) is discussed, first showing how even apparently small IMF variations may have large effects on the demo! graphy of stellar

  3. Properties of Lyman-alpha Absorbers at High-Redshift

    NASA Astrophysics Data System (ADS)

    Peroux, C.

    2001-09-01

    In recent years, an extremely successful method to observationally study early stages of galaxy formation has been provided by the study of quasar absorbers. Quasar absorption lines are systems intercepting our line-of-sight to a given quasar and thus produce a feature in the quasar spectrum. Damped Lyman-α systems (hereafter DLAs) have N (H I) > 2 × 1020 atoms cm-2, and were originally thought to be the precursors of present day disk galaxies but there is evidence that they may be dominated by gas-rich proto-dwarf galaxies representing the basic building blocks of hierarchical growth of structure. Since their detection is independent of their size, shape, and covering factor, they provide a unbiased method with which to study early galaxies. DLAs are a subset of Lyman-limit Systems (hereafter LLS) which have hydrogen column densities N (H I) > 1.6 × 1017 atoms cm-2. At z < 1, they are probably associated with galactic halos. Finally, the Lyman-α forest is composed of many small column density systems ranging from N (H I) =1012 to 1.6 × 1017 atoms cm-2. This thesis presents a sample of 66 bright z ⪆ 4 quasars observed with the 4 m Cerro Tololo Inter-American Observatory telescope and the 4.2 m William Hershel telescope. The first part of the study concentrates on the quasars themselves via the fitting of quasar continua and the measurement of continuum depression parameters characterising the mean absorption across the Lyman-α forest. The quasar spectra are then analysed to investigate the absorption systems they contain. This led to the discovery of 26 new DLAs, 34 LLS and many associated metal lines which enables the analysis of the evolution of the column density distribution, f(N,z), and the total mass in high-column density neutral hydrogen quasar absorbers. The observed number of LLS per unit redshift is used to constrain f(N,z) below the DLA limit in the range N(HI) = 1.6 × 1017 to 2× 1020 atoms cm-2. The joint analysis shows unambiguously that f

  4. Clumpy Galaxies at High Redshifts: Insights from the FIRE Simulations

    NASA Astrophysics Data System (ADS)

    Oklopcic, Antonija; Hopkins, Philip F.; Keres, Dusan; Faucher-Giguere, Claude-Andre; Quataert, Eliot

    2015-01-01

    It has been observationally established that star-forming galaxies at high redshifts have more irregular morphologies compared to the ones in the local Universe. The morphologies of these galaxies are often dominated by large clumps which are believed to form via gravitational instabilities in gas-rich disks. Typically, these clumps have masses on the order of 107-109 solar masses, and extend over kiloparsec scales. It has been proposed in a number of studies that giant clumps, provided that they live long enough, could have an important impact on the morphology and evolution of their host galaxy. For example, as clumps migrate inwards through dynamical friction, they can sink to the center of the galaxy and form a bulge. However, this picture holds only if clumps can survive sufficiently long to reach the center without being destroyed by feedback from intense star formation that takes place within them. Therefore, determining typical lifetime of a giant clump, while taking into account different modes of feedback from star formation, is crucial for understanding the role they play in the evolution of their host galaxy. In this study we use the results of the FIRE (Feedback in Realistic Environments) simulations of galaxy evolution - a suite of high-resolution cosmological simulations with explicit physical models of stellar feedback and the multi-phase interstellar medium (Hopkins et al. 2014) - to investigate how feedback affects the formation and evolution of giant clumps in massive, gas-rich galaxies around z~2.

  5. Selection and Physical Properties of High-redshift Galaxies

    NASA Astrophysics Data System (ADS)

    Fang, G. W.

    2014-09-01

    that the fraction of OGs and DGs in our sample (COSMOS) is similar, about 52% of them are DGs, and the other 48% are OGs. For 24 EROs in the UDF, 16 fall into DGs, while 8 are OGs. To reduce the redundancy of these three different classification methods, we perform a principal component analysis on the measurements of EROs, and find that the nonparametric measures and SEDs are efficient in segregating DGs and OGs. We investigate the dependence of the fraction of EROs on their observational properties, and the results suggest that DGs become increasingly important toward fainter magnitudes, redder colors, and higher redshifts. Moreover, we find that the clustering of EROs is much stronger than that of full K-limited samples of galaxies; and the clustering amplitude of OGs is a factor of ˜2 larger than DGs. In Chapter 3, we pick out 1609 star-forming galaxies (sgzKs: gzK=(z-K)_{AB}-1.4(g-z)_{AB}≥ 0.2) and 422 passively evolving galaxies (pgzKs: gzK<0.2 and (z-K)_{AB}>2.7) at z˜2 in the AEGIS field (K_{AB} < 22.0). The number counts of pgzKs in our sample turn over at K_{AB} ˜ 21.0, and both the number of faint and bright objects (including sgzKs and pgzKs) exceed the predictions of a recent semi-analytic model of galaxy formation. A more successful model is needed to explain this diversity. It is also found that the star formation rate (SFR) and specific SFR (sSFR) of sgzKs increase with redshift at all masses, implying that star-forming galaxies were much more active on average in the past. Moreover, the sSFR of massive galaxies is lower at all redshifts, suggesting that the mass growth of low-mass galaxies is more attributed to the star formation while comparing with high-mass galaxies. From the HST WFC3/F160W imaging data, we find that gzKs not only have diffuse structures, but also have single-object morphologies, implying that there are morphological variety and different formation processes for these galaxies at z˜2. In addition, we also find ˜ 10% of 828 gz

  6. High-redshift gamma-ray bursts: observational signatures of superconducting cosmic strings?

    PubMed

    Cheng, K S; Yu, Yun-Wei; Harko, T

    2010-06-18

    The high-redshift gamma-ray bursts (GRBs), GRBs 080913 and 090423, challenge the conventional GRB progenitor models by their short durations, typical for short GRBs, and their high energy releases, typical for long GRBs. Meanwhile, the GRB rate inferred from high-redshift GRBs also remarkably exceeds the prediction of the collapsar model, with an ordinary star formation history. We show that all these contradictions could be eliminated naturally, if we ascribe some high-redshift GRBs to electromagnetic bursts of superconducting cosmic strings. High-redshift GRBs could become a reasonable way to test the superconducting cosmic string model because the event rate of cosmic string bursts increases rapidly with increasing redshifts, whereas the collapsar rate decreases. PMID:20867291

  7. MAGNETICALLY REGULATED GAS ACCRETION IN HIGH-REDSHIFT GALACTIC DISKS

    SciTech Connect

    Birnboim, Yuval

    2009-09-10

    Disk galaxies are in hydrostatic equilibrium along their vertical axis. The pressure allowing for this configuration consists of thermal, turbulent, magnetic, and cosmic-ray components. For the Milky Way the thermal pressure contributes {approx}10% of the total pressure near the plane, with this fraction dropping toward higher altitudes. Out of the rest, magnetic fields contribute {approx}1/3 of the pressure to distances of {approx}3 kpc above the disk plane. In this Letter, we attempt to extrapolate these local values to high-redshift, rapidly accreting, rapidly star-forming disk galaxies and study the effect of the extra pressure sources on the accretion of gas onto the galaxies. In particular, magnetic field tension may convert a smooth cold-flow accretion to clumpy, irregular star formation regions and rates. The infalling gas accumulates on the edge of the magnetic fields, supported by magnetic tension. When the mass of the infalling gas exceeds some threshold mass, its gravitational force cannot be balanced by magnetic tension anymore, and it falls toward the disk's plane, rapidly making stars. Simplified estimations of this threshold mass are consistent with clumpy star formation observed in SINS, UDF, GOODS, and GEMS surveys. We discuss the shortcomings of pure hydrodynamic codes in simulating the accretion of cold flows into galaxies, and emphasize the need for magnetohydrodynamic simulations.

  8. The fate of high-redshift massive compact galaxies

    NASA Astrophysics Data System (ADS)

    de la Rosa, Ignacio G.; La Barbera, Francesco; Ferreras, Ignacio; Sánchez Almeida, Jorge; Dalla Vecchia, Claudio; Martínez-Valpuesta, Inma; Stringer, Martin

    2016-04-01

    Massive high-redshift quiescent compact galaxies (nicknamed red nuggets) have been traditionally connected to present-day elliptical galaxies, often overlooking the relationships that they may have with other galaxy types. We use large bulge-disc decomposition catalogues based on the Sloan Digital Sky Survey to check the hypothesis that red nuggets have survived as compact cores embedded inside the haloes or discs of present-day massive galaxies. In this study, we designate a compact core as the bulge component that satisfies a prescribed compactness criterion. Photometric and dynamic mass-size and mass-density relations are used to show that, in the inner regions of galaxies at z ˜ 0.1, there are abundant compact cores matching the peculiar properties of the red nuggets, an abundance comparable to that of red nuggets at z ˜ 1.5. Furthermore, the morphology distribution of the present-day galaxies hosting compact cores is used to demonstrate that, in addition to the standard channel connecting red nuggets with elliptical galaxies, a comparable fraction of red nuggets might have ended up embedded in discs. This result generalizes the inside-out formation scenario; present-day massive galaxies can begin as dense spheroidal cores (red nuggets), around which either a spheroidal halo or a disc is formed later.

  9. The High-Redshift Clusters Occupied by Bent Radio AGN (COBRA) Survey

    NASA Astrophysics Data System (ADS)

    Paterno-Mahler, Rachel; Blanton, Elizabeth L.; Wing, Joshua; Ashby, M. L. N.; Brodwin, Mark; Golden-Marx, Emmet

    2015-08-01

    The number of confirmed, high-redshift galaxy clusters is very low compared to the number of well-studied clusters nearby. Bent, double-lobed radio sources are frequently found in galaxy clusters, and thus can be used as tracers for efficiently locating high-redshift clusters. Using our Spitzer Snapshot Survey, we have identified approximately 300 potential new clusters with redshifts 0.7high-redshift portion of the Cluster Occupied by Bent Radio AGN (COBRA) survey. We have created color-magnitude diagrams using infrared and optical data. Using the colors of the radio source host and the red sequence we can estimate redshifts for our clusters, as well as examine the evolution of the cluster galaxies over a large range of cosmic time.

  10. High-Redshift Supernovae in the Hubble Deep Field

    SciTech Connect

    Gilliland, R.L.; Nugent, P.E.; Phillips, M.M.

    1999-08-01

    Two supernovae detected in the Hubble Deep Field (HDF) using the original 1995 December epoch and data from a shorter (63,000 s in F814W) 1997 December visit with {ital HST} are discussed. The supernovae (SNe) are both associated with distinct galaxies at redshifts of 0.95 (spectroscopic) from Cohen et al. and 1.32 (photometric) from the work of Fern{acute a}ndez-Soto, Lanzetta, & Yahil. These redshifts are near, in the case of 0.95, and well beyond, for 1.32, the greatest distance reported previously for SNe. We show that our observations are sensitive to supernovae to z{approx_lt}1.8 in either epoch for an event near peak brightness. Detailed simulations are discussed that quantify the level at which false events from our search phase would start to arise and the completeness of our search as a function of both SN brightness and host galaxy redshift. The number of Type Ia and Type II SNe expected as a function of redshift in the two HDF epochs are discussed in relation to several published predictions and our own detailed calculations. A mean detection frequency of one SN per epoch for the small HDF area is consistent with expectations from current theory. {copyright} {ital {copyright} 1999.} {ital The American Astronomical Society}

  11. High-Redshift Supernovae in the Hubble Deep Field

    NASA Astrophysics Data System (ADS)

    Gilliland, Ronald L.; Nugent, Peter E.; Phillips, M. M.

    1999-08-01

    Two supernovae detected in the Hubble Deep Field (HDF) using the original 1995 December epoch and data from a shorter (63,000 s in F814W) 1997 December visit with HST are discussed. The supernovae (SNe) are both associated with distinct galaxies at redshifts of 0.95 (spectroscopic) from Cohen et al. and 1.32 (photometric) from the work of Fernández-Soto, Lanzetta, & Yahil. These redshifts are near, in the case of 0.95, and well beyond, for 1.32, the greatest distance reported previously for SNe. We show that our observations are sensitive to supernovae to z<~1.8 in either epoch for an event near peak brightness. Detailed simulations are discussed that quantify the level at which false events from our search phase would start to arise and the completeness of our search as a function of both SN brightness and host galaxy redshift. The number of Type Ia and Type II SNe expected as a function of redshift in the two HDF epochs are discussed in relation to several published predictions and our own detailed calculations. A mean detection frequency of one SN per epoch for the small HDF area is consistent with expectations from current theory. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS 5-26555.

  12. Intergalactic Helium Absorption toward High-Redshift Quasars

    NASA Technical Reports Server (NTRS)

    Giroux, Mark L.; Fardal, Mark A.; Shull, J. Michael

    1995-01-01

    The recent Hubble Space Telescope (HST) observations of the z(q) = 3.286 quasar Q0302-003 (Jakobsen et at. 1994) and the z(q) = 3.185 quasar Q1935-67 by Tytler (1995) show absorption edges at the redshifted wavelength of He II 304 A. A key goal is to distinguish between contributions from discrete Ly-alpha forest clouds and a smoothly distributed intergalactic medium (IGM). We model the contributions from each of these sources of He II absorption, including the distribution of line Doppler widths and column densities, the 'He II proximity effect' from the quasar, and a self-consistent derivation of the He II opacity of the universe as a function of the spectrum of ionizing sources, with the assumption that both the clouds and the IGM are photoionized. The He II edge can be fully accounted for by He II line blanketing for reasonable distributions of line widths and column densities in the Ly-alpha forest, provided that the ionizing sources have spectral index alpha(s) greater than 1.5, and any He II proximity effect is neglected. Even with some contribution from a diffuse IGM, it is difficult to account for the edge observed by Jakobsen et al. (1994) with a 'hard' source spectrum (alpha(s) less than 1.3). The proximity effect modifies the relative contributions of the clouds and IGM to tau(He II) near the quasar (z approx. less than z(q)) and markedly increases the amount of He II absorption required. This implies, for example, that to account for the He II edge with line blanketing alone, the minimum spectral index alpha(s) must be increased from 1.5 to 1.9. We demonstrate the need for higher resolution observations that characterize the change in transmission as z approaches z(q) and resolve line-free gaps in the continuum. We set limits on the density of the diffuse IGM and suggest that the IGM and Ly-alpha clouds are likely to be a significant repository for dark baryons.

  13. A Search for Moderate-redshift Survivors from the Population of Luminous Compact Passive Galaxies at High Redshift

    NASA Astrophysics Data System (ADS)

    Stockton, Alan; Shih, Hsin-Yi; Larson, Kirsten; Mann, Andrew W.

    2014-01-01

    From a search of a ~2400 deg2 region covered by both the Sloan Digital Sky Survey and UKIRT Infrared Deep Sky Survey databases, we have attempted to identify galaxies at z ~ 0.5 that are consistent with their being essentially unmodified examples of the luminous passive compact galaxies found at z ~ 2.5. After isolating good candidates via deeper imaging, we further refine the sample with Keck moderate-resolution spectroscopy and laser guide star adaptive-optics imaging. For four of the five galaxies that so far remain after passing through this sieve, we analyze plausible star-formation histories based on our spectra in order to identify galaxies that may have survived with little modification from the population formed at high redshift. We find two galaxies that are consistent with having formed >~ 95% of their mass at z > 5. We attempt to estimate masses both from our stellar population determinations and from velocity dispersions. Given the high frequency of small axial ratios, both in our small sample and among samples found at high redshifts, we tentatively suggest that some of the more extreme examples of passive compact galaxies may have prolate morphologies. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  14. A search for moderate-redshift survivors from the population of luminous compact passive galaxies at high redshift

    SciTech Connect

    Stockton, Alan; Shih, Hsin-Yi; Larson, Kirsten; Mann, Andrew W. E-mail: hsshih@ifa.hawaii.edu E-mail: amann@ifa.hawaii.edu

    2014-01-10

    From a search of a ∼2400 deg{sup 2} region covered by both the Sloan Digital Sky Survey and UKIRT Infrared Deep Sky Survey databases, we have attempted to identify galaxies at z ∼ 0.5 that are consistent with their being essentially unmodified examples of the luminous passive compact galaxies found at z ∼ 2.5. After isolating good candidates via deeper imaging, we further refine the sample with Keck moderate-resolution spectroscopy and laser guide star adaptive-optics imaging. For four of the five galaxies that so far remain after passing through this sieve, we analyze plausible star-formation histories based on our spectra in order to identify galaxies that may have survived with little modification from the population formed at high redshift. We find two galaxies that are consistent with having formed ≳ 95% of their mass at z > 5. We attempt to estimate masses both from our stellar population determinations and from velocity dispersions. Given the high frequency of small axial ratios, both in our small sample and among samples found at high redshifts, we tentatively suggest that some of the more extreme examples of passive compact galaxies may have prolate morphologies.

  15. High Redshift Simulations Using the GALEX Ultraviolet Images of Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Yeom, Bum-Suk; Kim, Young Kwang; Rey, Soo-Chang; Joe, Young Hoon; Gil de Paz, Armando

    2009-03-01

    We present simulated optical images of galaxies at high redshift using diverse and high-quality ultraviolet (UV) images of nearby galaxies obtained through the GALEX (Galaxy Evolution Explorer). Galaxy morphology plays an important role in the study of the evolution of galaxies. In this respect, the appearance of galaxies at high redshift requires images of nearby galaxies with various morphologies in the UV bandpass. Our simulation will be important in providing the basic information needed to study the evolution of galaxies.

  16. GALAXY CLUSTERS AT HIGH REDSHIFT AND EVOLUTION OF BRIGHTEST CLUSTER GALAXIES

    SciTech Connect

    Wen, Z. L.; Han, J. L.

    2011-06-10

    Identification of high-redshift clusters is important for studies of cosmology and cluster evolution. Using photometric redshifts of galaxies, we identify 631 clusters from the Canada-France-Hawaii Telescope (CFHT) wide field, 202 clusters from the CFHT deep field, 187 clusters from the Cosmic Evolution Survey (COSMOS) field, and 737 clusters from the Spitzer Wide-area InfraRed Extragalactic Survey (SWIRE) field. The redshifts of these clusters are in the range 0.1 {approx}< z {approx}< 1.6. Merging these cluster samples gives 1644 clusters in the four survey fields, of which 1088 are newly identified and more than half are from the large SWIRE field. Among 228 clusters of z {>=} 1, 191 clusters are newly identified, and most of them from the SWIRE field. With this large sample of high-redshift clusters, we study the color evolution of the brightest cluster galaxies (BCGs). The r' - z' and r{sup +} - m{sub 3.6{mu}m} colors of the BCGs are consistent with a stellar population synthesis model in which the BCGs are formed at redshift z{sub f} {>=} 2 and evolved passively. The g' - z' and B - m{sub 3.6{mu}m} colors of the BCGs at redshifts z > 0.8 are systematically bluer than the passive evolution model for galaxies formed at z{sub f} {approx} 2, indicating star formation in high-redshift BCGs.

  17. WISH: Wide-field Imaging Durvayor for High-redshift

    NASA Astrophysics Data System (ADS)

    Yamada, Toru

    2015-08-01

    We introduce the concept and current status of WISH project and discuss the science cases. WISH is a proposed space science mission for JAXA, which is dedicated for the deep and wide-field near-infrared imaging surveys. The mission contains the 1.5m cooled telescope as well as the imager with the FoV of ~850 square arcmin. The main goal of WISH is to detect and study galaxies at z=8-15 in the earliest history of structure formation in the universe. The key feature is to conduct WISH Ultra Deep Survey, which images in total of 100 square degrees in 6 broad-band filters at 0.9-4.5 micron down to 28AB magnitude. While more than 10^5 galaxies at z=8-9, 10^4 galaxies at z=11-12 will be detected, WISH-UDS is designed to constrain UV luminosity function at z=15. Depending on the models of the earliest evolution history, 1-1000 galaxies at z~15 (~100 galaxies for the moderate cases) will be detected. The UV spectral properties as well as the clustering properties of galaxies at z=8-15 can be studied as well; UV slope can be measured up to z=15, and the stellar and dark-matter-halo masses can be obtained up to z=9. WISH UDS can provide excellent opportunities for studying SNe at high redshift. Up to ~7000 type Ia SNe at z>1 can be detected and the distance modulus can be constrained with the precision of 0.9-1.5% at z>1.5. More than 100 Super Luminous SNe at z>6, and 10 SLSN at z>10 can also be detected, which allow us to study the earliest history of massive star formation in the universe. WISH imaging surveys as well as WISHSpec, which is an optional parallel-operation simple IFU spectrograph, also provide unique opportunities in various astronomical fields. WISH mission proposal was submitted to JAXA in February 2015 for the first down selection of JAXA Large Strategic Science Mission targeting the launch date in 2020-22. International collaborations including SAO (G.Fazio et al.), LAM (D. Burgarella et al.) and Canada (M.Sawicki et al.) are also actively coordinated.

  18. Quantitative comparison between type Ia supernova spectra at low and high redshifts: a case study

    NASA Astrophysics Data System (ADS)

    Garavini, G.; Folatelli, G.; Nobili, S.; Aldering, G.; Amanullah, R.; Antilogus, P.; Astier, P.; Blanc, G.; Bronder, T.; Burns, M. S.; Conley, A.; Deustua, S. E.; Doi, M.; Fabbro, S.; Fadeyev, V.; Gibbons, R.; Goldhaber, G.; Goobar, A.; Groom, D. E.; Hook, I.; Howell, D. A.; Kashikawa, N.; Kim, A. G.; Kowalski, M.; Kuznetsova, N.; Lee, B. C.; Lidman, C.; Mendez, J.; Morokuma, T.; Motohara, K.; Nugent, P. E.; Pain, R.; Perlmutter, S.; Quimby, R.; Raux, J.; Regnault, N.; Ruiz-Lapuente, P.; Sainton, G.; Schahmaneche, K.; Smith, E.; Spadafora, A. L.; Stanishev, V.; Thomas, R. C.; Walton, N. A.; Wang, L.; Wood-Vasey, W. M.; Yasuda, N.

    2007-08-01

    We develop a method to measure the strength of the absorption features in type Ia supernova (SN Ia) spectra and use it to make a quantitative comparisons between the spectra of type Ia supernovae at low and high redshifts. In this case study, we apply the method to 12 high-redshift (0.212 ≤ z ≤ 0.912) SNe Ia observed by the Supernova Cosmology Project. Through measurements of the strengths of these features and of the blueshift of the absorption minimum in Ca ii H&K, we show that the spectra of the high-redshift SNe Ia are quantitatively similar to spectra of nearby SNe Ia (z < 0.15). One supernova in our high redshift sample, SN 2002fd at z = 0.279, is found to have spectral characteristics that are associated with peculiar SN 1991T/SN 1999aa-like supernovae.

  19. Quantitative comparison between Type Ia supernova spectra at low and high redshifts: A case study

    SciTech Connect

    Supernova Cosmology Project; Nugent, Peter E; Garavini, G.; Folatelli, G.; Nobili, S.; Aldering, G.; Amanullah, R.; Antilogus, P.; Astier, P.; Blanc, G.; Bronder, J.; Burns, M.S.; Conley, A.; Deustua, S. E.; Doi, M.; Fabbro, S.; Fadeyev, V.; Gibbons, R.; Goldhaber, G.; Goobar, A.; Groom, D. E.; Hook, I.; Howell, D. A.; Kashikawa, N.; Kim, A. G.; Kowalski, M.; Kuznetsova, N.; Lee, B. C.; Lidman, C.; Mendez, J.; Morokuma, T.; Motohara, K.; Nugent, P. E.; Pain, R.; Perlmutter, S.; Quimby, R.; Raux, J.; Regnault, N.; Ruiz-Lapuente, P.; Sainton, G.; Schahmaneche, K.; Smith, E.; Spadafora, A. L.; Stanishev, V.; Thomas, R. C.; Walton, N. A.; Wang, L.; Wood-Vasey, W. M.; Yasuda, N.

    2008-03-24

    We develop a method to measure the strength of the absorption features in type Ia supernova (SN Ia) spectra and use it to make a quantitative comparisons between the spectra of type Ia supernovae at low and high redshifts. In this case study, we apply the method to 12 high-redshift (0.212 = z = 0.912) SNe Ia observed by the Supernova Cosmology Project. Through measurements of the strengths of these features and of the blueshift of theabsorption minimum in Ca ii H&K, we show that the spectra of the high-redshift SNe Ia are quantitatively similar to spectra of nearby SNe Ia (z< 0.15). One supernova in our high redshift sample, SN 2002fd at z = 0.279, is found to have spectral characteristics that are associated with peculiar SN 1991T/SN 1999aa-like supernovae.

  20. ON THE SHAPES AND STRUCTURES OF HIGH-REDSHIFT COMPACT GALAXIES

    SciTech Connect

    Chevance, Melanie; Damjanov, Ivana; Abraham, Roberto G.; Weijmans, Anne-Marie; Simard, Luc; Van den Bergh, Sidney; Caris, Evelyn; Glazebrook, Karl

    2012-08-01

    Recent deep Hubble Space Telescope WFC3 imaging suggests that a majority of compact quiescent massive galaxies at z {approx} 2 may contain disks. To investigate this claim, we have compared the ellipticity distribution of 31 carefully selected high-redshift massive quiescent compact galaxies to a set of mass-selected ellipticity and Sersic index distributions obtained from two-dimensional structural fits to {approx}40, 000 nearby galaxies from the Sloan Digital Sky Survey. A Kolmogorov-Smirnov test shows that the distribution of ellipticities for the high-redshift galaxies is consistent with the ellipticity distribution of a similarly chosen sample of massive early-type galaxies. However, the distribution of Sersic indices for the high-redshift sample is inconsistent with that of local early-type galaxies, and instead resembles that of local disk-dominated populations. The mismatch between the properties of high-redshift compact galaxies and those of both local early-type and disk-dominated systems leads us to conclude that the basic structures of high-redshift compact galaxies probably do not closely resemble those of any single local galaxy population. Any galaxy population analog to the high-redshift compact galaxies that exists at the current epoch is either a mix of different types of galaxies, or possibly a unique class of objects on their own.

  1. BINARY QUASARS AT HIGH REDSHIFT. I. 24 NEW QUASAR PAIRS AT z {approx} 3-4

    SciTech Connect

    Hennawi, Joseph F.; Myers, Adam D.; Shen, Yue; Strauss, Michael A.; Djorgovski, S. G.; Glikman, Eilat; Mahabal, Ashish; Fan Xiaohui; Martin, Crystal L.; Richards, Gordon T.; Schneider, Donald P.; Shankar, Francesco

    2010-08-20

    The clustering of quasars on small scales yields fundamental constraints on models of quasar evolution and the buildup of supermassive black holes. This paper describes the first systematic survey to discover high-redshift binary quasars. Using color-selection and photometric redshift techniques, we searched 8142 deg{sup 2} of Sloan Digital Sky Survey imaging data for binary quasar candidates, and confirmed them with follow-up spectroscopy. Our sample of 27 high-redshift binaries (24 of them new discoveries) at redshifts 2.9 < z < 4.3 with proper transverse separations 10 kpc < R{sub perpendicular} < 650 kpc increases the number of such objects known by an order of magnitude. Eight members of this sample are very close pairs with R{sub perpendicular} < 100 kpc, and of these close systems four are at z>3.5. The completeness and efficiency of our well-defined selection algorithm are quantified using simulated photometry and we find that our sample is {approx}50% complete. Our companion paper uses this knowledge to make the first measurement of the small-scale clustering (R < 1 h {sup -1} Mpc comoving) of high-redshift quasars. High-redshift binaries constitute exponentially rare coincidences of two extreme (M {approx}> 10{sup 9} M {sub sun}) supermassive black holes. At z {approx} 4, there is about one close binary per 10 Gpc{sup 3}, thus these could be the highest sigma peaks, the analogs of superclusters, in the early universe.

  2. A Systematic Meta-Survey of High Redshift Quasars Probing their Environments and Evolution

    NASA Astrophysics Data System (ADS)

    Gobeille, Doug B. P.

    We have constructed a meta-survey of 298 quasars in the window from 7 to 17.5 hours in right ascension and 0 to 65 degrees in declination. These quasars span three decades of total power and redshifts from 0.158 to 5.284. All sources had a flux density of greater than 70 mJy at 1.4 GHz. At redshifts z > 2.5 our sample is complete. It is also complete for z < 1 and P Tot1:4 > 1027.55 W/Hz. Our quasar sample is built from archival Very Large Array (VLA) observations, as well as three observations in 2007 and 2008. This sample represents one of the most complete meta-surveys to date of the high redshift universe. In the 1980's, two competing groups (Ne, Gower and Hutchings, and Barthel, Miley, and Lonsdale) investigated the high redshift universe, seeking to investigate the dependence of largest linear size (LLS) and bending angles on redshift, core power, and extended power. Using our sample we test the differing results of these groups and build our own model of source evolution with redshift and power. We also seek a relationship between bending angles and core dominance, modeling this dependence on the thoughts of Orr & Browne showing that projected bending angles grow as the angle to the line of sight approaches the intrinsic bending angle of the quasar. We will also present an additional component of our high redshift quasar observations seeking arcsecond scale jets to be observed with the space based Chandra x-ray telescope. These observations will be used to investigate the nature of x-ray emission from the knots of kiloparsec jets in the high redshift universe.

  3. UV Spectroscopy of Type Ia Supernovae at Low- andHigh-Redshift

    SciTech Connect

    Nugent, Peter

    2005-04-20

    In the past three years two separate programs were initiated to study the restframe UV properties of Type Ia Supernovae. The low-redshift study was carried out using several ground-based facilities coupled with HST/STIS observations. The high-redshift program is an offshoot of the CFHT Legacy Survey and uses Keck/LRIS to obtain spectra. Here we present the preliminary results from each program and their implications for current cosmology measurements.

  4. DISTRIBUTION OF SATELLITE GALAXIES IN HIGH-REDSHIFT GROUPS

    SciTech Connect

    Wang Yougang; Chen Xuelei; Park, Changbom; Hwang, Ho Seong

    2010-08-01

    We use galaxy groups at redshifts between 0.4 and 1.0 selected from the Great Observatories Origins Deep Survey to study the color-morphological properties of satellite galaxies and investigate possible alignment between the distribution of the satellites and the orientation of their central galaxy. We confirm the bimodal color and morphological-type distribution for satellite galaxies at this redshift range: the red and blue classes correspond to the early and late morphological types, respectively, and the early-type satellites are on average brighter than the late-type ones. Furthermore, there is a morphological conformity between the central and satellite galaxies: the fraction of early-type satellites in groups with an early-type central is higher than those with a late-type central galaxy. This effect is stronger at smaller separations from the central galaxy. We find a marginally significant signal of alignment between the major axis of the early-type central galaxy and its satellite system, while for the late-type centrals no significant alignment signal is found. We discuss the alignment signal in the context of shape evolution of groups.

  5. Was Star Formation Suppressed in High-Redshift Minihalos?

    NASA Astrophysics Data System (ADS)

    Haiman, Zoltán; Bryan, Greg L.

    2006-10-01

    The primordial gas in the earliest dark matter halos, collapsing at redshifts z~20, with masses Mhalo~106 Msolar and virial temperatures Tvir<104 K, relied on the presence of molecules for cooling. Several theoretical studies have suggested that gas contraction and star formation in these minihalos was suppressed by radiative, chemical, thermal, and dynamical feedback processes. The recent measurement by the Wilkinson Microwave Anisotropy Probe (WMAP) of the optical depth to electron scattering, τ~0.09+/-0.03, provides the first empirical evidence for this suppression. The new WMAP result is consistent with vanilla models of reionization, in which ionizing sources populate cold dark matter halos down to a virial temperature of Tvir=104 K. On the other hand, we show that in order to avoid overproducing the optical depth, the efficiency for the production of ionizing photons in minihalos must have been about an order of magnitude lower than expected from massive metal-free stars and lower than the efficiency in large halos that can cool via atomic hydrogen (Tvir>104 K). This conclusion is insensitive to assumptions about the efficiency of ionizing photon production in the large halos, as long as reionization ends by z=6, as required by the spectra of bright quasars at z<~6. Our conclusion is strengthened if the clumping of the ionized gas evolves with redshift, as suggested by semianalytical predictions and three-dimensional numerical simulations.

  6. Spectral Evolution in High Redshift Quasars from the Final BOSS Sample

    NASA Astrophysics Data System (ADS)

    Jensen, Trey; Bautista, Julian; Dawson, Kyle; Harris, David; Kamble, Vikrant; Mariappan, Vivek; Suzuki, Nao

    2016-01-01

    We report on a study of the spectral variations in a sample of 102,150 quasars from the Baryon Oscillation Spectroscopic Survey (BOSS) of the Sloan Digital Sky Survey (SDSS-III). After mitigating selection effects and Malmquist bias over the redshift range 2.1 ≤ z ≤ 3.5, we create high signal-to-noise composite spectra binned by luminosity, spectral index, and redshift. We use these composite spectra to inspect the variations in quasar properties as a function of each of these three parameters. We confirm the traditional Baldwin effect (i.e. the anti-correlation of CIV equivalent width and luminosity) and identify physical trends associated with spectral index and redshift. In this poster, we will present these results with a particular focus on the clear spectroscopic signature that we find in redshift evolution.

  7. A systematic search for lensed high-redshift galaxies in HST images of MACS clusters

    NASA Astrophysics Data System (ADS)

    Repp, A.; Ebeling, H.; Richard, J.

    2016-04-01

    We present the results of a 135-arcmin2 search for high-redshift galaxies lensed by 29 clusters from the MAssive Cluster and extended MAssive Cluster Surveys. We use relatively shallow images obtained with the Hubble Space Telescope in four passbands, namely, F606W, F814W, F110W, and F140W. We identify 130 F814W dropouts as candidates for galaxies at z ≳ 6. In order to fit the available broad-band photometry to galaxy spectral energy distribution (SED) templates, we develop a prior for the level of dust extinction at various redshifts. We also investigate the systematic biases incurred by the use of SED-fit software. The fits we obtain yield an estimate of 20 Lyman-break galaxies with photometric redshifts from z ˜ 7 to 9. In addition, our survey has identified over 100 candidates with a significant probability of being lower redshift (z ˜ 2) interlopers. We conclude that even as few as four broad-band filters - when combined with fitting the SEDs - are capable of isolating promising objects. Such surveys thus allow one both to probe the bright end (M1500 ≲ -19) of the high-redshift ultraviolet luminosity function and to identify candidate massive evolved galaxies at lower redshifts.

  8. Narrow-band surveys for very high redshift Lyman-α emitters

    NASA Astrophysics Data System (ADS)

    Nilsson, K. K.; Orsi, A.; Lacey, C. G.; Baugh, C. M.; Thommes, E.

    2007-11-01

    Context: Many current and future surveys aim to detect the highest redshift (z ⪆ 7) sources through their Lyman-α (Lyα) emission, using the narrow-band imaging method. However, to date the surveys have only yielded non-detections and upper limits as no survey has reached the necessary combination of depth and area to detect these very young star forming galaxies. Aims: We aim to calculate model luminosity functions and mock surveys of Lyα emitters at z ⪆ 7 based on a variety of approaches calibrated and tested on observational data at lower redshifts. Methods: We calculate model luminosity functions at different redshifts based on three different approaches: a semi-analytical model based on CDM, a simple phenomenological model, and an extrapolation of observed Schechter functions at lower redshifts. The results of the first two models are compared with observations made at redshifts z ˜ 5.7 and z ˜ 6.5, and they are then extrapolated to higher redshift. Results: We present model luminosity functions for redshifts between z = 7{-}12.5 and give specific number predictions for future planned or possible narrow-band surveys for Lyα emitters. We also investigate what constraints future observations will be able to place on the Lyα luminosity function at very high redshift. Conclusions: It should be possible to observe z = 7{-}10 Lyα emitters with present or near-future instruments if enough observing time is allocated. In particular, large area surveys such as ELVIS (Emission Line galaxies with VISTA Survey) will be useful in collecting a large sample. However, to get a large enough sample to constrain well the z ≥ 10 Lyα luminosity function, instruments further in the future, such as an ELT, will be necessary.

  9. PROBING PRE-GALACTIC METAL ENRICHMENT WITH HIGH-REDSHIFT GAMMA-RAY BURSTS

    SciTech Connect

    Wang, F. Y.; Dai, Z. G.; Bromm, Volker; Greif, Thomas H.; Stacy, Athena; Loeb, Abraham; Cheng, K. S.

    2012-11-20

    We explore high-redshift gamma-ray bursts (GRBs) as promising tools to probe pre-galactic metal enrichment. We utilize the bright afterglow of a Population III (Pop III) GRB exploding in a primordial dwarf galaxy as a luminous background source, and calculate the strength of metal absorption lines that are imprinted by the first heavy elements in the intergalactic medium (IGM). To derive the GRB absorption line diagnostics, we use an existing highly resolved simulation of the formation of a first galaxy which is characterized by the onset of atomic hydrogen cooling in a halo with virial temperature {approx}> 10{sup 4} K. We explore the unusual circumburst environment inside the systems that hosted Pop III stars, modeling the density evolution with the self-similar solution for a champagne flow. For minihalos close to the cooling threshold, the circumburst density is roughly proportional to (1 + z) with values of about a few cm{sup -3}. In more massive halos, corresponding to the first galaxies, the density may be larger, n {approx}> 100 cm{sup -3}. The resulting afterglow fluxes are weakly dependent on redshift at a fixed observed time, and may be detectable with the James Webb Space Telescope and Very Large Array in the near-IR and radio wavebands, respectively, out to redshift z {approx}> 20. We predict that the maximum of the afterglow emission shifts from near-IR to millimeter bands with peak fluxes from mJy to Jy at different observed times. The metal absorption line signature is expected to be detectable in the near future. GRBs are ideal tools for probing the metal enrichment in the early IGM, due to their high luminosities and featureless power-law spectra. The metals in the first galaxies produced by the first supernova (SN) explosions are likely to reside in low-ionization stages (C II, O I, Si II and Fe II). We show that, if the afterglow can be observed sufficiently early, analysis of the metal lines may distinguish whether the first heavy elements were

  10. Probing Pre-Galactic Metal Enrichment with High-Redshift Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Wang, F. Y.; Bromm, Volker; Greif, Thomas H.; Stacy, Athena; Dai, Z. G.; Loeb, Abraham; Cheng, K. S.

    2012-01-01

    We explore high-redshift gamma-ray bursts (GRBs) as promising tools to probe pre-galactic metal enrichment. We utilize the bright afterglow of a Population III (Pop III) GRB exploding in a primordial dwarf galaxy as a luminous background source, and calculate the strength of metal absorption lines that are imprinted by the first heavy elements in the intergalactic medium (IGM). To derive the GRB absorption line diagnostics, we use an existing highly resolved simulation of the formation of a first galaxy which is characterized by the onset of atomic hydrogen cooling in a halo with virial temperature approximately greater than10(exp 4) K.We explore the unusual circumburst environment inside the systems that hosted Pop III stars, modeling the density evolution with the self-similar solution for a champagne flow. For minihalos close to the cooling threshold, the circumburst density is roughly proportional to (1 + z) with values of about a few cm(exp -3). In more massive halos, corresponding to the first galaxies, the density may be larger, n approximately greater than100 cm(exp -3). The resulting afterglow fluxes are weakly dependent on redshift at a fixed observed time, and may be detectable with the James Webb Space Telescope and Very Large Array in the near-IR and radio wavebands, respectively, out to redshift z approximately greater than 20. We predict that the maximum of the afterglow emission shifts from near-IR to millimeter bands with peak fluxes from mJy to Jy at different observed times. The metal absorption line signature is expected to be detectable in the near future. GRBs are ideal tools for probing the metal enrichment in the early IGM, due to their high luminosities and featureless power-law spectra. The metals in the first galaxies produced by the first supernova (SN) explosions are likely to reside in low-ionization stages (C II, O I, Si II and Fe II). We show that, if the afterglow can be observed sufficiently early, analysis of the metal lines may

  11. Probing Pre-galactic Metal Enrichment with High-redshift Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Wang, F. Y.; Bromm, Volker; Greif, Thomas H.; Stacy, Athena; Dai, Z. G.; Loeb, Abraham; Cheng, K. S.

    2012-11-01

    We explore high-redshift gamma-ray bursts (GRBs) as promising tools to probe pre-galactic metal enrichment. We utilize the bright afterglow of a Population III (Pop III) GRB exploding in a primordial dwarf galaxy as a luminous background source, and calculate the strength of metal absorption lines that are imprinted by the first heavy elements in the intergalactic medium (IGM). To derive the GRB absorption line diagnostics, we use an existing highly resolved simulation of the formation of a first galaxy which is characterized by the onset of atomic hydrogen cooling in a halo with virial temperature >~ 104 K. We explore the unusual circumburst environment inside the systems that hosted Pop III stars, modeling the density evolution with the self-similar solution for a champagne flow. For minihalos close to the cooling threshold, the circumburst density is roughly proportional to (1 + z) with values of about a few cm-3. In more massive halos, corresponding to the first galaxies, the density may be larger, n >~ 100 cm-3. The resulting afterglow fluxes are weakly dependent on redshift at a fixed observed time, and may be detectable with the James Webb Space Telescope and Very Large Array in the near-IR and radio wavebands, respectively, out to redshift z >~ 20. We predict that the maximum of the afterglow emission shifts from near-IR to millimeter bands with peak fluxes from mJy to Jy at different observed times. The metal absorption line signature is expected to be detectable in the near future. GRBs are ideal tools for probing the metal enrichment in the early IGM, due to their high luminosities and featureless power-law spectra. The metals in the first galaxies produced by the first supernova (SN) explosions are likely to reside in low-ionization stages (C II, O I, Si II and Fe II). We show that, if the afterglow can be observed sufficiently early, analysis of the metal lines may distinguish whether the first heavy elements were produced in a pair

  12. Lyman alpha emitting galaxies at high redshift: Direct detection of young galaxies in a young universe

    NASA Astrophysics Data System (ADS)

    Dawson, Steven Arthur

    An early result of galaxy formation theory was the prediction that the copious ionizing radiation produced in nascent galaxies undergoing their first starbursts should in turn produce a strong Lya emission line. We report on our efforts to detect and characterize primeval galaxies by searching for this expected Lya signature with two observational techniques: serendipitous slit spectroscopy, and narrowband imaging selection. In Part I, we describe our serendipitous slit spectroscopy survey of the Hubble Deep Field and its environs, which resulted in a catalog of 74 spectroscopic redshifts spanning 0.10 < z < 5.77, including a galaxy cluster at z = 0.85 and five galaxies at z > 5. Follow-up observations at higher resolution resulted in the additional serendipitous detection of a strong Lya-emitting galaxy at z = 5.190 (ES1). At the time of its discovery, ES1 was one of only nine known galaxies at z > 5, and was the sixth most distant known galaxy. The unprecedented spectral purity of the observation offers evidence for a galaxy-scale outflow with a. velocity of v > 300 km s -1 , consistent with wind speeds observed in powerful local starbursts (typically 10 2 to 10 3 km s -1 ), and with simulations of the late- stage evolution of Lya emission in star-forming systems. Our final serendipitous detection is the remarkable source CXOHDFN J123635.6+621424, which is both the highest redshift known spiral galaxy, and a rare example of a high redshift, hard X-ray-emitting Type II AGN. Significantly, all of these results were acquired with no direct allocation of telescope time. In Part II, we report on our implementation of narrowband imaging selection, with which we traded redshift coverage for survey volume, focusing on the systematic study of galaxies at a particular epoch in favor of chasing that rare, most-distant object. This effort resulted in a catalog of 76 z [approximate] 4.5 Lya-emitting galaxies spectroscopically-confirmed in campaigns of Keck/LRIS and Keck

  13. RUNAWAY STARS AND THE ESCAPE OF IONIZING RADIATION FROM HIGH-REDSHIFT GALAXIES

    SciTech Connect

    Conroy, Charlie; Kratter, Kaitlin M.

    2012-08-20

    Approximately 30% of all massive stars in the Galaxy are runaways with velocities exceeding 30 km s{sup -1}. Their high speeds allow them to travel {approx}0.1-1 kpc away from their birthplace before they explode at the end of their several Myr lifetimes. At high redshift, when galaxies were much smaller than in the local universe, runaways could venture far from the dense inner regions of their host galaxies. From these large radii, and therefore low column densities, much of their ionizing radiation is able to escape into the intergalactic medium. Runaways may therefore significantly enhance the overall escape fraction of ionizing radiation, f{sub esc}, from small galaxies at high redshift. We present simple models of the high-redshift runaway population and its impact on f{sub esc} as a function of halo mass, size, and redshift. We find that the inclusion of runaways enhances f{sub esc} by factors of Almost-Equal-To 1.1-8, depending on halo mass, galaxy geometry, and the mechanism of runaway production, implying that runaways may contribute 50%-90% of the total ionizing radiation escaping from high-redshift galaxies. Runaways may therefore play an important role in reionizing the universe.

  14. Relic HII regions and radiative feedback at high redshifts

    NASA Astrophysics Data System (ADS)

    Mesinger, Andrei; Bryan, Greg L.; Haiman, Zoltán

    2009-11-01

    Ultraviolet (UV) radiation from early astrophysical sources could have a large impact on subsequent star formation in nearby protogalaxies, and in general on the progress of cosmological reionization. Theoretical arguments based on the absence of metals in the early Universe suggest that the first stars were likely massive, bright, yet short-lived, with lifetimes of a few million years. Here we study the radiative feedback arising from such stars using hydrodynamical simulations with transient UV backgrounds (UVBs) and persistent Lyman-Werner backgrounds (LWBs) of varying intensity. We extend our prior work in Mesinger et al., by studying a more typical region whose protogalaxies form at lower redshifts, z ~ 13-20, in the epoch likely preceding the bulk of reionization. We confirm our previous results that feedback in the relic HII regions resulting from such transient radiation is itself transient. Feedback effects dwindle away after ~30 per cent of the Hubble time, and the same critical specific intensity of JUV ~ 0.1 × 10-21ergs-1cm-2Hz-1sr-1 separates positive and negative feedback regimes. This suggests that overall feedback is fairly insensitive to the large-scale environment, overdensity and redshift-dependent halo parameters, and can accurately be modelled in this regime with just the intensity of the impinging UVB. Additionally, we discover a second episode of eventual positive feedback in haloes which have not yet collapsed when their progenitor regions were exposed to the transient UVB. When exposed to the transient UVB, this gas suffers relatively little density depletion but a significant enhancement of the molecular hydrogen abundance, thus resulting in net positive feedback. This eventual positive feedback appears in all runs, regardless of the strength of the UVB. However, this feedback regime is very sensitive to the presence of Lyman-Werner radiation, and notable effects disappear under fairly modest background intensities of JLW >~ 10-3 × 10

  15. Intensity Mapping of Molecular Gas at High Redshift

    NASA Astrophysics Data System (ADS)

    Bower, Geoffrey; Keating, Garrett; Marrone, Dan; DeBoer, David; Chang, Tzu-Ching; Chen, Ming-Tang; Jiang, Homin; Koch, Patrick; Kubo, Derek; Li, Chao-Te; Lin, K. Y.; Srinivasan, Ranjani; Darling, Jeremy

    2015-08-01

    The origin and evolution of structure in the Universe is one of the major challenges of observational astronomy. How and when did the first stars and galaxies form? How does baryonic structure trace the underlying dark matter? A multi-wavelength, multi-tool approach is necessary to provide the complete story or the evolution of structure in the Universe. Intensity mapping, which relies on the ability to detect many objects at once through their integrated emission rather than direct detection of individual objects, is a critical part of this mosaic. Intensity mapping provides a window on lower luminosity objects that cannot be detected individually but that collectively drive important processes. In particular, our understanding of the molecular gas component of massive galaxies is being revolutionized by ALMA and EVLA but the population of smaller, star-forming galaxies, which provide the bulk of star formation cannot be individually probed by these instruments.In this talk, I will summarize two intensity mapping experiments to detect molecular gas through the carbon monoxide (CO) rotational transition. We are currently completing sensitive observations with the Sunyaev-Zel'dovic Array (SZA) telescope at a wavelength of 1 cm that are sensitive to emission at redshifts 2.3 to 3.3. The SZA experiments sets strong limits on models for the CO emission and demonstrates the ability to reject foregrounds and telescope systematics in very deep integrations. I also describe the development of an intensity mapping capability for the Y.T. Lee Array, a 13-element interferometer located on Mauna Loa. In its first phase, this project focuses on detection of CO at redshifts 2.3 - 3.3 with detection via power spectrum and cross-correlation with other surveys. The project includes a major technical upgrade, a new digital correlator and IF electronics component to be deployed in 2015/2016. The Y.T. Lee Array observations will be more sensitive and extend to larger angular scales

  16. Infrared-faint radio sources are at high redshifts. Spectroscopic redshift determination of infrared-faint radio sources using the Very Large Telescope

    NASA Astrophysics Data System (ADS)

    Herzog, A.; Middelberg, E.; Norris, R. P.; Sharp, R.; Spitler, L. R.; Parker, Q. A.

    2014-07-01

    Context. Infrared-faint radio sources (IFRS) are characterised by relatively high radio flux densities and associated faint or even absent infrared and optical counterparts. The resulting extremely high radio-to-infrared flux density ratios up to several thousands were previously known only for high-redshift radio galaxies (HzRGs), suggesting a link between the two classes of object. However, the optical and infrared faintness of IFRS makes their study difficult. Prior to this work, no redshift was known for any IFRS in the Australia Telescope Large Area Survey (ATLAS) fields which would help to put IFRS in the context of other classes of object, especially of HzRGs. Aims: This work aims at measuring the first redshifts of IFRS in the ATLAS fields. Furthermore, we test the hypothesis that IFRS are similar to HzRGs, that they are higher-redshift or dust-obscured versions of these massive galaxies. Methods: A sample of IFRS was spectroscopically observed using the Focal Reducer and Low Dispersion Spectrograph 2 (FORS2) at the Very Large Telescope (VLT). The data were calibrated based on the Image Reduction and Analysis Facility (IRAF) and redshifts extracted from the final spectra, where possible. This information was then used to calculate rest-frame luminosities, and to perform the first spectral energy distribution modelling of IFRS based on redshifts. Results: We found redshifts of 1.84, 2.13, and 2.76, for three IFRS, confirming the suggested high-redshift character of this class of object. These redshifts and the resulting luminosities show IFRS to be similar to HzRGs, supporting our hypothesis. We found further evidence that fainter IFRS are at even higher redshifts. Conclusions: Considering the similarities between IFRS and HzRGs substantiated in this work, the detection of IFRS, which have a significantly higher sky density than HzRGs, increases the number of active galactic nuclei in the early universe and adds to the problems of explaining the formation of

  17. Fluctuations in radiation backgrounds at high redshift and the first stars

    NASA Astrophysics Data System (ADS)

    Holzbauer, Lauren Nicole

    detected after subtracting all known foreground stars and galaxies. Pop III stars have been the leading candidates thought responsible for this observed NIRB excess. We model the Pop III stellar contribution to the NIRB mean intensity and fluctuations and generate observationally motivated values of the star formation (SF) efficiency using high redshift measurements of the UV luminosity density with UDF09, UDF12, and WMAP-9 data. This allows us to characterize the properties of a Pop III stellar population that are required to produce the measured excess. Finally, we propose a new method for detecting primordial metal-free and very metal-poor stellar populations by cross-correlating fluctuations in the intensity of Lyman-alpha and He II &λ;1640A emission sourced from high redshifts. Pop III stars are expected to be more massive and more compact than later generations of stars. This results in a much harder ionizing spectrum. A large portion of the ionizing photons have energies with hnu > 54.4 eV that carve out substantial patches of doubly ionized helium, He III. These photoionized regions then begin to shine brightly in He II recombination emission. Due to the lack of heavy elements in these regions, Pop III stars must rely on hydrogen and helium for cooling, enhancing both the Lyman-alpha and He II emission lines. In this regard, Pop III stars can be characterized as `dual emitters,' i.e. producers of both Lyman-alpha and He II emission signatures. Though Lyman-alpha emission is characteristic of both metal-free and metal-enriched stars, He II emission appears to be unique to extremely metal poor stars and metal-free stars, making it a very strong signature of the first stars. Detecting Lyman-alpha + He II dual emission in individual galaxies at high redshift is difficult and so far rare. The astrophysical engines powering the few Lyman-alpha + He II dual emitters that have been discovered have still not been clearly identified. Alternatively, we may be able to map

  18. ZEN and the Search for High-Redshift Galaxies

    NASA Astrophysics Data System (ADS)

    Willis, J. P.

    2006-01-01

    We present the ZEN (z equals nine) survey: a deep, narrow J-band search for proto-galactic Lya emission at redshifts z=9. In the first phase of the survey, dubbed ZEN1, we combine an exceptionally deep image of the Hubble Deep Field South, obtained using a narrow band filter centred on the wavelength 1.187 microns, with existing deep, broad band images covering optical to near infrared wavelengths. Candidate z=9 Lya-emitting galaxies display a significant narrow band excess relative to the Js-band that are undetected at optical wavelengths. We detect no sources consistent with this criterion to the 90% point source flux limit of the NB image, F_NB = 3.28e-18 ergs/s/cm2. The survey selection function indicates that we have sampled a volume of approximately 340 h^{-3} Mpc3 to a Lya emission luminosity of 10e43 h^{-2} ergs/s. When compared to the predicted properties of z=9 galaxies based upon no evolution of observed z=6 Lya-emitting galaxies, the `volume shortfall' of the current survey, i.e. the volume required to detect this putative population, is a factor of at least 8 to 10. We also discuss continuing narrow J-band imaging surveys that will reduce the volume shortfall factor to the point where the no-evolution prediction from z=6 is probed in a meaningful manner.

  19. Morphology of High Redshifted Galaxies using GALEX Ultraviolet Observations of Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Yeom, Bum-Suk; Kim, Y.; Rey, S.; Kim, S.; Joe, Y.; Gil de Paz, A.

    2009-01-01

    Galaxy morphology provides clues about the processes in the understanding of the formation and evolution of galaxies. In this respect, the prediction of optical-band morphologies at high redshifts requires ultraviolet (UV) images of local galaxies with various morphologies. We simulated optical images at high redshifts using more diverse and high-quality nearby galaxies obtained through the Galaxy Evolution Explorer (GALEX) UV observations. We present a quantitative analysis of the morphology of galaxies at near-ultraviolet (NUV) and simulated optical images. We also present a correlation between the isophotal-shape parameter and UV colors for nearby early-type galaxies.

  20. Soft X-Ray Absorption by High-Redshift Intergalactic Helium.

    PubMed

    Miralda-Escudé

    2000-01-01

    The Lyalpha absorption from intergalactic, once-ionized helium (He ii) has been measured with the Hubble Space Telescope in four quasars over the last few years in the redshift range 2.4redshifts is, however, model-dependent and difficult to determine from these observations, since the intergalactic medium (IGM) can be completely optically thick to Lyalpha photons when only a small fraction of the helium remains as He ii. In addition, finding quasars in which the He ii Lyalpha absorption can be observed becomes increasingly difficult at higher redshift owing to the large abundance of hydrogen Lyman limit systems. It is pointed out here that He ii in the IGM should also cause detectable continuum absorption in the soft X-rays. The spectrum of a high-redshift source seen behind the IGM when most of the helium was He ii should recover from the He ii Lyman continuum absorption at an observed energy of approximately 0.1 keV. Galactic absorption will generally be stronger, but not by a large factor; the intergalactic He ii absorption can be detected as an excess over the expected Galactic absorption from the 21 cm H i column density. In principle, this method allows a direct determination of the fraction of helium that was singly ionized as a function of redshift if the measurement is done on a large sample of high-redshift sources over a range of redshifts. PMID:10587481

  1. Neutral hydrogen at the present epoch: A constraint on the evolution of high redshift systems

    NASA Technical Reports Server (NTRS)

    Rao, Sandhya; Briggs, Frank H.

    1993-01-01

    Damped Lyman-alpha and metal absorption lines in the spectra of quasars indicate the presence of intervening gas-rich systems at high redshift (z greater than 2). These systems have characteristic size scales, velocity dispersions, and neutral hydrogen column densities (N(H1)) similar to present day spirals and are thus thought to be their progenitors. Constraints on galaxy evolution can be derived by comparing the H1 properties of high redshift systems to the present galaxy population. Good observational statistics on high redshift absorbers specify the number of these systems along the line of sight as a function of N(H1), the column density of neutral hydrogen per absorber. Similar statistics for nearby (z = 0) galaxies of which spirals are the only gas-rich systems that provide a significant cross-section for the interception of light from quasars is derived.

  2. A study of massive and evolved galaxies at high redshift

    SciTech Connect

    Nayyeri, H.; Mobasher, B.; Hemmati, S.; De Barros, S.; Ferguson, H. C.; Wiklind, T.; Dahlen, T.; Kassin, S.; Koekemoer, A.; Dickinson, M.; Giavalisco, M.; Fontana, A.; Paris, D.; Ashby, M.; Willner, S.; Barro, G.; Guo, Y.; Hathi, N. P.; Dunlop, J. S.; Targett, T. A.

    2014-10-10

    We use data taken as part of Hubble Space Telescope (HST)/Wide Field Camera 3 (WFC3) observations of the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) to identify massive and evolved galaxies at 3 < z < 4.5. This is performed using the strength of the Balmer break feature at rest-frame 3648 Å, which is a diagnostic of the age of the stellar population in galaxies. Using the WFC3 H-band-selected catalog for the CANDELS GOODS-S field and deep multi-waveband photometry from optical (HST) to mid-infrared (Spitzer) wavelengths, we identify a population of old and evolved post-starburst galaxies based on the strength of their Balmer breaks (Balmer break galaxies, BBGs). The galaxies are also selected to be bright in rest-frame near-IR wavelengths and hence massive. We identify a total of 16 BBGs. Fitting the spectral energy distribution of the BBGs shows that the candidate galaxies have average estimated ages of ∼800 Myr and average stellar masses of ∼5 × 10{sup 10} M {sub ☉}, consistent with being old and massive systems. Two of our BBG candidates are also identified by the criteria that are sensitive to star-forming galaxies (Lyman break galaxy selection). We find a number density of ∼3.2 × 10{sup –5} Mpc{sup –3} for the BBGs, corresponding to a mass density of ∼2.0 × 10{sup 6} M {sub ☉} Mpc{sup –3} in the redshift range covering the survey. Given the old age and the passive evolution, it is argued that some of these objects formed the bulk of their mass only a few hundred million years after the big bang.

  3. ZEN and the search for high-redshift galaxies

    NASA Astrophysics Data System (ADS)

    Willis, Jon; Courbin, Frédéric; Kneib, Jean-Paul; Minniti, Dante

    2006-03-01

    We present the ZEN ( z equals nine) survey: a deep, narrow J-band search for proto-galactic Ly α emission at redshifts z ˜ 9. In the first phase of the survey, dubbed ZEN1, we combine an exceptionally deep image of the Hubble Deep Field South, obtained using a narrow-band filter centred on the wavelength 1.187 μm, with existing deep, broad band images covering optical to near infrared wavelengths. Candidate z ˜ 9 Ly α-emitting galaxies display a significant narrow-band excess relative to the Js-band that are undetected at optical wavelengths. We detect no sources consistent with this criterion to the 90% point source flux limit of the NB image, FNB = 3.28 × 10 -18 ergs s -1 cm -2. The survey selection function indicates that we have sampled a volume of approximately 340 h -3 Mpc 3 to a Ly α emission luminosity of 10 43 h -2 ergs s -1. When compared to the predicted properties of z ˜ 9 galaxies based upon no evolution of observed z ˜ 6 Ly α-emitting galaxies, the 'volume shortfall' of the current survey, i.e., the volume required to detect this putative population, is a factor of at least 8-10. We also discuss continuing narrow J-band imaging surveys that will reduce the volume shortfall factor to the point where the no-evolution prediction from z ˜ 6 is probed in a meaningful manner.

  4. Pressure-driven fragmentation of multiphase clouds at high redshift

    NASA Astrophysics Data System (ADS)

    Dhanoa, H.; Mackey, J.; Yates, J.

    2014-11-01

    The discovery of a hyper metal-poor star with total metallicity of ≤10-5 Z⊙ has motivated new investigations of how such objects can form from primordial gas polluted by a single supernova. In this paper, we present a shock-cloud model which simulates a supernova remnant interacting with a cloud in a metal-free environment at redshift z = 10. Pre-supernova conditions are considered, which include a multiphase neutral medium and H II region. A small dense clump (n = 100 cm-3), located 40 pc from a 40 M⊙ metal-free star, embedded in an n = 10 cm-3 ambient cloud. The evolution of the supernova remnant and its subsequent interaction with the dense clump is examined. We include a comprehensive treatment of the non-equilibrium hydrogen and helium chemistry and associated radiative cooling that is occurring at all stages of the shock-cloud model, covering the temperature range 10-109 K. Deuterium chemistry and its associated cooling are not included because the UV radiation field produced by the relic H II region and supernova remnant is expected to suppress deuterium chemistry and cooling. We find a 103 times density enhancement of the clump (maximum density ≈78 000 cm-3) within this metal-free model. This is consistent with Galactic shock-cloud models considering solar metallicity gas with equilibrium cooling functions. Despite this strong compression, the cloud does not become gravitationally unstable. We find that the small cloud modelled here is destroyed for shock velocities ≳50 km s-1, and not significantly affected by shocks with velocity ≲30 km s-1. Rather specific conditions are required to make such a cloud collapse, and substantial further compression would be required to reduce the local Jeans mass to sub-solar values.

  5. Probing the dark ages: Observations of the high-redshift universe

    NASA Astrophysics Data System (ADS)

    Stevens, Daniel Keith

    This thesis attempts to describe some of the earliest phases in the collapse of galaxies from an observational standpoint. The work is composed of an assortment of projects which sample objects at very high redshift, probing the Universe 1-3 Gyr after the Big Bang. The first section of the thesis concerns high-redshift galaxies. Search techniques for identifying distant galaxies are extensively reviewed. Radio selection was once the primary vehicle to targeting the early Universe. Keck spectroscopy of high-redshift radio galaxies from the MIT-Greenbank radio catalog (S5GHz >~ 50 mJy) are discussed. We synthesize a composite radio galaxy spectrum, which we compare with other composite active galaxy spectra. Our data suggests a correlation between radio power and ionization state in high-redshift radio galaxies. The following three chapters detail individual galaxies confirmed at z > 5. These galaxies are among the half-dozen most distant sources known at the close of the 20th Century. Two of the galaxies were photometrically-selected from the Hubble Deep Field (HDF 4-473.0 at z = 5.60 and HDF 3-951.0 at z = 5.34 +/- 0.01). The third is TN J0924-2201, a radio galaxy at z = 5.19 selected on the basis of steep radio spectral index and faint K-band brightness. This source contains the most distant active galactic nucleus currently known, requiring early formation of supermassive blackholes within a Gyr after the Big Bang. The second section of the thesis concerns searches for high-redshift Lyα emission, identified either from deep, narrow-band imaging surveys or deep slit spectra. We discuss in detail one faint, high equivalent width line-emitter. Conventional wisdom would suggest identifying the 9185 Å line with Lyα at z = 6.55. We argue [O II] λ3727 at z = 1.46 is the more likely identification and discuss observational tests to distinguish Lyα-emitters at high redshift from foreground (active) sources. The final section of the thesis concerns high-redshift

  6. Five New High-Redshift Quasar Lenses from the Sloan Digital Sky Survey

    SciTech Connect

    Inada, Naohisa; Oguri, Masamune; Shin, Min-Su; Kayo, Issha; Strauss, Michael A.; Morokuma, Tomoki; Schneider, Donald P.; Becker, Robert H.; Bahcall, Neta A.; York, Donald G.

    2008-09-08

    We report the discovery of five gravitationally lensed quasars from the Sloan Digital Sky Survey (SDSS). All five systems are selected as two-image lensed quasar candidates from a sample of high-redshift (z > 2.2) SDSS quasars. We confirmed their lensing nature with additional imaging and spectroscopic observations. The new systems are SDSS J0819+5356 (source redshift z{sub s} = 2.237, lens redshift z{sub l} = 0.294, and image separation {theta} = 4.04 inch), SDSS J1254+2235 (z{sub s} = 3.626, {theta} = 1.56 inch), SDSS J1258+1657 (z{sub s} = 2.702, {theta} = 1.28 inch), SDSS J1339+1310 (z{sub s} = 2.243, {theta} = 1.69 cin), and SDSS J1400+3134 (z{sub s} = 3.317, {theta} = 1.74 inch). We estimate the lens redshifts of the latter four systems to be z{sub l} = 0.4-0.6 from the colors and magnitudes of the lensing galaxies. We find that the image configurations of all systems are well reproduced by standard mass models. Although these lenses will not be included in our statistical sample of z{sub s} < 2.2 lenses, they expand the number of lensed quasars which can be used for high-redshift galaxy and quasar studies.

  7. Spectroscopy of High-Redshift Supernovae from the ESSENCE Project: The First 2 Years

    NASA Astrophysics Data System (ADS)

    Matheson, Thomas; Blondin, Stéphane; Foley, Ryan J.; Chornock, Ryan; Filippenko, Alexei V.; Leibundgut, Bruno; Smith, R. Chris; Sollerman, Jesper; Spyromilio, Jason; Kirshner, Robert P.; Clocchiatti, Alejandro; Aguilera, Claudio; Barris, Brian; Becker, Andrew C.; Challis, Peter; Covarrubias, Ricardo; Garnavich, Peter; Hicken, Malcolm; Jha, Saurabh; Krisciunas, Kevin; Li, Weidong; Miceli, Anthony; Miknaitis, Gajus; Prieto, Jose Luis; Rest, Armin; Riess, Adam G.; Salvo, Maria Elena; Schmidt, Brian P.; Stubbs, Christopher W.; Suntzeff, Nicholas B.; Tonry, John L.

    2005-05-01

    We present the results of spectroscopic observations of targets discovered during the first 2 years of the ESSENCE project. The goal of ESSENCE is to use a sample of ~200 Type Ia supernovae (SNe Ia) at moderate redshifts (0.2<~z<~0.8) to place constraints on the equation of state of the universe. Spectroscopy not only provides the redshifts of the objects but also confirms that some of the discoveries are indeed SNe Ia. This confirmation is critical to the project, as techniques developed to determine luminosity distances to SNe Ia depend on the knowledge that the objects at high redshift have the same properties as the ones at low redshift. We describe the methods of target selection and prioritization, the telescopes and detectors, and the software used to identify objects. The redshifts deduced from spectral matching of high-redshift SNe Ia with low-redshift SNe Ia are consistent with those determined from host-galaxy spectra. We show that the high-redshift SNe Ia match well with low-redshift templates. We include all spectra obtained by the ESSENCE project, including 52 SNe Ia, five core-collapse SNe, 12 active galactic nuclei, 19 galaxies, four possibly variable stars, and 16 objects with uncertain identifications. Based in part on observations obtained at the Cerro Tololo Inter-American Observatory, which is operated by the Association of Universities for Research in Astronomy (AURA), Inc., under a cooperative agreement with the National Science Foundation (NSF); the European Southern Observatory, Chile (ESO Programme 170.A-0519) the Gemini Observatory, which is operated by AURA under a cooperative agreement with the NSF on behalf of the Gemini partnership (the NSF [United States], the Particle Physics and Astronomy Research Council [United Kingdom], the National Research Council [Canada], CONICYT [Chile], the Australian Research Council [Australia], CNPq [Brazil], and CONICET [Argentina] [programs GN-2002B-Q-14, GN-2003B-Q-14, and GS-2003B-Q-11]) the

  8. High-Redshift Candidates and the Nature of Small Galaxies in the Hubble Deep Field

    NASA Astrophysics Data System (ADS)

    Storrie-Lombardi, Lisa J.; Weymann, Ray J.; Thompson, Rodger I.

    2003-07-01

    We present results on two related topics: (1) a discussion of high-redshift candidates (z>4.5) and (2) a study of very small galaxies at intermediate redshifts, both sets being detected in the region of the northern Hubble Deep Field (HDF) covered by the deep NICMOS observations at 1.6 and 1.1 μm. The high-redshift candidates are just those with redshift z>4.5 as given in the recent catalog of Thompson, Weymann, and Storrie-Lombardi, while the ``small galaxy'' sample is defined to be those objects with isophotal area <=0.2 arcsec2 and with photometric redshift 1<=z<=4.5. Of the 19 possible high-redshift candidates listed in the Thompson et al. catalog, 11 have (nominal) photometric redshifts less than 5.0. Of these, however, only four are ``robust'' in the sense of yielding high redshifts when the fluxes are randomly perturbed with errors comparable to the estimated measuring error in each wave band. For the eight other objects with nominal photometric redshifts greater than 5.0, one (WFPC2 4-473) has a published spectroscopic redshift. Of the remaining seven, four are robust in the sense indicated above. Two of these form a close pair (NIC 586 and NIC 107). The redshift of the object having formally the highest redshift, at 6.56 (NIC 118=WFPC2 4-601), is problematic, since F606W and F814W flux are clearly present, and the nature of this object poses a dilemma. Previous work by Colley et al. has suggested that compact sources in the WFPC2 HDF images are subgalactic components at redshifts z>0.5 since they are correlated on scales less than 1", corresponding to physical scales of less than 8 kpc (H0=65 km s-1 Mpc-1, q0=0.125). We confirm these correlations in the WFPC2 data. However, we do not detect the correlation of close pairs of galaxies on small scales in the ~0.65 arcmin2 region of the HDF that we surveyed with NICMOS. The smaller area surveyed and lower resolution will make any real correlation more difficult to measure in these data. We have examined

  9. The Lyman-continuum photon production efficiency in the high-redshift Universe

    NASA Astrophysics Data System (ADS)

    Wilkins, Stephen M.; Feng, Yu; Di-Matteo, Tiziana; Croft, Rupert; Stanway, Elizabeth R.; Bouwens, Rychard J.; Thomas, Peter

    2016-05-01

    The Lyman-continuum photon production efficiency (ξion) is a critical ingredient for inferring the number of photons available to reionize the intergalactic medium. To estimate the theoretical production efficiency in the high-redshift Universe we couple the BlueTides cosmological hydrodynamical simulation with a range of stellar population synthesis models. We find Lyman-continuum photon production efficiencies of log10(ξion/erg-1 Hz) ≈ 25.1-25.5 depending on the choice of stellar population synthesis model. These results are broadly consistent with recent observational constraints at high-redshift though favour a model incorporating the effects of binary evolution.

  10. Local Counterparts to High-Redshift Turbulent Galaxies: What are the Stellar Kinematics?

    NASA Astrophysics Data System (ADS)

    Bassett, Robert; Glazebrook, Karl; Fisher, David; Abraham, Roberto; Damjanov, Ivana

    2014-02-01

    We aim to measure the stellar kinematics of 4 low redshift turbulent, clumpy disks with the GMOS IFU. Recent observations of high redshift galaxies show that gaseous disks in high redshift (z 2) galaxies are turbulent. The source of this turbulence remains an open question. A possible scenario is that turbulent disks are fed by streams of cold gas, flowing along cosmic filaments, which drive the large H-alpha velocity dispersions and clumpy star formation observed (for example by the SINS survey). However, the recent discovery of low redshift disk galaxies with clumpy-high velocity dispersion disks shows that galaxies with similar properties to high-z clumpy disks can exists in absence of cold flows, therefore an alternate driver for turbulence seems likely to explain, at least these nearby galaxies. A contrasting scenario is that the turbulence is driven by feedback from extreme star formation originating from a thin stellar disk. These nearby star forming disks are very rare, yet they provide an oppurtunity to study clumpy disks with techniques which are impossible at high redshift (due to both resolution and surface brightness dimming). Here we propose one such study, to measure the stellar kinematics from Balmer absorption lines. If the stars and gas have similar velocity dispersion, this would favor externally driven turbulence by gas accretion (a rare thing in the low redshift Universe); conversely if the gas and stars have different dynamics then this would suggest that internally driven turbelence from feedback is a plausible scenario. We currently have GMOS IFU observations of two disk systems, and we propose here to extend our sample. To identify galaxies as disks we use lower resolution IFU emission line kinematics from AAO, surface photometry from UKIDSS and SDSS, and Halpha maps from Hubble Space Telescope.

  11. Non-linear violent disc instability with high Toomre's Q in high-redshift clumpy disc galaxies

    NASA Astrophysics Data System (ADS)

    Inoue, Shigeki; Dekel, Avishai; Mandelker, Nir; Ceverino, Daniel; Bournaud, Frédéric; Primack, Joel

    2016-02-01

    We utilize zoom-in cosmological simulations to study the nature of violent disc instability in clumpy galaxies at high redshift, z = 1-5. Our simulated galaxies are not in the ideal state assumed in Toomre instability, of linear fluctuations in an isolated, uniform, rotating disc. There, instability is characterized by a Q parameter below unity, and lower when the disc is thick. Instead, the high-redshift discs are highly perturbed. Over long periods they consist of non-linear perturbations, compact massive clumps and extended structures, with new clumps forming in interclump regions. This is while the galaxy is subject to frequent external perturbances. We compute the local, two-component Q parameter for gas and stars, smoothed on a ˜1 kpc scale to capture clumps of 108-9 M⊙. The Q < 1 regions are confined to collapsed clumps due to the high surface density there, while the interclump regions show Q significantly higher than unity. Tracing the clumps back to their relatively smooth Lagrangian patches, we find that Q prior to clump formation typically ranges from unity to a few. This is unlike the expectations from standard Toomre instability. We discuss possible mechanisms for high-Q clump formation, e.g. rapid turbulence decay leading to small clumps that grow by mergers, non-axisymmetric instability, or clump formation induced by non-linear perturbations in the disc. Alternatively, the high-Q non-linear VDI may be stimulated by the external perturbations such as mergers and counter-rotating streams. The high Q may represent excessive compressive modes of turbulence, possibly induced by tidal interactions.

  12. The fate of high redshift massive compact galaxies in dense environments

    SciTech Connect

    Kaufmann, Tobias; Mayer, Lucio; Carollo, Marcella; Feldmann, Robert; /Fermilab /Chicago U., KICP

    2012-01-01

    Massive compact galaxies seem to be more common at high redshift than in the local universe, especially in denser environments. To investigate the fate of such massive galaxies identified at z {approx} 2 we analyse the evolution of their properties in three cosmological hydrodynamical simulations that form virialized galaxy groups of mass {approx} 10{sup 13} M{sub {circle_dot}} hosting a central massive elliptical/S0 galaxy by redshift zero. We find that at redshift {approx} 2 the population of galaxies with M{sub *} > 2 x 10{sup 10} M{sub {circle_dot}} is diverse in terms of mass, velocity dispersion, star formation and effective radius, containing both very compact and relatively extended objects. In each simulation all the compact satellite galaxies have merged into the central galaxy by redshift 0 (with the exception of one simulation where one of such satellite galaxy survives). Satellites of similar mass at z = 0 are all less compact than their high redshift counterparts. They form later than the galaxies in the z = 2 sample and enter the group potential at z < 1, when dynamical friction times are longer than the Hubble time. Also, by z = 0 the central galaxies have increased substantially their characteristic radius via a combination of in situ star formation and mergers. Hence in a group environment descendants of compact galaxies either evolve towards larger sizes or they disappear before the present time as a result of the environment in which they evolve. Since the group-sized halos that we consider are representative of dense environments in the {Lambda}CDM cosmology, we conclude that the majority of high redshift compact massive galaxies do not survive until today as a result of the environment.

  13. Galaxy formation in the Planck cosmology - III. The high-redshift universe

    NASA Astrophysics Data System (ADS)

    Clay, Scott J.; Thomas, Peter A.; Wilkins, Stephen M.; Henriques, Bruno M. B.

    2015-08-01

    We present high-redshift predictions of the star formation rate distribution function (SFRDF), UV luminosity function (UVLF), galactic stellar mass function (GSMF), and specific star formation rates (sSFRs) of galaxies from the latest version of the Munich semi-analytic model L-GALAXIES. We find a good fit to both the shape and normalization of the SFRDF at z = 4-7, apart from a slight underprediction at the low-SFR end at z = 4. Likewise, we find a good fit to the faint number counts for the observed UVLF at brighter magnitudes our predictions lie below the observations, increasingly so at higher redshifts. At all redshifts and magnitudes, the raw (unattenuated) number counts for the UVLF lie above the observations. Because of the good agreement with the SFR we interpret our underprediction as an overestimate of the amount of dust in the model for the brightest galaxies, especially at high redshift. While the shape of our GSMF matches that of the observations, we lie between (conflicting) observations at z = 4-5, and underpredict at z = 6-7. The sSFRs of our model galaxies show the observed trend of increasing normalization with redshift, but do not reproduce the observed mass dependence. Overall, we conclude that the latest version of L-GALAXIES, which is tuned to match observations at z ≤ 3, does a fair job of reproducing the observed properties of galaxies at z ≥ 4. More work needs to be done on understanding observational bias at high redshift, and upon the dust model, before strong conclusions can be drawn on how to interpret remaining discrepancies between the model and observations.

  14. Chemical abundances in high-redshift galaxies: a powerful new emission line diagnostic

    NASA Astrophysics Data System (ADS)

    Dopita, Michael A.; Kewley, Lisa J.; Sutherland, Ralph S.; Nicholls, David C.

    2016-02-01

    This Letter presents a new, remarkably simple diagnostic specifically designed to derive chemical abundances for high redshift galaxies. It uses only the Hα, [N ii] and [S ii] emission lines, which can usually be observed in a single grating setting, and is almost linear up to an abundance of 12+log (O/H) = 9.05. It can be used over the full abundance range encountered in high redshift galaxies. By its use of emission lines located close together in wavelength, it is also independent of reddening. Our diagnostic depends critically on the calibration of the N/O ratio. However, by using realistic stellar atmospheres combined with the N/O vs. O/H abundance calibration derived locally from stars and H ii regions, and allowing for the fact that high-redshift H ii regions have both high ionisation parameters and high gas pressures, we find that the observations of high-redshift galaxies can be simply explained by the models without having to invoke arbitrary changes in N/O ratio, or the presence of unusual quantities of Wolf-Rayet stars in these galaxies.

  15. Weak Line Quasars at High Redshift: Extremely High Accretion Rates or Anemic Broad-line Regions?

    NASA Astrophysics Data System (ADS)

    Shemmer, Ohad; Trakhtenbrot, Benny; Anderson, Scott F.; Brandt, W. N.; Diamond-Stanic, Aleksandar M.; Fan, Xiaohui; Lira, Paulina; Netzer, Hagai; Plotkin, Richard M.; Richards, Gordon T.; Schneider, Donald P.; Strauss, Michael A.

    2010-10-01

    We present Gemini-North K-band spectra of two representative members of the class of high-redshift quasars with exceptionally weak rest-frame ultraviolet emission lines (WLQs), SDSS J114153.34+021924.3 at z = 3.55 and SDSS J123743.08+630144.9 at z = 3.49. In both sources, we detect an unusually weak broad Hβ line and place tight upper limits on the strengths of their [O III] lines. Virial, Hβ-based black hole mass determinations indicate normalized accretion rates of L/L Edd=0.4 for these sources, which is well within the range observed for typical quasars with similar luminosities and redshifts. We also present high-quality XMM-Newton imaging spectroscopy of SDSS J114153.34+021924.3 and find a hard-X-ray photon index of Γ = 1.91+0.24 -0.22, which supports the virial L/L Edd determination in this source. Our results suggest that the weakness of the broad emission lines in WLQs is not a consequence of an extreme continuum-emission source but instead due to abnormal broad emission line region properties.

  16. WEAK LINE QUASARS AT HIGH REDSHIFT: EXTREMELY HIGH ACCRETION RATES OR ANEMIC BROAD-LINE REGIONS?

    SciTech Connect

    Shemmer, Ohad; Trakhtenbrot, Benny; Netzer, Hagai; Anderson, Scott F.; Brandt, W. N.; Schneider, Donald P.; Diamond-Stanic, Aleksandar M.; Fan Xiaohui; Lira, Paulina; Plotkin, Richard M.; Richards, Gordon T.; Strauss, Michael A.

    2010-10-20

    We present Gemini-North K-band spectra of two representative members of the class of high-redshift quasars with exceptionally weak rest-frame ultraviolet emission lines (WLQs), SDSS J114153.34+021924.3 at z = 3.55 and SDSS J123743.08+630144.9 at z = 3.49. In both sources, we detect an unusually weak broad H{beta} line and place tight upper limits on the strengths of their [O III] lines. Virial, H{beta}-based black hole mass determinations indicate normalized accretion rates of L/L {sub Edd}=0.4 for these sources, which is well within the range observed for typical quasars with similar luminosities and redshifts. We also present high-quality XMM-Newton imaging spectroscopy of SDSS J114153.34+021924.3 and find a hard-X-ray photon index of {Gamma} = 1.91{sup +0.24} {sub -0.22}, which supports the virial L/L {sub Edd} determination in this source. Our results suggest that the weakness of the broad emission lines in WLQs is not a consequence of an extreme continuum-emission source but instead due to abnormal broad emission line region properties.

  17. 21 Centimeter Tomography of the Intergalactic Medium at High Redshift

    NASA Astrophysics Data System (ADS)

    Madau, Piero; Meiksin, Avery; Rees, Martin J.

    1997-02-01

    We investigate the 21 cm signature that may arise from the intergalactic medium (IGM) prior to the epoch of full reionization (z > 5). In scenarios in which the IGM is reionized by discrete sources of photoionizing radiation, the neutral gas that has not yet been engulfed by an H II region may easily be preheated to temperatures well above that of the cosmic background radiation (CBR), rendering the IGM invisible in absorption against the CBR. We identify three possible preheating mechanisms: (1) photoelectric heating by soft X-rays from QSOs, (2) photoelectric heating by soft X-rays from early galactic halos, and (3) resonant scattering of the continuum UV radiation from an early generation of stars. We find that bright quasars with only a small fraction of the observed comoving density at z ~ 4 will suffice to preheat the entire universe at z >~ 6. We also show that, in a cold dark matter dominated cosmology, the thermal bremsstrahlung radiation associated with collapsing galactic mass halos (1010-1011 M⊙) may warm the IGM to ~100 K by z ~ 7. Alternatively, the equivalent of ~10% of the star formation rate density in the local universe, whether in isolated pregalactic stars, dwarf, or normal galaxies, would be capable of heating the entire IGM to a temperature above that of the CBR by Lyα scattering in a small fraction of the Hubble time at z ~ 6. In the presence of a sufficiently strong ambient flux of Lyα photons, the hyperfine transition in the warmed H I will be excited. A beam differencing experiment would detect a patchwork of emission, both in frequency and in angle across the sky. This patchwork could serve as a valuable tool for understanding the epoch, nature, and sources of the reionization of the universe, and their implications for cosmology. We demonstrate that isolated QSOs will produce detectable signals at meter wavelengths within their ``spheres of influence'' over which they warm the IGM. As a result of the redshifted 21 cm radiation

  18. In Pursuit of the Thermal State of the IGM at Redshift 20: Radio Foreground Characterization

    NASA Astrophysics Data System (ADS)

    Greenhill, Lincoln J.; LEDA Collaboration

    2014-01-01

    One of the great challenges of cosmology today is tracing the thermal history of the Universe from global reionization back to recombination. The Large Aperture Experiment to Detect the Dark Age (LEDA) will set direct constraints on sky-averaged spectral-line absorption of the Cosmic Microwave Background by neutral Hydrogen in the intergalactic medium at redshift ~ 20. Line intensity, breadth, and center frequency enable hypothesis testing for models of heating during the preceding Dark Age and the epoch at which sustained star formation began. LEDA has begun science observations at the Long Wavelength Array in Owens Valley. I will report initial characterizations of the foreground sky, effectiveness of subtraction, and assessment of how difficult or easy it may be to take the next step: measurement of the angular power spectrum of HI fluctuations just after the end of the Dark Age.

  19. Improving dark energy constraints with high-redshift Type Ia supernovae from CANDELS and CLASH

    NASA Astrophysics Data System (ADS)

    Salzano, Vincenzo; Rodney, Steven A.; Sendra, Irene; Lazkoz, Ruth; Riess, Adam G.; Postman, Marc; Broadhurst, Tom; Coe, Dan

    2013-09-01

    Aims: We investigated the degree of improvement in dark energy constraints that can be achieved by extending Type Ia supernova (SN Ia) samples to redshifts z > 1.5 with the Hubble Space Telescope (HST), particularly in the ongoing Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) and the Cluster Lensing and Supernova survey with Hubble (CLASH) multi-cycle treasury programs. Methods: Using the popular Chevalier-Polarski-Linder (CPL) parametrization of the dark energy w = w0 + wa(1 - a) we generated mock SN Ia samples that can be projected out to higher redshifts. The synthetic datasets thus generated were fitted to the CPL model, and we evaluated the improvements that a high-z sample can add to improve the statistical and systematic uncertainties on cosmological parameters. Results: In an optimistic but still very achievable scenario, we find that extending the HST sample beyond CANDELS+CLASH to reach a total of 28 SN Ia at z > 1.0 could improve the uncertainty in the wa parameter σwaby up to 21%. The corresponding improvement in the figure of merit (FoM) would be as high as 28%. Finally, we consider the use of high-redshift SN Ia samples to detect non-cosmological evolution in SN Ia luminosities with redshift, finding that these tests could be undertaken by future space-based infrared surveys using the James Webb Space Telescope (JWST).

  20. Dust Formation, Evolution, and Obscuration Effects in the Very High-Redshift Universe

    NASA Technical Reports Server (NTRS)

    Dwek, Eli; Staguhn, Johannes; Arendt, Richard G.; Kovacs, Attila; Su, Ting; Benford, Dominic J.

    2014-01-01

    The evolution of dust at redshifts z > or approx. 9, and consequently the dust properties, differs greatly from that in the local universe. In contrast to the local universe, core collapse supernovae (CCSNe) are the only source of thermally-condensed dust. Because of the low initial dust-to-gas mass ratio, grain destruction rates are low, so that CCSNe are net producers of interstellar dust. Galaxies with large initial gas mass or high mass infall rate will therefore have a more rapid net rate of dust production comported to galaxies with lower gas mass, even at the same star formation rate. The dust composition is dominated by silicates, which exhibit a strong rise in the UV opacity near the Lyman break. This "silicate-UV break" may be confused with the Lyman break, resulting in a misidentification of a galaxies' photometric redshift. In this paper we demonstrate these effects by analyzing the spectral energy distribution (SED) of MACS1149-JD, a lensed galaxy at z = 9.6. A potential 2mm counterpart of MACS1149-JD has been identified with GISMO. While additional observations are required to corroborate this identification, we use this possible association to illustrate the physical processes and the observational effects of dust in the very high redshift universe. Subject headings: galaxies: high-redshift - galaxies: evolution - galaxies: individual (MACS1149- JD) - Interstellar medium (ISM), nebulae: dust, extinction - physical data and processes: nuclear reactions, nucleosynthesis, abundances.

  1. ON THE REDSHIFT OF THE VERY HIGH ENERGY BLAZAR 3C 66A

    SciTech Connect

    Furniss, A.; Williams, D. A.; Fumagalli, M.; Danforth, C.; Prochaska, J. X.

    2013-03-20

    As a bright gamma-ray source, 3C 66A is of great interest to the high-energy astrophysics community, having a potential for placing cosmological constraints on models for the extragalactic background light (EBL) and the processes which contribute to this photon field. No firm spectroscopic redshift measurement has been possible for this blazar due to a lack of intrinsic emission and absorption features in optical spectra. We present new far-ultraviolet spectra from the Hubble Space Telescope/Cosmic Origins Spectrograph (HST/COS) of the BL Lac object 3C 66A covering the wavelength range 1132-1800 A. The data show a smooth continuum with intergalactic medium absorption features which can be used to place a firm lower limit on the blazar redshift of z {>=} 0.3347. An upper limit is set by statistically treating the non-detection of additional absorbers beyond z = 0.3347, indicating a redshift of less than 0.41 at 99% confidence and ruling out z {>=} 0.444 at 99.9% confidence. We conclude by showing how the redshift limits derived from the COS spectra remove the potential for this gamma-ray emitting blazar to place an upper limit on the flux of the EBL using high energy data from a flare in 2009 October.

  2. Understanding the Physical Conditions in Local Analogs of High-Redshift Starburst Galaxies

    NASA Astrophysics Data System (ADS)

    Spiewak, Renée; Erb, Dawn; Tremonti, Christina A.; Berg, Danielle

    2016-01-01

    Observations of strong nebular emission lines in high-redshift galaxies (z~2) can be illuminated through the use of analogous local galaxies (z<0.4), for which many more emission lines can be measured. The observed offset in the "BPT" ([N II]λ6584/Hα vs. [O III]λ5007/Hβ) nebular diagnostic diagram between the locus of high redshift galaxies and that of typical local galaxies indicates a change in the physical conditions of the galaxies with redshift; the cause of this offset is unknown, but it may be associated with the ionization parameter, the hardness of the ionizing spectrum, or the N/O abundance ratio. To study the offset, we have selected a sample of local galaxies from the Sloan Digital Sky Survey III Baryon Oscillation Spectroscopic Survey Data Release 12 (SDSS-III/BOSS DR12), which occupies the same space in the [N II]λ6584/Hα vs. [O III]λ5007/Hβ diagnostic diagram as the z~2 sample. Using a suite of >50 different emission lines, most of which are unavailable in analyses of higher redshift galaxies, and a novel method of improving the spectrophotometric calibration of BOSS data, we investigate the metallicity, ionization state, and abundance ratios of this offset sample in order to shed light on the physical conditions in galaxies in the early universe.

  3. Strong magnetic fields in normal galaxies at high redshift

    NASA Astrophysics Data System (ADS)

    Bernet, Martin L.; Miniati, Francesco; Lilly, Simon J.; Kronberg, Philipp P.; Dessauges-Zavadsky, Miroslava

    2008-07-01

    The origin and growth of magnetic fields in galaxies is still something of an enigma. It is generally assumed that seed fields are amplified over time through the dynamo effect, but there are few constraints on the timescale. It was recently demonstrated that field strengths as traced by rotation measures of distant (and hence ancient) quasars are comparable to those seen today, but it was unclear whether the high fields were in the unusual environments of the quasars themselves or distributed along the lines of sight. Here we report high-resolution spectra that demonstrate that the quasars with strong MgII absorption lines are unambiguously associated with larger rotation measures. Because MgII absorption occurs in the haloes of normal galaxies along the sightlines to the quasars, this association requires that organized fields of surprisingly high strengths are associated with normal galaxies when the Universe was only about one-third of its present age.

  4. THE POPULATION OF HIGH-REDSHIFT ACTIVE GALACTIC NUCLEI IN THE CHANDRA-COSMOS SURVEY

    SciTech Connect

    Civano, F.; Elvis, M.; Hao, H.; Brusa, M.; Comastri, A.; Zamorani, G.; Gilli, R.; Mignoli, M.; Salvato, M.; Capak, P.; Kakazu, Y.; Masters, D.; Fiore, F.; Ikeda, H.; Kartaltepe, J. S.; Miyaji, T.; Puccetti, S.; Shankar, F.; Silverman, J.; Vignali, C.

    2011-11-10

    We present the high-redshift (3 redshifts plus 20 sources with a formal z{sub phot} < 3 but with a broad photometric redshift probability distribution, such that z{sub phot} + 1{sigma} > 3. Eighty-one sources are selected in the 0.5-2 keV band, fourteen are selected in the 2-10 keV and six in the 0.5-10 keV bands. We sample the high-luminosity (log L{sub (2-10keV)} > 44.15 erg s{sup -1}) space density up to z {approx} 5 and a fainter luminosity range (43.5 erg s{sup -1} < log L{sub (2-10keV)} < 44.15 erg s{sup -1}) than previous studies, up to z = 3.5. We weighted the contribution to the number counts and the space density of the sources with photometric redshift by using their probability of being at z > 3. We find that the space density of high-luminosity AGNs declines exponentially at all the redshifts, confirming the trend observed for optically selected quasars. At lower luminosity, the measured space density is not conclusive, and a larger sample of faint sources is needed. Comparisons with optical luminosity functions and black hole formation models are presented together with prospects for future surveys.

  5. Candidate high-redshift and primeval galaxies in Hubble Deep Field South

    NASA Astrophysics Data System (ADS)

    Clements, D. L.; Eales, S. A.; Baker, A. C.

    1999-09-01

    We present the results of colour selection of candidate high-redshift galaxies in Hubble Deep Field South (HDF-S) using the Lyman dropout scheme. The HDF-S data we discuss were taken in a number of different filters extending from the near-UV (F300W) to the infrared (F222M) in two different fields. This allows us to select candidates with redshifts from z~3 to z~12. We find 15 candidate z~3 objects (F300W dropouts), one candidate z~4 object (F450W dropout) and 16 candidate z~5 objects (F606W dropouts) in the ~4.7-arcmin^2 WFPC-2 field, and four candidate z~6 objects (optical dropouts) and one candidate z~8 object (F110W dropout) in the 0.84-arcmin^2 NICMOS-3 field. No F160W dropouts are found (z~12). We compare our selection technique with existing data for Hubble Deep Field North (HDF-N) and discuss alternative interpretations of the objects. We conclude that there are a number of lower redshift interlopers in the selections, including one previously identified object, and reject those objects most likely to be foreground contaminants. Even after this we conclude that the F606W dropout list is likely to still contain substantial foreground contamination. The lack of candidate very-high-redshift UV-luminous galaxies supports earlier conclusions by Lanzetta et al. We discuss the morphologies and luminosity functions of the high-redshift objects, and their cosmological implications.

  6. WERE PROGENITORS OF LOCAL L* GALAXIES Ly{alpha} EMITTERS AT HIGH REDSHIFT?

    SciTech Connect

    Yajima, Hidenobu; Li Yuexing; Zhu Qirong; Gronwall, Caryl; Ciardullo, Robin; Abel, Tom

    2012-08-01

    The Ly{alpha} emission has been observed from galaxies over a redshift span z {approx} 0-8.6. However, the evolution of high-redshift Ly{alpha} emitters (LAEs), and the link between these populations and local galaxies, remains poorly understood. Here, we investigate the Ly{alpha} properties of progenitors of a local L* galaxy by combining cosmological hydrodynamic simulations with three-dimensional radiative transfer calculations using the new ART{sup 2} code. We find that the main progenitor (the most massive one) of a Milky-Way-like galaxy has a number of Ly{alpha} properties close to those of observed LAEs at z {approx} 2-6, but most of the fainter ones appear to fall below the detection limits of current surveys. The Ly{alpha} photon escape fraction depends sensitively on a number of physical properties of the galaxy, such as mass, star formation rate, and metallicity, as well as galaxy morphology and orientation. Moreover, we find that high-redshift LAEs show blueshifted Ly{alpha} line profiles characteristic of gas inflow, and that the Ly{alpha} emission by excitation cooling increases with redshift, and becomes dominant at z {approx}> 6. Our results suggest that some observed LAEs at z {approx} 2-6 with luminosity of L{sub Ly{alpha}} {approx} 10{sup 42}-10{sup 43} erg s{sup -1} may be similar to the main progenitor of the Milky Way at high redshift, and that they may evolve into present-day L* galaxies.

  7. High-Redshift Galaxies with the James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Gardner, Jonathan P.

    2015-08-01

    The James Webb Space Telescope is the scientific successor to the Hubble and Spitzer Space Telescopes and will continue their rich legacy of high-z galaxy studies with a combination of deep, high-resolution infrared photometry and multi-object or integral field spectroscopy. As a large (6.6m) cold (50K) space telescope, JWST is well optimized for studying high-z galaxies and the science goals include the formation of the first stars and galaxies in the early universe and the chemical, morphological and dynamical buildup of galaxies. Webb has four instruments: The Near-Infrared Camera, the Near-Infrared multi-object Spectrograph, and the Near-Infrared Imager and Slitless Spectrograph will cover the wavelength range 0.6 to 5 microns, while the Mid-Infrared Instrument will do both imaging and spectroscopy from 5 to 28.5 microns. The observatory is confirmed for launch into orbit around the second Earth-Sun Lagrange point in 2018; the design is complete and it is in its construction and test phase. It is a partnership of NASA with the European and Canadian Space Agencies. Recent progress includes the completion of the mirrors and scientific instruments and the start of high-level assembly and cryogenic testing. Proposals for the first cycle of scientific observations will be due in February 2018; the community should begin planning their proposals now.

  8. "Observing and Analyzing" Images from a Simulated High-Redshift Universe

    NASA Astrophysics Data System (ADS)

    Morgan, Robert J.; Windhorst, Rogier A.; Scannapieco, Evan; Thacker, Robert J.

    2015-09-01

    We investigate the high-redshift evolution of the rest-frame UV-luminosity function (LF) of galaxies via hydrodynamical cosmological simulations, coupled with an emulated observational astronomy pipeline that provides a direct comparison with observations. We do this by creating mock images and synthetic galaxy catalogs of ≈100 arcmin-2 fields from the numerical model at redshifts ≈4.5 to 10.4. We include the effects of dust extinction and the point-spread function (PSF) for the Hubble WFC3 camera for comparison with space observations. We also include the expected zodiacal background to predict its effect on space observations, including future missions such as the James Webb Space Telescope (JWST). When our model catalogs are fitted to Schechter function parameters, we predict that the faint-end slope (α) of the LF evolves as α = -1.16-0.12z over the redshift range z ≈ 4.5-7.7, in excellent agreement with observations from, e.g., Hathi and coworkers. However, for redshifts z ≈ 6-10.4, α(z) appears to display a shallower evolution, α = -1.79-0.03z. Augmenting the simulations with more detailed physics—specifically stellar winds and supernovae (SN)—produces similar results. The model shows an overproduction of galaxies, especially at faint magnitudes, compared with the observations, although the discrepancy is reduced when dust extinction is taken into account.

  9. The high-redshift star formation history from carbon-monoxide intensity maps

    NASA Astrophysics Data System (ADS)

    Breysse, Patrick C.; Kovetz, Ely D.; Kamionkowski, Marc

    2016-03-01

    We demonstrate how cosmic star formation history can be measured with one-point statistics of carbon-monoxide intensity maps. Using a P(D) analysis, the luminosity function of CO-emitting sources can be inferred from the measured one-point intensity PDF. The star formation rate density (SFRD) can then be obtained, at several redshifts, from the CO luminosity density. We study the effects of instrumental noise, line foregrounds, and target redshift, and obtain constraints on the CO luminosity density of the order of 10 per cent. We show that the SFRD uncertainty is dominated by that of the model connecting CO luminosity and star formation. For pessimistic estimates of this model uncertainty, we obtain an error of the order of 50 per cent on SFRD for surveys targeting redshifts between two and seven with reasonable noise and foregrounds included. However, comparisons between intensity maps and galaxies could substantially reduce this model uncertainty. In this case, our constraints on SFRD at these redshifts improve to roughly 5 - 10 per cent, which is highly competitive with current measurements.

  10. Constraining the minimum luminosity of high redshift galaxies through gravitational lensing

    NASA Astrophysics Data System (ADS)

    Mashian, Natalie; Loeb, Abraham

    2013-12-01

    We simulate the effects of gravitational lensing on the source count of high redshift galaxies as projected to be observed by the Hubble Frontier Fields program and the James Webb Space Telescope (JWST) in the near future. Taking the mass density profile of the lensing object to be the singular isothermal sphere (SIS) or the Navarro-Frenk-White (NFW) profile, we model a lens residing at a redshift of zL = 0.5 and explore the radial dependence of the resulting magnification bias and its variability with the velocity dispersion of the lens, the photometric sensitivity of the instrument, the redshift of the background source population, and the intrinsic maximum absolute magnitude (Mmax) of the sources. We find that gravitational lensing enhances the number of galaxies with redshifts zgtrsim 13 detected in the angular region θE/2 <= θ <= 2θE (where θE is the Einstein angle) by a factor of ~ 3 and 1.5 in the HUDF (df/dν0 ~ 9 nJy) and medium-deep JWST surveys (df/dν0 ~ 6 nJy). Furthermore, we find that even in cases where a negative magnification bias reduces the observed number count of background sources, the lensing effect improves the sensitivity of the count to the intrinsic faint-magnitude cut-off of the Schechter luminosity function. In a field centered on a strong lensing cluster, observations of zgtrsim 6 and zgtrsim 13 galaxies with JWST can be used to infer this cut-off magnitude for values as faint as Mmax ~ -14.4 and -16.1 mag (Lmin ≈ 2.5 × 1026 and 1.2 × 1027 erg s-1 Hz-1) respectively, within the range bracketed by existing theoretical models. Gravitational lensing may therefore offer an effective way of constraining the low-luminosity cut-off of high-redshift galaxies.

  11. Galactic Synchrotron Emission and the Far-infrared–Radio Correlation at High Redshift

    NASA Astrophysics Data System (ADS)

    Schober, J.; Schleicher, D. R. G.; Klessen, R. S.

    2016-08-01

    Theoretical scenarios, including the turbulent small-scale dynamo, predict that strong magnetic fields already exist in young galaxies. Based on the assumption of energy equipartition between magnetic fields and turbulence, we determine the galactic synchrotron flux as a function of redshift z. Galaxies in the early universe are different from local galaxies, in particular, the former have more intense star formation. To cover a large range of conditions, we consider two different systems: one model galaxy comparable to the Milky Way and one typical high-z starburst galaxy. We include a model of the steady-state cosmic ray spectrum and find that synchrotron emission can be detected up to cosmological redshifts with current and future radio telescopes. The turbulent dynamo theory is in agreement with the origin of the observed correlation between the far-infrared (FIR) luminosity L FIR and the radio luminosity L radio. Our model reproduces this correlation well at z = 0. We extrapolate the FIR–radio correlation to higher redshifts and predict a time evolution with a significant deviation from its present-day appearance already at z≈ 2 for a gas density that increases strongly with z. In particular, we predict a decrease of the radio luminosity with redshift which is caused by the increase of cosmic ray energy losses at high z. The result is an increase of the ratio between L FIR and L radio. Simultaneously, we predict that the slope of the FIR–radio correlation becomes shallower with redshift. This behavior of the correlation could be observed in the near future with ultra-deep radio surveys.

  12. The premature formation of high-redshift galaxies

    SciTech Connect

    Melia, Fulvio

    2014-05-01

    Observations with WFC3/IR on the Hubble Space Telescope and the use of gravitational lensing techniques have facilitated the discovery of galaxies as far back as z ∼ 10-12, a truly remarkable achievement. However, this rapid emergence of high-z galaxies, barely ∼200 Myr after the transition from Population III star formation to Population II, appears to be in conflict with the standard view of how the early universe evolved. This problem has much in common with the better known (and probably related) premature appearance of supermassive black holes at z ≳ 6. It is difficult to understand how ∼10{sup 9} M {sub ☉} black holes could have appeared so quickly after the big bang without invoking non-standard accretion physics and the formation of massive seeds, neither of which is seen in the local universe. In earlier work, we showed that the appearance of high-z quasars could instead be understood more reasonably in the context of the R {sub h} = ct universe, which does not suffer from the same time compression issues as ΛCDM does at early epochs. Here, we build on that work by demonstrating that the evolutionary growth of primordial galaxies was consistent with the current view of how the first stars formed, but only with the timeline afforded by the R {sub h} = ct cosmology. We also show that the growth of high-z quasars was mutually consistent with that of the earliest galaxies, though it is not yet clear whether the former grew from 5-20 M {sub ☉} seeds created in Population III or Population II supernova explosions.

  13. The Premature Formation of High-redshift Galaxies

    NASA Astrophysics Data System (ADS)

    Melia, Fulvio

    2014-05-01

    Observations with WFC3/IR on the Hubble Space Telescope and the use of gravitational lensing techniques have facilitated the discovery of galaxies as far back as z ~ 10-12, a truly remarkable achievement. However, this rapid emergence of high-z galaxies, barely ~200 Myr after the transition from Population III star formation to Population II, appears to be in conflict with the standard view of how the early universe evolved. This problem has much in common with the better known (and probably related) premature appearance of supermassive black holes at z >~ 6. It is difficult to understand how ~109 M ⊙ black holes could have appeared so quickly after the big bang without invoking non-standard accretion physics and the formation of massive seeds, neither of which is seen in the local universe. In earlier work, we showed that the appearance of high-z quasars could instead be understood more reasonably in the context of the R h = ct universe, which does not suffer from the same time compression issues as ΛCDM does at early epochs. Here, we build on that work by demonstrating that the evolutionary growth of primordial galaxies was consistent with the current view of how the first stars formed, but only with the timeline afforded by the R h = ct cosmology. We also show that the growth of high-z quasars was mutually consistent with that of the earliest galaxies, though it is not yet clear whether the former grew from 5-20 M ⊙ seeds created in Population III or Population II supernova explosions.

  14. On the [CII]-SFR Relation in High Redshift Galaxies

    NASA Astrophysics Data System (ADS)

    Vallini, L.; Gallerani, S.; Ferrara, A.; Pallottini, A.; Yue, B.

    2015-11-01

    After two Atacama Large Millimeter/submillimeter Array (ALMA) observing cycles, only a handful of [C ii] 158 μm emission line searches in z > 6 galaxies have reported a positive detection, questioning the applicability of the local [C ii]-star formation rate (SFR) relation to high-z systems. To investigate this issue we use the Vallini et al. (V13) model,based on high-resolution, radiative transfer cosmological simulations to predict the [C ii] emission from the interstellar medium of a z ≈ 7 (halo mass Mh = 1.17 × 1011 M⊙) galaxy. We improve the V13 model by including (a) a physically motivated metallicity (Z) distribution of the gas, (b) the contribution of photodissociation regions (PDRs), and (c) the effects of cosmic microwave background (CMB) on the [C ii] line luminosity. We study the relative contribution of diffuse neutral gas to the total [C ii] emission (Fdiff/Ftot) for different SFR and Z values. We find that the [C ii] emission arises predominantly from PDRs: regardless of the galaxy properties, Fdiff/Ftot ≤ 10%, since at these early epochs the CMB temperature approaches the spin temperature of the [C ii] transition in the cold neutral medium (TCMB ˜ {T}s{{CNM}} ˜ 20 K). Our model predicts a high-z [C ii]-SFR relation, consistent with observations of local dwarf galaxies (0.02 < Z/Z⊙ < 0.5). The [C ii] deficit suggested by actual data (LCii < 2.0 × 107 L⊙ in BDF3299 at z ≈ 7.1) if confirmed by deeper ALMA observations, can be ascribed to negative stellar feedback disrupting molecular clouds around star formation sites. The deviation from the local [C ii]-SFR would then imply a modified Kennicutt-Schmidt relation in z > 6 galaxies. Alternatively/in addition, the deficit might be explained by low gas metallicities (Z < 0.1 Z⊙).

  15. PROBING THE PHYSICAL CONDITIONS OF ATOMIC GAS AT HIGH REDSHIFT

    SciTech Connect

    Neeleman, Marcel; Wolfe, Arthur M.; Prochaska, J. Xavier

    2015-02-10

    A new method is used to measure the physical conditions of the gas in damped Lyα systems (DLAs). Using high-resolution absorption spectra of a sample of 80 DLAs, we are able to measure the ratio of the upper and lower fine-structure levels of the ground state of C{sup +} and Si{sup +}. These ratios are determined solely by the physical conditions of the gas. We explore the allowed physical parameter space using a Monte Carlo Markov chain method to constrain simultaneously the temperature, neutral hydrogen density, and electron density of each DLA. The results indicate that at least 5% of all DLAs have the bulk of their gas in a dense, cold phase with typical densities of ∼100 cm{sup –3} and temperatures below 500 K. We further find that the typical pressure of DLAs in our sample is log (P/k{sub B} ) = 3.4 (K cm{sup –3}), which is comparable to the pressure of the local interstellar medium (ISM), and that the components containing the bulk of the neutral gas can be quite small with absorption sizes as small as a few parsecs. We show that the majority of the systems are consistent with having densities significantly higher than expected for a purely canonical warm neutral medium, indicating that significant quantities of dense gas (i.e., n {sub H} > 0.1 cm{sup –3}) are required to match observations. Finally, we identify eight systems with positive detections of Si II*. These systems have pressures (P/k{sub B} ) in excess of 20,000 K cm{sup –3}, which suggest that these systems tag a highly turbulent ISM in young, star-forming galaxies.

  16. A high-redshift quasar absorber without C IV. A galactic outflow caught in the act?

    NASA Astrophysics Data System (ADS)

    Fox, Anne; Richter, Philipp

    2016-04-01

    We present a detailed analysis of a very unusual sub-damped Lyman α (sub-DLA) system at redshift z = 2.304 towards the quasar Q 0453-423, based on high signal-to-noise (S/N), high-resolution spectral data obtained with VLT/UVES. With a neutral hydrogen column density of log N(H i) = 19.23 and a metallicity of -1.61 as indicated by [O i/H i] the sub-DLA mimics the properties of many other optically thick absorbers at this redshift. A very unusual feature of this system is, however, the lack of any C iv absorption at the redshift of the neutral hydrogen absorption, although the relevant spectral region is free of line blends and has very high S/N. Instead, we find high-ion absorption from C iv and O vi in another metal absorber at a velocity more than 220 km s-1 redwards of the neutral gas component. We explore the physical conditions in the two different absorption systems using Cloudy photoionisation models. We find that the weakly ionised absorber is dense and metal-poor while the highly ionised system is thin and more metal-rich. The absorber pair towards Q 0453-423 mimics the expected features of a galactic outflow with highly ionised material that moves away with high radial velocities from a (proto)galactic gas disk in which star-formation takes place. We discuss our findings in the context of C iv absorption line statistics at high redshift and compare our results to recent galactic-wind and outflow models.

  17. Contemporaneous Broadband Observations of Three High-redshift BL LAC Objects

    NASA Astrophysics Data System (ADS)

    Ackermann, M.; Ajello, M.; An, H.; Baldini, L.; Barbiellini, G.; Bastieri, D.; Bellazzini, R.; Bissaldi, E.; Blandford, R. D.; Bonino, R.; Bregeon, J.; Britto, R. J.; Bruel, P.; Buehler, R.; Caliandro, G. A.; Cameron, R. A.; Caragiulo, M.; Caraveo, P. A.; Cavazzuti, E.; Cecchi, C.; Charles, E.; Chekhtman, A.; Chiaro, G.; Ciprini, S.; Cohen-Tanugi, J.; Costanza, F.; Cutini, S.; D'Ammando, F.; de Angelis, A.; de Palma, F.; Desiante, R.; Di Mauro, M.; Di Venere, L.; Domínguez, A.; Drell, P. S.; Favuzzi, C.; Fegan, S. J.; Ferrara, E. C.; Finke, J.; Fusco, P.; Gargano, F.; Gasparrini, D.; Giglietto, N.; Giordano, F.; Giroletti, M.; Green, D.; Grenier, I. A.; Guiriec, S.; Horan, D.; Jóhannesson, G.; Katsuragawa, M.; Kuss, M.; Larsson, S.; Latronico, L.; Li, J.; Li, L.; Longo, F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Magill, J.; Maldera, S.; Manfreda, A.; Mayer, M.; Mazziotta, M. N.; Michelson, P. F.; Mirabal, N.; Mitthumsiri, W.; Mizuno, T.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Negro, M.; Nuss, E.; Ohsugi, T.; Okada, C.; Orlando, E.; Paneque, D.; Pesce-Rollins, M.; Piron, F.; Pivato, G.; Porter, T. A.; Rainò, S.; Rando, R.; Razzano, M.; Reimer, O.; Rau, A.; Romani, R. W.; Schady, P.; Sgrò, C.; Simone, D.; Siskind, E. J.; Spada, F.; Spandre, G.; Spinelli, P.; Stern, D.; Takahashi, H.; Thayer, J. B.; Torres, D. F.; Tosti, G.; Troja, E.; Vianello, G.; Wood, K. S.; Wood, M.

    2016-03-01

    We have collected broadband spectral energy distributions (SEDs) of three BL Lac objects 3FGL J0022.1-1855 (z = 0.689), 3FGL J0630.9-2406 (z\\quad ≳ 1.239), and 3FGL J0811.2-7529 (z = 0.774), detected by Fermi with relatively flat gigaelectronvolt spectra. By observing simultaneously in the near-infrared to hard X-ray band, we can well characterize the high end of the synchrotron component of the SED. Thus, fitting the SEDs to synchro-Compton models of the dominant emission from the relativistic jet, we can constrain the underlying particle properties and predict the shape of the gigaelectronvolt Compton component. Standard extragalactic background light (EBL) models explain the high-energy absorption well, with poorer fits for high-ultraviolet models. The fits show clear evidence for EBL absorption in the Fermi spectrum of our highest-redshift source 3FGL J0630.9-2406. While synchrotron self-Compton models adequately describe the SEDs, the situation may be complicated by possible external Compton components. For 3FGL J0811.2-7529, we also discover a nearby serendipitous source in the X-ray data, which is almost certainly another lower synchrotron peak frequency ({ν }{{pk}}{{sy}}) BL Lac, that may contribute flux in the Fermi band. Since our sources are unusual high-luminosity, moderate {ν }{{pk}}{{sy}} BL Lacs, we compare these quantities and the Compton dominance, the ratio of peak inverse Compton to peak synchrotron luminosities ({L}{{pk}}{{IC}}/{L}{{pk}}{{sy}}), with those of the full Fermi BL Lac population.

  18. Scale-Free Processes in Galaxy Formation at High Redshift

    NASA Astrophysics Data System (ADS)

    Dekel, Avishai

    2015-08-01

    Key processes of galaxy formation in the Einstein-de Sitter cosmological phase are scale free. For example, 1. The specific accretion rate into dark-matter halos, and that of baryons into the central galaxies, is mass independent and scales as a generic power-law (1+z)^{5/2}. 2. The main-sequence of star-forming galaxies is evolving self-similarly accordingly. Its confinement is determined by generic evolution of galaxies through a sequence of compaction and quenching events. 3. The evolution of the overall gas and stellar content of galaxies can be addressed via a very simple and useful bathtub toy model, which converges to a self-similar quasi-steady-state solution. 4. The spin parameter of the halos, and of the baryons in the galaxy, as built up by streams from the cosmic web, is independent of mass and cosmic time. 5. Counter-rotating streams, self-similar on all scales, may play a major role in generating compaction events and stimulating disk instability. 6. The violent disk instability in the gas-rich high-z galaxies is manifested in a scale-free mass function of clumps. 7. This instability is nonlinear, stimulated by the intense gas inflow into the galaxies, and it may involve scale-free compressive modes of turbulence. These processes are studied using toy models and cosmological simulations.

  19. Exploring the Web : Galaxy Evolution in High-Redshift Superclusters

    NASA Astrophysics Data System (ADS)

    Lubin, Lori; Fassnacht, Christopher; Gal, Roy; Kocevski, Dale; Lacy, Mark; Lemaux, Brian; Miller, Neal; Squires, Gordon; Surace, Jason

    2008-03-01

    We propose deep IRAC and MIPS mapping of the Cl 1324 supercluster at z = 0.7 which contains 7+ clusters and extends 22 Mpc x 100 Mpc. The supercluster is already the subject of a multi-faceted program including (1) deep r'i'z'JK imaging from the Palomar 5-m and UKIRT 3.8-m to measure optical/near-IR colors, (2) spectroscopy with DEIMOS on the Keck 10-m to measure stellar content and [OII] emission for over 400 supercluster members, and (3) high-angular-resolution Chandra and VLA observations to study the starburst and AGN populations. Based on comparisons with our well-studied (in the optical, mid-IR, radio, and X-ray) and similarly-sized Cl 1604 supercluster at z = 0.9, we find significant evolution over only ~1 Gyr, with substantially smaller contributions from [OII]-emitting and starburst galaxies in the Cl 1324 supercluster. Because dust will severely bias measurements made in the optical, we require 3.6-24 micron observations to measure accurately stellar mass, star formation rate, and nuclear/starburst activity in the member galaxies and determine the true extent of evolution over this timescale. With the combined observations of the Cl 1324 and Cl 1604 superclusters, we have the unique opportunity to constrain the effect of large scale environment on galaxy evolution, the physical mechanisms responsible for fueling starburst and nuclear activity, and the timescales of gas quenching and black-hole accretion.

  20. Jet and torus orientations in high redshift radio galaxies

    NASA Astrophysics Data System (ADS)

    Drouart, G.; De Breuck, C.; Vernet, J.; Laing, R. A.; Seymour, N.; Stern, D.; Haas, M.; Pier, E. A.; Rocca-Volmerange, B.

    2012-12-01

    We examine the relative orientation of radio jets and dusty tori surrounding the active galactic nucleus (AGN) in powerful radio galaxies at z > 1. The radio core dominance R = Pcore^20 GHz/P_extended^500 MHz serves as an orientation indicator, measuring the ratio between the anisotropic Doppler-beamed core emission and the isotropic lobe emission. Assuming a fixed cylindrical geometry for the hot, dusty torus, we derive its inclination i by fitting optically-thick radiative transfer models to spectral energy distributions obtained with the Spitzer Space Telescope. We find a highly significant anti-correlation (p < 0.0001) between R and i in our sample of 35 type 2 AGN combined with a sample of 18 z ~ 1 3CR sources containing both type 1 and 2 AGN. This analysis provides observational evidence both for the Unified scheme of AGN and for the common assumption that radio jets are in general perpendicular to the plane of the torus. The use of inclinations derived from mid-infrared photometry breaks several degeneracies which have been problematic in earlier analyses. We illustrate this by deriving the core Lorentz factor Γ from the R-i anti-correlation, finding Γ ≳ 1.3. Figures 11, 12, and Tables 1, 2, 6 are available in electronic form at http://www.aanda.org

  1. OUTFLOW AND HOT DUST EMISSION IN HIGH-REDSHIFT QUASARS

    SciTech Connect

    Wang, Huiyuan; Xing, Feijun; Wang, Tinggui; Zhou, Hongyan; Zhang, Kai; Zhang, Shaohua

    2013-10-10

    Correlations of hot dust emission with outflow properties are investigated, based on a large z ∼ 2 non-broad absorption line quasar sample built from the Wide-field Infrared Survey and the Sloan Digital Sky Survey data releases. We use the near-infrared slope and the infrared to UV luminosity ratio to indicate the hot dust emission relative to the emission from the accretion disk. In our luminous quasars, these hot dust emission indicators are almost independent of the fundamental parameters, such as luminosity, Eddington ratio and black hole mass, but moderately dependent on the blueshift and asymmetry index (BAI) and FWHM of C IV lines. Interestingly, the latter two correlations dramatically strengthen with increasing Eddington ratio. We suggest that, in high Eddington ratio quasars, C IV regions are dominated by outflows so the BAI and FWHM (C IV) can reliably reflect the general properties and velocity of outflows, respectively. In low Eddington ratio quasars, on the other hand, C IV lines are primarily emitted by virialized gas so the BAI and FWHM (C IV) become less sensitive to outflows. Therefore, the correlations for the highest Eddington ratio quasars are more likely to represent the true dependence of hot dust emission on outflows and the correlations for the entire sample are significantly diluted by the low Eddington ratio quasars. Our results show that an outflow with a large BAI or velocity can double the hot dust emission on average. We suggest that outflows either contain hot dust in themselves or interact with the dusty interstellar medium or torus.

  2. RED-SEQUENCE GALAXIES AT HIGH REDSHIFT BY THE COMBO-17+4 SURVEY

    SciTech Connect

    Nicol, Marie-Helene; Meisenheimer, Klaus; Wolf, Christian; Tapken, Christian E-mail: meise@mpia.de E-mail: ctapken@aip.de

    2011-01-20

    We investigate the evolution of the galaxy population since redshift 2 with a focus on the color bimodality and mass density of the red sequence. We obtain precise and reliable photometric redshifts up to z = 2 by supplementing the optical survey COMBO-17 with observations in four near-infrared bands on 0.2 deg{sup 2} of the COMBO-17 A901-field. Our results are based on an H-band-selected catalog of 10,692 galaxies complete to H = 21fm7. We measure the rest-frame color (U{sub 280}-V) of each galaxy, which across the redshift range of our interest requires no extrapolation and is robust against moderate redshift errors by staying clear of the 4000 A break. We measure the color-magnitude relation of the red sequence as a function of look-back time from the peak in a color-error-weighted histogram, and thus trace the galaxy bimodality out to z {approx_equal} 1.65. The (U{sub 280}-V) of the red sequence is found to evolve almost linearly with look-back time. At high redshift, we find massive galaxies in both the red and the blue population. Red-sequence galaxies with log M{sub *}/M{sub sun}>11 increase in mass density by a factor of {approx}4 from z {approx} 2 to 1 and remain nearly constant at z < 1. However, some galaxies as massive as log M{sub *}/M{sub sun} = 11.5 are already in place at z {approx} 2.

  3. An empirical model for the galaxy luminosity and star formation rate function at high redshift

    NASA Astrophysics Data System (ADS)

    Mashian, Natalie; Oesch, Pascal A.; Loeb, Abraham

    2016-01-01

    Using the most recent measurements of the ultraviolet (UV) luminosity functions (LFs) and dust estimates of early galaxies, we derive updated dust-corrected star formation rate functions (SFRFs) at z ˜ 4-8, which we model to predict the evolution to higher redshifts, z > 8. We employ abundance matching techniques to calibrate a relation between galaxy star formation rate (SFR) and host halo mass Mh by mapping the shape of the observed SFRFs at z ˜ 4-8 to that of the halo mass function. The resulting scaling law remains roughly constant over this redshift range. We apply the average SFR-Mh relation to reproduce the observed SFR functions at 4 ≲ z ≲ 8 and also derive the expected UV LFs at higher redshifts. At z ˜ 9 and z ˜ 10 these model LFs are in excellent agreement with current observed estimates. Our predicted number densities and UV LFs at z > 10 indicate that James Webb Space Telescope will be able to detect galaxies out to z ˜ 15 with an extensive treasury sized program. We also derive the redshift evolution of the star formation rate density (SFRD) and associated reionization history by galaxies. Models which integrate down to the current HUDF12/XDF detection limit (MUV ˜ -17.7 mag) result in a SFRD that declines as (1 + z)-10.4 ± 0.3 at high redshift and fail to reproduce the observed cosmic microwave background electron scattering optical depth, τ ≃ 0.066, to within 1σ. On the other hand, we find that the inclusion of galaxies with SFRs well below the current detection limit (MUV < -5.7 mag) leads to a fully reionized universe by z ˜ 6.5 and an optical depth of τ ≃ 0.054, consistent with the recently derived Planck value at the 1σ level.

  4. Astrophysical dynamos and the growth of magnetic fields in high-redshift galaxies

    NASA Astrophysics Data System (ADS)

    Rieder, Michael; Teyssier, Romain

    2015-08-01

    The origin and evolution of magnetic fields in the Universe is still an open question. Observations of galaxies at high-redshift give evidence for strong galactic magnetic fields even in the early Universe which are consistently measured at later times up to the present age. However, primordial magnetic fields and seed field generation by battery processes cannot explain such high field strengths, suggesting the presence of a rapid growth mechanism in those high-redshift galaxies and subsequent maintenance against decay. Astrophysical dynamo theory provides efficient means of field amplification where even weak initial fields can grow exponentially on sufficiently fast timescales, driving the conversion of kinetic energy into magnetic energy. We investigate the role which feedback mechanisms play in the creation of the turbulence necessary for dynamos to operate. Performing magnetohydrodynamic simulations of cooling halos of dwarf and Milky Way-like high-redshift progenitors, we compare the magnetic field evolution of weak seed fields with various topologies and stellar feedback mechanisms. We find that strong feedback can drive galactic gas turbulence which gives rise to velocity fields with fast exponential magnetic field growth. The simulations display a high gas fraction and a clumpy morphology with kinematics resembling Kolmogorov turbulence and magnetic energy spectra as predicted by Kazantsev dynamo theory. Magnetic fields reach equipartition with $\\mu$G field strength. In a final quiescent phase where feedback is turned off, gas turbulence is reduced and a quadrupole symmetry is observed in the magnetic field. These findings support the theory of rapid magnetic field amplification inside high-redshift galaxies, when the Universe was still young.

  5. Hard X-Ray Detection of the High Redshift Quasar 4C 71.07

    NASA Technical Reports Server (NTRS)

    Malizia, A.; Bassani, L.; Dean, A. J.; McCollough, M. L.; Stephen, J. B.; Zhang, S. N.

    1999-01-01

    BATSE/OSSE observations of the high redshift quasar 4C 71.07 indicate that this is the brightest and furthest AGN so far detected 20 keV. BATSE Earth occultation data have been used to search for emission from 4C 71.07 from nearly 3 years of observation. The mean source flux over the- whole period in the BATSE energy range 20-100 keV is (13.2 +/- 1.06) x 10(exp -11) erg/square cm/s corresponding to a luminosity of 2 x 10(exp 48 erg/s. The BATSE light curve over the 3 years of observations shows several flare-like events, one of which (in January 1996) is associated with an optical flare (R=16.1) but with a delay of 55 days. The OSSE/BATSE spectral analysis indicates that the source is characterized by a flat power spectrum (Gamma is approximately 1.1- 1.3) when in a low state: this spectral form is consistent within errors with the ASCA and ROSAT spectra. This means that the power law observed from 0.1 to 10 keV extends up to at least 1 MeV but steepens soon after to meet EGRET high energy data. BATSE data taken around the January 1996 flare suggests that the spectrum could be steeper when the source is in a bright state. The upsilon-F-upsilon representation of the source is typical of a low frequency peaked/ gamma- ray dominated blazar, with the synchrotron peak in the mm-FIR band and the Compton peak in the MeV band. The BATSE and OSSE spectral data seem to favour a model in which the high energy - flux is due to the sum of the synchrotron self-Compton and the external Compton contributions: this is also supported by the- variability behaviour of the source.

  6. The long lives of giant clumps and the birth of outflows in gas-rich galaxies at high redshift

    SciTech Connect

    Bournaud, Frédéric; Renaud, Florent; Daddi, Emanuele; Duc, Pierre-Alain; Elbaz, David; Gabor, Jared M.; Juneau, Stéphanie; Kraljic, Katarina; Le Floch', Emeric; Dekel, Avishai; Elmegreen, Bruce G.; Elmegreen, Debra M.; Teyssier, Romain

    2014-01-01

    Star-forming disk galaxies at high redshift are often subject to violent disk instability, characterized by giant clumps whose fate is yet to be understood. The main question is whether the clumps disrupt within their dynamical timescale (≤50 Myr), like the molecular clouds in today's galaxies, or whether they survive stellar feedback for more than a disk orbital time (≈300 Myr) in which case they can migrate inward and help building the central bulge. We present 3.5-7 pc resolution adaptive mesh refinement simulations of high-redshift disks including photoionization, radiation pressure, and supernovae feedback. Our modeling of radiation pressure determines the mass loading and initial velocity of winds from basic physical principles. We find that the giant clumps produce steady outflow rates comparable to and sometimes somewhat larger than their star formation rate, with velocities largely sufficient to escape the galaxy. The clumps also lose mass, especially old stars, by tidal stripping, and the stellar populations contained in the clumps hence remain relatively young (≤200 Myr), as observed. The clumps survive gaseous outflows and stellar loss, because they are wandering in gas-rich turbulent disks from which they can reaccrete gas at high rates compensating for outflows and tidal stripping, overall keeping realistic and self-regulated gaseous and stellar masses. The outflow and accretion rates have specific timescales of a few 10{sup 8} yr, as opposed to rapid and repeated dispersion and reformation of clumps. Our simulations produce gaseous outflows with velocities, densities, and mass loading consistent with observations, and at the same time suggest that the giant clumps survive for hundreds of Myr and complete their migration to the center of high-redshift galaxies. These long-lived clumps are gas-dominated and contain a moderate mass fraction of stars; they drive inside-out disk evolution, thickening, spheroid growth, and fueling of the central

  7. What are protoclusters? - Defining high-redshift galaxy clusters and protoclusters

    NASA Astrophysics Data System (ADS)

    Muldrew, Stuart I.; Hatch, Nina A.; Cooke, Elizabeth A.

    2015-09-01

    We explore the structures of protoclusters and their relationship with high-redshift clusters using the Millennium Simulation combined with a semi-analytic model. We find that protoclusters are very extended, with 90 per cent of their mass spread across ˜35 h-1 Mpc comoving at z = 2 ( ˜ 30 arcmin). The `main halo', which can manifest as a high-redshift cluster or group, is only a minor feature of the protocluster, containing less than 20 per cent of all protocluster galaxies at z = 2. Furthermore, many protoclusters do not contain a main halo that is massive enough to be identified as a high-redshift cluster. Protoclusters exist in a range of evolutionary states at high redshift, independent of the mass they will evolve to at z = 0. We show that the evolutionary state of a protocluster can be approximated by the mass ratio of the first and second most massive haloes within the protocluster, and the z = 0 mass of a protocluster can be estimated to within 0.2 dex accuracy if both the mass of the main halo and the evolutionary state are known. We also investigate the biases introduced by only observing star-forming protocluster members within small fields. The star formation rate required for line-emitting galaxies to be detected is typically high, which leads to the artificial loss of low-mass galaxies from the protocluster sample. This effect is stronger for observations of the centre of the protocluster, where the quenched galaxy fraction is higher. This loss of low-mass galaxies, relative to the field, distorts the size of the galaxy overdensity, which in turn can contribute to errors in predicting the z = 0 evolved mass.

  8. On the Kennicutt-Schmidt Relation of Low-Metallicity High-Redshift Galaxies

    NASA Astrophysics Data System (ADS)

    Gnedin, Nickolay Y.; Kravtsov, Andrey V.

    2010-05-01

    We present results of self-consistent, high-resolution cosmological simulations of galaxy formation at z ~ 3. The simulations employ a recently developed recipe for star formation based on the local abundance of molecular hydrogen, which is tracked self-consistently during the course of simulation. The phenomenological H2 formation model accounts for the effects of dissociating UV radiation of stars in each galaxy, as well as self-shielding and shielding of H2 by dust, and therefore allows us to explore effects of lower metallicities and higher UV fluxes prevalent in high-redshift galaxies on their star formation. We compare stellar masses, metallicities, and star formation rates of the simulated galaxies to available observations of the Lyman break galaxies (LBGs) and find a reasonable agreement. We find that the Kennicutt-Schmidt (KS) relation exhibited by our simulated galaxies at z ≈ 3 is substantially steeper and has a lower amplitude than the z = 0 relation at ΣH <~ 100 M odot pc-2. The predicted relation, however, is consistent with existing observational constraints for the z ≈ 3 damped Lyα and LBGs. Our tests show that the main reason for the difference from the local KS relation is lower metallicity of the interstellar medium in high-redshift galaxies. We discuss several implications of the metallicity-dependence of the KS relation for galaxy evolution and interpretation of observations. In particular, we show that the observed size of high-redshift exponential disks depends sensitively on their KS relation. Our results also suggest that significantly reduced star formation efficiency at low gas surface densities can lead to strong suppression of star formation in low-mass high-redshift galaxies and long gas consumption time scales over most of the disks in large galaxies. The longer gas consumption time scales could make disks more resilient to major and minor mergers and could help explain the prevalence of the thin stellar disks in the local

  9. Clustering of High Redshift (z>2.9) Quasars from the Sloan Digital Sky Survey

    SciTech Connect

    Shen, Yue; Strauss, Michael A.; Oguri, Masamune; Hennawi, Joseph F.; Fan, Xiaohui; Richards, Gordon T.; Hall, Patrick B.; Schneider, Donald P.; Szalay, Alexander S.; Thakar, Anirudda R.; Berk, Daniel E.Vanden; Anderson, Scott F.; Bahcall, Neta A.; /KIPAC, Menlo Park

    2006-11-30

    We study the two-point correlation function of a uniformly selected sample of 4,428 optically selected luminous quasars with redshift 2.9 {le} z {le} 5.4 selected over 4041 deg{sup 2} from the Fifth Data Release of the Sloan Digital Sky Survey. We fit a power-law to the projected correlation function w{sub p}(r{sub p}) to marginalize over redshift space distortions and redshift errors. For a real-space correlation function of the form {zeta}(r) = (r/r{sub 0}){sup -{gamma}}, the fitted parameters in comoving coordinates are r{sub 0} = 15.2 {+-} 2.7 h{sup -1} Mpc and {gamma} = 2.0 {+-} 0.3, over a scale range 4 {le} r{sub p} {le} 150 h{sup -1} Mpc. Thus high-redshift quasars are appreciably more strongly clustered than their z {approx} 1.5 counterparts, which have a comoving clustering length r{sub 0} {approx} 6.5 h{sup -1} Mpc. Dividing our sample into two redshift bins: 2.9 {le} z {le} 3.5 and z {ge} 3.5, and assuming a power-law index {gamma} = 2.0, we find a correlation length of r{sub 0} = 16.9 {+-} 1.7 h{sup -1} Mpc for the former, and r{sub 0} = 24.3 {+-} 2.4 h{sup -1} Mpc for the latter. Strong clustering at high redshift indicates that quasars are found in very massive, and therefore highly biased, halos. Following Martini & Weinberg, we relate the clustering strength and quasar number density to the quasar lifetimes and duty cycle. Using the Sheth & Tormen halo mass function, the quasar lifetime is estimated to lie in the range 4 {approx} 50 Myr for quasars with 2.9 {le} z {le} 3.5; and 30 {approx} 600 Myr for quasars with z {ge} 3.5. The corresponding duty cycles are 0.004 {approx} 0.05 for the lower redshift bin and 0.03 {approx} 0.6 for the higher redshift bin. The minimum mass of halos in which these quasars reside is 2-3 x 10{sup 12} h{sup -1} M{sub {circle_dot}} for quasars with 2.9 {le} z {le} 3.5 and 4-6 x 10{sup 12} h{sup -1} M{sub {circle_dot}} for quasars with z {ge} 3.5; the effective bias factor b{sub eff} increases with redshift, e.g., b

  10. Panel Discussion II. Reconciling Observations and Modeling of Star Formation at High Redshifts

    NASA Astrophysics Data System (ADS)

    Knapen, J. H.

    2008-06-01

    This is the written account of the second of two panel discussions, on Reconciling observations and modeling of star formation at high redshifts. The chair of the panel was Pavel Kroupa, and panel members were Marc Balcells, John Beckman, Christopher Conselice, and Joseph Silk. After a short introduction by each of the panelists, panel and audience entered into a lively discussion, centered around the following six themes: the mass function of pre-stellar gas clouds; a possible top-heavy initial mass function at high redshifts versus mini-quasars as the first sources of ionization; the integrated galactic initial mass function; possible differences in specific star formation rates in disks and in massive galaxies; whether merging rates yield a wrong prediction for massive galaxies, and what is the physics behind the onset of the red sequence of galaxies; and the case of dark matter-dominated dwarf galaxies versus tidal dwarf galaxies.

  11. Are globular clusters the natural outcome of regular high-redshift star formation?

    NASA Astrophysics Data System (ADS)

    Kruijssen, J. M. Diederik

    2016-02-01

    We summarise the recent progress in understanding the formation and evolution of globular clusters (GCs) in the context of galaxy formation and evolution. It is discussed that an end-to-end model for GC formation and evolution should capture four different phases: (1) star and cluster formation in the high-pressure interstellar medium of high-redshift galaxies, (2) cluster disruption by tidal shocks in the gas-rich host galaxy disc, (3) cluster migration into the galaxy halo, and (4) the final evaporation-dominated evolution of GCs until the present day. Previous models have mainly focussed on phase 4. We present and discuss a simple model that includes each of these four steps - its key difference with respect to previous work is the simultaneous addition of the high-redshift formation and early evolution of young GCs, as well as their migration into galaxy haloes. The new model provides an excellent match to the observed GC mass spectrum and specific frequency, as well as the relations of GCs to the host dark matter halo mass and supermassive black hole mass. These results show (1) that the properties of present-day GCs are reproduced by assuming that they are the natural outcome of regular high-redshift star formation (i.e. they form according to same physical processes that govern massive cluster formation in the local Universe), and (2) that models only including GC evaporation strongly underestimate their integrated mass loss over a Hubble time.

  12. Resolved properties of high-redshift lensed galaxies seen with MUSE

    NASA Astrophysics Data System (ADS)

    Patricio, Vera; Richard, Johan; Verhamme, Anne; Christensen, Lise; Lagattuta, David; Clément, Benjamin; Mahler, Guillaume

    2015-08-01

    Spatially resolved properties of high redshift galaxies provide important insights into galaxy formation processes. However, with the current instrumentation we have been limited to the analysis of the Lyman alpha line and UV continuum through long-slit observations of individual galaxies or stacking. Combining the power of the newly commissioned integral field spectrograph MUSE on VLT with strong gravitational lensing, it is now possible to spatially probe the rest-frame UV properties of individual high-z galaxies.I will present the study of a 109 M⊙ galaxy at z = 3.5 strongly lensed by the SMACS2031 cluster for which we were able to obtain 2D resolved spatial information of Lyman alpha, and, for the fist time, CIII] emission. The exceptional signal to noise of the data also allows the study of the UV continuum as well as emission and absorption lines rarely measured at these redshifts. We compare the spatial Lyman alpha information and continuum properties with radiative transfer models, resulting in a unique view of an individual high-z galaxy.Additionally, I will present the first results from a sample of 8 high redshift (z = 0.7 - 1.5) extended lensed arcs in the Frontier Fields, also observed with MUSE.With this sample, wederive gas kinematics from both emission and absorption lines, as well as properties of resolved stellar populations.

  13. The X-ray properties of high redshift, optically selected QSOs. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Anderson, S. F.

    1985-01-01

    In order to study the X-ray properties of high redshift QSOs, grism/grens plates covering 17 deg. of sky previously imaged to very sensitive X-ray flux levels with the Einstein Observatory were taken. Following optical selection of the QSO, the archived X-ray image is examined to extract an X-ray flux detection or a sensitive upper limit.

  14. High resolution frequency analysis techniques with application to the redshift experiment

    NASA Technical Reports Server (NTRS)

    Decher, R.; Teuber, D.

    1975-01-01

    High resolution frequency analysis methods, with application to the gravitational probe redshift experiment, are discussed. For this experiment a resolution of .00001 Hz is required to measure a slowly varying, low frequency signal of approximately 1 Hz. Major building blocks include fast Fourier transform, discrete Fourier transform, Lagrange interpolation, golden section search, and adaptive matched filter technique. Accuracy, resolution, and computer effort of these methods are investigated, including test runs on an IBM 360/65 computer.

  15. GRB 050502B optical afterglow: a jet-break at high redshift

    NASA Astrophysics Data System (ADS)

    Afonso, P.; Greiner, J.; Pian, E.; Covino, S.; Malesani, D.; Küpcü Yoldaş, A.; Krühler, T.; Clemens, C.; McBreen, S.; Rau, A.; Giannios, D.; Hjorth, J.

    2011-02-01

    Aims: Swift GRB 050502B is well known for the very bright flare displayed in its X-ray light curve. Despite extensive studies, however, the optical light curve has never been discussed and its redshift is unconstrained. Possible correlations between optical and X-ray data are analysed. Methods: Photometric data from TNG in the R and I bands were used to compare the optical afterglow with the X-ray light curve. The HyperZ package and a late-time VLT host observation were used to derive redshift estimates. Results: The I-band afterglow decay followed a power law of index α = 2.1±0.6, after a late break at ~ 1.3×105 s. The R-I colour is remarkably red and the broadband spectral index βOX = 0.9±0.1 is consistent with the X-ray spectral slope βX. Although a photometric redshift of z > 4 is the most conservative result to consider, a photometric redshift of z = 5.2±0.3 is suggested with no extinction in the host, based on which an isotropic energy Eγ,iso = (3.8±0.7)×1052 erg and a jet opening angle θ ~ 3.7° are subsequently derived. Conclusions: The combined X-ray and optical data suggest an achromatic break, which we interpret as a jet-break. The post jet-break slope roughly obeys the closure relation for the jet's slow cooling model. Because of the afterglow's very red colour, in order for the redshift to be low (z < 1), extinction must be significantly high if present in the host. Since the optical-to-X-ray index is consistent with the X-ray spectrum, and there is no XRT evidence for excess NH, GRB 050502B was likely at high redshift. Based on observations made with the Italian Telescopio Nazionale Galileo (TNG) operated on the island of La Palma by the Fundación Galileo Galilei of the INAF (Istituto Nazionale di Astrofisica) at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias (programme AOT11-59) and with ESO Telescopes at the La Silla Paranal Observatories under programme ID 177.A-0591.

  16. Herschel-ATLAS: The Angular Correlation Function of Submillimetre Galaxies at High and Low Redshift

    NASA Technical Reports Server (NTRS)

    Maddox, S. J.; Dunne, L.; Rigby, E.; Eales, S.; Cooray, A.; Scott, D.; Peacock, J. A.; Negrello, M.; Smith, D. J. B.; Benford, D.; Amblard, A.; Auld, R.; Baes, M.; Bonfield, D.; Burgarella, D.; Buttiglione, S.; Cava, A.; Clements, D.; Dariush, A.; deZotti, G.; Dye, S.; Frayer, D.; Fritz, J.; Gonzalez-Nuevo, J.; Herranz, D.

    2010-01-01

    We present measurements of the angular correlation function of galaxies selected from the first field of the H-ATLAS survey. Careful removal of the background from galactic cirrus is essential, and currently dominates the uncertainty in our measurements. For our 250 micrometer-selected sample we detect no significant clustering, consistent with the expectation that the 250 pm-selected sources are mostly normal galaxies at z < or equal to 1. For our 350 micrometer and 500 micrometer-selected samples we detect relatively strong clustering with correlation amplitudes A of 0.2 and 1.2 at 1', but with relatively large uncertainties. For samples which preferentially select high redshift galaxies at z approx. 2-3 we detect significant strong clustering, leading to an estimate of r(0) approx. 7-11/h Mpc. The slope of our clustering measurements is very steep. delta approx. 2. The measurements are consistent with the idea that sub-mm sources consist of a low redshift population of normal galaxies and a high redshift population of highly clustered star-bursting galaxies.

  17. THE AzTEC/SMA INTERFEROMETRIC IMAGING SURVEY OF SUBMILLIMETER-SELECTED HIGH-REDSHIFT GALAXIES

    SciTech Connect

    Younger, Joshua D.; Fazio, Giovanni G.; Huang Jiasheng; Ashby, Matthew L. N.; Gurwell, Mark A.; Petitpas, Glen R.; Wilner, David J.; Yun, Min S.; Wilson, Grant W.; Scott, Kimberly S.; Austermann, Jason; Perera, Thushara; Peck, Alison B.; Hughes, David H.; Aretxaga, Itziar; Kim, Sungeun; Lowenthal, James D.

    2009-10-10

    We present results from a continuing interferometric survey of high-redshift submillimeter galaxies (SMGs) with the Submillimeter Array, including high-resolution (beam size approx2 arcsec) imaging of eight additional AzTEC 1.1 mm selected sources in the COSMOS field, for which we obtain six reliable (peak signal-to-noise ratio (S/N) >5 or peak S/N >4 with multiwavelength counterparts within the beam) and two moderate significance (peak S/N >4) detections. When combined with previous detections, this yields an unbiased sample of millimeter-selected SMGs with complete interferometric follow up. With this sample in hand, we (1) empirically confirm the radio-submillimeter association, (2) examine the submillimeter morphology-including the nature of SMGs with multiple radio counterparts and constraints on the physical scale of the far infrared-of the sample, and (3) find additional evidence for a population of extremely luminous, radio-dim SMGs that peaks at higher redshift than previous, radio-selected samples. In particular, the presence of such a population of high-redshift sources has important consequences for models of galaxy formation-which struggle to account for such objects even under liberal assumptions-and dust production models given the limited time since the big bang.

  18. The High Energy Telescope on EXIST: Hunting High Red-shift GRBs and Other Exotic Transients

    NASA Astrophysics Data System (ADS)

    Hong, JaeSub; Grindlay, J.; Allen, B.; Skinner, G. K.; Finger, M. H.; Jernigan, J. G.; EXIST Team

    2009-01-01

    The current baseline design of the High Energy Telescope (HET) on EXIST will localize high red-shift Gamma-Ray Bursts (GRBs) and other exotic transients fast (<10 sec) and accurately (<17") in order to allow the rapid (<1-2 min) follow-up onboard optical/IR imaging and spectroscopy. HET employs coded-aperture imaging with 5.5m2 CZT detector and a large hybrid tungsten mask (See also Skinner et al. in this meeting). The wide energy band coverage (5-600 keV) is optimal for capturing these transients and highly obscured AGNs. The continuous scan with the wide field of view ( 45 deg radius at 25% coding fraction) increases the chance of capturing rare elusive events such as soft Gamma-ray repeaters and tidal disruption events of stars by dormant supermassive black holes. Sweeping nearly the entire sky every two orbits (3 hour) will also establish a finely-sampled long-term history of the X-ray variability of many X-ray sources, opening up a new time domain of the variability study. In light of the new EXIST design concept, we review the observing strategy to maximize the science return and report the latest development of the CZT detectors for HET.

  19. High redshift signatures in the 21 cm forest due to cosmic string wakes

    NASA Astrophysics Data System (ADS)

    Tashiro, Hiroyuki; Sekiguchi, Toyokazu; Silk, Joseph

    2014-01-01

    Cosmic strings induce minihalo formation in the early universe. The resultant minihalos cluster in string wakes and create a ``21 cm forest'' against the cosmic microwave background (CMB) spectrum. Such a 21 cm forest can contribute to angular fluctuations of redshifted 21 cm signals integrated along the line of sight. We calculate the root-mean-square amplitude of the 21 cm fluctuations due to strings and show that these fluctuations can dominate signals from minihalos due to primordial density fluctuations at high redshift (zgtrsim10), even if the string tension is below the current upper bound, Gμ < 1.5 × 10-7. Our results also predict that the Square Kilometre Array (SKA) can potentially detect the 21 cm fluctuations due to strings with Gμ ≈ 7.5 × 10-8 for the single frequency band case and 4.0 × 10-8 for the multi-frequency band case.

  20. MAGNIFICATION AS A PROBE OF DARK MATTER HALOS AT HIGH REDSHIFTS

    SciTech Connect

    Van Waerbeke, L.; Ford, J.; Milkeraitis, M.; Hildebrandt, H.

    2010-11-01

    We propose a new approach for measuring the mass profile of dark matter halos by stacking the lensing magnification of distant background galaxies behind groups and clusters of galaxies. The main advantage of lensing magnification is that, unlike lensing shear, it relies on accurate photometric redshifts only and not on galaxy shapes, thus enabling the study of the dark matter distribution with unresolved source galaxies. We present a feasibility study, using a real population of z {>=} 2.5 Lyman break galaxies as source galaxies, and where, similar to galaxy-galaxy lensing, foreground lenses are stacked in order to increase the signal-to-noise ratio. We find that there is an interesting new observational window for gravitational lensing as a probe of dark matter halos at high redshift, which does not require a measurement of galaxy shapes.

  1. The Evolution of Metals and Dust in the High-Redshift Universe (z greater than 6)

    NASA Technical Reports Server (NTRS)

    Dwek, Eliahu

    2007-01-01

    Dusty hyperluminous galaxies in the early universe provide unique environments for studying the role of massive stars in the formation and destruction of dust. At redshifts above approx. 6, when the universe was less than approx. 1 Gyr old, dust could have only condensed in the explosive ejecta of Type-II supernovae (SNe), since most of the progenitors of the AGB stars, the major alternative source of interstellar dust, did not have time to evolve off the main sequence. I will present analytical models for the evolution of the gas, dust, and metals in high redshift galaxies, with a special application to SDSS J1148+5251, a hyperluminous quasar at $z = 6.4$. I will also discuss possible star formation scenarios consistent with observational constraints on the dust and gas content of this object.

  2. Massive Elliptical Galaxies at High Redshift: NICMOS Imaging of z~1 Radio Galaxies

    NASA Astrophysics Data System (ADS)

    Zirm, Andrew W.; Dickinson, Mark; Dey, Arjun

    2003-03-01

    We present deep, ~1.6 μm, continuum images of 11 high-redshift (0.811high-redshift radio galaxies to lower redshift counterparts. We find that their sizes are similar to those of local FRII radio source hosts and are in general larger than other local galaxies. The derived host galaxy luminosities are very high and lie at the bright end of luminosity functions constructed at similar redshifts. This indicates that the high-redshift radio galaxies are likely rare, massive sources. The galaxies in our sample are also brighter than the rest-frame size-surface-brightness locus defined by the low-redshift sources. Passive evolution roughly aligns the z~1 galaxies with the low-redshift samples with a slope equal to 4.7. This value is intermediate between the canonical Kormendy relation (~3.5) and a constant luminosity line (=5). The optical host is sometimes centered on a local minimum in the rest-frame UV

  3. High-Redshift Clusters form NVSS: The TexOx Cluster (TOC) Survey

    SciTech Connect

    Croft, S; Rawlings, S; Hill, G J

    2003-02-11

    The TexOx Cluster (TOC) Survey uses overdensities of radiosources in the NVSS to trace clusters of galaxies. The links between radiosources and rich environments make this a powerful way to find clusters which may potentially be overlooked by other selection techniques. By including constraints from optical surveys, TOC is an extremely efficient way to find clusters at high redshift. One such field, TOC J0233.3+3021, contains at least one galaxy cluster (at z {approx} 1.4) and has been detected using the Sunyaev-Zel'dovich (SZ) effect. Even in targeted deep optical observations, however, distinguishing the cluster galaxies from the background is difficult, especially given the tendency of TOC to select fields containing multiple structures at different redshifts.

  4. High redshift signatures in the 21 cm forest due to cosmic string wakes

    SciTech Connect

    Tashiro, Hiroyuki; Sekiguchi, Toyokazu; Silk, Joseph E-mail: toyokazu.sekiguchi@nagoya-u.jp

    2014-01-01

    Cosmic strings induce minihalo formation in the early universe. The resultant minihalos cluster in string wakes and create a ''21 cm forest'' against the cosmic microwave background (CMB) spectrum. Such a 21 cm forest can contribute to angular fluctuations of redshifted 21 cm signals integrated along the line of sight. We calculate the root-mean-square amplitude of the 21 cm fluctuations due to strings and show that these fluctuations can dominate signals from minihalos due to primordial density fluctuations at high redshift (z∼>10), even if the string tension is below the current upper bound, Gμ < 1.5 × 10{sup −7}. Our results also predict that the Square Kilometre Array (SKA) can potentially detect the 21 cm fluctuations due to strings with Gμ ≈ 7.5 × 10{sup −8} for the single frequency band case and 4.0 × 10{sup −8} for the multi-frequency band case.

  5. Absorption in X-ray spectra of high-redshift quasars

    NASA Technical Reports Server (NTRS)

    Elvis, Martin; Fiore, Fabrizio; Wilkes, Belinda; Mcdowell, Jonathan; Bechtold, Jill

    1994-01-01

    We present evidence that X-ray absorption is common in high-redshift quasars. We have studied six high-redshift (z approximately 3) quasars with the ROSAT Position Sensitive Proportional Counter (PSPC) of which four are in directions of low Galactic N(sub H). Three out of these four show excess absorption, while only three in approximately 50 z approximately less than 0.4 quasars do, indicating that such absorption must be common, but not ubiquitous, at high redshifts, and that the absorbers must lie at z greater than 0.4. The six quasars were: S5 0014+81, Q0420-388, PKS 0438-436, S4 0636+680. PKS 2000-330, PKS 2126-158, which have redshifts between 2.85 and 3.78. PKS 0438-436 and PKS 2126-158 show evidence for absorption above the local Galactic value at better than 99.999% confidence level. If the absorber is at the redshift of the quasar, then values of N(sub H) = (0.86(+0.49, -0.28)) x 10(exp 22) atoms/sq cm for PKS 0438-436, and N(sub H) = (1.45(+1.20, -0.64)) x 10(exp 22) atoms/ sq cm for PKS 2126-158, are implied, assuming solar abundances. The spectrum of S4 0636+680 also suggests the presence of a similarly large absorption column density at the 98% confidence level. This absorption reverses the trend for the most luminous active galactic nuclei (AGN) to have the least X-ray absorption, so a new mechanism is likely to be responsible. Intervening absorption due to damped Lyman(alpha) systems is a plausible cause. We also suggest, as an intrinsic model, that intracluster material, e.g., a cooling flow, around the quasar could account for both the X-ray spectrum and other properties of these quasars. All the quasars are radio-loud and three are gigahertz peaked (two of the three showing absorption). No excess absorption above the Galactic value is seen toward Q0420-388. This quasar has two damped Lyman(alpha) systems at z = 3.08. The limit on the X-ray column density implies a low ionization fraction, N(H I)/N(H) approximately greater than 4 x 10(exp -3) (3

  6. Probabilistic Selection of High-redshift Quasars with Subaru/Hyper Suprime-Cam Survey

    NASA Astrophysics Data System (ADS)

    Onoue, Masafusa

    High-redshift quasars are an important probe of the distant Universe. They enable observational studies of the early growth of supermassive blackholes, cosmic reionization, chemical enrichment of host galaxies, and so on. Through pioneering optical and near-infrared wide-area surveys such as the SDSS and the VIKING Survey, about one hundred quasars have been found at z > 6 (e.g., Fan et al. (2006b), Venemans et al. (2013)). However, its current small sample size and the fact that most of them are the most luminous (M 1450 <~ -24) population in this epoch prevents one from constraining statistics on high-redshift quasars, namely quasar luminosity function (QLF), and redshift evolution of IGM neutral fraction. Thus, discovery of large number of z > 6 quasars, especially low-luminous or z > 7 quasars, is highly desired for further understanding of the early universe. We are now starting a new ground-breaking survey of high-redshift (z > 6) quasars using the exquisite imaging data provided by the Hyper Suprime-Cam (HSC) Subaru Strategic Program (SSP) Survey. Thanks to its extremely wide coverage and its high sensitivity thorough five optical bands (1,400 deg2 to the depth of r ~ 26 in HSC-Wide layer), it is one of the most powerful contemporary surveys that makes it possible for us to increase the number of z > 6 quasars by almost an order of magnitude, i.e., 300 at z ~ 6 and 50 at z ~ 7, based on the current estimate of the QLF at z > 6 by Willott et al. (2010b). One of the biggest challenges in z > 6 quasar candidate selection is contamination of Galactic brown dwarfs, which have the same point-like appearance as and similarly red colors to the quasars. To overcome this issue and maximize the selection efficiency, we apply a double-layered approach to the HSC survey products, namely combination of two probabilistic selections: SED-fitting and Bayesian selection. In particular, we have developed a template SED fitting method optimized to high-redshift quasars

  7. A critical analysis of high-redshift, massive, galaxy clusters. Part I

    SciTech Connect

    Hoyle, Ben; Jimenez, Raul; Verde, Licia; Hotchkiss, Shaun E-mail: licia.verde@icc.ub.edu E-mail: shaun.hotchkiss@helsinki.fi

    2012-02-01

    We critically investigate current statistical tests applied to high redshift clusters of galaxies in order to test the standard cosmological model and describe their range of validity. We carefully compare a sample of high-redshift, massive, galaxy clusters with realistic Poisson sample simulations of the theoretical mass function, which include the effect of Eddington bias. We compare the observations and simulations using the following statistical tests: the distributions of ensemble and individual existence probabilities (in the > M, > z sense), the redshift distributions, and the 2d Kolmogorov-Smirnov test. Using seemingly rare clusters from Hoyle et al. (2011), and Jee et al. (2011) and assuming the same survey geometry as in Jee et al. (2011, which is less conservative than Hoyle et al. 2011), we find that the ( > M, > z) existence probabilities of all clusters are fully consistent with ΛCDM. However assuming the same survey geometry, we use the 2d K-S test probability to show that the observed clusters are not consistent with being the least probable clusters from simulations at > 95% confidence, and are also not consistent with being a random selection of clusters, which may be caused by the non-trivial selection function and survey geometry. Tension can be removed if we examine only a X-ray selected sub sample, with simulations performed assuming a modified survey geometry.

  8. DUST FORMATION, EVOLUTION, AND OBSCURATION EFFECTS IN THE VERY HIGH-REDSHIFT UNIVERSE

    SciTech Connect

    Dwek, Eli; Benford, Dominic J.; Staguhn, Johannes; Su, Ting; Arendt, Richard G.; Kovacks, Attila

    2014-06-20

    The evolution of dust at redshifts z ≳ 9, and consequently the dust properties, differs greatly from that in the local universe. In contrast to the local universe, core collapse supernovae (CCSNe) are the only source of thermally condensed dust. Because of the low initial dust-to-gas mass ratio, grain destruction rates are low, so that CCSNe are net producers of interstellar dust. Galaxies with large initial gas mass or high mass infall rate will therefore have a more rapid net rate of dust production compared to galaxies with lower gas mass, even at the same star formation rate. The dust composition is dominated by silicates, which exhibit a strong rise in the UV opacity near the Lyman break. This ''silicate-UV break'' may be confused with the Lyman break, resulting in a misidentification of a galaxy's photometric redshift. In this Letter we demonstrate these effects by analyzing the spectral energy distribution of MACS1149-JD, a lensed galaxy at z = 9.6. A potential 2 mm counterpart of MACS1149-JD has been identified with GISMO. While additional observations are required to corroborate this identification, we use this possible association to illustrate the physical processes and the observational effects of dust in the very high-redshift universe.

  9. Using Bayesian Evidence to Deduce the Dust-Attenuation Law at High Redshift

    NASA Astrophysics Data System (ADS)

    Salmon, Brett W.; Papovich, Casey J.; Finkelstein, Steven L.; Closson Ferguson, Henry; Long, James; CANDELS

    2016-01-01

    Although the nature of dust attenuation affects nearly all aspects of galaxy evolution, very little is known about the form of the dust-attenuation law in the distant Universe. Dust enshrouds and obscures UV star formation, convoluting our understanding of galaxy evolution at high redshift. Recent literature has recognized how the inferred physical properties of distant galaxies can be influenced by the non-universality of their attenuation curve shape. In this talk, I will present a Bayesian method to quantitatively constrain the dust-attenuation curve in high-redshift star-forming galaxies. This method is tested on galaxies at z~2 where we have CANDELS UV-to-optical photometry and Spitzer/Herschel IR luminosities. We find that the dust law implied from using only UV/optical data to calculate the full posterior probability densities supports the observed IR luminosities as predicted by that dust law. This method shows promise to deduce the shape of the attenuation curve at higher redshifts (z>4), as supported by our experiments using mock data from a semi-analytic model with qualities like those of the CANDELS GOODS fields.

  10. Dust Formation, Evolution, and Obscuration Effects in the Very High-Redshift Universe

    NASA Technical Reports Server (NTRS)

    Dwek, Eli; Staguhn, Johannes; Arendt, Richard G.; Kovacks, Attila; Su, Ting; Benford, Dominic J.

    2014-01-01

    The evolution of dust at redshifts z > or approx. 9, and consequently the dust properties, differs greatly from that in the local universe. In contrast to the local universe, core collapse supernovae (CCSNe) are the only source of thermally-condensed dust. Because of the low initial dust-togas mass ratio, grain destruction rates are low, so that CCSNe are net producers of interstellar dust. Galaxies with large initial gas mass or high mass infall rate will therefore have a more rapid net rate of dust production comported to galaxies with lower gas mass, even at the same star formation rate. The dust composition is dominated by silicates, which exhibit a strong rise in the UV opacity near the Lyman break. This "silicate-UV break" may be confused with the Lyman break, resulting in a misidentification of a galaxies' photometric redshift. In this paper we demonstrate these effects by analyzing the spectral energy distribution (SED) of MACS1149-JD, a lensed galaxy at z = 9.6. A potential 2mm counterpart of MACS1149-JD has been identified with GISMO. While additional observations are required to corroborate this identification, we use this possible association to illustrate the physical processes and the observational effects of dust in the very high redshift universe.

  11. GISMO, a 2 mm Bolometer Camera Optimized for the Study of High Redshift Galaxies

    NASA Technical Reports Server (NTRS)

    Staguhn, J.

    2007-01-01

    The 2mm spectral range provides a unique terrestrial window enabling ground based observations of the earliest active dusty galaxies in the universe and thereby allowing a better constraint on the star formation rate in these objects. We present a progress report for our bolometer camera GISMO (the Goddard-IRAM Superconducting 2-Millimeter Observer), which will obtain large and sensitive sky maps at this wavelength. The instrument will be used at the IRAM 30 m telescope and we expect to install it at the telescope in 2007. The camera uses an 8 x 16 planar array of multiplexed TES bolometers, which incorporates our recently designed Backshort Under Grid (BUG) architecture. GISMO will be very efficient at detecting sources serendipitously in large sky surveys. With the background limited performance of the detectors, the camera provides significantly greater imaging sensitivity and mapping speed at this wavelength than has previously been possible. The major scientific driver for the instrument is to provide the IRAM 30 m telescope with the capability to rapidly observe galactic and extragalactic dust emission, in particular from high-zeta ULI RGs and quasar s, even in the summer season. The instrument will fill in the SEDs of high redshift galaxies at the Rayleigh-Jeans part of the dust emission spectrum, even at the highest redshifts. Our source count models predict that GISMO will serendipitously detect one galaxy every four hours on the blank sky, and that one quarter of these galaxies will be at a redshift of zeta 6.5.

  12. Distance Estimates for High Redshift Clusters SZ and X-Ray Measurements

    NASA Technical Reports Server (NTRS)

    Joy, Marshall K.

    1999-01-01

    I present interferometric images of the Sunyaev-Zel'dovich effect for the high redshift (z $ greater than $ 0.5) galaxy clusters in the \\emph(Einstein) Medium Sensitivity Survey: MS0451.5-0305 (z = 0.54), MS0015.9+1609 (z = 0.55), MS2053.7-0449 (z = 0.58), MS1 137.5+6625 (z = 0.78), and MS 1054.5-0321 (z = 0.83). Isothermal $\\beta$ models are applied to the data to determine the magnitude of the Sunyaev-Zel'dovich (S-Z) decrement in each cluster. Complementary ROSAT PSPC and HRI x-ray data are also analyzed, and are combined with the S-Z data to generate an independent estimate of the cluster distance. Since the Sunyaev-Zel'dovich Effect is invariant with redshift, sensitive S-Z imaging can provide an independent determination of the size, shape, density, and distance of high redshift galaxy clusters; we will discuss current systematic uncertainties with this approach, as well as future observations which will yield stronger constraints.

  13. An Increasing Stellar Baryon Fraction in Bright Galaxies at High Redshift

    NASA Astrophysics Data System (ADS)

    Finkelstein, Steven L.; Song, Mimi; Behroozi, Peter; Somerville, Rachel S.; Papovich, Casey; Milosavljević, Miloš; Dekel, Avishai; Narayanan, Desika; Ashby, Matthew L. N.; Cooray, Asantha; Fazio, Giovanni G.; Ferguson, Henry C.; Koekemoer, Anton M.; Salmon, Brett; Willner, S. P.

    2015-12-01

    Recent observations have shown that the characteristic luminosity of the rest-frame ultraviolet (UV) luminosity function does not significantly evolve at 4 < z < 7 and is approximately {M}{UV}*˜ -21. We investigate this apparent non-evolution by examining a sample of 173 bright, MUV < -21 galaxies at z = 4-7, analyzing their stellar populations and host halo masses. Including deep Spitzer/IRAC imaging to constrain the rest-frame optical light, we find that {M}{UV}* galaxies at z = 4-7 have similar stellar masses of log(M/M⊙) = 9.6-9.9 and are thus relatively massive for these high redshifts. However, bright galaxies at z = 4-7 are less massive and have younger inferred ages than similarly bright galaxies at z = 2-3, even though the two populations have similar star formation rates and levels of dust attenuation for a fixed dust-attenuation curve. Matching the abundances of these bright z = 4-7 galaxies to halo mass functions from the Bolshoi ΛCDM simulation implies that the typical halo masses in ˜ {M}{{UV}}* galaxies decrease from log(Mh/M⊙) = 11.9 at z = 4 to log(Mh/M⊙) = 11.4 at z = 7. Thus, although we are studying galaxies at a similar stellar mass across multiple redshifts, these galaxies live in lower mass halos at higher redshift. The stellar baryon fraction in ˜ {M}{{UV}}* galaxies in units of the cosmic mean Ωb/Ωm rises from 5.1% at z = 4 to 11.7% at z = 7; this evolution is significant at the ˜3σ level. This rise does not agree with simple expectations of how galaxies grow, and implies that some effect, perhaps a diminishing efficiency of feedback, is allowing a higher fraction of available baryons to be converted into stars at high redshifts.

  14. Harnessing High Redshift Beacons: IRS Spectra of Lensed Lyman Break Galaxies

    NASA Astrophysics Data System (ADS)

    Siana, Brian; Coppin, Kristen; Ebeling, Harald; Edge, Alastair; Ellis, Richard; Kneib, Jean-Paul; Pettini, Max; Richard, Johan; Smail, Ian; Swinbank, Mark; Teplitz, Harry

    2007-05-01

    Star-formation at high redshift occurs in two types of galaxies: dusty Ultra-Luminous Infrared Galaxies (ULIRGs) and UV-bright Lyman Break Galaxies (LBGs). In both populations dust absorbs most of the ultraviolet (UV) light from young stars and re-emits the energy in the infrared (IR). Therefore, detailed studies of the dust and the infrared SEDs of these galaxies are critical for understanding these important evolutionary stages in galaxy formation. ULIRGs at z ~ 2-3 are luminous enough for both submm detection and Spitzer IRS spectroscopy, so much has been learned recently about their interstellar medium and IR SEDs. LBGs are too faint to be detected with submm imaging or IRS spectroscopy so little can be discovered about their dust content and IR SEDs prior to JWST and ALMA. Fortunately, there exist a few rare examples of LBGs which are strongly lensed by a foreground cluster or galaxy, and are magnified by factors of 10-30. We can therefore study in detail the infrared properties of this otherwise inaccessible population. Our group will obtain (in an approved Cycle-3 program) IRS spectroscopy of the most famous LBG, cB58, but it is clearly dangerous to draw wide-ranging conclusions about the LBG population based on this single object. We therefore propose for a detailed Spitzer study of the only other known bright lensed LBGs: the 'Cosmic Eye' and the '8-O'clock Arc'. The requested program uses IRS spectroscopy, IRS Peak-Up 16 micron, MIPS 70 micron, and IRAC imaging to fully characterize the gas and dust in the ISM of these galaxies and determine the shape of the IR SEDs. Together, the three lensed sources span the full range of star-formation rates and dust attenuation levels observed in LBGs. Therefore, we can correlate these properties with the infrared SEDs and emission-line properties (PAHs) and apply the correlations when examining the entire LBG population.

  15. Dark bubbles around high-redshift radio-loud active galactic nucleus

    NASA Astrophysics Data System (ADS)

    Ghisellini, G.; Sbarrato, T.

    2016-09-01

    At redshift larger than 3 there is a disagreement between the number of blazars (whose jet is pointing at us) and the number of expected parents (whose jet is pointing elsewhere). Now we strengthen this claim because (i) the number of blazars identified within the Sloan Digital Sky Survey (SDSS)+Faint Images of the Radio Sky at Twenty-cm (FIRST) survey footprint increased, demanding a more numerous parent population, and (ii) the detected blazars have a radio flux large enough to be above the FIRST flux limit even if the jet is slightly misaligned. The foreseen number of these slightly misaligned jets, in principle detectable, is much larger than the radio-detected sources in the FIRST+SDSS survey (at redshift larger than 4). This argument is independent of the presence of an isotropic radio component, such as the hotspot or the radio lobe, and does not depend on the bulk Lorentz factor Γ. We propose a scenario that ascribes the lack of slightly misaligned sources to an overobscuration of the nucleus by a `bubble' of dust, possibly typical of the first high-redshift quasars.

  16. CO Observations of the High Redshift Radio Galaxy 53W002

    NASA Astrophysics Data System (ADS)

    Yamada, Toru; Ohta, Kouji; Tomita, Akihiko; Takata, Tadafumi

    1995-10-01

    We observed a high redshift radio galaxy 53W002 at z =2.390 with the Nobeyama 45 m telescope aiming at a detection of a redshifted ^12^CO (J=1-0) emission line. The galaxy was discovered in the Leiden Berkeley Deep Survey and is known to have a blue SED and is a candidate for a genuinely young galaxy. We detected a weak (-5 mJy) emission-line feature at z = 2.392; the feature was significant in our November 1993 observations and marginally confirmed in the follow-up observations held in December 1993 and February 1994. If the detected emission-line feature is really a redshifted CO emission line associated with 53W002, its luminosity is 1.2 x 10^11^ h^-2^ K km s^-1^ pc^2^ (q_0_ = 0.5), or M(H_2_) ~ 5 x 10^11^ h^-2^ M_sun_, adopting the galactic CO-to-H_2_ conversion factor.

  17. Evolution of neutral gas at high redshift: implications for the epoch of galaxy formation

    NASA Astrophysics Data System (ADS)

    Storrie-Lombardi, L. J.; McMahon, R. G.; Irwin, M. J.

    1996-12-01

    Although observationally rare, damped Lyalpha absorption systems dominate the mass density of neutral gas in the Universe. 11 high-redshift damped Lyalpha systems covering 2.8<=z<=4.4 were discovered in 26 QSOs from the APMz<~4 QSO survey, extending these absorption system surveys to the highest redshifts currently possible. Combining our new data set with previous surveys, we find that the cosmological mass density in neutral gas, Omega_g, does not rise as steeply prior to z~2 as indicated by previous studies. There is evidence in the observed Omega_g for a flattening at z~2 and a possible turnover at z~3. When combined with the decline at z<~3.5 in number density per unit redshift of damped systems with column densities log N_HI>=21 atom cm^-2, these results point to an epoch at z>~3 prior to which the highest column density damped systems are still forming. We find that, over the redshift range 2

  18. Can Life Survive Gamma-Ray Bursts in the High-redshift Universe?

    NASA Astrophysics Data System (ADS)

    Li, Ye; Zhang, Bing

    2015-09-01

    Nearby gamma-ray bursts (GRBs) have been proposed as a possible cause of mass extinctions on Earth. Due to the higher event rate of GRBs at higher redshifts, it has been speculated that life as we know it may not survive above a certain redshift (e.g., z\\gt 0.5). We examine the duty cycle of lethal (life-threatening) GRBs in the solar neighborhood, in the Sloan Digital Sky Survey (SDSS) galaxies, and GRB host galaxies, with the dependence of the long GRB rate on star formation and metallicity properly taken into account. We find that the number of lethal GRBs attacking Earth within the past 500 Myr (∼epoch of the Ordovician mass extinction) is 0.93. The number of lethal GRBs hitting a certain planet increases with redshift, as a result of the increasing star formation rate (SFR) and decreasing metallicity in high-z galaxies. Taking 1 per 500 Myr as a conservative duty cycle for life to survive, as evidenced by our existence, we find that there is still a good fraction of SDSS galaxies beyond z=0.5 where the GRB rate at half-mass radius is lower than this value. We derive the fraction of such benign galaxies as a function of redshift through Monte Carlo simulations, and we find that the fraction is ∼ 50% at z∼ 1.5 and ∼ 10% even at z∼ 3. The mass distribution of benign galaxies is dominated by Milky Way–like ones, due to their commonness, relatively large mass, and low SFR. GRB host galaxies are among the most dangerous ones.

  19. The accelerated build-up of the red sequence in high-redshift galaxy clusters

    NASA Astrophysics Data System (ADS)

    Cerulo, P.; Couch, W. J.; Lidman, C.; Demarco, R.; Huertas-Company, M.; Mei, S.; Sánchez-Janssen, R.; Barrientos, L. F.; Muñoz, R. P.

    2016-04-01

    We analyse the evolution of the red sequence in a sample of galaxy clusters at redshifts 0.8 < z < 1.5 taken from the HAWK-I Cluster Survey (HCS). The comparison with the low-redshift (0.04 < z < 0.08) sample of the WIde-field Nearby Galaxy-cluster Survey (WINGS) and other literature results shows that the slope and intrinsic scatter of the cluster red sequence have undergone little evolution since z = 1.5. We find that the luminous-to-faint ratio and the slope of the faint end of the luminosity distribution of the HCS red sequence are consistent with those measured in WINGS, implying that there is no deficit of red galaxies at magnitudes fainter than M_V^{ast } at high redshifts. We find that the most massive HCS clusters host a population of bright red sequence galaxies at MV < -22.0 mag, which are not observed in low-mass clusters. Interestingly, we also note the presence of a population of very bright (MV < -23.0 mag) and massive (log (M*/M⊙) > 11.5) red sequence galaxies in the WINGS clusters, which do not include only the brightest cluster galaxies and which are not present in the HCS clusters, suggesting that they formed at epochs later than z = 0.8. The comparison with the luminosity distribution of a sample of passive red sequence galaxies drawn from the COSMOS/UltraVISTA field in the photometric redshift range 0.8 < zphot < 1.5 shows that the red sequence in clusters is more developed at the faint end, suggesting that halo mass plays an important role in setting the time-scales for the build-up of the red sequence.

  20. How absorption selected galaxies trace the general high-redshift galaxy population

    NASA Astrophysics Data System (ADS)

    Christensen, Lise

    2015-08-01

    Strong absorption lines seen in quasar spectra arise when the lines of sight to the quasars intersect intervening galaxies. The associated metal absorption lines from the strongest absorption lines, the damped Lyman alpha absorbers (DLAs), allow us to trace the metallicity of galaxies back to redshifts z>5. Typical metallicities range from 0.1-100% solar metallicities with a huge scatter at any given redshift. Understanding the nature of galaxies that host DLAs is one strategy to probe the early phase and origin of stars in the outskirts of present-day galaxy disks.The search for emission from the elusive high-redshift DLA galaxies has reached a mature state now that we have determined how to best identify the absorbing galaxies. From a growing number of emission-line detections from DLA galaxies at redshifts ranging between 0.1 and 3, we can analyse galaxies in both absorption and emission, and probe the gas-phase metallicities in the outskirts and halos of the galaxies.By combining information for galaxies seen in emission and absorption, I will show that there is a relation between DLA metallicities and the host galaxy luminosities similar to the well-known the mass-metallicity relation for luminosity selected galaxies. This implies that DLA galaxies are drawn from the general population of low- to intermediate mass galaxies. We can determine a metallicity gradient in the extended halo of the galaxies out to ~40 kpc, and this allows us to reproduce observed galaxy correlation functions derived from conventional samples of luminosity selected galaxies.

  1. Imaging the host galaxies of high-redshift radio-quiet QSOs

    NASA Technical Reports Server (NTRS)

    Lowenthal, James D.; Heckman, Timothy M.; Lehnert, Matthew, D.; Elias, J. H.

    1995-01-01

    We present new deep K-band and optical images of four radio-quiet QSOs at z approximately = 1 and six radio-quiet QSOs at z approximately = 2.5, as well as optical images only of six more at z approximately = 2.5. We have examined the images carefully for evidence of extended 'fuzz' from any putative QSO host galaxy. None of the z approximately = 2.5 QSOs shows any extended emission, and only two of the z approximately = 1 QSOs show marginal evidence for extended emission. Our 3 sigma detection limits in the K images, m(sub K) approximately = 21 for an isolated source, would correspond approximately to an unevolved L(sup star) elliptical galaxy at z = 2.5 or 2-3 mag fainter than an L(sup star) elliptical at z = 1, although our limits on host galaxy light are weaker than this due to the difficulty of separating galaxy light from QSO light. We simulate simple models of disk and elliptical host galaxies, and find that the marginal emission around the two z approximately = 1 QSOs can be explained by disks or bulges that are approximately 1-2 mag brighter than an unevolved L(sup star) galaxy in one case and approximately 1.5-2.5 mag brighter than L(sub star) in the other. For two other z approximately = 1 QSOs, we have only upper limits (L approximately = L(sup star)). The hosts of the high-redshift sample must be no brighter than about 3 mag above an unevolved L(sup star) galaxy, and are at least 1 magnitude fainter than the hosts of radio-loud QSOs at the same redshift. If the easily detected K-band light surrounding a previous sample of otherwise similar but radio-loud QSOs is starlight, then it must evolve on timescales of greater than or approximately equal to 10(exp 8) yr (e.g., Chambers & Charlot 1990); therefore our non-detection of host galaxy fuzz around radio-quiet QSOs supports the view that high-redshift radio-quiet and radio-loud QSOs inhabit different host objects, rather than being single types of objects that turn their radio emission on and off over

  2. LOW MASSES AND HIGH REDSHIFTS: THE EVOLUTION OF THE MASS-METALLICITY RELATION

    SciTech Connect

    Henry, Alaina; Straughn, Amber; Scarlata, Claudia; Bedregal, Alejandro G.; Domínguez, Alberto; Siana, Brian; Masters, Daniel; Malkan, Matthew; Ross, Nathaniel; Martin, Crystal L.; Atek, Hakim; Colbert, James W.; Rafelski, Marc; Teplitz, Harry; Bunker, Andrew J.; Dressler, Alan; Hathi, Nimish; McCarthy, Patrick

    2013-10-20

    We present the first robust measurement of the high redshift mass-metallicity (MZ) relation at 10{sup 8} ∼< M/M {sub ☉} ∼< 10{sup 10}, obtained by stacking spectra of 83 emission-line galaxies with secure redshifts between 1.3 ∼< z ∼< 2.3. For these redshifts, infrared grism spectroscopy with the Hubble Space Telescope Wide Field Camera 3 is sensitive to the R {sub 23} metallicity diagnostic: ([O II] λλ3726, 3729 + [O III] λλ4959, 5007)/Hβ. Using spectra stacked in four mass quartiles, we find a MZ relation that declines significantly with decreasing mass, extending from 12+log(O/H) = 8.8 at M = 10{sup 9.8} M {sub ☉}, to 12+log(O/H) = 8.2 at M = 10{sup 8.2} M {sub ☉}. After correcting for systematic offsets between metallicity indicators, we compare our MZ relation to measurements from the stacked spectra of galaxies with M ∼> 10{sup 9.5} M {sub ☉} and z ∼ 2.3. Within the statistical uncertainties, our MZ relation agrees with the z ∼ 2.3 result, particularly since our somewhat higher metallicities (by around 0.1 dex) are qualitatively consistent with the lower mean redshift (z = 1.76) of our sample. For the masses probed by our data, the MZ relation shows a steep slope which is suggestive of feedback from energy-driven winds, and a cosmological downsizing evolution where high mass galaxies reach the local MZ relation at earlier times. In addition, we show that our sample falls on an extrapolation of the star-forming main sequence (the SFR-M {sub *} relation) at this redshift. This result indicates that grism emission-line selected samples do not have preferentially high star formation rates (SFRs). Finally, we report no evidence for evolution of the mass-metallicity-SFR plane; our stack-averaged measurements show excellent agreement with the local relation.

  3. Low Masses and High Redshifts: The Evolution of the Mass-Metallicity Relation

    NASA Technical Reports Server (NTRS)

    Henry, Alaina; Scarlata, Claudia; Dominguez, Alberto; Malkan, Matthew; Martin, Crystal L.; Siana, Brian; Atek, Hakim; Bedregal, Alejandro G.; Colbert, James W.; Rafelski, Marc; Ross, Nathaniel; Teplitz, Harry; Bunker, Andrew J.; Dressler, Alan; Hathi, Nimish; Masters, Daniel; McCarthy, Patrick; Straughn, Amber

    2013-01-01

    We present the first robust measurement of the high redshift mass-metallicity (MZ) relation at 10(exp 8) < M/Stellar Mass < or approx. 10(exp 10), obtained by stacking spectra of 83 emission-line galaxies with secure redshifts between 1.3 < or approx. z < or approx. 2.3. For these redshifts, infrared grism spectroscopy with the Hubble Space Telescope Wide Field Camera 3 is sensitive to the R23 metallicity diagnostic: ([O II] (lambda)(lambda)3726, 3729 + [OIII] (lambda)(lambda)4959, 5007)/H(beta). Using spectra stacked in four mass quartiles, we find a MZ relation that declines significantly with decreasing mass, extending from 12+log(O/H) = 8.8 at M = 10(exp 9.8) Stellar Mass to 12+log(O/H)= 8.2 at M = 10(exp 8.2) Stellar Mass. After correcting for systematic offsets between metallicity indicators, we compare our MZ relation to measurements from the stacked spectra of galaxies with M > or approx. 10(exp 9.5) Stellar Mass and z approx. 2.3. Within the statistical uncertainties, our MZ relation agrees with the z approx. 2.3 result, particularly since our somewhat higher metallicities (by around 0.1 dex) are qualitatively consistent with the lower mean redshift (z = 1.76) of our sample. For the masses probed by our data, the MZ relation shows a steep slope which is suggestive of feedback from energy-driven winds, and a cosmological downsizing evolution where high mass galaxies reach the local MZ relation at earlier times. In addition, we show that our sample falls on an extrapolation of the star-forming main sequence (the SFR-M* relation) at this redshift. This result indicates that grism emission-line selected samples do not have preferentially high star formation rates (SFRs). Finally, we report no evidence for evolution of the mass-metallicity-SFR plane; our stack-averaged measurements show excellent agreement with the local relation.

  4. Constraining the minimum luminosity of high redshift galaxies through gravitational lensing

    SciTech Connect

    Mashian, Natalie; Loeb, Abraham E-mail: aloeb@cfa.harvard.edu

    2013-12-01

    We simulate the effects of gravitational lensing on the source count of high redshift galaxies as projected to be observed by the Hubble Frontier Fields program and the James Webb Space Telescope (JWST) in the near future. Taking the mass density profile of the lensing object to be the singular isothermal sphere (SIS) or the Navarro-Frenk-White (NFW) profile, we model a lens residing at a redshift of z{sub L} = 0.5 and explore the radial dependence of the resulting magnification bias and its variability with the velocity dispersion of the lens, the photometric sensitivity of the instrument, the redshift of the background source population, and the intrinsic maximum absolute magnitude (M{sub max}) of the sources. We find that gravitational lensing enhances the number of galaxies with redshifts z∼> 13 detected in the angular region θ{sub E}/2 ≤ θ ≤ 2θ{sub E} (where θ{sub E} is the Einstein angle) by a factor of ∼ 3 and 1.5 in the HUDF (df/dν{sub 0} ∼ 9 nJy) and medium-deep JWST surveys (df/dν{sub 0} ∼ 6 nJy). Furthermore, we find that even in cases where a negative magnification bias reduces the observed number count of background sources, the lensing effect improves the sensitivity of the count to the intrinsic faint-magnitude cut-off of the Schechter luminosity function. In a field centered on a strong lensing cluster, observations of z∼> 6 and z∼> 13 galaxies with JWST can be used to infer this cut-off magnitude for values as faint as M{sub max} ∼ -14.4 and -16.1 mag (L{sub min} ≈ 2.5 × 10{sup 26} and 1.2 × 10{sup 27} erg s{sup −1} Hz{sup −1}) respectively, within the range bracketed by existing theoretical models. Gravitational lensing may therefore offer an effective way of constraining the low-luminosity cut-off of high-redshift galaxies.

  5. Scheduled discoveries of 7+ high-Redshift supernovae: First cosmology results and bounds on q{sub 0}

    SciTech Connect

    Perlmutter, S., FNAL

    1998-09-01

    Our search for high-redshift Type Ia supernovae discovered, in its first years, a sample of seven supernovae. Using a ``batch`` search strategy, almost all were discovered before maximum light and were observed over the peak of their light curves. The spectra and light curves indicate that almost all were Type Ia supernovae at redshifts z = 0.35 - 0.5. These high-redshift supernovae can provide a distance indicator and ``standard clock`` to study the cosmological parameters q{sub 0} , {Lambda}, {Omega}{sub 0} , and H{sub 0}. This presentation and the following presentations of Kim et al. (1996), Goldhaber et al. (1996), and Pain et al. (1996) will discuss observation strategies and rates, analysis and calibration issues, the sources of measurement uncertainty, and the cosmological implications, including bounds on q{sub 0} , of these first high-redshift supernovae from our ongoing search.

  6. Modeling high-redshift galaxies: what can we learn from high and ultra-high resolution hydrodynamical simulations?

    NASA Astrophysics Data System (ADS)

    Devriendt, J.; Slyz, A.; Powell, L.; Pichon, C.; Teyssier, R.

    2010-04-01

    We present results from a high resolution cosmological galaxy formation simulation called Mare Nostrum and a ultra-high resimulation of the first 500 million years of a single, Milky Way (MW) sized galaxy. Using the cosmological run, we measure UV luminosity functions and assess their sensitivity to both cosmological parameters and dust extinction. We find remarkably good agreement with the existing data over the redshift range 4 < z < 7 provided we adopt the favoured cosmology (WMAP 5 year parameters) and a self-consistent treatment of the dust. Cranking up the resolution, we then study in detail a z = 9 protogalaxy sitting at the intersection of cold gas filaments. This high-z MW progenitor grows a dense, rapidly spinning, thin disk which undergoes gravitational fragmention. Star formation in the resulting gas clumps rapidly turns them into globular clusters. A far reaching galactic wind develops, co-powered by the protogalaxy and its cohort of smaller companions populating the filaments. Despite such an impressive blow out, the smooth filamentary material is hardly affected at these redshifts.

  7. A New Determination of the High Redshift Type Ia Supernova Rateswith the Hubble Space Telescope Advanced Camera for Surveys

    SciTech Connect

    Kuznetsova, N.; Barbary, K.; Connolly, B.; Kim, A.G.; Pain, R.; Roe, N.A.; Aldering, G.; Amanullah, R.; Dawson, K.; Doi, M.; Fadeyev, V.; Fruchter, A.S.; Gibbons, R.; Goldhaber, G.; Goober, A.; Gude, A.; Knop,R.A.; Kowalski, M.; Lidman, C.; Morokuma, T.; Meyers, J.; Perlmutter, S.; Rubin, D.; Schlegel, D.J.; Spadafora, A.L.; Stanishev, V.; Strovink, M.; Suzuki, N.; Wang, L.; Yasuda, N.

    2007-10-01

    We present a new measurement of the volumetric rate of Type Ia supernova up to a redshift of 1.7, using the Hubble Space Telescope (HST) GOODS data combined with an additional HST dataset covering the North GOODS field collected in 2004. We employ a novel technique that does not require spectroscopic data for identifying Type Ia supernovae (although spectroscopic measurements of redshifts are used for over half the sample); instead we employ a Bayesian approach using only photometric data to calculate the probability that an object is a Type Ia supernova. This Bayesian technique can easily be modified to incorporate improved priors on supernova properties, and it is well-suited for future high-statistics supernovae searches in which spectroscopic follow up of all candidates will be impractical. Here, the method is validated on both ground- and space-based supernova data having some spectroscopic follow up. We combine our volumetric rate measurements with low redshift supernova data, and fit to a number of possible models for the evolution of the Type Ia supernova rate as a function of redshift. The data do not distinguish between a flat rate at redshift > 0.5 and a previously proposed model, in which the Type Ia rate peaks at redshift {approx} 1 due to a significant delay from star-formation to the supernova explosion. Except for the highest redshifts, where the signal to noise ratio is generally too low to apply this technique, this approach yields smaller or comparable uncertainties than previous work.

  8. ON THE KENNICUTT-SCHMIDT RELATION OF LOW-METALLICITY HIGH-REDSHIFT GALAXIES

    SciTech Connect

    Gnedin, Nickolay Y.; Kravtsov, Andrey V. E-mail: andrey@oddjob.uchicago.ed

    2010-05-01

    We present results of self-consistent, high-resolution cosmological simulations of galaxy formation at z {approx} 3. The simulations employ a recently developed recipe for star formation based on the local abundance of molecular hydrogen, which is tracked self-consistently during the course of simulation. The phenomenological H{sub 2} formation model accounts for the effects of dissociating UV radiation of stars in each galaxy, as well as self-shielding and shielding of H{sub 2} by dust, and therefore allows us to explore effects of lower metallicities and higher UV fluxes prevalent in high-redshift galaxies on their star formation. We compare stellar masses, metallicities, and star formation rates of the simulated galaxies to available observations of the Lyman break galaxies (LBGs) and find a reasonable agreement. We find that the Kennicutt-Schmidt (KS) relation exhibited by our simulated galaxies at z {approx} 3 is substantially steeper and has a lower amplitude than the z = 0 relation at {Sigma}{sub H} {approx_lt} 100 M{sub o-dot} pc{sup -2}. The predicted relation, however, is consistent with existing observational constraints for the z {approx} 3 damped Ly{alpha} and LBGs. Our tests show that the main reason for the difference from the local KS relation is lower metallicity of the interstellar medium in high-redshift galaxies. We discuss several implications of the metallicity-dependence of the KS relation for galaxy evolution and interpretation of observations. In particular, we show that the observed size of high-redshift exponential disks depends sensitively on their KS relation. Our results also suggest that significantly reduced star formation efficiency at low gas surface densities can lead to strong suppression of star formation in low-mass high-redshift galaxies and long gas consumption time scales over most of the disks in large galaxies. The longer gas consumption time scales could make disks more resilient to major and minor mergers and could help

  9. What is the nature of high-redshift, dusty, star-forming galaxies?

    NASA Astrophysics Data System (ADS)

    Bethermin, Matthieu

    2015-08-01

    Herschel deep surveys (HerMES, PEP, H-GOODS) revealed that a large fraction of the star formation up to at least z=4 is hosted by massive, dusty, star-forming, galaxies (DSFGs). These galaxies are often missed by optical and near infrared surveys, because the majority of the light produced by their stars is absorbed by dust and re-emitted in the far-infrared and submillimeter domains. These galaxies are massive and gas-rich and some of them form several hundreds of solar masses of stars per year (e.g., Béthermin et al. 2015a). Using the fluctuations of the cosmic infrared background and the clustering of the brightest high-redshift galaxies detected by Herschel, we can also put constraints on their halo mass. They live in dark matter halos of a few 1012 Msun and should be the progenitors of today’s elliptical galaxies (e.g., Béthermin et al. 2013, 2014).I will discuss the best strategy to select samples of these high-redshift star-forming galaxies from (sub-)millimeter photometric surveys. This discussion will be based on a phenomenological model of galaxy evolution, which reproduces well the current observations (Béthermin et al. 2012c, 2015b). This model can predict how the wavelength and the depth the surveys impact the properties of the detected sources (redshift, sSFR, stellar mass). I will in particular focus on ALMA deep surveys. Surprisingly, going deeper and to longer wavelengths does not guarantee to build larger samples of high redshift galaxies.The strong galaxy-galaxy lensing also offers possibilities to study high-z DSFGs in depth. In particular, I will discuss the nature of the population discovered by the South Pole Telescope. Our model predicts that these objects are mainly massive, gas-rich galaxies rather than starbursts. The important magnification (~20) of these objects is a unique opportunity to detect a large set of (sub-)millimeter lines (CO, CII, CI, NII) and study the properties of the interstellar medium of galaxies up to z=6. I will

  10. Long-Term Multiwavelength Studies of High-Redshift Blazar 0836+710

    NASA Technical Reports Server (NTRS)

    Thompson, D. J.; Akyuz, A.; Donato, D.; Perkins, J. S.; Larsson, S.; Sokolovsky, K.; Fuhrmann, L.; Kurtanidze, O.

    2012-01-01

    Following gamma-ray flaring activity of high-redshift (z=2.218) blazar 0836+710 in 2011, we have assembled a long-term multiwavelength study of this object. Although this source is monitored regularly by radio telescopes and the Fermi Large Area Telescope, its coverage at other wavelengths is limited. The optical flux appears generally correlated with the gamma-ray flux, while little variability has been seen at X-ray energies. The gamma-ray/radio correlation is complex compared to some other blazars. As for many blazars, the largest variability is seen at gamma-ray wavelengths.

  11. Updates to the High-Redshift Supernovae in the SCP Union Compilation

    NASA Astrophysics Data System (ADS)

    Rubin, David; Aldering, G. S.; Amanullah, R.; Barbary, K. H.; Bruce, A.; Dawson, K. S.; Doi, M.; Fakhouri, H.; Fruchter, A. S.; Goobar, A.; Huang, X.; Ihara, Y.; Kim, A. G.; Kowalski, M.; Krechmer, E.; Lidman, C.; Linder, E.; Meyers, J.; Morokuma, T.; Nordin, J.; Perlmutter, S.; Rykoff, E. S.; Saunders, C.; Spadafora, A. L.; Suzuki, N.; Takanashi, N.; Yasuda, N.; Cosmology Project, Supernova

    2013-01-01

    Building on the work presented in Amanullah et al. (ApJ, 2010) and Suzuki et al. (ApJ, 2012), adding new z > 1 supernovae discovered in ground-based work and a new analysis of existing HST SNe, we present an updated high-redshift dataset. We update the SCP Union compilation with this and other recent datasets and present updated cosmological fits. This work has been supported by the Office of Science, U.S. Department of Energy (through contract DE-AC02-05CH11231), and in part by NASA through grants associated with HST-GO-10496.

  12. PKS 0483-436 - A high-redshift quasar with strong X-ray absorption

    NASA Technical Reports Server (NTRS)

    Wilkes, Belinda J.; Elvis, Martin; Fiore, Fabrizio; Mcdowell, Jonathan C.; Tananbaum, Harvey; Lawrence, Andrew

    1992-01-01

    The first X-ray spectrum of a high-redshift (z = 2.85) quasar is reported. The Rosat PSPC spectrum of PKS 0438-436, covering 0.3-9 keV in the quasar's rest frame, reveals unexpected absorption of about 1 x 10 exp 22/sq cm, assuming it occurs at the source. Only one other high-luminosity quasar (of greater than about 50 observed by Einstein) shows significant absorption in its X-ray spectrum. Of the common line-of-sight absorbers, only highly ionized Ly-alpha forest clouds may be able to explain this amount of absorption. Candidates for an intrinsic absorber are discussed. Absorption at about 1 keV (rest frame) is due primarily to heavy elements. (O, Ne, Mg, Si, S) raising the possibility of measuring early universe abundances via X-ray absorption in this and like quasars. PKS 0438-436 may be a high-redshift member of a population of quasars which can contribute to the X-ray background above 2 keV, without being detectable by previous imaging missions.

  13. THE GENTLE GROWTH OF GALAXIES AT HIGH REDSHIFTS IN OVERDENSE ENVIRONMENTS

    SciTech Connect

    Romano-Díaz, Emilio; Shlosman, Isaac; Choi, Jun-Hwan; Sadoun, Raphael

    2014-08-01

    We have explored prevailing modes of galaxy growth for redshifts z ∼ 6-14, comparing substantially overdense and normal regions of the universe, using high-resolution zoom-in cosmological simulations. Such rare overdense regions have been projected to host high-z quasars. We demonstrate that galaxies in such environments grow predominantly by a smooth accretion from cosmological filaments which dominates the mass input from major, intermediate, and minor mergers. We find that by z ∼ 6, the accumulated galaxy mass fraction from mergers falls short by a factor of 10 of the cumulative accretion mass for galaxies in the overdense regions, and by a factor of 5 in the normal environments. Moreover, the rate of the stellar mass input from mergers also lies below that of an in situ star formation (SF) rate. The fraction of stellar masses in galaxies contributed by mergers in overdense regions is ∼12%, and ∼33% in the normal regions, at these redshifts. Our median SF rates for ∼few × 10{sup 9} M {sub ☉} galaxies agrees well with the recently estimated rates for z ∼ 7 galaxies from Spitzer's SURF-UP survey. Finally, we find that the main difference between the normal and overdense regions lies in the amplified growth of massive galaxies in massive dark matter halos. This leads to the formation of ≳ 10{sup 10} M {sub ☉} galaxies due to the ∼100 fold increase in mass during the above time period. Such galaxies are basically absent in the normal regions at these redshifts.

  14. The Quest for Dusty Star-forming Galaxies at High Redshift z ≳ 4

    NASA Astrophysics Data System (ADS)

    Mancuso, C.; Lapi, A.; Shi, J.; Gonzalez-Nuevo, J.; Aversa, R.; Danese, L.

    2016-06-01

    We exploit the continuity equation approach and “main-sequence” star formation timescales to show that the observed high abundance of galaxies with stellar masses ≳ a few 1010 M ⊙ at redshift z ≳ 4 implies the existence of a galaxy population featuring large star formation rates (SFRs) ψ ≳ 102 M ⊙ yr‑1 in heavily dust-obscured conditions. These galaxies constitute the high-redshift counterparts of the dusty star-forming population already surveyed for z ≲ 3 in the far-IR band by the Herschel Space Observatory. We work out specific predictions for the evolution of the corresponding stellar mass and SFR functions out to z ∼ 10, determining that the number density at z ≲ 8 for SFRs ψ ≳ 30 M ⊙ yr‑1 cannot be estimated relying on the UV luminosity function alone, even when standard corrections for dust extinction based on the UV slope are applied. We compute the number counts and redshift distributions (including galaxy-scale gravitational lensing) of this galaxy population, and show that current data from the AzTEC-LABOCA, SCUBA-2, and ALMA-SPT surveys are already addressing it. We demonstrate how an observational strategy based on color preselection in the far-IR or (sub-)millimeter band with Herschel and SCUBA-2, supplemented by photometric data from on-source observations with ALMA, can allow us to reconstruct the bright end of the SFR functions out to z ≲ 8. In parallel, such a challenging task can be managed by exploiting current UV surveys in combination with (sub-)millimeter observations by ALMA and NIKA2 and/or radio observations by SKA and its precursors.

  15. GRB hosts and the search for missing star formation at high redshift

    NASA Astrophysics Data System (ADS)

    Tanvir, Nial

    2014-10-01

    Measuring the star formation rate (SFR) at high redshift is crucial for understanding cosmic reionization and the formation of galaxies at early times. Two common, complementary approaches are Lyman-Break-Galaxy (LBG) surveys, providing large samples, and Gamma-Ray-Bursts (GRBs) which can sign-post star formation even in the smallest galaxies. Recent results of both methods have found evidence for a dominant population of very faint star-forming galaxies at z>5, representing a continuation of the steepening of the galaxy luminosity function with redshift. However, LBG surveys are affected by possible incompleteness and contamination, while the magnitude limit means very large correction factors must be applied to account for these unseen galaxies. On the other hand GRBs suffer small number statistics and have their own selection biases. We propose to construct a new sample of six 6redshifts of the targets means that this can be achieved relatively economically, since we can accept a lower level of significance and single filter. This method depends only on GRBs and SF tracing UV light (both likely at high-z), and in turn will constrain the completeness correction to be applied to LBG surveys in order to derive the ionizing photon budget.

  16. Reionisation and High-Redshift Galaxies: The View from Quasar Absorption Lines

    NASA Astrophysics Data System (ADS)

    Becker, George D.; Bolton, James S.; Lidz, Adam

    2015-12-01

    Determining when and how the first galaxies reionised the intergalactic medium promises to shed light on both the nature of the first objects and the cosmic history of baryons. Towards this goal, quasar absorption lines play a unique role by probing the properties of diffuse gas on galactic and intergalactic scales. In this review, we examine the multiple ways in which absorption lines trace the connection between galaxies and the intergalactic medium near the reionisation epoch. We first describe how the Ly α forest is used to determine the intensity of the ionising ultraviolet background and the global ionising emissivity budget. Critically, these measurements reflect the escaping ionising radiation from all galaxies, including those too faint to detect directly. We then discuss insights from metal absorption lines into reionisation-era galaxies and their surroundings. Current observations suggest a buildup of metals in the circumgalactic environments of galaxies over z ~ 6 to 5, although changes in ionisation will also affect the evolution of metal line properties. A substantial fraction of metal absorbers at these redshifts may trace relatively low-mass galaxies. Finally, we review constraints from the Ly α forest and quasar near zones on the timing of reionisation. Along with other probes of the high-redshift Universe, absorption line data are consistent with a relatively late end to reionisation (5.5 ≲ z ≲ 7); however, the constraints are still fairly week. Significant progress is expected to come through improved analysis techniques, increases in the number of known high-redshift quasars from optical and infrared sky surveys, large gains in sensitivity from next-generation observing facilities, and synergies with other probes of the reionisation era.

  17. Gravitational wave source counts at high redshift and in models with extra dimensions

    NASA Astrophysics Data System (ADS)

    García-Bellido, Juan; Nesseris, Savvas; Trashorras, Manuel

    2016-07-01

    Gravitational wave (GW) source counts have been recently shown to be able to test how gravitational radiation propagates with the distance from the source. Here, we extend this formalism to cosmological scales, i.e. the high redshift regime, and we discuss the complications of applying this methodology to high redshift sources. We also allow for models with compactified extra dimensions like in the Kaluza-Klein model. Furthermore, we also consider the case of intermediate redshifts, i.e. 0 < z lesssim 1, where we show it is possible to find an analytical approximation for the source counts dN/d(S/N). This can be done in terms of cosmological parameters, such as the matter density Ωm,0 of the cosmological constant model or the cosmographic parameters for a general dark energy model. Our analysis is as general as possible, but it depends on two important factors: a source model for the black hole binary mergers and the GW source to galaxy bias. This methodology also allows us to obtain the higher order corrections of the source counts in terms of the signal-to-noise S/N. We then forecast the sensitivity of future observations in constraining GW physics but also the underlying cosmology by simulating sources distributed over a finite range of signal-to-noise with a number of sources ranging from 10 to 500 sources as expected from future detectors. We find that with 500 events it will be possible to provide constraints on the matter density parameter at present Ωm,0 on the order of a few percent and with the precision growing fast with the number of events. In the case of extra dimensions we find that depending on the degeneracies of the model, with 500 events it may be possible to provide stringent limits on the existence of the extra dimensions if the aforementioned degeneracies can be broken.

  18. Optical Variability and Classification of High Redshift (3.5 < z < 5.5) Quasars on SDSS Stripe 82

    NASA Astrophysics Data System (ADS)

    AlSayyad, Yusra; McGreer, Ian D.; Fan, Xiaohui; Connolly, Andrew J.; Ivezic, Zeljko; Becker, Andrew C.

    2015-01-01

    Recent studies have shown promise in combining optical colors with variability to efficiently select and estimate the redshifts of low- to mid-redshift quasars in upcoming ground-based time-domain surveys. We extend these studies to fainter and less abundant high-redshift quasars using light curves from 235 sq. deg. and 10 years of Stripe 82 imaging reprocessed with the prototype LSST data management stack. Sources are detected on the i-band co-adds (5σ: i ~ 24) but measured on the single-epoch (ugriz) images, generating complete and unbiased lightcurves for sources fainter than the single-epoch detection threshold. Using these forced photometry lightcurves, we explore optical variability characteristics of high redshift quasars and validate classification methods with particular attention to the low signal limit. In this low SNR limit, we quantify the degradation of the uncertainties and biases on variability parameters using simulated light curves. Completeness/efficiency and redshift accuracy are verified with new spectroscopic observations on the MMT and APO 3.5m. These preliminary results are part of a survey to measure the z~4 luminosity function for quasars (i < 23) on Stripe 82 and to validate purely photometric classification techniques for high redshift quasars in LSST.

  19. AN OBSERVED LINK BETWEEN ACTIVE GALACTIC NUCLEI AND VIOLENT DISK INSTABILITIES IN HIGH-REDSHIFT GALAXIES

    SciTech Connect

    Bournaud, Frederic; Juneau, Stephanie; Le Floc'h, Emeric; Mullaney, James; Daddi, Emanuele; Duc, Pierre-Alain; Elbaz, David; Salmi, Fadia; Dekel, Avishai; Dickinson, Mark

    2012-09-20

    We provide evidence for a correlation between the presence of giant clumps and the occurrence of active galactic nuclei (AGNs) in disk galaxies. Giant clumps of 10{sup 8}-10{sup 9} M{sub Sun} arise from violent gravitational instability in gas-rich galaxies, and it has been proposed that this instability could feed supermassive black holes (BHs). We use emission line diagnostics to compare a sample of 14 clumpy (unstable) disks and a sample of 13 smoother (stable) disks at redshift z {approx} 0.7. The majority of clumpy disks in our sample have a high probability of containing AGNs. Their [O III] {lambda}5007 emission line is strongly excited, inconsistent with low-metallicity star formation (SF) alone. [Ne III] {lambda}3869 excitation is also higher. Stable disks rarely have such properties. Stacking ultra sensitive Chandra observations (4 Ms) reveals an X-ray excess in clumpy galaxies, which confirms the presence of AGNs. The clumpy galaxies in our intermediate-redshift sample have properties typical of gas-rich disk galaxies rather than mergers, being in particular on the main sequence of SF. This suggests that our findings apply to the physically similar and numerous gas-rich unstable disks at z > 1. Using the observed [O III] and X-ray luminosities, we conservatively estimate that AGNs hosted by clumpy disks have typical bolometric luminosities of the order of a few 10{sup 43} erg s{sup -1}, BH growth rates m-dot{sub BH}{approx}10{sup -2} M{sub Sun} yr{sup -1}, and that these AGNs are substantially obscured in X-rays. This moderate-luminosity mode could provide a large fraction of today's BH mass with a high duty cycle (>10%), accretion bursts with higher luminosities being possible over shorter phases. Violent instabilities at high redshift (giant clumps) are a much more efficient driver of BH growth than the weak instabilities in nearby spirals (bars), and the evolution of disk instabilities with mass and redshift could explain the simultaneous downsizing of

  20. High efficiency SNAP survey for Lyman alpha emitters at low redshift

    NASA Astrophysics Data System (ADS)

    McCandliss, Stephan

    2014-10-01

    The goal of this proposal is to provide the first statistically significant survey of star-forming galaxies with Lyman alpha emission at redshifts 0.02 < z < 0.24. It will provide an overall assessment of the evolution in Lyman alpha luminosity at the lowest redshifts and allowed detailed studies of the physical processes that shape the Lyman alpha profile and govern escape in multi-phase, kinematic media. It will also provide a serendipitous search for star-forming galaxies with high LyC escape fractions that are analogous to those commonly invoked as being responsible for initiating and sustaining the epoch of reionization. The SNAP survey proposed here employing the G140L mode of COS offers a highly efficient means to examine the Lyman alpha emission properties of our candidate emitters and to inform our choice of objects that could warrant deeper integrations in future observations. These data have high UV legacy value and will be of broad interest to the star-forming galaxy community, so we have elected to waive the proprietary period.

  1. Nearby Clumpy, Gas Rich, Star-forming Galaxies: Local Analogs of High-redshift Clumpy Galaxies

    NASA Astrophysics Data System (ADS)

    Garland, C. A.; Pisano, D. J.; Mac Low, M.-M.; Kreckel, K.; Rabidoux, K.; Guzmán, R.

    2015-07-01

    Luminous compact blue galaxies (LCBGs) have enhanced star formation rates (SFRs) and compact morphologies. We combine Sloan Digital Sky Survey data with H i data of 29 LCBGs at redshift z ∼ 0 to understand their nature. We find that local LCBGs have high atomic gas fractions (∼50%) and SFRs per stellar mass consistent with some high-redshift star-forming galaxies (SFGs). Many local LCBGs also have clumpy morphologies, with clumps distributed across their disks. Although rare, these galaxies appear to be similar to the clumpy SFGs commonly observed at z ∼ 1–3. Local LCBGs separate into three groups: (1) interacting galaxies (∼20%) (2) clumpy spirals (∼40%) and (3) non-clumpy, non-spirals with regular shapes and smaller effective radii and stellar masses (∼40%). It seems that the method of building up a high gas fraction, which then triggers star formation, is not the same for all local LCBGs. This may lead to a dichotomy in galaxy characteristics. We consider possible gas delivery scenarios and suggest that clumpy spirals, preferentially located in clusters and with companions, are smoothly accreting gas from tidally disrupted companions and/or intracluster gas enriched by stripped satellites. Conversely, as non-clumpy galaxies are preferentially located in the field and tend to be isolated, we suggest clumpy, cold streams, which destroy galaxy disks and prevent clump formation, as a likely gas delivery mechanism for these systems. Other possibilities include smooth cold streams, a series of minor mergers, or major interactions.

  2. The environments of high-redshift radio galaxies and quasars: probes of protoclusters

    NASA Astrophysics Data System (ADS)

    Orsi, Álvaro A.; Fanidakis, Nikos; Lacey, Cedric G.; Baugh, Carlton M.

    2016-03-01

    We use the GALFORM semi-analytical model to study high-density regions traced by radio galaxies and quasars at high redshifts. We explore the impact that baryonic physics has upon the properties of galaxies in these environments. Star-forming emission-line galaxies (Ly α and H α emitters) are used to probe the environments at high redshifts. Radio galaxies are predicted to be hosted by more massive haloes than quasars, and this is imprinted on the amplitude of galaxy overdensities and cross-correlation functions. We find that Ly α radiative transfer and active galactic nucleus feedback indirectly affect the clustering on small scales and also the stellar masses, star formation rates and gas metallicities of galaxies in dense environments. We also investigate the relation between protoclusters associated with radio galaxies and quasars, and their present-day cluster descendants. The progenitors of massive clusters associated with radio galaxies and quasars allow us to determine an average protocluster size in a simple way. Overdensities within the protoclusters are found to correlate with the halo descendant masses. We present scaling relations that can be applied to observational data. By computing projection effects due to the wavelength resolution of modern spectrographs and narrow-band filters, we show that the former have enough spectral resolution to map the structure of protoclusters, whereas the latter can be used to measure the clustering around radio galaxies and quasars over larger scales to determine the mass of dark matter haloes hosting them.

  3. Detectability of cold streams into high-redshift galaxies by absorption lines

    NASA Astrophysics Data System (ADS)

    Goerdt, Tobias; Dekel, Avishai; Sternberg, Amiel; Gnat, Orly; Ceverino, Daniel

    2012-08-01

    Cold gas streaming along the dark matter filaments of the cosmic web is predicted to be the major source of fuel for disc buildup, violent disc instability and star formation in massive galaxies at high redshift. We investigate to what extent such cold gas is detectable in the extended circumgalactic environment of galaxies via Lyα absorption and selected low-ionization metal absorption lines. We model the expected absorption signatures using high-resolution zoom-in adaptive mesh refinement cosmological simulations. In the post-processing, we distinguish between self-shielded gas and unshielded gas. In the self-shielded gas, which is optically thick to Lyman continuum radiation, we assume pure collisional ionization for species with an ionization potential greater than 13.6 eV. In the optically-thin, unshielded gas, these species are also photoionized by the metagalactic radiation. In addition to absorption of radiation from background quasars, we compute the absorption line profiles of radiation emitted by the galaxy at the centre of the same halo. We predict the strength of the absorption signal for individual galaxies without stacking. We find that the Lyα absorption profiles produced by the streams are consistent with observations of absorption and emission Lyα profiles in high-redshift galaxies. Due to the low metallicities in the streams, and their low covering factors, the metal absorption features are weak and difficult to detect.

  4. Short-term optical variability of high-redshift quasi-stellar objects

    NASA Astrophysics Data System (ADS)

    Bachev, R.; Strigachev, A.; Semkov, E.

    2005-04-01

    In this paper we present the results of a search for short-term variability in the optical band of selected high-luminosity, high-redshift radio-quiet quasars. Each quasar has been monitored typically for 2-4 h with a time resolution of 2-5 min and a photometric accuracy of about 0.01-0.02 mag. As a result of the significant redshift (z > 2), the covered wavelength range falls into the ultraviolet region (typically 1500-2500 Å). We have found no statistical evidence for any continuum variations larger than 0.01-0.02 mag for any of the monitored objects. Our results suggest that the presence of a short-term variability in radio-quiet quasars is unlikely even in the ultraviolet region, contrary to reports by other authors. This conclusion holds true at least for high-luminosity (large black hole mass and accretion rate?) objects. The results are consistent with the idea that significant short-term (less than 1 h) variations in active galactic nuclei, where observed, should be attributed primarily to processes in a relativistic jet.

  5. The MaGICC volume: reproducing statistical properties of high-redshift galaxies

    NASA Astrophysics Data System (ADS)

    Kannan, Rahul; Stinson, Greg S.; Macciò, Andrea V.; Brook, Chris; Weinmann, Simone M.; Wadsley, James; Couchman, Hugh M. P.

    2014-02-01

    We present a cosmological hydrodynamical simulation of a representative volume of the Universe, as part of the Making Galaxies in a Cosmological Context (MaGICC) project. MaGICC uses a thermal implementation for supernova and early stellar feedback. This work tests the feedback model at lower resolution across a range of galaxy masses, morphologies and merger histories. The simulated sample compares well with observations of high-redshift galaxies (z ≥ 2) including the stellar mass-halo mass (M⋆-Mh) relation, the galaxy stellar mass function (GSMF) at low masses (M⋆ < 5 × 1010 M⊙) and the number density evolution of low-mass galaxies. The poor match of M⋆-Mh and the GSMF at high masses (M⋆ ≥ 5 × 1010 M⊙) indicates that supernova feedback is insufficient to limit star formation in these haloes. At z = 0, our model produces too many stars in massive galaxies and slightly underpredicts the stellar mass around L⋆ mass galaxy. Altogether our results suggest that early stellar feedback, in conjunction with supernova feedback, plays a major role in regulating the properties of low-mass galaxies at high redshift.

  6. Awakening of The High-Redshift Blazar CGRaBS J0809+5341

    NASA Astrophysics Data System (ADS)

    Paliya, Vaidehi S.; Parker, M. L.; Stalin, C. S.; Fabian, A. C.; Ramya, S.; Covino, S.; Tagliaferri, G.; Sahayanathan, S.; Ravikumar, C. D.

    2015-04-01

    CGRaBS J0809+5341, a high-redshift blazar at z = 2.144, underwent a giant optical outburst on 2014 April 19 when it brightened by ˜5 mag and reached an unfiltered apparent magnitude of 15.7 mag. This implies an absolute magnitude of -30.5 mag, making it one of the brightest quasars in the universe. This optical flaring triggered us to carry out observations during the decaying part of the flare covering a wide energy range using the Nuclear Spectroscopic Telescope Array, Swift, and ground-based optical facilities. For the first time, the source is detected in γ-rays by the Large Area Telescope on board the Fermi Gamma-Ray Space Telescope. A high optical polarization of ˜10% is also observed. Using the Sloan Digital Sky Survey spectrum, the accretion disk luminosity and black hole mass are estimated as 1.5 × 1045 erg s-1 and 108.4 M⊙, respectively. Using a single zone leptonic emission model, we reproduce the spectral energy distribution of the source during the flaring activity. This analysis suggests that the emission region is probably located outside the broad-line region, and the jet becomes radiatively efficient. We also show that the overall properties of CGRaBS J0809+5341 seem to not be in agreement with the general properties observed in high-redshift blazars up to now.

  7. Probing the very high redshift universe with the broadband emission of GRBS

    NASA Astrophysics Data System (ADS)

    Inoue, S.; Omukai, K.; Ciardi, B.; Miniati, F.

    Due to their high luminosities and close association with massive stars, gamma-ray bursts hold the promise of being unique and crucial probes of the very high redshift universe. The following topics will be discussed. 1) Dispersion in the low frequency radio emission of GRBs may offer an important probe of the cosmic reionization history. The observational prospects can be particularly interesting for facilities such as LOFAR, if GRBs emit strong, coherent radio emission (Inoue 2004, MNRAS, 348, 999). 2) Due to the contribution of the reverse shock, GRBs at a few hours after the burst are brightest in the millimeter to infrared band, with peak fluxes reaching ˜ mJy from z ˜ 5--30. Atomic and molecular absorption lines in these bands are potentially observable by telescopes such as ALMA, providing an important probe of early star-forming regions (Inoue, Omukai & Ciardi, in prep). 3) The possibility of probing the high redshift UV background utilizing gamma-ray absorption in the GeV-TeV emission of GRBs is briefly discussed (Inoue & Miniati, in prep).

  8. A K{sub S} AND IRAC SELECTION OF HIGH-REDSHIFT EXTREMELY RED OBJECTS

    SciTech Connect

    Wang, Wei-Hao; Barger, Amy J.; Cowie, Lennox L.

    2012-01-10

    In order to find the most extreme dust-hidden high-redshift galaxies, we select 196 extremely red objects in the K{sub S} and Infrared Array Camera (IRAC) bands (KIEROs, [K{sub s} - 4.5 {mu}m]{sub AB} > 1.6) in the 0.06 deg{sup 2} Great Observatories Origins Deep Surveys-North (GOODS-N) region. This selection avoids the Balmer breaks of galactic spectra at z < 4 and picks up red galaxies with strong dust extinction. The photometric redshifts of KIEROs are between 1.5 and 5, with {approx}70% at z {approx} 2-4. KIEROs are very massive, with M{sub *} {approx} 10{sup 10}-10{sup 12} M{sub Sun }. They are optically faint and usually cannot be picked out by the Lyman break selection. On the other hand, the KIERO selection includes approximately half of the known millimeter and submillimeter galaxies in the GOODS-N. Stacking analyses in the radio, millimeter, and submillimeter all show that KIEROs are much more luminous than average 4.5 {mu}m-selected galaxies. Interestingly, the stacked fluxes for Advanced Camera for Surveys (ACS)-undetected KIEROs in these wave bands are 2.5-5 times larger than those for ACS-detected KIEROs. With the stacked radio fluxes and the local radio-FIR correlation, we derive mean infrared luminosities of (2-7) Multiplication-Sign 10{sup 12} L{sub Sun} and mean star formation rates (SFRs) of 400-1200 M{sub Sun} yr{sup -1} for KIEROs with redshifts. We do not find evidence of a significant subpopulation of passive KIEROs. The large stellar masses and SFRs imply that KIEROs are z > 2 massive galaxies in rapid formation. Our results show that a large sample of dusty ultraluminous sources can be selected in this way and that a large fraction of high-redshift star formation is hidden by dust.

  9. EXTENDED Ly{alpha} EMISSION FROM INTERACTING GALAXIES AT HIGH REDSHIFTS

    SciTech Connect

    Yajima, Hidenobu; Li Yuexing; Zhu Qirong

    2013-08-20

    Recent observations have discovered a population of extended Ly{alpha} sources, dubbed Ly{alpha} blobs (LABs), at high redshift z {approx} 2-6.6. These LABs typically have a luminosity of L {approx} 10{sup 42}-10{sup 44} erg s{sup -1}, and a size of tens of kiloparsecs, with some giant ones reaching up to D {approx} 100 kpc. However, the origin of these LABs is not well understood. In this paper, we investigate a merger model for the formation of LABs by studying Ly{alpha} emission from interacting galaxies at high redshifts by means of a combination of hydrodynamics simulations with three-dimensional radiative transfer calculations. Our galaxy simulations focus on a set of binary major mergers of galaxies with a mass range of 3-7 Multiplication-Sign 10{sup 12} M{sub Sun} in the redshift range z {approx} 3-7, and we use the newly improved ART{sup 2} code to perform the radiative transfer calculations, which couple multi-wavelength continuum, ionization of hydrogen, and Ly{alpha} line emission. We find that intense star formation and enhanced cooling induced by gravitational interaction produce strong Ly{alpha} emission from these merging galaxies. The Ly{alpha} emission appears to be extended due to the extended distribution of sources and gas. During the close encounter of galaxy progenitors when the star formation rate peaks at {approx}10{sup 3} M{sub Sun} yr{sup -1}, our model produces LABs with luminosity of L {approx} 10{sup 42}-10{sup 44} erg s{sup -1}, and size of D {approx} 10-20 kpc at z > 6 and D {approx} 20-50 kpc at z {approx} 3, in broad agreement with observations in the same redshift range. Our results suggest that merging galaxies may produce some typical LABs as observed, but the giant ones may be produced by mergers more massive than those in our model, or a combination of mergers and cold accretion from filaments on a large scale.

  10. Infrared to x-ray spectral energy distributions of high redshift quasars

    NASA Technical Reports Server (NTRS)

    Bechtold, Jill; Elvis, Martin; Fiore, Fabrizio; Kuhn, Olga; Cutri, Roc M.; Mcdowell, Jonathan C.; Rieke, Marcia; Siemiginowska, Aneta; Wilkes, Belinda J.

    1994-01-01

    We have observed 14 quasars with z greater than 2.8 with the ROSAT-PSPC, and detected 12 of them, including the z=4.11 quasar 0000-263. We present the first x-ray spectrum of a radio quiet quasar with z greater than 3, 1946+768. Its x-ray spectrum is consistent with a power law with spectral index alpha(sub E)=1.8(sup +2.1, sub -1.4) and no evidence for absorption in excess of the galactic column (alpha(sub E)=1.00(sup +0.28, sub -0.32) assuming N(sub H)=N(sub H)(Gal)). A Position Sensitive Proportional Counter (PSPC) hardness ratio is used to constrain the x-ray spectral properties of the quasars for which there were less than 100 photons detected. For the radio quiet quasars, (alpha(sub E)) approximately equals 1.2, if one assumes that there is no absorption in excess of the galactic column. We combine the x-ray data with new ground based optical and near-IR spectrophotometry obtained at the Steward 2.3 m and Multiple Mirror Telescope, and data from the literature. The spectral energy distributions are compared to those of low redshift objects. For the radio quiet quasars with z greater than 2.5, the mean (alpha(sub ox)) is approximately 1.8. This is larger than the mean for quasars with z less than 2.5, but consistent with the expected value for quasars with the high optical luminosities of the objects in this sample. For the radio-loud quasars, (alpha(sub ox)) is approximately 1.4, independent of redshift. This is smaller than the expected value for the optically luminous, high redshift objects in this sample, if they are mostly GHz peaked radio sources and hence comparable to steep-spectrum, compact radio sources at lower redshift. Finally, we compare the spectral energy distributions of two representative objects to the predicted spectrum of a thin accretion disk in the Kerr geometry, and discuss the uncertainties in deriving black hole masses and mass accretion rates.

  11. Spectroscopic confirmation of high-redshift supernovae with the ESO VLT.

    NASA Astrophysics Data System (ADS)

    Lidman, C.; Howell, D. A.; Folatelli, G.; Garavini, G.; Nobili, S.; Aldering, G.; Amanullah, R.; Antilogus, P.; Astier, P.; Blanc, G.; Burns, M. S.; Conley, A.; Deustua, S. E.; Doi, M.; Ellis, R.; Fabbro, S.; Fadeyev, V.; Gibbons, R.; Goldhaber, G.; Goobar, A.; Groom, D. E.; Hook, I.; Kashikawa, N.; Kim, A. G.; Knop, R. A.; Lee, B. C.; Mendez, J.; Morokuma, T.; Motohara, K.; Nugent, P. E.; Pain, R.; Perlmutter, S.; Prasad, V.; Quimby, R.; Raux, J.; Regnault, N.; Ruiz-Lapuente, P.; Sainton, G.; Schaefer, B. E.; Schahmaneche, K.; Smith, E.; Spadafora, A. L.; Stanishev, V.; Walton, N. A.; Wang, L.; Wood-Vasey, W. M.; Yasuda, N.; Supernova Cosmology Project

    2005-02-01

    We present VLT FORS1 and FORS2 spectra of 39 candidate high-redshift supernovae that were discovered as part of a cosmological study using type Ia supernovae (SNe Ia) over a wide range of redshifts. From the spectra alone, 20 candidates are spectrally classified as SNe Ia with redshifts ranging from z=0.212 to z=1.181. Of the remaining 19 candidates, 1 might be a type II supernova and 11 exhibit broad supernova-like spectral features and/or have supernova-like light curves. The candidates were discovered in 8 separate ground-based searches. In those searches in which SNe Ia at z ˜ 0.5 were targeted, over 80% of the observed candidates were spectrally classified as SNe Ia. In those searches in which SNe Ia with z > 1 were targeted, 4 candidates with z > 1 were spectrally classified as SNe Ia and later followed with ground and space based observatories. We present the spectra of all candidates, including those that could not be spectrally classified as supernova. Based on observations obtained at the European Southern Observatory using the ESO Very Large Telescope on Cerro Paranal (ESO programs 265.A-5721(A), 67.A-0361(A), 267.A-5688(A), 169.A-0382(A) and (B)). Based in part on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan. Based in part on data collected from the Canada-France-Hawaii Telescope Corporation, which is operated by the National Research Council of Canada, le Centre National de la Recherche Scientifique de France, and the University of Hawaii. Based in part on data collected at the Cerro Tololo Inter-American Observatory, which is operated by Association of Universities for Research in Astronomy, Inc. under a cooperative agreement with the National Science Foundation. Appendix A is only available in electronic form via http://www.edpsciences.org

  12. Characterizing foreground for redshifted 21 cm radiation: 150 MHz Giant Metrewave Radio Telescope observations

    NASA Astrophysics Data System (ADS)

    Ghosh, Abhik; Prasad, Jayanti; Bharadwaj, Somnath; Ali, Sk. Saiyad; Chengalur, Jayaram N.

    2012-11-01

    Foreground removal is a major challenge for detecting the redshifted 21 cm neutral hydrogen (H I) signal from the Epoch of Reionization. We have used 150 MHz Giant Metrewave Radio Telescope observations to characterize the statistical properties of the foregrounds in four different fields of view. The measured multifrequency angular power spectrum Cℓ(Δν) is found to have values in the range 104-2 × 104 mK2 across 700 ≤ ℓ ≤ 2 × 104 and Δν ≤ 2.5 MHz, which is consistent with model predictions where point sources are the most dominant foreground component. The measured Cℓ(Δν) does not show a smooth Δν dependence, which poses a severe difficulty for foreground removal using polynomial fitting. The observational data were used to assess point source subtraction. Considering the brightest source (˜1 Jy) in each field, we find that the residual artefacts are less than 1.5 per cent in the most sensitive field (FIELD I). Considering all the sources in the fields, we find that the bulk of the image is free of artefacts, the artefacts being localized to the vicinity of the brightest sources. We have used FIELD I, which has an rms noise of 1.3 mJy beam-1, to study the properties of the radio source population to a limiting flux of 9 mJy. The differential source count is well fitted with a single power law of slope -1.6. We find there is no evidence for flattening of the source counts towards lower flux densities which suggests that source population is dominated by the classical radio-loud active galactic nucleus. The diffuse Galactic emission is revealed after the point sources are subtracted out from FIELD I. We find Cℓ ∝ ℓ-2.34 for 253 ≤ ℓ ≤ 800 which is characteristic of the Galactic synchrotron radiation measured at higher frequencies and larger angular scales. We estimate the fluctuations in the Galactic synchrotron emission to be ℓ(ℓ+1)Cℓ/2π≃10 K at ℓ = 800 (θ > 10 arcmin). The measured Cℓ is dominated by

  13. Metal abundances and kinematics of a high-redshift galaxy obtained with the Kech telescope

    NASA Technical Reports Server (NTRS)

    Wolfe, Arthur M.; Fan, Xiao-Ming; Tytler, David; Vogt, Steven S.; Keane, Michael J.; Lanzetta, Kenneth M.

    1994-01-01

    We use the Kech 10 m telescope and its high-resolution echelle spectrometer (HIRES) to obtain accurate high-resolution spectra of a quasar to determine element abundances of a probable foreground young galaxy with redshift z = 2.309. Precise measurements of absorption lines lead to the first accurate abundance determinations on Zn, Cr, and Ni at large redshifts. We find that (Zn/H) = -1.55 +/- 0.11, while (Cr/H) = -1.79 +/- 0.10 and (Ni/H) = -2.13 +/- 0.08. The Zn abundance indicates low metallicity, while the Cr and Ni abundances are consistent with depletion of these elements onto grains. We also find (O/H) less than 0.97. Therefore, the galaxy is more metal-deficient than the oldest disk stars in the Galaxy. The kinematic evidence is consistent with a thick disk of gas with rotation speed and radius comparable to the rotation speeds and radii of current luminous spiral galaxies. Therefore, a rotationally supported disk may be in place at z greater than 2.

  14. Probing Cosmic Dust of the Early Universe through High-Redshift Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Liang, S. L.; Li, Aigen

    2009-01-01

    We explore the extinction properties of the dust in the distant universe through the afterglows of high-redshifted gamma-ray bursts (GRBs) based on the "Drude" model which, unlike previous studies, does not require a prior assumption of template extinction laws. We select GRB 070802 at z ≈ 2.45 (which shows clear evidence for the 2175 Å extinction bump) and GRB 050904 at z ≈ 6.29, the second most distant GRB observed to date. We fit their afterglow spectra to determine the extinction of their host galaxies. We find that (1) their extinction curves differ substantially from that of the Milky Way and the Small and Large Magellanic Clouds (which were widely adopted as template extinction laws in the literature); (2) the 2175 Å extinction feature appears to be also present in GRB 050904 at z ≈ 6.29; and (3) there does not appear to be strong evidence for the dependence of dust extinction on redshifts. The inferred extinction curves are closely reproduced in terms of a mixture of amorphous silicate and graphite, both of which are expected supernova condensates and have been identified in primitive meteorites as presolar grains originating from supernovae (which are considered as the main source of dust at high-z).

  15. Detecting the integrated Sachs-Wolfe effect with high-redshift 21-cm surveys

    NASA Astrophysics Data System (ADS)

    Raccanelli, Alvise; Kovetz, Ely; Dai, Liang; Kamionkowski, Marc

    2016-04-01

    We investigate the possibility of detecting the integrated Sachs-Wolfe (ISW) effect by cross-correlating 21-cm surveys at high redshifts with galaxies in a way similar to the usual CMB-galaxy cross-correlation. The high-redshift 21-cm signal is dominated by CMB photons that travel freely without interacting with the intervening matter, and hence its late-time ISW signature should correlate extremely well with that of the CMB at its peak frequencies. Using the 21-cm temperature brightness instead of the CMB would thus be a further check of the detection of the ISW effect, measured by different instruments at different frequencies and suffering from different systematics. We also study the ISW effect on the photons that are scattered by HI clouds. We show that a detection of the unscattered photons is achievable with planned radio arrays, while one using scattered photons will require advanced radio interferometers, either an extended version of the planned Square Kilometre Array or futuristic experiments such as a lunar radio array.

  16. VLP - High-Redshift AGNs and the X-SERVS Survey

    NASA Astrophysics Data System (ADS)

    Brandt, W.

    2016-06-01

    In the first part of this talk, I will review how X-ray observations of high-redshift AGNs at z = 4-7 have played a critical role in understanding their basic demographics as well as their physical processes; e.g., accretion rates, jet emission, X-ray absorption by nuclear material and winds. Since 2000, XMM-Newton and Chandra have provided new X-ray detections for more than 120 such objects, and well-defined samples of z > 4 AGNs now allow reliable basic X-ray population studies. I will point out key remaining areas of uncertainty, highlighting where further XMM-Newton and Chandra observations can advance understanding. I will then describe the X-SERVS project which aims to go ``beyond COSMOS'' via a 12 deg^2 survey of three prime sky regions: W-CDF-S, XMM-LSS, and ELAIS-S1. The X-SERVS survey will allow outstanding studies of the detected AGNs and groups/clusters by powerfully leveraging multiple intensive radio-to-UV surveys: ATLAS/HerMES/SERVS/VIDEO/DES/HSC/PS1MD/VOICE/CSI/PRIMUS. We aim to dramatically advance studies of SMBH growth across the full range of cosmic environments, links between SMBH accretion and star formation, exceptional AGNs at high redshifts, protoclusters, etc. The targeted X-SERVS fields will have extraordinary legacy value as MOONS massive spectroscopy fields, prime ALMA fields, and DES/LSST deep-drilling fields.

  17. Testing primordial non-Gaussianities on galactic scales at high redshift

    NASA Astrophysics Data System (ADS)

    Habouzit, Mélanie; Nishimichi, Takahiro; Peirani, Sébastien; Mamon, Gary A.; Silk, Joseph; Chevallard, Jacopo

    2014-11-01

    Primordial non-Gaussianities provide an important test of inflationary models. Although the Planck cosmic microwave background experiment has produced strong limits on non-Gaussianity on scales of clusters, there is still room for considerable non-Gaussianity on galactic scales. We have tested the effect of local non-Gaussianity on the high-redshift galaxy population by running five cosmological N-body simulations down to z = 6.5. For these simulations, we adopt the same initial phases, and either Gaussian or scale-dependent non-Gaussian primordial fluctuations, all consistent with the constraints set by Planck on cluster scales. We then assign stellar masses to each halo using the halo-stellar mass empirical relation of Behroozi et al. Our simulations with non-Gaussian initial conditions produce halo mass functions that show clear departures from those obtained from the analogous simulations with Gaussian initial conditions at z ≳ 10. We observe a >0.3 dex enhancement of the low end of the halo mass function, which leads to a similar effect on the galaxy stellar mass function, which should be testable with future galaxy surveys at z > 10. As cosmic reionization is thought to be driven by dwarf galaxies at high redshift, our findings may have implications for the reionization history of the Universe.

  18. THE MID-INFRARED ENVIRONMENTS OF HIGH-REDSHIFT RADIO GALAXIES

    SciTech Connect

    Galametz, Audrey; Stern, Daniel; De Breuck, Carlos; Vernet, Joeel; Hatch, Nina; Mayo, Jack; Miley, George; Rettura, Alessandro; Seymour, Nick; Adam Stanford, S.

    2012-04-20

    Taking advantage of the impressive sensitivity of Spitzer to detect massive galaxies at high redshift, we study the mid-infrared environments of powerful, high-redshift radio galaxies at 1.2 < z < 3. Galaxy cluster member candidates were isolated using a single Spitzer/IRAC mid-infrared color criterion, [3.6]-[4.5] > -0.1 (AB), in the fields of 48 radio galaxies at 1.2 < z < 3. Using a counts-in-cell analysis, we identify a field as overdense when 15 or more red IRAC sources are found within 1' (i.e., 0.5 Mpc at 1.2 < z < 3) of the radio galaxy to the 5{sigma} flux density limits of our IRAC data (f{sub 4.5} = 13.4 {mu}Jy). We find that radio galaxies lie preferentially in medium to dense regions, with 73% of the targeted fields denser than average. Our (shallow) 120 s data permit the rediscovery of previously known clusters and protoclusters associated with radio galaxies as well as the discovery of new promising galaxy cluster candidates at z > 1.2.

  19. VLP - High-Redshift AGNs and the X-SERVS Survey

    NASA Astrophysics Data System (ADS)

    Brandt, W.

    2016-06-01

    In the first part of this talk, I will review how X-ray observations of high-redshift AGNs at z = 4-7 have played a critical role in understanding their basic demographics as well as their physical processes; e.g., accretion rates, jet emission, X-ray absorption by nuclear material and winds. Since 2000, XMM-Newton and Chandra have provided new X-ray detections for more than 120 such objects, and well-defined samples of z > 4 AGNs now allow reliable basic X-ray population studies. I will point out key remaining areas of uncertainty, highlighting where further XMM-Newton and Chandra observations can advance understanding. I will then describe the X-SERVS project which aims to go ``beyond COSMOS'' via a 12 deg^2 survey of three prime sky regions: W-CDF-S, XMM-LSS, and ELAIS-S1. The X-SERVS survey will allow outstanding studies of the detected AGNs and groups/clusters by powerfully leveraging multiple intensive radio-to-UV surveys: ATLAS/HerMES/SERVS/VIDEO/DES/HSC/PS1MD/VOICE/ CSI/PRIMUS. We aim to dramatically advance studies of SMBH growth across the full range of cosmic environments, links between SMBH accretion and star formation, exceptional AGNs at high redshifts, protoclusters, etc. The targeted X-SERVS fields will have extraordinary legacy value as MOONS massive spectroscopy fields, prime ALMA fields, and DES/LSST deep-drilling fields.

  20. FEEDBACK FROM HIGH-MASS X-RAY BINARIES ON THE HIGH-REDSHIFT INTERGALACTIC MEDIUM: MODEL SPECTRA

    SciTech Connect

    Power, Chris; James, Gillian; Wynn, Graham; Combet, Celine

    2013-02-10

    Massive stars at redshifts z {approx}> 6 are predicted to have played a pivotal role in cosmological reionization as luminous sources of ultraviolet (UV) photons. However, the remnants of these massive stars could be equally important as X-ray-luminous (L{sub X} {approx} 10{sup 38} erg s{sup -1}) high-mass X-ray binaries (HMXBs). Because the absorption cross section of neutral hydrogen decreases sharply with photon energy ({sigma}{proportional_to}E {sup -3}), X-rays can escape more freely than UV photons from the star-forming regions in which they are produced, allowing HMXBs to make a potentially significant contribution to the ionizing X-ray background during reionization. In this paper, we explore the ionizing power of HMXBs at redshifts z {approx}> 6 using a Monte Carlo model for a coeval stellar population of main-sequence stars and HMXBs. Using the archetypal Galactic HMXB Cygnus X-1 as our template, we propose a composite HMXB spectral energy distribution consisting of blackbody and power-law components, whose contributions depend on the accretion state of the system. We determine the time-dependent ionizing power of a combined population of UV-luminous stars and X-ray-luminous HMXBs and deduce fitting formulae for the boost in the population's ionizing power arising from HMXBs; these fits allow for simple implementation of HMXB feedback in numerical simulations. Based on this analysis, we estimate the contribution of high-redshift HMXBs to the present-day soft X-ray background, and we show that it is a factor of {approx}100-1000 smaller than the observed limit. Finally, we discuss the implications of our results for the role of HMXBs in reionization and in high-redshift galaxy formation.

  1. H-ATLAS: a candidate high redshift cluster/protocluster of star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Clements, D. L.; Braglia, F.; Petitpas, G.; Greenslade, J.; Cooray, A.; Valiante, E.; De Zotti, G.; O'Halloran, B.; Holdship, J.; Morris, B.; Pérez-Fournon, I.; Herranz, D.; Riechers, D.; Baes, M.; Bremer, M.; Bourne, N.; Dannerbauer, H.; Dariush, A.; Dunne, L.; Eales, S.; Fritz, J.; Gonzalez-Nuevo, J.; Hopwood, R.; Ibar, E.; Ivison, R. J.; Leeuw, L. L.; Maddox, S.; Michałowski, M. J.; Negrello, M.; Omont, A.; Oteo, I.; Serjeant, S.; Valtchanov, I.; Vieira, J. D.; Wardlow, J.; van der Werf, P.

    2016-09-01

    We investigate the region around the Planck-detected z = 3.26 gravitationally lensed galaxy HATLAS J114637.9-001132 (hereinafter HATLAS12-00) using both archival Herschel data from the H-ATLAS survey and using submm data obtained with both LABOCA and SCUBA2. The lensed source is found to be surrounded by a strong overdensity of both Herschel-SPIRE sources and submm sources. We detect 17 bright (S870 > ˜7 mJy) sources at >4σ closer than 5 arcmin to the lensed object at 850/870 μm. 10 of these sources have good cross-identifications with objects detected by Herschel-SPIRE which have redder colours than other sources in the field, with 350 μm flux >250 μm flux, suggesting that they lie at high redshift. Submillimeter Array (SMA) observations localise one of these companions to ˜1 arcsec, allowing unambiguous cross identification with a 3.6 and 4.5 μm Spitzer source. The optical/near-IR spectral energy distribution of this source is measured by further observations and found to be consistent with z > 2, but incompatible with lower redshifts. We conclude that this system may be a galaxy cluster/protocluster or larger scale structure that contains a number of galaxies undergoing starbursts at the same time.

  2. Constraining high-redshift X-ray sources with next generation 21-cm power spectrum measurements

    NASA Astrophysics Data System (ADS)

    Ewall-Wice, Aaron; Hewitt, Jacqueline; Mesinger, Andrei; Dillon, Joshua S.; Liu, Adrian; Pober, Jonathan

    2016-05-01

    We use the Fisher matrix formalism and seminumerical simulations to derive quantitative predictions of the constraints that power spectrum measurements on next-generation interferometers, such as the Hydrogen Epoch of Reionization Array (HERA) and the Square Kilometre Array (SKA), will place on the characteristics of the X-ray sources that heated the high-redshift intergalactic medium. Incorporating observations between z = 5 and 25, we find that the proposed 331 element HERA and SKA phase 1 will be capable of placing ≲ 10 per cent constraints on the spectral properties of these first X-ray sources, even if one is unable to perform measurements within the foreground contaminated `wedge' or the FM band. When accounting for the enhancement in power spectrum amplitude from spin temperature fluctuations, we find that the observable signatures of reionization extend well beyond the peak in the power spectrum usually associated with it. We also find that lower redshift degeneracies between the signatures of heating and reionization physics lead to errors on reionization parameters that are significantly greater than previously predicted. Observations over the heating epoch are able to break these degeneracies and improve our constraints considerably. For these two reasons, 21-cm observations during the heating epoch significantly enhance our understanding of reionization as well.

  3. Morphological Classification of High-redshift Massive Galaxies in the COSMOS/UltraVISTA Field

    NASA Astrophysics Data System (ADS)

    Fang, G. W.; Ma, Z. Y.; Kong, X.

    2015-09-01

    Utilizing the multi-band photometry catalog of the COSMOS (Cosmic Evolution Survey)/UltraVISTA (Ultra-deep Visible and Infrared Survey Telescope for Astronomy) field and the high-resolution HST WFC3 (Hubble Space Telescope Wide Field Camera 3) near-infrared imaging from the CANDELS (Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey) field, we present a quantitative study of the morphological classification of galaxy for a large mass-selected sample. Our sample includes 362 galaxies within photometric redshift 1leq zleq3 and stellar mass M_{*}geq 10^{10.5} M_{odot}. The results from the rest-frame (U-V) vs. (V-J) (UVJ) colors classification, visual inspection, nonparametric morphology analysis, and structural parameters study are in good agreement with each other. Quiescent galaxies (QGs) classified by UVJ colors generally have larger Sérsic index (n) and Gini coefficient (G), smaller size (r_mathrm{e}) and moment (M_{20}), and they are visually compact. While star-forming galaxies (SFGs) are reversed. In the meantime, we explore the size evolution with redshift for various divisions of QG and SFG samples, and confirm that both of size will enlarge with time, but QGs are rapider than SFGs. Moreover, we find that the choice of division between QGs and SFGs (i.e. colour, shape, morphology) is not particularly critical.

  4. Inflow velocities of cold flows streaming into massive galaxies at high redshifts

    NASA Astrophysics Data System (ADS)

    Goerdt, Tobias; Ceverino, Daniel

    2015-07-01

    We study the velocities of the accretion along streams from the cosmic web into massive galaxies at high redshift with the help of three different suites of AMR hydrodynamical cosmological simulations. The results are compared to free-fall velocities and to the sound speeds of the hot ambient medium. The sound speed of the hot ambient medium is calculated using two different methods to determine the medium's temperature. We find that the simulated cold stream velocities are in violent disagreement with the corresponding free-fall profiles. The sound speed is a better albeit not always correct description of the cold flows' velocity. Using these calculations as a first order approximation for the gas inflow velocities vinflow = 0.9 vvir is given. We conclude from the hydrodynamical simulations as our main result that the velocity profiles for the cold streams are constant with radius. These constant inflow velocities seem to have a `parabola-like' dependency on the host halo mass in units of the virial velocity that peaks at Mvir = 1012 M⊙ and we also propose that the best-fitting functional form for the dependency of the inflow velocity on the redshift is a square root power-law relation: v_inflow ∝ √{z + 1} v_vir.

  5. Extremely red objects in the fields of high redshift radio galaxies

    NASA Technical Reports Server (NTRS)

    Persson, S. E.; Mccarthy, P. J.; Dressler, Alan; Matthews, Keith

    1993-01-01

    We are engaged in a program of infrared imaging photometry of high redshift radio galaxies. The observations are being done using NICMOS2 and NICMOS3 arrays on the DuPont 100-inch telescope at Las Campanas Observatory. In addition, Persson and Matthews are measuring the spectral energy distributions of normal cluster galaxies in the redshift range 0 to 1. These measurements are being done with a 58 x 62 InSb array on the Palomar 5-m telescope. During the course of these observations we have imaged roughly 20 square arcminutes of sky to limiting magnitudes greater than 20 in the J, H, and K passbands (3 sigma in 3 square arcseconds). We have detected several relatively bright, extremely red, extended objects during the course of this work. Because the radio galaxy program requires Thuan-Gunn gri photometry, we are able to construct rough photometric energy distributions for many of the objects. A sample of the galaxy magnitudes within 4 arcseconds diameter is given. All the detections are real; either the objects show up at several wavelengths, or in subsets of the data. The reddest object in the table, 9ab'B' was found in a field of galaxies in a rich cluster at z = 0.4; 9ab'A' lies 8 arcseconds from it.

  6. The discovery of high-redshift supernovae and their cosmological implications

    SciTech Connect

    Kim, A G

    1997-09-01

    In this thesis the author discusses the methodology for doing photometry: from procedure of extracting supernova counts from images that contain combined supernova plus galaxy flux, to standard star calibration, to additional instrumental corrections that arise due to the multiple telescopes used for observations. He discusses the different sources of photometric error and their correlations, and the construction of the covariance matrix for all the points in the light curve. He then describes the K corrections which account for the redshifting of spectra that are necessary to compare the photometry of the high-redshift data with those from nearby (z < 0.1) supernovae. Finally, he uses the first seven of the supernovae to test the hypothesis that they live in an under-dense bubble where the locally measured Hubble constant differs significantly from the true Hubble constant. He also uses the data to place limits on the value of the Hubble constant. Discussions of several other important aspects of the data analysis are or will be included in other papers. These topics include a description of how the covariance matrix is used to generate light-curve fits, a discussion of non-photometric systematic errors that also effect the measurements, and a discussion of the application of the supernovae to address other scientific/cosmological problems.

  7. H-ATLAS: A Candidate High Redshift Cluster/Protocluster of Star-Forming Galaxies

    NASA Astrophysics Data System (ADS)

    Clements, D. L.; Braglia, F.; Petitpas, G.; Greenslade, J.; Cooray, A.; Valiante, E.; De Zotti, G.; O'Halloran, B.; Holdship, J.; Morris, B.; Pérez-Fournon, I.; Herranz, D.; Riechers, D.; Baes, M.; Bremer, M.; Bourne, N.; Dannerbauer, H.; Dariush, A.; Dunne, L.; Eales, S.; Fritz, J.; Gonzalez-Nuevo, J.; Hopwood, R.; Ibar, E.; Ivison, R. J.; Leeuw, L. L.; Maddox, S.; Michałowski, M. J.; Negrello, M.; Omont, A.; Oteo, I.; Serjeant, S.; Valtchanov, I.; Vieira, J. D.; Wardlow, J.; van der Werf, P.

    2016-06-01

    We investigate the region around the Planck-detected z=3.26 gravitationally lensed galaxy HATLAS J114637.9-001132 (hereinafter HATLAS12-00) using both archival Herschel data from the H-ATLAS survey and using submm data obtained with both LABOCA and SCUBA2. The lensed source is found to be surrounded by a strong overdensity of both Herschel-SPIRE sources and submm sources. We detect 17 bright (S870 > ˜7 mJy) sources at >4σ closer than 5 arcmin to the lensed object at 850/870μm. Ten of these sources have good cross-identifications with objects detected by Herschel-SPIRE which have redder colours than other sources in the field, with 350μm flux > 250μm flux, suggesting that they lie at high redshift. Submillimeter Array (SMA) observations localise one of these companions to ˜1 arcsecond, allowing unambiguous cross identification with a 3.6 and 4.5 μm Spitzer source. The optical/near-IR spectral energy distribution (SED) of this source is measured by further observations and found to be consistent with z > 2, but incompatible with lower redshifts. We conclude that this system may be a galaxy cluster/protocluster or larger scale structure that contains a number of galaxies undergoing starbursts at the same time.

  8. Human high intelligence is involved in spectral redshift of biophotonic activities in the brain.

    PubMed

    Wang, Zhuo; Wang, Niting; Li, Zehua; Xiao, Fangyan; Dai, Jiapei

    2016-08-01

    Human beings hold higher intelligence than other animals on Earth; however, it is still unclear which brain properties might explain the underlying mechanisms. The brain is a major energy-consuming organ compared with other organs. Neural signal communications and information processing in neural circuits play an important role in the realization of various neural functions, whereas improvement in cognitive function is driven by the need for more effective communication that requires less energy. Combining the ultraweak biophoton imaging system (UBIS) with the biophoton spectral analysis device (BSAD), we found that glutamate-induced biophotonic activities and transmission in the brain, which has recently been demonstrated as a novel neural signal communication mechanism, present a spectral redshift from animals (in order of bullfrog, mouse, chicken, pig, and monkey) to humans, even up to a near-infrared wavelength (∼865 nm) in the human brain. This brain property may be a key biophysical basis for explaining high intelligence in humans because biophoton spectral redshift could be a more economical and effective measure of biophotonic signal communications and information processing in the human brain. PMID:27432962

  9. Morphological Classification of High-redshift Massive Galaxies in the COSMOS/UltraVISTA Field

    NASA Astrophysics Data System (ADS)

    Guan-wen, Fang; Zhong-yang, Ma; Xu, Kong

    2016-04-01

    Utilizing the multi-band photometric data of the COSMOS (Cosmic Evolution Survey)/UltraVISTA (Ultra-deep Visible and Infrared Survey Telescope for Astronomy) field and the high-resolution HST WFC3 (Hubble Space Telescope Wide Field Camera 3) near-infrared images in the CANDELS (Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey) field, we have selected 362 galaxies with the redshifts of 1≤ z ≤3 and the stellar masses of M* ≥ 1010.5M⊙, and made the classification study on the morphologies of these massive galaxies. The results from the UVJ ((U-V) vs (V-J)) two-color diagram classification, visual classification, non-model based classification (Gini coefficient G and moment index M20), and model based classification (Sérsic index n) are in good agreement with each other. Compared with the star-forming galaxies (SFGs), the quiescent galaxies (QGs) defined by the UVJ two-color diagram exhibit the compact elliptical structures, and generally have larger n and G, but smaller M20 and galaxy's effective radius re. The evolution of galaxy size with the redshift is obvious for various QG and SFG samples defined by the different classification systems (two-color diagram classification system, model and non-model based classification systems), and this evolutionary tendency is stronger for QGs in comparison with SFGs, independent to the selection of galaxy classification methods.

  10. Human high intelligence is involved in spectral redshift of biophotonic activities in the brain

    PubMed Central

    Wang, Niting; Li, Zehua; Xiao, Fangyan; Dai, Jiapei

    2016-01-01

    Human beings hold higher intelligence than other animals on Earth; however, it is still unclear which brain properties might explain the underlying mechanisms. The brain is a major energy-consuming organ compared with other organs. Neural signal communications and information processing in neural circuits play an important role in the realization of various neural functions, whereas improvement in cognitive function is driven by the need for more effective communication that requires less energy. Combining the ultraweak biophoton imaging system (UBIS) with the biophoton spectral analysis device (BSAD), we found that glutamate-induced biophotonic activities and transmission in the brain, which has recently been demonstrated as a novel neural signal communication mechanism, present a spectral redshift from animals (in order of bullfrog, mouse, chicken, pig, and monkey) to humans, even up to a near-infrared wavelength (∼865 nm) in the human brain. This brain property may be a key biophysical basis for explaining high intelligence in humans because biophoton spectral redshift could be a more economical and effective measure of biophotonic signal communications and information processing in the human brain. PMID:27432962

  11. A PARAMETRIC STUDY OF POSSIBLE SOLUTIONS TO THE HIGH-REDSHIFT OVERPRODUCTION OF STARS IN MODELED DWARF GALAXIES

    SciTech Connect

    White, Catherine E.; Somerville, Rachel S.; Ferguson, Henry C.

    2015-02-01

    Both numerical hydrodynamic and semi-analytic cosmological models of galaxy formation struggle to match observed star formation histories of galaxies in low-mass halos (M {sub H} ≲ 10{sup 11} M {sub ☉}), predicting more star formation at high redshift and less star formation at low redshift than observed. The fundamental problem is that galaxies' gas accretion and star formation rates are too closely coupled in the models: the accretion rate largely drives the star formation rate. Observations point to gas accretion rates that outpace star formation at high redshift, resulting in a buildup of gas and a delay in star formation until lower redshifts. We present three empirical adjustments of standard recipes in a semi-analytic model motivated by three physical scenarios that could cause this decoupling: (1) the mass-loading factors of outflows driven by stellar feedback may have a steeper dependence on halo mass at earlier times, (2) the efficiency of star formation may be lower in low-mass halos at high redshift, and (3) gas may not be able to accrete efficiently onto the disk in low-mass halos at high redshift. These new recipes, once tuned, better reproduce the evolution of f {sub *}≡ M {sub *}/M {sub H} as a function of halo mass as derived from abundance matching over redshifts z = 0 to 3, though they have different effects on cold gas fractions, star formation rates, and metallicities. Changes to gas accretion and stellar-driven winds are promising, while direct modification of the star formation timescale requires drastic measures that are not physically well motivated.

  12. Serendipitous Discovery of an Extended X-Ray Jet without a Radio Counterpart in a High-redshift Quasar

    NASA Astrophysics Data System (ADS)

    Simionescu, A.; Stawarz, Ł.; Ichinohe, Y.; Cheung, C. C.; Jamrozy, M.; Siemiginowska, A.; Hagino, K.; Gandhi, P.; Werner, N.

    2016-01-01

    A recent Chandra observation of the nearby galaxy cluster Abell 585 has led to the discovery of an extended X-ray jet associated with the high-redshift background quasar B3 0727+409, a luminous radio source at redshift z = 2.5. This is one of only few examples of high-redshift X-ray jets known to date. It has a clear extension of about 12″, corresponding to a projected length of ∼100 kpc, with a possible hot spot located 35″ from the quasar. The archival high resolution Very Large Array maps surprisingly reveal no extended jet emission, except for one knot about 1.″4 from the quasar. The high X-ray to radio luminosity ratio for this source appears consistent with the \\propto {(1+z)}4 amplification expected from the inverse Compton radiative model. This serendipitous discovery may signal the existence of an entire population of similar systems with bright X-ray and faint radio jets at high redshift, a selection bias that must be accounted for when drawing any conclusions about the redshift evolution of jet properties and indeed about the cosmological evolution of supermassive black holes and active galactic nuclei in general.

  13. Investigating the Local and High Redshift Universe With Deep Survey Data and Ground-Based Spectroscopy

    NASA Astrophysics Data System (ADS)

    Masters, Daniel Charles

    Large multiwavelength surveys are now driving the frontiers of astronomical research. I describe results from my work using data from two large astronomical surveys: the Cosmic Evolution Survey (COSMOS), which has obtained deep photometric and spectroscopic data on two square degrees of the sky using many of the most powerful telescopes in the world, and the WFC3 Infrared Spectroscopic Parallels (WISP) Survey, which uses the highly sensitive slitless spectroscopic capability of the Hubble Space Telescope Wide Field Camera 3 to detect star-forming galaxies over most of the universe's history. First I describe my work on the evolution of the high-redshift quasar luminosity function, an important observational quantity constraining the growth of the supermassive black holes in the early universe. I show that the number density of faint quasars declines rapidly above z ˜ 3. This result is discussed in the context of cosmic reionization and the coevolution of galaxies and their central black holes. Next I present results of a multi-year campaign of near-infrared spectroscopy with FIRE, a world-class near-infrared spectrometer on the Magellan Baade 6.5 meter telescope in Chile, targeting emission-line galaxies at z ˜ 2 discovered with the Hubble Space Telescope. Our results showed that the typical emission-line galaxy at this redshift has low-metallicity, low dust obscuration, high ionization parameter, and little evidence for significant active galactic nucleus (AGN) contribution to the emission lines. We also find evidence that high redshift star-forming galaxies have enhanced nitrogen abundances. This result has interesting implications for the nature of the star formation in such galaxies -- in particular, it could mean that a large fraction of such galaxies harbor substantial populations of Wolf-Rayet stars, which are massive, evolved stars ejecting large amounts of enriched matter into the interstellar medium. Finally, I will discuss the discovery of three

  14. High-Redshift Quasars Found in Sloan Digital Sky Survey Commissioning Data. II. The Spring Equatorial Stripe

    SciTech Connect

    Fan, Xiaohui; Strauss, Michael A.; Schneider, Donald P.; Gunn, James E.; Lupton, Robert H.; Anderson, Scott F.; Voges, Wolfgang; Margon, Bruce; Annis, James; Bahcall, Neta A.

    2000-01-01

    This is the second paper in a series aimed at finding high-redshift quasars from five-color (u{sup '} g{sup '} r{sup '} i{sup '} z{sup '}) imaging data taken along the Celestial Equator by the Sloan Digital Sky Survey (SDSS) during its commissioning phase. In this paper, we present 22 high-redshift quasars (z>3.6) discovered from {approx}250 deg2 of data in the spring Equatorial Stripe, plus photometry for two previously known high-redshift quasars in the same region of the sky. Our success rate in identifying high-redshift quasars is 68%. Five of the newly discovered quasars have redshifts higher than 4.6 (z=4.62, 4.69, 4.70, 4.92, and 5.03). All the quasars have i{sup *} <20.2 with absolute magnitude - 28.8

  15. A high-redshift IRAS galaxy with huge luminosity - Hidden quasar or protogalaxy?

    NASA Technical Reports Server (NTRS)

    Rowan-Robinson, M.; Broadhurst, T.; Oliver, S. J.; Taylor, A. N.; Lawrence, A.; Mcmahon, R. G.; Lonsdale, C. J.; Hacking, P. B.; Conrow, T.

    1991-01-01

    An emission line galaxy with the enormous far-IR luminosity of 3 x 10 to the 14th solar has been found at z = 2.286. The spectrum is very unusual, showing lines of high excitation but with very weak Lyman-alpha emission. A self-absorbed synchrotron model for the IR energy distribution cannot be ruled out, but a thermal origin seems more plausible. A radio-quiet quasar embedded in a very dusty galaxy could account for the IR emission, as might a starburst embedded in 1-10 billion solar masses of dust. The latter case demands so much dust that the object would probably be a massive galaxy in the process of formation. The presence of a large amount of dust in an object of such high redshift implies the generation of heavy elements at an early cosmological epoch.

  16. ON THE INJECTION SPECTRUM OF RELATIVISTIC ELECTRONS IN HIGH-REDSHIFT RADIO GALAXIES

    SciTech Connect

    Gopal-Krishna; Mhaskey, Mukul

    2012-01-01

    We point out that the remarkable linearity of the ultra-steep radio spectra of high-redshift radio galaxies reflects a previously reported general trend for powerful radio galaxies, according to which the spectral curvature is less for sources having steeper spectra (measured near rest-frame 1 GHz). We argue based on existing theoretical and observational evidence that it is premature to conclude that the particle acceleration mechanism in sources having straight, ultra-steep radio spectra gives rise to an ultra-steep injection spectrum of the radiating electrons. In empirical support for this we show that the estimated injection spectral indices available for a representative sample of 35 compact steep spectrum radio sources are not correlated with their rest-frame (intrinsic) rotation measures, which are known to be typically large, indicating a dense environment, as is also the case for high-z radio galaxies.

  17. Characterization of red-shifted phycobilisomes isolated from the chlorophyll f-containing cyanobacterium Halomicronema hongdechloris.

    PubMed

    Li, Yaqiong; Lin, Yuankui; Garvey, Christopher J; Birch, Debra; Corkery, Robert W; Loughlin, Patrick C; Scheer, Hugo; Willows, Robert D; Chen, Min

    2016-01-01

    Phycobilisomes are the main light-harvesting protein complexes in cyanobacteria and some algae. It is commonly accepted that these complexes only absorb green and orange light, complementing chlorophyll absorbance. Here, we present a new phycobilisome derived complex that consists only of allophycocyanin core subunits, having red-shifted absorption peaks of 653 and 712 nm. These red-shifted phycobiliprotein complexes were isolated from the chlorophyll f-containing cyanobacterium, Halomicronema hongdechloris, grown under monochromatic 730 nm-wavelength (far-red) light. The 3D model obtained from single particle analysis reveals a double disk assembly of 120-145 Å with two α/β allophycocyanin trimers fitting into the two separated disks. They are significantly smaller than typical phycobilisomes formed from allophycocyanin subunits and core-membrane linker proteins, which fit well with a reduced distance between thylakoid membranes observed from cells grown under far-red light. Spectral analysis of the dissociated and denatured phycobiliprotein complexes grown under both these light conditions shows that the same bilin chromophore, phycocyanobilin, is exclusively used. Our findings show that red-shifted phycobilisomes are required for assisting efficient far-red light harvesting. Their discovery provides new insights into the molecular mechanisms of light harvesting under extreme conditions for photosynthesis, as well as the strategies involved in flexible chromatic acclimation to diverse light conditions. PMID:26514405

  18. A Very Hot, High Redshift Cluster of Galaxies: More Trouble for Omega(0) = 1

    NASA Technical Reports Server (NTRS)

    Donahue, Megan; Voit, G. Mark; Gioia, Isabella; Luppino, Gerry; Hughes, John P.; Stocke, John T.

    1998-01-01

    We have observed the most distant (= 0.829) cluster of galaxies in the Einstein Extended Medium Sensitivity Survey (EMSS), with the ASCA and ROSAT satellites. We find an X-ray temperature of 12.3 (sup +3.1) (sub -2.2)keV for this cluster, and the ROSAT map reveals significant substructure. The high temperature of MS1054-0321 is consistent with both its approximate velocity dispersion, based on the redshifts of 12 cluster members we have obtained at the Keck and the Canada-France-Hawaii telescopes, and with its weak lensing signature. The X-ray temperature of this cluster implies a virial mass approx. 7.4 x 10 (sup 14) h (sup -1) M (circle dot), if the mean matter density in the universe equals the critical value (OMEGA (sub 0) = 1), or larger if OMEGA (sub 0) is less than 1. Finding such a hot, massive cluster in the EMSS is extremely improbable if clusters grew from Gaussian perturbations in an OMEGA (sub 0) = 1 universe. Combining the assumptions that OMEGA (sub 0) = 1 and that the initial perturbations were Gaussian with the observed X-ray temperature function at low redshift, we show that this probability of this cluster occurring in the volume sampled by the EMSS is less than a few times 10 (sup -5). Nor is MS1054-0321 the only hot cluster at high redshift; the only two other z greater than 0.5 EMSS clusters already observed with ASCA also have temperatures exceeding 8 keV. Assuming again that the initial perturbations were Gaussian and OMEGA (sub 0) = 1, we find that each one is improbable at the less than 10 (sup -2) level. These observations, along with the fact that these luminosities and temperatures of the high-z clusters all agree with the low-z L (sub X) - T (sub X) relation, argue strongly that OMEGA (sub 0) less than 1. Otherwise, the initial perturbations must be non-Gaussian, if these clusters' temperatures do indeed reflect their gravitational potentials.

  19. Clustering at High Redshift: Precise Constraints from a Deep, Wide-Area Survey

    NASA Astrophysics Data System (ADS)

    Postman, Marc; Lauer, Tod R.; Szapudi, István; Oegerle, William

    1998-10-01

    We present constraints on the evolution of large-scale structure from a catalog of 710,000 galaxies with IAB <= 24 derived from a KPNO 4 m CCD imaging survey of a contiguous 4° × 4° region. The advantage of using large contiguous surveys for measuring clustering properties on even modest angular scales is substantial: the effects of cosmic scatter are strongly suppressed. We provide highly accurate measurements of the two-point angular correlation function, ω(θ), as a function of magnitude on scales up to 1.5d. The amplitude of ω(θ) declines by a factor of ~10 over the range 16 <= I <= 20 but only by a factor of 2-3 over the range 20 < I <= 23. For a redshift dependence of the spatial correlation function, ξ(r), parameterized as ξ(r, z) = (r/r0)-γ(1 + z)-(3+ε), we find r0 = 5.2 +/- 0.4 h-1 Mpc, and ε >~ 0 for I <= 20. This is in good agreement with the results from local redshift surveys. At I > 20, our best-fit values shift toward lower r0 and more negative ε. A strong covariance between r0 and ε prevents us from rejecting ε > 0 even at faint magnitudes, but if ε > 1, we strongly reject r0 <~ 4 h-1 Mpc (comoving). The above expression for ξ(r, z) and our data give a correlation length of r0(z = 0.5) ~ 3.0 +/- 0.4 h-1 Mpc, about a factor of 2 larger than the correlation length at z = 0.5 derived from the Canada-France Redshift Survey (CFRS). The small volume sampled by the CFRS and other deep redshift probes, however, makes these spatial surveys strongly susceptible to cosmic scatter and will tend to bias their derived correlation lengths toward the low end. Our results are consistent with redshift distributions in which ~30%-50% of the galaxies at I = 23 lie at z > 1. The best-fit power-law slope of the correlation function remains independent of I magnitude for I <= 22. At fainter limits, there is a suggestive trend toward flatter slopes that occurs at fluxes consistent with similar trends seen by Neuschaffer & Windhorst and Campos and coworkers

  20. The Galaxy Mass Function at High-Redshift from the Largest Available Spitzer-Based Survey (SERVS)

    NASA Astrophysics Data System (ADS)

    Morice-Atkinson, Xan; Maraston, Claudia; Lacy, Mark; Capozzi, Diego

    2015-08-01

    We exploit the largest (18 deg2) and deepest (AB = 23.1) galaxy and QSO survey available up to date of five highly observed astronomical fields (SERVS) to derive the galaxy stellar mass function and detailed galaxy properties as a function of cosmic time. SERVS obtained Spitzer 3.6µm and 4.5µm magnitudes for ~1 million galaxies up to redshift ~6, which we complement with multi-wavelength data from other on-going surveys, including VIDEO, GALEX, CFHTLS, UKIDSS, etc. in order to perform full SED fitting to models. The power of Spitzer data is its sensitivity to evolved stars at high-redshift, which allows us to better constrain the galaxy star formation histories. The wide area and depth of SERVS was designed precisely to capture the light from the most massive galaxies up to high-redshift. Results and comparison with the literature will be presented.

  1. Using young massive star clusters to understand star formation and feedback in high-redshift-like environments

    NASA Astrophysics Data System (ADS)

    Longmore, S.; Barnes, A.; Battersby, C.; Bally, J.; Kruijssen, J. M. Diederik; Dale, J.; Henshaw, J.; Walker, D.; Rathborne, J.; Testi, L.; Ott, J.; Ginsburg, A.

    2016-05-01

    The formation environment of stars in massive stellar clusters is similar to the environment of stars forming in galaxies at a redshift of 1 - 3, at the peak star formation rate density of the Universe. As massive clusters are still forming at the present day at a fraction of the distance to high-redshift galaxies they offer an opportunity to understand the processes controlling star formation and feedback in conditions similar to those in which most stars in the Universe formed. Here we describe a system of massive clusters and their progenitor gas clouds in the centre of the Milky Way, and outline how detailed observations of this system may be able to: (i) help answer some of the fundamental open questions in star formation and (ii) quantify how stellar feedback couples to the surrounding interstellar medium in this high-pressure, high-redshift analogue environment.

  2. COSMIC RAYS CAN DRIVE STRONG OUTFLOWS FROM GAS-RICH HIGH-REDSHIFT DISK GALAXIES

    SciTech Connect

    Hanasz, M.; Kowalik, K.; Wóltański, D.; Lesch, H.; Naab, T.; Gawryszczak, A.

    2013-11-10

    We present simulations of the magnetized interstellar medium (ISM) in models of massive star-forming (40 M {sub ☉} yr{sup –1}) disk galaxies with high gas surface densities (Σ{sub gas} ∼ 100 M {sub ☉} pc{sup –2}) similar to observed star-forming high-redshift disks. We assume that type II supernovae deposit 10% of their energy into the ISM as cosmic rays (CRs) and neglect the additional deposition of thermal energy or momentum. With a typical Galactic diffusion coefficient for CRs (3 × 10{sup 28} cm{sup 2} s{sup –1}), we demonstrate that this process alone can trigger the local formation of a strong low-density galactic wind maintaining vertically open field lines. Driven by the additional pressure gradient of the relativistic fluid, the wind speed can exceed 10{sup 3} km s{sup –1}, much higher than the escape velocity of the galaxy. The global mass loading, i.e., the ratio of the gas mass leaving the galactic disk in a wind to the star formation rate, becomes of order unity once the system has settled into an equilibrium. We conclude that relativistic particles accelerated in supernova remnants alone provide a natural and efficient mechanism to trigger winds similar to observed mass-loaded galactic winds in high-redshift galaxies. These winds also help in explaining the low efficiencies for the conversion of gas into stars in galaxies, as well as the early enrichment of the intergalactic medium with metals. This mechanism may be at least of similar importance to the traditionally considered momentum feedback from massive stars and thermal and kinetic feedback from supernova explosions.

  3. Lyalpha RADIATIVE TRANSFER WITH DUST: ESCAPE FRACTIONS FROM SIMULATED HIGH-REDSHIFT GALAXIES

    SciTech Connect

    Laursen, Peter; Sommer-Larsen, Jesper; Andersen, Anja C. E-mail: jslarsen@astro.ku.d

    2009-10-20

    The Lyalpha emission line is an essential diagnostic tool for probing galaxy formation and evolution. Not only is it commonly the strongest observable line from high-redshift galaxies, but from its shape detailed information about its host galaxy can be revealed. However, due to the scattering nature of Lyalpha photons increasing their path length in a nontrivial way, if dust is present in the galaxy, the line may be severely suppressed and its shape altered. In order to interpret observations correctly, it is thus of crucial significance to know how much of the emitted light actually escapes the galaxy. In the present work, using a combination of high-resolution cosmological hydrosimulations and an adaptively refinable Monte Carlo Lyalpha radiative transfer code including an environment dependent model of dust, the escape fractions f {sub esc} of Lyalpha radiation from high-redshift (z = 3.6) galaxies are calculated. In addition to the average escape fraction, the variation of f {sub esc} in different directions and from different parts of the galaxies is investigated, as well as the effect on the emergent spectrum. Escape fractions from a sample of simulated galaxies of representative physical properties are found to decrease for increasing galaxy virial mass M {sub vir}, from f {sub esc} approaching unity for M {sub vir} approx 10{sup 9} M {sub sun} to f {sub esc} less than 10% for M {sub vir} approx 10{sup 12} M {sub sun}. In spite of dust being almost gray, it is found that the emergent spectrum is affected nonuniformly, with the escape fraction of photons close to the line center being much higher than of those in the wings, thus effectively narrowing the Lyalpha line.

  4. Using Line Profiles to Test the Fraternity of Type Ia Supernovae at High and Low Redshifts

    NASA Astrophysics Data System (ADS)

    Blondin, Stéphane; Dessart, Luc; Leibundgut, Bruno; Branch, David; Höflich, Peter; Tonry, John L.; Matheson, Thomas; Foley, Ryan J.; Chornock, Ryan; Filippenko, Alexei V.; Sollerman, Jesper; Spyromilio, Jason; Kirshner, Robert P.; Wood-Vasey, W. Michael; Clocchiatti, Alejandro; Aguilera, Claudio; Barris, Brian; Becker, Andrew C.; Challis, Peter; Covarrubias, Ricardo; Davis, Tamara M.; Garnavich, Peter; Hicken, Malcolm; Jha, Saurabh; Krisciunas, Kevin; Li, Weidong; Miceli, Anthony; Miknaitis, Gajus; Pignata, Giuliano; Prieto, Jose Luis; Rest, Armin; Riess, Adam G.; Salvo, Maria Elena; Schmidt, Brian P.; Smith, R. Chris; Stubbs, Christopher W.; Suntzeff, Nicholas B.

    2006-03-01

    Using archival data of low-redshift (z<0.01 Center for Astrophysics and SUSPECT databases) Type Ia supernovae (SNe Ia) and recent observations of high-redshift (0.16high signal-to-noise ratio observations. We also quantify the associated sources of error, assessing the effect of line blending with assistance from the parameterized code SYNOW. We find that the evolution of vabs and vpeak for our sample lines (Ca II λ3945, Si II λ6355, and S II λλ5454, 5640) is similar for both the low- and high-redshift samples. We find that vabs for the weak S II λλ5454, 5640 lines and vpeak for S II λ5454 can be used to identify fast-declining [Δm15(B)>1.7] SNe Ia, which are also subluminous. In addition, we give the first direct evidence in two high-z SN Ia spectra of a double-absorption feature in Ca II λ3945, an event also observed, although infrequently, in low-redshift SN Ia spectra (6 out of 22 SNe Ia in our local sample). Moreover, echoing the recent studies of Dessart & Hillier in the context of Type II supernovae (SNe II), we see similar P Cygni line profiles in our large sample of SN Ia spectra. First, the magnitude of the velocity location at maximum profile absorption may underestimate that at the continuum photosphere, as observed, for example, in the optically thinner line S II λ5640. Second, we report for the first time the unambiguous and systematic intrinsic blueshift of peak emission of optical P Cygni line profiles in SN Ia spectra, by as much as 8000 km s-1. All the high-z SNe Ia analyzed in this paper were discovered and followed up by the ESSENCE

  5. Imaging of High Redshift Starburst galaxies in the light of Lyman alpha

    NASA Astrophysics Data System (ADS)

    Beckwith, Steven

    1997-07-01

    The PI is the designated director for STScI but has no experience with HST. The purpose of this proposal is to gain experience with the facility by carrying out a modest observational program that is unique and will not conflict with any community programs. The proposed science is divided into priority 1 and priority 2, for 6 + 4 orbits. This division will allow allocation in parts, if the pressure on DDT is large and the total of 10 orbits unusually difficult to schedule. The priority 1 science is rather predictable and, hence, conservative, consisting of the brightest of the objects under study. The priority 2 science is somewhat riskier, because it is more difficult to estimate object brightnesses in the filters to be used on HST. Both priority 1 and priority 2 observations allow for a large degree of serendipity, because the fields are likely to have more starburst galaxies at the observed redshifts that may show up in Lyman alpha. Exploration of the high redshift u niverse and discovery of the most distant objects is still in its infancy. Only recently have the tools been available to detect normal galaxies at redshifts larger than one when the first galaxies were created {Pescarelle et al. 1996; Hu & McMahon 1996; Cowie & Hu 1998; Steidel et al. 1996}. It seems likely that young galaxies will have a variety of different signatures {Franceschini et al. 1998; Guideroni et al. 1997}, so that it will be necessary to use several diverse techniques to uncover all of them: searches at optical, infrared, x-ray, and radio wavelengths, for example. It is already known that many of the optically selected galaxies using the "dropout" technique are reddened by dust {Pettini et al. 1997}. We carried out two surveys for infrared emission-line galaxies by imaging through narrow {Resolving power 100} and broad band filters between 1 and 2.5 microns and identifying objects that appeared brighter in the narrow filters. Our first survey was designed to uncover emission lines at

  6. Studying high redshift galaxy groups with the Athena Wide-Field-Imager

    NASA Astrophysics Data System (ADS)

    Pacaud, Florian; Reiprich, Thomas; Ramos Ceja, Miriam Elizabeth; Lovisari, Lorenzo

    2016-07-01

    In this contribution, we will discuss the potential of Athena to study high redshift galaxy groups (1

  7. The star formation history inferred from long gamma-ray bursts with high pseudo-redshifts

    NASA Astrophysics Data System (ADS)

    Tan, Wei-Wei; Cao, Xiao-Feng; Yu, Yun-Wei

    2015-07-01

    By employing a simple semi-analytical star formation model where the formation rates of Population (Pop) I/II and III stars can be calculated, respectively, we account for the number distribution of gamma-ray bursts (GRBs) with high pseudo-redshifts that was derived from an empirical luminosity-indictor relationship. It is suggested that a considerable number of Pop III GRBs could exist in the present sample of Swift GRBs. By further combining the implication for the star formation history from the optical depth of the CMB photons, it is also suggested that only a very small fraction (∼ 0.6 %) of Pop III GRBs could have triggered the Swift BAT. These results could provide an useful basis for estimating future detectability of Pop III stars and their produced transient phenomena.

  8. Models of stellar population at high redshift, as constrained by PN yields and luminosity function

    NASA Astrophysics Data System (ADS)

    Maraston, Claudia

    2015-08-01

    Stellar population models are the tool to derive the properties of real galaxies, or predict them via galaxy formation models. A constructive approach is to use nearby stellar systems to calibrate uncertain quantities in stellar evolution. These checks and comparisons are particulary needed for evolved and short stellar phases such as the Thermally-Pulsing Asymptotic giant branch, after whcih intermediate-mass stars evolve through the planetary nebula stage. Given the stellar mass range for which the fuel consumption along the TP-AGB is larger, high-redshift galaxies are the best probes of our modelling. I shall present the models, discuss how different prescription for the treatment of this stellar phase affects the integrated spectral energy distribution and how these compare to galaxy data, and discuss implications for the PN nebulae luminosity function and stellar remnants stemming from the various assumptions.

  9. Einstein's Biggest Blunder? High-Redshift Supernovae and the Accelerating Universe

    NASA Astrophysics Data System (ADS)

    Filippenko, Alexei V.

    2001-12-01

    Nearly 4 years ago, two teams of observational astronomers reported that high-redshift Type Ia supernovae are fainter than expected in a decelerating or freely coasting universe. The radical conclusion that the universe has been accelerating in the past few billion years, possibly because of a nonzero value for Einstein's cosmological constant, has gripped the worlds of astronomy and physics, causing a flurry of new research. Having participated on both teams (but much more closely with one than the other), here I provide a personal, historical account of the story. This Essay is one of a series of invited contributions that will appear in the PASP throughout the years 2000 and 2001 to mark the new millennium. (Eds.)

  10. A Detailed Study of Two Optically Selected, High-Redshift Clusters of Galaxies

    NASA Technical Reports Server (NTRS)

    Lubin, Lori M.

    2000-01-01

    We are obtaining detailed X-ray spectral and structural data for two distant, optically-selected clusters of galaxies which are known X-ray emitters, CL1324+3011 at z = 0.76 and CL,1604+4304 at z = 0.90. These observations will allow us to place accurate constraints on the temperature, surface-brightness profile, and mass fraction of the intracluster medium in rich, optically-selected clusters at very high redshift. The two target clusters are the most well-studied systems at z greater than 0.7 in the optical and infrared regimes; therefore, with the addition of the XMM data, we plan to study the specifies of the relationship between the X-ray and optical properties and their implications for galaxy and cluster evolution.

  11. Constraining sub-grid physics with high-redshift spatially-resolved metallicity distributions

    NASA Astrophysics Data System (ADS)

    Gibson, B. K.; Pilkington, K.; Brook, C. B.; Stinson, G. S.; Bailin, J.

    2013-06-01

    Aims: We examine the role of energy feedback in shaping the distribution of metals within cosmological hydrodynamical simulations of L∗ disc galaxies. While negative abundance gradients today provide a boundary condition for galaxy evolution models, in support of inside-out disc growth, empirical evidence as to whether abundance gradients steepen or flatten with time remains highly contradictory. Methods: We made use of a suite of L∗ discs, realised with and without "enhanced" feedback. All the simulations were produced using the smoothed particle hydrodynamics code Gasoline, and their in situ gas-phase metallicity gradients traced from redshift z ~ 2 to the present-day. Present-day age-metallicity relations and metallicity distribution functions were derived for each system. Results: The "enhanced" feedback models, which have been shown to be in agreement with a broad range of empirical scaling relations, distribute energy and re-cycled ISM material over large scales and predict the existence of relatively "flat" and temporally invariant abundance gradients. Enhanced feedback schemes reduce significantly the scatter in the local stellar age-metallicity relation and, especially, the [O/Fe]-[Fe/H] relation. The local [O/Fe] distribution functions for our L∗ discs show clear bimodality, with peaks at [O/Fe] = -0.05 and + 0.05 (for stars with [Fe/H] > -1), consistent with our earlier work on dwarf discs. Conclusions: Our results with "enhanced" feedback are inconsistent with our earlier generation of simulations realised with "conservative" feedback. We conclude that spatially-resolved metallicity distributions, particularly at high-redshift, offer a unique and under-utilised constraint on the uncertain nature of stellar feedback processes.

  12. THE PRESENCE OF WEAK ACTIVE GALACTIC NUCLEI IN HIGH REDSHIFT STAR-FORMING GALAXIES

    SciTech Connect

    Wright, Shelley A.; Graham, James R.; Ma, C-P; Larkin, James E.

    2010-03-10

    We present [O III 5007 A] observations of the star-forming galaxy (SFG) HDF-BMZ1299 (z = 1.598) using Keck Observatory's adaptive optics system with the near-infrared {integral} field spectrograph OSIRIS. Using previous Halpha and [N II] measurements of the same source, we are able for the first time to use spatially resolved observations to place a high-redshift galaxy's substructure on a traditional H II diagnostic diagram. We find that HDF-BMZ1299's spatially concentrated nebular ratios in the central {approx}1.5 kpc (0.''2) are best explained by the presence of an active galactic nucleus (AGN): log ([N II]/Halpha) = -0.22 +- 0.05 and 2sigma limit of log ([O III]/Hbeta) {approx}>0.26. The dominant energy source of this galaxy is star formation, and integrating a single aperture across the galaxy yields nebular ratios that are composite spectra from both AGN and H II regions. The presence of an embedded AGN in HDF-BMZ1299 may suggest a potential contamination in a fraction of other high-redshift SFGs, and we suggest that this may be a source of the 'elevated' nebular ratios previously seen in seeing-limited metallicity studies. HDF-BMZ1299's estimated AGN luminosity is L{sub Halpha} = (3.7 +- 0.5) x 10{sup 41} erg s{sup -1} and L{sub [O{sub III}]} = (5.8 +- 1.9) x 10{sup 41} erg s{sup -1}, making it one of the lowest luminosity AGNs discovered at this early epoch.

  13. The coevolution of supermassive black holes and massive galaxies at high redshift

    SciTech Connect

    Lapi, A.; Raimundo, S.; Aversa, R.; Cai, Z.-Y.; Celotti, A.; De Zotti, G.; Danese, L.; Negrello, M.

    2014-02-20

    We exploit the recent, wide samples of far-infrared (FIR) selected galaxies followed up in X-rays and of X-ray/optically selected active galactic nuclei (AGNs) followed up in the FIR band, along with the classic data on AGNs and stellar luminosity functions at high redshift z ≳ 1.5, to probe different stages in the coevolution of supermassive black holes (BHs) and host galaxies. The results of our analysis indicate the following scenario: (1) the star formation in the host galaxy proceeds within a heavily dust-enshrouded medium at an almost constant rate over a timescale ≲ 0.5-1 Gyr and then abruptly declines due to quasar feedback, over the same timescale; (2) part of the interstellar medium loses angular momentum, reaches the circum-nuclear regions at a rate proportional to the star formation, and is temporarily stored in a massive reservoir/proto-torus wherefrom it can be promptly accreted; (3) the BH grows by accretion in a self-regulated regime with radiative power that can slightly exceed the Eddington limit L/L {sub Edd} ≲ 4, particularly at the highest redshifts; (4) for massive BHs, the ensuing energy feedback at its maximum exceeds the stellar one and removes the interstellar gas, thus stopping the star formation and the fueling of the reservoir; (5) afterward, if the latter has retained enough gas, a phase of supply-limited accretion follows, exponentially declining with a timescale of about two e-folding times. We also discuss how the detailed properties and the specific evolution of the reservoir can be investigated via coordinated, high-resolution observations of star-forming, strongly lensed galaxies in the (sub-)mm band with ALMA and in the X-ray band with Chandra and the next-generation X-ray instruments.

  14. The deepest X-ray view of high-redshift galaxies: constraints on low-rate black-hole accretion

    NASA Astrophysics Data System (ADS)

    Vito, F.; Gilli, R.; Vignali, C.; Brandt, W. N.; Comastri, A.; Yang, G.; Lehmer, B. D.; Luo, B.; Basu-Zych, A.; Bauer, F. E.; Cappelluti, N.; Koekemoer, A.; Mainieri, V.; Paolillo, M.; Ranalli, P.; Shemmer, O.; Trump, J.; Wang, J. X.; Xue, Y. Q.

    2016-08-01

    We exploit the 7 Ms Chandra observations in the Chandra Deep Field-South (CDF-S), the deepest X-ray survey to date, coupled with CANDELS/GOODS-S data, to measure the total X-ray emission arising from 2076 galaxies at 3.5 ≤ z < 6.5. This aim is achieved by stacking the Chandra data at the positions of optically selected galaxies, reaching effective exposure times of ≥109s. We detect significant (>3.7σ) X-ray emission from massive galaxies at z ≈ 4. We also report the detection of massive galaxies at z ≈ 5 at a 99.7% confidence level (2.7σ), the highest significance ever obtained for X-ray emission from galaxies at such high redshifts. No significant signal is detected from galaxies at even higher redshifts. The stacking results place constraints on the BHAD associated with the known high-redshift galaxy samples, as well as on the SFRD at high redshift, assuming a range of prescriptions for X-ray emission due to X- ray binaries. We find that the X-ray emission from our sample is likely dominated by processes related to star formation. Our results show that low-rate mass accretion onto SMBHs in individually X-ray-undetected galaxies is negligible, compared with the BHAD measured for samples of X-ray detected AGN, for cosmic SMBH mass assembly at high redshift. We also place, for the first time, constraints on the faint-end of the AGN X-ray luminosity function (logLX ˜ 42) at z > 4, with evidence for fairly flat slopes. The implications of all of these findings are discussed in the context of the evolution of the AGN population at high redshift.

  15. Exploratory X-ray monitoring of luminous radio-quiet quasars at high redshift: Initial results

    SciTech Connect

    Shemmer, Ohad; Stein, Matthew S.; Brandt, W. N.; Schneider, Donald P.; Paolillo, Maurizio; Kaspi, Shai; Vignali, Cristian; Lira, Paulina; Gibson, Robert R.

    2014-03-10

    We present initial results from an exploratory X-ray monitoring project of two groups of comparably luminous radio-quiet quasars (RQQs). The first consists of four sources at 4.10 ≤ z ≤ 4.35, monitored by Chandra, and the second is a comparison sample of three sources at 1.33 ≤ z ≤ 2.74, monitored by Swift. Together with archival X-ray data, the total rest-frame temporal baseline spans ∼2-4 yr and ∼5-13 yr for the first and second group, respectively. Six of these sources show significant X-ray variability over rest-frame timescales of ∼10{sup 2}-10{sup 3} days; three of these also show significant X-ray variability on rest-frame timescales of ∼1-10 days. The X-ray variability properties of our variable sources are similar to those exhibited by nearby and far less luminous active galactic nuclei (AGNs). While we do not directly detect a trend of increasing X-ray variability with redshift, we do confirm previous reports of luminous AGNs exhibiting X-ray variability above that expected from their luminosities, based on simplistic extrapolation from lower luminosity sources. This result may be attributed to luminous sources at the highest redshifts having relatively high accretion rates. Complementary UV-optical monitoring of our sources shows that variations in their optical-X-ray spectral energy distribution are dominated by the X-ray variations. We confirm previous reports of X-ray spectral variations in one of our sources, HS 1700+6416, but do not detect such variations in any of our other sources in spite of X-ray flux variations of up to a factor of ∼4. This project is designed to provide a basic assessment of the X-ray variability properties of RQQs at the highest accessible redshifts that will serve as a benchmark for more systematic monitoring of such sources with future X-ray missions.

  16. Morphological Evolution in High-Redshift Radio Galaxies and the Formation of Giant Elliptical Galaxies

    NASA Astrophysics Data System (ADS)

    van Breugel, Wil J. M.; Stanford, S. A.; Spinrad, Hyron; Stern, Daniel; Graham, James R.

    1998-08-01

    We present deep near-infrared images of high-redshift radio galaxies (HzRGs) obtained with the near-infrared camera (NIRC) on the Keck I telescope. In most cases, the near-IR data sample rest wavelengths that are free of contamination from strong emission lines and at λrest > 4000 Å, where older stellar populations, if present, might dominate the observed flux. At z > 3, the rest-frame optical morphologies generally have faint, large-scale (~50 kpc) emission surrounding multiple, ~10 kpc components. The brightest of these components are often aligned with the radio structures. These morphologies change dramatically at 2 < z < 3, where the K-band images show single, compact structures without bright, radio-aligned features. The linear sizes (~10 kpc) and luminosities [M(Brest) ~ -20 to -22] of the individual components in the z > 3 HzRGs are similar to the total sizes and luminosities of normal radio-quiet star forming galaxies at z = 3-4. For objects where such data are available, our observations show that the line-free, near-IR colors of the z > 3 galaxies are very blue, consistent with models in which recent star formation dominates the observed light. Direct spectroscopic evidence for massive star formation in one of the z > 3 HzRGs exists (4C 41.17). Our results suggest that the z > 3 HzRGs evolve into much more massive systems than the radio-quiet galaxies and that they are qualitatively consistent with models in which massive galaxies form in hierarchical fashion through the merging of smaller star-forming systems. The presence of relatively luminous subcomponents along the radio axes of the z > 3 galaxies suggests a causal connection with the AGN. We compare the radio and near-IR sizes as a function of redshift and suggest that this parameter may be a measure of the degree to which the radio sources have induced star formation in the parent objects. We also discuss the Hubble diagram of radio galaxies, the possibility of a radio power dependence in the K

  17. High-Redshift QSOs in the SWIRE Survey and the z~3 QSO Luminosity Function

    NASA Astrophysics Data System (ADS)

    Siana, Brian; Polletta, Maria del Carmen; Smith, Harding E.; Lonsdale, Carol J.; Gonzalez-Solares, Eduardo; Farrah, Duncan; Babbedge, Tom S. R.; Rowan-Robinson, Michael; Surace, Jason; Shupe, David; Fang, Fan; Franceschini, Alberto; Oliver, Seb

    2008-03-01

    We use a simple optical/infrared (IR) photometric selection of high-redshift QSOs that identifies a Lyman break in the optical photometry and requires a red IR color to distinguish QSOs from common interlopers. The search yields 100 z ~ 3 (U-dropout) QSO candidates with 19 < r' < 22 over 11.7 deg2 in the ELAIS-N1 (EN1) and ELAIS-N2 (EN2) fields of the Spitzer Wide-area Infrared Extragalactic (SWIRE) Legacy Survey. The z ~ 3 selection is reliable, with spectroscopic follow-up of 10 candidates confirming that they are all QSOs at 2.83 < z < 3.44. We find that our z ~ 4 (g'-dropout) sample suffers from both unreliability and incompleteness but present seven previously unidentified QSOs at 3.50 < z < 3.89. Detailed simulations show our z ~ 3 completeness to be ~80%-90% from 3.0 < z < 3.5, significantly better than the ~30%-80% completeness of the SDSS at these redshifts. The resulting luminosity function extends 2 mag fainter than SDSS and has a faint-end slope of β = - 1.42 +/- 0.15, consistent with values measured at lower redshift. Therefore, we see no evidence for evolution of the faint-end slope of the QSO luminosity function. Including the SDSS QSO sample, we have now directly measured the space density of QSOs responsible for ~70% of the QSO UV luminosity density at z ~ 3. We derive a maximum rate of H I photoionization from QSOs at z ~ 3.2, Γ = 4.8 × 10-13 s-1, about half of the total rate inferred through studies of the Lyα forest. Therefore, star-forming galaxies and QSOs must contribute comparably to the photoionization of H I in the intergalactic medium at z ~ 3. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  18. Bayesian Multiscale Analysis of X-Ray Jet Features in High Redshift Quasars

    NASA Astrophysics Data System (ADS)

    McKeough, Kathryn; Siemiginowska, A.; Kashyap, V.; Stein, N.

    2014-01-01

    X-ray emission of powerful quasar jets may be a result of the inverse Compton (IC) process in which the Cosmic Microwave Background (CMB) photons gain energy by interactions with the jet’s relativistic electrons. However, there is no definite evidence that IC/CMB process is responsible for the observed X-ray emission of large scale jets. A step toward understanding the X-ray emission process is to study the Radio and X-ray morphologies of the jet. We implement a sophisticated Bayesian image analysis program, Low-count Image Reconstruction and Analysis (LIRA) (Esch et al. 2004; Conners & van Dyk 2007), to analyze jet features in 11 Chandra images of high redshift quasars (z ~ 2 - 4.8). Out of the 36 regions where knots are visible in the radio jets, nine showed detectable X-ray emission. We measured the ratios of the X-ray and radio luminosities of the detected features and found that they are consistent with the CMB radiation relationship. We derived a range of the bulk lorentz factor (Γ) for detected jet features under the CMB jet emission model. There is no discernible trend of Γ with redshift within the sample. The efficiency of the X-ray emission between the detected jet feature and the corresponding quasar also shows no correlation with redshift. This work is supported in part by the National Science Foundation REU and the Department of Defense ASSURE programs under NSF Grant no.1262851 and by the Smithsonian Institution, and by NASA Contract NAS8-39073 to the Chandra X-ray Center (CXC). This research has made use of data obtained from the Chandra Data Archive and Chandra Source Catalog, and software provided by the CXC in the application packages CIAO, ChIPS, and Sherpa. We thank Teddy Cheung for providing the VLA radio images. Connors, A., & van Dyk, D. A. 2007, Statistical Challenges in Modern Astronomy IV, 371, 101 Esch, D. N., Connors, A., Karovska, M., & van Dyk, D. A. 2004, ApJ, 610, 1213

  19. VizieR Online Data Catalog: VUDS Dicovery of a high-redshift protocluster (Lemaux+, 2014)

    NASA Astrophysics Data System (ADS)

    Lemaux, B. C.; Cucciati, O.; Tasca, L. A. M.; Le Fevre, O.; Zamorani, G.; Cassata, P.; Garilli, B.; Le Brun, V.; Maccagni, D.; Pentericci, L.; Thomas, R.; Vanzella, E.; Zucca, E.; Amorin, R.; Bardelli, S.; Capak, P.; Cassara, L.; Castellano, M.; Cimatti, A.; Cuby, J. G.; de la Torre, S.; Durkalec, A.; Fontana, A.; Giavalisco, M.; Grazian, A.; Hathi, N. P.; Ilbert, O.; Moreau, C.; Paltani, S.; Ribeiro, B.; Salvato, M.; Schaerer, D.; Scodeggio, M.; Sommariva, V.; Talia, M.; Taniguchi, Y.; Tresse, L.; Vergani, D.; Wang, P. W.; Charlot, S.; Contini, T.; Fotopoulou, S.; Gal, R. R.; Kocevski, D. D.; Lopez-Sanjuan, C.; Lubin, L. M.; Mellier, Y.; Sadibekova, T.; Scoville, N.

    2014-08-01

    Parameters for the 19 secure spectroscopic members and the 6 questionable spectroscopic members of Cl J0227-0421. The given parameters are galaxy equatorial coordinates, all optical and NIR magnitudes, spectroscopic redshifts with a corresponding confidence flag, photometric redshifts, absolute magnitudes in the NUV, r', & J bands, stellar mass, and star formation rate. The latter four quantities only available when the photometry allowed for a fit. Magnitudes are either MAG_AUTO (optical+JHK) or aperture-corrected total magnitudes (Spitzer Channels 1 & 2) and are corrected for Galactic extinction. Stellar masses and SFRs are calculated for a Chabrier (2003PASP..115..763C) initial mass function. Best-fit values from the spectral energy distribution fitting are adopted. For galaxies with a confidence flag 1 or 9, the redshift was not fixed in the spectral energy distribution fitting process. For all other galaxies the redshift was fixed to the spectroscopic redshift. (1 data file).

  20. Simulating the Cosmos: The Fraction of Merging Galaxies at High Redshift

    NASA Astrophysics Data System (ADS)

    Kampczyk, P.; Lilly, S. J.; Carollo, C. M.; Scarlata, C.; Feldmann, R.; Koekemoer, A.; Leauthaud, A.; Sargent, M. T.; Taniguchi, Y.; Capak, P.

    2007-09-01

    Simulations of nearby (0.015high-redshift galaxies with unrelated foreground or background objects. We have used these simulated images, together with those of real COSMOS galaxies at these same redshifts, to undertake a ``blind'' morphological classification of galaxies to identify those that appear to be undergoing mergers and thus to estimate the change in merger fraction with redshift. We find that real mergers are harder to recognize at high redshift, and also that the chance superposition of unrelated galaxies often produces the appearance of mergers where in reality none exist. In particular, we estimate that 1.5%-2.0% of objects randomly added to ACS images are misclassified as mergers due to projection with unrelated objects and, as a result, that 40% of the apparent mergers in COSMOS at z=0.7 are likely to be spurious. Correcting for these two competing effects, we find that the fraction of galaxies undergoing mergers increases as (1+z)3.8+/-1.2 to z~0.7 and that this trend appears to continue to z=1.2. Merger candidates at z~0.7 are bluer than the parent population, especially when the statistical effects of the chance projections are accounted for. The automated nonparametric measures of morphology from the 2007 work of Scarlata et al. show that the underlying galaxies of our merger candidates are more asymmetric than the population as a whole, and are often associated with irregular morphology. Nevertheless, the majority (~60%) of the merger candidates appear to be associated with spiral galaxies, although

  1. Can the Soft X-Ray Opacity Toward High-redshift Sources Probe the Missing Baryons?

    NASA Astrophysics Data System (ADS)

    Behar, Ehud; Dado, Shlomo; Dar, Arnon; Laor, Ari

    2011-06-01

    Observations with the Swift satellite of X-ray afterglows of more than a hundred gamma-ray bursts (GRBs) with known redshift reveal ubiquitous soft X-ray absorption. The directly measured optical depth τ at a given observed energy is found to be constant on average at redshift z > 2, i.e., langτ(0.5 keV)rang z > 2 = 0.40 ± 0.02. Such an asymptotic optical depth is expected if the foreground diffuse intergalactic medium (IGM) dominates the absorption effect and if the metallicity of the diffuse IGM reaches 0.2-0.4 solar at z = 0. To further test the IGM absorption hypothesis, we analyze the 12 highest signal-to-noise ratio (S/N) (>5000 photons) z > 2 quasar spectra from the XMM-Newton archive, which are all extremely radio loud. The quasar optical depths are found to be consistent with the mean GRB value. The four lowest-z quasars (2 < z < 2.5), however, do not show significant absorption. The best X-ray spectra of radio-quiet quasars at z > 2 provide only upper limits to the absorption, which are still consistent with the radio-loud quasers (RLQs), albeit with much lower S/N (lsim 1000 photons at z ≈ 4). Lack of quasar absorption poses a challenge to the smooth IGM interpretation and could allude to the opacity being rather due to the jets in RLQs and GRBs. However, the jet absorbing column would need to appear in RLQs only at z >~ 2.5 and in GRBs to strongly increase with z in order to produce the observed tendency to a constant mean τ. High X-ray spectral resolution can differentiate between an absorber intrinsic to the source that produces discernible spectral lines, and the diffuse IGM that produces significant absorption, but no discrete features.

  2. The distribution of Extremely High Accretion Rates and Metallicities of QSO's as a Function of Redshift over Cosmic Evolution

    NASA Astrophysics Data System (ADS)

    Abu Seif, Nasser; Kazanas, Demosthenes

    2016-07-01

    The investigation of how QSOs' extremity of accretion rates vary with redshift has remained a major focus of our study in the last five years. How does the evolution of QSOs trace the accretion history of early SMBH? What does accretion at super-Eddington rates look like? Does the correlation between SMBHs and metallicity of QSOs emission line evolve differently at high redshift? Is it a surprise that metallicity is high at high redshift, or is this expected? Here, we establish a new database for the width of an emission line (e.g., Hβ, Mg II and C IV) to obtain a large statistical sample of QSOs at different redshifts. We calculated L/LEdd that determined mass from previous studies (Sloan Digital Sky Survey (SDSS)). We investigated the significant evolution of L/ LEdd for any value of MBH as a function of redshift. Also, we investigated the evolution and distribution of the accretion rate (L/LEdd) over cosmic time with a concentration on the extremely high accretion rate sources at high redshift. The current study investigated the accretion rate (L/LEdd) correlation to other QSO properties and investigated how the accretion of Black Holes L/LEdd and MBH occurs within heavily obscured environments. Our research found that some QSOs are radiating near the Eddington limit with L/ Ledd ~ 1 and those QSOs have extreme accretion. We also found that the lowest M BH has the highest accretion rate, a result that was already noted by McClure & Dunlop (2004). The distribution of Eddington ratio displayed by QSOs clearly shows that all luminous QSOs accreted at their Eddington limit have a poor approximation. This result is important because it is often assumed that optically luminous QSOs are accreting at their Eddington limit within the models of QSOs evolution. We determined the peak of the L/LEdd versus redshift and we found the largest of those peaks to be at the interval of redshift (1< Z < 2). We noted that the highest peak of the distribution of L/LEdd at all

  3. The middle-aged universe: Results from high-z supernovae and the DEEP2 Galaxy Redshift Survey

    NASA Astrophysics Data System (ADS)

    Coil, Alison Laurel

    2004-12-01

    This thesis presents observational results detailing the state of the Universe ~5-9 billion years ago, focusing primarily on the spatial distribution and clustering of galaxies. We first present optical spectra, obtained with the Keck 10-m telescope, of two high-redshift type Ia supernovae (SNe Ia) at maximum light, discovered by the High-z Supernova Search Team: SN 1999ff at z = 0.455 and SN 1999fv at z ~= 1.2. We compare our high- z spectra with low- z normal and peculiar SNe Ia as well as with SNe Ic, Ib, and II and find that are no significant differences between SN 1999ff and SN1999fv and normal SNe la at low redshift. This solidifies the use of type Ia SNe as standard candles at cosmological distances. We then develop and test mock galaxy catalogs to be used for the DEEP2 Galaxy Redshift Survey, which will obtain redshifts for ~50,000 galaxies between 0.7 < z < 1.5, mapping the galaxy distribution in a comoving volume of roughly 7 x 10 6 Mpc 3 h -3 . Using data from the first observing season of the DEEP2 Redshift Survey, we measure the amplitude of galaxy clustering using the two-point correlation function, x( r ), for a sample of 2219 galaxies between 0.7 < z < 1.35. We find that galaxies are significantly less clustered at z ~ 1 relative to z ~ 0; r 0 ~ 3.0-3.5 h -1 Mpc (comoving). We find that red, absorption-dominated, passively-evolving galaxies have a larger clustering scale length than blue, emission-line, actively star-forming galaxies. Intrinsically brighter galaxies also cluster more strongly than fainter galaxies at z ~= 1. Our results imply that the DEEP2 galaxies have an effective bias b ~ 1.0-1.2, lower than what is predicted by semi-analytic simulations at z ~= 1, which may be the result of our R -band target selection. Our results demonstrate that galaxy clustering properties as a function of color, spectral type and luminosity seen in the local Universe were largely in place by z ~= 1. We also present measurements of the projected angular

  4. Characterizing the Properties of Clusters of Galaxies As a Function of Luminosity and Redshift

    SciTech Connect

    Andersson, K.; Peterson, J.R.; Madejski, G.; Goobar, A.; /Stockholm U. /Stockholm U., OKC

    2009-02-24

    We report the application of the new Monte Carlo method, Smoothed Particle Inference (SPI, described in a pair of companion papers), towards analysis and interpretation of X-ray observations of clusters of galaxies with the XMM-Newton satellite. Our sample consists of publicly available well-exposed observations of clusters at redshifts z > 0.069, totaling 101 objects. We determine the luminosity and temperature structure of the X-ray emitting gas, with the goal to quantify the scatter and the evolution of the L{sub X} - T relation, as well as to investigate the dependence on cluster substructure with redshift. This work is important for the establishment of the potential robustness of mass estimates from X-ray data which in turn is essential towards the use of clusters for measurements of cosmological parameters. We use the luminosity and temperature maps derived via the SPI technique to determine the presence of cooling cores, via measurements of luminosity and temperature contrast. The L{sub X}-T relation is investigated, and we confirm that L{sub X} {proportional_to} T{sup 3}. We find a weak redshift dependence ({proportional_to} (1 + z){sup {beta}{sub LT}}, {beta}{sub LT} = 0.50 {+-} 0.34), in contrast to some Chandra results. The level of dynamical activity is established using the 'power ratios' method, and we compare our results to previous application of this method to Chandra data for clusters. We find signs of evolution in the P{sub 3}/P{sub 0} power ratio. A new method, the 'temperature two-point correlation function', is proposed. This method is used to determine the 'power spectrum' of temperature fluctuations in the X-ray emitting gas as a function of spatial scale. We show how this method can be fruitfully used to identify cooling core clusters as well as those with disturbed structures, presumably due to on-going or recent merger activity.

  5. The nitrogen and oxygen abundances in the neutral gas at high redshift

    NASA Astrophysics Data System (ADS)

    Petitjean, P.; Ledoux, C.; Srianand, R.

    2008-03-01

    Aims:We study the oxygen and nitrogen abundances in the interstellar medium of high-redshift galaxies. Methods: We use high resolution and high signal-to-noise ratio spectra of damped Lyman-α (DLA) systems detected along the line-of-sight to quasars to derive robust abundance measurements from unsaturated metal absorption lines. Results: We present results for a sample of 16 high-redshift DLAs and strong sub-DLAs (log N(H I) > 19.5, 2.4 < z_abs < 3.6) including 13 new measurements. We find that the oxygen to iron abundance ratio is pretty much constant with [O/Fe] ~ +0.32±0.10 for -2.5 < [O/H] < -1.0 with a small scatter around this value. The oxygen abundance follows quite well the silicon abundance within ~0.2 dex, although the silicon abundance could be slightly smaller for [O/H] < -2. The distribution of the [N/O] abundance ratio, measured from components that are detected in both species, is somehow double peaked: five systems have [N/O] > -1 and nine systems have [N/O] < -1.15. In the diagram [N/O] versus [O/H], a loose plateau is possibly present at [N/O] ~ -0.9, which is below the so-called primary plateau as seen in local metal-poor dwarf galaxies ([N/O] in the range -0.57 to -0.74). No system is seen above this primary plateau whereas the majority of the systems lie well below with a large scatter. All this suggests a picture in which DLAs undergo successive star-bursts. During such an episode, the [N/O] ratio decreases sharply because of the rapid release of oxygen by massive stars, whereas inbetween two bursts, nitrogen is released by low and intermediate-mass stars with a delay and the [N/O] ratio increases. Based on observations carried out at the European Southern Observatory (ESO), under visitor mode progs. ID 65.O-0063, 66.A-0624, 67.A-0078 and 68.A-0600 with the UVES echelle spectrograph installed at the ESO Very Large Telescope (VLT), unit Kueyen, on mount Paranal in Chile. Also based on archival data from progs. 68.A-0492 (PI: D'Odorico), 68.B

  6. Reconciling the Stellar and Nebular Spectra of High-redshift Galaxies

    NASA Astrophysics Data System (ADS)

    Steidel, Charles C.; Strom, Allison L.; Pettini, Max; Rudie, Gwen C.; Reddy, Naveen A.; Trainor, Ryan F.

    2016-08-01

    We present a combined analysis of rest-frame far-UV (FUV; 1000–2000 Å) and rest-frame optical (3600–7000 Å) composite spectra formed from very deep Keck/LRIS and Keck/MOSFIRE observations of a sample of 30 star-forming galaxies with z=2.40+/- 0.11, selected to be broadly representative of the full KBSS-MOSFIRE spectroscopic survey. Since the same massive stars are responsible for the observed FUV continuum and for the excitation of the observed nebular emission, a self-consistent stellar population synthesis model should simultaneously match the details of the FUV stellar+nebular continuum and—when inserted as the excitation source in photoionization models—predict all observed nebular emission line ratios. We find that only models including massive star binaries, having low stellar metallicity ({Z}* /{Z}ȯ ≃ 0.1) but relatively high nebular (ionized gas-phase) abundances ({Z}{{neb}}/{Z}ȯ ≃ 0.5), can successfully match all of the observational constraints. We show that this apparent discrepancy is naturally explained by highly super-solar O/Fe (≃ 4{--}5 {({{O}}/{Fe})}ȯ ), expected for a gas whose enrichment is dominated by the products of core-collapse supernovae. While O dominates the physics of the ionized gas (and thus the nebular emission lines), Fe dominates the extreme-UV (EUV) and FUV opacity and controls the mass-loss rate from massive stars, resulting in particularly dramatic effects for massive stars in binary systems. This high nebular excitation—caused by the hard EUV spectra of Fe-poor massive stars—is much more common at high redshift (z≳ 2) than low redshift due to systematic differences in the star formation history of typical galaxies. Based on data obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA, and was made possible by the generous financial support of the W.M. Keck Foundation.

  7. Physical Conditions in a Young, Unreddened, Low-metallicity Galaxy at High Redshift

    NASA Astrophysics Data System (ADS)

    Erb, Dawn K.; Pettini, Max; Shapley, Alice E.; Steidel, Charles C.; Law, David R.; Reddy, Naveen A.

    2010-08-01

    Increasingly large samples of galaxies are now being discovered at redshifts z ~ 5-6 and higher. Many of these objects are inferred to be young, low in mass, and relatively unreddened, but detailed analysis of their high quality spectra will not be possible until the advent of future facilities. In this paper, we shed light on the physical conditions in a plausibly similar low-mass galaxy by presenting the analysis of the rest-frame optical and UV spectra of Q2343-BX418, an L* galaxy at z = 2.3 with a very low mass-to-light ratio and unusual properties: BX418 is young (<100 Myr), low mass (M sstarf ~ 109 M sun), low in metallicity (Z ~ 1/6 Z sun), and unreddened (E(B - V) ~= 0.02, UV continuum slope β = -2.1). We infer a metallicity 12 + log(O/H) = 7.9 ± 0.2 from the rest-frame optical emission lines. We also determine the metallicity via the direct, electron temperature method, using the ratio O III] λλ1661, 1666/[O III] λ5007 to determine the electron temperature and finding 12 + log(O/H) = 7.8 ± 0.1. These measurements place BX418 among the most metal-poor galaxies observed in emission at high redshift. The rest-frame UV spectrum, which represents ~12 hr of integration with the Keck telescope, contains strong emission from Lyα (with rest-frame equivalent width 54 Å), He II λ1640 (both stellar and nebular), C III] λλ1907, 1909 and O III] λλ1661, 1666. The C IV/C III] ratio indicates that the source of ionization is unlikely to be an active galactic nucleus. Analysis of the He II, O III], and C III] line strengths indicates a very high ionization parameter log U ~ -1, while Lyα and the interstellar absorption lines indicate that outflowing gas is highly ionized over a wide range of velocities. It remains to be determined how many of BX418's unique spectral features are due to its global properties, such as low metallicity and dust extinction, and how many are indicative of a short-lived phase in the early evolution of an otherwise normal star

  8. QUEST FOR COSMOS SUBMILLIMETER GALAXY COUNTERPARTS USING CARMA AND VLA: IDENTIFYING THREE HIGH-REDSHIFT STARBURST GALAXIES

    SciTech Connect

    Smolcic, V.; Navarrete, F.; Bertoldi, F.; Aravena, M.; Sheth, K.; Ilbert, O.; Yun, M. S.; Salvato, M.; Finoguenov, A.; McCracken, H. J.; Diener, C.; Aretxaga, I.; Hughes, D.; Wilson, G.; Riechers, D. A.; Capak, P.; Scoville, N. Z.; Karim, A.; Schinnerer, E.

    2012-05-01

    We report on interferometric observations at 1.3 mm at 2''-3'' resolution using the Combined Array for Research in Millimeter-wave Astronomy. We identify multi-wavelength counterparts of three submillimeter galaxies (SMGs; F{sub 1m} > 5.5 mJy) in the COSMOS field, initially detected with MAMBO and AzTEC bolometers at low, {approx}10''-30'', resolution. All three sources-AzTEC/C1, Cosbo-3, and Cosbo-8-are identified to coincide with positions of 20 cm radio sources. Cosbo-3, however, is not associated with the most likely radio counterpart, closest to the MAMBO source position, but with that farther away from it. This illustrates the need for intermediate-resolution ({approx}2'') mm-observations to identify the correct counterparts of single-dish-detected SMGs. All of our three sources become prominent only at NIR wavelengths, and their mm-to-radio flux based redshifts suggest that they lie at redshifts z {approx}> 2. As a proof of concept, we show that photometric redshifts can be well determined for SMGs, and we find photometric redshifts of 5.6 {+-} 1.2, 1.9{sup +0.9}{sub -0.5}, and {approx}4 for AzTEC/C1, Cosbo-3, and Cosbo-8, respectively. Using these we infer that these galaxies have radio-based star formation rates of {approx}> 1000 M{sub Sun} yr{sup -1}and IR luminosities of {approx}10{sup 13} L{sub Sun} consistent with properties of high-redshift SMGs. In summary, our sources reflect a variety of SMG properties in terms of redshift and clustering, consistent with the framework that SMGs are progenitors of z {approx} 2 and today's passive galaxies.

  9. Ly alpha and IR galaxy companions of high redshift damped Ly alpha QSO absorbers

    NASA Technical Reports Server (NTRS)

    Caulet, Adeline; Mccaughrean, Mark

    1993-01-01

    We have used a Near-Infrared Camera and Multi-Object Spectrometer (NICMOS3) HgCdTe 256x256 array detector with the Infrared (IR) camera on the 2.3m telescope at Steward Observatory to image several Quasi-Stellar Object (QSO) fields. The limiting magnitude is K'(2.1 microns) = 21.0 - 21.5 mag per square arcsec for a 3 sigma detection in 3 hours of in-field chopping observations. Each QSO line-of-sight samples several known absorbers with Mg2(lambda)2796-2803 A and/or C4(lambda)1548-1551 A absorption doublets. The equivalent width distributions of the low and high ionization absorption lines of the absorber sample are identical to those of the parent population of all absorbers. This selection process, used already for a spectroscopic survey of Mg2 absorption lines in C4-selected absorption systems at high z, gives a methodical approach to observing, reduces the observer biases, and makes a more efficient use of telescope time. This selection guarantees that imaging of the sample of QSO fields will provide complete sampling of the whole population of high z QSO absorbers. Follow-up optical and IR spectroscopy of these objects is scheduled for redshift measurement and confirmation of the absorbing galaxies and the cluster members.

  10. New observations directly measuring the full continuous sizes of high redshift damped Lya systems

    NASA Astrophysics Data System (ADS)

    Cooke, Jeff; O'Meara, John

    2016-01-01

    The formation and evolution of galaxies requires large reservoirs of cold, neutral gas. The damped Lyman-α systems (DLAs), seen in absorption towards distant quasars and gamma ray bursts, are predicted to be the dominant reservoirs for this gas. Detailed properties of DLAs have been studied extensively for decades with great success. However, their size, fundamental in understanding their nature, has remained elusive, as quasar and gamma ray burst sightlines only probe comparatively tiny areas of the foreground DLAs. Here, we introduce a new approach to measure the full extent of DLAs in the sightlines to extended background sources. We present the discovery of z ~ 2 DLAs with column densities as high as log N(HI) = 21.1 ±0.4 cm-2 covering 90-100% of the luminous extent of background galaxies. Estimates of the sizes of the background galaxies range from a minimum of a few kpc2, to ˜100 kpc2, and demonstrate that high-column density neutral gas can span continuous areas 108-1010 times larger than previously explored in quasar or gamma ray burst sightlines. The DLAs are from our pilot survey that searches Lyman break and Lyman continuum galaxies at high redshift. The low luminosities, large sizes, and mass contents (~106-109 M⊙) implied by the early data suggest that DLAs contain the necessary fuel for galaxies, with many systems consistent with relatively massive, low-luminosity primeval galaxies.

  11. Weak-Line Quasars at High Redshift: Extremely High Accretion Rates or Anemic Broad-Line Regions?

    NASA Astrophysics Data System (ADS)

    Shemmer, Ohad; Trakhtenbrot, B.; Anderson, S. F.; Brandt, W. N.; Diamond-Stanic, A. M.; Fan, X.; Lira, P.; Netzer, H.; Plotkin, R. M.; Richards, G. T.; Schneider, D. P.; Strauss, M. A.

    2011-01-01

    We present Gemini-North K-band spectra of two representative members of the class of high-redshift quasars with exceptionally weak rest-frame ultraviolet emission lines (WLQs), SDSS J114153.34+021924.3 at z=3.55 and SDSS J123743.08+630144.9 at z=3.49. In both sources we detect an unusually weak broad Hβ line and we place tight upper limits on the strengths of their [O III] lines. Virial, Hβ-based black-hole mass determinations indicate normalized accretion rates of L/LEdd=0.4 for these sources, which is well within the range observed for typical quasars with similar luminosities and redshifts. We also present high-quality XMM-Newton imaging spectroscopy of SDSS J114153.34+021924.3 and find a hard-X-ray photon index of Γ=1.91+0.24-0.22which supports the virial L/LEdd determination in this source. Our results suggest that the weakness of the broad-emission lines in WLQs is not a consequence of an extreme continuum-emission source but instead due to abnormal broad-emission line region properties.

  12. LENSING MAGNIFICATION: A NOVEL METHOD TO WEIGH HIGH-REDSHIFT CLUSTERS AND ITS APPLICATION TO SpARCS

    SciTech Connect

    Hildebrandt, H.; Van Waerbeke, L.; Muzzin, A.; Erben, T.; Hoekstra, H.; Kuijken, K.; Surace, J.; Wilson, G.; Yee, H. K. C.

    2011-06-01

    We introduce a novel method to measure the masses of galaxy clusters at high redshift selected from optical and IR Spitzer data via the red-sequence technique. Lyman-break galaxies are used as a well-understood, high-redshift background sample allowing mass measurements of lenses at unprecedented high redshifts using weak lensing magnification. By stacking a significant number of clusters at different redshifts with average masses of {approx}(1-3) x 10{sup 14} M{sub sun}, as estimated from their richness, we can calibrate the normalization of the mass-richness relation. With the current data set (area: 6 deg{sup 2}) we detect a magnification signal at the >3{sigma} level. There is good agreement between the masses estimated from the richness of the clusters and the average masses estimated from magnification, albeit with large uncertainties. We perform tests that suggest the absence of strong systematic effects and support the robustness of the measurement. This method-when applied to larger data sets in the future-will yield an accurate calibration of the mass-observable relations at z {approx}> 1 which will represent an invaluable input for cosmological studies using the galaxy cluster mass function and astrophysical studies of cluster formation. Furthermore, this method will probably be the least expensive way to measure masses of large numbers of z > 1 clusters detected in future IR-imaging surveys.

  13. ACCOUNTING FOR COSMIC VARIANCE IN STUDIES OF GRAVITATIONALLY LENSED HIGH-REDSHIFT GALAXIES IN THE HUBBLE FRONTIER FIELD CLUSTERS

    SciTech Connect

    Robertson, Brant E.; Stark, Dan P.; Ellis, Richard S.; Dunlop, James S.; McLure, Ross J.; McLeod, Derek

    2014-12-01

    Strong gravitational lensing provides a powerful means for studying faint galaxies in the distant universe. By magnifying the apparent brightness of background sources, massive clusters enable the detection of galaxies fainter than the usual sensitivity limit for blank fields. However, this gain in effective sensitivity comes at the cost of a reduced survey volume and, in this Letter, we demonstrate that there is an associated increase in the cosmic variance uncertainty. As an example, we show that the cosmic variance uncertainty of the high-redshift population viewed through the Hubble Space Telescope Frontier Field cluster Abell 2744 increases from ∼35% at redshift z ∼ 7 to ≳ 65% at z ∼ 10. Previous studies of high-redshift galaxies identified in the Frontier Fields have underestimated the cosmic variance uncertainty that will affect the ultimate constraints on both the faint-end slope of the high-redshift luminosity function and the cosmic star formation rate density, key goals of the Frontier Field program.

  14. RAPID, MACHINE-LEARNED RESOURCE ALLOCATION: APPLICATION TO HIGH-REDSHIFT GAMMA-RAY BURST FOLLOW-UP

    SciTech Connect

    Morgan, A. N.; Richards, Joseph W.; Butler, Nathaniel R.; Bloom, Joshua S.; Long, James; Broderick, Tamara

    2012-02-20

    As the number of observed gamma-ray bursts (GRBs) continues to grow, follow-up resources need to be used more efficiently in order to maximize science output from limited telescope time. As such, it is becoming increasingly important to rapidly identify bursts of interest as soon as possible after the event, before the afterglows fade beyond detectability. Studying the most distant (highest redshift) events, for instance, remains a primary goal for many in the field. Here, we present our Random Forest Automated Triage Estimator for GRB redshifts (RATE GRB-z ) for rapid identification of high-redshift candidates using early-time metrics from the three telescopes onboard Swift. While the basic RATE methodology is generalizable to a number of resource allocation problems, here we demonstrate its utility for telescope-constrained follow-up efforts with the primary goal to identify and study high-z GRBs. For each new GRB, RATE GRB-z provides a recommendation-based on the available telescope time-of whether the event warrants additional follow-up resources. We train RATE GRB-z using a set consisting of 135 Swift bursts with known redshifts, only 18 of which are z > 4. Cross-validated performance metrics on these training data suggest that {approx}56% of high-z bursts can be captured from following up the top 20% of the ranked candidates, and {approx}84% of high-z bursts are identified after following up the top {approx}40% of candidates. We further use the method to rank 200 + Swift bursts with unknown redshifts according to their likelihood of being high-z.

  15. Rapid, Machine-learned Resource Allocation: Application to High-redshift Gamma-Ray Burst Follow-up

    NASA Astrophysics Data System (ADS)

    Morgan, A. N.; Long, James; Richards, Joseph W.; Broderick, Tamara; Butler, Nathaniel R.; Bloom, Joshua S.

    2012-02-01

    As the number of observed gamma-ray bursts (GRBs) continues to grow, follow-up resources need to be used more efficiently in order to maximize science output from limited telescope time. As such, it is becoming increasingly important to rapidly identify bursts of interest as soon as possible after the event, before the afterglows fade beyond detectability. Studying the most distant (highest redshift) events, for instance, remains a primary goal for many in the field. Here, we present our Random Forest Automated Triage Estimator for GRB redshifts (RATE GRB-z ) for rapid identification of high-redshift candidates using early-time metrics from the three telescopes onboard Swift. While the basic RATE methodology is generalizable to a number of resource allocation problems, here we demonstrate its utility for telescope-constrained follow-up efforts with the primary goal to identify and study high-z GRBs. For each new GRB, RATE GRB-z provides a recommendation—based on the available telescope time—of whether the event warrants additional follow-up resources. We train RATE GRB-z using a set consisting of 135 Swift bursts with known redshifts, only 18 of which are z > 4. Cross-validated performance metrics on these training data suggest that ~56% of high-z bursts can be captured from following up the top 20% of the ranked candidates, and ~84% of high-z bursts are identified after following up the top ~40% of candidates. We further use the method to rank 200 + Swift bursts with unknown redshifts according to their likelihood of being high-z.

  16. From nearby low-mass protostars to high redshift starbursts: protostellar outflows tracing the IMF

    NASA Astrophysics Data System (ADS)

    Kristensen, Lars E.; Bergin, Edwin

    2015-08-01

    Embedded low-mass protostars are notoriously difficult to observe even in the nearest Galactic high-mass clusters where they outnumber the high-mass protostars by orders of magnitude. Thus, without a good tracer of the low-mass population, we do not have a good handle on the shape of the initial (core) mass function, leaving little hope for extrapolating to extragalactic regions where we will never have neither the sensitivity nor the resolution to directly observe this population. A good tracer of the low-mass population is needed.One such physical tracer is outflows. Outflow emission is directly proportional to envelope mass, and outflows are predominantly active during the deeply embedded phases of star formation. What is required for this method to work is species and transitions tracing outflows uniquely such that any signal is not diluted by the surrounding cloud, such as certain methanol transitions, water, high-J CO (J > 10).I will present a statistical model of a forming high-mass cluster. The model includes what we currently know about Galactic high-mass clusters and incorporates outflow emission from low-mass protostars. The latter component is obtained from observations of tens of nearby embedded low-mass protostellar outflows in the above-mentioned tracers. The model is benchmarked against ALMA and Herschel-HIFI observations of Galactic clusters proving the concept, and preliminary extrapolations to the extragalactic regime are presented. With this new probe, and traditional probes of the distant star formation which predominantly trace high mass stars, we will be able to explore the IMF in starburst galaxies from low to high redshift.

  17. The Origin and Evolution of Interstellar Dust in the Local and High-Redshift Universe

    NASA Technical Reports Server (NTRS)

    Dwek, Eliahu

    2011-01-01

    In this talk I will begin by reviewing our current state of knowledge regarding the origin and evolution of dust in the local solar neighborhood. Using chemical evolution models, I will discuss their many different input parameters and their uncertainties. An important consequence of these models is the delayed injection of dust from AGB stars, compared to supernova-condensed dust, into the interstellar medium. I will show that these stellar evolutionary effects on dust composition are manifested in the infrared spectra of local galaxies. The delayed production of dust in AGB stars has also important consequences for the origin of the large amount of dust detected in high-redshift galaxies, when the universe was less that - 1 Gyr old. Supernovae may have been the only viable dust sources in those galaxies. Recent observations of SN1987a show a significant mass of dust in the ejecta of this SN. Is that production rate high enough to account for the observed dust mass in these galaxies? If not, what are the alternative viable sources of dust, and how do they depend on the nature of the galaxy (starburst or AGN) and its star formation history.

  18. The Origin and Evolution of Interstellar Dust in the Local and High-redshift Universe

    NASA Technical Reports Server (NTRS)

    Dwek, Eliahu

    2012-01-01

    In this talk I will begin by reviewing our current state of knowledge regarding the origin and evolution of dust in the local solar neighborhood. using chemical evolution models, I will discuss their many different input parameters and their uncertainties. An important consequence of these models is the delayed injection of dust from AGB stars, compared to supernova-condensed dust, into the interstellar medium. I will show that these stellar evolutionary effects on dust composition are manifested in the infrared spectra of local galaxies. The delayed production of dust in AGB stars has also important consequences for the origin of the large amount of dust detected in high-redshift galaxies, when the universe was less that approx. 1 Gyr old. Supernovae may have been the only viable dust sources in those galaxies. Recent observations of sN1987a show a significant mass of dust in the ejecta of this SN. Is that production rate high enough to account for the observed dust mass in these galaxies? If not, what are the alternative viable sources of dust, and how do they depend on the nature of the galaxy (starburst or AGN) and its star formation history .

  19. Luminous compact blue galaxies in the local Universe: A key reference for high-redshift studies

    NASA Astrophysics Data System (ADS)

    Pérez Gallego, J.; Guzmán, R.; Castander, F. J.; Garland, C. A.; Pisano, D. J.

    2005-05-01

    Luminous Compact Blue Galaxies (LCBGs) are high surface brightness starburst galaxies, bluer than a typical Sbc and brighter than ˜0.25Lstar. LCBGs have evolved more than any other galaxy class in the last ˜8 Gyr, and are a major contributor to the observed enhancement of the UV luminosity density of the Universe at z≤1. Despite the key role LCBGs may play in galaxy evolution, their statistical properties are still largely unknown. We have selected a complete sample of ˜25 LCBGs within 100 Mpc, after investigating over 106 nearby galaxies from the DR1 of the SDSS database. This sample, although small, provides an excellent reference for comparison with current and future surveys of similar galaxies at high redshift, including the population of Lyman-break galaxies. We present preliminary results of this study using 3D spectroscopic observations obtained over a very wide range in wavelength, using WIYN/DENSEPAK in the optical, FISICA in the infrared, and the VLA at cm wavelengths.

  20. The light up and early evolution of high redshift Supermassive Black Holes

    NASA Astrophysics Data System (ADS)

    Comastri, Andrea; Brusa, Marcella; Aird, James; Lanzuisi, Giorgio

    2016-07-01

    The known AGN population at z > 6 is made by luminous optical QSO hosting Supermassive Black Holes (M > 10 ^{9}solar masses), likely to represent the tip of the iceberg of the luminosity and mass function. According to theoretical models for structure formation, Massive Black Holes (M _{BH} 10^{4-7} solar masses) are predicted to be abundant in the early Universe (z > 6). The majority of these lower luminosity objects are expected to be obscured and severely underepresented in current optical near-infrared surveys. The detection of such a population would provide unique constraints on the Massive Black Holes formation mechanism and subsequent growth and is within the capabilities of deep and large area ATHENA surveys. After a summary of the state of the art of present deep XMM and Chandra surveys, at z >3-6 also mentioning the expectations for the forthcoming eROSITA all sky survey; I will present the observational strategy of future multi-cone ATHENA Wide Field Imager (WFI) surveys and the expected breakthroughs in the determination of the luminosity function and its evolution at high (> 4) and very high (>6) redshifts.

  1. The high-redshift gamma-ray burst GRB 140515A

    SciTech Connect

    Melandri, A.; Bernardini, M. G.; D'Avanzo, P. D.; Sanchez-Ramirez, R.; Nappo, F.; Nava, L.; Japelj, J.; de Ugarte Postigo, A.; Oates, S.; Campana, S.; Covino, S.; D'Elia, V.; Ghirlanda, G.; Gafton, E.; Ghisellini, G.; Gnedin, N.; Goldoni, P.; Gorosabel, J.; Libbrecht, T.; Malesani, D.; Salvaterra, R.; Thone, C. C.; Vergani, S. D.; Xu, D.; Tagliaferri, G.

    2015-09-09

    High-redshift gamma-ray bursts (GRBs) offer several advantages when studying the distant Universe, providing unique information about the structure and properties of the galaxies in which they exploded. Spectroscopic identification with large ground-based telescopes has improved our knowledge of this kind of distant events. We present the multi-wavelength analysis of the high-zSwift GRB GRB 140515A (z = 6.327). The best estimate of the neutral hydrogen fraction of the intergalactic medium towards the burst is xHI ≤ 0.002. The spectral absorption lines detected for this event are the weakest lines ever observed in GRB afterglows, suggesting that GRB 140515A exploded in a very low-density environment. Its circum-burst medium is characterised by an average extinction (AV ~ 0.1) that seems to be typical of z ≥ 6 events. The observed multi-band light curves are explained either with a very hard injected spectrum (p = 1.7) or with a multi-component emission (p = 2.1). In the second case a long-lasting central engine activity is needed in order to explain the late time X-ray emission. Furthermore, the possible origin of GRB 140515A in a Pop III (or in a Pop II star with a local environment enriched by Pop III) massive star is unlikely.

  2. The high-redshift gamma-ray burst GRB 140515A

    DOE PAGESBeta

    Melandri, A.; Bernardini, M. G.; D'Avanzo, P. D.; Sanchez-Ramirez, R.; Nappo, F.; Nava, L.; Japelj, J.; de Ugarte Postigo, A.; Oates, S.; Campana, S.; et al

    2015-09-09

    High-redshift gamma-ray bursts (GRBs) offer several advantages when studying the distant Universe, providing unique information about the structure and properties of the galaxies in which they exploded. Spectroscopic identification with large ground-based telescopes has improved our knowledge of this kind of distant events. We present the multi-wavelength analysis of the high-zSwift GRB GRB 140515A (z = 6.327). The best estimate of the neutral hydrogen fraction of the intergalactic medium towards the burst is xHI ≤ 0.002. The spectral absorption lines detected for this event are the weakest lines ever observed in GRB afterglows, suggesting that GRB 140515A exploded in amore » very low-density environment. Its circum-burst medium is characterised by an average extinction (AV ~ 0.1) that seems to be typical of z ≥ 6 events. The observed multi-band light curves are explained either with a very hard injected spectrum (p = 1.7) or with a multi-component emission (p = 2.1). In the second case a long-lasting central engine activity is needed in order to explain the late time X-ray emission. Furthermore, the possible origin of GRB 140515A in a Pop III (or in a Pop II star with a local environment enriched by Pop III) massive star is unlikely.« less

  3. A new method to obtain the broad line region size of high redshift quasars

    SciTech Connect

    Negrete, C. Alenka; Dultzin, Deborah; Marziani, Paola; Sulentic, Jack W. E-mail: deborah@astro.unam.mx E-mail: sulentic@iaa.es

    2014-10-10

    We present high signal-to-noise ratio UV spectra for eight quasars at z ∼ 3 obtained with Very Large Telescope/FORS. The spectra enable us to analyze in detail the strong and weak emission features in the rest frame range 1300-2000 Å of each source (C III] λ1909, Si III] λ1892, Al III λ1860, Si II λ1814, C IV λ1549 and blended Si IV λ1397+O IV] λ1402). The flux ratios Al III λ1860/Si III] λ1892, C IV λ1549/Al III λ1860, Si IV λ1397+O IV] λ1402/Si III] λ1892 and Si IV λ1397+O IV] λ1402/C IV λ1549 strongly constrain ionizing photon flux and metallicity through the use of diagnostic maps built from CLOUDY simulations. The radius of the broad line region is then derived from the ionizing photon flux applying the definition of the ionization parameter. The r {sub BLR} estimate and the width of a virial component isolated in prominent UV lines yields an estimate of black hole mass. We compare our results with previous estimates obtained from the r {sub BLR}-luminosity correlation customarily employed to estimate the black hole masses of high redshift quasars.

  4. A New Method to Obtain the Broad Line Region Size of High Redshift Quasars

    NASA Astrophysics Data System (ADS)

    Negrete, C. Alenka; Dultzin, Deborah; Marziani, Paola; Sulentic, Jack W.

    2014-10-01

    We present high signal-to-noise ratio UV spectra for eight quasars at z ~ 3 obtained with Very Large Telescope/FORS. The spectra enable us to analyze in detail the strong and weak emission features in the rest frame range 1300-2000 Å of each source (C III] λ1909, Si III] λ1892, Al III λ1860, Si II λ1814, C IV λ1549 and blended Si IV λ1397+O IV] λ1402). The flux ratios Al III λ1860/Si III] λ1892, C IV λ1549/Al III λ1860, Si IV λ1397+O IV] λ1402/Si III] λ1892 and Si IV λ1397+O IV] λ1402/C IV λ1549 strongly constrain ionizing photon flux and metallicity through the use of diagnostic maps built from CLOUDY simulations. The radius of the broad line region is then derived from the ionizing photon flux applying the definition of the ionization parameter. The r BLR estimate and the width of a virial component isolated in prominent UV lines yields an estimate of black hole mass. We compare our results with previous estimates obtained from the r BLR-luminosity correlation customarily employed to estimate the black hole masses of high redshift quasars. Based on observations made with ESO Telescopes at Paranal Observatory under program ID 078.B-0109(A).

  5. On the redshift of the very high-energy gamma-ray BL Lac object S2 0109+22

    NASA Astrophysics Data System (ADS)

    Paiano, S.; Landoni, M.; Falomo, R.; Scarpa, R.; Treves, A.

    2016-05-01

    The determination of the redshift of extragalactic gamma-ray sources is of fundamental importance for the interpretation of their emission models and extragalactic population studies, active galactic nuclei classification schemes, and to study the interaction with the extragalactic background light. Here we focus on the BL Lac S2 0109+22, recently detected at very high energies. We obtained a high signal-to-noise optical spectrum at Gran Telescopio Canarias for the source over the spectral range 4000-10 000 Å, to search for spectral features of the host galaxy and/or of the nuclear source and it was compared with previous observations in order to confirm and/or dispute its redshift determination. We find the S2 0109+22 optical spectrum is well represented by a power-law continuum without any absorption or emission feature of equivalent width >0.1 Å. Based on the new optical spectrum, we are able to set a redshift lower limit z > 0.35, assuming the source is hosted by a massive elliptical galaxy typical for this class of sources. The redshift z = 0.265 proposed in the literature for this object is most probably referred to a r = 18.3 galaxy at 15 arcsec from S2 0109. This galaxy could belong to a group of faint galaxies located at z ˜ 0.26.

  6. XMM-Newton analysis of a newly discovered, extremely X-ray luminous galaxy cluster at high redshift

    NASA Astrophysics Data System (ADS)

    Thoelken, S.; Schrabback, T.

    2016-06-01

    Galaxy clusters, the largest virialized structures in the universe, provide an excellent method to test cosmology on large scales. The galaxy cluster mass function as a function of redshift is a key tool to determine the fundamental cosmological parameters and especially measurements at high redshifts can e.g. provide constraints on dark energy. The fgas test as a direct cosmological probe is of special importance. Therefore, relaxed galaxy clusters at high redshifts are needed but these objects are considered to be extremely rare in current structure formation models. Here we present first results from an XMM-Newton analysis of an extremely X-ray luminous, newly discovered and potentially cool core cluster at a redshift of z=0.9. We carefully account for background emission and PSF effects and model the cluster emission in three radial bins. Our preliminary results suggest that this cluster is indeed a good candidate for a cool core cluster and thus potentially of extreme value for cosmology.

  7. The VLT LBG redshift survey - V. Characterizing the z = 3.1 Lyman α emitter population

    NASA Astrophysics Data System (ADS)

    Bielby, R. M.; Tummuangpak, P.; Shanks, T.; Francke, H.; Crighton, N. H. M.; Bañados, E.; González-López, Jorge; Infante, L.; Orsi, A.

    2016-03-01

    We present a survey of z ˜ 3 Lyα emitters (LAEs) within the fields of the VLT Lyman break galaxies (LBG) redshift survey. The data encompass five independent survey fields co-spatial with spectroscopic LBG data and covering a larger total area than previously analysed for LAE number counts and clustering. This affords an improved analysis over previous work by minimizing the effects of cosmic variance and allowing the cross-clustering analysis of LAEs and LBGs. Our photometric sample consists of ≈600 LAE candidates, over an area of 1.07 deg2, with equivalent widths of ≳65 Å and a flux limit of ≈2 × 10-17 erg cm-2 s-1. From spectroscopic follow-up, we measured a success rate of 78 ± 18 per cent. We find the R-band continuum luminosity function to be ˜10 times lower than the luminosity function of LBGs at this redshift, consistent with previous studies. Exploiting the large area of the survey, we estimate the LAE auto-correlation function and find a clustering length of r0 = 2.86 ± 0.33 h-1 Mpc, low compared to the z ˜ 3 LBG population, but somewhat higher than previous LAE measurements. This corresponds to a median halo mass of MDM = 1011.0±0.3 h-1 M⊙. We present an analysis of clustering length versus continuum magnitude and find that the measurements for LAEs and LBGs are consistent at faint magnitudes. Our combined data set of LAEs and LBGs allows us to measure, for the first time, the LBG-LAE cross-correlation, finding a clustering length of r0 = 3.29 ± 0.57 h-1 Mpc and a LAE halo mass of 1011.1±0.4 h-1 M⊙. Overall, we conclude that LAEs inhabit primarily low-mass haloes, but form a relatively small proportion of the galaxy population found in such haloes.

  8. Inferences on the Relations Between Central Black Hole Mass and Total Galaxy Stellar Mass in the High-redshift Universe

    NASA Astrophysics Data System (ADS)

    Volonteri, Marta; Reines, Amy E.

    2016-03-01

    At the highest redshifts, z\\gt 6, several tens of luminous quasars have been detected. The search for fainter active galactic nucleus (AGN), in deep X-ray surveys, has proven less successful, with few candidates to date. An extrapolation of the relationship between black hole (BH) and bulge mass would predict that the sample of z\\gt 6 galaxies host relatively massive BHs (\\gt {10}6 {M}⊙ ), if one assumes that total stellar mass is a good proxy for bulge mass. At least a few of these BHs should be luminous enough to be detectable in the 4Ms CDFS. The relation between BH and stellar mass defined by local moderate-luminosity AGNs in low-mass galaxies, however, has a normalization that is lower by approximately an order of magnitude compared to the BH-bulge mass relation. We explore how this scaling changes the interpretation of AGNs in the high-z universe. Despite large uncertainties, driven by those in the stellar mass function, and in the extrapolation of local relations, one can explain the current non-detection of moderate-luminosity AGNs in Lyman Break Galaxies if galaxies below {10}11 {M}⊙ are characterized by the low-normalization scaling, and, even more so, if their Eddington ratio is also typical of moderate-luminosity AGNs rather than luminous quasars. AGNs being missed by X-ray searches due to obscuration or instrinsic X-ray weakness also remain a possibility.

  9. Induced star formation and morphological evolution in very high redshift radio galaxies

    SciTech Connect

    van Breugel, W.J.M., LLNL

    1997-10-01

    Near-infrared, sub-arcsecond seeing images obtained with the W M Keck I Telescope of show strong evolution at rest-frame optical wavelengths in the morphologies of high redshift radio galaxies (HzRGs) with 1 9 < z < 4 4 The structures change from large-scale low surface brightness regions surrounding bright, multiple component and often radio-aligned features at z > 3, to much more compact and symmetrical shapes at z < 3 The linear sizes ({approximately} 10 kpc) and luminosities (M{sub B} {approximately} -20 to -22) of the individual components in the z > 3 HzRGs are similar to the total sizes and luminosities of normal, radio-quiet, star forming galaxies seen at z = 3 - 4 `R`-band, 0 1`` resolution images with the Hubble Space Telescope of one of these HzRGs, 4C41 17 at z = 3 800, show that at rest-frame UV wavelengths the galaxy morphology breaks up in even smaller, {approximately} 1 kpc-sized components embedded in a large halo of low suface brightness emission The brightest UV emission is from a radio-aligned, edge-brightened feature (4C41 17.North) downstream from a bright radio knot A narrow-band Ly-{alpha} image, also obtained with HST, shows an arc-shaped Ly-{alpha} feature at this same location, suggestive of a strong jet/cloud collision Deep spectropolarimetric observations with the W M Keck II Telescope of 4C41 17 show that the radio-aligned UV continuum is unpolarized Instead the total light spectrum shows ahsorption lines and P-Cygni type features that are similar to the radio-quiet z = 3 - 4 star forming galaxies This shows that the rest-frame UV light in 4C41 17 is dominated by starlight, not scattered light from a hidden AGN The combined HST and Keck data suggest that the radio--aligned rest-frame UV continuum is probably caused by jet-induced star formation The strong morphological evolution suggests that we see the first evidence for the assemblage of massive ellipticals, the parent population of very powerful radio sources at much lower redshifts

  10. LOW-METALLICITY STAR FORMATION IN HIGH-REDSHIFT GALAXIES AT z {approx} 8

    SciTech Connect

    Taniguchi, Y.; Shioya, Y.; Trump, J. R.

    2010-12-01

    Based on the recent very deep near-infrared imaging of the Hubble Ultra Deep Field with WFC3 on the Hubble Space Telescope, five groups published the most probable samples of galaxies at z {approx} 8, selected by the so-called dropout method or photometric redshift; e.g., Y{sub 105}-dropouts (Y{sub 105} - J{sub 125} > 0.8). These studies are highly useful for investigating both the early star formation history of galaxies and the sources of cosmic re-ionization. In order to better understand these issues, we carefully examine whether there are low-z interlopers in the samples of z {approx} 8 galaxy candidates. We focus on the strong emission-line galaxies at z {approx} 2 in this paper. Such galaxies may be selected as Y{sub 105}-dropouts since the [O III] {lambda}5007 emission line is redshifted into the J{sub 125} band. We have found that the contamination from such low-z interlopers is negligibly small. Therefore, all objects found by the five groups are free from this type of contamination. However, it remains difficult to extract real z {approx} 8 galaxies because all the sources are very faint and the different groups have found different candidates. With this in mind, we construct a robust sample of eight galaxies at z {approx} 8 from the objects found by the five groups: each of these eight objects has been selected by at least two groups. Using this sample, we discuss their UV continuum slope. We also discuss the escape fraction of ionizing photons adopting various metallicities. Our analysis suggests that massive stars forming in low-metallicity gas (Z {approx} 5 x 10{sup -4} Z{sub sun}) can be responsible for the completion of cosmic re-ionization if the escape fraction of the ionizing continuum from galaxies is as large as 0.5, and this is consistent with the observed blue UV continua.

  11. Spatially resolved emission of a high-redshift DLA galaxy with the Keck/OSIRIS IFU

    SciTech Connect

    Jorgenson, Regina A.; Wolfe, Arthur M.

    2014-04-10

    We present the first Keck/OSIRIS infrared IFU observations of a high-redshift damped Lyα (DLA) galaxy detected in the line of sight to a background quasar. By utilizing the Laser Guide Star Adaptive Optics to reduce the quasar point-spread function to FWHM ∼ 0.''15, we were able to search for and map the foreground DLA emission free from the quasar contamination. We present maps of the Hα and [O III] λλ5007, 4959 emission of DLA 2222–0946 at a redshift of z ∼ 2.35. From the composite spectrum over the Hα emission region, we measure a star formation rate of 9.5 ± 1.0 M {sub ☉} yr{sup –1} and a dynamical mass of M {sub dyn} = 6.1 × 10{sup 9} M {sub ☉}. The average star formation rate surface density is (Σ{sub SFR}) = 0.55 M {sub ☉} yr{sup –1} kpc{sup –2}, with a central peak of 1.7 M {sub ☉} yr{sup –1} kpc{sup –2}. Using the standard Kennicutt-Schmidt relation, this corresponds to a gas mass surface density of Σ{sub gas} = 243 M {sub ☉} pc{sup –2}. Integrating over the size of the galaxy, we find a total gas mass of M {sub gas} = 4.2 × 10{sup 9} M {sub ☉}. We estimate the gas fraction of DLA 2222–0946 to be f {sub gas} ∼ 40%. We detect [N II] λ6583 emission at 3σ significance with a flux corresponding to a metallicity of 75% solar. Comparing this metallicity with that derived from the low-ion absorption gas ∼6 kpc away, ∼30% solar, indicates possible evidence for a metallicity gradient or enriched in/outflow of gas. Kinematically, both Hα and [O III] emission show relatively constant velocity fields over the central galactic region. While we detect some red and blueshifted clumps of emission, they do not correspond with rotational signatures that support an edge-on disk interpretation.

  12. Spatially Resolved Emission of a High-redshift DLA Galaxy with the Keck/OSIRIS IFU

    NASA Astrophysics Data System (ADS)

    Jorgenson, Regina A.; Wolfe, Arthur M.

    2014-04-01

    We present the first Keck/OSIRIS infrared IFU observations of a high-redshift damped Lyα (DLA) galaxy detected in the line of sight to a background quasar. By utilizing the Laser Guide Star Adaptive Optics to reduce the quasar point-spread function to FWHM ~ 0.''15, we were able to search for and map the foreground DLA emission free from the quasar contamination. We present maps of the Hα and [O III] λλ5007, 4959 emission of DLA 2222-0946 at a redshift of z ~ 2.35. From the composite spectrum over the Hα emission region, we measure a star formation rate of 9.5 ± 1.0 M ⊙ yr-1 and a dynamical mass of M dyn = 6.1 × 109 M ⊙. The average star formation rate surface density is langΣSFRrang = 0.55 M ⊙ yr-1 kpc-2, with a central peak of 1.7 M ⊙ yr-1 kpc-2. Using the standard Kennicutt-Schmidt relation, this corresponds to a gas mass surface density of Σgas = 243 M ⊙ pc-2. Integrating over the size of the galaxy, we find a total gas mass of M gas = 4.2 × 109 M ⊙. We estimate the gas fraction of DLA 2222-0946 to be f gas ~ 40%. We detect [N II] λ6583 emission at 3σ significance with a flux corresponding to a metallicity of 75% solar. Comparing this metallicity with that derived from the low-ion absorption gas ~6 kpc away, ~30% solar, indicates possible evidence for a metallicity gradient or enriched in/outflow of gas. Kinematically, both Hα and [O III] emission show relatively constant velocity fields over the central galactic region. While we detect some red and blueshifted clumps of emission, they do not correspond with rotational signatures that support an edge-on disk interpretation. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  13. Star-forming galactic contrails as a source of metal enrichment and ionizing radiation at high redshift

    NASA Astrophysics Data System (ADS)

    Rauch, Michael; Becker, George D.; Haehnelt, Martin G.; Gauthier, Jean-Rene

    2014-06-01

    A spectroscopically detected Lyman α emitting halo at redshift 3.216 in the GOODS-N field is found to reside at the convergence of several line-emitting filaments. Spatially extended emission apparently by He II 1640 Å and several metal transitions is seen within several arcseconds from the position of the central galaxy. The V = 24.9 galaxy mainly responsible for the continuum emission at the centre of the halo has broad-band colours and spectral features consistent with a z = 3.216 star-forming galaxy. Hubble Space Telescope images show that some of the filaments coincide, in projection, with several, mostly blue galaxies, with pronounced head-tail structures partly aligned with each other. These objects, for which we cannot rule that they are foreground, chance projections in front of the high-redshift halo, are seen over an area with a linear extent of at least 12 arcsec. The broad-band images of some galaxies suggest the presence of ram-pressure stripping, including possible evidence for recent star formation in the stripped contrails. Spatial gradients in the appearance of several galaxies may represent a stream of galaxies passing from a colder to a hotter intergalactic medium. The release of the enriched interstellar medium from galaxies and the occurrence of star formation and stellar feedback in the galactic contrails suggest a mechanism for the metal enrichment of the high-redshift intergalactic medium that does not require long-range galactic winds. If these galaxies are at the same redshift as the Lyα halo, their very blue colours may be a consequence of the stripping of gas. A stripped stellar population and star formation in galactic contrails suggest promising sites for the escape of ionizing radiation from high-redshift galaxies.

  14. Limits to Seeing High-Redshift Galaxies Due to Planck-Scale-Induced Blurring

    NASA Astrophysics Data System (ADS)

    Steinbring, Eric

    2015-08-01

    Carefully accounting for cosmological surface-brightness dimming and K-corrections are two important steps in teasing out the underlying properties of evolving high-z galaxy populations. Another potential effect is worthy of scrutiny simply because of its profound physical implications, if seen. In the last decade or so there has been debate over the possibility that the fuzzy quantum nature of spacetime might decohere wavefronts emanating from very distant sources. Consequences of that could be "blurred" or "faded" images of compact structures in galaxies, primarily at z>1 for their emitted X-rays and gamma-rays, but perhaps even in UV through optical light at higher redshift. So far there are only inconclusive hints of this from z~4 active-galactic nucleii and gamma-ray bursts viewed with Fermi and Hubble Space Telescope. If correct though, that would impose a significant, fundamental resolution limit for galaxies out to z~8 in the era of the James Webb Space Telescope and the next generation of ground-based telescopes using adaptive optics. I consider what to look for (and maybe not see).

  15. A stellar feedback origin for neutral hydrogen in high-redshift quasar-mass haloes

    NASA Astrophysics Data System (ADS)

    Faucher-Giguère, Claude-André; Feldmann, Robert; Quataert, Eliot; Kereš, Dušan; Hopkins, Philip F.; Murray, Norman

    2016-09-01

    Observations reveal that quasar host haloes at z ˜ 2 have large covering fractions of cool dense gas (≳60 per cent for Lyman limit systems within a projected virial radius). Most simulations have so far failed to explain these large observed covering fractions. We analyse a new set of 15 simulated massive haloes with explicit stellar feedback from the FIRE project, covering the halo mass range Mh ≈ 2 × 1012 - 1013 M⊙ at z = 2. This extends our previous analysis of the circum-galactic medium of high-redshift galaxies to more massive haloes. Active galactic nuclei (AGN) feedback is not included in these simulations. We find Lyman limit system covering fractions consistent with those observed around quasars. The large H I covering fractions arise from star formation-driven galactic winds, including winds from low-mass satellite galaxies that interact with cosmological filaments. We show that it is necessary to resolve these satellite galaxies and their winds to reproduce the large Lyman limit system covering fractions observed in quasar-mass haloes. Our simulations predict that galaxies occupying dark matter haloes of mass similar to quasars but without a luminous AGN should have Lyman limit system covering fractions comparable to quasars.

  16. The gas distribution in the high-redshift cluster MS 1054-0321

    NASA Astrophysics Data System (ADS)

    Mirakhor, M. S.; Birkinshaw, M.

    2016-04-01

    We investigate the gas mass distribution in the high-redshift cluster MS 1054-0321 using Chandra X-ray and One Centimetre Receiver array Sunyaev-Zel'dovich (SZ) effect data. We use a superposition of offset β-type models to describe the composite structure of MS 1054-0321. We find gas mass fractions f_{gas}^{X {-}ray} = 0.087_{-0.001}^{+0.005} and f_{gas}^SZ=0.094_{-0.001}^{+0.003} for the (main) eastern component of MS 1054-0321 using X-ray or SZ data, but f_{gas}^{X {-}ray}=0.030_{-0.014}^{+0.010} for the western component. The gas mass fraction for the eastern component is in agreement with some results reported in the literature, but inconsistent with the cosmic baryon fraction. The low-gas mass fraction for the western component is likely to be a consequence of gas stripping during the ongoing merger. The gas mass fraction of the integrated system is 0.060_{-0.009}^{+0.004}: we suggest that the missing baryons from the western component are present as hot diffuse gas which is poorly represented in existing X-ray images. The missing gas could appear in sensitive SZ maps.

  17. Warm molecular Hydrogen at high redshift with the James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Guillard, P.; Boulanger, F.; Lehnert, M. D.; Appleton, P. N.; Pineau des Forêts, G.

    2015-12-01

    The build-up of galaxies is regulated by a complex interplay between gravitational collapse, galaxy merging and feedback related to AGN and star formation. The energy released by these processes has to dissipate for gas to cool, condense, and form stars. How gas cools is thus a key to understand galaxy formation. Spitzer Space Telescope infrared spectroscopy revealed a population of galaxies with weak star formation and unusually powerful H_2 line emission. This is a signature of turbulent dissipation, sustained by large-scale mechanical energy injection. The cooling of the multiphase interstellar medium is associated with emission in the H_2 lines. These results have profound consequences on our understanding of regulation of star formation, feedback and energetics of galaxy formation in general. The fact that H_2 lines can be strongly enhanced in high-redshift turbulent galaxies will be of great importance for the James Webb Space Telescope observations which will unveil the role that H_2 plays as a cooling agent in the era of galaxy assembly.

  18. Updated f(T) gravity constraints from high-redshift cosmography

    NASA Astrophysics Data System (ADS)

    Piedipalumbo, Ester; Moglie, Enrica Della; Cianci, Roberto

    2015-09-01

    In the last dozen years, a wide and variegated mass of observational data revealed that the universe is now expanding at an accelerated rate. In the absence of a well-based theory to interpret the observations, cosmography provides information about the evolution of the universe from measured distances, only assuming that the geometry can be described by the Friedmann-Lemaitre-Robertson-Walker metric. In this paper, we perform a high-redshift analysis which allows us to put constraints on the cosmographic parameters up to the fifth-order, thus inducing indirect constraints on any gravity theory. Here, we are interested in the so-called teleparallel gravity theory, f(T). Actually, we use the analytical expressions of the present day values of f(T) and its derivatives as functions of the cosmographic parameters to map the cosmography region of confidences into confidence ranges for f(T) and its derivative. Moreover, we show how these can be used to test some teleparallel gravity models without solving the dynamical equations. Our analysis is based on the Union2 Type Ia supernovae (SNIa) data set, a set of 28 measurements of the Hubble parameter, the Hubble diagram constructed from some gamma ray bursts (GRB) luminosity distance indicators and Gaussian priors on the distance from the baryon acoustic oscillations (BAOs) and the Hubble constant h. To perform our statistical analysis and to explore the probability distributions of the cosmographic parameters, we use the Markov chain Monte Carlo (MCMC) method.

  19. A high stellar velocity dispersion for a compact massive galaxy at redshift z = 2.186.

    PubMed

    van Dokkum, Pieter G; Kriek, Mariska; Franx, Marijn

    2009-08-01

    Recent studies have found that the oldest and most luminous galaxies in the early Universe are surprisingly compact, having stellar masses similar to present-day elliptical galaxies but much smaller sizes. This finding has attracted considerable attention, as it suggests that massive galaxies have grown in size by a factor of about five over the past ten billion years (10 Gyr). A key test of these results is a determination of the stellar kinematics of one of the compact galaxies: if the sizes of these objects are as extreme as has been claimed, their stars are expected to have much higher velocities than those in present-day galaxies of the same mass. Here we report a measurement of the stellar velocity dispersion of a massive compact galaxy at redshift z = 2.186, corresponding to a look-back time of 10.7 Gyr. The velocity dispersion is very high at km s(-1), consistent with the mass and compactness of the galaxy inferred from photometric data. This would indicate significant recent structural and dynamical evolution of massive galaxies over the past 10 Gyr. The uncertainty in the dispersion was determined from simulations that include the effects of noise and template mismatch. However, we cannot exclude the possibility that some subtle systematic effect may have influenced the analysis, given the low signal-to-noise ratio of our spectrum. PMID:19661911

  20. Globular clusters as the relics of regular star formation in `normal' high-redshift galaxies

    NASA Astrophysics Data System (ADS)

    Kruijssen, J. M. Diederik

    2015-12-01

    We present an end-to-end, two-phase model for the origin of globular clusters (GCs). In the model, populations of stellar clusters form in the high-pressure discs of high-redshift (z > 2) galaxies (a rapid-disruption phase due to tidal perturbations from the dense interstellar medium), after which the galaxy mergers associated with hierarchical galaxy formation redistribute the surviving, massive clusters into the galaxy haloes, where they remain until the present day (a slow-disruption phase due to tidal evaporation). The high galaxy merger rates of z > 2 galaxies allow these clusters to be `liberated' into the galaxy haloes before they are disrupted within the high-density discs. This physically motivated toy model is the first to include the rapid-disruption phase, which is shown to be essential for simultaneously reproducing the wide variety of properties of observed GC systems, such as their universal characteristic mass-scale, the dependence of the specific frequency on metallicity and galaxy mass, the GC system mass-halo mass relation, the constant number of GCs per unit supermassive black hole mass, and the colour bimodality of GC systems. The model predicts that most of these observables were already in place at z = 1-2, although under rare circumstances GCs may still form in present-day galaxies. In addition, the model provides important constraints on models for multiple stellar populations in GCs by putting limits on initial GC masses and the amount of pristine gas accretion. The paper is concluded with a discussion of these and several other predictions and implications, as well as the main open questions in the field.

  1. HerMES: Candidate High-redshift Galaxies Discovered with Herschel/SPIRE

    NASA Astrophysics Data System (ADS)

    Dowell, C. Darren; Conley, A.; Glenn, J.; Arumugam, V.; Asboth, V.; Aussel, H.; Bertoldi, F.; Béthermin, M.; Bock, J.; Boselli, A.; Bridge, C.; Buat, V.; Burgarella, D.; Cabrera-Lavers, A.; Casey, C. M.; Chapman, S. C.; Clements, D. L.; Conversi, L.; Cooray, A.; Dannerbauer, H.; De Bernardis, F.; Ellsworth-Bowers, T. P.; Farrah, D.; Franceschini, A.; Griffin, M.; Gurwell, M. A.; Halpern, M.; Hatziminaoglou, E.; Heinis, S.; Ibar, E.; Ivison, R. J.; Laporte, N.; Marchetti, L.; Martínez-Navajas, P.; Marsden, G.; Morrison, G. E.; Nguyen, H. T.; O'Halloran, B.; Oliver, S. J.; Omont, A.; Page, M. J.; Papageorgiou, A.; Pearson, C. P.; Petitpas, G.; Pérez-Fournon, I.; Pohlen, M.; Riechers, D.; Rigopoulou, D.; Roseboom, I. G.; Rowan-Robinson, M.; Sayers, J.; Schulz, B.; Scott, Douglas; Seymour, N.; Shupe, D. L.; Smith, A. J.; Streblyanska, A.; Symeonidis, M.; Vaccari, M.; Valtchanov, I.; Vieira, J. D.; Viero, M.; Wang, L.; Wardlow, J.; Xu, C. K.; Zemcov, M.

    2014-01-01

    We present a method for selecting z > 4 dusty, star-forming galaxies (DSFGs) using Herschel/Spectral and Photometric Imaging Receiver 250/350/500 μm flux densities to search for red sources. We apply this method to 21 deg2 of data from the HerMES survey to produce a catalog of 38 high-z candidates. Follow-up of the first five of these sources confirms that this method is efficient at selecting high-z DSFGs, with 4/5 at z = 4.3-6.3 (and the remaining source at z = 3.4), and that they are some of the most luminous dusty sources known. Comparison with previous DSFG samples, mostly selected at longer wavelengths (e.g., 850 μm) and in single-band surveys, shows that our method is much more efficient at selecting high-z DSFGs, in the sense that a much larger fraction are at z > 3. Correcting for the selection completeness and purity, we find that the number of bright (S 500 μm >= 30 mJy), red Herschel sources is 3.3 ± 0.8 deg-2. This is much higher than the number predicted by current models, suggesting that the DSFG population extends to higher redshifts than previously believed. If the shape of the luminosity function for high-z DSFGs is similar to that at z ~ 2, rest-frame UV based studies may be missing a significant component of the star formation density at z = 4-6, even after correction for extinction. . Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  2. The high-ion content and kinematics of low-redshift Lyman limit systems

    SciTech Connect

    Fox, Andrew J.; Tumlinson, Jason; Bordoloi, Rongmon; Lehner, Nicolas; Howk, J. Christopher; Tripp, Todd M.; Katz, Neal; Prochaska, J. Xavier; Werk, Jessica K.; Oppenheimer, Benjamin D.; Davé, Romeel

    2013-12-01

    We study the high-ion content and kinematics of the circumgalactic medium around low-redshift galaxies using a sample of 23 Lyman limit systems (LLSs) at 0.08 < z < 0.93 observed with the Cosmic Origins Spectrograph on board the Hubble Space Telescope. In Lehner et al., we recently showed that low-z LLSs have a bimodal metallicity distribution. Here we extend that analysis to search for differences between the high-ion and kinematic properties of the metal-poor and metal-rich branches. We find that metal-rich LLSs tend to show higher O VI columns and broader O VI profiles than metal-poor LLSs. The total H I line width (Δv {sub 90} statistic) in LLSs is not correlated with metallicity, indicating that the H I kinematics alone cannot be used to distinguish inflow from outflow and gas recycling. Among the 17 LLSs with O VI detections, all but two show evidence of kinematic sub-structure, in the form of O VI-H I centroid offsets, multiple components, or both. Using various scenarios for how the metallicities in the high-ion and low-ion phases of each LLS compare, we constrain the ionized hydrogen column in the O VI phase to lie in the range log N(H II) ∼ 17.6-20. The O VI phase of LLSs is a substantial baryon reservoir, with M(high-ion) ∼ 10{sup 8.5-10.9} (r/150 kpc){sup 2} M {sub ☉}, similar to the mass in the low-ion phase. Accounting for the O VI phase approximately doubles the contribution of low-z LLSs to the cosmic baryon budget.

  3. The High-Ion Content and Kinematics of Low-Redshift Lyman Limit Systems

    NASA Astrophysics Data System (ADS)

    Fox, Andrew; Lehner, N.; Tumlinson, J.; Howk, J. C.; Tripp, T. M.; Prochaska, J. X.; O'Meara, J.; Werk, J.; Bordoloi, R.; Katz, N.; Oppenheimer, B.; Dave, R.

    2014-01-01

    We study the high-ionization phase and kinematics of the circumgalactic medium around low-redshift galaxies in a sample of 23 low-z (0.08high-ion and kinematic properties of the metal-poor and metal-rich branches. We find that metal-rich LLSs tend to show higher O VI columns and broader O VI profiles than metal-poor LLSs. The total H I line width (dv90 statistic) in LLSs is not correlated with metallicity, indicating that the H I kinematics alone cannot be used to distinguish inflow and outflow in LLSs. Among the 17 LLSs with O VI detections, all but two show evidence of kinematic sub-structure, in the form of O VI-H I centroid offsets, multiple components, or both. Using various scenarios for how the metallicity in the high-ion and low-ion phases of each LLS compare, we constrain the ionized hydrogen column in the O VI phase to lie in the range log N(H II 17.6-20. Therefore, the O VI phase of LLSs traces a substantial baryon reservoir, with M(high-ion 10^{8.9-10.9}(r/150 kpc)^2 solar masses, similar to the mass in the low-ion phase. Accounting for the O VI phase approximately doubles the contribution of low-z LLSs to the cosmic baryon budget.

  4. HerMES: Candidate high-redshift galaxies discovered with Herschel/Spire

    SciTech Connect

    Dowell, C. Darren; Bock, J.; Bridge, C.; Cooray, A.; Conley, A.; Glenn, J.; Arumugam, V.; Asboth, V.; Aussel, H.; Béthermin, M.; Boselli, A.; Buat, V.; Burgarella, D.; Cabrera-Lavers, A.; Casey, C. M.; Chapman, S. C.; Clements, D. L.; Conversi, L.; Dannerbauer, H.; and others

    2014-01-01

    We present a method for selecting z > 4 dusty, star-forming galaxies (DSFGs) using Herschel/Spectral and Photometric Imaging Receiver 250/350/500 μm flux densities to search for red sources. We apply this method to 21 deg{sup 2} of data from the HerMES survey to produce a catalog of 38 high-z candidates. Follow-up of the first five of these sources confirms that this method is efficient at selecting high-z DSFGs, with 4/5 at z = 4.3-6.3 (and the remaining source at z = 3.4), and that they are some of the most luminous dusty sources known. Comparison with previous DSFG samples, mostly selected at longer wavelengths (e.g., 850 μm) and in single-band surveys, shows that our method is much more efficient at selecting high-z DSFGs, in the sense that a much larger fraction are at z > 3. Correcting for the selection completeness and purity, we find that the number of bright (S {sub 500} {sub μm} ≥ 30 mJy), red Herschel sources is 3.3 ± 0.8 deg{sup –2}. This is much higher than the number predicted by current models, suggesting that the DSFG population extends to higher redshifts than previously believed. If the shape of the luminosity function for high-z DSFGs is similar to that at z ∼ 2, rest-frame UV based studies may be missing a significant component of the star formation density at z = 4-6, even after correction for extinction.

  5. CONTAMINATION OF BROADBAND PHOTOMETRY BY NEBULAR EMISSION IN HIGH-REDSHIFT GALAXIES: INVESTIGATIONS WITH KECK'S MOSFIRE NEAR-INFRARED SPECTROGRAPH

    SciTech Connect

    Schenker, Matthew A; Ellis, Richard S; Konidaris, Nick P; Stark, Daniel P

    2013-11-01

    Earlier work has raised the potential importance of nebular emission in the derivation of the physical characteristics of high-redshift Lyman break galaxies. Within certain redshift ranges, and especially at z ≅ 6-7, such lines may be strong enough to reduce estimates of the stellar masses and ages of galaxies compared with those derived assuming the broadband photometry represents stellar light alone. To test this hypothesis at the highest redshifts where such lines can be probed with ground-based facilities, we examine the near-infrared spectra of a representative sample of 28 3.0 < z < 3.8 Lyman break galaxies using the newly commissioned MOSFIRE near-infrared spectrograph at the Keck I telescope. We use these data to derive the rest-frame equivalent widths (EWs) of [O III] emission and show that these are comparable with estimates derived using the spectral energy distribution (SED) fitting technique introduced for sources of known redshift by Stark et al. Although our current sample is modest, its [O III] EW distribution is consistent with that inferred for Hα based on SED fitting of Stark et al.'s larger sample of 3.8 < z < 5 galaxies. For a subset of survey galaxies, we use the combination of optical and near-infrared spectroscopy to quantify kinematics of outflows in z ≅ 3.5 star-forming galaxies and discuss the implications for reionization measurements. The trends we uncover underline the dangers of relying purely on broadband photometry to estimate the physical properties of high-redshift galaxies and emphasize the important role of diagnostic spectroscopy.

  6. The effects of the small-scale DM power on the cosmological neutral hydrogen (HI) distribution at high redshifts

    NASA Astrophysics Data System (ADS)

    Sarkar, Abir; Mondal, Rajesh; Das, Subinoy; Sethi, Shiv. K.; Bharadwaj, Somnath; Marsh, David J. E.

    2016-04-01

    The particle nature of dark matter remains a mystery. In this paper, we consider two dark matter models—Late Forming Dark Matter (LFDM) and Ultra-Light Axion (ULA) models—where the matter power spectra show novel effects on small scales. The high redshift universe offers a powerful probe of their parameters. In particular, we study two cosmological observables: the neutral hydrogen (HI) redshifted 21-cm signal from the epoch of reionization, and the evolution of the collapsed fraction of HI in the redshift range 2 < z < 5. We model the theoretical predictions of the models using CDM-like N-body simulations with modified initial conditions, and generate reionization fields using an excursion set model. The N-body approximation is valid on the length and halo mass scales studied. We show that LFDM and ULA models predict an increase in the HI power spectrum from the epoch of reionization by a factor between 2–10 for a range of scales 0.1 < k < 4 Mpc‑1. Assuming a fiducial model where a neutral hydrogen fraction bar xHI = 0.5 must be achieved by z = 8, the reionization process allows us to put approximate bounds on the redshift of dark matter formation zf > 4 × 105 (for LFDM) and the axion mass ma > 2.6 × 10‑23 eV (for ULA). The comparison of the collapsed mass fraction inferred from damped Lyman-α observations to the theoretical predictions of our models lead to the weaker bounds: zf > 2 × 105 and ma > 10‑23 eV. These bounds are consistent with other constraints in the literature using different observables; we briefly discuss how these bounds compare with possible constraints from the observation of luminosity function of galaxies at high redshifts. In the case of ULAs, these constraints are also consistent with a solution to the cusp-core problem of CDM.

  7. 36 new, high-probability, damped Lyα absorbers at redshift 0.42 < z < 0.70

    NASA Astrophysics Data System (ADS)

    Turnshek, David A.; Monier, Eric M.; Rao, Sandhya M.; Hamilton, Timothy S.; Sardane, Gendith M.; Held, Ryan

    2015-05-01

    Quasar damped Lyα (DLA) absorption-line systems with redshifts z < 1.65 are used to trace neutral gas over approximately 70 per cent of the most recent history of the Universe. However, such systems fall in the UV and are rarely found in blind UV spectroscopic surveys. Therefore, it has been difficult to compile a moderate-sized sample of UV DLAs in any narrow cosmic time interval. However, DLAs are easy to identify in low-resolution spectra because they have large absorption rest equivalent widths. We have performed an efficient strong-Mg II-selected survey for UV DLAs at redshifts z = [0.42, 0.70] using Hubble Space Telescope's low-resolution ACS-HRC-PR200L prism. This redshift interval covers ˜1.8 Gyr in cosmic time, i.e. t ≈ [7.2, 9.0] Gyr after the big bang. A total of 96 strong Mg II absorption-line systems identified in Sloan Digital Sky Survey spectra were successfully observed with the prism at the predicted UV wavelengths of Lyα absorption. We found that 35 of the 96 systems had a significant probability of being DLAs. One additional observed system could be a very high N_{H I} DLA (N_{H I} ˜ 2× 10^{22} atoms cm-2 or possibly higher), but since very high N_{H I} systems are extremely rare, it would be unusual for this system to be a DLA given the size of our sample. Here we present information on our prism sample, including our best estimates of N_{H I} and errors for the 36 systems fitted with DLA profiles. This list is valuable for future follow-up studies of low-redshift DLAs in a small redshift interval, although such work would clearly benefit from improved UV spectroscopy to more accurately determine their neutral hydrogen column densities.

  8. Bayesian High-redshift Quasar Classification from Optical and Mid-IR Photometry

    NASA Astrophysics Data System (ADS)

    Richards, Gordon T.; Myers, Adam D.; Peters, Christina M.; Krawczyk, Coleman M.; Chase, Greg; Ross, Nicholas P.; Fan, Xiaohui; Jiang, Linhua; Lacy, Mark; McGreer, Ian D.; Trump, Jonathan R.; Riegel, Ryan N.

    2015-08-01

    We identify 885,503 type 1 quasar candidates to i≲ 22 using the combination of optical and mid-IR photometry. Optical photometry is taken from the Sloan Digital Sky Survey-III: Baryon Oscillation Spectroscopic Survey (SDSS-III/BOSS), while mid-IR photometry comes from a combination of data from the Wide-field Infrared Survey Explorer (WISE) “AllWISE” data release and several large-area Spitzer Space Telescope fields. Selection is based on a Bayesian kernel density algorithm with a training sample of 157,701 spectroscopically confirmed type 1 quasars with both optical and mid-IR data. Of the quasar candidates, 733,713 lack spectroscopic confirmation (and 305,623 are objects that we have not previously classified as photometric quasar candidates). These candidates include 7874 objects targeted as high-probability potential quasars with 3.5\\lt z\\lt 5 (of which 6779 are new photometric candidates). Our algorithm is more complete to z\\gt 3.5 than the traditional mid-IR selection “wedges” and to 2.2\\lt z\\lt 3.5 quasars than the SDSS-III/BOSS project. Number counts and luminosity function analysis suggest that the resulting catalog is relatively complete to known quasars and is identifying new high-z quasars at z\\gt 3. This catalog paves the way for luminosity-dependent clustering investigations of large numbers of faint, high-redshift quasars and for further machine-learning quasar selection using Spitzer and WISE data combined with other large-area optical imaging surveys.

  9. FORMATION OF MASSIVE GALAXIES AT HIGH REDSHIFT: COLD STREAMS, CLUMPY DISKS, AND COMPACT SPHEROIDS

    SciTech Connect

    Dekel, Avishai; Sari, Re'em; Ceverino, Daniel E-mail: sari@phys.huji.ac.i

    2009-09-20

    We present a simple theoretical framework for massive galaxies at high redshift, where the main assembly and star formation occurred, and report on the first cosmological simulations that reveal clumpy disks consistent with our analysis. The evolution is governed by the interplay between smooth and clumpy cold streams, disk instability, and bulge formation. Intense, relatively smooth streams maintain an unstable dense gas-rich disk. Instability with high turbulence and giant clumps, each a few percent of the disk mass, is self-regulated by gravitational interactions within the disk. The clumps migrate into a bulge in {approx}<10 dynamical times, or {approx}<0.5 Gyr. The cosmological streams replenish the draining disk and prolong the clumpy phase to several Gigayears in a steady state, with comparable masses in disk, bulge, and dark matter within the disk radius. The clumps form stars in dense subclumps following the overall accretion rate, {approx}100 M{sub sun} yr{sup -1}, and each clump converts into stars in {approx}0.5 Gyr. While the clumps coalesce dissipatively to a compact bulge, the star-forming disk is extended because the incoming streams keep the outer disk dense and susceptible to instability and because of angular momentum transport. Passive spheroid-dominated galaxies form when the streams are more clumpy: the external clumps merge into a massive bulge and stir up disk turbulence that stabilize the disk and suppress in situ clump and star formation. We predict a bimodality in galaxy type by z {approx} 3, involving giant-clump star-forming disks and spheroid-dominated galaxies of suppressed star formation. After z {approx} 1, the disks tend to be stabilized by the dominant stellar disks and bulges. Most of the high-z massive disks are likely to end up as today's early-type galaxies.

  10. MID-INFRARED DETERMINATION OF TOTAL INFRARED LUMINOSITY AND STAR FORMATION RATES OF LOCAL AND HIGH-REDSHIFT GALAXIES

    SciTech Connect

    Rujopakarn, W.; Rieke, G. H.; Weiner, B. J.; Perez-Gonzalez, P.; Rex, M.; Walth, G. L.; Kartaltepe, J. S.

    2013-04-10

    We demonstrate estimating the total infrared luminosity, L(TIR), and star formation rates (SFRs) of star-forming galaxies at redshift 0 < z < 2.8 from single-band 24 {mu}m observations, using local spectral energy distribution (SED) templates without introducing additional free parameters. Our method is based on characterizing the SEDs of galaxies as a function of their L(TIR) surface density, which is motivated by the indications that the majority of IR luminous star-forming galaxies at 1 < z < 3 have extended star-forming regions, in contrast to the strongly nuclear concentrated, merger-induced starbursts in local luminous and ultraluminous IR galaxies. We validate our procedure for estimating L(TIR) by comparing the resulting L(TIR) with those measured from far-IR observations, such as those from Herschel in the Extended Chandra Deep Field South (ECDFS) and Hubble Deep Field North (HDFN), as well as L(TIR) measured from stacked far-IR observations at redshift 0 < z < 2.8. Active galactic nuclei were excluded using X-ray and 3.6-8.0 {mu}m observations, which are generally available in deep cosmological survey fields. The Gaussian fits to the distribution of the discrepancies between the L(TIR) measurements from single-band 24 {mu}m and Herschel observations in the ECDFS and HDFN samples have {sigma} < 0.1 dex, with {approx}10% of objects disagreeing by more than 0.2 dex. Since the 24 {mu}m estimates are based on SEDs for extended galaxies, this agreement suggests that {approx}90% of IR galaxies at high z are indeed much more physically extended than local counterparts of similar L(TIR), consistent with recent independent studies of the fractions of galaxies forming stars in the main-sequence and starburst modes, respectively. Because we have not introduced empirical corrections to enhance these estimates, in principle, our method should be applicable to lower luminosity galaxies. This will enable use of the 21 {mu}m band of the Mid-Infrared Instrument on board

  11. Mid-infrared Determination of Total Infrared Luminosity and Star Formation Rates of Local and High-redshift Galaxies

    NASA Astrophysics Data System (ADS)

    Rujopakarn, W.; Rieke, G. H.; Weiner, B. J.; Pérez-González, P.; Rex, M.; Walth, G. L.; Kartaltepe, J. S.

    2013-04-01

    We demonstrate estimating the total infrared luminosity, L(TIR), and star formation rates (SFRs) of star-forming galaxies at redshift 0 < z < 2.8 from single-band 24 μm observations, using local spectral energy distribution (SED) templates without introducing additional free parameters. Our method is based on characterizing the SEDs of galaxies as a function of their L(TIR) surface density, which is motivated by the indications that the majority of IR luminous star-forming galaxies at 1 < z < 3 have extended star-forming regions, in contrast to the strongly nuclear concentrated, merger-induced starbursts in local luminous and ultraluminous IR galaxies. We validate our procedure for estimating L(TIR) by comparing the resulting L(TIR) with those measured from far-IR observations, such as those from Herschel in the Extended Chandra Deep Field South (ECDFS) and Hubble Deep Field North (HDFN), as well as L(TIR) measured from stacked far-IR observations at redshift 0 < z < 2.8. Active galactic nuclei were excluded using X-ray and 3.6-8.0 μm observations, which are generally available in deep cosmological survey fields. The Gaussian fits to the distribution of the discrepancies between the L(TIR) measurements from single-band 24 μm and Herschel observations in the ECDFS and HDFN samples have σ < 0.1 dex, with ~10% of objects disagreeing by more than 0.2 dex. Since the 24 μm estimates are based on SEDs for extended galaxies, this agreement suggests that ~90% of IR galaxies at high z are indeed much more physically extended than local counterparts of similar L(TIR), consistent with recent independent studies of the fractions of galaxies forming stars in the main-sequence and starburst modes, respectively. Because we have not introduced empirical corrections to enhance these estimates, in principle, our method should be applicable to lower luminosity galaxies. This will enable use of the 21 μm band of the Mid-Infrared Instrument on board the James Webb Space Telescope

  12. The Formation of Dark Matter Halos and High-Redshift Galaxies

    NASA Astrophysics Data System (ADS)

    Genel, Shy

    2011-03-01

    In the concordance ΛCDMcosmological model, galaxies form in the centers of dark matter halos and merge with one another following the mergers of their host halos. Thus, we set out to quantify the growth mechanisms of dark matter halos. For this purpose, we analyze several large N-body simulations of the growth of cosmic structure. We devise a novel merger tree construction algorithm that properly takes into account halo fragmentations. We find that the merger rate evolves rapidly with redshift but depends weakly on mass, and that the proportions between mergers of different mass ratios, e.g.major and minor mergers, are universal. We also show that the merger rate per progenitor halo (related to future mergers and to galaxy pair counting) is smaller than that per descendant halo (related to past mergers and galaxy disturbed morphplogies), and that their redshift and mass dependencies are different. We find that only ~60%of the mass accreted onto halos arrives in mergers that are resolved in our simulations. Moreover, the functional form of the merger rate suggests that the merger contribution saturates at that value. Using full particle histories, we confirm that smoothly-accreted particles make a significant fraction of dark matter halos. This has important implications for the smoothness of gas accretion. Disk galaxies at z~2are rapidly star-forming, but show regular rotation, indicating little merger activity. We use a large dark matter simulation to show that even non-merging z~2 halos grow fast enough to explain observed high star-formation rates. We also follow those halos to z=0, finding that many do not undergo major mergers at all. The z~2disks also show high velocity dispersions and irregular clumpy morphologies. We run "zoom-in" cosmological hydrodynamical simulations focusing on the formation of individual z~2 galaxies. We find that the clumpy morphologies are a result of gravitational instability, where the high random motions make the (turbulent

  13. KECK SPECTROSCOPY OF FAINT 3>z>7 LYMAN BREAK GALAXIES: A HIGH FRACTION OF LINE EMITTERS AT REDSHIFT SIX

    SciTech Connect

    Stark, Daniel P.; Ellis, Richard S.; Ouchi, Masami

    2011-02-10

    As Ly{alpha} photons are scattered by neutral hydrogen, a change with redshift in the Ly{alpha} equivalent width (EW) distribution of distant galaxies offers a promising probe of the degree of ionization in the intergalactic medium and hence when cosmic reionization ended. This simple test is complicated by the fact that Ly{alpha} emission can also be affected by variations in the kinematics and dust content of the host galaxies. In the first paper in this series, we demonstrated both a luminosity- and redshift-dependent trend in the fraction of Ly{alpha} emitters seen within color-selected 'Lyman break' galaxies (LBGs) over the range 3 < z < 6; lower luminosity galaxies and those at higher redshift show an increased likelihood of strong emission. Here, we present the results from 12.5 hr exposures with the Keck DEIMOS spectrograph focused primarily on LBGs at z {approx_equal} 6 which enable us to confirm the redshift dependence of line emission more robustly and to higher redshift than was hitherto possible. We find that 54% {+-} 11% of faint z {approx_equal} 6 LBGs show strong (W{sub Ly{alpha},0}>25 A) emission, an increase of 55% from a sample of similarly luminous z {approx_equal} 4 galaxies. With a total sample of 74 z {approx_equal} 6 LBGs, we determine the luminosity-dependent Ly{alpha} EW distribution. Assuming continuity in these trends to the new population of z {approx_equal} 7 sources located with the Hubble WFC3/IR camera, we predict that unless the neutral fraction rises in the intervening 200 Myr, the success rate for spectroscopic confirmation using Ly{alpha} emission should be high.

  14. Quasars as the formation sites of high-redshift ellipticals: a signature in the `associated' absorption-line systems?

    NASA Astrophysics Data System (ADS)

    Franceschini, A.; Gratton, R.

    1997-03-01

    Published data on the average metallicities and abundance ratios for absorption-line systems in high-redshift quasars suggest that a dichotomy may exist between the chemical composition of damped Lyman alpha (Lyalpha) systems (interpreted as intervening galaxies in the QSO line of sight) and the z_abs~=z_em absorption- line systems associated with the quasar. Intervening systems have smaller than solar metallicities, whereas associated absorbers have solar or greater than solar metallicities and small N/C ratios. While these results have to be confirmed by more precise abundance determinations, we argue that they may be explained by an early phase of efficient metal enrichment occurring only in the close environment of high-z QSOs, and characterized by an excess type-II supernova (SNII) activity. This is reminiscent of the SNII phase required to explain the abundance ratios (favouring alpha- over Fe-group elements) observed in the intracluster (IC) medium of local galaxy clusters. We explore the following scenario, to be tested by forthcoming observations of QSO absorption lines using very large optical telescopes. (a) Well-studied damped- Lyalpha, Lyalpha and metal lines in intervening systems trace only part of the history of metal production in the Universe - the one concerning slowly star-forming discs or dwarf irregulars. (b) The complementary class of early-type and bulge-dominated galaxies formed quickly (at z>~4-5) through a huge episode of star formation favouring high-mass stars. (c) The nucleus of the latter is the site of the subsequent formation of a quasar, which partly hides from view the dimmer host galaxy. (d) The products of a galactic wind, following the violent episode of star formation in the host galaxy and metal pollution of the IC medium in the forming cluster, could be directly observable in the z_abs~=z_em associated absorption systems on the QSO line of sight.

  15. On the consequences of a Virial star formation criterion and radiation hydrodynamics in simulations of high redshift galaxies

    NASA Astrophysics Data System (ADS)

    Perret, Valentin; Teyssier, Romain; Devriendt, Julien; Rosdahl, Joakim; Slyz, Adrianne

    2015-08-01

    The last decade has seen a data deluge coming from observational facilities targeting the young universe. These data has revealed that high redshift galaxies are substantially different from their local counterpart that populates the Hubble sequence. High redshift star-forming galaxies often display clumpy morphologies associated to disk-like kinematics with a high level of turbulence. Star formation essentially occurs in these giant massive clumps and is therefore a crucial step in the life of galaxies. Reproducing the fragmentation of high redshift disk galaxies in numerical simulations is mandatory if one wants to get a realistic picture of the Hubble sequence shaping. We present state-of-the-art parsec scale idealised simulations of high redshift analogue galaxies that resolve the supersonic turbulent and clumpy multi-phase interstellar medium. These simulations are performed with the adaptive mesh refinement code RAMSES (Teyssier et al. 2002) using its new radiation hydrodynamics module (Rosdahl et al. 2013). We are therefore able to model the radiative pressure from the young massive stars population settled in the star forming clumps which is suspected to play a subsequent role in the onset of outflowing gas in such galaxies. Furthermore, our model includes a star formation criterion inspired from molecular cloud simulations and which is based on a local analysis of the turbulent support of the gas clouds. The star formation efficiency associated to this approach is two order of magnitudes higher than the one using the standard density threshold and has therefore major implications for the evolution of the galaxy. We will review through a comparative study the consequences of using radiative transfer combined with such a Virial star formation criterion for the star formation history, the gas and stellar morphology of the disk and clumps as well as the properties of the galactic fountain induced by stellar feedback. A first set of simulation presents

  16. Java based educational tool for Modeling the Content of the Universe through observations of High-Redshift Supernovae

    NASA Astrophysics Data System (ADS)

    Mijic, Milan; Hu, Zhenghui; Wells, Derek; Lim, Rone-Kwei; Park, Dallim; Kang, Elaine; Longson, Tony

    2007-04-01

    Recent Observations of High-Redshift supernovae led to the discovery of accelerated expansion of the present day Universe. The detailed shape of the supernovae magnitude vs. redshift plot depends on the relative contents of fluids with different equations of state, which allows for modeling the content of the Universe to match the supernova observations. To illustrate this relationship, the Cal State L.A. Science Visualization project developed an easy to use java based tool , which may be used in college, pre-college, or public science education. The tool utilizes multimedia presentations, such as graphs or images, and interactively demonstrates the created universe's features depending on the user's input parameters. The java-based tool is deployed through Java webstart for both high-end and low-end terminal users across platforms.

  17. SIX MORE QUASARS AT REDSHIFT 6 DISCOVERED BY THE CANADA-FRANCE HIGH-z QUASAR SURVEY

    SciTech Connect

    Willott, Chris J.; Crampton, David; Hutchings, John B.; Schade, David; Delorme, Philippe; Delfosse, Xavier; Forveille, Thierry; Reyle, Celine; Albert, Loic; Bergeron, Jacqueline; Omont, Alain; McLure, Ross J.

    2009-03-15

    We present imaging and spectroscopic observations for six quasars at z {>=} 5.9 discovered by the Canada-France High-z Quasar Survey (CFHQS). The CFHQS contains subsurveys with a range of flux and area combinations to sample a wide range of quasar luminosities at z {approx} 6. The new quasars have luminosities 10-75 times lower than the most luminous Sloan Digital Sky Survey quasars at this redshift. The least luminous quasar, CFHQS J0216-0455 at z = 6.01, has absolute magnitude M {sub 1450} = -22.21, well below the likely break in the luminosity function. This quasar is not detected in a deep XMM-Newton survey showing that optical selection is still a very efficient tool for finding high-redshift quasars.

  18. A robust morphological classification of high-redshift galaxies using support vector machines on seeing limited images. I. Method description

    NASA Astrophysics Data System (ADS)

    Huertas-Company, M.; Rouan, D.; Tasca, L.; Soucail, G.; Le Fèvre, O.

    2008-02-01

    Context: Morphology is the most accessible tracer of the physical structure of galaxies, but its interpretation in the framework of galaxy evolution still remains a problem. Its dependence on wavelength renders the comparison between local and high redshift populations difficult. Furthermore, the quality of the measured morphology being strongly dependent on the image resolution, the comparison between different surveys is also a problem. Aims: We present a new non-parametric method to quantify morphologies of galaxies based on a particular family of learning machines called support vector machines. The method, which can be seen as a generalization of the classical C/A classification but with an unlimited number of dimensions and non-linear boundaries between decision regions, is fully automated and thus particularly well adapted to large cosmological surveys. The source code is available for download at http://www.lesia.obspm.fr/~huertas/galsvm.html Methods: To test the method, we use a seeing limited near-infrared (Ks band, 2,16 μm) sample observed with WIRCam at CFHT at a median redshift of z ~ 0.8. The machine is trained with a simulated sample built from a local visually classified sample from the SDSS, chosen in the high-redshift sample's rest-frame (i band, 0.77 μm) and artificially redshifted to match the observing conditions. We use a 12-dimensional volume, including 5 morphological parameters, and other characteristics of galaxies such as luminosity and redshift. A fraction of the simulated sample is used to test the machine and assess its accuracy. Results: We show that a qualitative separation in two main morphological types (late type and early type) can be obtained with an error lower than 20% up to the completeness limit of the sample (KAB ~ 22), which is more than 2 times better that what would be obtained with a classical C/A classification on the same sample and indeed comparable to space data. The method is optimized to solve a specific problem

  19. Exploring the Chemical Link Between Local Ellipticals and Their High-Redshift Progenitors

    NASA Technical Reports Server (NTRS)

    Leja, Joel; Van Dokkum, Pieter G.; Momcheva, Ivelina; Brammer, Gabriel; Skelton, Rosalind E.; Whitaker, Katherine E.; Andrews, Brett H.; Franx, Marijn; Kriek, Mariska; Van Der Wel, Arjen; Bezanson, Rachel; Conroy, Charlie; Schreiber, Natascha Foerster; Nelson, Erica; Patel, Shannon G.

    2013-01-01

    We present Keck/MOSFIRE K-band spectroscopy of the first mass-selected sample of galaxies at z approximately 2.3. Targets are selected from the 3D-Hubble Space Telescope Treasury survey. The six detected galaxies have a mean [N II]lambda6584/H-alpha ratio of 0.27 +/- 0.01, with a small standard deviation of 0.05. This mean value is similar to that of UV-selected galaxies of the same mass. The mean gas-phase oxygen abundance inferred from the [N II]/Halpha ratios depends on the calibration method, and ranges from 12+log(O/H)(sub gas) = 8.57 for the Pettini & Pagel calibration to 12+log(O/H)(sub gas) = 8.87 for the Maiolino et al. calibration. Measurements of the stellar oxygen abundance in nearby quiescent galaxies with the same number density indicate 12+log(O/H)(sub stars) = 8.95, similar to the gas-phase abundances of the z approximately 2.3 galaxies if the Maiolino et al. calibration is used. This suggests that these high-redshift star forming galaxies may be progenitors of today's massive early-type galaxies. The main uncertainties are the absolute calibration of the gas-phase oxygen abundance and the incompleteness of the z approximately 2.3 sample: the galaxies with detected Ha tend to be larger and have higher star formation rates than the galaxies without detected H-alpha, and we may still be missing the most dust-obscured progenitors.

  20. The Local Group as a time machine: studying the high-redshift Universe with nearby galaxies

    NASA Astrophysics Data System (ADS)

    Boylan-Kolchin, Michael; Weisz, Daniel R.; Johnson, Benjamin D.; Bullock, James S.; Conroy, Charlie; Fitts, Alex

    2015-10-01

    We infer the UV luminosities of Local Group galaxies at early cosmic times (z ˜ 2 and z ˜ 7) by combining stellar population synthesis modelling with star formation histories derived from deep colour-magnitude diagrams constructed from Hubble Space Telescope (HST) observations. Our analysis provides a basis for understanding high-z galaxies - including those that may be unobservable even with the James Webb Space Telescope (JWST) - in the context of familiar, well-studied objects in the very low-z Universe. We find that, at the epoch of reionization, all Local Group dwarfs were less luminous than the faintest galaxies detectable in deep HST observations of blank fields. We predict that JWST will observe z ˜ 7 progenitors of galaxies similar to the Large Magellanic Cloud today; however, the HST Frontier Fields initiative may already be observing such galaxies, highlighting the power of gravitational lensing. Consensus reionization models require an extrapolation of the observed blank-field luminosity function (LF) at z ≈ 7 by at least 2 orders of magnitude in order to maintain reionization. This scenario requires the progenitors of the Fornax and Sagittarius dwarf spheroidal galaxies to be contributors to the ionizing background at z ˜ 7. Combined with numerical simulations, our results argue for a break in the UV LF from a faint-end slope of α ˜ -2 at MUV ≲ -13 to α ˜ -1.2 at lower luminosities. Applied to photometric samples at lower redshifts, our analysis suggests that HST observations in lensing fields at z ˜ 2 are capable of probing galaxies with luminosities comparable to the expected progenitor of Fornax.

  1. What Powers Diffuse Lyα Emission around High-Redshift Galaxies?

    NASA Astrophysics Data System (ADS)

    Xue, Rui; Lee, Kyoung-Soo

    2016-06-01

    We report the detection of diffuse Lyα emission, or Lyman-α halos (LAHs), around high-redshift star-forming galaxies. Our samples consist of ~1400 galaxies at z~2.66 and z~3.78 within the total area of 2.0 deg2 where several massive protoclusters are known to reside. Taking advantage of the wide range of galaxy parameters spanned by our samples, we investigate how the LAH characteristics depend on UV and Lyα properties and local environmental galaxy density. We find that the median size of the LAHs depends strongly on UV continuum luminosities (and thus UV star formation rates), while it does not correlate with Lyα equivalent widths and galaxy overdensity. The galaxies in our sample – the majority are continuum-faint Lyα line emitters (LAEs) – have the median LAH size of 5-6 kpc with 40-50% of the Lyα emission originating from the diffuse Lyα halo. However, the most UV-luminous galaxies show more extended halos (6-9 kpc). Most of the discrepancies found among the existing studies may be reconciled if the LAH size is primarily driven by the UV luminosity of the host galaxy, while other parameters themselves weakly correlate with UV luminosities but with large scatter. Based on the considerations of the observed trends and detailed comparisons of the measured Lyα radial profile with theoretical predictions, we conclude that diffuse Lyα emission is largely powered by central star formation while the contribution from gravitational cooling and faint satellites is at best secondary.

  2. EXPLORING THE CHEMICAL LINK BETWEEN LOCAL ELLIPTICALS AND THEIR HIGH-REDSHIFT PROGENITORS

    SciTech Connect

    Leja, Joel; Van Dokkum, Pieter G.; Momcheva, Ivelina; Nelson, Erica; Brammer, Gabriel; Skelton, Rosalind E.; Whitaker, Katherine E.; Andrews, Brett H.; Franx, Marijn; Patel, Shannon G.; Kriek, Mariska; Van der Wel, Arjen; Bezanson, Rachel; Conroy, Charlie; Förster Schreiber, Natascha

    2013-12-01

    We present Keck/MOSFIRE K-band spectroscopy of the first mass-selected sample of galaxies at z ∼ 2.3. Targets are selected from the 3D-Hubble Space Telescope Treasury survey. The six detected galaxies have a mean [N II]λ6584/Hα ratio of 0.27 ± 0.01, with a small standard deviation of 0.05. This mean value is similar to that of UV-selected galaxies of the same mass. The mean gas-phase oxygen abundance inferred from the [N II]/Hα ratios depends on the calibration method, and ranges from 12+log(O/H){sub gas} = 8.57 for the Pettini and Pagel calibration to 12+log(O/H){sub gas} = 8.87 for the Maiolino et al. calibration. Measurements of the stellar oxygen abundance in nearby quiescent galaxies with the same number density indicate 12+log(O/H){sub stars} = 8.95, similar to the gas-phase abundances of the z ∼ 2.3 galaxies if the Maiolino et al. calibration is used. This suggests that these high-redshift star forming galaxies may be progenitors of today's massive early-type galaxies. The main uncertainties are the absolute calibration of the gas-phase oxygen abundance and the incompleteness of the z ∼ 2.3 sample: the galaxies with detected Hα tend to be larger and have higher star formation rates than the galaxies without detected Hα, and we may still be missing the most dust-obscured progenitors.

  3. Massive Clumps in Local Galaxies: Comparisons with High-redshift Clumps

    NASA Astrophysics Data System (ADS)

    Elmegreen, Bruce G.; Elmegreen, Debra Meloy; Sánchez Almeida, J.; Muñoz-Tuñón, C.; Dewberry, J.; Putko, J.; Teich, Y.; Popinchalk, M.

    2013-09-01

    Local UV-bright galaxies in the Kiso survey include clumpy systems with kiloparsec-size star complexes that resemble clumpy young galaxies in surveys at high redshift. We compare clump masses and underlying disks in several dozen galaxies from each of these surveys to the star complexes and disks of normal spirals. Photometry and spectroscopy for the Kiso and spiral sample come from the Sloan Digital Sky Survey. We find that the largest Kiso clumpy galaxies resemble Ultra Deep Field (UDF) clumpies in terms of the star formation rates, clump masses, and clump surface densities. Clump masses and surface densities in normal spirals are smaller. If the clump masses are proportional to the turbulent Jeans mass in the interstellar medium, then for the most luminous galaxies in the sequence of normal:Kiso:UDF, the turbulent speeds and surface densities increase in the proportions 1.0:4.7:5.0 and 1.0:4.0:5.1, respectively, for fixed restframe B-band absolute magnitude. For the least luminous galaxies in the overlapping magnitude range, the turbulent speed and surface density trends are 1.0:2.7:7.4 and 1.0:1.4:3.0, respectively. We also find that while all three types have radially decreasing disk intensities when measured with ellipse-fit azimuthal averages, the average profiles are more irregular for UDF clumpies (which are viewed in their restframe UV) than for Kiso galaxies (viewed at g-band), and major axis intensity scans are even more irregular for the UDF than Kiso galaxies. Local clumpy galaxies in the Kiso survey appear to be intermediate between UDF clumpies and normal spirals.

  4. Resolved Gas Kinematics in a Sample of Low-Redshift High Star-Formation Rate Galaxies

    NASA Astrophysics Data System (ADS)

    Varidel, Mathew; Pracy, Michael; Croom, Scott; Owers, Matt S.; Sadler, Elaine

    2016-03-01

    We have used integral field spectroscopy of a sample of six nearby (z 0.01-0.04) high star-formation rate (SFR ˜ 10-40 M_⊙ yr^{-1}) galaxies to investigate the relationship between local velocity dispersion and star-formation rate on sub-galactic scales. The low-redshift mitigates, to some extent, the effect of beam smearing which artificially inflates the measured dispersion as it combines regions with different line-of-sight velocities into a single spatial pixel. We compare the parametric maps of the velocity dispersion with the Hα flux (a proxy for local star-formation rate), and the velocity gradient (a proxy for the local effect of beam smearing). We find, even for these very nearby galaxies, the Hα velocity dispersion correlates more strongly with velocity gradient than with Hα flux-implying that beam smearing is still having a significant effect on the velocity dispersion measurements. We obtain a first-order non parametric correction for the unweighted and flux weighted mean velocity dispersion by fitting a 2D linear regression model to the spaxel-by-spaxel data where the velocity gradient and the Hα flux are the independent variables and the velocity dispersion is the dependent variable; and then extrapolating to zero velocity gradient. The corrected velocity dispersions are a factor of 1.3-4.5 and 1.3-2.7 lower than the uncorrected flux-weighted and unweighted mean line-of-sight velocity dispersion values, respectively. These corrections are larger than has been previously cited using disc models of the velocity and velocity dispersion field to correct for beam smearing. The corrected flux-weighted velocity dispersion values are σ m 20-50 km s-1.

  5. RED NUGGETS AT HIGH REDSHIFT: STRUCTURAL EVOLUTION OF QUIESCENT GALAXIES OVER 10 Gyr OF COSMIC HISTORY

    SciTech Connect

    Damjanov, Ivana; Abraham, Roberto G.; Carlberg, Raymond G.; Mentuch, Erin; Glazebrook, Karl; Caris, Evelyn; Green, Andrew W.; McCarthy, Patrick J.; Chen, Hsiao-Wen; Crampton, David; Murowinski, Richard; Joergensen, Inger; Roth, Kathy; Juneau, Stephanie; Marzke, Ronald O.; Savaglio, Sandra; Yan Haojing

    2011-10-01

    We present an analysis of the size growth seen in early-type galaxies over 10 Gyr of cosmic time. Our analysis is based on a homogeneous synthesis of published data from 16 spectroscopic surveys observed at similar spatial resolution, augmented by new measurements for galaxies in the Gemini Deep Deep Survey. In total, our sample contains structural data for 465 galaxies (mainly early-type) in the redshift range 0.2 < z < 2.7. The size evolution of passively evolving galaxies over this redshift range is gradual and continuous, with no evidence for an end or change to the process around z {approx} 1, as has been hinted at by some surveys which analyze subsets of the data in isolation. The size growth appears to be independent of stellar mass, with the mass-normalized half-light radius scaling with redshift as R{sub e} {proportional_to}(1 + z){sup -1.62{+-}0.34}. Surprisingly, this power law seems to be in good agreement with the recently reported continuous size evolution of UV-bright galaxies in the redshift range z {approx} 0.5-3.5. It is also in accordance with the predictions from recent theoretical models.

  6. The Cycle of Dust in the Milky Ways: Clues from the High-Redshift and the Local Universe

    NASA Technical Reports Server (NTRS)

    Dwek, Eli

    2008-01-01

    Massive amount of dust has been observed at high-redshifts when the universe was a mere 900 Myr old. The formation and evolution of dust is there dominated by massive stars and interstellar processes. In contrast, in the local universe lower mass stars, predominantly 2-5 Msun AGB stars, play the dominant role in the production of interstellar dust. These two extreme environments offer fascinating clues about the evolution of dust in the Milky Way galaxy

  7. Why Do Compact Active Galactic Nuclei at High Redshift Twinkle Less?

    NASA Technical Reports Server (NTRS)

    Koay, J. Y.; Macquart, J.-P.; Bignall, H. E.; Reynolds, C.; Rickett, B. J.; Jauncey, D. L.; Pursimo, T.; Lovell, J. E. J.; Kedziora-Chudczer, L.; Ojha, R.

    2012-01-01

    The fraction of compact active galactic.nuclei (AGNs) that exhibit interstellar scintillation (ISS) at radio wavelengths, as well as their scintillation amplitudes, have been found to decrease significantly for sources at redshifts z approx greater than 2. This can be attributed to an increase in the angular sizes of the mu-as-scale cores or a decrease in the flux densities of the compact mu-as cores relative to that of the mas-scale components with increasing redshift, possibly arising from (1) the space-time curvature of an expanding Universe, (2) AGN evolution, (3) source selection biases, (4) scatter broadening in the ionized intergalactic medium (IGM), or (5) gravitational lensing. We examine the frequency scaling of this redshift dependence of ISS to determine its origin, using data from a dual-frequency survey of ISS of 128 sources at 0 approx < z approx < 4. We present a novel method of analysis which accounts for selection effects in the source sample. We determine that the redshift dependence of ISS is partially linked to the steepening of source spectral indices (alpha (sup 8.4, sub 4.9)) with redshift, caused either by selection biases or AGN evolution, coupled with weaker ISS in the alpha (sup 8.4, sub 4.9) < -0.4 sources. Selecting only the -0.4 < alpha (sup 8.4, sub 4.9) < 0.4 sources, we find that the redshift dependence of ISS is still significant, but is not significantly steeper than the expected (1 + z)(exp 0.5) scaling of source angular sizes due to cosmological expansion for a brightness temperature and flux-limited sample of sources. We find no significant evidence for scatter broadening in the IGM, ruling it out as the main cause of the redshift dependence of ISS. We obtain an upper limit to IGM scatter broadening of approx. < 110 mu-as at 4.9 GHz with 99% confidence for all lines of sight, and as low as approx. < 8 mu-as for sight-lines to the most compact, approx 10 mu-as sources.

  8. MARZ: Redshifting Program

    NASA Astrophysics Data System (ADS)

    Hinton, Samuel

    2016-05-01

    MARZ analyzes objects and produces high quality spectroscopic redshift measurements. Spectra not matched correctly by the automatic algorithm can be redshifted manually by cycling automatic results, manual template comparison, or marking spectral features. The software has an intuitive interface and powerful automatic matching capabilities on spectra, and can be run interactively or from the command line, and runs as a Web application. MARZ can be run on a local server; it is also available for use on a public server.

  9. Escape fraction of ionizing photons from high-redshift galaxies in cosmological SPH simulations

    NASA Astrophysics Data System (ADS)

    Yajima, Hidenobu; Choi, Jun-Hwan; Nagamine, Kentaro

    2011-03-01

    Combing the three-dimensional radiative transfer (RT) calculation and cosmological smoothed particle hydrodynamics (SPH) simulations, we study the escape fraction of ionizing photons (fesc) of high-redshift galaxies at z= 3-6. Our simulations cover the halo mass range of Mh= 109-1012 M⊙. We post-process several hundred simulated galaxies with the Authentic Radiative Transfer (ART) code to study the halo mass dependence of fesc. In this paper, we restrict ourselves to the transfer of stellar radiation from local stellar population in each dark matter halo. We find that the average fesc steeply decreases as the halo mass increases, with a large scatter for the lower-mass haloes. The low-mass haloes with Mh˜ 109 M⊙ have large values of fesc (with an average of ˜0.4), whereas the massive haloes with Mh˜ 1011 M⊙ show small values of fesc (with an average of ˜0.07). This is because in our simulations, the massive haloes show more clumpy structure in gas distribution, and the star-forming regions are embedded inside these clumps, making it more difficult for the ionizing photons to escape. On the other hand, in low-mass haloes, there are often conical regions of highly ionized gas due to the shifted location of young star clusters from the centre of dark matter halo, which allows the ionizing photons to escape more easily than in the high-mass haloes. By counting the number of escaped ionizing photons, we show that the star-forming galaxies can ionize the intergalactic medium at z= 3-6. The main contributor to the ionizing photons is the haloes with Mh≲ 1010 M⊙ owing to their high fesc. The large dispersion in fesc suggests that there may be various sizes of H II bubbles around the haloes even with the same mass in the early stages of reionization. We also examine the effect of UV background radiation field on fesc using simple, four different treatments of UV background.

  10. A POPULATION OF X-RAY WEAK QUASARS: PHL 1811 ANALOGS AT HIGH REDSHIFT

    SciTech Connect

    Wu Jianfeng; Brandt, W. N.; Schneider, Donald P.; Hall, Patrick B.; Gibson, Robert R.; Schmidt, Sarah J.; Richards, Gordon T.; Shemmer, Ohad; Just, Dennis W.

    2011-07-20

    We report the results from Chandra and XMM-Newton observations of a sample of 10 type 1 quasars selected to have unusual UV emission-line properties (weak and blueshifted high-ionization lines; strong UV Fe emission) similar to those of PHL 1811, a confirmed intrinsically X-ray weak quasar. These quasars were identified by the Sloan Digital Sky Survey at high redshift (z {approx} 2.2); eight are radio quiet while two are radio intermediate. All of the radio-quiet PHL 1811 analogs, without exception, are notably X-ray weak by a mean factor of {approx}13. These sources lack broad absorption lines and have blue UV/optical continua, supporting the hypothesis that they are intrinsically X-ray weak like PHL 1811 itself. However, their average X-ray spectrum appears to be harder than those of typical quasars, which may indicate the presence of heavy intrinsic X-ray absorption. Our sample of radio-quiet PHL 1811 analogs supports a connection between an X-ray weak spectral energy distribution and PHL 1811-like UV emission lines; this connection provides an economical way to identify X-ray weak type 1 quasars. The fraction of radio-quiet PHL 1811 analogs in the radio-quiet quasar population is estimated to be {approx}< 1.2%. We have investigated correlations between relative X-ray brightness and UV emission-line properties (e.g., C IV equivalent width and blueshift) for a sample combining our radio-quiet PHL 1811 analogs, PHL 1811 itself, and typical type 1 quasars. These correlation analyses suggest that PHL 1811 analogs may have extreme wind-dominated broad emission-line regions. Observationally, the radio-quiet PHL 1811 analogs appear to be a subset ({approx}30%) of radio-quiet weak-line quasars (WLQs). The existence of a subset of quasars in which high-ionization 'shielding gas' covers most of the broad emission-line region (BELR), but little more than the BELR, could potentially unify the PHL 1811 analogs and WLQs. The two radio-intermediate PHL 1811 analogs are X

  11. Discovery of Very High Energy Gamma Rays from PKS 1424+240 and Multiwavelength Constraints on its Redshift

    SciTech Connect

    Acciari, V.A.; Aliu, E.; Arlen, T.; Aune, T.; Bautista, M.; Beilicke, M. Benbow, W.; Bottcher, M.; Boltuch, D.; Bradbury, S.M.; Buckley, J.H.; Bugaev, V.; Byrum, K.; Cannon, A.; Cesarini, A.; Chow, Y.C.; Ciupik, L.; Cogan, P.; Cui, W.; Duke, C.; Falcone, A.; /more authors..

    2012-04-05

    We report the first detection of very-high-energy (VHE) gamma-ray emission above 140GeV from PKS 1424+240, a BL Lac object with an unknown redshift. The photon spectrum above 140GeV measured by VERITAS is well described by a power law with a photon index of 3.8 {+-}0.5{sub stat} {+-} 0.3{sub syst} and a flux normalization at 200 GeV of (5.1 {+-} 0.9{sub stat} {+-} 0.5{sub syst}) x 10{sup -11} TeV{sup -1} cm{sup -2} s{sup -1}, where stat and syst denote the statistical and systematical uncertainty, respectively. The VHE flux is steady over the observation period between MJD 54881 and 55003 (2009 February 19 to June 21). Flux variability is also not observed in contemporaneous high energy observations with the Fermi Large Area Telescope (LAT). Contemporaneous X-ray and optical data were also obtained from the Swift XRT and MDM observatory, respectively. The broadband spectral energy distribution (SED) is well described by a one-zone synchrotron self-Compton (SSC) model favoring a redshift of less than 0.1. Using the photon index measured with Fermi in combination with recent extragalactic background light (EBL) absorption models it can be concluded from the VERITAS data that the redshift of PKS 1424+240 is less than 0.66.

  12. Searching High-Redshift Large-Scale Structures: Photometry of Four Fields around Quasar Pairs at z ~ 1

    NASA Astrophysics Data System (ADS)

    Boris, N. V.; Sodré, L., Jr.; Cypriano, E. S.; Santos, W. A.; de Oliveira, C. Mendes; West, M.

    2007-09-01

    We have studied the photometric properties of four fields around the high-redshift quasar pairs QP 1310+0007, QP 1355-0032, QP 0110-0219, and QP 0114-3140 at z~1 with the aim of identifying large-scale structures (galaxy clusters or groups) around them. This sample was observed with the Gemini Multi-Object Spectograph (GMOS) at the Gemini North and South telescopes in the g', r', i', and z' bands, and our photometry is complete to a limiting magnitude of i'~24 mag (corresponding to ~M*i'+2 at the redshift of the pairs). Our analysis reveals that QP 0110-0219 shows very strong and QP 1310+0007 and QP 1355-0032 show some evidence for the presence of rich galaxy clusters in direct vicinity of the pairs. On the other hand, QP 0114-3140 could be an isolated pair in a poor environment. This work suggest that z~1 quasar pairs are excellent tracers of high-density environments, and the same technique may be useful to find clusters at higher redshifts.

  13. A LINK TO THE PAST: USING MARKOV CHAIN MONTE CARLO FITTING TO CONSTRAIN FUNDAMENTAL PARAMETERS OF HIGH-REDSHIFT GALAXIES

    SciTech Connect

    Pirzkal, N.; Rothberg, B.; Koekemoer, Anton; Nilsson, Kim K.; Finkelstein, S.; Malhotra, Sangeeta; Rhoads, James

    2012-04-01

    We have developed a new method for fitting spectral energy distributions (SEDs) to identify and constrain the physical properties of high-redshift (4 < z < 8) galaxies. Our approach uses an implementation of Bayesian based Markov Chain Monte Carlo that we have dubbed '{pi}MC{sup 2}'. It allows us to compare observations to arbitrarily complex models and to compute 95% credible intervals that provide robust constraints for the model parameters. The work is presented in two sections. In the first, we test {pi}MC{sup 2} using simulated SEDs to not only confirm the recovery of the known inputs but to assess the limitations of the method and identify potential hazards of SED fitting when applied specifically to high-redshift (z > 4) galaxies. In the second part of the paper we apply {pi}MC{sup 2} to thirty-three 4 < z < 8 objects, including the spectroscopically confirmed Grism ACS Program for Extragalactic Science Ly{alpha} sample (4 < z < 6), supplemented by newly obtained Hubble Space Telescope/WFC3 near-IR observations, and several recently reported broadband selected z > 6 galaxies. Using {pi}MC{sup 2}, we are able to constrain the stellar mass of these objects and in some cases their stellar age and find no evidence that any of these sources formed at a redshift larger than z = 8, a time when the universe was Almost-Equal-To 0.6 Gyr old.

  14. The hard X-ray luminosity function of high-redshift (3 < z ≲ 5) active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Vito, F.; Gilli, R.; Vignali, C.; Comastri, A.; Brusa, M.; Cappelluti, N.; Iwasawa, K.

    2014-12-01

    We present the hard-band (2-10 keV) X-ray luminosity function (HXLF) of 0.5-2 keV band selected active galactic nuclei (AGN) at high redshift. We have assembled a sample of 141 AGN at 3 < z ≲ 5 from X-ray surveys of different size and depth, in order to sample different regions in the LX - z plane. The HXLF is fitted in the range log LX ˜ 43-45 with standard analytical evolutionary models through a maximum likelihood procedure. The evolution of the HXLF is well described by a pure density evolution, with the AGN space density declining by a factor of ˜10 from z = 3 to 5. A luminosity-dependent density evolution model, which, normally, best represents the HXLF evolution at lower redshift, is also consistent with the data, but a larger sample of low-luminosity (log LX < 44), high-redshift AGN is necessary to constrain this model. We also estimated the intrinsic fraction of AGN obscured by a column density log NH ≥ 23 to be 0.54 ± 0.05, with no strong dependence on luminosity. This fraction is higher than the value in the Local Universe, suggesting an evolution of the luminous (LX > 1044 erg s-1) obscured AGN fraction from z = 0 to z > 3.

  15. THE A2667 GIANT ARC AT z = 1.03: EVIDENCE FOR LARGE-SCALE SHOCKS AT HIGH REDSHIFT

    SciTech Connect

    Yuan, T.-T.; Kewley, L. J.; Swinbank, A. M.; Richard, J.

    2012-11-01

    We present the spatially resolved emission line ratio properties of a {approx}10{sup 10} M {sub Sun} star-forming galaxy at redshift z = 1.03. This galaxy is gravitationally lensed as a triple-image giant arc behind the massive lensing cluster A2667. The main image of the galaxy has magnification factors of 14 {+-} 2.1 in flux and {approx}2 Multiplication-Sign 7 in area, yielding an intrinsic spatial resolution of 115-405 pc after adaptive optics correction with OSIRIS at KECK II. The Hubble Space Telescope morphology shows a clumpy structure and the H{alpha} kinematics indicates a large velocity dispersion with V {sub max} sin (i)/{sigma} {approx} 0.73, consistent with high-redshift disk galaxies of similar masses. From the [N II]/H{alpha} line ratios, we find that the central 350 pc of the galaxy is dominated by star formation. The [N II]/H{alpha} line ratios are higher in the outer disk than in the central regions. Most noticeably, we find a blueshifted region of strong [N II]/H{alpha} emission in the outer disk. Applying our recent H II region and slow-shock models, we propose that this elevated [N II]/H{alpha} ratio region is contaminated by a significant fraction of shock excitation due to galactic outflows. Our analysis suggests that shocked regions may mimic flat or inverted metallicity gradients at high redshift.

  16. GALAXY EVOLUTION IN OVERDENSE ENVIRONMENTS AT HIGH REDSHIFT: PASSIVE EARLY-TYPE GALAXIES IN A CLUSTER AT z {approx} 2

    SciTech Connect

    Strazzullo, V.; Gobat, R.; Daddi, E.; Onodera, M.; Carollo, M.; Dickinson, M.; Renzini, A.; Arimoto, N.; Cimatti, A.; Finoguenov, A.; Chary, R.-R.

    2013-08-01

    We present a study of galaxy populations in the central region of the IRAC-selected, X-ray-detected galaxy cluster Cl J1449+0856 at z = 2. Based on a sample of spectroscopic and photometric cluster members, we investigate stellar populations and the morphological structure of cluster galaxies over an area of {approx}0.7 Mpc{sup 2} around the cluster core. The cluster stands out as a clear overdensity both in redshift space and in the spatial distribution of galaxies close to the center of the extended X-ray emission. The cluster core region (r < 200 kpc) shows a clearly enhanced passive fraction with respect to field levels. However, together with a population of massive, passive galaxies mostly with early-type morphologies, the cluster core also hosts massive, actively star-forming, often highly dust reddened sources. Close to the cluster center, a multi-component system of passive and star-forming galaxies could represent the future brightest cluster galaxy still forming. We observe a clear correlation between passive stellar populations and an early-type morphology, in agreement with field studies at similar redshift. Passive early-type galaxies in this cluster are typically a factor of 2-3 smaller than similarly massive early types at z {approx} 0. On the other hand, these same objects are on average larger by a factor of {approx}2 than field early-types at similar redshift, lending support to recent claims of an accelerated structural evolution in high-redshift dense environments. These results point toward the early formation of a population of massive galaxies, already evolved both in their structure and stellar populations, coexisting with still actively forming massive galaxies in the central regions of young clusters 10 billion years ago.

  17. Tracing quasar narrow-line regions across redshift: a library of high-S/N optical spectra

    NASA Astrophysics Data System (ADS)

    Tammour, A.; Gallagher, S. C.; Richards, Gordon

    2015-04-01

    In a single optical spectrum, the quasar narrow-line region (NLR) reveals low-density, photoionized gas in the host galaxy interstellar medium (ISM), while the immediate vicinity of the central engine generates the accretion disc continuum and broad emission lines. To isolate these two components, we construct a library of high-S/N optical composite spectra created from the Sloan Digital Sky Survey Data Release 7. We divide the sample into bins of continuum luminosity and Hβ full width at half-maximum that are used to construct median composites at different redshift steps up to 0.75. We measure the luminosities of the narrow-emission lines [Ne V] λ3427, [Ne III] λ3870, [O III] λ5007, and [O II] λ3728 with ionization potentials (IPs) of 97, 40, 35, and 13.6 eV, respectively. The high IP lines' luminosities show no evidence of increase with redshift consistent with no evolution in the AGN spectral energy distribution or the host galaxy ISM illuminated by the continuum. In contrast, we find that the [O II] line becomes stronger at higher redshifts, and we interpret this as a consequence of enhanced star formation contributing to the [O II] emission in host galaxies at higher redshifts. The SFRs estimated from the [O II] luminosities show a flatter increase with z than non-AGN galaxies given our assumed AGN contribution to the [O II] luminosity. Finally, we confirm an inverse correlation between the strength of the Fe II λ4570 complex and both the [O III] equivalent width (though not the luminosity) and the width of the Hβ line as known from the eigenvector 1 correlations.

  18. The relation between mass and concentration in X-ray galaxy clusters at high redshift

    NASA Astrophysics Data System (ADS)

    Amodeo, S.; Ettori, S.; Capasso, R.; Sereno, M.

    2016-05-01

    Context. Galaxy clusters are the most recent, gravitationally bound products of the hierarchical mass accretion over cosmological scales. How the mass is concentrated is predicted to correlate with the total mass in the halo of the cluster, wherein systems at higher mass are less concentrated at given redshift and, for any given mass, systems with lower concentration are found at higher redshifts. Aims: Through a spatial and spectral X-ray analysis, we reconstruct the total mass profile of 47 galaxy clusters observed with Chandra in the redshift range 0.4 redshift. This sample is the largest investigated so far at z> 0.4, and is well suited to providing the first constraint on the concentration-mass relation at z> 0.7 from X-ray analysis. Methods: Under the assumption that the distribution of the X-ray emitting gas is spherically symmetric and in the hydrostatic equilibrium with the underlined gravitational potential, we combine the deprojected gas density and spectral temperature profiles through the hydrostatic equilibrium equation to recover the parameters that describe a Navarro-Frenk-White total mass distribution. The comparison with results from weak-lensing analysis reveals a very good agreement both for masses and concentrations. The uncertainties are however too large to make any robust conclusion about the hydrostatic bias of these systems. Results: The distribution of concentrations is well approximated by a log-normal function in all the mass and redshift ranges investigated. The relation is well described by the form c ∝ MB(1 + z)C with B = -0.50 ± 0.20, C = 0.12 ± 0.61 (at 68.3% confidence). This relation is slightly steeper than that predicted by numerical simulations (B ~ -0.1) and does not show any evident redshift evolution. We obtain the first constraints on the properties of

  19. Unusual high-redshift radio broad absorption-line quasar 1624+3758

    NASA Astrophysics Data System (ADS)

    Benn, C. R.; Carballo, R.; Holt, J.; Vigotti, M.; González-Serrano, J. I.; Mack, K.-H.; Perley, R. A.

    2005-07-01

    We present observations of the most radio-luminous broad absorption-line (BAL) quasar known, 1624+3758, at redshift z= 3.377. The quasar has several unusual properties. (1) The FeII UV191 1787-Åemission line is very prominent. (2) The BAL trough (BALnicity index 2990 km s-1) is detached by 21000 km s-1 and extends to velocity v=-29000 km s-1. There are additional intrinsic absorbers at -1900 and -2800 km s-1. (3) The radio rotation measure of the quasar, 18350 rad m-2, is the second highest known. The radio luminosity is P1.4GHz= 4.3 × 1027 W Hz-1 (H0= 50 km s-1 Mpc-1, q0= 0.5) and the radio loudness is R*= 260. The radio source is compact and the radio spectrum is GHz-peaked, consistent with it being relatively young. The width of the CIV emission line, in conjunction with the total optical luminosity, implies a black hole mass MBH~ 109Msolar, L/LEddington~ 2. The high Eddington ratio and the radio-loudness place this quasar in one corner of Boroson's two-component scheme for the classification of active galactic nuclei, implying a very high accretion rate, and this may account for some of the unusual observed properties. The v=-1900km s-1 absorber is a possible Lyman-limit system, with N(HI) = 4 × 1018 cm-2, and a covering factor of 0.7. A complex mini-BAL absorber at v=-2200 to -3400 km s-1 is detected in each of CIV, NV and OVI. The blue and red components of the CIV doublet happen to be unblended, allowing both the covering factor and optical depth to be determined as a function of velocity. Variation of the covering factor with velocity dominates the form of the mini-BAL, with the absorption being saturated (e-τ~ 0) over most of the velocity range. The velocity dependence of the covering factor and the large velocity width imply that the mini-BAL is intrinsic to the quasar. There is some evidence of line-locking between velocity components in the CIV mini-BAL, suggesting that radiation pressure plays a role in accelerating the outflow.

  20. A lower fragmentation mass scale for clumps in high redshift galaxies: a systematic numerical study

    NASA Astrophysics Data System (ADS)

    Tamburello, Valentina; Mayer, Lucio; Shen, Sijing; Wadsley, James

    2015-08-01

    We perform a systematic study of the effect of sub-grid physics, resolution and structural parameters on the fragmentation of gas-rich galaxy discs into massive star forming clumps due to gravitational instability. We use the state-of-the-art zoom-in cosmological hydrodynamical simulation ARGO (Fiacconi et al. 2015) to set up the initial conditions of our models, and then carry out 26 high resolution controlled simulations of high-z galaxies using the GASOLINE2 code, which includes a modern, numerically robust SPH implementation.We find that when blast-wave feedback is included, the formation of long-lived, gravitationally bound clumps requires disc gas fractions of at least 50% and massive discs, which should have Vmax > 200 km/s at z ˜ 2, more massive than the typical galaxies expected at those redshifts.Less than 50 Myr after formation, clumps have stellar masses in the range 4 × 106 - 5 × 107 M⊙.Formation of clumps with mass exceeding ˜108 M⊙ is a rare occurrence, since it requires mergers between multiple massive clumps, as we verified by tracing back in time the particles belonging to such clumps. Such mergers happen after a few orbital times (˜200-300 Myr), but normally clumps migrate inward and are tidally disrupted on shorter timescales.Clump sizes are in the range 100-500 pc. We argue that giant clumps identified in observations (˜109 M⊙ and 1 kpc in size) might either have a different origin, such as minor mergers and clumpy gas accretion, or their sizes and masses may be overestimated due to resolution issues.Using an analytical model, already developed to explain the fragmentation scale in gravitationally unstable 3D protoplanetary discs, we can predict fairly accurately the characteristic gaseous masses of clumps soon after fragmentation, when standard Toome analysis becomes invalid.Due to their modest size, clumps have little effect on bulge growth as they migrate to the center. In our unstable discs a small bulge can form irrespective of

  1. Escape of about five per cent of Lyman-alpha photons from high-redshift star-forming galaxies.

    PubMed

    Hayes, Matthew; Ostlin, Göran; Schaerer, Daniel; Mas-Hesse, J Miguel; Leitherer, Claus; Atek, Hakim; Kunth, Daniel; Verhamme, Anne; de Barros, Stéphane; Melinder, Jens

    2010-03-25

    The Lyman-alpha (Lyalpha) emission line is the primary observational signature of star-forming galaxies at the highest redshifts, and has enabled the compilation of large samples of galaxies with which to study cosmic evolution. The resonant nature of the line, however, means that Lyalpha photons scatter in the neutral interstellar medium of their host galaxies, and their sensitivity to absorption by interstellar dust may therefore be greatly enhanced. This implies that the Lyalpha luminosity may be significantly reduced, or even completely suppressed. Hitherto, no unbiased empirical test of the escaping fraction (f(esc)) of Lyalpha photons has been performed at high redshifts. Here we report that the average f(esc) from star-forming galaxies at redshift z = 2.2 is just 5 per cent by performing a blind narrowband survey in Lyalpha and Halpha. This implies that numerous conclusions based on Lyalpha-selected samples will require upwards revision by an order of magnitude and we provide a benchmark for this revision. We demonstrate that almost 90 per cent of star-forming galaxies emit insufficient Lyalpha to be detected by standard selection criteria. Both samples show an anti-correlation of f(esc) with dust content, and we show that Lyalpha- and Halpha-selection recovers populations that differ substantially in dust content and f(esc). PMID:20336139

  2. FORMATION OF COMPACT STELLAR CLUSTERS BY HIGH-REDSHIFT GALAXY OUTFLOWS. III. OBSERVABILITY AND CONNECTION TO HALO GLOBULAR CLUSTERS

    SciTech Connect

    Gray, William J.; Scannapieco, Evan

    2011-12-01

    The early universe hosted a large population of low-mass virialized 'minihalos', that were not massive enough to form stars on their own. While most minihalos were photoevaporated by ionizing photons from star-forming galaxies, these galaxies also drove large outflows, which in some cases would have reached the minihalos in advance of ionization fronts. In the previous papers in this series, we carried out high-resolution, three-dimensional adaptive mesh refinement simulations of outflow-minihalo interactions that included non-equilibrium chemistry, radiative cooling, and turbulent mixing. We found that, for a fiducial set of parameters, minihalos were transformed into dense, chemically homogenous stellar clusters. Here we conduct a suite of simulations that follow these interactions over a wide range of parameters including minihalo mass, minihalo formation redshift, outflow energy, outflow redshift, distance, concentration, and spin. In almost all cases, the shocked minihalos form molecules through non-equilibrium reactions and then cool rapidly to become compact, chemically homogenous stellar clusters. Furthermore, we show that the unique properties of these clusters make them a prime target for direct study with the next generation of telescopes, and that there are many reasons to suspect that their low-redshift counterparts are the observed population of halo globular clusters.

  3. GRB 120521C at z ∼ 6 and the properties of high-redshift γ-ray bursts

    SciTech Connect

    Laskar, Tanmoy; Berger, Edo; Zauderer, B. Ashley; Margutti, Raffaella; Fong, Wen-fai; Tanvir, Nial; Wiersema, Klaas; Levan, Andrew; Perley, Daniel; Menten, Karl; Hrudkova, Marie

    2014-01-20

    We present optical, near-infrared, and radio observations of the afterglow of GRB 120521C. By modeling the multi-wavelength data set, we derive a photometric redshift of z ≈ 6.0, which we confirm with a low signal-to-noise ratio spectrum of the afterglow. We find that a model with a constant-density environment provides a good fit to the afterglow data, with an inferred density of n ≲ 0.05 cm{sup –3}. The radio observations reveal the presence of a jet break at t {sub jet} ≈ 7 d, corresponding to a jet opening angle of θ{sub jet} ≈ 3°. The beaming-corrected γ-ray and kinetic energies are E {sub γ} ≈ E{sub K} ≈ 3 × 10{sup 50} erg. We quantify the uncertainties in our results using a detailed Markov Chain Monte Carlo analysis, which allows us to uncover degeneracies between the physical parameters of the explosion. To compare GRB 120521C to other high-redshift bursts in a uniform manner we re-fit all available afterglow data for the two other bursts at z ≳ 6 with radio detections (GRBs 050904 and 090423). We find a jet break at t {sub jet} ≈ 15 d for GRB 090423, in contrast to previous work. Based on these three events, we find that γ-ray bursts (GRBs) at z ≳ 6 appear to explode in constant-density environments, and exhibit a wide range of energies and densities that span the range inferred for lower redshift bursts. On the other hand, we find a hint for narrower jets in the z ≳ 6 bursts, potentially indicating a larger true event rate at these redshifts. Overall, our results indicate that long GRBs share a common progenitor population at least to z ∼ 8.

  4. Ly{alpha} EMISSION FROM HIGH-REDSHIFT SOURCES IN COSMOS

    SciTech Connect

    Mallery, Ryan P.; Mobasher, Bahram; Hemmati, Shoubaneh; Capak, Peter; Kakazu, Yuko; Masters, Dan; Scoville, Nick; Scarlata, Claudia; Salvato, Mara; McCracken, Henry

    2012-12-01

    We investigate spectroscopically measured Ly{alpha} equivalent widths (EWs) and escape fractions of 244 sources of which 95 are Lyman break galaxies (LBGs) and 106 Lyman alpha emitters (LAEs) at z {approx} 4.2, z {approx} 4.8, and z {approx} 5.6 selected from intermediate and narrowband observations. The sources were selected from the Cosmic Evolution Survey and observed with the DEIMOS spectrograph. We find that the distribution of EWs shows no evolution with redshift for both the LBG selected sources and the intermediate/narrowband LAEs. We also find that the Ly{alpha} escape fraction of intermediate/narrowband LAEs is on average higher and has a larger variation than the escape fraction of LBG selected sources. The escape fraction does not show a dependence with redshift. Similar to what has been found for LAEs at low redshifts, the sources with the highest extinctions show the lowest escape fractions. The range of escape fractions increases with decreasing extinction. This is evidence that the dust extinction is the most important factor affecting the escape of Ly{alpha} photons, but at low extinctions other factors, such as the H I covering fraction and gas kinematics, can be just as effective at inhibiting the escape of Ly{alpha} photons.

  5. Lyα Emission from High-redshift Sources in COSMOS

    NASA Astrophysics Data System (ADS)

    Mallery, Ryan P.; Mobasher, Bahram; Capak, Peter; Kakazu, Yuko; Masters, Dan; Ilbert, Olivier; Hemmati, Shoubaneh; Scarlata, Claudia; Salvato, Mara; McCracken, Henry; LeFevre, Olivier; Scoville, Nick

    2012-12-01

    We investigate spectroscopically measured Lyα equivalent widths (EWs) and escape fractions of 244 sources of which 95 are Lyman break galaxies (LBGs) and 106 Lyman alpha emitters (LAEs) at z ~ 4.2, z ~ 4.8, and z ~ 5.6 selected from intermediate and narrowband observations. The sources were selected from the Cosmic Evolution Survey and observed with the DEIMOS spectrograph. We find that the distribution of EWs shows no evolution with redshift for both the LBG selected sources and the intermediate/narrowband LAEs. We also find that the Lyα escape fraction of intermediate/narrowband LAEs is on average higher and has a larger variation than the escape fraction of LBG selected sources. The escape fraction does not show a dependence with redshift. Similar to what has been found for LAEs at low redshifts, the sources with the highest extinctions show the lowest escape fractions. The range of escape fractions increases with decreasing extinction. This is evidence that the dust extinction is the most important factor affecting the escape of Lyα photons, but at low extinctions other factors, such as the H I covering fraction and gas kinematics, can be just as effective at inhibiting the escape of Lyα photons.

  6. The ratio of CO to total gas mass in high-redshift galaxies

    NASA Astrophysics Data System (ADS)

    Mashian, Natalie; Sternberg, Amiel; Loeb, Abraham

    2013-11-01

    Walter et al. have recently identified the J = 6 - 5, 5 - 4, and 2 - 1 CO rotational emission lines, and [C II] fine-structure emission line from the star-forming interstellar medium (ISM) in the high-redshift submillimetre source HDF 850.1, at z = 5.183. We employ large velocity gradient (LVG) modelling to analyse the spectra of this source assuming the [C II] and CO emissions originate from (i) separate virialized regions, (ii) separate unvirialized regions, (iii) uniformly mixed virialized regions and (iv) uniformly mixed unvirialized regions. We present the best-fitting set of parameters, including for each case the ratio α between the total hydrogen/helium gas mass and the CO(1-0) line luminosity. We also present computations of the ratio of H2 mass to [C II] line luminosity for optically thin conditions, for a range of gas temperatures and densities, for direct conversion of [C II] line luminosities to `CO-dark' H2 masses. For HDF 850.1 we find that a model in which the CO and C+ are uniformly mixed in gas that is shielded from ultraviolet radiation requires a cosmic ray or X-ray ionization rate of ζ ≈ 3 × 10-14 s-1, plausibly consistent with the large star formation rate (˜103 M⊙ yr-1) observed in this source. Enforcing the cosmological constraint posed by the abundance of dark matter haloes in the standard Λ cold dark matter (ΛCDM) cosmology and taking into account other possible contributions to the total gas mass, we find that the two models in which the virialization condition is enforced can be ruled out at the ≳2σ level, while the model assuming mixed unvirialized regions is less likely. We conclude that modelling HDF 850.1's ISM as a collection of unvirialized molecular clouds with distinct CO and C+ layers, for which α = 1.2 M⊙ (K km s-1 pc2)-1 for the CO to H2 mass-to-luminosity ratio (similar to the standard ultraluminous infrared galaxy value), is most consistent with the ΛCDM cosmology.

  7. Gemini Spectroscopy of Supernovae from the Supernova Legacy Survey: Improving High-Redshift Supernova Selection and Classification

    NASA Astrophysics Data System (ADS)

    Howell, D. A.; Sullivan, M.; Perrett, K.; Bronder, T. J.; Hook, I. M.; Astier, P.; Aubourg, E.; Balam, D.; Basa, S.; Carlberg, R. G.; Fabbro, S.; Fouchez, D.; Guy, J.; Lafoux, H.; Neill, J. D.; Pain, R.; Palanque-Delabrouille, N.; Pritchet, C. J.; Regnault, N.; Rich, J.; Taillet, R.; Knop, R.; McMahon, R. G.; Perlmutter, S.; Walton, N. A.

    2005-12-01

    We present new techniques for improving the efficiency of supernova (SN) classification at high redshift using 64 candidates observed at Gemini North and South during the first year of the Supernova Legacy Survey (SNLS). The SNLS is an ongoing 5 year project with the goal of measuring the equation of state of dark energy by discovering and following over 700 high-redshift SNe Ia using data from the Canada-France-Hawaii Telescope Legacy Survey. We achieve an improvement in the SN Ia spectroscopic confirmation rate: at Gemini 71% of candidates are now confirmed as SNe Ia, compared to 54% using the methods of previous surveys. This is despite the comparatively high redshift of this sample, in which the median SN Ia redshift is z=0.81 (0.155<=z<=1.01). These improvements were realized because we use the unprecedented color coverage and light curve sampling of the SNLS to predict whether a candidate is a SN Ia and to estimate its redshift, before obtaining a spectrum, using a new technique called the ``SN photo-z.'' In addition, we have improved techniques for galaxy subtraction and SN template χ2 fitting, allowing us to identify candidates even when they are only 15% as bright as the host galaxy. The largest impediment to SN identification is found to be host galaxy contamination of the spectrum-when the SN was at least as bright as the underlying host galaxy the target was identified more than 90% of the time. However, even SNe in bright host galaxies can be easily identified in good seeing conditions. When the image quality was better than 0.55", the candidate was identified 88% of the time. Over the 5 year course of the survey, using the selection techniques presented here, we will be able to add ~170 more confirmed SNe Ia than would be possible using previous methods. APC, 11 Place Marcelin Berthelot, 75231 Paris Cedex 05, France. DSM/DAPNIA, CEA/Saclay, 91191 Gif-sur-Yvette Cedex, France.

  8. Quasar redshifts: the intrinsic component

    NASA Astrophysics Data System (ADS)

    Hansen, Peter M.

    2016-09-01

    The large observed redshift of quasars has suggested large cosmological distances and a corresponding enormous energy output to explain the brightness or luminosity as seen at earth. Alternative or complementary sources of redshift have not been identified by the astronomical community. This study examines one possible source of additional redshift: an intrinsic component based on the plasma characteristics of high temperature and high electron density which are believed to be present.

  9. Is There a Maximum Star Formation Rate in High-redshift Galaxies?

    NASA Astrophysics Data System (ADS)

    Barger, A. J.; Cowie, L. L.; Chen, C.-C.; Owen, F. N.; Wang, W.-H.; Casey, C. M.; Lee, N.; Sanders, D. B.; Williams, J. P.

    2014-03-01

    We use the James Clerk Maxwell Telescope's SCUBA-2 camera to image a 400 arcmin2 area surrounding the GOODS-N field. The 850 μm rms noise ranges from a value of 0.49 mJy in the central region to 3.5 mJy at the outside edge. From these data, we construct an 850 μm source catalog to 2 mJy containing 49 sources detected above the 4σ level. We use an ultradeep (11.5 μJy at 5σ) 1.4 GHz image obtained with the Karl G. Jansky Very Large Array together with observations made with the Submillimeter Array to identify counterparts to the submillimeter galaxies. For most cases of multiple radio counterparts, we can identify the correct counterpart from new and existing Submillimeter Array data. We have spectroscopic redshifts for 62% of the radio sources in the 9' radius highest sensitivity region (556/894) and 67% of the radio sources in the GOODS-N region (367/543). We supplement these with a modest number of additional photometric redshifts in the GOODS-N region (30). We measure millimetric redshifts from the radio to submillimeter flux ratios for the unidentified submillimeter sample, assuming an Arp 220 spectral energy distribution. We find a radio-flux-dependent K - z relation for the radio sources, which we use to estimate redshifts for the remaining radio sources. We determine the star formation rates (SFRs) of the submillimeter sources based on their radio powers and their submillimeter fluxes and find that they agree well. The radio data are deep enough to detect star-forming galaxies with SFRs >2000 M ⊙ yr-1 to z ~ 6. We find galaxies with SFRs up to ~6000 M ⊙ yr-1 over the redshift range z = 1.5-6, but we see evidence for a turn-down in the SFR distribution function above 2000 M ⊙ yr-1. The James Clerk Maxwell Telescope is operated by the Joint Astronomy Centre on behalf of the Science and Technology Facilities Council of the United Kingdom, the National Research Council of Canada, and (until 2013 March 31) the Netherlands Organisation for Scientific

  10. Is there a maximum star formation rate in high-redshift galaxies? , , ,

    SciTech Connect

    Barger, A. J.; Cowie, L. L.; Chen, C.-C.; Casey, C. M.; Lee, N.; Sanders, D. B.; Williams, J. P.; Owen, F. N.; Wang, W.-H.

    2014-03-20

    We use the James Clerk Maxwell Telescope's SCUBA-2 camera to image a 400 arcmin{sup 2} area surrounding the GOODS-N field. The 850 μm rms noise ranges from a value of 0.49 mJy in the central region to 3.5 mJy at the outside edge. From these data, we construct an 850 μm source catalog to 2 mJy containing 49 sources detected above the 4σ level. We use an ultradeep (11.5 μJy at 5σ) 1.4 GHz image obtained with the Karl G. Jansky Very Large Array together with observations made with the Submillimeter Array to identify counterparts to the submillimeter galaxies. For most cases of multiple radio counterparts, we can identify the correct counterpart from new and existing Submillimeter Array data. We have spectroscopic redshifts for 62% of the radio sources in the 9' radius highest sensitivity region (556/894) and 67% of the radio sources in the GOODS-N region (367/543). We supplement these with a modest number of additional photometric redshifts in the GOODS-N region (30). We measure millimetric redshifts from the radio to submillimeter flux ratios for the unidentified submillimeter sample, assuming an Arp 220 spectral energy distribution. We find a radio-flux-dependent K – z relation for the radio sources, which we use to estimate redshifts for the remaining radio sources. We determine the star formation rates (SFRs) of the submillimeter sources based on their radio powers and their submillimeter fluxes and find that they agree well. The radio data are deep enough to detect star-forming galaxies with SFRs >2000 M {sub ☉} yr{sup –1} to z ∼ 6. We find galaxies with SFRs up to ∼6000 M {sub ☉} yr{sup –1} over the redshift range z = 1.5-6, but we see evidence for a turn-down in the SFR distribution function above 2000 M {sub ☉} yr{sup –1}.

  11. Zoomed high-resolution simulations of Multi-coupled Dark Energy: cored galaxy density profiles at high redshift

    NASA Astrophysics Data System (ADS)

    Garaldi, Enrico; Baldi, Marco; Moscardini, Lauro

    2016-01-01

    We perform for the first time high-resolution zoom-in re-simulations of individual halos in the context of the Multi-coupled Dark Energy (McDE) scenario, which is characterised by the existence of two distinct Dark Matter particle species with opposite couplings to a Dark Energy scalar field. We compare the structural properties of the simulated halos to the standard ΛCDM results. The zoomed-in initial conditions are set up using a specifically designed code called ZInCo that we publicly release along with the present paper. Our numerical results allow to investigate in detail and with unprecedented resolution the halo segregation process that characterises McDE cosmologies from its very early stages. In particular, we find that in contrast to what could be inferred from previous numerical analysis at lower resolution, the segregation process is already in place at redshifts as high as z ~ 7. Most remarkably, we find that the subsequent evolution of the segregation leads to the formation of cored total matter density profiles with a core size that progressively increases in time. The shape of the cored profiles can be accurately predicted as the superposition of two NFW profiles with an increasing offset, thereby confirming the interpretation of the simulations results in terms of the segregation of the two dark matter components of the halo as a consequence of their different coupling to the Dark Energy field.

  12. Redshift surveys

    NASA Technical Reports Server (NTRS)

    Geller, Margaret J.; Huchra, J. P.

    1991-01-01

    Present-day understanding of the large-scale galaxy distribution is reviewed. The statistics of the CfA redshift survey are briefly discussed. The need for deeper surveys to clarify the issues raised by recent studies of large-scale galactic distribution is addressed.

  13. Weak Line Quasars at High Redshift: Extremely High Accretion Rate Sources?

    NASA Astrophysics Data System (ADS)

    Shemmer, Ohad

    2011-10-01

    The Sloan Digital Sky Survey has recently discovered a remarkable group of ~80 quasars at z=2.2-5.9 with extremely weak emission lines in their rest-frame UV spectra. We propose to extend our XMM-Newton observations of such sources and obtain imaging spectroscopy of four quasars of this class with a total exposure time of 165 ks, providing ~1000 photons per source. This will enable an accurate measurement of the hard-X-ray photon index required for a robust determination of the accretion rate in each source. Steep spectral slopes will indicate that high accretion rates may be responsible for the intrinsic weakness of the UV emission lines. The proposed observations will lead to new insights about the accretion process and broad emission line formation in all active galactic nuclei.

  14. Weak Line Quasars at High Redshift: Extremely High Accretion Rate Sources?

    NASA Astrophysics Data System (ADS)

    Shemmer, Ohad

    2010-10-01

    The Sloan Digital Sky Survey has recently discovered a remarkable group of ~80 quasars at z=2.2-5.9 with extremely weak emission lines in their rest-frame UV spectra. We propose to extend our XMM-Newton observations of such sources and obtain imaging spectroscopy of four quasars of this class with a total exposure time of 165 ks, providing ~1000 photons per source. This will enable an accurate measurement of the hard-X-ray photon index required for a robust determination of the accretion rate in each source. Steep spectral slopes will indicate that high accretion rates may be responsible for the intrinsic weakness of the UV emission lines. The proposed observations will lead to new insights about the accretion process and broad emission line formation in all active galactic nuclei.

  15. Weak Line Quasars at High Redshift: Extremely High Accretion Rate Sources?

    NASA Astrophysics Data System (ADS)

    Shemmer, Ohad

    2013-10-01

    The Sloan Digital Sky Survey has discovered a remarkable group of ~100 quasars with extremely weak emission lines in their rest-frame optical-UV spectra. We propose to extend our XMM-Newton observations of such sources and obtain imaging spectroscopy of six quasars of this class with a total exposure time of 128 ks, providing ~1000 photons per source. This will enable an accurate measurement of the hard-X-ray photon index required for a robust determination of the accretion rate in each source. Steep spectral slopes will indicate that high accretion rates may be responsible for the intrinsic weakness of the optical-UV emission lines. The proposed observations will lead to new insights about the accretion process and broad emission line formation in all active galactic nuclei.

  16. High-energy properties of the high-redshift flat spectrum radio quasar PKS 2149-306

    NASA Astrophysics Data System (ADS)

    D'Ammando, F.; Orienti, M.

    2016-01-01

    We investigate the γ-ray and X-ray properties of the flat spectrum radio quasar PKS 2149-306 at redshift z = 2.345. A strong γ-ray flare from this source was detected by the Large Area Telescope on board the Fermi Gamma-ray Space Telescope satellite in 2013 January, reaching on January 20 a daily peak flux of (301 ± 36) × 10-8 ph cm-2 s-1 in the 0.1-100 GeV energy range. This flux corresponds to an apparent isotropic luminosity of (1.5 ± 0.2) × 1050 erg s-1, comparable to the highest values observed by a blazar so far. During the flare the increase of flux was accompanied by a significant change of the spectral properties. Moreover significant flux variations on a 6-h time-scale were observed, compatible with the light crossing time of the event horizon of the central black hole. The broad-band X-ray spectra of PKS 2149-306 observed by Swift-XRT and NuSTAR are well described by a broken power-law model, with a very hard spectrum (Γ1 ˜ 1) below the break energy, at E break = 2.5-3.0 keV, and Γ2 ˜ 1.4-1.5 above the break energy. The steepening of the spectrum below ˜3 keV may indicate that the soft X-ray emission is produced by the low-energy relativistic electrons. This is in agreement with the small variability amplitude and the lack of spectral changes in that part of the X-ray spectrum observed between the two NuSTAR and Swift joint observations. As for the other high-redshift FSRQ detected by both Fermi-LAT and Swift-BAT, the photon index of PKS 2149-306 in hard X-ray is 1.6 or lower and the average γ-ray luminosity higher than 2 × 1048 erg s-1.

  17. Detectability of [C II] 158 μm Emission from High-Redshift Galaxies: Predictions for ALMA and SPICA

    NASA Astrophysics Data System (ADS)

    Nagamine, Kentaro; Wolfe, Arthur M.; Hernquist, Lars

    2006-08-01

    We discuss the detectability of high-redshift galaxies via [C II] 158 μm line emission by coupling an analytic model with cosmological smoothed particle hydrodynamics (SPH) simulations that are based on the concordance Λ cold dark matter (CDM) model. Our analytic model describes a multiphase interstellar medium (ISM) irradiated by the far-ultraviolet (FUV) radiation from local star-forming regions, and it calculates thermal and ionization equilibrium between cooling and heating. The model allows us to predict the mass fraction of a cold neutral medium (CNM) embedded in a warm neutral medium (WNM). Our cosmological SPH simulations include a treatment of radiative cooling/heating, star formation, and feedback effects from supernovae and galactic winds. Using our method, we make predictions for the [C II] luminosity from high-redshift galaxies that can be directly compared with upcoming observations by the Atacama Large Millimeter Array (ALMA) and the Space Infrared Telescope for Cosmology and Astrophysics (SPICA). We find that the number density of high-redshift galaxies detectable by ALMA and SPICA via [C II] emission depends significantly on the amount of neutral gas, which is highly uncertain. Our calculations suggest that, in a CDM universe, most [C II] sources at z=3 are faint objects with Sν<0.01 mJy. Lyman break galaxies (LBGs) brighter than RAB=23.5 mag are expected to have flux densities Sν=1-3 mJy depending on the strength of galactic wind feedback. The recommended observing strategy for ALMA and SPICA is to aim at very bright LBGs or star-forming DRG/BzK galaxies.

  18. The Origin and Detection of High-Redshift Supermassive Black Holes

    NASA Astrophysics Data System (ADS)

    Haiman, Zoltán

    2010-11-01

    Supermassive black holes (SMBHs) are common in local galactic nuclei, and SMBHs as massive as several billion solar masses already exist at redshift z = 6. These earliest SMBHs may arise by the combination of Eddington-limited growth and mergers of stellar-mass seed BHs left behind by the first generation of metal-free stars, or by the rapid direct collapse of gas in rare special environments where the gas can avoid fragmenting into stars. In this contribution, I review these two competing scenarios. I also briefly mention some more exotic ideas and how the different models may be distinguished in the future by LISA and other instruments.

  19. Pressure distribution of the high-redshift cluster of galaxies CL J1226.9+3332 with NIKA

    NASA Astrophysics Data System (ADS)

    Adam, R.; Comis, B.; Macías-Pérez, J.-F.; Adane, A.; Ade, P.; André, P.; Beelen, A.; Belier, B.; Benoît, A.; Bideaud, A.; Billot, N.; Blanquer, G.; Bourrion, O.; Calvo, M.; Catalano, A.; Coiffard, G.; Cruciani, A.; D'Addabbo, A.; Désert, F.-X.; Doyle, S.; Goupy, J.; Kramer, C.; Leclercq, S.; Martino, J.; Mauskopf, P.; Mayet, F.; Monfardini, A.; Pajot, F.; Pascale, E.; Perotto, L.; Pointecouteau, E.; Ponthieu, N.; Revéret, V.; Ritacco, A.; Rodriguez, L.; Savini, G.; Schuster, K.; Sievers, A.; Tucker, C.; Zylka, R.

    2015-04-01

    The thermal Sunyaev-Zel'dovich (tSZ) effect is expected to provide a low scatter mass proxy for galaxy clusters since it is directly proportional to the cluster thermal energy. The tSZ observations have proven to be a powerful tool for detecting and studying them, but high angular resolution observations are now needed to push their investigation to a higher redshift. In this paper, we report high angular (<20 arcsec) resolution tSZ observations of the high-redshift cluster CL J1226.9+3332 (z = 0.89). It was imaged at 150 and 260 GHz using the NIKA camera at the IRAM 30-m telescope. The 150 GHz map shows that CL J1226.9+3332 is morphologically relaxed on large scales with evidence of a disturbed core, while the 260 GHz channel is used mostly to identify point source contamination. NIKA data are combined with those of Planck and X-ray from Chandra to infer the cluster's radial pressure, density, temperature, and entropy distributions. The total mass profile of the cluster is derived, and we find M500 = 5.96+1.02-0.79 × 1014M⊙ within the radius R500 = 930+50-43 kpc, at a 68% confidence level. (R500 is the radius within which the average density is 500 times the critical density at the cluster's redshift.) NIKA is the prototype camera of NIKA2, a KIDs (kinetic inductance detectors) based instrument to be installed at the end of 2015. This work is, therefore, part of a pilot study aiming at optimizing tSZ NIKA2 large programs. The FITS file of the published maps is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/576/A12

  20. Supermassive Black Hole Formation at High Redshifts via Direct Collapse: Physical Processes in the Early Stage

    NASA Astrophysics Data System (ADS)

    Choi, Jun-Hwan; Shlosman, Isaac; Begelman, Mitchell C.

    2013-09-01

    We use numerical simulations to explore whether direct collapse can lead to the formation of supermassive black hole (SMBH) seeds at high redshifts. Using the adaptive mesh refinement code ENZO, we follow the evolution of gas within slowly tumbling dark matter (DM) halos of M vir ~ 2 × 108 M ⊙ and R vir ~ 1 kpc. For our idealized simulations, we adopt cosmologically motivated DM and baryon density profiles and angular momentum distributions. Our principal goal is to understand how the collapsing flow overcomes the centrifugal barrier and whether it is subject to fragmentation which can potentially lead to star formation, decreasing the seed SMBH mass. We find that the collapse proceeds from inside out and leads either to a central runaway or to off-center fragmentation. A disk-like configuration is formed inside the centrifugal barrier, growing via accretion. For models with a more cuspy DM distribution, the gas collapses more and experiences a bar-like perturbation and a central runaway on scales of <~ 1-10 pc. We have followed this inflow down to ~10-4 pc (~10 AU), where it is estimated to become optically thick. The flow remains isothermal and the specific angular momentum, j, is efficiently transferred by gravitational torques in a cascade of nested bars. This cascade is triggered by finite perturbations from the large-scale mass distribution and by gas self-gravity, and supports a self-similar, disk-like collapse where the axial ratios remain constant. The mass accretion rate shows a global minimum on scales of ~1-10 pc at the time of the central runaway. In the collapsing phase, virial supersonic turbulence develops and fragmentation is damped. Models with progressively larger initial DM cores evolve similarly, but the timescales become longer. In models with more organized initial rotation—when the rotation of spherical shells is constrained to be coplanar—a torus forms on scales ~20-50 pc outside the disk, and appears to be supported by turbulent

  1. Galaxies at redshifts 5 to 6 with systematically low dust content and high [C II] emission.

    PubMed

    Capak, P L; Carilli, C; Jones, G; Casey, C M; Riechers, D; Sheth, K; Carollo, C M; Ilbert, O; Karim, A; LeFevre, O; Lilly, S; Scoville, N; Smolcic, V; Yan, L

    2015-06-25

    The rest-frame ultraviolet properties of galaxies during the first three billion years of cosmic time (redshift z > 4) indicate a rapid evolution in the dust obscuration of such galaxies. This evolution implies a change in the average properties of the interstellar medium, but the measurements are systematically uncertain owing to untested assumptions and the inability to detect heavily obscured regions of the galaxies. Previous attempts to measure the interstellar medium directly in normal galaxies at these redshifts have failed for a number of reasons, with two notable exceptions. Here we report measurements of the forbidden C ii emission (that is, [C II]) from gas, and the far-infrared emission from dust, in nine typical star-forming galaxies about one billion years after the Big Bang (z ≈ 5-6). We find that these galaxies have thermal emission that is less than 1/12 that of similar systems about two billion years later, and enhanced [C II] emission relative to the far-infrared continuum, confirming a strong evolution in the properties of the interstellar medium in the early Universe. The gas is distributed over scales of one to eight kiloparsecs, and shows diverse dynamics within the sample. These results are consistent with early galaxies having significantly less dust than typical galaxies seen at z < 3 and being comparable in dust content to local low-metallicity systems. PMID:26108853

  2. An integral field spectroscopic survey for high redshift damped Lyman-α galaxies

    NASA Astrophysics Data System (ADS)

    Christensen, L.; Wisotzki, L.; Roth, M. M.; Sánchez, S. F.; Kelz, A.; Jahnke, K.

    2007-06-01

    Aims:We search for galaxy counterparts to damped Lyman-α absorbers (DLAs) at z > 2 towards nine quasars, which have 14 DLAs and 8 sub-DLAs in their spectra. Methods: We use integral field spectroscopy to search for Lyα emission line objects at the redshifts of the absorption systems. Results: Besides recovering two previously confirmed objects, we find six statistically significant candidate Lyα emission line objects. The candidates are identified as having wavelengths close to the DLA line where the background quasar emission is absorbed. In comparison with the six currently known Lyα emitting DLA galaxies the candidates have similar line fluxes and line widths, while velocity offsets between the emission lines and systemic DLA redshifts are larger. The impact parameters are larger than 10 kpc, and lower column density systems are found at larger impact parameters. Conclusions: Assuming that a single gas cloud extends from the QSO line of sight to the location of the candidate emission line, we find that the average candidate DLA galaxy is surrounded by neutral gas with an exponential scale length of ~5 kpc. Based on observations collected at the Centro Astronómico Hispano Alemán (CAHA), operated by the Max-Planck Institut für Astronomie and the Instituto Astrofisica de Andalucia (CSIC). Full Fig. [see full text] is only available in electronic form at http://www.aanda.org

  3. See Change: First Results from the Supernova Cosmology Project High Redshift Cluster Supernova Survey

    NASA Astrophysics Data System (ADS)

    Hayden, Brian; Aldering, Greg Scott; Amanullah, Rahman; Barbary, Kyle H.; Boehringer, Hans; Brodwin, Mark; Cunha, Carlos E.; Deustua, Susana E.; Dixon, Samantha; Eisenhardt, Peter R.; Fagrelius, Parker; Fassbender, Rene; Fruchter, Andrew S.; Gladders, Michael; Gonzalez, Anthony H.; Goobar, Ariel; Hildebrandt, Hendrik; Hilton, Matt; Hoekstra, Henk; Hook, Isobel; Huang, Xiaosheng; Huterer, Dragan; Jee, James; Kim, Alex G.; Kowalski, Marek; Lidman, Chris; Linder, Eric; Luther, Kyle; Meyers, Joshua; Muzzin, Adam; Nordin, Jakob; Pain, Reynald; Perlmutter, Saul; Richard, Johan; Rosati, Piero; Rozo, Eduardo; Rubin, David; Rykoff, Eli S.; Santos, Joana; Saunders, Clare; Sofiatti, Caroline; Spadafora, Anthony L.; Stanford, S. Adam; Stern, Daniel; Suzuki, Nao; Wechsler, Risa H.; Willis, Jon; Wilson, Gillian; Yen, Mike

    2016-01-01

    Using the Hubble Space Telescope, the Supernova Cosmology Project is performing a type Ia supernova search in the highest-redshift, most massive clusters known to date. This large HST program spans Cycles 22-23. It will improve the constraint by a factor of 3 on the Dark Energy equation of state above z ~ 1, allowing an unprecedented probe of Dark Energy time variation. When combined with the improved cluster mass calibration from gravitational lensing provided by the deep WFC3-IR observations of the clusters, the SNe clusters observed also will triple the Dark Energy Task Force Figure of Merit. With Cycle 22 completed, we present preliminary supernova light curves above z=1.1 and discuss the number of supernovae discovered compared to our expectations from different SN rates models. Our HST imaging and extensive ground-based campaign are already producing unique results; we have spectroscopically confirmed several of the highest redshift cluster members to-date, and confirmed one of the most massive clusters at z~1.2 expected over the entire sky.

  4. The Distribution of Metals in the High Redshift Circumgalactic Medium Around Milky Way Progenitors

    NASA Astrophysics Data System (ADS)

    Vander Vliet, Jacob; Churchill, C. W.; Klimek, E. S.; Trujillo, S.; Ceverino, D.; Klypin, A. A.

    2013-01-01

    In an effort to understand the connection between star formation, feedback, and the circumgalactic medium (CGM), we examine mock quasar spectra through the CGM (within ~200 kpc) of simulated non-group Milky Way progenitors at redshifts 2.5 and 4. The galaxies were simulated in the cosmological setting using Eulerian Gasdynamics plus N-body Adaptive Refinement Tree (ART) code with a resolution of 35-70 pc with two different star formation rates. The first simulations use a Miller-Scalo IMF and did not account for radiation pressure. The second simulations use a Chabrier IMF with a star formation efficiency one third of the first simulations, as well as description of radiation pressure. We measure the absorption lines of several ions including CIV, OVI, SiIV, and Ly beta and compare the covering fraction, equivalent width distribution and the velocity distribution at both redshifts and both star formation recipes. We also compare these to the observational results of the Keck-Baryon Structure Survey (Steidel et al., 2010) for z=2-3 star-forming galaxies.

  5. Unveiling the nature of dark matter with high redshift 21 cm line experiments

    SciTech Connect

    Evoli, C.; Mesinger, A.; Ferrara, A. E-mail: andrei.mesinger@sns.it

    2014-11-01

    Observations of the redshifted 21 cm line from neutral hydrogen will open a new window on the early Universe. By influencing the thermal and ionization history of the intergalactic medium (IGM), annihilating dark matter (DM) can leave a detectable imprint in the 21 cm signal. Building on the publicly available 21cmFAST code, we compute the 21 cm signal for a 10 GeV WIMP DM candidate. The most pronounced role of DM annihilations is in heating the IGM earlier and more uniformly than astrophysical sources of X-rays. This leaves several unambiguous, qualitative signatures in the redshift evolution of the large-scale (k ≅ 0.1 Mpc{sup -1}) 21 cm power amplitude: (i) the local maximum (peak) associated with IGM heating can be lower than the other maxima; (ii) the heating peak can occur while the IGM is in emission against the cosmic microwave background (CMB); (iii) there can be a dramatic drop in power (a global minimum) corresponding to the epoch when the IGM temperature is comparable to the CMB temperature. These signatures are robust to astrophysical uncertainties, and will be easily detectable with second generation interferometers. We also briefly show that decaying warm dark matter has a negligible role in heating the IGM.

  6. PROBING HIGH-REDSHIFT GALAXY FORMATION AT THE HIGHEST LUMINOSITIES: NEW INSIGHTS FROM DEIMOS SPECTROSCOPY

    SciTech Connect

    Lee, Kyoung-Soo; Dey, Arjun; Cooper, Michael C.; Reddy, Naveen; Jannuzi, Buell T.

    2013-07-01

    We present Keck DEIMOS spectroscopic observations of the most UV-luminous star-forming galaxies at redshifts 3.2 < z < 4.6. Our sample, selected in the Booetes field of the NOAO Deep Wide-Field Survey, contains galaxies with luminosities of L* {approx}< L{sub UV} {approx}< 7 L* and is one of the largest samples to date of the most UV-luminous galaxies at these redshifts. Our spectroscopic data confirm 41 candidates as star-forming galaxies at 3.2 < z < 4.6 and validate the relatively clean selection of the photometric candidates with a contamination rate of 11%-28%. We find that the fraction of Ly{alpha} emitting galaxies increases with decreasing UV luminosity. None of the 12 galaxies with M{sub UV} < -22 (i.e., L{sub UV} > 3 L*) exhibit strong Ly{alpha} emission. We find strong evidence of large-scale outflows, transporting the neutral/ionized gas in the interstellar medium away from the galaxy. Galaxies exhibiting both interstellar absorption and Ly{alpha} emission lines show a significant offset between the two features, with a relative velocity of 200-1150 km s{sup -1}. We find tentative evidence that this measure of the outflow velocity increases with UV luminosity and/or stellar mass. The luminosity- and mass-dependent outflow strengths suggest that the efficiency of feedback and enrichment of the surrounding medium depend on these galaxy parameters. We also stack the individual spectra to construct composite spectra of the absorption-line-only and Ly{alpha}-emitting subsets of the UV luminous galaxies at z {approx_equal} 3.7. The composite spectra are very similar to those of lower-redshift and lower-luminosity Lyman break galaxy (LBG) samples, but with some subtle differences. Analyses of the composite spectra suggest that the UV luminous LBGs at z {approx_equal} 3.7 may have a higher covering fraction of absorbing gas, and may be older (or have had more prolonged star formation histories) than their lower-redshift and lower-luminosity counterparts. In

  7. FORMATION OF COMPACT STELLAR CLUSTERS BY HIGH-REDSHIFT GALAXY OUTFLOWS. I. NON-EQUILIBRIUM COOLANT FORMATION

    SciTech Connect

    Gray, William J.; Scannapieco, Evan

    2010-07-20

    We use high-resolution three-dimensional adaptive mesh refinement simulations to investigate the interaction of high-redshift galaxy outflows with low-mass virialized clouds of primordial composition. While atomic cooling allows star formation in objects with virial temperatures above 10{sup 4} K, 'minihalos' below this threshold are generally unable to form stars by themselves. However, these objects are highly susceptible to triggered star formation, induced by outflows from neighboring high-redshift starburst galaxies. Here, we conduct a study of these interactions, focusing on cooling through non-equilibrium molecular hydrogen (H{sub 2}) and hydrogen deuteride (HD) formation. Tracking the non-equilibrium chemistry and cooling of 14 species and including the presence of a dissociating background, we show that shock interactions can transform minihalos into extremely compact clusters of coeval stars. Furthermore, these clusters are all less than {approx}10{sup 6} M {sub sun}, and they are ejected from their parent dark matter halos: properties that are remarkably similar to those of the old population of globular clusters.

  8. ALMA Imaging and Gravitational Lens Models of South Pole Telescope—Selected Dusty, Star-Forming Galaxies at High Redshifts

    NASA Astrophysics Data System (ADS)

    Spilker, J. S.; Marrone, D. P.; Aravena, M.; Béthermin, M.; Bothwell, M. S.; Carlstrom, J. E.; Chapman, S. C.; Crawford, T. M.; de Breuck, C.; Fassnacht, C. D.; Gonzalez, A. H.; Greve, T. R.; Hezaveh, Y.; Litke, K.; Ma, J.; Malkan, M.; Rotermund, K. M.; Strandet, M.; Vieira, J. D.; Weiss, A.; Welikala, N.

    2016-08-01

    The South Pole Telescope has discovered 100 gravitationally lensed, high-redshift, dusty, star-forming galaxies (DSFGs). We present 0.″5 resolution 870 μ {{m}} Atacama Large Millimeter/submillimeter Array imaging of a sample of 47 DSFGs spanning z=1.9{--}5.7, and construct gravitational lens models of these sources. Our visibility-based lens modeling incorporates several sources of residual interferometric calibration uncertainty, allowing us to properly account for noise in the observations. At least 70% of the sources are strongly lensed by foreground galaxies ({μ }870μ {{m}}\\gt 2), with a median magnification of {μ }870μ {{m}}=6.3, extending to {μ }870μ {{m}}\\gt 30. We compare the intrinsic size distribution of the strongly lensed sources to a similar number of unlensed DSFGs and find no significant differences in spite of a bias between the magnification and intrinsic source size. This may indicate that the true size distribution of DSFGs is relatively narrow. We use the source sizes to constrain the wavelength at which the dust optical depth is unity and find this wavelength to be correlated with the dust temperature. This correlation leads to discrepancies in dust mass estimates of a factor of two compared to estimates using a single value for this wavelength. We investigate the relationship between the [C ii] line and the far-infrared luminosity and find that the same correlation between the [C ii]/{L}{{FIR}} ratio and {{{Σ }}}{{FIR}} found for low-redshift star-forming galaxies applies to high-redshift galaxies and extends at least two orders of magnitude higher in {{{Σ }}}{{FIR}}. This lends further credence to the claim that the compactness of the IR-emitting region is the controlling parameter in establishing the “[C ii] deficit.”

  9. Studies of galaxies giving rise to QSO absorption systems and observations of the high-redshift universe

    NASA Astrophysics Data System (ADS)

    Chen, Hsiao-Wen

    I present a study of the galaxies that give rise to Lyman-α (Lyα) and triply ionized carbon (CIV) absorption lines observed in the spectra of background quasi-stellar objects (QSOs), as well as on studies of the high-redshift universe. By comparing the redshifts of galaxies and Lyα absorption systems along common lines of sight, I confirmed the existence of an anti- correlation between Lyα absorption equivalent width and galaxy impact parameter. Further analysis showed that tenuous gas is likely to be distributed around galaxies in spherical halos rather than in flattened disks with the gaseous extent scaling with galaxy B-band and K-band luminosities. I found that extended gaseous halos are a common and generic feature of galaxies over a wide range of luminosity and morphological type and Lyα absorption systems traced a significant and representative portion of the galaxy population. Applying the scaling relation between galaxy gaseous radius and galaxy B-band luminosity to predict the incidence of Lyα absorption systems originating in extended gaseous envelopes of galaxies, I found that luminous galaxies can explain about 50% of Lyα absorption systems with absorption equivalent width W > 0.3 Å. By comparing the redshifts of galaxies and CIV absorption systems along common lines of sight, I found that extended gaseous halos of galaxies have been metal contaminated out to large galactocentric radii, ~100 h-1 kpc. The covering factor of ionized gas in galactic halos was estimated to be 0.93 with a 1 σ lower bound of 0.83, which may strongly constrain the possibilities that CIV absorption systems arised in accreting satellite galaxies or in filaments of gravitationally collapsed structures. To study the high-redshift universe, I analyzed very deep slitless spectroscopy observations acquired by the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope. These observations are especially suited for identifying very distant galaxies due to

  10. Large-scale environmental bias of the high-redshift quasar line-of-sight proximity effect

    NASA Astrophysics Data System (ADS)

    Partl, A. M.; Müller, V.; Yepes, G.; Gottlöber, S.

    2011-08-01

    We analyse the overionization or proximity zone of the intergalactic matter around high-redshift quasars in a cosmological environment. In a box of 64 h-1 Mpc base length, we employ high-resolution dark-matter-only simulations with 10243 particles. For estimating the hydrogen temperature and density distribution, we use the effective equation of state by Hui & Gnedin. Hydrogen is assumed to be in photoionization equilibrium with a model background flux which is fitted to recent observations of the redshift dependence of the mean optical depth and the transmission flux statistics. At the redshifts z= 3, 4 and 4.8, we select model quasar positions at the centre of the 20 most massive haloes and 100 less massive haloes identified in the simulation box. From each assumed quasar position, we cast 100 random lines of sight for two box length, including the changes in the ionization fractions by the high-resolution quasar (QSO) flux field, and derive mock Lyman α spectra. The proximity effect describes the dependence of the mean normalized optical depth ξ=τeff, QSO/τeff, Lyα as a function of the ratio of the ionization rate by the QSO to that of the background field, ω=ΓQSO/ΓUVB, that is, the profile ξ= (1 +ω/a)-0.5, where a strength parameter a is introduced. The strength parameter measures the deviation from the theoretical background model and is used to quantify any influence of the environmental density field. We improve the statistical analysis of the profile fitting in employing a moving average to the profile. We reproduce an unbiased measurement of the proximity effect which is not affected by the host halo mass. The scatter between the different lines of sight and different quasar host positions increases with decreasing redshift, σlog a≈ 0.08, 0.20 and 0.36 for z= 4.8, 4 and 3, respectively. Around the host haloes, we find only a slight average overdensity in the proximity zone at comoving radii of 1 < rc < 10 h-1 Mpc. However, a clear power

  11. Bayesian analysis of X-ray jet features of the high redshift quasar jets observed with Chandra

    NASA Astrophysics Data System (ADS)

    McKeough, Kathryn; Siemiginowska, Aneta; Kashyap, Vinay; Stein, Nathan; Cheung, Chi C.

    2015-01-01

    X-ray emission of powerful quasar jets may be a result of the inverse Compton (IC) process in which the Cosmic Microwave Background (CMB) photons gain energy by interactions with the jet's relativistic electrons. However, there is no definite evidence that IC/CMB process is responsible for the observed X-ray emission of large scale jets. A step toward understanding the X-ray emission process is to study the Radio and X-ray morphologies of the jet. Results from Chandra X-ray and multi-frequency VLA imaging observations of a sample of 11 high- redshift (z > 2) quasars with kilo-parsec scale radio jets are reported. The sample consists of a set of four z ≥ 3.6 flat-spectrum radio quasars, and seven intermediate redshift (z = 2.1 - 2.9) quasars comprised of four sources with integrated steep radio spectra and three with flat radio spectra.We implement a Bayesian image analysis program, Low-count Image Reconstruction and Analysis (LIRA) , to analyze jet features in the X-ray images of the high redshift quasars. Out of the 36 regions where knots are visible in the radio jets, nine showed detectable X-ray emission. Significant detections are based on the upper bound p-value test based on LIRA simulations. The X-ray and radio properties of this sample combined are examined and compared to lower-redshift samples.This work is supported in part by the National Science Foundation REU and the Department of Defense ASSURE programs under NSF Grant no.1262851 and by the Smithsonian Institution, and by NASA Contract NAS8-39073 to the Chandra X-ray Center (CXC). This research has made use of data obtained from the Chandra Data Archive and Chandra Source Catalog, and software provided by the CXC in the application packages CIAO, ChIPS, and Sherpa. Work is also supported by the Chandra grant GO4-15099X.

  12. The Relationship between the High-Energy Continuum and Emission Lines in Quasars: A Low-Redshift Sample

    NASA Astrophysics Data System (ADS)

    Green, Paul J.

    1996-08-01

    Photoionization models dictate that many prominent quasar emission lines are sensitive to both the luminosity and shape of the quasars high- energy continuum-primarily the extreme ultraviolet (EUV) and soft X-ray continuum. Unfortunately, the EUV band is severely obscured by Galactic absorption. Using data from the adjacent UV and soft X-ray bandpasses, we initiate the first large-scale, multiline investigation of correlations between the QSO soft X-ray continuum and line emission in a sample of QSOs observed by Einstein and IUE. We present a new error analysis for objective, automated line measurements, which enables us to include the information contained in weak or undetected lines. We tabulate more than 300 UV emission-line equivalent widths from IUE spectra of 85 QSOs in the atlas of Lanzetta, Turnshek, & Sandoval, then characterize the distributions of line equivalent and velocity widths (Wlambda_ and FWHM). We then compare these line parameters to the QSO continuum spectral energy distributions from optical through soft X-ray wavelengths, using survival analysis to incorporate any nondetections for X-ray flux and/or UV emission lines. Several correlations noted in previous studies are not reproduced here. However, we illustrate that the exclusion of undetected lines from such studies may spuriously enhance apparent correlations. We find significant correlations between Wlambda_ and UV luminosity (e.g., the well-studied Baldwin effect) for Lyα, C IV, He II, and C III]. Wlambda_(C III]) and Wlambda_(He II) also show previously unreported correlations with X-ray luminosity that, for C III], appears to be primary. The line ratios C III]/Lyα and He II/Lyα both show strongest dependence on l_x_. Wlambda_(Lyα) correlates strongly with spectral slopes α_UV_ and α_OX_ (between 2500 A and 2 keV), but not with X-ray luminosity. Using these results, we argue that one simple geometrical interpretation of the Baldwin effect (BEff) as a result of a distribution of

  13. Understanding the Physical Conditions that Drive Line Emission in Nebular Regions of High-Redshift Galaxies

    NASA Astrophysics Data System (ADS)

    Zeimann, Gregory; Gebhardt, H.; Ciardullo, R.; Gronwall, C.; Hagen, A.

    2014-01-01

    We use the 3D-HST near-IR grism survey to study the physical conditions of the nebular regions within a statistically complete sample of ~ 300 emission-line selected star forming galaxies in the redshift range of 2.0 < z < 2.3. These spectra include the emission lines of oxygen ([O II] 3727, [O III] 5007), neon ([Ne III] 3869), and hydrogen (H-beta, H-gamma); when coupled with constraints on reddening and stellar mass derived from the objects' spectral energy distributions, these data allow us to explore parameters such as the systems' alpha-element abundances and ionization parameters. We try to reproduce these line ratios using theoretical models, such as CLOUDY, and compare line ratios with that of possible local analogs like Green Pea galaxies and Blue Compact Dwarfs. With our sample we can study any possible evolution in the physical conditions of star formation regions.

  14. High-Redshift Galaxy Surveys and the Reionization of the Universe

    NASA Astrophysics Data System (ADS)

    Bouwens, Rychard

    Star-forming galaxies in the early universe provide us with perhaps the most natural way of explaining the reionization of the universe. Current observational results are sufficiently comprehensive, as to allow us to approximately calculate how the ionizing radiation from galaxies varies as a function of cosmic time. Important uncertainties in modeling reionization by galaxies revolve around the escape fraction and its luminosity and redshift dependence, a possible truncation of the galaxy luminosity function at the faint end, and an evolution in the production efficiency of Lyman-continuum photons with cosmic time. Despite these uncertainties, plausible choices for these parameters naturally predict a cosmic ionizing emissivity at z ˜ 6-10 whose evolution and overall normalization is in excellent agreement with that derived from current observational constraints. This strongly suggests that galaxies provide the necessary photons to reionize the universe.

  15. PKS 2123-463: A Confirmed Gamma-ray Blazar at High Redshift

    NASA Technical Reports Server (NTRS)

    DAmmando, F.; Rau, A.; Schady, P.; Finke, J.; Orienti, M.; Greiner, J.; Kann, D. A.; Ojha, R.; Foley, A. R.; Stevens, J.; Blanchard, J. M.; Edwards, P. G.; Kadler, M.; Lovell, J. E. J.

    2012-01-01

    The flat spectrum radio quasar (FSRQ) PKS 2123-463 was associated in the First Fermi-LAT source catalog with the gamma-ray source 1FGL J2126.1-4603, but when considering the full first two years of Fermi observations, no gamma-ray source at a position consistent with this FSRQ was detected, and thus PKS 2123-463 was not reported in the Second Fermi-LAT source catalog. On 2011 December 14 a gamma-ray source positionally consistent with PKS 2123-463 was detected in flaring activity by Fermi-LAT. This activity triggered radio-to-X-ray observations by the Swift, GROND, ATCA, Ceduna, and KAT-7 observatories. Results of the localization of the gamma-ray source over 41 months of Fermi-LAT operation are reported here in conjunction with the results of the analysis of radio, optical, UV and X-ray data collected soon after the gamma-ray flare. The strict spatial association with the lower energy counterpart together with a simultaneous increase of the activity in optical, UV, X-ray and gamma-ray bands led to a firm identification of the gamma-ray source with PKS 2123-463. A new photometric redshift has been estimated as z = 1.46 +/- 0.05 using GROND and Swift/UVOT observations, in rough agreement with the disputed spectroscopic redshift of z = 1.67. We fit the broadband spectral energy distribution with a synchrotron/external Compton model. We find that a thermal disk component is necessary to explain the optical/UV emis- sion detected by Swift/UVOT. This disk has a luminosity of 1.8x1046 erg s-1, and a fit to the disk emission assuming a Schwarzschild (i.e., nonrotating) black hole gives a mass of 2 x 109 M(solar mass). This is the first black hole mass estimate for this source.

  16. How Environment Affects Star Formation: Tracing Activity in High Redshift Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Alberts, Stacey; Pope, A.; Brodwin, M.; Atlee, D. W.; Lin, Y.; Chary, R.; Dey, A.; Eisenhardt, P. R.; Gettings, D.; Gonzalez, A. H.; Jannuzi, B.; Mancone, C.; Moustakas, J.; Snyder, G. F.; Stanford, S. A.; Stern, D.; Weiner, B. J.; Zeimann, G.

    2014-01-01

    The emerging picture of the evolution of cluster galaxies indicates that the epoch of z>1 is a crucial period of active star formation and mass assembly in clusters. In this dissertation, I leverage a uniformly-selected cluster sample from the IRAC Shallow Cluster Survey (ISCS) with Herschel imaging to analyse the star formation (SF) activity in cluster galaxies over the past ten billion years. This analysis is two-fold: 1) using 274 clusters across the 9 square degree Bootes field, I perform a stacking analysis of mass-limited samples of cluster and field galaxies using wide-field Herschel observations over a long redshift baseline, z=0.3-1.5. I find that the average SF activity in cluster galaxies is evolving faster than in the field, with field-like SF in the cluster cores and enhanced SF activity in the cluster outskirts at z>1.2. By further breaking down my analysis by galaxy mass and type, I determine which mechanisms are capable of driving this evolution. 2) I use unique, deep Herschel imaging of 11 spectroscopically-confirmed clusters from z=1.1-1.8 to study the properties of individual infrared bright cluster galaxies as a function of redshift and cluster-centric radius. Combined with ancillary data, I determine the star formation, dust, and AGN properties of the most active cluster galaxies and tie the evolution of these properties back to the environment by comparing to field populations. By combining these two approaches, I constrain cluster galaxy properties during a pivotal epoch of dust-obscured star formation activity and mass assembly in some of the most extreme structures in the Universe.

  17. Cosmic Evolution of Accretion Power and Fusion Power: AGN and Starbursts at High Redshifts

    NASA Astrophysics Data System (ADS)

    Arnold Malkan, Matthew

    2009-05-01

    Extragalactic astronomers have been working for decades on obtaining robust measures of the luminosities galaxies produce from stars, and from active galactic nuclei. Our ultimate goal is deriving the cosmic evolution of all radiation produced by fusion and by black hole accretion. The combined effects of dust reddening and redshift make it impossible to achieve this with optical observations alone. Fortunately, infrared thermal continuum and forbidden line emission--from warm dust grains and ionized gas, respectively--can now be measured with excellent sensitivity. However, when measuring entire galaxies, these dust and gas emissions are powered by both active galactic nuclei and starbursts, which may be hard to separate spatially. We must use the fact that the patterns of IR energy output from AGN and SBs differ, with AGN making more ionized gas and hotter dust grains. Low-resolution spectroscopy, or even narrow-band filters can sort out the line emission from both processes when they are mixed in the same galaxy. The hope is that these spectroscopic determinations of star formation rate, and mass accretion rate in relatively small samples of bright galaxies will allow a calibration of broadband continuum measures. The dust continuum emission will then be measured in enormous samples of galaxies spanning their full range of masses, metallicities, environments and redshifts. Along the way, we should learn the astrophysical basis of black hole/galaxy "co-evolution." I will summarize some of the first specific infrared steps of this ambitious agenda, taken with IRAS and ISO to 2MASS, Akari and Spitzer and other telescopes. Time permitting, some of the exciting upcoming observational prospects will be advertised.

  18. High-redshift quasars and the supermassive black hole mass budget: constraints on quasar formation models

    NASA Astrophysics Data System (ADS)

    Bromley, J. M.; Somerville, R. S.; Fabian, A. C.

    2004-05-01

    We investigate the constraints on models of supermassive black hole (SMBH) and quasar formation obtainable from two recent observational developments: the discovery of luminous quasars at z~ 6, and estimates of the local mass density of SMBHs. If ~90 per cent of this mass was accreted at redshifts z<~ 3, as suggested by the observed quasar luminosity functions, these joint constraints pose a challenge for models, which must account for the observed luminous quasar population at z~ 6 within a very limited `mass budget'. We investigate a class of models based within the hierarchical structure formation scenario, in which major mergers lead to black hole formation and fuelling, and the resulting quasars shine at their Eddington-limited rate until their fuel is exhausted. We show that the simplest such model, in which a constant fraction of the gas within the halo is accreted in each major merger, cannot satisfy both constraints simultaneously. When this model is normalized to reproduce the number density of luminous quasars at z~ 6, the mass budget is grossly exceeded owing to an overabundance of lower-mass SMBHs. We explore a range of modifications to the simple model designed to overcome this problem. We show that both constraints can be satisfied if the gas accretion fraction scales as a function of the halo virial velocity. Similar scalings have been proposed in order to reproduce the local M•-σ relation. Successful models can also be constructed by restricting the formation of seed black holes to redshifts above zcrit~ 11.5 or to haloes above a velocity threshold vcrit~ 55 km s-1, or assuming that only a fraction of major mergers result in formation of a seed SMBH. We also briefly discuss the issue of trying to assume a `universal M•-σ relation' within the framework of simple Press-Schechter models, and further show that a fixed universal relation between SMBH mass and host halo mass is unlikely.

  19. PROSPECTS FOR MEASURING THE MASS OF BLACK HOLES AT HIGH REDSHIFTS WITH RESOLVED KINEMATICS USING GRAVITATIONAL LENSING

    SciTech Connect

    Hezaveh, Yashar D.

    2014-08-20

    Application of the most robust method of measuring black hole masses, spatially resolved kinematics of gas and stars, is presently limited to nearby galaxies. The Atacama Large Millimeter/sub-millimeter Array (ALMA) and 30m class telescopes (the Thirty Meter Telescope, the Giant Magellan Telescope, and the European Extremely Large Telescope) with milli-arcsecond resolution are expected to extend such measurements to larger distances. Here, we study the possibility of exploiting the angular magnification provided by strong gravitational lensing to measure black hole masses at high redshifts (z ∼ 1-6), using resolved gas kinematics with these instruments. We show that in ∼15% and ∼20% of strongly lensed galaxies, the inner 25 and 50 pc could be resolved, allowing the mass of ≳ 10{sup 8} M {sub ☉} black holes to be dynamically measured with ALMA, if moderately bright molecular gas is present at these small radii. Given the large number of strong lenses discovered in current millimeter surveys and future optical surveys, this fraction could constitute a statistically significant population for studying the evolution of the M-σ relation at high redshifts.

  20. Constraints on Photoionization Feedback from Number Counts of Ultra-faint High-redshift Galaxies in the Frontier Fields

    NASA Astrophysics Data System (ADS)

    Castellano, M.; Yue, B.; Ferrara, A.; Merlin, E.; Fontana, A.; Amorín, R.; Grazian, A.; Mármol-Queralto, E.; Michałowski, M. J.; Mortlock, A.; Paris, D.; Parsa, S.; Pilo, S.; Santini, P.

    2016-06-01

    We exploit a sample of ultra-faint high-redshift galaxies (demagnified Hubble Space Telescope, HST, H 160 magnitude > 30) in the Frontier Fields clusters A2744 and M0416 to constrain a theoretical model for the UV luminosity function in the presence of photoionization feedback. The objects have been selected on the basis of accurate photometric redshifts computed from multi-band photometry including seven HST bands and deep K s and IRAC observations. Magnification is computed on an object-by-object basis from all available lensing models of the two clusters. We take into account source detection completeness as a function of luminosity and size, magnification effects, and systematics in the lens modeling of the clusters under investigation. We find that our sample of high-z galaxies constrain the cutoff halo circular velocity below which star formation is suppressed by photoionization feedback to {v}c{{cut}}\\lt 50 km s‑1. This circular velocity corresponds to a halo mass of ≈5.6 × 109 M ⊙ and ≈2.3 × 109 M ⊙ at z = 5 and 10, respectively: higher-mass halos can thus sustain continuous star formation activity without being quenched by external ionizing flux. More stringent constraints are prevented by the uncertainty in the modeling of the cluster lens, as embodied by systematic differences among the lens models available.

  1. Observations of High-Redshift X-Ray Selected Clusters with the Sunyaev-Zel'dovich Array

    NASA Technical Reports Server (NTRS)

    Muchovej, Stephen; Carlstrom, John E.; Cartwright, John; Greer, Christopher; Hawkins, David; Hennessey, Ryan; Joy, Marshall; Lamb, James; Leitch, Erik M.; Loh, Michael; Miller, Amber D.; Mroczkowski, Tony; Pryke, Clem; Reddall, Ben; Runyan, Marcus; Sharp, Matthew; Woody, David

    2006-01-01

    We report measurements of the Sunyaev-Zel'dovich (SZ) effect in three high redshift (0.89 less than or equal to z less than or equal to 1.03), X-ray selected galaxy clusters. The observations were obtained at 30 GHz during the commissioning period of a new, eight-element interferometer - the Sunyaev-Zel'dovich Array (SZA) - built for dedicated SZ effect observations. The SZA observations are sensitive to angular scales larger than those subtended by the virial radii of the clusters. Assuming isothermality and hydrostatic equilibrium for the intracluster medium, and gas-mass fractions consistent with those for clusters at moderate redshift, we calculate electron temperatures, gas masses, and total cluster masses from the SZ data. The SZ-derived masses, integrated approximately to the virial radii, are 1.9 (sup +0.5)(sub -0.4) x 10(exp 14) solar mass for Cl J1415.1+3612, 3.4 (sup +0.6)(sub -0.5) x 10(exp 14) solar mass for Cl J1429.0+4241 and 7.2 (sup +1.3)(sub -0.9) x 10(exp 14) solar mass for Cl J1226.9+3332. The SZ-derived quantities are in good agreement with the cluster properties derived from X-ray measurements.

  2. Properties of high-redshift Lyman-alpha clouds. I - Statistical analysis of the Schneider-Schmidt-Gunn quasars

    NASA Technical Reports Server (NTRS)

    Press, William H.; Rybicki, George B.; Schneider, Donald P.

    1993-01-01

    Techniques for statistical analysis of the Lyman-alpha forest in high-redshift quasars are developed, and applied to the low-resolution (25 A) spectra of 29 of the 33 quasars in the Schneider-Schmidt-Gunn sample. We extrapolate each quasar's continuum shortward of Lyman-alpha emission, then consider each spectral bin of each quasar to be an (approximately) independent measurement of the absorption due to the Lyman-alpha clouds. With several thousand such measurements thus available, we can obtain good determinations of some interesting properties of clouds in the redshift range 2.5-4.3 without actually resolving any single cloud. We find that the mean absorption increases with z approximately as a power law (1 + z) exp (gamma + 1) with gamma = 2.46 +/- 0.37. The mean ratio of Lyman-alpha to Lyman-beta absorption in the clouds is 0.476 +/- 0.054. We also detect, and obtain ratios, for Lyma-gamma, delta, and possibly epsilon.

  3. Constraints on cold dark matter theories from observations of massive x-ray-luminous clusters of galaxies at high redshift

    NASA Technical Reports Server (NTRS)

    Luppino, G. A.; Gioia, I. M.

    1995-01-01

    During the course of a gravitational lensing survey of distant, X-ray selected Einstein Observatory Extended Medium Sensitivity Survey (EMSS) clusters of galaxies, we have studied six X-ray-luminous (L(sub x) greater than 5 x 10(exp 44)(h(sub 50)(exp -2))ergs/sec) clusters at redshifts exceeding z = 0.5. All of these clusters are apparently massive. In addition to their high X-ray luminosity, two of the clusters at z approximately 0.6 exhibit gravitationally lensed arcs. Furthermore, the highest redshift cluster in our sample, MS 1054-0321 at z = 0.826, is both extremely X-ray luminous (L(sub 0.3-3.5keV)=9.3 x 10(exp 44)(h(sub 50)(exp -2))ergs/sec) and exceedingly rich with an optical richness comparable to an Abell Richness Class 4 cluster. In this Letter, we discuss the cosmological implications of the very existence of these clusters for hierarchical structure formation theories such as standard Omega = 1 CDM (cold dark matter), hybrid Omega = 1 C + HDM (hot dark matter), and flat, low-density Lambda + CDM models.

  4. The Mass-Pitch Angle Relation for Three High Redshift Active Galaxies Selected from the GOODS Field

    NASA Astrophysics Data System (ADS)

    Hughes, John

    As we continue to investigate and ponder the heavens, we have come to realize the presence of highly energetic gravitational wells at the center of all galaxies. These supermassive black holes at a galaxies nucleus formed in the company of the other features making up the galaxy, particularly spiral arms. With nearby galaxies showing a relationship between the spiral arm pitch angle and that central mass, here we push that relationship out to distances of redshift one. With three galaxies at this distance we find that they also hold to the same relationship of tighter spiral arms corresponding to more massive central black holes. We find that these three galaxies near a redshift of one also fit the equation log (n/a) = (8.21 +/- 0.16) -- (0.062 +/- 0.009) P given by Berrier et al. (2013) for nearby spiral galaxies. Further investigation of higher signal to noise spectroscopic observations will increase this confidence and demonstrate the robustness of the M -- P relationship at greater distances.

  5. A Giant Metrewave Radio Telescope search for associated H I 21 cm absorption in high-redshift flat-spectrum sources

    NASA Astrophysics Data System (ADS)

    Aditya, J. N. H. S.; Kanekar, Nissim; Kurapati, Sushma

    2016-02-01

    We report results from a Giant Metrewave Radio Telescope search for `associated' redshifted H I 21 cm absorption from 24 active galactic nuclei (AGNs), at 1.1 < z < 3.6, selected from the Caltech-Jodrell Bank Flat-spectrum (CJF) sample. 22 out of 23 sources with usable data showed no evidence of absorption, with typical 3σ optical depth detection limits of ≈0.01 at a velocity resolution of ≈30 km s-1. A single tentative absorption detection was obtained at z ≈ 3.530 towards TXS 0604+728. If confirmed, this would be the highest redshift at which H I 21 cm absorption has ever been detected. Including 29 CJF sources with searches for redshifted H I 21 cm absorption in the literature, mostly at z < 1, we construct a sample of 52 uniformly selected flat-spectrum sources. A Peto-Prentice two-sample test for censored data finds (at ≈3σ significance) that the strength of H I 21 cm absorption is weaker in the high-z sample than in the low-z sample; this is the first statistically significant evidence for redshift evolution in the strength of H I 21 cm absorption in a uniformly selected AGN sample. However, the two-sample test also finds that the H I 21 cm absorption strength is higher in AGNs with low ultraviolet or radio luminosities, at ≈3.4σ significance. The fact that the higher luminosity AGNs of the sample typically lie at high redshifts implies that it is currently not possible to break the degeneracy between AGN luminosity and redshift evolution as the primary cause of the low H I 21 cm opacities in high-redshift, high-luminosity AGNs.

  6. A physical model for the evolving ultraviolet luminosity function of high redshift galaxies and their contribution to the cosmic reionization

    SciTech Connect

    Cai, Zhen-Yi; Lapi, Andrea; Bressan, Alessandro; De Zotti, Gianfranco; Danese, Luigi; Negrello, Mattia

    2014-04-10

    We present a physical model for the evolution of the ultraviolet (UV) luminosity function of high-redshift galaxies, taking into account in a self-consistent way their chemical evolution and the associated evolution of dust extinction. Dust extinction is found to increase fast with halo mass. A strong correlation between dust attenuation and halo/stellar mass for UV selected high-z galaxies is thus predicted. The model yields good fits of the UV and Lyman-α (Lyα) line luminosity functions at all redshifts at which they have been measured. The weak observed evolution of both luminosity functions between z = 2 and z = 6 is explained as the combined effect of the negative evolution of the halo mass function; of the increase with redshift of the star formation efficiency due to the faster gas cooling; and of dust extinction, differential with halo mass. The slope of the faint end of the UV luminosity function is found to steepen with increasing redshift, implying that low luminosity galaxies increasingly dominate the contribution to the UV background at higher and higher redshifts. The observed range of the UV luminosities at high z implies a minimum halo mass capable of hosting active star formation M {sub crit} ≲ 10{sup 9.8} M {sub ☉}, which is consistent with the constraints from hydrodynamical simulations. From fits of Lyα line luminosity functions, plus data on the luminosity dependence of extinction, and from the measured ratios of non-ionizing UV to Lyman-continuum flux density for samples of z ≅ 3 Lyman break galaxies and Lyα emitters, we derive a simple relationship between the escape fraction of ionizing photons and the star formation rate. It implies that the escape fraction is larger for low-mass galaxies, which are almost dust-free and have lower gas column densities. Galaxies already represented in the UV luminosity function (M {sub UV} ≲ –18) can keep the universe fully ionized up to z ≅ 6. This is consistent with (uncertain) data

  7. Current and Future X-ray Studies of High-Redshift AGNs and the First Supermassive Black Holes

    NASA Astrophysics Data System (ADS)

    Brandt, Niel

    2016-01-01

    X-ray observations of high-redshift AGNs at z = 4-7 have played a critical role in understanding the physical processes at work inthese objects as well as their basic demographics. Since 2000, Chandra and XMM-Newton have provided new X-ray detections for more than 120 such objects, and well-defined samples of z > 4 AGNs now allow reliable X-ray population studies. Once luminosity effectsare considered, the basic X-ray continuum properties of most high-redshift AGNs appear remarkably similar to those of local AGNs, although there are some notable apparent exceptions (e.g., highly radio-loud quasars). Furthermore, the X-ray absorption found in some objects has been used as a diagnostic of outflowing winds and circumnuclear material. Demographically, the X-ray data now support an exponential decline in the number density of luminous AGNs above z ~ 3, and quantitative space-density comparisons for optically selected and X-ray selected quasars indicate basic statistical agreement.The current X-ray discoveries point the way toward the future breakthroughs that will be possible with, e.g., Athena and the X-raySurveyor. These missions will execute powerful blank-field surveys to elucidate the demographics of the first growing supermassive black holes (SMBHs), including highly obscured systems, up to z ~ 10. They will also carry out complementary X-ray spectroscopic and variability investigations of high-redshift AGNs by targeting the most-luminous z = 7-10 quasars found in wide-field surveys by, e.g., Euclid, LSST, and WFIRST. X-ray spectroscopic and variability studies of the X-ray continuum and reflection signatures will help determine Eddington ratios and disk/corona properties; measuring these will clarify how the first quasars grew so quickly. Furthermore, absorption line/edge studies will reveal how outflows from the first SMBHs influenced the growth of the first galaxies. I will suggest some efficient observational strategies for Athena and the X-ray Surveyor.

  8. PKS 2123-463: A Confirmed Gamma-ray Blazar at High Redshift

    NASA Technical Reports Server (NTRS)

    D'Ammando, F.; Rau, A.; Schady, P.; Finke, J.; Orienti, M.; Greiner, J.; Kann, D. A.; Ojha, R.; Foley, A. R.; Stevens, J.; Blanchard, J. M.; Edwards, P. G.; Kadler, M.; Lovell, J. E.

    2013-01-01

    The flat spectrum radio quasar (FSRQ) PKS 2123-463 was associated in the first Fermi- Large Area Telescope (LAT) source catalogue with the gamma-ray source 1FGL J2126.1-4603, but when considering the full first two years of Fermi observations, no gamma-ray source at a position consistent with this FSRQ was detected, and thus PKS 2123-463 was not reported in the second Fermi-LAT source catalogue. On 2011 December 14 a gamma-ray source positionally consistent with PKS 2123-463 was detected in flaring activity by Fermi-LAT. This activity triggered radio-to-X-ray observations by the Swift,Gamma-ray Optical/Near-Infrared Detector (GROND), Australia Telescope Compact Array (ATCA), Ceduna and Seven Dishes Karoo Array Telescope (KAT-7) observatories. Results of the localization of the gamma-ray source over 41 months of Fermi-LAT operation are reported here in conjunction with the results of the analysis of radio, optical, ultraviolet (UV) and X-ray data collected soon after the gamma-ray flare. The strict spatial association with the lower energy counterpart together with a simultaneous increase of the activity in optical, UV, X-ray and gamma-ray bands led to a firm identification of the gamma-ray source with PKS 2123-463. A new photometric redshift has been estimated as z = 1.46 plus or minus 0.05 using GROND and Swift Ultraviolet/Optical Telescope (UVOT) observations, in rough agreement with the disputed spectroscopic redshift of z = 1.67.We fit the broad-band spectral energy distribution with a synchrotron/external Compton model. We find that a thermal disc component is necessary to explain the optical/UV emission detected by Swift/UVOT. This disc has a luminosity of approximately 1.8 x 10(exp 46) erg s(exp -1), and a fit to the disc emission assuming a Schwarzschild (i.e. non-rotating) black hole gives a mass of approximately 2 x 10(exp 9) solar mass. This is the first black hole mass estimate for this source.

  9. STRUCTURES OF LOCAL GALAXIES COMPARED TO HIGH-REDSHIFT STAR-FORMING GALAXIES

    SciTech Connect

    Petty, Sara M.; De Mello, DuIlia F.; Gallagher, John S.; Gardner, Jonathan P.; Lotz, Jennifer M.; Matt Mountain, C.; Smith, Linda J.

    2009-08-15

    The rest-frame far-ultraviolet morphologies of eight nearby interacting and starburst galaxies (Arp 269, M 82, Mrk 8, NGC 520, NGC 1068, NGC 3079, NGC 3310, and NGC 7673) are compared with 54 galaxies at z {approx} 1.5 and 46 galaxies at z {approx} 4 observed in the Great Observatories Origins Deep Survey (GOODS) taken with the Advanced Camera for Surveys onboard the Hubble Space Telescope. The nearby sample is artificially redshifted to z {approx} 1.5 and 4 by applying luminosity and size scaling. We compare the simulated galaxy morphologies to real z {approx} 1.5 and 4 UV-bright galaxy morphologies. We calculate the Gini coefficient (G), the second-order moment of the brightest 20% of the galaxy's flux (M {sub 20}), and the Sersic index (n). We explore the use of nonparametric methods with two-dimensional profile fitting and find the combination of M {sub 20} with n an efficient method to classify galaxies as having merger, exponential disk, or bulge-like morphologies. When classified according to G and M {sub 20} 20/30% of real/simulated galaxies at z {approx} 1.5 and 37/12% at z {approx} 4 have bulge-like morphologies. The rest have merger-like or intermediate distributions. Alternatively, when classified according to the Sersic index, 70% of the z {approx} 1.5 and z {approx} 4 real galaxies are exponential disks or bulge-like with n>0.8, and {approx} 30% of the real galaxies are classified as mergers. The artificially redshifted galaxies have n values with {approx} 35% bulge or exponential at z {approx} 1.5 and 4. Therefore, {approx} 20%-30% of Lyman-break galaxies have structures similar to local starburst mergers, and may be driven by similar processes. We assume merger-like or clumpy star-forming galaxies in the GOODS field have morphological structure with values n < 0.8 and M {sub 20}> - 1.7. We conclude that Mrk 8, NGC 3079, and NGC 7673 have structures similar to those of merger-like and clumpy star-forming galaxies observed at z {approx} 1.5 and 4.

  10. Extended Lyman α haloes around individual high-redshift galaxies revealed by MUSE

    NASA Astrophysics Data System (ADS)

    Wisotzki, L.; Bacon, R.; Blaizot, J.; Brinchmann, J.; Herenz, E. C.; Schaye, J.; Bouché, N.; Cantalupo, S.; Contini, T.; Carollo, C. M.; Caruana, J.; Courbot, J.-B.; Emsellem, E.; Kamann, S.; Kerutt, J.; Leclercq, F.; Lilly, S. J.; Patrício, V.; Sandin, C.; Steinmetz, M.; Straka, L. A.; Urrutia, T.; Verhamme, A.; Weilbacher, P. M.; Wendt, M.

    2016-03-01

    We report the detection of extended Lyα emission around individual star-forming galaxies at redshifts z = 3-6 in an ultradeep exposure of the Hubble Deep Field South obtained with MUSE on the ESO-VLT. The data reach a limiting surface brightness (1σ) of ~1 × 10-19 erg s-1 cm-2 arcsec-2 in azimuthally averaged radial profiles, an order of magnitude improvement over previous narrowband imaging. Our sample consists of 26 spectroscopically confirmed Lyα-emitting, but mostly continuum-faint (mAB ≳ 27) galaxies. In most objects the Lyα emission is considerably more extended than the UV continuum light. While five of the faintest galaxies in the sample show no significantly detected Lyα haloes, the derived upper limits suggest that this is due to insufficient S/N. Lyα haloes therefore appear to be ubiquitous even for low-mass (~ 108-109 M⊙) star-forming galaxies at z > 3. We decompose the Lyα emission of each object into a compact component tracing the UV continuum and an extended halo component, and infer sizes and luminosities of the haloes. The extended Lyα emission approximately follows an exponential surface brightness distribution with a scale length of a few kpc. While these haloes are thus quite modest in terms of their absolute sizes, they are larger by a factor of 5-15 than the corresponding rest-frame UV continuum sources as seen by HST. They are also much more extended, by a factor ~5, than Lyα haloes around low-redshift star-forming galaxies. Between ~40% and ≳90% of the observed Lyα flux comes from the extended halo component, with no obvious correlation of this fraction with either the absolute or the relative size of the Lyα halo. Our observations provide direct insights into the spatial distribution of at least partly neutral gas residing in the circumgalactic medium of low to intermediate mass galaxies at z > 3.

  11. DUST ATTENUATION IN UV-SELECTED STARBURSTS AT HIGH REDSHIFT AND THEIR LOCAL COUNTERPARTS: IMPLICATIONS FOR THE COSMIC STAR FORMATION RATE DENSITY

    SciTech Connect

    Overzier, Roderik A.; Wang Jing; Heckman, Timothy M.; Armus, Lee; Howell, Justin; Buat, Veronique; Meurer, Gerhardt; Siana, Brian; Goncalves, Thiago S.; Martin, D. Christopher; Neill, James D.; Basu-Zych, Antara; Charlot, Stephane; Rich, R. Michael; Salim, Samir; Schiminovich, David

    2011-01-01

    We present a new analysis of the dust obscuration in starburst galaxies at low and high redshifts. This study is motivated by our unique sample of the most extreme UV-selected starburst galaxies in the nearby universe (z < 0.3), found to be good analogs of high-redshift Lyman break galaxies (LBGs) in most of their physical properties. We find that the dust properties of the Lyman break analogs (LBAs) are consistent with the relation derived previously by Meurer et al. (M99) that is commonly used to dust-correct star formation rate (SFR) measurements at a very wide range of redshifts. We directly compare our results with high-redshift samples (LBGs, 'BzK', and submillimeter galaxies at z {approx} 2-3) having IR data either from Spitzer or Herschel. The attenuation in typical LBGs at z {approx} 2-3 and LBAs is very similar. Because LBAs are much better analogs to LBGs compared to previous local star-forming samples, including M99, the practice of dust-correcting the SFRs of high-redshift galaxies based on the local calibration is now placed on a much more solid ground. We illustrate the importance of this result by showing how the locally calibrated relation between UV measurements and extinction is used to estimate the integrated, dust-corrected SFR density at z {approx_equal} 2-6.

  12. INTERPRETING THE GLOBAL 21 cm SIGNAL FROM HIGH REDSHIFTS. I. MODEL-INDEPENDENT CONSTRAINTS

    SciTech Connect

    Mirocha, Jordan; Harker, Geraint J. A.; Burns, Jack O.

    2013-11-10

    The sky-averaged (global) 21 cm signal is a powerful probe of the intergalactic medium (IGM) prior to the completion of reionization. However, so far it has been unclear whether it will provide more than crude estimates of when the universe's first stars and black holes formed, even in the best case scenario in which the signal is accurately extracted from the foregrounds. In contrast to previous work, which has focused on predicting the 21 cm signatures of the first luminous objects, we investigate an arbitrary realization of the signal and attempt to translate its features to the physical properties of the IGM. Within a simplified global framework, the 21 cm signal yields quantitative constraints on the Lyα background intensity, net heat deposition, ionized fraction, and their time derivatives without invoking models for the astrophysical sources themselves. The 21 cm absorption signal is most easily interpreted, setting strong limits on the heating rate density of the universe with a measurement of its redshift alone, independent of the ionization history or details of the Lyα background evolution. In a companion paper, we extend these results, focusing on the confidence with which one can infer source emissivities from IGM properties.

  13. Disentangling AGN and Star Formation Activity at High Redshift Using Hubble Space Telescope Grism Spectroscopy

    NASA Astrophysics Data System (ADS)

    Bridge, Joanna S.; Zeimann, Gregory R.; Trump, Jonathan R.; Gronwall, Caryl; Ciardullo, Robin; Fox, Derek; Schneider, Donald P.

    2016-08-01

    Differentiating between active galactic nucleus (AGN) activity and star formation in z ∼ 2 galaxies is difficult because traditional methods, such as line-ratio diagnostics, change with redshift, while multi-wavelength methods (X-ray, radio, IR) are sensitive to only the brightest AGNs. We have developed a new method for spatially resolving emission lines using the Hubble Space Telescope/Wide Field Camera 3 G141 grism spectra and quantifying AGN activity through the spatial gradient of the [O iii]/Hβ line ratio. Through detailed simulations, we show that our novel line-ratio gradient approach identifies ∼40% more low-mass and obscured AGNs than obtained by classical methods. Based on our simulations, we developed a relationship that maps the stellar mass, star formation rate, and measured [O iii]/Hβ gradient to the AGN Eddington ratio. We apply our technique to previously studied stacked samples of galaxies at z ∼ 2 and find that our results are consistent with these studies. This gradient method will also be able to inform other areas of galaxy evolution science, such as inside-out quenching and metallicity gradients, and will be widely applicable to future spatially resolved James Webb Space Telescope data.

  14. The Impact of Sub-L* Galaxies on the IGM at High Redshift

    NASA Astrophysics Data System (ADS)

    Reddy, Naveen; Pettini, Max; Stark, Dan; Schaye, Joop; Rakic, Olivera

    2011-08-01

    There is compelling evidence that galaxy-scale outflows may be a primary regulator of star formation in galaxies and chemical enrichment of the IGM. The increasing contribution of UV-faint (sub-L^ast) galaxies to the luminosity density at z⪆ 2 suggests that these uninvestigated faint galaxies may play a large role in the global effects of feedback and metal enrichment. We propose to take advantage of the unique capabilities of Keck-I/LRIS to spectroscopically target a sample of faint galaxies with luminosities that are 10× smaller than those probed in current outflow studies. We will use these data to measure redshifts that will then be cross-correlated with metal (CIV) absorption line systems along QSO sight-lines to determine the extent to which faint galaxies contribute to IGM enrichment. We will compare the correlation lengths and column densities of systems associated with galaxies over a large dynamic range in luminosity to investigate the relative efficiency of feedback as a function of luminosity and impact parameter. Ultimately, this investigation will shed critical light on the feedback processes that govern the baryonic evolution of galaxies over a wide range of luminosity.

  15. High-redshift galaxies: the far-infrared and sub-millimeter view

    NASA Astrophysics Data System (ADS)

    Franceschini, Alberto

    Observations at long wavelengths, in the interval from a few to 1000 μm, are essential to study diffuse media in galaxies, including all kinds of atomic, ionic and molecular gases and dust grains. Hence they are particularly suited to investigate the early phases in galaxy evolution, when a very rich interstellar medium (ISM) is present in the forming systems. During the last few years a variety of observational campaigns in the far-IR/sub-mm, exploiting both ground-based and space instrumentation, have started to provide results of relevant cosmological impact. Most crucial among these have been the discovery of an intense diffuse background in the far-IR/sub-mm of extragalactic origin, and the deep explorations from space in the far-IR and with large millimeter telescopes on ground. These results challenge those obtained from optical-UV observations, by revealing luminous to very luminous phases in galaxy evolution at substantial redshifts, likely corresponding to violent events of star-formation in massive systems. This is bringing to significant refinements of the present schemes of galaxy formation, as far as the history of baryon transformations is concerned.

  16. Star Formation in High Redshift Galaxies with Cluster Lenses as Cosmic Telescopes

    NASA Astrophysics Data System (ADS)

    Bradac, Marusa

    2014-07-01

    In the recent years HST enabled us to detect galaxies as far as z~11. They are likely beacons of the epoch of reionization, which marked the end of the so-called ``Dark Ages'' and signified the transformation of the universe from opaque to transparent. However very little is known about those galaxies, and a confirmation of their redshift is still out of our hands. TMT will be a major powerhorse in this endeavor in the future. In addition, clusters of galaxies, when used as cosmic telescopes, can greatly simplify the task of studying and finding highest-z galaxies. With a massive cluster one can gain several magnitudes of magnification over a typical observing field, enabling imaging and spectroscopic studies of intrinsically lower-luminosity galaxies than would otherwise be observable, even with the largest telescopes. We are involved and leading several large surveys (SURFS UP for Spitzer imaging, GLASS for HST spectrscopy, and Frontier Field initiative for ultra deep HST imaging) with the main goal of identifying and studying star formation of galaxies at z=1-11. I will present first results from these surveys, show successful measurements of SFR at z~7 and beyond, and discuss the role TMT will be playing in exploring epoch of reionization.

  17. How robust are the size measurements of high-redshift compact galaxies?

    SciTech Connect

    Davari, Roozbeh; Ho, Luis C.; Peng, Chien Y.; Huang, Song

    2014-05-20

    Massive quiescent galaxies at z ≈ 2 are apparently much more compact than galaxies of comparable mass today. How robust are these size measurements? We perform comprehensive simulations to determine possible biases and uncertainties in fitting single-component light distributions to real galaxies. In particular, we examine the robustness of the measurements of the luminosity, size, and other structural parameters. We devise simulations with increasing realism to systematically disentangle effects due to the technique (specifically using GALFIT) and the intrinsic structures of the galaxies. By accurately capturing the detailed substructures of nearby elliptical galaxies and then rescaling their sizes and signal-to-noise to mimic galaxies at different redshifts, we confirm that the massive quiescent galaxies at z ≈ 2 are significantly more compact intrinsically than their local counterparts. Their observed compactness is not a result of missing faint outer light due to systematic errors in modeling. In fact, we find that fitting multi-component galaxies with a single Sérsic profile, the procedure most commonly adopted in the literature, biases the inferred sizes higher by up to 10%-20%, which accentuates the amount of size evolution required. If the sky estimation has been done robustly and the model for the point-spread function is fairly accurate, GALFIT can retrieve the properties of single-component galaxies over a wide range of signal-to-noise ratios without introducing any systematic errors.

  18. Comparing Local Starbursts to High-Redshift Galaxies: A Search for Lyman-Break Analogs

    NASA Technical Reports Server (NTRS)

    Petty, Sara M.; de Mello, Duila F.; Gallagher III, John S.; Gardner, Jonathan; Lotz, Jennifer M.; Mountain, C. Matt; Smith, Linda J.

    2008-01-01

    We compare the restframe far-ultraviolet (FUV) morphologies of 8 nearby interacting and starburst galaxies (Arp 269, M 82, Mrk 08, NGC 0520, NGC 1068, NGC 3079, NGC 3310, NGC 7673) with 54 galaxies at z approx.1.5 and 46 galaxies at z approx.4 in the Great Observatories Origins Deep Survey (GOODS) images taken with the Advanced Camera for Surveys onboard the Hubble Space Telescope. We calculate the Gini coefficient (G), the second order moment of 20% of the brightest pixels (M20), and the S ersic index (n). We find that 20% (11/54) of z approx.1.5 and 37% (17/46) of z approx.4 galaxies are bulge-like, using G and M20. We also find approx.70% of the z approx.1.5 and z approx.4 galaxies have exponential disks with n > 0.8. The 2D profile combined with the nonparametric methods provides more detail, concerning the nature of disturbed systems, such as merger and post-merger types. We also provide qualitative descriptions of each galaxy system and at each redshift. We conclude that Mrk 08, NGC 3079, and NGC 7673 have similar morphologies as the starburst FUV restframe galaxies and Lyman-break galaxies at z approx.1.5 and 4, and determine that they are Lyman-break analogs.

  19. Disentangling AGN and Star Formation Activity at High Redshift Using Hubble Space Telescope Grism Spectroscopy

    NASA Astrophysics Data System (ADS)

    Bridge, Joanna S.; Zeimann, Gregory R.; Trump, Jonathan R.; Gronwall, Caryl; Ciardullo, Robin; Fox, Derek; Schneider, Donald P.

    2016-08-01

    Differentiating between active galactic nucleus (AGN) activity and star formation in z ˜ 2 galaxies is difficult because traditional methods, such as line-ratio diagnostics, change with redshift, while multi-wavelength methods (X-ray, radio, IR) are sensitive to only the brightest AGNs. We have developed a new method for spatially resolving emission lines using the Hubble Space Telescope/Wide Field Camera 3 G141 grism spectra and quantifying AGN activity through the spatial gradient of the [O iii]/Hβ line ratio. Through detailed simulations, we show that our novel line-ratio gradient approach identifies ˜40% more low-mass and obscured AGNs than obtained by classical methods. Based on our simulations, we developed a relationship that maps the stellar mass, star formation rate, and measured [O iii]/Hβ gradient to the AGN Eddington ratio. We apply our technique to previously studied stacked samples of galaxies at z ˜ 2 and find that our results are consistent with these studies. This gradient method will also be able to inform other areas of galaxy evolution science, such as inside-out quenching and metallicity gradients, and will be widely applicable to future spatially resolved James Webb Space Telescope data.

  20. Understanding Physical Conditions in High-redshift Galaxies Through C I Fine Structure Lines: Data and Methodology

    NASA Astrophysics Data System (ADS)

    Jorgenson, Regina A.; Wolfe, Arthur M.; Prochaska, J. Xavier

    2010-10-01

    We probe the physical conditions in high-redshift galaxies, specifically, the damped Lyα systems (DLAs) using neutral carbon (C I) fine structure lines and molecular hydrogen (H2). We report five new detections of C I and analyze the C I in an additional two DLAs with previously published data. We also present one new detection of H2 in a DLA. We present a new method of analysis that simultaneously constrains both the volume density and the temperature of the gas, as opposed to previous studies that a priori assumed a gas temperature. We use only the column density of C I measured in the fine structure states and the assumption of ionization equilibrium in order to constrain the physical conditions in the gas. We present a sample of 11 C I velocity components in six DLAs and compare their properties to those derived by the global C II* technique. The resulting median values for this sample are langn(H I)rang = 69 cm-3, langTrang = 50 K, and langlog(P/k)rang = 3.86 cm-3 K, with standard deviations, σ_{n(H I)} = 134 cm-3, σ T = 52 K, and σlog(P/k) = 3.68 cm-3 K. This can be compared with the integrated median values for the same DLAs: langn(H I)rang = 2.8 cm-3, langTrang = 139 K, and langlog(P/k)rang = 2.57 cm-3 K, with standard deviations σ_{n(H I)} = 3.0 cm-3, σ T = 43 K, and σlog(P/k) = 0.22 cm-3 K. Interestingly, the pressures measured in these high-redshift C I clouds are similar to those found in the Milky Way. We conclude that the C I gas is tracing a higher-density, higher-pressure region, possibly indicative of post-shock gas or a photodissociation region on the edge of a molecular cloud. We speculate that these clouds may be direct probes of the precursor sites of star formation in normal galaxies at high redshift. Some of the data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space

  1. UNDERSTANDING PHYSICAL CONDITIONS IN HIGH-REDSHIFT GALAXIES THROUGH C I FINE STRUCTURE LINES: DATA AND METHODOLOGY

    SciTech Connect

    Jorgenson, Regina A.; Wolfe, Arthur M.; Prochaska, J. Xavier

    2010-10-10

    We probe the physical conditions in high-redshift galaxies, specifically, the damped Ly{alpha} systems (DLAs) using neutral carbon (C I) fine structure lines and molecular hydrogen (H{sub 2}). We report five new detections of C I and analyze the C I in an additional two DLAs with previously published data. We also present one new detection of H{sub 2} in a DLA. We present a new method of analysis that simultaneously constrains both the volume density and the temperature of the gas, as opposed to previous studies that a priori assumed a gas temperature. We use only the column density of C I measured in the fine structure states and the assumption of ionization equilibrium in order to constrain the physical conditions in the gas. We present a sample of 11 C I velocity components in six DLAs and compare their properties to those derived by the global C II* technique. The resulting median values for this sample are (n(H I)) = 69 cm{sup -3}, (T) = 50 K, and (log(P/k)) = 3.86 cm{sup -3} K, with standard deviations, {sigma}{sub n(H{sub i})} = 134 cm{sup -3}, {sigma}{sub T} = 52 K, and {sigma}{sub log(P/k)} = 3.68 cm{sup -3} K. This can be compared with the integrated median values for the same DLAs: (n(H I)) = 2.8 cm{sup -3}, (T) = 139 K, and (log(P/k)) = 2.57 cm{sup -3} K, with standard deviations {sigma}{sub n(H{sub i})} = 3.0 cm{sup -3}, {sigma}{sub T} = 43 K, and {sigma}{sub log(P/k)} = 0.22 cm{sup -3} K. Interestingly, the pressures measured in these high-redshift C I clouds are similar to those found in the Milky Way. We conclude that the C I gas is tracing a higher-density, higher-pressure region, possibly indicative of post-shock gas or a photodissociation region on the edge of a molecular cloud. We speculate that these clouds may be direct probes of the precursor sites of star formation in normal galaxies at high redshift.

  2. GOODS-HERSCHEL: IMPACT OF ACTIVE GALACTIC NUCLEI AND STAR FORMATION ACTIVITY ON INFRARED SPECTRAL ENERGY DISTRIBUTIONS AT HIGH REDSHIFT

    SciTech Connect

    Kirkpatrick, Allison; Pope, Alexandra; Alexander, David M.; Charmandaris, Vassilis; Daddi, Emmanuele; Elbaz, David; Gabor, Jared; Mullaney, James; Pannella, Maurilio; Aussel, Herve; Bournaud, Frederic; Dasyra, Kalliopi; Hwang, Ho Seong; Ivison, Rob; Scott, Douglas; Altieri, Bruno; Coia, Daniela; Buat, Veronique; Dannerbauer, Helmut; and others

    2012-11-10

    We explore the effects of active galactic nuclei (AGNs) and star formation activity on the infrared (0.3-1000 {mu}m) spectral energy distributions (SEDs) of luminous infrared galaxies from z = 0.5 to 4.0. We have compiled a large sample of 151 galaxies selected at 24 {mu}m (S {sub 24} {approx}> 100 {mu}Jy) in the GOODS-N and ECDFS fields for which we have deep Spitzer IRS spectroscopy, allowing us to decompose the mid-IR spectrum into contributions from star formation and AGN activity. A significant portion ({approx}25%) of our sample is dominated by an AGN (>50% of the mid-IR luminosity) in the mid-IR. Based on the mid-IR classification, we divide our full sample into four sub-samples: z {approx} 1 star-forming (SF) sources, z {approx} 2 SF sources, AGNs with clear 9.7 {mu}m silicate absorption, and AGNs with featureless mid-IR spectra. From our large spectroscopic sample and wealth of multi-wavelength data, including deep Herschel imaging at 100, 160, 250, 350, and 500 {mu}m, we use 95 galaxies with complete spectral coverage to create a composite SED for each sub-sample. We then fit a two-temperature component modified blackbody to the SEDs. We find that the IR SEDs have similar cold dust temperatures, regardless of the mid-IR power source, but display a marked difference in the warmer dust temperatures. We calculate the average effective temperature of the dust in each sub-sample and find a significant ({approx}20 K) difference between the SF and AGN systems. We compare our composite SEDs to local templates and find that local templates do not accurately reproduce the mid-IR features and dust temperatures of our high-redshift systems. High-redshift IR luminous galaxies contain significantly more cool dust than their local counterparts. We find that a full suite of photometry spanning the IR peak is necessary to accurately account for the dominant dust temperature components in high-redshift IR luminous galaxies.

  3. THERMAL AND RADIATIVE ACTIVE GALACTIC NUCLEUS FEEDBACK HAVE A LIMITED IMPACT ON STAR FORMATION IN HIGH-REDSHIFT GALAXIES

    SciTech Connect

    Roos, Orianne; Juneau, Stéphanie; Bournaud, Frédéric; Gabor, Jared M.

    2015-02-10

    The effects of active galactic nuclei (AGNs) on their host galaxies depend on the coupling between the injected energy and the interstellar medium (ISM). Here, we model and quantify the impact of long-range AGN ionizing radiation—in addition to the often considered small-scale energy deposition—on the physical state of the multi-phase ISM of the host galaxy and on its total star formation rate (SFR). We formulate an AGN spectral energy distribution matched with observations, which we use with the radiative transfer (RT) code Cloudy to compute AGN ionization in a simulated high-redshift disk galaxy. We use a high-resolution (∼6 pc) simulation including standard thermal AGN feedback and calculate RT in post-processing. Surprisingly, while these models produce significant AGN-driven outflows, we find that AGN ionizing radiation and heating reduce the SFR by a few percent at most for a quasar luminosity (L {sub bol} = 10{sup 46.5} erg s{sup –1}). Although the circumgalactic gaseous halo can be kept almost entirely ionized by the AGN, most star-forming clouds (n ≳ 10{sup 2} {sup –} {sup 3} cm{sup –3}) and even the reservoirs of cool atomic gas (n ∼ 0.3-10 cm{sup –3})—which are the sites of future star formation (SF; 100-200 Myr), are generally too dense to be significantly affected. Our analysis ignores any absorption from a putative torus, making our results upper limits on the effects of ionizing radiation. Therefore, while the AGN-driven outflows can remove substantial amounts of gas in the long term, the impact of AGN feedback on the SF efficiency in the interstellar gas in high-redshift galaxies is marginal, even when long-range radiative effects are accounted for.

  4. The Luminous Polycyclic Aromatic Hydrocarbon Emission Features: Applications to High Redshift Galaxies and Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Shipley, Heath; Papovich, Casey

    2015-08-01

    We provide a new robust star-formation rate (SFR) calibration using the luminosity from polycyclic aromatic hydrogen (PAH) molecules. The PAH features emit strongly in the mid-infrared (mid-IR; 3-19μm), mitigating dust extinction, and they are very luminous, containing 5-10% of the total IR luminosity in galaxies. We derive the calibration of the PAH luminosity as a SFR indicator using a sample of 105 star-forming galaxies covering a range of total IR luminosity, LIR = L(8-1000μm) = 109 - 1012 L⊙ and redshift 0 < z < 0.6. The PAH luminosity correlates linearly with the SFR as measured by the dust-corrected Hα luminosity (using the sum of the Hα and rest-frame 24μm luminosity from Kennicutt et al. 2009), with tight scatter of ~0.15 dex, comparable to the scatter in the dust-corrected Hα SFRs and Paα SFRs. We show this relation is sensitive to galaxy metallicity, where the PAH luminosity of galaxies with Z < 0.7 Z⊙ departs from the linear SFR relationship but in a behaved manor. We derive for this a correction to galaxies below solar metallicity. As a case study for observations with JWST, we apply the PAH SFR calibration to a sample of lensed galaxies at 1 < z < 3 with Spitzer Infrared Spectrograph (IRS) data, and we demonstrate the utility of PAHs to derive SFRs as accurate as those available from any other indicator. This new SFR indicator will be useful for probing the peak of the SFR density of the universe (1 < z < 3) and for studying the coevolution of star-formation and supermassive blackhole accretion contemporaneously in a galaxy.

  5. An excess of star-forming galaxies in the fields of high-redshift QSOs

    NASA Astrophysics Data System (ADS)

    Stevens, J. A.; Jarvis, Matt J.; Coppin, K. E. K.; Page, M. J.; Greve, T. R.; Carrera, F. J.; Ivison, R. J.

    2010-07-01

    We present submillimetre (submm) and mid-infrared (MIR) imaging observations of five fields centred on quasi-stellar objects (QSOs) at 1.7< z<2.8. All five QSOs were detected previously at submm wavelengths. At 850 (450) m, we detect 17 (11) submillimetre galaxies (SMGs) in addition to the QSOs. The total area mapped at 850 m is arcmin2 down to rms noise levels of 1-2 mJybeam-1, depending on the field. Integral number counts are computed from the 850-m data using the same analytical techniques adopted by `blank-field' submm surveys. We find that the `QSO-field' counts show a clear excess over the blank-field counts at deboosted flux densities of mJy at higher flux densities, the counts are consistent with the blank-field counts. Robust MIR counterparts are identified for all four submm detected QSOs and per cent of the SMGs. The MIR colours of the QSOs are similar to those of the local ultraluminous infrared galaxy (ULIRG)/active galactic nuclei (AGN) Mrk 231 if placed at 1< z<3 whilst most of the SMGs have colours very similar to those of the local ULIRG Arp 220 at 1< z<3. MIR diagnostics therefore find no strong evidence that the SMGs host buried AGN although we cannot rule out such a possibility. Taken together our results suggest that the QSOs sit in regions of the early universe which are undergoing an enhanced level of major star formation activity, and should evolve to become similarly dense regions containing massive galaxies at the present epoch. Finally, we find evidence that the level of star formation activity in individual galaxies appears to be lower around the QSOs than it is around more powerful radio-loud AGN at higher redshifts.

  6. Spitzer observations of red galaxies: Implication for high-redshift star formation

    NASA Astrophysics Data System (ADS)

    Papovich, Casey

    2006-03-01

    My colleagues and I identified distant red galaxies (DRGs) with J - Ks > 2.3 in the southern Great Observatories Origins Deep Surveys (GOODS-S) field. These galaxies reside at z ˜ 1-3.5, (< z> ≃ 2.2) and based on their ACS (0.4-1 μm), ISAAC (1-2.2 μm), and IRAC (3-8 μm) photometry, they typically have stellar masses M ⩾ 10 11 M⊙. Interestingly, more than 50% of these objects have 24 μm flux densities ⩾50 μJy. Attributing the IR emission to star-formation implies star-formation rates (SFRs) of ≃100-1000 M⊙ yr -1. As a result, galaxies with M ⩾ 10 11 M⊙ have specific SFRs equal to or exceeding the global value at z ˜ 1.5-3. In contrast, galaxies with M ⩾ 10 11 M⊙ at z ˜ 0.3-0.75 have specific SFRs less than the global average, and more than an order of magnitude lower than that for massive DRGs at z ˜ 1.5-3. Thus, the bulk of star formation in massive galaxies is largely complete by z ˜ 1.5. The red colors and large inferred stellar masses in the DRGs suggest that much of the star formation in these galaxies occurred at redshifts z ≳ 5-6. Using model star-formation histories that match the DRG colors and stellar masses at z ˜ 2-3, and measurements of the UV luminosity density at z ≳ 5-6, we consider what constraints exist on the stellar initial mass function in the progenitors of the massive DRGs at z ˜ 2-3.

  7. A Search for Stellar Dust Production in Leo P, a Nearby Analog of High Redshift Galaxies

    NASA Astrophysics Data System (ADS)

    Boyer, Martha; McDonald, Iain; McQuinn, Kristen; Skillman, Evan; Sonneborn, George; Srinivasan, Sundar; van Loon, Jacco Th.; Zijlstra, Albert; Sloan, Greg

    2016-08-01

    The origin of dust in the early Universe is a matter of debate. One of the main potential dust contributors are Asymptotic Giant Branch (AGB) stars, and several studies have been devoted to investigating whether and how AGB dust production changes in metal-poor environments. Of particular interest are the most massive AGB stars (8-10 Msun), which can in principle enter the dust-producing phase <50 Myr after they form. However, these stars cannot produce their own condensable material (unlike carbon AGB stars), so the efficiency of dust production decreases with metallicity. Evidence for dust production in massive AGB stars more metal-poor than the Magellanic Clouds is scarce due both to the rarity of chemically-unevolved, star-forming systems reachable in the infrared and to the short lifetimes of these stars. The recently discovered galaxy Leo P provides an irresistible opportunity to search for these massive AGB stars: Leo P is a gas-rich, star-forming galaxy, it is nearby enough for resolved star photometry with Spitzer, and its interstellar medium is 0.4 dex more metal-poor than any other accessible star-forming galaxy. Models predict ~3 massive AGB stars may be present in Leo P, and optical HST observations reveal 7 candidates. We propose to use Spitzer to determine whether these stars are dusty, providing valuable constraints to the dust contribution from AGB stars up to at least redshift 3.2, or 11.7 Gyr ago, when massive spheroidals and Galactic globular clusters were still forming. This is a gain of 2.8 Gyr compared to other accessible galaxies. We also request 1 orbit of joint HST time to confirm whether the AGB candidates in Leo P are indeed massive AGB stars belonging to the galaxy. These observations will provide information crucial for potential JWST followup spectroscopy.

  8. THE IMPACT OF BARYON PHYSICS ON THE STRUCTURE OF HIGH-REDSHIFT GALAXIES

    SciTech Connect

    Zemp, Marcel; Gnedin, Oleg Y.; Gnedin, Nickolay Y.; Kravtsov, Andrey V.

    2012-03-20

    We study the detailed structure of galaxies at redshifts z {>=} 2 using cosmological simulations with improved modeling of the interstellar medium and star formation. The simulations follow the formation and dissociation of molecular hydrogen and include star formation only in cold molecular gas. The molecular gas is more concentrated toward the center of galaxies than the atomic gas, and as a consequence, the resulting stellar distribution is very compact. For halos with total mass above 10{sup 11} M{sub Sun }, the median half-mass radius of the stellar disks is 0.8 kpc at z Almost-Equal-To 3. The vertical structure of the molecular disk is much thinner than that of the atomic neutral gas. Relative to the non-radiative run, the inner regions of the dark matter halo change shape from prolate to mildly oblate and align with the stellar disk. However, we do not find evidence for a significant fast-rotating 'dark disk' of dark matter around the stellar disk. The outer halo regions retain the orientation acquired during accretion and mergers and are significantly misaligned with the inner regions. The radial profile of the dark matter halo contracts in response to baryon dissipation, establishing an approximately isothermal profile throughout most of the halo. This effect can be accurately described by a modified model of halo contraction. The angular momentum of a fixed amount of inner dark matter is approximately conserved over time, while in the dissipationless case most of it is transferred outward during mergers. The conservation of the dark matter angular momentum provides supporting evidence for the validity of the halo contraction model in a hierarchical galaxy formation process.

  9. High-redshift star formation in a time-dependent Lyman-Werner background

    NASA Astrophysics Data System (ADS)

    Visbal, Eli; Haiman, Zoltán; Terrazas, Bryan; Bryan, Greg L.; Barkana, Rennan

    2014-11-01

    The first generation of stars produces a background of Lyman-Werner (LW) radiation which can photodissociate molecular hydrogen, increasing the mass of dark matter haloes required to host star formation. Previous studies have determined the critical mass required for efficient molecular cooling with a constant LW background. However, the true background is expected to increase rapidly at early times. Neglecting this evolution could underestimate star formation in small haloes that may have started to cool in the past when the LW intensity was much lower. Background evolution is a large source of uncertainty in pre-reionization predictions of the cosmological 21cm signal, which can be observed with future radio telescopes. To address this, we perform zero-dimensional one-zone calculations that follow the density, chemical abundances, and temperature of gas in the central regions of dark matter haloes, including hierarchical growth and an evolving LW background. We begin by studying the physics of haloes subjected to a background that increases exponentially with redshift. We find that when the intensity increases more slowly than JLW(z)∝10-z/5, cooling in the past is a relatively small effect. We then self-consistently compute the cosmological LW background over z = 15-50 and find that cooling in the past due to an evolving background has a modest impact. Finally, we compare these results to three-dimensional hydrodynamical cosmological simulations with varying LW histories. While only a small number of haloes were simulated, the results are consistent with our one-zone calculations.

  10. Tracing the Evolution of High-redshift Galaxies Using Stellar Abundances

    NASA Astrophysics Data System (ADS)

    Crosby, Brian D.; O'Shea, Brian W.; Beers, Timothy C.; Tumlinson, Jason

    2016-03-01

    This paper presents the first results from a model for chemical evolution that can be applied to N-body cosmological simulations and quantitatively compared to measured stellar abundances from large astronomical surveys. This model convolves the chemical yield sets from a range of stellar nucleosynthesis calculations (including asymptotic giant branch stars, Type Ia and II supernovae, and stellar wind models) with a user-specified stellar initial mass function (IMF) and metallicity to calculate the time-dependent chemical evolution model for a “simple stellar population” (SSP) of uniform metallicity and formation time. These SSP models are combined with a semianalytic model for galaxy formation and evolution that uses merger trees from N-body cosmological simulations to track several α- and iron-peak elements for the stellar and multiphase interstellar medium components of several thousand galaxies in the early (z ≥ 6) universe. The simulated galaxy population is then quantitatively compared to two complementary data sets of abundances in the Milky Way stellar halo and is capable of reproducing many of the observed abundance trends. The observed abundance ratio distributions are best reproduced with a Chabrier IMF, a chemically enriched star formation efficiency of 0.2, and a redshift of reionization of 7. Many abundances are qualitatively well matched by our model, but our model consistently overpredicts the carbon-enhanced fraction of stars at low metallicities, likely owing to incomplete coverage of Population III stellar yields and supernova models and the lack of dust as a component of our model.

  11. Dark Matter annihilations in halos and high-redshift sources of reionization of the universe

    NASA Astrophysics Data System (ADS)

    Poulin, Vivian; Serpico, Pasquale D.; Lesgourgues, Julien

    2015-12-01

    It is well known that annihilations in the homogeneous fluid of dark matter (DM) can leave imprints in the cosmic microwave background (CMB) anisotropy power spectrum. However, the relevance of DM annihilations in halos for cosmological observables is still subject to debate, with previous works reaching different conclusions on this point. Also, all previous studies used a single type of parameterization for the astrophysical reionization, and included no astrophysical source for the heating of the intergalactic medium. In this work, we revisit these problems. When standard approaches are adopted, we find that the ionization fraction does exhibit a very particular (and potentially constraining) pattern, but the currently measurable τreio is left almost unchanged: in agreement with most of the previous literature, for plausible halo models we find that the modification of the signal with respect to the one coming from annihilations in the smooth background is tiny, below cosmic variance within currently allowed parameter space. However, if different and probably more realistic treatments of the astrophysical sources of reionization and heating are adopted, a more pronounced effect of the DM annihilation in halos is possible. We thus conclude that within currently adopted baseline models the impact of the virialised DM structures cannot be uncovered by CMB power spectra measurements, but a larger impact is possible if peculiar models are invoked for the redshift evolution of the DM annihilation signal or different assumptions are made for the astrophysical contributions. A better understanding (both theoretical and observational) of the reionization and temperature history of the universe, notably via the 21 cm signal, seems the most promising way for using halo formation as a tool in DM searches, improving over the sensitivity of current cosmological probes.

  12. Overconfidence in photometric redshift estimation

    NASA Astrophysics Data System (ADS)

    Wittman, David; Bhaskar, Ramya; Tobin, Ryan

    2016-04-01

    We describe a new test of photometric redshift performance given a spectroscopic redshift sample. This test complements the traditional comparison of redshift differences by testing whether the probability density functions p(z) have the correct width. We test two photometric redshift codes, BPZ and EAZY, on each of two data sets and find that BPZ is consistently overconfident (the p(z) are too narrow) while EAZY produces approximately the correct level of confidence. We show that this is because EAZY models the uncertainty in its spectral energy distribution templates, and that post-hoc smoothing of the BPZ p(z) provides a reasonable substitute for detailed modelling of template uncertainties. Either remedy still leaves a small surplus of galaxies with spectroscopic redshift very far from the peaks. Thus, better modelling of low-probability tails will be needed for high-precision work such as dark energy constraints with the Large Synoptic Survey Telescope and other large surveys.

  13. New Limit on the Spatial and Temporal Variations of the Fine-Structure Constant Using High Redshifts of Quasar Spectra

    NASA Astrophysics Data System (ADS)

    Le, T. D.

    2015-03-01

    Highly precise measurements on the light from distant quasars can served as a powerful tool to test the possible spatial and temporal variations of the fine-structure constant α = e 2 /c during the evolution of the Universe. Here we set a limit on the possible cosmological space-time variations of α by comparing transitions in the absorption lines of the SiIV doublet observed in the early Universe with those mesured in the laboratory. The weighted mean value of the α-variation derived from our analysis over the redshift range 2.0 ≤ cps≤ 3.7 is Δα/α (-0.53 ± 0.72) ×10-5. This result improves the constraint on Δα/α by a factor of ~ seven compared to the published results in the literature.

  14. Errata: A Wide-Field Multicolor Survey for High-Redshift Quasars, Z >= 2.2. III. The Luminosity Function

    NASA Astrophysics Data System (ADS)

    Warren, Stephen J.; Hewett, Paul C.; Osmer, Patrick S.

    1995-01-01

    In the paper "A Wide-Field Multicolor Survey for High-Redshift Quasars, z >= 2.2. III. The Luminosity Function" by Stephen. Warren, Paul C. Hewett and Patrick S. Osmer (ApJ, 421,412 [1994]), two equations should be corrected: On page 419, column one, line 11, the expression following the words "the error,, should have an opening parenthesis just before the integral sign, to read: [{SIGMA} 1/({integral} ρ(z)dV_a_)^2^]^1/2^. On page 421, equation (15) is missing the asterisk (*) in the M_c_^*^ term just prior to (β + 1); that is, the exponent in the second term the denominator should read: 0.4(M_c_ - M_c_^*^)(β + 1). The authors wish to draw these errors to the attention of any readers who will be using the expression and equation.

  15. The Connection between Stellar Populations and the Baryon Cycle and Ionizing Escape Fractions of Galaxies at High Redshift

    NASA Astrophysics Data System (ADS)

    Reddy, Naveen; Steidel, Charles

    2016-08-01

    We propose Spitzer IRAC 3.6 micron observations to cover the three remaining fields of a large spectroscopic survey of galaxies, AGN, and QSOs in the same cosmic volumes at z~2-3. The IRAC data will be used to probe the stellar populations in these galaxies and to understand how galaxy properties (e.g., stellar masses, ages, reddening, star-formation rates) depend on the flow of baryons into and out of galaxies, as well as identify those properties of galaxies that are conducive to the escape of ionizing radiation at high redshift. The dense spectroscopic sampling of the targeted fields have provided unique insights into metal enrichment as a function of galactocentric radius and the statistical correlation between galaxies and metals in the inter-galactic medium. Our goal is to quantify how the distribution of metals in the circum-galactic and inter-galactic media (CGM/IGM) depend on the stellar masses, ages, and star formation rates of galaxies. Moreover, in an effort to clarify the role of galaxies in reionizing the Universe (and keeping it ionized), we wish to understand the types of stellar populations (e.g., stellar masses, ages) that influence the propensity of galaxies to leak ionizing radiation. Our preliminary observations suggest that bluer galaxies with lower star-formation rates have larger escape fractions, but the results are tentative without the inclusion of the IRAC data proposed here. A modest investment of just 13.1 hours (including overhead), divided among the three fields will cover a total of approximately 200 spectroscopically-confirmed z~2-3 galaxies that span two orders of magnitude in bolometric luminosity and stellar mass. The proposed IRAC imaging will allow us to fully leverage the existing spectroscopic samples that form the backbone of our survey of the baryon cycle and escaping ionizing radiation at high redshift.

  16. Precise Strong Lensing Mass Modeling of Four Hubble Frontier Field Clusters and a Sample of Magnified High-redshift Galaxies

    NASA Astrophysics Data System (ADS)

    Kawamata, Ryota; Oguri, Masamune; Ishigaki, Masafumi; Shimasaku, Kazuhiro; Ouchi, Masami

    2016-03-01

    We conduct precise strong lensing mass modeling of four Hubble Frontier Field (HFF) clusters, Abell 2744, MACS J0416.1-2403, MACS J0717.5+3745, and MACS J1149.6+2223, for which HFF imaging observations are completed. We construct a refined sample of more than 100 multiple images for each cluster by taking advantage of the full-depth HFF images, and conduct mass modeling using the glafic software, which assumes simply parametrized mass distributions. Our mass modeling also exploits a magnification constraint from the lensed SN Ia HFF14Tom for Abell 2744 and positional constraints from the multiple images S1-S4 of the lensed supernova SN Refsdal for MACS J1149.6+2223. We find that our best-fitting mass models reproduce the observed image positions with rms errors of ˜0.″4, which are smaller than rms errors in previous mass modeling that adopted similar numbers of multiple images. Our model predicts a new image of SN Refsdal with a relative time delay and magnification that are fully consistent with a recent detection of reappearance. We then construct catalogs of z ˜ 6-9 dropout galaxies behind the four clusters and estimate magnification factors for these dropout galaxies with our best-fitting mass models. The dropout sample from the four cluster fields contains ˜120 galaxies at z ≳ 6, about 20 of which are predicted to be magnified by a factor of more than 10. Some of the high-redshift galaxies detected in the HFF have lensing-corrected magnitudes of MUV ˜ -15 to -14. Our analysis demonstrates that the HFF data indeed offer an ideal opportunity to study faint high-redshift galaxies. All lensing maps produced from our mass modeling will be made available on the Space Telescope Science Institute website (https: