Sample records for high resolution adc

  1. Evaluation of Multi-Channel ADCs for Gamma-Ray Spectroscopy

    NASA Astrophysics Data System (ADS)

    Tan, Hui; Hennig, Wolfgang; Walby, Mark D.; Breus, Dimitry; Harris, Jackson

    2013-04-01

    As nuclear physicists increasingly design large scale experiments with hundreds or thousands of detector channels, there are growing needs for high density readout electronics with good timing and energy resolution that at the same time offer lower cost per channel compared to existing commercial solutions. Recent improvements in the design of commercial analog to digital converters (ADCs) have resulted in a variety of multi-channel ADCs that are natural choice for designing such high density readout modules. However, multi-channel ADCs typically are designed for medical imaging/ultrasound applications and therefore are not rated for their spectroscopic characteristics. In this work, we evaluated the gamma-ray spectroscopic performance of several multi-channel ADCs, including their energy resolution, nonlinearity, and timing resolution. Some of these ADCs demonstrated excellent energy resolution, 2.66% FWHM at 662 keV with a LaBr3 or 1.78 keV FWHM at 1332.5 keV with a high purity germanium (HPGe) detector, and sub-nanosecond timing resolution with LaBr 3. We present results from these measurements to illustrate their suitability for gamma-ray spectroscopy.

  2. Two-step single slope/SAR ADC with error correction for CMOS image sensor.

    PubMed

    Tang, Fang; Bermak, Amine; Amira, Abbes; Amor Benammar, Mohieddine; He, Debiao; Zhao, Xiaojin

    2014-01-01

    Conventional two-step ADC for CMOS image sensor requires full resolution noise performance in the first stage single slope ADC, leading to high power consumption and large chip area. This paper presents an 11-bit two-step single slope/successive approximation register (SAR) ADC scheme for CMOS image sensor applications. The first stage single slope ADC generates a 3-bit data and 1 redundant bit. The redundant bit is combined with the following 8-bit SAR ADC output code using a proposed error correction algorithm. Instead of requiring full resolution noise performance, the first stage single slope circuit of the proposed ADC can tolerate up to 3.125% quantization noise. With the proposed error correction mechanism, the power consumption and chip area of the single slope ADC are significantly reduced. The prototype ADC is fabricated using 0.18 μ m CMOS technology. The chip area of the proposed ADC is 7 μ m × 500 μ m. The measurement results show that the energy efficiency figure-of-merit (FOM) of the proposed ADC core is only 125 pJ/sample under 1.4 V power supply and the chip area efficiency is 84 k  μ m(2) · cycles/sample.

  3. High power-efficient asynchronous SAR ADC for IoT devices

    NASA Astrophysics Data System (ADS)

    Zhang, Beichen; Yao, Bingbing; Liu, Liyuan; Liu, Jian; Wu, Nanjian

    2017-10-01

    This paper presents a power-efficient 100-MS/s, 10-bit asynchronous successive approximation register (SAR) ADC. It includes an on-chip reference buffer and the total power dissipation is 6.8 mW. To achieve high performance with high power-efficiency in the proposed ADC, bootstrapped switch, redundancy, set-and-down switching approach, dynamic comparator and dynamic logic techniques are employed. The prototype was fabricated using 65 nm standard CMOS technology. At a 1.2-V supply and 100 MS/s, the ADC achieves an SNDR of 56.2 dB and a SFDR of 65.1 dB. The ADC core consumes only 3.1 mW, resulting in a figure of merit (FOM) of 30.27 fJ/conversionstep and occupies an active area of only 0.009 mm2.

  4. High performance photonic ADC for space applications

    NASA Astrophysics Data System (ADS)

    Pantoja, S.; Piqueras, M. A.; Villalba, P.; Martínez, B.; Rico, E.

    2017-11-01

    The flexibility required for future telecom payloads will require of more digital processing capabilities, moving from conventional analogue repeaters to more advanced and efficient analog subsystems or DSPbased solutions. Aggregate data throughputs will have to be handled onboard, creating the need for effective, ADC/DSP and DSP/DAC high speed links. Broadband payloads will have to receive, route and retransmit hundreds of channels and need to be designed so as to meet such requirements of larger bandwidth, system transparency and flexibility.[1][2] One important device in these new architectures is analog to digital converter (ADC) and its equivalent digital to analog converter (DAC). These will be the in/out interface for the use of digital processing in order to provide flexible beam to beam connectivity and variable bandwidth allocation. For telecom payloads having a large number of feeds and thus a large number of converters the mass and consumption of the mixer stage has become significant. Moreover, the inclusion of ADCs in the payload presents new trade-offs in design (jitter, quantization noise, ambiguity). This paper deals with an alternative solution of these two main problems with the exploitation of photonic techniques.

  5. ADC texture—An imaging biomarker for high-grade glioma?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brynolfsson, Patrik; Hauksson, Jón; Karlsson, Mikael

    2014-10-15

    Purpose: Survival for high-grade gliomas is poor, at least partly explained by intratumoral heterogeneity contributing to treatment resistance. Radiological evaluation of treatment response is in most cases limited to assessment of tumor size months after the initiation of therapy. Diffusion-weighted magnetic resonance imaging (MRI) and its estimate of the apparent diffusion coefficient (ADC) has been widely investigated, as it reflects tumor cellularity and proliferation. The aim of this study was to investigate texture analysis of ADC images in conjunction with multivariate image analysis as a means for identification of pretreatment imaging biomarkers. Methods: Twenty-three consecutive high-grade glioma patients were treatedmore » with radiotherapy (2 Gy/60 Gy) with concomitant and adjuvant temozolomide. ADC maps and T1-weighted anatomical images with and without contrast enhancement were collected prior to treatment, and (residual) tumor contrast enhancement was delineated. A gray-level co-occurrence matrix analysis was performed on the ADC maps in a cuboid encapsulating the tumor in coronal, sagittal, and transversal planes, giving a total of 60 textural descriptors for each tumor. In addition, similar examinations and analyses were performed at day 1, week 2, and week 6 into treatment. Principal component analysis (PCA) was applied to reduce dimensionality of the data, and the five largest components (scores) were used in subsequent analyses. MRI assessment three months after completion of radiochemotherapy was used for classifying tumor progression or regression. Results: The score scatter plots revealed that the first, third, and fifth components of the pretreatment examinations exhibited a pattern that strongly correlated to survival. Two groups could be identified: one with a median survival after diagnosis of 1099 days and one with 345 days, p = 0.0001. Conclusions: By combining PCA and texture analysis, ADC texture characteristics were identified

  6. Picosecond Resolution Time-to-Digital Converter Using Gm-C Integrator and SAR-ADC

    NASA Astrophysics Data System (ADS)

    Xu, Zule; Miyahara, Masaya; Matsuzawa, Akira

    2014-04-01

    A picosecond resolution time-to-digital converter (TDC) is presented. The resolution of a conventional delay chain TDC is limited by the delay of a logic buffer. Various types of recent TDCs are successful in breaking this limitation, but they require a significant calibration effort to achieve picosecond resolution with a sufficient linear range. To address these issues, we propose a simple method to break the resolution limitation without any calibration: a Gm-C integrator followed by a successive approximation register analog-to-digital converter (SAR-ADC). This translates the time interval into charge, and then the charge is quantized. A prototype chip was fabricated in 90 nm CMOS. The measurement results reveal a 1 ps resolution, a -0.6/0.7 LSB differential nonlinearity (DNL), a -1.1/2.3 LSB integral nonlinearity (INL), and a 9-bit range. The measured 11.74 ps single-shot precision is caused by the noise of the integrator. We analyze the noise of the integrator and propose an improved front-end circuit to reduce this noise. The proposal is verified by simulations showing the maximum single-shot precision is less than 1 ps. The proposed front-end circuit can also diminish the mismatch effects.

  7. Biochemical and Structural Analysis of Inhibitors Targeting the ADC-7 Cephalosporinase of Acinetobacter baumannii

    DOE PAGES

    Powers, Rachel A.; Swanson, Hollister C.; Taracila, Magdalena A.; ...

    2014-11-07

    β-Lactam resistance in Acinetobacter baumannii presents one of the greatest challenges to contemporary antimicrobial chemotherapy. Much of this resistance to cephalosporins derives from the expression of the class C β-lactamase enzymes, known as Acinetobacter-derived cephalosporinases (ADCs). Currently, β-lactamase inhibitors are structurally similar to β-lactam substrates and are not effective inactivators of this class C cephalosporinase. Herein, two boronic acid transition state inhibitors (BATSIs S02030 and SM23) that are chemically distinct from β-lactams were designed and tested for inhibition of ADC enzymes. BATSIs SM23 and S02030 bind with high affinity to ADC-7, a chromosomal cephalosporinase from Acinetobacter baumannii (K i =more » 21.1 ± 1.9 nM and 44.5 ± 2.2 nM, respectively). The X-ray crystal structures of ADC-7 were determined in both the apo form (1.73 Å resolution) and in complex with S02030 (2.0 Å resolution). In the complex, S02030 makes several canonical interactions: the O1 oxygen of S02030 is bound in the oxyanion hole, and the R1 amide group makes key interactions with conserved residues Asn152 and Gln120. In addition, the carboxylate group of the inhibitor is meant to mimic the C 3/C 4 carboxylate found in β-lactams. The C 3/C 4 carboxylate recognition site in class C enzymes is comprised of Asn346 and Arg349 (AmpC numbering), and these residues are conserved in ADC-7. Interestingly, in the ADC-7/S02030 complex, the inhibitor carboxylate group is observed to interact with Arg340, a residue that distinguishes ADC-7 from the related class C enzyme AmpC. A thermodynamic analysis suggests that ΔH driven compounds may be optimized to generate new lead agents. In conclusion, the ADC-7/BATSI complex provides insight into recognition of non-β-lactam inhibitors by ADC enzymes and offers a starting point for the structure-based optimization of this class of novel β-lactamase inhibitors against a key resistance target.« less

  8. A 12-bit high-speed column-parallel two-step single-slope analog-to-digital converter (ADC) for CMOS image sensors.

    PubMed

    Lyu, Tao; Yao, Suying; Nie, Kaiming; Xu, Jiangtao

    2014-11-17

    A 12-bit high-speed column-parallel two-step single-slope (SS) analog-to-digital converter (ADC) for CMOS image sensors is proposed. The proposed ADC employs a single ramp voltage and multiple reference voltages, and the conversion is divided into coarse phase and fine phase to improve the conversion rate. An error calibration scheme is proposed to correct errors caused by offsets among the reference voltages. The digital-to-analog converter (DAC) used for the ramp generator is based on the split-capacitor array with an attenuation capacitor. Analysis of the DAC's linearity performance versus capacitor mismatch and parasitic capacitance is presented. A prototype 1024 × 32 Time Delay Integration (TDI) CMOS image sensor with the proposed ADC architecture has been fabricated in a standard 0.18 μm CMOS process. The proposed ADC has average power consumption of 128 μW and a conventional rate 6 times higher than the conventional SS ADC. A high-quality image, captured at the line rate of 15.5 k lines/s, shows that the proposed ADC is suitable for high-speed CMOS image sensors.

  9. A high SFDR 6-bit 20-MS/s SAR ADC based on time-domain comparator

    NASA Astrophysics Data System (ADS)

    Xue, Han; Hua, Fan; Qi, Wei; Huazhong, Yang

    2013-08-01

    This paper presents a 6-bit 20-MS/s high spurious-free dynamic range (SFDR) and low power successive approximation register analog to digital converter (SAR ADC) for the radio-frequency (RF) transceiver front-end, especially for wireless sensor network (WSN) applications. This ADC adopts the modified common-centroid symmetry layout and the successive approximation register reset circuit to improve the linearity and dynamic range. Prototyped in a 0.18-μm 1P6M CMOS technology, the ADC performs a peak SFDR of 55.32 dB and effective number of bits (ENOB) of 5.1 bit for 10 MS/s. At the sample rate of 20 MS/s and the Nyquist input frequency, the 47.39-dB SFDR and 4.6-ENOB are achieved. The differential nonlinearity (DNL) is less than 0.83 LSB and the integral nonlinearity (INL) is less than 0.82 LSB. The experimental results indicate that this SAR ADC consumes a total of 522 μW power and occupies 0.98 mm2.

  10. A Multi-Resolution Mode CMOS Image Sensor with a Novel Two-Step Single-Slope ADC for Intelligent Surveillance Systems.

    PubMed

    Kim, Daehyeok; Song, Minkyu; Choe, Byeongseong; Kim, Soo Youn

    2017-06-25

    In this paper, we present a multi-resolution mode CMOS image sensor (CIS) for intelligent surveillance system (ISS) applications. A low column fixed-pattern noise (CFPN) comparator is proposed in 8-bit two-step single-slope analog-to-digital converter (TSSS ADC) for the CIS that supports normal, 1/2, 1/4, 1/8, 1/16, 1/32, and 1/64 mode of pixel resolution. We show that the scaled-resolution images enable CIS to reduce total power consumption while images hold steady without events. A prototype sensor of 176 × 144 pixels has been fabricated with a 0.18 μm 1-poly 4-metal CMOS process. The area of 4-shared 4T-active pixel sensor (APS) is 4.4 μm × 4.4 μm and the total chip size is 2.35 mm × 2.35 mm. The maximum power consumption is 10 mW (with full resolution) with supply voltages of 3.3 V (analog) and 1.8 V (digital) and 14 frame/s of frame rates.

  11. [Examination of upper abdominal region in high spatial resolution diffusion-weighted imaging using 3-Tesla MRI].

    PubMed

    Terada, Masaki; Matsushita, Hiroki; Oosugi, Masanori; Inoue, Kazuyasu; Yaegashi, Taku; Anma, Takeshi

    2009-03-20

    The advantage of the higher signal-to-noise ratio (SNR) of 3-Tesla magnetic resonance imaging (3-Tesla) has the possibility of contributing to the improvement of high spatial resolution without causing image deterioration. In this study, we compared SNR and the apparent diffusion coefficient (ADC) value with 3-Tesla as the condition in the diffusion-weighted image (DWI) parameter of the 1.5-Tesla magnetic resonance imaging (1.5-Tesla) and we examined the high spatial resolution images in the imaging method [respiratory-triggering (RT) method and breath free (BF) method] and artifact (motion and zebra) in the upper abdominal region of DWI at 3-Tesla. We have optimized scan parameters based on phantom and in vivo study. As a result, 3-Tesla was able to obtain about 1.5 times SNR in comparison with the 1.5-Tesla, ADC value had few differences. Moreover, the RT method was effective in correcting the influence of respiratory movement in comparison with the BF method, and image improvement by the effective acquisition of SNR and reduction of the artifact were provided. Thus, DWI of upper abdominal region was a useful sequence for the high spatial resolution in 3-Tesla.

  12. Normalization of ADC does not improve correlation with overall survival in patients with high-grade glioma (HGG).

    PubMed

    Qin, Lei; Li, Angie; Qu, Jinrong; Reinshagen, Katherine; Li, Xiang; Cheng, Su-Chun; Bryant, Annie; Young, Geoffrey S

    2018-04-01

    Mixed reports leave uncertainty about whether normalization of apparent diffusion coefficient (ADC) to a within-subject white matter reference is necessary for assessment of tumor cellularity. We tested whether normalization improves the previously reported correlation of resection margin ADC with 15-month overall survival (OS) in HGG patients. Spin-echo echo-planar DWI was retrieved from 3 T MRI acquired between maximal resection and radiation in 37 adults with new-onset HGG (25 glioblastoma; 12 anaplastic astrocytoma). ADC maps were produced with the FSL DTIFIT tool (Oxford Centre for Functional MRI). 3 neuroradiologists manually selected regions of interest (ROI) in normal appearing white matter (NAWM) and in non-enhancing tumor (NT) < 2 cm from the margin of residual enhancing tumor or resection cavity. Normalized ADC (nADC) was computed as the ratio of absolute NT ADC to NAWM ADC. Reproducibility of nADC and absolute ADC among the readers' ROI was assessed using intra-class correlation coefficient (ICC) and within-subject coefficient of variation (wCV). Correlations of ADC and nADC with OS were compared using receiver operating characteristics (ROC) analysis. A p value 0.05 was considered statistically significant. Both mean ADC and nADC differed significantly between patients subgrouped by 15-month OS (p = 0.0014 and 0.0073 respectively). wCV and ICC among the readers were similar for absolute and normalized ADC. In ROC analysis of correlation with OS, nADC did not perform significantly better than absolute ADC. Normalization does not significantly improve the correlation of absolute ADC with OS in HGG, suggesting that normalization is not necessary for clinical or research ADC analysis in HGG patients.

  13. Capacitor-Chain Successive-Approximation ADC

    NASA Technical Reports Server (NTRS)

    Cunningham, Thomas

    2003-01-01

    A proposed successive-approximation analog-to-digital converter (ADC) would contain a capacitively terminated chain of identical capacitor cells. Like a conventional successive-approximation ADC containing a bank of binary-scaled capacitors, the proposed ADC would store an input voltage on a sample-and-hold capacitor and would digitize the stored input voltage by finding the closest match between this voltage and a capacitively generated sum of binary fractions of a reference voltage (Vref). However, the proposed capacitor-chain ADC would offer two major advantages over a conventional binary-scaled-capacitor ADC: (1) In a conventional ADC that digitizes to n bits, the largest capacitor (representing the most significant bit) must have 2(exp n-1) times as much capacitance, and hence, approximately 2(exp n-1) times as much area as does the smallest capacitor (representing the least significant bit), so that the total capacitor area must be 2(exp n) times that of the smallest capacitor. In the proposed capacitor-chain ADC, there would be three capacitors per cell, each approximately equal to the smallest capacitor in the conventional ADC, and there would be one cell per bit. Therefore, the total capacitor area would be only about 3(exp n) times that of the smallest capacitor. The net result would be that the proposed ADC could be considerably smaller than the conventional ADC. (2) Because of edge effects, parasitic capacitances, and manufacturing tolerances, it is difficult to make capacitor banks in which the values of capacitance are scaled by powers of 2 to the required precision. In contrast, because all the capacitors in the proposed ADC would be identical, the problem of precise binary scaling would not arise.

  14. Diffusion-prepared stimulated-echo turbo spin echo (DPsti-TSE): An eddy current-insensitive sequence for three-dimensional high-resolution and undistorted diffusion-weighted imaging.

    PubMed

    Zhang, Qinwei; Coolen, Bram F; Versluis, Maarten J; Strijkers, Gustav J; Nederveen, Aart J

    2017-07-01

    In this study, we present a new three-dimensional (3D), diffusion-prepared turbo spin echo sequence based on a stimulated-echo read-out (DPsti-TSE) enabling high-resolution and undistorted diffusion-weighted imaging (DWI). A dephasing gradient in the diffusion preparation module and rephasing gradients in the turbo spin echo module create stimulated echoes, which prevent signal loss caused by eddy currents. Near to perfect agreement of apparent diffusion coefficient (ADC) values between DPsti-TSE and diffusion-weighted echo planar imaging (DW-EPI) was demonstrated in both phantom transient signal experiments and phantom imaging experiments. High-resolution and undistorted DPsti-TSE was demonstrated in vivo in prostate and carotid vessel wall. 3D whole-prostate DWI was achieved with four b values in only 6 min. Undistorted ADC maps of the prostate peripheral zone were obtained at low and high imaging resolutions with no change in mean ADC values [(1.60 ± 0.10) × 10 -3 versus (1.60 ± 0.02) × 10 -3  mm 2 /s]. High-resolution 3D DWI of the carotid vessel wall was achieved in 12 min, with consistent ADC values [(1.40 ± 0.23) × 10 -3  mm 2 /s] across different subjects, as well as slice locations through the imaging volume. This study shows that DPsti-TSE can serve as a robust 3D diffusion-weighted sequence and is an attractive alternative to the traditional two-dimensional DW-EPI approaches. Copyright © 2017 John Wiley & Sons, Ltd.

  15. High-resolution diffusion and relaxation-edited magic angle spinning 1H NMR spectroscopy of intact liver tissue.

    PubMed

    Rooney, O M; Troke, J; Nicholson, J K; Griffin, J L

    2003-11-01

    High-resolution magic angle spinning (HRMAS) (1)H NMR spectroscopy is ideal for monitoring the metabolic environment within tissues, particularly when spectra are weighted by physical properties such as T(1) and T(2) relaxation times and apparent diffusion coefficients (ADCs). In this study, spectral-editing using T(1) and T(2) relaxation times and ADCs at variable diffusion times was used in conjunction with HRMAS (1)H NMR spectroscopy at 14.1 T in liver tissue. To enhance the sensitivity of ADC measurements to low molecular weight metabolites a T(2) spin echo was included in a standard stimulated gradient spin-echo sequence. Fatty liver induced in rats by chronic orotic acid feeding was investigated using this modified sequence. An increase in the combined ADC for the co-resonant peaks glucose, betaine, and TMAO during fatty liver disease was detected (ADCs = 0.60 +/- 0.11 and 0.35 +/- 0.1 * 10(-9) m(2)s(-1) (n = 3) for rats fed with and without orotic acid), indicative of a reduction in glucose and betaine and an increase in TMAO. Copyright 2003 Wiley-Liss, Inc.

  16. Single-shot ADC imaging for fMRI.

    PubMed

    Song, Allen W; Guo, Hua; Truong, Trong-Kha

    2007-02-01

    It has been suggested that apparent diffusion coefficient (ADC) contrast can be sensitive to cerebral blood flow (CBF) changes during brain activation. However, current ADC imaging techniques have an inherently low temporal resolution due to the requirement of multiple acquisitions with different b-factors, as well as potential confounds from cross talk between the deoxyhemoglobin-induced background gradients and the externally applied diffusion-weighting gradients. In this report a new method is proposed and implemented that addresses these two limitations. Specifically, a single-shot pulse sequence that sequentially acquires one gradient-echo (GRE) and two diffusion-weighted spin-echo (SE) images was developed. In addition, the diffusion-weighting gradient waveform was numerically optimized to null the cross terms with the deoxyhemoglobin-induced background gradients to fully isolate the effect of diffusion weighting from that of oxygenation-level changes. The experimental results show that this new single-shot method can acquire ADC maps with sufficient signal-to-noise ratio (SNR), and establish its practical utility in functional MRI (fMRI) to complement the blood oxygenation level-dependent (BOLD) technique and provide differential sensitivity for different vasculatures to better localize neural activity originating from the small vessels. Copyright (c) 2007 Wiley-Liss, Inc.

  17. A Modular Pipelined Processor for High Resolution Gamma-Ray Spectroscopy

    NASA Astrophysics Data System (ADS)

    Veiga, Alejandro; Grunfeld, Christian

    2016-02-01

    The design of a digital signal processor for gamma-ray applications is presented in which a single ADC input can simultaneously provide temporal and energy characterization of gamma radiation for a wide range of applications. Applying pipelining techniques, the processor is able to manage and synchronize very large volumes of streamed real-time data. Its modular user interface provides a flexible environment for experimental design. The processor can fit in a medium-sized FPGA device operating at ADC sampling frequency, providing an efficient solution for multi-channel applications. Two experiments are presented in order to characterize its temporal and energy resolution.

  18. Free-breathing 3D diffusion MRI for high-resolution hepatic metastasis characterization in small animals.

    PubMed

    Ribot, Emeline J; Trotier, Aurélien J; Castets, Charles R; Dallaudière, Benjamin; Thiaudière, Eric; Franconi, Jean-Michel; Miraux, Sylvain

    2016-02-01

    The goal of this study was to develop a 3D diffusion weighted sequence for free breathing liver imaging in small animals at high magnetic field. Hepatic metastases were detected and the apparent diffusion coefficients (ADC) were measured. A 3D SE-EPI sequence was developed by (i) inserting a water-selective excitation radiofrequency pulse to suppress adipose tissue signal and (ii) bipolar diffusion gradients to decrease the sensitivity to respiration motion. Mice with hepatic metastases were imaged at 7T by applying b values from 200 to 1100 s/mm(2). 3D images with high spatial resolution (182 × 156 × 125 µm) were obtained in only 8 min 32 s. The modified DW-SE-EPI sequence allowed to obtain 3D abdominal images of healthy mice with fat SNR 2.5 times lower than without any fat suppression method and sharpness 2.8 times higher than on respiration-triggered images. Due to the high spatial resolution, the core and the periphery of disseminated hepatic metastases were differentiated at high b-values only, demonstrating the presence of edema and proliferating cells (with ADC of 2.65 × 10(-3) and 1.55 × 10(-3) mm(2)/s, respectively). Furthermore, these metastases were accurately distinguished from proliferating ones within the same animal at high b-values (mean ADC of 0.38 × 10(-3) mm(2)/s). Metastases of less than 1.7 mm(3) diameter were detected. The new 3D SE-EPI sequence enabled to obtain diffusion information within liver metastases. In addition of intra-metastasis heterogeneity, differences in diffusion were measured between metastases within an animal. This sequence could be used to obtain diffusion information at high magnetic field.

  19. A 25μm pitch LWIR focal plane array with pixel-level 15-bit ADC providing high well capacity and targeting 2mK NETD

    NASA Astrophysics Data System (ADS)

    Guellec, Fabrice; Peizerat, Arnaud; Tchagaspanian, Michael; de Borniol, Eric; Bisotto, Sylvette; Mollard, Laurent; Castelein, Pierre; Zanatta, Jean-Paul; Maillart, Patrick; Zecri, Michel; Peyrard, Jean-Christophe

    2010-04-01

    CEA Leti has recently developed a new readout IC (ROIC) with pixel-level ADC for cooled infrared focal plane arrays (FPAs). It operates at 50Hz frame rate in a snapshot Integrate-While-Read (IWR) mode. It targets applications that provide a large amount of integrated charge thanks to a long integration time. The pixel-level analog-to-digital conversion is based on charge packets counting. This technique offers a large well capacity that paves the way for a breakthrough in NETD performances. The 15 bits ADC resolution preserves the excellent detector SNR at full well (3Ge-). These characteristics are essential for LWIR FPAs as broad intra-scene dynamic range imaging requires high sensitivity. The ROIC, featuring a 320x256 array with 25μm pixel pitch, has been designed in a standard 0.18μm CMOS technology. The main design challenges for this digital pixel array (SNR, power consumption and layout density) are discussed. The IC has been hybridized to a LWIR detector fabricated using our in-house HgCdTe process. The first electro-optical test results of the detector dewar assembly are presented. They validate both the pixel-level ADC concept and its circuit implementation. Finally, the benefit of this LWIR FPA in terms of NETD performance is demonstrated.

  20. Integrated High Resolution Digital Color Light Sensor in 130 nm CMOS Technology

    PubMed Central

    Strle, Drago; Nahtigal, Uroš; Batistell, Graciele; Zhang, Vincent Chi; Ofner, Erwin; Fant, Andrea; Sturm, Johannes

    2015-01-01

    This article presents a color light detection system integrated in 130 nm CMOS technology. The sensors and corresponding electronics detect light in a CIE XYZ color luminosity space using on-chip integrated sensors without any additional process steps, high-resolution analog-to-digital converter, and dedicated DSP algorithm. The sensor consists of a set of laterally arranged integrated photodiodes that are partly covered by metal, where color separation between the photodiodes is achieved by lateral carrier diffusion together with wavelength-dependent absorption. A high resolution, hybrid, ∑∆ ADC converts each photo diode’s current into a 22-bit digital result, canceling the dark current of the photo diodes. The digital results are further processed by the DSP, which calculates normalized XYZ or RGB color and intensity parameters using linear transformations of the three photo diode responses by multiplication of the data with a transformation matrix, where the coefficients are extracted by training in combination with a pseudo-inverse operation and the least-mean square approximation. The sensor system detects the color light parameters with 22-bit accuracy, consumes less than 60 μA on average at 10 readings per second, and occupies approx. 0.8 mm2 of silicon area (including three photodiodes and the analog part of the ADC). The DSP is currently implemented on FPGA. PMID:26205275

  1. Integrated High Resolution Digital Color Light Sensor in 130 nm CMOS Technology.

    PubMed

    Strle, Drago; Nahtigal, Uroš; Batistell, Graciele; Zhang, Vincent Chi; Ofner, Erwin; Fant, Andrea; Sturm, Johannes

    2015-07-22

    This article presents a color light detection system integrated in 130 nm CMOS technology. The sensors and corresponding electronics detect light in a CIE XYZ color luminosity space using on-chip integrated sensors without any additional process steps, high-resolution analog-to-digital converter, and dedicated DSP algorithm. The sensor consists of a set of laterally arranged integrated photodiodes that are partly covered by metal, where color separation between the photodiodes is achieved by lateral carrier diffusion together with wavelength-dependent absorption. A high resolution, hybrid, ∑∆ ADC converts each photo diode's current into a 22-bit digital result, canceling the dark current of the photo diodes. The digital results are further processed by the DSP, which calculates normalized XYZ or RGB color and intensity parameters using linear transformations of the three photo diode responses by multiplication of the data with a transformation matrix, where the coefficients are extracted by training in combination with a pseudo-inverse operation and the least-mean square approximation. The sensor system detects the color light parameters with 22-bit accuracy, consumes less than 60 μA on average at 10 readings per second, and occupies approx. 0.8 mm(2) of silicon area (including three photodiodes and the analog part of the ADC). The DSP is currently implemented on FPGA.

  2. Localized high-resolution DTI of the human midbrain using single-shot EPI, parallel imaging, and outer-volume suppression at 7 T

    PubMed Central

    Wargo, Christopher J.; Gore, John C.

    2013-01-01

    Localized high-resolution diffusion tensor images (DTI) from the midbrain were obtained using reduced field-of-view (rFOV) methods combined with SENSE parallel imaging and single-shot echo planar (EPI) acquisitions at 7 T. This combination aimed to diminish sensitivities of DTI to motion, susceptibility variations, and EPI artifacts at ultra-high field. Outer-volume suppression (OVS) was applied in DTI acquisitions at 2- and 1-mm2 resolutions, b=1000 s/mm2, and six diffusion directions, resulting in scans of 7- and 14-min durations. Mean apparent diffusion coefficient (ADC) and fractional anisotropy (FA) values were measured in various fiber tract locations at the two resolutions and compared. Geometric distortion and signal-to-noise ratio (SNR) were additionally measured and compared for reduced-FOV and full-FOV DTI scans. Up to an eight-fold data reduction was achieved using DTI-OVS with SENSE at 1 mm2, and geometric distortion was halved. The localization of fiber tracts was improved, enabling targeted FA and ADC measurements. Significant differences in diffusion properties were observed between resolutions for a number of regions suggesting that FA values are impacted by partial volume effects even at a 2-mm2 resolution. The combined SENSE DTI-OVS approach allows large reductions in DTI data acquisition and provides improved quality for high-resolution diffusion studies of the human brain. PMID:23541390

  3. [Characteristics of high resolution diffusion weighted imaging apparent diffusion coefficient histogram and its correlations with cancer stages in patients with nasopharyngeal carcinoma].

    PubMed

    Wang, G J; Wang, Y; Ye, Y; Chen, F; Lu, Y T; Li, S L

    2017-11-07

    Objective: To investigate the features of apparent diffusion coefficient (ADC) histogram parameters based on entire tumor volume data in high resolution diffusion weighted imaging of nasopharyngeal carcinoma (NPC) and to evaluate its correlations with cancer stages. Methods: This retrospective study included 154 cases of NPC patients[102 males and 52 females, mean age (48±11) years]who had received readout segmentation of long variable echo trains of MRI scan before radiation therapy. The area of tumor was delineated on each section of axial ADC maps to generate ADC histogram by using Image J. ADC histogram of entire tumor along with the histogram parameters-the tumor voxels, ADC(mean), ADC(25%), ADC(50%), ADC(75%), skewness and kurtosis were obtained by merging all sections with SPSS 22.0 software. Intra-observer repeatability was assessed by using intra-class correlation coefficients (ICC). The patients were subdivided into two groups according to cancer volume: small cancer group (<305 voxels, about 2 cm(3)) and large cancer group (≥2 cm(3)). The correlation between ADC histogram parameters and cancer stages was evaluated with Spearman test. Results: The ICC of measuring ADC histogram parameters of tumor voxels, ADC(mean), ADC(25%), ADC(50%), ADC(75%), skewness, kurtosis was 0.938, 0.861, 0.885, 0.838, 0.836, 0.358 and 0.456, respectively. The tumor voxels was positively correlated with T staging ( r =0.368, P <0.05). There were significant differences in tumor voxels among patients with different T stages ( K =22.306, P <0.05). There were significant differences in the ADC(mean), ADC(25%), ADC(50%) among patients with different T stages in the small cancer group( K =8.409, 8.187, 8.699, all P <0.05), and the up-mentioned three indices were positively correlated with T staging ( r =0.221, 0.209, 0.235, all P <0.05). Skewness and kurtosis differed significantly between the groups with different cancer volume( t =-2.987, Z =-3.770, both P <0.05). Conclusion

  4. CMOS Amperometric ADC With High Sensitivity, Dynamic Range and Power Efficiency for Air Quality Monitoring.

    PubMed

    Li, Haitao; Boling, C Sam; Mason, Andrew J

    2016-08-01

    Airborne pollutants are a leading cause of illness and mortality globally. Electrochemical gas sensors show great promise for personal air quality monitoring to address this worldwide health crisis. However, implementing miniaturized arrays of such sensors demands high performance instrumentation circuits that simultaneously meet challenging power, area, sensitivity, noise and dynamic range goals. This paper presents a new multi-channel CMOS amperometric ADC featuring pixel-level architecture for gas sensor arrays. The circuit combines digital modulation of input currents and an incremental Σ∆ ADC to achieve wide dynamic range and high sensitivity with very high power efficiency and compact size. Fabricated in 0.5 [Formula: see text] CMOS, the circuit was measured to have 164 dB cross-scale dynamic range, 100 fA sensitivity while consuming only 241 [Formula: see text] and 0.157 [Formula: see text] active area per channel. Electrochemical experiments with liquid and gas targets demonstrate the circuit's real-time response to a wide range of analyte concentrations.

  5. A low-power small-area ADC array for IRFPA readout

    NASA Astrophysics Data System (ADS)

    Zhong, Shengyou; Yao, Libin

    2013-09-01

    The readout integrated circuit (ROIC) is a bridge between the infrared focal plane array (IRFPA) and image processing circuit in an infrared imaging system. The ROIC is the first part of signal processing circuit and connected to detectors directly, so its performance will greatly affect the detector or even the whole imaging system performance. With the development of CMOS technologies, it's possible to digitalize the signal inside the ROIC and develop the digital ROIC. Digital ROIC can reduce complexity of the whole system and improve the system reliability. More importantly, it can accommodate variety of digital signal processing techniques which the traditional analog ROIC cannot achieve. The analog to digital converter (ADC) is the most important building block in the digital ROIC. The requirements for ADCs inside the ROIC are low power, high dynamic range and small area. In this paper we propose an RC hybrid Successive Approximation Register (SAR) ADC as the column ADC for digital ROIC. In our proposed ADC structure, a resistor ladder is used to generate several voltages. The proposed RC hybrid structure not only reduces the area of capacitor array but also releases requirement for capacitor array matching. Theory analysis and simulation show RC hybrid SAR ADC is suitable for ADC array applications

  6. Performance evaluation of the analogue front-end and ADC prototypes for the Gotthard-II development

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Andrä, M.; Barten, R.; Bergamaschi, A.; Brückner, M.; Dinapoli, R.; Fröjdh, E.; Greiffenberg, D.; Lopez-Cuenca, C.; Mezza, D.; Mozzanica, A.; Ramilli, M.; Redford, S.; Ruat, M.; Ruder, C.; Schmitt, B.; Shi, X.; Thattil, D.; Tinti, G.; Turcato, M.; Vetter, S.

    2017-12-01

    Gotthard-II is a silicon microstrip detector developed for the European X-ray Free-Electron Laser (XFEL.EU). Its potential scientific applications include X-ray absorption/emission spectroscopy, hard X-ray high resolution single-shot spectrometry (HiREX), energy dispersive experiments at 4.5 MHz frame rate, beam diagnostics, as well as veto signal generation for pixel detectors. Gotthard-II uses a silicon microstrip sensor with a pitch of 50 μm or 25 μm and with 1280 or 2560 channels wire-bonded to readout chips (ROCs). In the ROC, an adaptive gain switching pre-amplifier (PRE), a fully differential Correlated-Double-Sampling (CDS) stage, an Analog-to-Digital Converter (ADC) as well as a Static Random-Access Memory (SRAM) capable of storing all the 2700 images in an XFEL.EU bunch train will be implemented. Several prototypes with different designs of the analogue front-end (PRE and CDS) and ADC test structures have been fabricated in UMC-110 nm CMOS technology and their performance has been evaluated. In this paper, the performance of the analogue front-end and ADC will be summarized.

  7. Analysis and correction of gradient nonlinearity bias in ADC measurements

    PubMed Central

    Malyarenko, Dariya I.; Ross, Brian D.; Chenevert, Thomas L.

    2013-01-01

    Purpose Gradient nonlinearity of MRI systems leads to spatially-dependent b-values and consequently high non-uniformity errors (10–20%) in ADC measurements over clinically relevant field-of-views. This work seeks practical correction procedure that effectively reduces observed ADC bias for media of arbitrary anisotropy in the fewest measurements. Methods All-inclusive bias analysis considers spatial and time-domain cross-terms for diffusion and imaging gradients. The proposed correction is based on rotation of the gradient nonlinearity tensor into the diffusion gradient frame where spatial bias of b-matrix can be approximated by its Euclidean norm. Correction efficiency of the proposed procedure is numerically evaluated for a range of model diffusion tensor anisotropies and orientations. Results Spatial dependence of nonlinearity correction terms accounts for the bulk (75–95%) of ADC bias for FA = 0.3–0.9. Residual ADC non-uniformity errors are amplified for anisotropic diffusion. This approximation obviates need for full diffusion tensor measurement and diagonalization to derive a corrected ADC. Practical scenarios are outlined for implementation of the correction on clinical MRI systems. Conclusions The proposed simplified correction algorithm appears sufficient to control ADC non-uniformity errors in clinical studies using three orthogonal diffusion measurements. The most efficient reduction of ADC bias for anisotropic medium is achieved with non-lab-based diffusion gradients. PMID:23794533

  8. A Novel Anti-CD22 Anthracycline-Based Antibody-Drug Conjugate (ADC) That Overcomes Resistance to Auristatin-Based ADCs.

    PubMed

    Yu, Shang-Fan; Zheng, Bing; Go, MaryAnn; Lau, Jeff; Spencer, Susan; Raab, Helga; Soriano, Robert; Jhunjhunwala, Suchit; Cohen, Robert; Caruso, Michele; Polakis, Paul; Flygare, John; Polson, Andrew G

    2015-07-15

    We are interested in identifying mechanisms of resistance to the current generation of antibody-drug conjugates (ADC) and developing ADCs that can overcome this resistance. Pinatuzumab vedotin (anti-CD22-vc-MMAE) and polatuzumab vedotin (anti-CD79b-vc-MMAE) are ADCs that contain the microtubule inhibitor monomethyl auristatin E (MMAE) attached to the antibody by the protease-cleavable linker maleimidocaproyl-valine-citrulline-p-aminobenzoyloxycarbonyl (MC-vc-PAB). Early clinical trial data suggest that these ADCs have promising efficacy for the treatment of non-Hodgkin lymphoma (NHL); however, some patients do not respond or become resistant to the ADCs. Anthracyclines are very effective in NHL, but ADCs containing the anthracycline doxorubicin were not clinically efficacious probably due to the low drug potency and inadequate linker technology. The anthracycline analogue PNU-159682 is thousands of times more cytotoxic than doxorubicin, so we used it to develop a new class of ADCs. We used the same MC-vc-PAB linker and antibody in pinatuzumab vedotin but replaced the MMAE with a derivative of PNU-159682 to make anti-CD22-NMS249 and tested it for in vivo efficacy in xenograft tumors resistant to MMAE-based ADCs. We derived cell lines from in vivo xenograft tumors that were made resistant to anti-CD22-vc-MMAE and anti-CD79b-vc-MMAE. We identified P-gp (ABCB1/MDR1) as the major driver of resistance to the vc-MMAE-based conjugates. Anti-CD22-NMS249 was at least as effective as anti-CD22-vc-MMAE in xenograft models of the parental cell lines and maintained its efficacy in the resistant cell lines. These studies provide proof of concept for an anthracycline-based ADC that could be used to treat B-cell malignancies that are resistant to vc-MMAE conjugates. ©2015 American Association for Cancer Research.

  9. Haralick texture features from apparent diffusion coefficient (ADC) MRI images depend on imaging and pre-processing parameters.

    PubMed

    Brynolfsson, Patrik; Nilsson, David; Torheim, Turid; Asklund, Thomas; Karlsson, Camilla Thellenberg; Trygg, Johan; Nyholm, Tufve; Garpebring, Anders

    2017-06-22

    In recent years, texture analysis of medical images has become increasingly popular in studies investigating diagnosis, classification and treatment response assessment of cancerous disease. Despite numerous applications in oncology and medical imaging in general, there is no consensus regarding texture analysis workflow, or reporting of parameter settings crucial for replication of results. The aim of this study was to assess how sensitive Haralick texture features of apparent diffusion coefficient (ADC) MR images are to changes in five parameters related to image acquisition and pre-processing: noise, resolution, how the ADC map is constructed, the choice of quantization method, and the number of gray levels in the quantized image. We found that noise, resolution, choice of quantization method and the number of gray levels in the quantized images had a significant influence on most texture features, and that the effect size varied between different features. Different methods for constructing the ADC maps did not have an impact on any texture feature. Based on our results, we recommend using images with similar resolutions and noise levels, using one quantization method, and the same number of gray levels in all quantized images, to make meaningful comparisons of texture feature results between different subjects.

  10. Minimal Power Latch for Single-Slope ADCs

    NASA Technical Reports Server (NTRS)

    Hancock, Bruce R.

    2013-01-01

    Column-parallel analog-to-digital converters (ADCs) for imagers involve simultaneous operation of many ADCs. Single-slope ADCs are well adapted to this use because of their simplicity. Each ADC contains a comparator, comparing its input signal level to an increasing reference signal (ramp). When the ramp is equal to the input, the comparator triggers a latch that captures an encoded counter value (code). Knowing the captured code, the ramp value and hence the input signal are determined. In a column-parallel ADC, each column contains only the comparator and the latches; the ramp and code generation are shared. In conventional latch or flip-flop circuits, there is an input stage that tracks the input signal, and this stage consumes switching current every time the input changes. With many columns, many bits, and high code rates, this switching current can be substantial. It will also generate noise that may corrupt the analog signals. A latch was designed that does not track the input, and consumes power only at the instant of latching the data value. The circuit consists of two S-R (set-reset) latches, gated by the comparator. One is set by high data values and the other by low data values. The latches are cross-coupled so that the first one to set blocks the other. In order that the input data not need an inversion, which would consume power, the two latches are made in complementary polarity. This requires complementary gates from the comparator, instead of complementary data values, but the comparator only triggers once per conversion, and usually has complementary outputs to begin with. An efficient CMOS (complementary metal oxide semiconductor) implementation of this circuit is shown in the figure, where C is the comparator output, D is the data (code), and Q0 and Q1 are the outputs indicating the capture of a zero or one value. The latch for Q0 has a negative-true set signal and output, and is implemented using OR-AND-INVERT logic, while the latch for Q1 uses

  11. Antibody-Drug Conjugates (ADCs) for Personalized Treatment of Solid Tumors: A Review.

    PubMed

    Lambert, John M; Morris, Charles Q

    2017-05-01

    Attaching a cytotoxic "payload" to an antibody to form an antibody-drug conjugate (ADC) provides a mechanism for selective delivery of the cytotoxic agent to cancer cells via the specific binding of the antibody to cancer-selective cell surface molecules. The first ADC to receive marketing authorization was gemtuzumab ozogamicin, which comprises an anti-CD33 antibody conjugated to a highly potent DNA-targeting antibiotic, calicheamicin, approved in 2000 for treating acute myeloid leukemia. It was withdrawn from the US market in 2010 following an unsuccessful confirmatory trial. The development of two classes of highly potent microtubule-disrupting agents, maytansinoids and auristatins, as payloads for ADCs resulted in approval of brentuximab vedotin in 2011 for treating Hodgkin lymphoma and anaplastic large cell lymphoma, and approval of ado-trastuzumab emtansine in 2013 for treating HER2-positive breast cancer. Their success stimulated much research into the ADC approach, with >60 ADCs currently in clinical evaluation, mostly targeting solid tumors. Five ADCs have advanced into pivotal clinical trials for treating various solid tumors-platinum-resistant ovarian cancer, mesothelioma, triple-negative breast cancer, glioblastoma, and small cell lung cancer. The level of target expression is a key parameter in predicting the likelihood of patient benefit for all these ADCs, as well as for the approved compound, ado-trastuzumab emtansine. The development of a patient selection strategy linked to target expression on the tumor is thus critically important for identifying the population appropriate for receiving treatment.

  12. Fast Imaging Detector Readout Circuits with In-Pixel ADCs for Fourier Transform Imaging Spectrometers

    NASA Technical Reports Server (NTRS)

    Rider, D.; Blavier, J-F.; Cunningham, T.; Hancock, B.; Key, R.; Pannell, Z.; Sander, S.; Seshadri, S.; Sun, C.; Wrigley, C.

    2011-01-01

    Focal plane arrays (FPAs) with high frame rates and many pixels benefit several upcoming Earth science missions including GEO-CAPE, GACM, and ACE by enabling broader spatial coverage and higher spectral resolution. FPAs for the PanFTS, a high spatial resolution Fourier transform spectrometer and a candidate instrument for the GEO-CAPE mission are the focus of the developments reported here, but this FPA technology has the potential to enable a variety of future measurements and instruments. The ESTO ACT Program funded the developed of a fast readout integrated circuit (ROIC) based on an innovative in-pixel analog-to-digital converter (ADC). The 128 X 128 pixel ROIC features 60 ?m pixels, a 14-bit ADC in each pixel and operates at a continuous frame rate of 14 kHz consuming only 1.1 W of power. The ROIC outputs digitized data completely eliminating the bulky, power consuming signal chains needed by conventional FPAs. The 128 X 128 pixel ROIC has been fabricated in CMOS and tested at the Jet Propulsion Laboratory. The current version is designed to be hybridized with PIN photodiode arrays via indium bump bonding for light detection in the visible and ultraviolet spectral regions. However, the ROIC design incorporates a small photodiode in each cell to permit detailed characterization of the ROICperformance without the need for hybridization. We will describe the essential features of the ROIC design and present results of ROIC performance measurements.

  13. Impact of ADC parameters on linear optical sampling systems

    NASA Astrophysics Data System (ADS)

    Nguyen, Trung-Hien; Gay, Mathilde; Gomez-Agis, Fausto; Lobo, Sébastien; Sentieys, Olivier; Simon, Jean-Claude; Peucheret, Christophe; Bramerie, Laurent

    2017-11-01

    Linear optical sampling (LOS), based on the coherent photodetection of an optical signal under test with a low repetition-rate signal originating from a pulsed local oscillator (LO), enables the characterization of the temporal electric field of optical sources. Thanks to this technique, low-speed photodetectors and analog-to-digital converters (ADCs) can be integrated in the LOS system providing a cost-effective tool for characterizing high-speed signals. However, the impact of photodetector and ADC parameters on such LOS systems has not been explored in detail so far. These parameters, including the integration time of the track-and-hold function, the effective number of bits (ENOB) of the ADC, as well as the combined limited bandwidth of the photodetector and ADC are experimentally and numerically investigated in a LOS system for the first time. More specifically, by reconstructing 10-Gbit/s non-return-to-zero on-off keying (NRZ-OOK) and 10-Gbaud NRZ-quadrature phase-shift-keying (QPSK) signals, it is shown that a short integration time provides a better recovered signal fidelity. Furthermore, an ENOB of 6 bits and an ADC bandwidth normalized to the sampling rate of 2.8 are found to be sufficient in order to reliably monitor the considered signals.

  14. Interpolation algorithm for asynchronous ADC-data

    NASA Astrophysics Data System (ADS)

    Bramburger, Stefan; Zinke, Benny; Killat, Dirk

    2017-09-01

    This paper presents a modified interpolation algorithm for signals with variable data rate from asynchronous ADCs. The Adaptive weights Conjugate gradient Toeplitz matrix (ACT) algorithm is extended to operate with a continuous data stream. An additional preprocessing of data with constant and linear sections and a weighted overlap of step-by-step into spectral domain transformed signals improve the reconstruction of the asycnhronous ADC signal. The interpolation method can be used if asynchronous ADC data is fed into synchronous digital signal processing.

  15. A power scalable PLL frequency synthesizer for high-speed Δ—Σ ADC

    NASA Astrophysics Data System (ADS)

    Siyang, Han; Baoyong, Chi; Xinwang, Zhang; Zhihua, Wang

    2014-08-01

    A 35-130 MHz/300-360 MHz phase-locked loop frequency synthesizer for Δ—Σ analog-to-digital converter (ADC) in 65 nm CMOS is presented. The frequency synthesizer can work in low phase-noise mode (300-360 MHz) or in low-power mode (35-130 MHz) to satisfy the ADC's requirements. To switch between these two modes, a high frequency GHz LC VCO followed by a divided-by-four frequency divider and a low frequency ring VCO followed by a divided-by-two frequency divider are integrated on-chip. The measured results show that the frequency synthesizer achieves a phase-noise of -132 dBc/Hz at 1 MHz offset and an integrated RMS jitter of 1.12 ps with 1.74 mW power consumption from a 1.2 V power supply in low phase-noise mode. In low-power mode, the frequency synthesizer achieves a phase-noise of -112 dBc/Hz at 1 MHz offset and an integrated RMS jitter of 7.23 ps with 0.92 mW power consumption from a 1.2 V power supply.

  16. Comparison of Absolute Apparent Diffusion Coefficient (ADC) Values in ADC Maps Generated Across Different Postprocessing Software: Reproducibility in Endometrial Carcinoma.

    PubMed

    Ghosh, Adarsh; Singh, Tulika; Singla, Veenu; Bagga, Rashmi; Khandelwal, Niranjan

    2017-12-01

    Apparent diffusion coefficient (ADC) maps are usually generated by builtin software provided by the MRI scanner vendors; however, various open-source postprocessing software packages are available for image manipulation and parametric map generation. The purpose of this study is to establish the reproducibility of absolute ADC values obtained using different postprocessing software programs. DW images with three b values were obtained with a 1.5-T MRI scanner, and the trace images were obtained. ADC maps were automatically generated by the in-line software provided by the vendor during image generation and were also separately generated on postprocessing software. These ADC maps were compared on the basis of ROIs using paired t test, Bland-Altman plot, mountain plot, and Passing-Bablok regression plot. There was a statistically significant difference in the mean ADC values obtained from the different postprocessing software programs when the same baseline trace DW images were used for the ADC map generation. For using ADC values as a quantitative cutoff for histologic characterization of tissues, standardization of the postprocessing algorithm is essential across processing software packages, especially in view of the implementation of vendor-neutral archiving.

  17. Performance Analysis for Channel Estimation With 1-Bit ADC and Unknown Quantization Threshold

    NASA Astrophysics Data System (ADS)

    Stein, Manuel S.; Bar, Shahar; Nossek, Josef A.; Tabrikian, Joseph

    2018-05-01

    In this work, the problem of signal parameter estimation from measurements acquired by a low-complexity analog-to-digital converter (ADC) with $1$-bit output resolution and an unknown quantization threshold is considered. Single-comparator ADCs are energy-efficient and can be operated at ultra-high sampling rates. For analysis of such systems, a fixed and known quantization threshold is usually assumed. In the symmetric case, i.e., zero hard-limiting offset, it is known that in the low signal-to-noise ratio (SNR) regime the signal processing performance degrades moderately by ${2}/{\\pi}$ ($-1.96$ dB) when comparing to an ideal $\\infty$-bit converter. Due to hardware imperfections, low-complexity $1$-bit ADCs will in practice exhibit an unknown threshold different from zero. Therefore, we study the accuracy which can be obtained with receive data processed by a hard-limiter with unknown quantization level by using asymptotically optimal channel estimation algorithms. To characterize the estimation performance of these nonlinear algorithms, we employ analytic error expressions for different setups while modeling the offset as a nuisance parameter. In the low SNR regime, we establish the necessary condition for a vanishing loss due to missing offset knowledge at the receiver. As an application, we consider the estimation of single-input single-output wireless channels with inter-symbol interference and validate our analysis by comparing the analytic and experimental performance of the studied estimation algorithms. Finally, we comment on the extension to multiple-input multiple-output channel models.

  18. Diagnostic value of ADC in patients with prostate cancer: influence of the choice of b values.

    PubMed

    Thörmer, Gregor; Otto, Josephin; Reiss-Zimmermann, Martin; Seiwerts, Matthias; Moche, Michael; Garnov, Nikita; Franz, Toni; Do, Minh; Stolzenburg, Jens-Uwe; Horn, Lars-Christian; Kahn, Thomas; Busse, Harald

    2012-08-01

    To evaluate the influence of the choice of b values on the diagnostic value of the apparent diffusion coefficient (ADC) for detection and grading of prostate cancer (PCa). Forty-one patients with biopsy-proven PCa underwent endorectal 3-T MRI before prostatectomy. Different combinations of b values (0-800 s/mm(2)) were used to calculate four representative ADC maps. Mean ADCs of tumours and non-malignant tissue were determined. Tumour appearance on different ADC maps was rated by three radiologists as good, fair or poor by assigning a visual score (VS) of 2, 1 or 0, respectively. Differences in the ADC values with the choice of b values were analysed using one-way ANOVA. Choice of b values had a highly (P < 0.001) significant influence on the absolute ADC in each tissue. Maps using b = [50, 800] and [0, 800] were rated best (VS= 1.6 ± 0.3) and second best (1.1 ± 0.3, P < 0.001), respectively. For low-grade carcinomas (Gleason score ≤ 6, 13/41 patients), only the former choice received scores better than fair (VS = 1.4 ± 0.3). Mean tumour ADCs showed significant negative correlation (Spearman's ρ -0.38 to -0.46, P < 0.05) with Gleason score. Absolute ADC values strongly depend on the choice of b values and therefore should be used with caution for diagnostic purposes. A minimum b value greater than zero is recommended for ADC calculation to improve the visual assessment of PCa in ADC maps. • Absolute ADC values are highly dependent on the choice of b values. • Absolute ADC thresholds should be used carefully to predict tumour aggressiveness. • Subjective ratings of ADC maps involving b = 0 s/mm ( 2 ) are poor to fair. • Minimum b value greater than 0 s/mm ( 2 ) is recommended for ADC calculation.

  19. Development of an ADC radiation tolerance characterization system for the upgrade of the ATLAS LAr calorimeter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Hong-Bin; Chen, Hu-Cheng; Chen, Kai

    ATLAS LAr calorimeter will undergo its Phase-I upgrade during the long shutdown (LS2) in 2018, and a new LAr Trigger Digitizer Board (LTDB) will be designed and installed. Several commercial-off-the-shelf (COTS) multi-channel high-speed ADCs have been selected as possible backups of the radiation tolerant ADC ASICs for the LTDB. Here, to evaluate the radiation tolerance of these backup commercial ADCs, we developed an ADC radiation tolerance characterization system, which includes the ADC boards, data acquisition (DAQ) board, signal generator, external power supplies and a host computer. The ADC board is custom designed for different ADCs, with ADC drivers and clockmore » distribution circuits integrated on board. The Xilinx ZC706 FPGA development board is used as a DAQ board. The data from the ADC are routed to the FPGA through the FMC (FPGA Mezzanine Card) connector, de-serialized and monitored by the FPGA, and then transmitted to the host computer through the Gigabit Ethernet. A software program has been developed with Python, and all the commands are sent to the DAQ board through Gigabit Ethernet by this program. Two ADC boards have been designed for the ADC, ADS52J90 from Texas Instruments and AD9249 from Analog Devices respectively. TID tests for both ADCs have been performed at BNL, and an SEE test for the ADS52J90 has been performed at Massachusetts General Hospital (MGH). Test results have been analyzed and presented. The test results demonstrate that this test system is very versatile, and works well for the radiation tolerance characterization of commercial multi-channel high-speed ADCs for the upgrade of the ATLAS LAr calorimeter. It is applicable to other collider physics experiments where radiation tolerance is required as well.« less

  20. Development of an ADC radiation tolerance characterization system for the upgrade of the ATLAS LAr calorimeter

    DOE PAGES

    Liu, Hong-Bin; Chen, Hu-Cheng; Chen, Kai; ...

    2017-02-01

    ATLAS LAr calorimeter will undergo its Phase-I upgrade during the long shutdown (LS2) in 2018, and a new LAr Trigger Digitizer Board (LTDB) will be designed and installed. Several commercial-off-the-shelf (COTS) multi-channel high-speed ADCs have been selected as possible backups of the radiation tolerant ADC ASICs for the LTDB. Here, to evaluate the radiation tolerance of these backup commercial ADCs, we developed an ADC radiation tolerance characterization system, which includes the ADC boards, data acquisition (DAQ) board, signal generator, external power supplies and a host computer. The ADC board is custom designed for different ADCs, with ADC drivers and clockmore » distribution circuits integrated on board. The Xilinx ZC706 FPGA development board is used as a DAQ board. The data from the ADC are routed to the FPGA through the FMC (FPGA Mezzanine Card) connector, de-serialized and monitored by the FPGA, and then transmitted to the host computer through the Gigabit Ethernet. A software program has been developed with Python, and all the commands are sent to the DAQ board through Gigabit Ethernet by this program. Two ADC boards have been designed for the ADC, ADS52J90 from Texas Instruments and AD9249 from Analog Devices respectively. TID tests for both ADCs have been performed at BNL, and an SEE test for the ADS52J90 has been performed at Massachusetts General Hospital (MGH). Test results have been analyzed and presented. The test results demonstrate that this test system is very versatile, and works well for the radiation tolerance characterization of commercial multi-channel high-speed ADCs for the upgrade of the ATLAS LAr calorimeter. It is applicable to other collider physics experiments where radiation tolerance is required as well.« less

  1. Development of an ADC radiation tolerance characterization system for the upgrade of the ATLAS LAr calorimeter

    NASA Astrophysics Data System (ADS)

    Liu, Hong-Bin; Chen, Hu-Cheng; Chen, Kai; Kierstead, James; Lanni, Francesco; Takai, Helio; Jin, Ge

    2017-02-01

    ATLAS LAr calorimeter will undergo its Phase-I upgrade during the long shutdown (LS2) in 2018, and a new LAr Trigger Digitizer Board (LTDB) will be designed and installed. Several commercial-off-the-shelf (COTS) multi-channel high-speed ADCs have been selected as possible backups of the radiation tolerant ADC ASICs for the LTDB. To evaluate the radiation tolerance of these backup commercial ADCs, we developed an ADC radiation tolerance characterization system, which includes the ADC boards, data acquisition (DAQ) board, signal generator, external power supplies and a host computer. The ADC board is custom designed for different ADCs, with ADC drivers and clock distribution circuits integrated on board. The Xilinx ZC706 FPGA development board is used as a DAQ board. The data from the ADC are routed to the FPGA through the FMC (FPGA Mezzanine Card) connector, de-serialized and monitored by the FPGA, and then transmitted to the host computer through the Gigabit Ethernet. A software program has been developed with Python, and all the commands are sent to the DAQ board through Gigabit Ethernet by this program. Two ADC boards have been designed for the ADC, ADS52J90 from Texas Instruments and AD9249 from Analog Devices respectively. TID tests for both ADCs have been performed at BNL, and an SEE test for the ADS52J90 has been performed at Massachusetts General Hospital (MGH). Test results have been analyzed and presented. The test results demonstrate that this test system is very versatile, and works well for the radiation tolerance characterization of commercial multi-channel high-speed ADCs for the upgrade of the ATLAS LAr calorimeter. It is applicable to other collider physics experiments where radiation tolerance is required as well. Supported by the U. S. Department of Energy (DE-SC001270)

  2. Continuous-time ΣΔ ADC with implicit variable gain amplifier for CMOS image sensor.

    PubMed

    Tang, Fang; Bermak, Amine; Abbes, Amira; Benammar, Mohieddine Amor

    2014-01-01

    This paper presents a column-parallel continuous-time sigma delta (CTSD) ADC for mega-pixel resolution CMOS image sensor (CIS). The sigma delta modulator is implemented with a 2nd order resistor/capacitor-based loop filter. The first integrator uses a conventional operational transconductance amplifier (OTA), for the concern of a high power noise rejection. The second integrator is realized with a single-ended inverter-based amplifier, instead of a standard OTA. As a result, the power consumption is reduced, without sacrificing the noise performance. Moreover, the variable gain amplifier in the traditional column-parallel read-out circuit is merged into the front-end of the CTSD modulator. By programming the input resistance, the amplitude range of the input current can be tuned with 8 scales, which is equivalent to a traditional 2-bit preamplification function without consuming extra power and chip area. The test chip prototype is fabricated using 0.18 μm CMOS process and the measurement result shows an ADC power consumption lower than 63.5 μW under 1.4 V power supply and 50 MHz clock frequency.

  3. Continuous Time Level Crossing Sampling ADC for Bio-Potential Recording Systems

    PubMed Central

    Tang, Wei; Osman, Ahmad; Kim, Dongsoo; Goldstein, Brian; Huang, Chenxi; Martini, Berin; Pieribone, Vincent A.

    2013-01-01

    In this paper we present a fixed window level crossing sampling analog to digital convertor for bio-potential recording sensors. This is the first proposed and fully implemented fixed window level crossing ADC without local DACs and clocks. The circuit is designed to reduce data size, power, and silicon area in future wireless neurophysiological sensor systems. We built a testing system to measure bio-potential signals and used it to evaluate the performance of the circuit. The bio-potential amplifier offers a gain of 53 dB within a bandwidth of 200 Hz-20 kHz. The input-referred rms noise is 2.8 µV. In the asynchronous level crossing ADC, the minimum delta resolution is 4 mV. The input signal frequency of the ADC is up to 5 kHz. The system was fabricated using the AMI 0.5 µm CMOS process. The chip size is 1.5 mm by 1.5 mm. The power consumption of the 4-channel system from a 3.3 V supply is 118.8 µW in the static state and 501.6 µW with a 240 kS/s sampling rate. The conversion efficiency is 1.6 nJ/conversion. PMID:24163640

  4. A 0.9-V 12-bit 40-MSPS Pipeline ADC for Wireless Receivers

    NASA Astrophysics Data System (ADS)

    Ito, Tomohiko; Itakura, Tetsuro

    A 0.9-V 12-bit 40-MSPS pipeline ADC with I/Q amplifier sharing technique is presented for wireless receivers. To achieve high linearity even at 0.9-V supply, the clock signals to sampling switches are boosted over 0.9V in conversion stages. The clock-boosting circuit for lifting these clocks is shared between I-ch ADC and Q-ch ADC, reducing the area penalty. Low supply voltage narrows the available output range of the operational amplifier. A pseudo-differential (PD) amplifier with two-gain-stage common-mode feedback (CMFB) is proposed in views of its wide output range and power efficiency. This ADC is fabricated in 90-nm CMOS technology. At 40MS/s, the measured SNDR is 59.3dB and the corresponding effective number of bits (ENOB) is 9.6. Until Nyquist frequency, the ENOB is kept over 9.3. The ADC dissipates 17.3mW/ch, whose performances are suitable for ADCs for mobile wireless systems such as WLAN/WiMAX.

  5. Photonic ADC: overcoming the bottleneck of electronic jitter.

    PubMed

    Khilo, Anatol; Spector, Steven J; Grein, Matthew E; Nejadmalayeri, Amir H; Holzwarth, Charles W; Sander, Michelle Y; Dahlem, Marcus S; Peng, Michael Y; Geis, Michael W; DiLello, Nicole A; Yoon, Jung U; Motamedi, Ali; Orcutt, Jason S; Wang, Jade P; Sorace-Agaskar, Cheryl M; Popović, Miloš A; Sun, Jie; Zhou, Gui-Rong; Byun, Hyunil; Chen, Jian; Hoyt, Judy L; Smith, Henry I; Ram, Rajeev J; Perrott, Michael; Lyszczarz, Theodore M; Ippen, Erich P; Kärtner, Franz X

    2012-02-13

    Accurate conversion of wideband multi-GHz analog signals into the digital domain has long been a target of analog-to-digital converter (ADC) developers, driven by applications in radar systems, software radio, medical imaging, and communication systems. Aperture jitter has been a major bottleneck on the way towards higher speeds and better accuracy. Photonic ADCs, which perform sampling using ultra-stable optical pulse trains generated by mode-locked lasers, have been investigated for many years as a promising approach to overcome the jitter problem and bring ADC performance to new levels. This work demonstrates that the photonic approach can deliver on its promise by digitizing a 41 GHz signal with 7.0 effective bits using a photonic ADC built from discrete components. This accuracy corresponds to a timing jitter of 15 fs - a 4-5 times improvement over the performance of the best electronic ADCs which exist today. On the way towards an integrated photonic ADC, a silicon photonic chip with core photonic components was fabricated and used to digitize a 10 GHz signal with 3.5 effective bits. In these experiments, two wavelength channels were implemented, providing the overall sampling rate of 2.1 GSa/s. To show that photonic ADCs with larger channel counts are possible, a dual 20-channel silicon filter bank has been demonstrated.

  6. Development of New ADC Technology with Topoisomerase I Inhibitor.

    PubMed

    Agatsuma, Toshinori

    2017-01-01

    Antibody-drug conjugates (ADCs) selectively deliver large amounts of antitumor drugs to tumor tissue and show significant antitumor effects with a wide therapeutic window. We developed a new linker-drug technology platform with an exatecan derivative, which is a highly potent topoisomerase I inhibitor. The major advantages of the technology are: 1) high and homogeneous drug-to-antibody ratio (DAR) availability; 2) potent antitumor activity in conjunction with bystander killing; 3) few safety concerns because of the stable linker limiting release of free drug; and 4) a wide application to therapeutic antibodies. Using this linker-drug technology, we generated an anti-HER2 ADC, namely DS-8201a. DS-8201a, in which almost all eight cysteine residues of the antibody are bound to drug, was effective against trastuzumab DM1 (T-DM1)-insensitive patient-derived xenograft (PDX) models with high HER2 expression and also demonstrated antitumor efficacy against several breast cancer PDX models with low HER2 expression. DS-8201a was well tolerated in rats and monkeys following repeated administration. These results suggest that DS-8201a may be efficacious in a broader population of HER2-positive cancer patients and also confirm the importance of this new class of novel topoisomerase I inhibitor-based ADC technology.

  7. Increasing the Accuracy of Volume and ADC Delineation for Heterogeneous Tumor on Diffusion-Weighted MRI: Correlation with PET/CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong, Nan-Jie; Wong, Chun-Sing, E-mail: drcswong@gmail.com; Chu, Yiu-Ching

    2013-10-01

    Purpose: To improve the accuracy of volume and apparent diffusion coefficient (ADC) measurements in diffusion-weighted magnetic resonance imaging (MRI), we proposed a method based on thresholding both the b0 images and the ADC maps. Methods and Materials: In 21 heterogeneous lesions from patients with metastatic gastrointestinal stromal tumors (GIST), gross lesion were manually contoured, and corresponding volumes and ADCs were denoted as gross tumor volume (GTV) and gross ADC (ADC{sub g}), respectively. Using a k-means clustering algorithm, the probable high-cellularity tumor tissues were selected based on b0 images and ADC maps. ADC and volume of the tissues selected using themore » proposed method were denoted as thresholded ADC (ADC{sub thr}) and high-cellularity tumor volume (HCTV), respectively. The metabolic tumor volume (MTV) in positron emission tomography (PET)/computed tomography (CT) was measured using 40% maximum standard uptake value (SUV{sub max}) as the lower threshold, and corresponding mean SUV (SUV{sub mean}) was also measured. Results: HCTV had excellent concordance with MTV according to Pearson's correlation (r=0.984, P<.001) and linear regression (slope = 1.085, intercept = −4.731). In contrast, GTV overestimated the volume and differed significantly from MTV (P=.005). ADC{sub thr} correlated significantly and strongly with SUV{sub mean} (r=−0.807, P<.001) and SUV{sub max} (r=−0.843, P<.001); both were stronger than those of ADC{sub g}. Conclusions: The proposed lesion-adaptive semiautomatic method can help segment high-cellularity tissues that match hypermetabolic tissues in PET/CT and enables more accurate volume and ADC delineation on diffusion-weighted MR images of GIST.« less

  8. Endometrial cancer: correlation of apparent diffusion coefficient (ADC) with tumor cellularity and tumor grade.

    PubMed

    Kishimoto, Keiko; Tajima, Shinya; Maeda, Ichiro; Takagi, Masayuki; Ueno, Takahiko; Suzuki, Nao; Nakajima, Yasuo

    2016-08-01

    Diffusion-weighted imaging (DWI) and the apparent diffusion coefficient (ADC) are widely used for detecting uterine endometrial cancer. The relationships between ADC values and pathological features of endometrial cancer have not yet been established. To investigate whether ADC values of endometrial cancer vary according to histologic tumor cellularity and tumor grade. We retrospectively reviewed 30 pathologically confirmed endometrial cancers. All patients underwent conventional non-enhanced magnetic resonance imaging (MRI) and DWI procedures, and ADC values were calculated. Tumor cellularity was evaluated by counting cancer cells in three high-power ( × 400) fields. The correlation between ADC values and tumor cellularity was assessed using Pearson's correlation coefficient test for statistical analysis. The mean ± standard deviation (SD) ADC value ( ×10(-3) mm(2)/s) of endometrial cancer was 0.85 ± 0.22 (range, 0.55-1.71). The mean ± SD tumor cellularity was 528.36 ± 16.89 (range, 298.0-763.6). ADC values were significantly inversely correlated with tumor cellularity. No significant relationship was observed between ADC values and tumor grade (mean ADC values: G1, 0.88 ± 0.265 × 10(-3) mm(2)/s; G2, 0.80 ± 0.178 × 10(-3) mm(2)/s; G3, 0.81 ± 0.117 × 10(-3) mm(2)/s). There is a significant inverse relationship between ADC values and tumor cellularity in endometrial cancer. No significant differences in average ADC value were observed between G1, G2, and G3 tumors. However, the lower the tumor grade, the wider the SD. © The Foundation Acta Radiologica 2015.

  9. HVM die yield improvement as a function of DRSEM ADC

    NASA Astrophysics Data System (ADS)

    Maheshwary, Sonu; Haas, Terry; McGarvey, Steve

    2010-03-01

    Given the current manufacturing technology roadmap and the competitiveness of the global semiconductor manufacturing environment in conjunction with the semiconductor manufacturing market dynamics, the market place continues to demand a reduced die manufacturing cost. This continuous pressure on lowering die cost in turn drives an aggressive yield learning curve, a key component of which is defect reduction of manufacturing induced anomalies. In order to meet and even exceed line and die yield targets there is a need to revamp defect classification strategies and place a greater emphasize on increasing the accuracy and purity of the Defect Review Scanning Electron Microscope (DRSEM) Automated Defect Classification (ADC) results while placing less emphasis on the ADC results of patterned/un-patterned wafer inspection systems. The increased emphasis on DRSEM ADC results allows for a high degree of automation and consistency in the classification data and eliminates variance induced by the manufacturing staff. This paper examines the use of SEM based Auto Defect Classification in a high volume manufacturing environment as a key driver in the reduction of defect limited yields.

  10. A sub-microwatt asynchronous level-crossing ADC for biomedical applications.

    PubMed

    Li, Yongjia; Zhao, Duan; Serdijn, Wouter A

    2013-04-01

    A continuous-time level-crossing analog-to-digital converter (LC-ADC) for biomedical applications is presented. When compared to uniform-sampling (US) ADCs LC-ADCs generate fewer samples for various sparse biomedical signals. Lower power consumption and reduced design complexity with respect to conventional LC-ADCs are achieved due to: 1) replacing the n-bit digital-to-analog converter (DAC) with a 1-bit DAC; 2) splitting the level-crossing detections; and 3) fixing the comparison window. Designed and implemented in 0.18 μm CMOS technology, the proposed ADC uses a chip area of 220 × 203 μm(2). Operating from a supply voltage of 0.8 V, the ADC consumes 313-582 nW from 5 Hz to 5 kHz and achieves an ENOB up to 7.9 bits.

  11. Two zinc-binding domains in the transporter AdcA from Streptococcus pyogenes facilitate high-affinity binding and fast transport of zinc.

    PubMed

    Cao, Kun; Li, Nan; Wang, Hongcui; Cao, Xin; He, Jiaojiao; Zhang, Bing; He, Qing-Yu; Zhang, Gong; Sun, Xuesong

    2018-04-20

    Zinc is an essential metal in bacteria. One important bacterial zinc transporter is AdcA, and most bacteria possess AdcA homologs that are single-domain small proteins due to better efficiency of protein biogenesis. However, a double-domain AdcA with two zinc-binding sites is significantly overrepresented in Streptococcus species, many of which are major human pathogens. Using molecular simulation and experimental validations of AdcA from Streptococcus pyogenes , we found here that the two AdcA domains sequentially stabilize the structure upon zinc binding, indicating an organization required for both increased zinc affinity and transfer speed. This structural organization appears to endow Streptococcus species with distinct advantages in zinc-depleted environments, which would not be achieved by each single AdcA domain alone. This enhanced zinc transport mechanism sheds light on the significance of the evolution of the AdcA domain fusion, provides new insights into double-domain transporter proteins with two binding sites for the same ion, and indicates a potential target of antimicrobial drugs against pathogenic Streptococcus species. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. 12-bit 32 channel 500 MS/s low-latency ADC for particle accelerators real-time control

    NASA Astrophysics Data System (ADS)

    Karnitski, Anton; Baranauskas, Dalius; Zelenin, Denis; Baranauskas, Gytis; Zhankevich, Alexander; Gill, Chris

    2017-09-01

    Particle beam control systems require real-time low latency digital feedback with high linearity and dynamic range. Densely packed electronic systems employ high performance multichannel digitizers causing excessive heat dissipation. Therefore, low power dissipation is another critical requirement for these digitizers. A described 12-bit 500 MS/s ADC employs a sub-ranging architecture based on a merged sample & hold circuit, a residue C-DAC and a shared 6-bit flash core ADC. The core ADC provides a sequential coarse and fine digitization featuring a latency of two clock cycles. The ADC is implemented in a 28 nm CMOS process and consumes 4 mW of power per channel from a 0.9 V supply (interfacing and peripheral circuits are excluded). Reduced power consumption and small on-chip area permits the implementation of 32 ADC channels on a 10.7 mm2 chip. The ADC includes a JESD204B standard compliant output data interface operated at the 7.5 Gbps/ch rate. To minimize the data interface related time latency, a special feature permitting to bypass the JESD204B interface is built in. DoE Phase I Award Number: DE-SC0017213.

  13. Idiopathic normal-pressure hydrocephalus: temporal changes in ADC during cardiac cycle.

    PubMed

    Ohno, Naoki; Miyati, Tosiaki; Mase, Mitsuhito; Osawa, Tomoshi; Kan, Hirohito; Kasai, Harumasa; Hara, Masaki; Shibamoto, Yuta; Hayashi, Norio; Gabata, Toshifumi; Matsui, Osamu

    2011-11-01

    To determine whether temporal changes in apparent diffusion coefficient (ADC) over the cardiac cycle are different in patients with idiopathic normal-pressure hydrocephalus (INPH) as compared with patients with ex vacuo ventricular dilatation and healthy control subjects. This prospective study was approved by the institutional review board and was performed only after informed consent was obtained from each patient. At 1.5 T, electrocardiographically triggered single-shot diffusion echo-planar magnetic resonance imaging (b = 0 and 1000 sec/mm(2)) was performed with sensitivity encoding and half-scan techniques to minimize bulk motion. ΔADC was defined as the difference between maximum and minimum ADC on a pixel-by-pixel basis over 20 phases of the cardiac cycle. Mean ADC during the diastolic phase and ΔADC in the frontal white matter were determined in patients with INPH (n = 13), patients with ex vacuo ventricular dilatation (n = 8), and healthy volunteers (n = 10). Kruskal-Wallis tests were used to determine significance between groups. Mean ΔADC in the INPH group was significantly higher than that in the ex vacuo ventricular dilatation and control groups (P < .01 for both). There was no significant difference in ΔADC between the ex vacuo ventricular dilatation and control groups (P = .86). There was no significant difference in mean ADC during the diastolic phase among groups (P > .05 for all). There was no significant correlation between ΔADC and mean ADC during the diastolic phase in any group. Determination of fluctuation of ADC over the cardiac cycle may render it possible to noninvasively obtain new and more detailed information than that provided by standard ADC measurement in suspected INPH, potentially facilitating the diagnosis of this disease. RSNA, 2011

  14. Diffusion-weighted imaging of breast lesions: Region-of-interest placement and different ADC parameters influence apparent diffusion coefficient values.

    PubMed

    Bickel, Hubert; Pinker, Katja; Polanec, Stephan; Magometschnigg, Heinrich; Wengert, Georg; Spick, Claudio; Bogner, Wolfgang; Bago-Horvath, Zsuzsanna; Helbich, Thomas H; Baltzer, Pascal

    2017-05-01

    To investigate the influence of region-of-interest (ROI) placement and different apparent diffusion coefficient (ADC) parameters on ADC values, diagnostic performance, reproducibility and measurement time in breast tumours. In this IRB-approved, retrospective study, 149 histopathologically proven breast tumours (109 malignant, 40 benign) in 147 women (mean age 53.2) were investigated. Three radiologists independently measured minimum, mean and maximum ADC, each using three ROI placement approaches:1 - small 2D-ROI, 2 - large 2D-ROI and 3 - 3D-ROI covering the whole lesion. One reader performed all measurements twice. Median ADC values, diagnostic performance, reproducibility, and measurement time were calculated and compared between all combinations of ROI placement approaches and ADC parameters. Median ADC values differed significantly between the ROI placement approaches (p < .001). Minimum ADC showed the best diagnostic performance (AUC .928-.956), followed by mean ADC obtained from 2D ROIs (.926-.94). Minimum and mean ADC showed high intra- (ICC .85-.94) and inter-reader reproducibility (ICC .74-.94). Median measurement time was significantly shorter for the 2D ROIs (p < .001). ROI placement significantly influences ADC values measured in breast tumours. Minimum and mean ADC acquired from 2D-ROIs are useful for the differentiation of benign and malignant breast lesions, and are highly reproducible, with rapid measurement. • Region of interest placement significantly influences apparent diffusion coefficient of breast tumours. • Minimum and mean apparent diffusion coefficient perform best and are reproducible. • 2D regions of interest perform best and provide rapid measurement times.

  15. Inhibition of Megakaryocyte Differentiation by Antibody-Drug Conjugates (ADCs) is Mediated by Macropinocytosis: Implications for ADC-induced Thrombocytopenia.

    PubMed

    Zhao, Hui; Gulesserian, Sara; Ganesan, Sathish Kumar; Ou, Jimmy; Morrison, Karen; Zeng, Zhilan; Robles, Veronica; Snyder, Josh; Do, Lisa; Aviña, Hector; Karki, Sher; Stover, David R; Doñate, Fernando

    2017-09-01

    Thrombocytopenia is a common adverse event in cancer patients treated with antibody-drug conjugates (ADC), including AGS-16C3F, an ADC targeting ENPP3 (ectonucleotide pyrophosphatase/phosphodiesterase-3) and trastuzumab emtansine (T-DM1). This study aims to elucidate the mechanism of action of ADC-induced thrombocytopenia. ENPP3 expression in platelets and megakaryocytes (MK) was investigated and shown to be negative. The direct effect of AGS-16C3F on platelets was evaluated using platelet rich plasma following the expression of platelet activation markers. Effects of AGS-16C3F, T-DM1, and control ADCs on maturing megakaryocytes were evaluated in an in vitro system in which human hematopoietic stem cells (HSC) were differentiated into MKs. AGS-16C3F, like T-DM1, did not affect platelets directly, but inhibited MK differentiation by the activity of Cys-mcMMAF, its active metabolite. FcγRIIA did not appear to play an important role in ADC cytotoxicity to differentiating MKs. AGS-16C3F, cytotoxic to MKs, did not bind to FcγRIIA on MKs. Blocking the interaction of T-DM1 with FcγRIIA did not prevent the inhibition of MK differentiation and IgG1-mcMMAF was not as cytotoxic to MKs despite binding to FcγRIIA. Several lines of evidence suggest that internalization of AGS-16C3F into MKs is mediated by macropinocytosis. Macropinocytosis activity of differentiating HSCs correlated with cell sensitivity to AGS-16C3F. AGS-16C3F was colocalized with a macropinocytosis marker, dextran-Texas Red in differentiating MKs. Ethyl isopropyl amiloride (EIPA), a macropinocytosis inhibitor, blocked internalization of dextran-Texas Red and AGS-16C3F. These data support the notion that inhibition of MK differentiation via macropinocytosis-mediated internalization plays a role in ADC-induced thrombocytopenia. Mol Cancer Ther; 16(9); 1877-86. ©2017 AACR See related article by Zhao et al., p. 1866 . ©2017 American Association for Cancer Research.

  16. Histogram analysis of ADC in brain tumor patients

    NASA Astrophysics Data System (ADS)

    Banerjee, Debrup; Wang, Jihong; Li, Jiang

    2011-03-01

    At various stage of progression, most brain tumors are not homogenous. In this presentation, we retrospectively studied the distribution of ADC values inside tumor volume during the course of tumor treatment and progression for a selective group of patients who underwent an anti-VEGF trial. Complete MRI studies were obtained for this selected group of patients including pre- and multiple follow-up, post-treatment imaging studies. In each MRI imaging study, multiple scan series were obtained as a standard protocol which includes T1, T2, T1-post contrast, FLAIR and DTI derived images (ADC, FA etc.) for each visit. All scan series (T1, T2, FLAIR, post-contrast T1) were registered to the corresponding DTI scan at patient's first visit. Conventionally, hyper-intensity regions on T1-post contrast images are believed to represent the core tumor region while regions highlighted by FLAIR may overestimate tumor size. Thus we annotated tumor regions on the T1-post contrast scans and ADC intensity values for pixels were extracted inside tumor regions as defined on T1-post scans. We fit a mixture Gaussian (MG) model for the extracted pixels using the Expectation-Maximization (EM) algorithm, which produced a set of parameters (mean, various and mixture coefficients) for the MG model. This procedure was performed for each visits resulting in a series of GM parameters. We studied the parameters fitted for ADC and see if they can be used as indicators for tumor progression. Additionally, we studied the ADC characteristics in the peri-tumoral region as identified by hyper-intensity on FLAIR scans. The results show that ADC histogram analysis of the tumor region supports the two compartment model that suggests the low ADC value subregion corresponding to densely packed cancer cell while the higher ADC value region corresponding to a mixture of viable and necrotic cells with superimposed edema. Careful studies of the composition and relative volume of the two compartments in tumor

  17. Role of Arginine decarboxylase (ADC) in Arabidopsis thaliana defence against the pathogenic bacterium Pseudomonas viridiflava.

    PubMed

    Rossi, F R; Marina, M; Pieckenstain, F L

    2015-07-01

    Polyamine biosynthesis starts with putrescine production through the decarboxylation of arginine or ornithine. In Arabidopsis thaliana, putrescine is synthesised exclusively by arginine decarboxylase (ADC), which exists as two isoforms (ADC1 and 2) that are differentially regulated by abiotic stimuli, but their role in defence against pathogens has not been studied in depth. This work analysed the participation of ADC in Arabidopsis defence against Pseudomonas viridiflava. ADC activity and expression, polyamine levels and bacterial resistance were analysed in null mutants of each ADC isoform. In non-infected wild-type (WT) plants, ADC2 expression was much higher than ADC1. Analysis of adc mutants demonstrated that ADC2 contributes to a much higher extent than ADC1 to basal ADC activity and putrescine biosynthesis. In addition, adc2 mutants showed increased basal expression of salicylic acid- and jasmonic acid-dependent PR genes. Bacterial infection induced putrescine accumulation and ADC1 expression in WT plants, but pathogen-induced putrescine accumulation was blocked in adc1 mutants. Results suggest a specific participation of ADC1 in defence, although basal resistance was not decreased by dysfunction of either of the two ADC genes. In addition, and as opposed to WT plants, bacterial infection increased ADC2 expression and ADC activity in adc1 mutants, which could counterbalance the lack of ADC1. Results demonstrate a major contribution of ADC2 to total ADC activity and the specific induction of ADC1 in response to infection. A certain degree of functional redundancy between the two isoforms in relation to their contribution to basal resistance is also evident. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.

  18. Volumetric segmentation of ADC maps and utility of standard deviation as measure of tumor heterogeneity in soft tissue tumors.

    PubMed

    Singer, Adam D; Pattany, Pradip M; Fayad, Laura M; Tresley, Jonathan; Subhawong, Ty K

    2016-01-01

    Determine interobserver concordance of semiautomated three-dimensional volumetric and two-dimensional manual measurements of apparent diffusion coefficient (ADC) values in soft tissue masses (STMs) and explore standard deviation (SD) as a measure of tumor ADC heterogeneity. Concordance correlation coefficients for mean ADC increased with more extensive sampling. Agreement on the SD of tumor ADC values was better for large regions of interest and multislice methods. Correlation between mean and SD ADC was low, suggesting that these parameters are relatively independent. Mean ADC of STMs can be determined by volumetric quantification with high interobserver agreement. STM heterogeneity merits further investigation as a potential imaging biomarker that complements other functional magnetic resonance imaging parameters. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Is it better to include necrosis in apparent diffusion coefficient (ADC) measurements? The necrosis/wall ADC ratio to differentiate malignant and benign necrotic lung lesions: Preliminary results.

    PubMed

    Karaman, Adem; Durur-Subasi, Irmak; Alper, Fatih; Durur-Karakaya, Afak; Subasi, Mahmut; Akgun, Metin

    2017-10-01

    To determine whether the use of necrosis/wall apparent diffusion coefficient (ADC) ratios in the differentiation of necrotic lung lesions is more reliable than measuring the wall alone. In this retrospective study, a total of 76 patients (54 males and 22 females, 71% vs. 29%, with a mean age of 53 ± 18 years, range, 18-84) were enrolled, 33 of whom had lung carcinoma and 43 had a benign necrotic lung lesion. A 3T scanner was used. The calculation of the necrosis/wall ADC ratio was based on ADC values measured from necrosis and the wall of the lesions by diffusion-weighted imaging (DWI). Statistical analyses were performed with the independent samples t-test and receiver operating characteristic analysis. Intraobserver and interobserver reliability were calculated for ADC values of wall and necrosis. The mean necrosis/wall ADC ratio was 1.67 ± 0.23 for malignant lesions and 0.75 ± 0.19 for benign lung lesions (P < 0.001). To estimate malignancy the area under the curve (AUC) values for necrosis ADC, wall ADC, and the necrosis/wall ADC ratio were 0.720, 0.073, and 0.997, respectively. A wall/necrosis ADC ratio cutoff value of 1.12 demonstrated a 100% sensitivity and 98% specificity in the estimation of malignancy. Positive predictive value was 100%, and negative predictive value 98% and diagnostic accuracy 99%. There was a good intraobserver and interobserver reliability for wall and necrosis. The necrosis/wall ADC ratio appears to be a reliable and promising tool for discriminating lung carcinoma from benign necrotic lung lesions than measuring the wall alone. 4 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2017;46:1001-1006. © 2017 International Society for Magnetic Resonance in Medicine.

  20. Cost effective, high performance transient recorder systems, utilizing the latest ADC`s, S/H`s, memories and PLA`s; Final report, May 14, 1987--February 14, 1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joerger, F. A.

    1990-02-01

    This project was to develop five transient recorder modules of various speeds and features. Four of the modules; TR200, 200MHZ recorder; TR2/25, Dual 25MHZ recorder; TR1012, 10MHZ, 12 bit recorder, and the ADC3216, 32 channel, 16 bit recorder were developed in the international CAMAC standard. The fifth unit, VTR1, 25MHZ recorder was packaged in the VME standard. Three of the modules, Models TR200, TR2/25 and VTR1 are already in Phase 3. The ADC3216 has been prototyped and successfully evaluated by a number of customers. The last module, Model TR1012, has been completely designed and the artwork completed. This module willmore » undergo tests shortly. 4 figs.« less

  1. Locally advanced rectal cancer: post-chemoradiotherapy ADC histogram analysis for predicting a complete response.

    PubMed

    Cho, Seung Hyun; Kim, Gab Chul; Jang, Yun-Jin; Ryeom, Hunkyu; Kim, Hye Jung; Shin, Kyung-Min; Park, Jun Seok; Choi, Gyu-Seog; Kim, See Hyung

    2015-09-01

    The value of diffusion-weighted imaging (DWI) for reliable differentiation between pathologic complete response (pCR) and residual tumor is still unclear. Recently, a few studies reported that histogram analysis can be helpful to monitor the therapeutic response in various cancer research. To investigate whether post-chemoradiotherapy (CRT) apparent diffusion coefficient (ADC) histogram analysis can be helpful to predict a pCR in locally advanced rectal cancer (LARC). Fifty patients who underwent preoperative CRT followed by surgery were enrolled in this retrospective study, non-pCR (n = 41) and pCR (n = 9), respectively. ADC histogram analysis encompassing the whole tumor was performed on two post-CRT ADC600 and ADC1000 (b factors 0, 600 vs. 0, 1000 s/mm(2)) maps. Mean, minimum, maximum, SD, mode, 10th, 25th, 50th, 75th, 90th percentile ADCs, skewness, and kurtosis were derived. Diagnostic performance for predicting pCR was evaluated and compared. On both maps, 10th and 25th ADCs showed better diagnostic performance than that using mean ADC. Tenth percentile ADCs revealed the best diagnostic performance on both ADC600 (AZ 0.841, sensitivity 100%, specificity 70.7%) and ADC1000 (AZ 0.821, sensitivity 77.8%, specificity 87.8%) maps. In comparison between 10th percentile and mean ADC, the specificity was significantly improved on both ADC600 (70.7% vs. 53.7%; P = 0.031) and ADC1000 (87.8% vs. 73.2%; P = 0.039) maps. Post-CRT ADC histogram analysis is helpful for predicting pCR in LARC, especially, in improving the specificity, compared with mean ADC. © The Foundation Acta Radiologica 2014.

  2. ADC Histogram Analysis of Cervical Cancer Aids Detecting Lymphatic Metastases-a Preliminary Study.

    PubMed

    Schob, Stefan; Meyer, Hans Jonas; Pazaitis, Nikolaos; Schramm, Dominik; Bremicker, Kristina; Exner, Marc; Höhn, Anne Kathrin; Garnov, Nikita; Surov, Alexey

    2017-12-01

    Apparent diffusion coefficient (ADC) histogram analysis has been used to some extent in cervical cancer (CC) to distinguish between low-grade and high-grade tumors. Although this differentiation is undoubtedly helpful, it would be even more crucial in the presurgical setting to determine whether a tumor already gained the potential to metastasize via the lymphatic system. So far, no studies investigated the potential of 3T ADC histogram analysis in CC to differentiate between nodal-positive and nodal-negative entities. Therefore, the principal aim of our study was to investigate the potential of 3T ADC histogram analysis to differentiate between CC with and without lymph node metastasis. The second aim was to elucidate possible differences in ADC histogram parameters between CC with limited vs. advanced tumor stages and well-differentiated vs. undifferentiated lesions. Finally, correlations of p53 expression and Ki-67 index with ADC parameters were analyzed. Eighteen female patients (mean age 55.4 years, range 32-79 years) with histopathologically confirmed cervical squamous cell carcinoma of the uterine cervix were prospectively enrolled. Tumor stages, tumor grading, status of metastatic dissemination, Ki67-index, and p53 expression were assessed in these patients. Diffusion weighted imaging (DWI) was obtained in a 3T scanner using the following b values: b0 and b1000 s/mm 2 . Group comparisons using Mann-Whitney U test revealed the following findings: nodal-positive CC had statistically significant lower ADC parameters (ADCmin, ADCmean, median ADC, Mode, p10, p25, p75, and p90) in comparison to nodal-negative CC (all p < 0.05). ADCentropy was significantly elevated (p = 0.046) in tumors with advanced T stages (T3/4) compared to tumors with limited T stage (T2). ADCmin values were different in a statistically significant manner comparing G1/G2 and G3 tumors (40.45 ± 18.63 vs. 65.0 ± 23.63 × 10-5 mm2 s -1 , p = 0.035). Furthermore, Spearman Rho

  3. High-speed ADC and DAC modules with fibre optic interconnections for telecom satellites

    NASA Astrophysics Data System (ADS)

    Heikkinen, Veli; Juntunen, Eveliina; Karppinen, Mikko; Kautio, Kari; Ollila, Jyrki; Sitomaniemi, Aila; Tanskanen, Antti; Casey, Rory; Scott, Shane; Gachon, Hélène; Sotom, Michel; Venet, Norbert; Toivonen, Jaakko; Tuominen, Taisto; Karafolas, Nikos

    2017-11-01

    The flexibility required for future telecom payloads calls for the introduction of more and more digital processing capabilities. Aggregate data throughputs of several Tbps will have to be handled onboard, thus creating the need for effective, ADCDSP and DACDSP highspeed links. ADC and DAC modules with optical interconnections is an attractive option as it can solve easily the transmission and routing of the expected huge amount of data. This technique will enable to increase the bandwidth and/or the number of beams/channels to be treated, or to support advanced digital processing architectures including beam forming. We realised electrooptic ADC and DAC modules containing an 8 bit, 2 GSa/s A/D converter and a 12 bit, 2 GSa/s D/A converter. The 4channel parallel fibre optic link employs 850nm VCSELs and GaAs PIN photodiodes coupled to 50/125μm fibre ribbon cable. ADCDSP and DSPDAC links both have an aggregate data rate of 25 Gbps. The paper presents the current status of this development.

  4. Recombinant Chimpanzee Adenovirus Vaccine AdC7-M/E Protects against Zika Virus Infection and Testis Damage.

    PubMed

    Xu, Kun; Song, Yufeng; Dai, Lianpan; Zhang, Yongli; Lu, Xuancheng; Xie, Yijia; Zhang, Hangjie; Cheng, Tao; Wang, Qihui; Huang, Qingrui; Bi, Yuhai; Liu, William J; Liu, Wenjun; Li, Xiangdong; Qin, Chuan; Shi, Yi; Yan, Jinghua; Zhou, Dongming; Gao, George F

    2018-03-15

    The recent outbreak of Zika virus (ZIKV) has emerged as a global health concern. ZIKV can persist in human semen and be transmitted by sexual contact, as well as by mosquitoes, as seen for classical arboviruses. We along with others have previously demonstrated that ZIKV infection leads to testis damage and infertility in mouse models. So far, no prophylactics or therapeutics are available; therefore, vaccine development is urgently demanded. Recombinant chimpanzee adenovirus has been explored as the preferred vaccine vector for many pathogens due to the low preexisting immunity against the vector among the human population. Here, we developed a ZIKV vaccine based on recombinant chimpanzee adenovirus type 7 (AdC7) expressing ZIKV M/E glycoproteins. A single vaccination of AdC7-M/E was sufficient to elicit potent neutralizing antibodies and protective immunity against ZIKV in both immunocompetent and immunodeficient mice. Moreover, vaccinated mice rapidly developed neutralizing antibody with high titers within 1 week postvaccination, and the elicited antiserum could cross-neutralize heterologous ZIKV strains. Additionally, ZIKV M- and E-specific T cell responses were robustly induced by AdC7-M/E. Moreover, one-dose inoculation of AdC7-M/E conferred mouse sterilizing immunity to eliminate viremia and viral burden in tissues against ZIKV challenge. Further investigations showed that vaccination with AdC7-M/E completely protected against ZIKV-induced testicular damage. These data demonstrate that AdC7-M/E is highly effective and represents a promising vaccine candidate for ZIKV control. IMPORTANCE Zika virus (ZIKV) is a pathogenic flavivirus that causes severe clinical consequences, including congenital malformations in fetuses and Guillain-Barré syndrome in adults. Vaccine development is a high priority for ZIKV control. In this study, to avoid preexisting anti-vector immunity in humans, a rare serotype chimpanzee adenovirus (AdC7) expressing the ZIKV M

  5. A 9-Bit 50 MSPS Quadrature Parallel Pipeline ADC for Communication Receiver Application

    NASA Astrophysics Data System (ADS)

    Roy, Sounak; Banerjee, Swapna

    2018-03-01

    This paper presents the design and implementation of a pipeline Analog-to-Digital Converter (ADC) for superheterodyne receiver application. Several enhancement techniques have been applied in implementing the ADC, in order to relax the target specifications of its building blocks. The concepts of time interleaving and double sampling have been used simultaneously to enhance the sampling speed and to reduce the number of amplifiers used in the ADC. Removal of a front end sample-and-hold amplifier is possible by employing dynamic comparators with switched capacitor based comparison of input signal and reference voltage. Each module of the ADC comprises two 2.5-bit stages followed by two 1.5-bit stages and a 3-bit flash stage. Four such pipeline ADC modules are time interleaved using two pairs of non-overlapping clock signals. These two pairs of clock signals are in phase quadrature with each other. Hence the term quadrature parallel pipeline ADC has been used. These configurations ensure that the entire ADC contains only eight operational-trans-conductance amplifiers. The ADC is implemented in a 0.18-μm CMOS process and supply voltage of 1.8 V. The proto-type is tested at sampling frequencies of 50 and 75 MSPS producing an Effective Number of Bits (ENOB) of 6.86- and 6.11-bits respectively. At peak sampling speed, the core ADC consumes only 65 mW of power.

  6. A 9-Bit 50 MSPS Quadrature Parallel Pipeline ADC for Communication Receiver Application

    NASA Astrophysics Data System (ADS)

    Roy, Sounak; Banerjee, Swapna

    2018-06-01

    This paper presents the design and implementation of a pipeline Analog-to-Digital Converter (ADC) for superheterodyne receiver application. Several enhancement techniques have been applied in implementing the ADC, in order to relax the target specifications of its building blocks. The concepts of time interleaving and double sampling have been used simultaneously to enhance the sampling speed and to reduce the number of amplifiers used in the ADC. Removal of a front end sample-and-hold amplifier is possible by employing dynamic comparators with switched capacitor based comparison of input signal and reference voltage. Each module of the ADC comprises two 2.5-bit stages followed by two 1.5-bit stages and a 3-bit flash stage. Four such pipeline ADC modules are time interleaved using two pairs of non-overlapping clock signals. These two pairs of clock signals are in phase quadrature with each other. Hence the term quadrature parallel pipeline ADC has been used. These configurations ensure that the entire ADC contains only eight operational-trans-conductance amplifiers. The ADC is implemented in a 0.18-μm CMOS process and supply voltage of 1.8 V. The proto-type is tested at sampling frequencies of 50 and 75 MSPS producing an Effective Number of Bits (ENOB) of 6.86- and 6.11-bits respectively. At peak sampling speed, the core ADC consumes only 65 mW of power.

  7. PI-RADS v2 and ADC values: is there room for improvement?

    PubMed

    Jordan, Eric J; Fiske, Charles; Zagoria, Ronald; Westphalen, Antonio C

    2018-03-17

    To determine the diagnostic accuracy of ADC values in combination with PI-RADS v2 for the diagnosis of clinically significant prostate cancer (CS-PCa) compared to PI-RADS v2 alone. This retrospective study included 155 men whom underwent 3-Tesla prostate MRI and subsequent MR/US fusion biopsies at a single non-academic center from 11/2014 to 3/2016. All scans were performed with a surface coil and included T2, diffusion-weighted, and dynamic contrast-enhanced sequences. Suspicious findings were classified using Prostate Imaging Reporting and Data System (PI-RADS) v2 and targeted using MR/US fusion biopsies. Mixed-effect logistic regression analyses were used to determine the ability of PIRADS v2 alone and combined with ADC values to predict CS-PCa. As ADC categories are more practical in clinical situations than numeric values, an additional model with ADC categories of ≤ 800 and > 800 was performed. A total of 243 suspicious lesions were included, 69 of which were CS-PCa, 34 were Gleason score 3+3 PCa, and 140 were negative. The overall PIRADS v2 score, ADC values, and ADC categories are independent statistically significant predictors of CS-PCa (p < 0.001). However, the area under the ROC of PIRADS v2 alone and PIRADS v2 with ADC categories are significantly different in both peripheral and transition zone lesions (p = 0.026 and p = 0.03, respectively) Further analysis of the ROC curves also shows that the main benefit of utilizing ADC values or categories is better discrimination of PI-RADS v2 4 lesions. ADC values and categories help to diagnose CS-PCa when lesions are assigned a PI-RADS v2 score of 4.

  8. Alterations of apparent diffusion coefficient (ADC) in the brain of rats chronically exposed to lead acetate.

    PubMed

    López-Larrubia, Pilar; Cauli, Omar

    2011-03-15

    Diffusion-weighted imaging (DWI) allows the assessment of the water apparent diffusion coefficient (ADC), a measure of tissue water diffusivity which is altered during different pathological conditions such as cerebral oedema. By means of DWI, we repeatedly measured in the same rats apparent diffusion coefficient ADC in different brain areas (motor cortex (MCx), somato-sensory cortex (SCx), caudate-putamen (CPu), hippocampus (Hip), mesencephalic reticular formation (RF), corpus callosum (CC) and cerebellum (Cb)) after 1 week, 4 and 12 weeks of lead acetate exposure via drinking water (50 or 500 ppm). After 12 weeks of lead exposure rats received albumin-Evans blue complex administration and were sacrificed 1h later. Blood-brain barrier permeability and water tissue content were determined in order to evaluate their relationship with ADC changes. Chronic exposure to lead acetate (500 ppm) for 4 weeks increased ADC values in Hip, RF and Cb but no in other brain areas. After 12 weeks of lead acetate exposure at 500 ppm ADC is significantly increased also in CPu and CC. Brain areas displaying high ADC values after lead exposure showed also an increased water content and increased BBB permeability to Evans blue-albumin complex. Exposure to 50 ppm for 12 weeks increased ADC values and BBB permeability in the RF and Cb. In summary, chronic lead exposure induces cerebral oedema in the adult brain depending on the brain area and the dose of exposure. RF and Cb appeared the most sensitive brain areas whereas cerebral cortex appears resistant to lead-induced cerebral oedema. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  9. Chandra and XMM Observations of the ADC Source 0921-630

    NASA Technical Reports Server (NTRS)

    Kallman, T. R.; Angelini, L.; Boroson, B.; Cottam, J.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We analyze observations of the low mass X-ray binary 2S0921-63 obtained with the gratings and CCDs on Chandra and XMM. This object is a high inclination system showing evidence for an accretion disk corona (ADC). Such a corona has the potential to constrain the properties of the heated accretion disk in this system, and other LMXBs by extension. We find evidence for line emission which is generally consistent with that found by previous experiments, although we are able to detect more lines. For the first time in this source, we find that the iron K line has multiple components. We set limits on the line widths and velocity offsets, and we fit the spectra to photoionization models and discuss the implications for accretion disk corona models. For the first time in any ADC source we use these fits, together with density constraints based on the O VII line ratio, in order to constrain the flux in the medium-ionization region of the ADC. Under various assumptions about the source luminosity this constrains the location of the emitting region. These estimates, together with estimates for the emission measure, favor a scenario in which the intrinsic luminosity of the source is comparable to what we observe.

  10. EROIC: a BiCMOS pseudo-gaussian shaping amplifier for high-resolution X-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Buzzetti, Siro; Guazzoni, Chiara; Longoni, Antonio

    2003-10-01

    We present the design and complete characterization of a fifth-order pseudo-gaussian shaping amplifier with 1 μs shaping time. The circuit is optimized for the read-out of signals coming from Silicon Drift Detectors for high-resolution X-ray spectroscopy. The novelty of the designed chip stands in the use of a current feedback loop to place the poles in the desired position on the s-plane. The amplifier has been designed in 0.8 μm BiCMOS technology and fully tested. The EROIC chip comprises also the peak stretcher, the peak detector, the output buffer to drive the external ADC and the pile-up rejection system. The circuit needs a single +5 V power supply and the dissipated power is 5 mW per channel. The digital outputs can be directly coupled to standard digital CMOS ICs. The measured integral-non-linearity of the whole chip is below 0.05% and the achieved energy resolution at the Mn Kα line detected by a 5 mm 2 Peltier-cooled Silicon Drift Detector is 167 eV FWHM.

  11. Histogram analysis derived from apparent diffusion coefficient (ADC) is more sensitive to reflect serological parameters in myositis than conventional ADC analysis.

    PubMed

    Meyer, Hans Jonas; Emmer, Alexander; Kornhuber, Malte; Surov, Alexey

    2018-05-01

    Diffusion-weighted imaging (DWI) has the potential of being able to reflect histopathology architecture. A novel imaging approach, namely histogram analysis, is used to further characterize tissues on MRI. The aim of this study was to correlate histogram parameters derived from apparent diffusion coefficient (ADC) maps with serological parameters in myositis. 16 patients with autoimmune myositis were included in this retrospective study. DWI was obtained on a 1.5 T scanner by using the b-values of 0 and 1000 s mm - 2 . Histogram analysis was performed as a whole muscle measurement by using a custom-made Matlab-based application. The following ADC histogram parameters were estimated: ADCmean, ADCmax, ADCmin, ADCmedian, ADCmode, and the following percentiles ADCp10, ADCp25, ADCp75, ADCp90, as well histogram parameters kurtosis, skewness, and entropy. In all patients, the blood sample was acquired within 3 days to the MRI. The following serological parameters were estimated: alanine aminotransferase, aspartate aminotransferase, creatine kinase, lactate dehydrogenase, C-reactive protein (CRP) and myoglobin. All patients were screened for Jo1-autobodies. Kurtosis correlated inversely with CRP (p = -0.55 and 0.03). Furthermore, ADCp10 and ADCp90 values tended to correlate with creatine kinase (p = -0.43, 0.11, and p = -0.42, = 0.12 respectively). In addition, ADCmean, p10, p25, median, mode, and entropy were different between Jo1-positive and Jo1-negative patients. ADC histogram parameters are sensitive for detection of muscle alterations in myositis patients. Advances in knowledge: This study identified that kurtosis derived from ADC maps is associated with CRP in myositis patients. Furthermore, several ADC histogram parameters are statistically different between Jo1-positive and Jo1-negative patients.

  12. A Potential Mechanism for ADC-Induced Neutropenia: Role of Neutrophils in Their Own Demise.

    PubMed

    Zhao, Hui; Gulesserian, Sara; Malinao, Maria Christina; Ganesan, Sathish Kumar; Song, James; Chang, Mi Sook; Williams, Melissa M; Zeng, Zhilan; Mattie, Michael; Mendelsohn, Brian A; Stover, David R; Doñate, Fernando

    2017-09-01

    Neutropenia is a common adverse event in cancer patients treated with antibody-drug conjugates (ADC) and we aimed to elucidate the potential mechanism of this toxicity. To investigate whether ADCs affect neutrophil production from bone marrow, an in vitro assay was developed in which hematopoietic stem cells (HSC) were differentiated to neutrophils. Several antibodies against targets absent in HSCs and neutrophils were conjugated to MMAE via a cleavable valine-citrulline linker (vcMMAE-ADC) or MMAF via a noncleavable maleimidocaproyl linker (mcMMAF-ADC), and their cytotoxicity was tested in the neutrophil differentiation assay. Results showed that HSCs had similar sensitivity to vcMMAE-ADCs and mcMMAF-ADCs; however, vcMMAE-ADCs were more cytotoxic to differentiating neutrophils than the same antibody conjugated to mcMMAF. This inhibitory effect was not mediated by internalization of ADC either by macropinocytosis or FcγRs. Our results suggested that extracellular proteolysis of the cleavable valine-citrulline linker is responsible for the cytotoxicity to differentiating neutrophils. Mass spectrometry analyses indicated that free MMAE was released from vcMMAE-ADCs in the extracellular compartment when they were incubated with differentiating neutrophils or neutrophil conditioned medium, but not with HSC-conditioned medium. Using different protease inhibitors, our data suggested that serine, but not cysteine proteases, were responsible for the cleavage. In vitro experiments demonstrated that the purified serine protease, elastase, was capable of releasing free MMAE from a vcMMAE-ADC. Here we propose that ADCs containing protease cleavable linkers can contribute to neutropenia via extracellular cleavage mediated by serine proteases secreted by differentiating neutrophils in bone marrow. Mol Cancer Ther; 16(9); 1866-76. ©2017 AACR See related article by Zhao et al., p. 1877 . ©2017 American Association for Cancer Research.

  13. Automatic Single Event Effects Sensitivity Analysis of a 13-Bit Successive Approximation ADC

    NASA Astrophysics Data System (ADS)

    Márquez, F.; Muñoz, F.; Palomo, F. R.; Sanz, L.; López-Morillo, E.; Aguirre, M. A.; Jiménez, A.

    2015-08-01

    This paper presents Analog Fault Tolerant University of Seville Debugging System (AFTU), a tool to evaluate the Single-Event Effect (SEE) sensitivity of analog/mixed signal microelectronic circuits at transistor level. As analog cells can behave in an unpredictable way when critical areas interact with the particle hitting, there is a need for designers to have a software tool that allows an automatic and exhaustive analysis of Single-Event Effects influence. AFTU takes the test-bench SPECTRE design, emulates radiation conditions and automatically evaluates vulnerabilities using user-defined heuristics. To illustrate the utility of the tool, the SEE sensitivity of a 13-bits Successive Approximation Analog-to-Digital Converter (ADC) has been analysed. This circuit was selected not only because it was designed for space applications, but also due to the fact that a manual SEE sensitivity analysis would be too time-consuming. After a user-defined test campaign, it was detected that some voltage transients were propagated to a node where a parasitic diode was activated, affecting the offset cancelation, and therefore the whole resolution of the ADC. A simple modification of the scheme solved the problem, as it was verified with another automatic SEE sensitivity analysis.

  14. Value of apparent diffusion coefficient (ADC) in assessing radiotherapy and chemotherapy success in cervical cancer.

    PubMed

    Fu, Zhan-Zhao; Peng, Yong; Cao, Li-Yan; Chen, Yan-Sheng; Li, Kun; Fu, Bao-Hong

    2015-06-01

    We investigated the clinical significance of apparent diffusion coefficient (ADC) values in diffusion-weighted magnetic resonance imaging (DWI) in monitoring the efficacy of radiotherapy (RT) and chemotherapy (CT) treatments in cervical cancer. In order to identify relevant high quality clinical cohort studies reporting the use of DWI in cervical cancers, the following electronic databases in English and Chinese languages were comprehensively searched: MEDLINE, Science Citation Index database, Cochrane Library Database, PubMed, Embase, CINAHL, and Current Contents Index; Chinese Biomedical Database, Chinese Journal Full-Text Database. All selected studies were published prior to March 2014, and data extracted from these studies were analyzed using STATA 12.0 statistical software. We initially retrieved 196 articles (79 Chinese articles and 117 English articles) through database searches and finally selected sixteen cohort studies for this meta-analysis. The 16 studies contained a combined total of 517 subjects, and all selected studies reported the mean ADC value (10(-3) mm(2)/s) in DWI in cervical cancer patients treated with RT and CT. Combined standardized mean difference (SMD) suggested that the mean post-RT and mean post-CT ADC values were significantly higher than the mean pre-RT and mean pre-CT ADC values, respectively, in cervical cancer patients (SMD=2.95, 95% CI=2.19-3.72, P<0.001). Ethnicity-stratified analysis revealed that increased ADC values were observed post-RT and post-CT in both Caucasian (SMD=1.44, 95% CI=0.93-1.95, P<0.001) and Asian populations (SMD=3.32, 95% CI=2.42-4.22, P<0.001), compared with the mean ADC values before RT and CT, respectively, in the two subgroups. Further, subgroup analysis based on b-value revealed that higher ADC values were found in cervical cancer patients after RT and CT, compared to before RT and CT treatment, with both b value≤900 (SMD=3.71, 95% CI=2.35-5.07, P<0.001) and >900 (SMD=2.55, 95% CI=1.78-3.32, P<0

  15. Resolution-Adaptive Hybrid MIMO Architectures for Millimeter Wave Communications

    NASA Astrophysics Data System (ADS)

    Choi, Jinseok; Evans, Brian L.; Gatherer, Alan

    2017-12-01

    In this paper, we propose a hybrid analog-digital beamforming architecture with resolution-adaptive ADCs for millimeter wave (mmWave) receivers with large antenna arrays. We adopt array response vectors for the analog combiners and derive ADC bit-allocation (BA) solutions in closed form. The BA solutions reveal that the optimal number of ADC bits is logarithmically proportional to the RF chain's signal-to-noise ratio raised to the 1/3 power. Using the solutions, two proposed BA algorithms minimize the mean square quantization error of received analog signals under a total ADC power constraint. Contributions of this paper include 1) ADC bit-allocation algorithms to improve communication performance of a hybrid MIMO receiver, 2) approximation of the capacity with the BA algorithm as a function of channels, and 3) a worst-case analysis of the ergodic rate of the proposed MIMO receiver that quantifies system tradeoffs and serves as the lower bound. Simulation results demonstrate that the BA algorithms outperform a fixed-ADC approach in both spectral and energy efficiency, and validate the capacity and ergodic rate formula. For a power constraint equivalent to that of fixed 4-bit ADCs, the revised BA algorithm makes the quantization error negligible while achieving 22% better energy efficiency. Having negligible quantization error allows existing state-of-the-art digital beamformers to be readily applied to the proposed system.

  16. 55-mW, 1.2-V, 12-bit, 100-MSPS Pipeline ADCs for Wireless Receivers

    NASA Astrophysics Data System (ADS)

    Ito, Tomohiko; Kurose, Daisuke; Ueno, Takeshi; Yamaji, Takafumi; Itakura, Tetsuro

    For wireless receivers, low-power 1.2-V 12-bit 100-MSPS pipeline ADCs are fabricated in 90-nm CMOS technology. To achieve low-power dissipation at 1.2V without the degradation of SNR, the configuration of 2.5bit/stage is employed with an I/Q amplifier sharing technique. Furthermore, single-stage pseudo-differential amplifiers are used in a Sample-and-Hold (S/H) circuit and a 1st Multiplying Digital-to-Analog Converter (MDAC). The pseudo-differential amplifier with two-gain-stage transimpedance gain-boosting amplifiers realizes high DC gain of more than 90dB with low power. The measured SNR of the 100-MSPS ADC is 66.7dB at 1.2-V supply. Under that condition, each ADC dissipates only 55mW.

  17. Method and Apparatus for Improving the Resolution of Digitally Sampled Analog Data

    NASA Technical Reports Server (NTRS)

    Liaghati, Amir L. (Inventor)

    2017-01-01

    A system and method is described for converting an analog signal into a digital signal. The gain and offset of an ADC is dynamically adjusted so that the N-bits of input data are assigned to a narrower channel instead of the entire input range of the ADC. This provides greater resolution in the range of interest without generating longer digital data strings.

  18. Natural Product Splicing Inhibitors: A New Class of Antibody-Drug Conjugate (ADC) Payloads.

    PubMed

    Puthenveetil, Sujiet; Loganzo, Frank; He, Haiyin; Dirico, Ken; Green, Michael; Teske, Jesse; Musto, Sylvia; Clark, Tracey; Rago, Brian; Koehn, Frank; Veneziale, Robert; Falahaptisheh, Hadi; Han, Xiaogang; Barletta, Frank; Lucas, Judy; Subramanyam, Chakrapani; O'Donnell, Christopher J; Tumey, L Nathan; Sapra, Puja; Gerber, Hans Peter; Ma, Dangshe; Graziani, Edmund I

    2016-08-17

    There is a considerable ongoing work to identify new cytotoxic payloads that are appropriate for antibody-based delivery, acting via mechanisms beyond DNA damage and microtubule disruption, highlighting their importance to the field of cancer therapeutics. New modes of action will allow a more diverse set of tumor types to be targeted and will allow for possible mechanisms to evade the drug resistance that will invariably develop to existing payloads. Spliceosome inhibitors are known to be potent antiproliferative agents capable of targeting both actively dividing and quiescent cells. A series of thailanstatin-antibody conjugates were prepared in order to evaluate their potential utility in the treatment of cancer. After exploring a variety of linkers, we found that the most potent antibody-drug conjugates (ADCs) were derived from direct conjugation of the carboxylic acid-containing payload to surface lysines of the antibody (a "linker-less" conjugate). Activity of these lysine conjugates was correlated to drug-loading, a feature not typically observed for other payload classes. The thailanstatin-conjugates were potent in high target expressing cells, including multidrug-resistant lines, and inactive in nontarget expressing cells. Moreover, these ADCs were shown to promote altered splicing products in N87 cells in vitro, consistent with their putative mechanism of action. In addition, the exposure of the ADCs was sufficient to result in excellent potency in a gastric cancer xenograft model at doses as low as 1.5 mg/kg that was superior to the clinically approved ADC T-DM1. The results presented herein therefore open the door to further exploring splicing inhibition as a potential new mode-of-action for novel ADCs.

  19. Pseudo Asynchronous Level Crossing adc for ecg Signal Acquisition.

    PubMed

    Marisa, T; Niederhauser, T; Haeberlin, A; Wildhaber, R A; Vogel, R; Goette, J; Jacomet, M

    2017-02-07

    A new pseudo asynchronous level crossing analogue-to-digital converter (adc) architecture targeted for low-power, implantable, long-term biomedical sensing applications is presented. In contrast to most of the existing asynchronous level crossing adc designs, the proposed design has no digital-to-analogue converter (dac) and no continuous time comparators. Instead, the proposed architecture uses an analogue memory cell and dynamic comparators. The architecture retains the signal activity dependent sampling operation by generating events only when the input signal is changing. The architecture offers the advantages of smaller chip area, energy saving and fewer analogue system components. Beside lower energy consumption the use of dynamic comparators results in a more robust performance in noise conditions. Moreover, dynamic comparators make interfacing the asynchronous level crossing system to synchronous processing blocks simpler. The proposed adc was implemented in [Formula: see text] complementary metal-oxide-semiconductor (cmos) technology, the hardware occupies a chip area of 0.0372 mm 2 and operates from a supply voltage of [Formula: see text] to [Formula: see text]. The adc's power consumption is as low as 0.6 μW with signal bandwidth from [Formula: see text] to [Formula: see text] and achieves an equivalent number of bits (enob) of up to 8 bits.

  20. The Adc/Lmb System Mediates Zinc Acquisition in Streptococcus agalactiae and Contributes to Bacterial Growth and Survival

    PubMed Central

    Moulin, Pauline; Patron, Kévin; Cano, Camille; Zorgani, Mohamed Amine; Camiade, Emilie; Borezée-Durant, Elise; Rosenau, Agnès; Mereghetti, Laurent

    2016-01-01

    ABSTRACT The Lmb protein of Streptococcus agalactiae is described as an adhesin that binds laminin, a component of the human extracellular matrix. In this study, we revealed a new role for this protein in zinc uptake. We also identified two Lmb homologs, AdcA and AdcAII, redundant binding proteins that combine with the AdcCB translocon to form a zinc-ABC transporter. Expression of this transporter is controlled by the zinc concentration in the medium through the zinc-dependent regulator AdcR. Triple deletion of lmb, adcA, and adcAII, or that of the adcCB genes, impaired growth and cell separation in a zinc-restricted environment. Moreover, we found that this Adc zinc-ABC transporter promotes S. agalactiae growth and survival in some human biological fluids, suggesting that it contributes to the infection process. These results indicated that zinc has biologically vital functions in S. agalactiae and that, under the conditions tested, the Adc/Lmb transporter constitutes the main zinc acquisition system of the bacterium. IMPORTANCE A zinc transporter, composed of three redundant binding proteins (Lmb, AdcA, and AdcAII), was characterized in Streptococcus agalactiae. This system was shown to be essential for bacterial growth and morphology in zinc-restricted environments, including human biological fluids. PMID:27672194

  1. Is the necrosis/wall ADC ratio useful for the differentiation of benign and malignant breast lesions?

    PubMed

    Durur-Subasi, Irmak; Durur-Karakaya, Afak; Karaman, Adem; Seker, Mehmet; Demirci, Elif; Alper, Fatih

    2017-05-01

    To determine whether the necrosis/wall apparent diffusion coefficient (ADC) ratio is useful for the malignant-benign differentiation of necrotic breast lesions. Breast MRI was performed using a 3-T system. In this retrospective study, calculation of the necrosis/wall ADC ratio was based on ADC values measured from the necrosis and from the wall of malignant and benign breast lesions by diffusion-weighted imaging (DWI). By synchronizing post-contrast T 1 weighted images, the separate parts of wall and necrosis were maintained. All the diagnoses were pathologically confirmed. Statistical analyses were conducted using an independent sample t-test and receiver operating characteristic analysis. The intraclass and interclass correlations were evaluated. A total of 66 female patients were enrolled, 38 of whom had necrotic breast carcinomas and 28 of whom had breast abscesses. The ADC values were obtained from both the wall and necrosis. The mean necrosis/wall ADC ratio (± standard deviation) was 1.61 ± 0.51 in carcinomas, and it was 0.65 ± 0.33 in abscesses. The area under the curve values for necrosis ADC, wall ADC and the necrosis/wall ADC ratio were 0.680, 0.068 and 0.942, respectively. A wall/necrosis ADC ratio cut-off value of 1.18 demonstrated a sensitivity of 97%, specificity of 93%, a positive-predictive value of 95%, a negative-predictive value of 96% and an accuracy of 95% in determining the malignant nature of necrotic breast lesions. There was a good intra- and interclass reliability for the ADC values of both necrosis and wall. The necrosis/wall ADC ratio appears to be a reliable and promising tool for discriminating breast carcinomas from abscesses using DWI. Advances in knowledge: ADC values of the necrosis obtained by DWI are valuable for malignant-benign differentiation in necrotic breast lesions. The necrosis/wall ADC ratio appears to be a reliable and promising tool in the breast imaging field.

  2. Is the necrosis/wall ADC ratio useful for the differentiation of benign and malignant breast lesions?

    PubMed Central

    Durur-Karakaya, Afak; Karaman, Adem; Seker, Mehmet; Demirci, Elif; Alper, Fatih

    2017-01-01

    Objective: To determine whether the necrosis/wall apparent diffusion coefficient (ADC) ratio is useful for the malignant–benign differentiation of necrotic breast lesions. Methods: Breast MRI was performed using a 3-T system. In this retrospective study, calculation of the necrosis/wall ADC ratio was based on ADC values measured from the necrosis and from the wall of malignant and benign breast lesions by diffusion-weighted imaging (DWI). By synchronizing post-contrast T1 weighted images, the separate parts of wall and necrosis were maintained. All the diagnoses were pathologically confirmed. Statistical analyses were conducted using an independent sample t-test and receiver operating characteristic analysis. The intraclass and interclass correlations were evaluated. Results: A total of 66 female patients were enrolled, 38 of whom had necrotic breast carcinomas and 28 of whom had breast abscesses. The ADC values were obtained from both the wall and necrosis. The mean necrosis/wall ADC ratio (± standard deviation) was 1.61 ± 0.51 in carcinomas, and it was 0.65 ± 0.33 in abscesses. The area under the curve values for necrosis ADC, wall ADC and the necrosis/wall ADC ratio were 0.680, 0.068 and 0.942, respectively. A wall/necrosis ADC ratio cut-off value of 1.18 demonstrated a sensitivity of 97%, specificity of 93%, a positive-predictive value of 95%, a negative-predictive value of 96% and an accuracy of 95% in determining the malignant nature of necrotic breast lesions. There was a good intra- and interclass reliability for the ADC values of both necrosis and wall. Conclusion: The necrosis/wall ADC ratio appears to be a reliable and promising tool for discriminating breast carcinomas from abscesses using DWI. Advances in knowledge: ADC values of the necrosis obtained by DWI are valuable for malignant-benign differentiation in necrotic breast lesions. The necrosis/wall ADC ratio appears to be a reliable and promising tool in the breast imaging field. PMID

  3. Diffusion-weighted magnetic resonance imaging with apparent diffusion coefficient (ADC) determination in normal and pathological fetal kidneys.

    PubMed

    Chaumoitre, K; Colavolpe, N; Shojai, R; Sarran, A; D' Ercole, C; Panuel, M

    2007-01-01

    To assess the use of diffusion-weighted magnetic resonance imaging (DW-MRI) in the evaluation of the fetal kidney and to estimate age-dependent changes in the apparent diffusion coefficient (ADC) of normal and pathological fetal kidneys. DW-MRI was performed on a 1.5-T machine at 23-38 gestational weeks in 51 pregnant women in whom the fetal kidneys were normal and in 10 whose fetuses had renal pathology (three with suspected nephropathy, three with renal tract dilatation, one with unilateral renal venous thrombosis, and three with twin-twin transfusion syndrome (TTTS)). The ADC was measured in an approximately 1-cm2 region of interest within the renal parenchyma. ADC values in normal renal parenchyma ranged from 1.1 to 1.8 10(-3) mm2 s-1. There was no significant age-dependent change in the ADC of normal kidneys. In cases of nephropathy, the ADC value was not always pathological but an ADC map could show abnormal findings. In cases of dilatation, the ADC value was difficult to determine when the dilatation was huge. In cases of TTTS, the ADC of the donor twin was higher than that of the recipient twin and the difference seemed to be related to the severity of the syndrome. Evaluation of the ADC for fetal kidneys is feasible. Fetal measurement of the ADC value and ADC maps may be useful tools with which to explore the fetal kidney when used in conjunction with current methods. DW-MR images, ADC value and ADC map seem to be useful in cases of suspected nephropathy (hyperechoic kidneys), dilated kidney and vascular pathology (renal venous thrombosis, TTTS). Copyright (c) 2006 ISUOG.

  4. Implementation of integrated circuit and design of SAR ADC for fully implantable hearing aids.

    PubMed

    Kim, Jong Hoon; Lee, Jyung Hyun; Cho, Jin-Ho

    2017-07-20

    The hearing impaired population has been increasing; many people suffer from hearing problems. To deal with this difficulty, various types of hearing aids are being rapidly developed. In particular, fully implantable hearing aids are being actively studied to improve the performance of existing hearing aids and to reduce the stigma of hearing loss patients. It has to be of small size and low-power consumption for easy implantation and long-term use. The objective of the study was to implement a small size and low-power consumption successive approximation register analog-to-digital converter (SAR ADC) for fully implantable hearing aids. The ADC was selected as the SAR ADC because its analog circuit components are less required by the feedback circuit of the SAR ADC than the sigma-delta ADC which is conventionally used in hearing aids, and it has advantages in the area and power consumption. So, the circuit of SAR ADC is designed considering the speech region of humans because the objective is to deliver the speech signals of humans to hearing loss patients. If the switch of sample and hold works in the on/off positions, the charge injection and clock feedthrough are produced by a parasitic capacitor. These problems affect the linearity of the hold voltage, and as a result, an error of the bit conversion is generated. In order to solve the problem, a CMOS switch that consists of NMOS and PMOS was used, and it reduces the charge injection because the charge carriers in the NMOS and PMOS have inversed polarity. So, 16 bit conversion is performed before the occurrence of the Least Significant Bit (LSB) error. In order to minimize the offset voltage and power consumption of the designed comparator, we designed a preamplifier with current mirror. Therefore, the power consumption was reduced by the power control switch used in the comparator. The layout of the designed SAR ADC was performed by Virtuoso Layout Editor (Cadence, USA). In the layout result, the size of the

  5. The Adc/Lmb System Mediates Zinc Acquisition in Streptococcus agalactiae and Contributes to Bacterial Growth and Survival.

    PubMed

    Moulin, Pauline; Patron, Kévin; Cano, Camille; Zorgani, Mohamed Amine; Camiade, Emilie; Borezée-Durant, Elise; Rosenau, Agnès; Mereghetti, Laurent; Hiron, Aurélia

    2016-12-15

    The Lmb protein of Streptococcus agalactiae is described as an adhesin that binds laminin, a component of the human extracellular matrix. In this study, we revealed a new role for this protein in zinc uptake. We also identified two Lmb homologs, AdcA and AdcAII, redundant binding proteins that combine with the AdcCB translocon to form a zinc-ABC transporter. Expression of this transporter is controlled by the zinc concentration in the medium through the zinc-dependent regulator AdcR. Triple deletion of lmb, adcA, and adcAII, or that of the adcCB genes, impaired growth and cell separation in a zinc-restricted environment. Moreover, we found that this Adc zinc-ABC transporter promotes S. agalactiae growth and survival in some human biological fluids, suggesting that it contributes to the infection process. These results indicated that zinc has biologically vital functions in S. agalactiae and that, under the conditions tested, the Adc/Lmb transporter constitutes the main zinc acquisition system of the bacterium. A zinc transporter, composed of three redundant binding proteins (Lmb, AdcA, and AdcAII), was characterized in Streptococcus agalactiae This system was shown to be essential for bacterial growth and morphology in zinc-restricted environments, including human biological fluids. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  6. Zn2+ Uptake in Streptococcus pyogenes: Characterization of adcA and lmb Null Mutants.

    PubMed

    Tedde, Vittorio; Rosini, Roberto; Galeotti, Cesira L

    2016-01-01

    An effective regulation of metal ion homeostasis is essential for the growth of microorganisms in any environment and in pathogenic bacteria is strongly associated with their ability to invade and colonise their hosts. To gain a better insight into zinc acquisition in Group A Streptococcus (GAS) we characterized null deletion mutants of the adcA and lmb genes of Streptococcus pyogenes strain MGAS5005 encoding the orthologues of AdcA and AdcAII, the two surface lipoproteins with partly redundant roles in zinc homeostasis in Streptococcus pneumoniae. Null adcA and lmb mutants were analysed for their capability to grow in zinc-depleted conditions and were found to be more susceptible to zinc starvation, a phenotype that could be rescued by the addition of Zn2+ ions to the growth medium. Expression of AdcA, Lmb and HtpA, the polyhistidine triad protein encoded by the gene adjacent to lmb, during growth under conditions of limited zinc availability was examined by Western blot analysis in wild type and null mutant strains. In the wild type strain, AdcA was always present with little variation in expression levels between conditions of excess or limited zinc availability. In contrast, Lmb and HtpA were expressed at detectable levels only during growth in the presence of low zinc concentrations or in the null adcA mutant, when expression of lmb is required to compensate for the lack of adcA expression. In the latter case, Lmb and HtpA were overexpressed by several fold, thus indicating that also in GAS AdcA is a zinc-specific importer and, although it shares this function with Lmb, the two substrate-binding proteins do not show fully overlapping roles in zinc homeostasis.

  7. ADC histogram analysis for adrenal tumor histogram analysis of apparent diffusion coefficient in differentiating adrenal adenoma from pheochromocytoma.

    PubMed

    Umanodan, Tomokazu; Fukukura, Yoshihiko; Kumagae, Yuichi; Shindo, Toshikazu; Nakajo, Masatoyo; Takumi, Koji; Nakajo, Masanori; Hakamada, Hiroto; Umanodan, Aya; Yoshiura, Takashi

    2017-04-01

    To determine the diagnostic performance of apparent diffusion coefficient (ADC) histogram analysis in diffusion-weighted (DW) magnetic resonance imaging (MRI) for differentiating adrenal adenoma from pheochromocytoma. We retrospectively evaluated 52 adrenal tumors (39 adenomas and 13 pheochromocytomas) in 47 patients (21 men, 26 women; mean age, 59.3 years; range, 16-86 years) who underwent DW 3.0T MRI. Histogram parameters of ADC (b-values of 0 and 200 [ADC 200 ], 0 and 400 [ADC 400 ], and 0 and 800 s/mm 2 [ADC 800 ])-mean, variance, coefficient of variation (CV), kurtosis, skewness, and entropy-were compared between adrenal adenomas and pheochromocytomas, using the Mann-Whitney U-test. Receiver operating characteristic (ROC) curves for the histogram parameters were generated to differentiate adrenal adenomas from pheochromocytomas. Sensitivity and specificity were calculated by using a threshold criterion that would maximize the average of sensitivity and specificity. Variance and CV of ADC 800 were significantly higher in pheochromocytomas than in adrenal adenomas (P < 0.001 and P = 0.001, respectively). With all b-value combinations, the entropy of ADC was significantly higher in pheochromocytomas than in adrenal adenomas (all P ≤ 0.001), and showed the highest area under the ROC curve among the ADC histogram parameters for diagnosing adrenal adenomas (ADC 200 , 0.82; ADC 400 , 0.87; and ADC 800 , 0.92), with sensitivity of 84.6% and specificity of 84.6% (cutoff, ≤2.82) with ADC 200 ; sensitivity of 89.7% and specificity of 84.6% (cutoff, ≤2.77) with ADC 400 ; and sensitivity of 94.9% and specificity of 92.3% (cutoff, ≤2.67) with ADC 800 . ADC histogram analysis of DW MRI can help differentiate adrenal adenoma from pheochromocytoma. 3 J. Magn. Reson. Imaging 2017;45:1195-1203. © 2016 International Society for Magnetic Resonance in Medicine.

  8. Minimal Power Latch for Single-Slope ADCs

    NASA Technical Reports Server (NTRS)

    Hancock, Bruce R. (Inventor)

    2015-01-01

    A latch circuit that uses two interoperating latches. The latch circuit has the beneficial feature that it switches only a single time during a measurement that uses a stair step or ramp function as an input signal in an analog to digital converter. This feature minimizes the amount of power that is consumed in the latch and also minimizes the amount of high frequency noise that is generated by the latch. An application using a plurality of such latch circuits in a parallel decoding ADC for use in an image sensor is given as an example.

  9. Regional ADC values of the normal brain: differences due to age, gender, and laterality.

    PubMed

    Naganawa, Shinji; Sato, Kimihide; Katagiri, Toshio; Mimura, Takeo; Ishigaki, Takeo

    2003-01-01

    The purpose of this study was to evaluate the stability of measurement for apparent diffusion coefficient (ADC) values in normal brain, to clarify the effect of aging on ADC values, to compare ADC values between men and women, and to compare ADC values between right and left sides of the brain. To evaluate the stability of measurements, five normal volunteers (four men and one woman) were examined five times on different days. Then, 294 subjects with normal MR imaging (147 men and 147 women; age range 20-89 years) were measured. The ADC measurement in normal volunteers was stable. The ADC values stayed within the 5% deviation of average values in all volunteers (mean+/-standard deviation 2.3+/-1.2%). The ADC values gradually increased by aging in all regions. In thalamus, no significant difference was seen between right and left in the subjects under 60 years; however, right side showed higher values in the subjects over 60 years (p<0.01). In the subjects under 60 years, women showed higher values in right frontal, bilateral thalamus, and temporal (p<0.01); however, in the subjects over 60 years, no region showed difference between men and women. The knowledge obtained in this study may be helpful to understand the developmental and aging mechanisms of normal brain and may be useful for the future quantitative study as a reference.

  10. Attitude Determination and Control Subsystem (ADCS) Preparations for the EPOXI Flyby of Comet Hartley 2

    NASA Technical Reports Server (NTRS)

    Luna, Michael E.; Collins, Steven M.

    2011-01-01

    On November 4, 2010 the former "Deep Impact" spacecraft, renamed "EPOXI" for its extended mission, flew within 700km of comet 103P/Hartley 2. In July 2005, the spacecraft had previously imaged a probe impact of comet Tempel 1. The EPOXI flyby was the fifth close encounter of a spacecraft with a comet nucleus and marked the first time in history that two comet nuclei were imaged at close range with the same suite of onboard science instruments. This challenging objective made the function of the attitude determination and control subsystem (ADCS) critical to the successful execution of the EPOXI flyby.As part of the spacecraft flyby preparations, the ADCS operations team had to perform meticulous sequence reviews, implement complex spacecraft engineering and science activities and perform numerous onboard calibrations. ADCS contributions included design and execution of 10 trajectory correction maneuvers, the science calibration of the two telescopic instruments, an in-flight demonstration of high-rate turns between Earth and comet point, and an ongoing assessment of reaction wheel health. The ADCS team was also responsible for command sequences that included updates to the onboard ephemeris and sun sensor coefficients and implementation of reaction wheel assembly (RWA) de-saturations.

  11. Free-running ADC- and FPGA-based signal processing method for brain PET using GAPD arrays

    NASA Astrophysics Data System (ADS)

    Hu, Wei; Choi, Yong; Hong, Key Jo; Kang, Jihoon; Jung, Jin Ho; Huh, Youn Suk; Lim, Hyun Keong; Kim, Sang Su; Kim, Byung-Tae; Chung, Yonghyun

    2012-02-01

    evaluate the functionality of the developed signal processing method, energy and timing resolutions for brain PET were measured via the placement of a 6 μCi 22Na point source at the center of the PET scanner. Furthermore the PET image of the hot rod phantom (rod diameter: from 2.5 mm to 6.5 mm) with activity of 1 mCi was simulated, and then image acquisition experiment was performed using the brain PET. Measured average energy resolution for 1152 GAPD channels and system timing resolution were 19.5% (FWHM%) and 2.7 ns (FWHM), respectively. With regard to the acquisition of the hot rod phantom image, rods could be resolved down to a diameter of 2.5 mm, which was similar to simulated results. The experimental results demonstrated that the signal processing method developed herein was successfully implemented for brain PET. This reduced the complexity, cost and developing duration for PET system relative to normal PET electronics, and it will obviously be useful for the development of high-performance investigational PET systems.

  12. Development of COTS ADC SEE Test System for the ATLAS LArCalorimeter Upgrade

    DOE PAGES

    Hu, Xue -Ye; Chen, Hu -Cheng; Chen, Kai; ...

    2014-12-01

    Radiation-tolerant, high speed, high density and low power commercial off-the-shelf (COTS) analog-to-digital converters (ADCs) are planned to be used in the upgrade to the Liquid Argon (LAr) calorimeter front end (FE) trigger readout electronics. Total ionization dose (TID) and single event effect (SEE) are two important radiation effects which need to be characterized on COTS ADCs. In our initial TID test, Texas Instruments (TI) ADS5272 was identified to be the top performer after screening a total 17 COTS ADCs from different manufacturers with dynamic range and sampling rate meeting the requirements of the FE electronics. Another interesting feature of ADS5272more » is its 6.5 clock cycles latency, which is the shortest among the 17 candidates. Based on the TID performance, we have designed a SEE evaluation system for ADS5272, which allows us to further assess its radiation tolerance. In this paper, we present a detailed design of ADS5272 SEE evaluation system and show the effectiveness of this system while evaluating ADS5272 SEE characteristics in multiple irradiation tests. According to TID and SEE test results, ADS5272 was chosen to be implemented in the full-size LAr Trigger Digitizer Board (LTDB) demonstrator, which will be installed on ATLAS calorimeter during the 2014 Long Shutdown 1 (LS1).« less

  13. Approximating high angular resolution apparent diffusion coefficient profiles using spherical harmonics under BiGaussian assumption

    NASA Astrophysics Data System (ADS)

    Cao, Ning; Liang, Xuwei; Zhuang, Qi; Zhang, Jun

    2009-02-01

    Magnetic Resonance Imaging (MRI) techniques have achieved much importance in providing visual and quantitative information of human body. Diffusion MRI is the only non-invasive tool to obtain information of the neural fiber networks of the human brain. The traditional Diffusion Tensor Imaging (DTI) is only capable of characterizing Gaussian diffusion. High Angular Resolution Diffusion Imaging (HARDI) extends its ability to model more complex diffusion processes. Spherical harmonic series truncated to a certain degree is used in recent studies to describe the measured non-Gaussian Apparent Diffusion Coefficient (ADC) profile. In this study, we use the sampling theorem on band-limited spherical harmonics to choose a suitable degree to truncate the spherical harmonic series in the sense of Signal-to-Noise Ratio (SNR), and use Monte Carlo integration to compute the spherical harmonic transform of human brain data obtained from icosahedral schema.

  14. The correlation between biological activity and diffusion-weighted MR imaging and ADC value in cases with prostate cancer.

    PubMed

    Sokmen, Bedriye Koyuncu; Sokmen, Dogukan; Ucar, Nese; Ozkurt, Huseyin; Simsek, Abdulmuttalip

    2017-12-31

    Firstly, we aimed to investigate the correlation among dynamic contrasted magnetic resonance (MR) images, diffusion-weighted MR images, and apparent diffusion coefficent (ADC) values in patients with prostate cancer. Secondly, we aimed to investigate the roles of these variables on clinical risk classification and the biological behavior of the prostate cancer. A total of sixty with prostatic adenocarcinoma patients diagnosed between January 2011 and May 2013 were retrospectively included in the study. Risk classification of patients were evaluated as low-risk (Group 1) (n = 20) (Stage T1c-T2a, PSA < 10 ng/ml, Gleason Score < 7), moderate-risk (Group 2) (n = 18) (Stage T1b-T2c, PSA = 10-20 ng/ml, Gleason Score = 7) and high-risk (Group 3) (n = 22) (Stage > T3a, PSA > 20 ng/ml, Gleason Score > 7). Diffusion-weighted MR images, dynamic contrasted MR images, and ADC values of the prostates were correlated. ADC values of the cases in Group 3 were lower than those of the other groups (p < 0.001). ADC values of the areas without malignancy did not differ significantly between groups (p > 0.05). Biological activity of the tumor tissue was determined by GS, while a negative correlation was observed between GSs and ADC values of the patients, (p < 0.001). In tumors with higher Gleason scores, lower ADC values were obtained. These measured values can play a role in the noninvasive determination of the cellularity of the tumoral mass.

  15. Development, integrated investigation, laboratory and in-flight testing of Chibis-M microsatellite ADCS

    NASA Astrophysics Data System (ADS)

    Ovchinnikov, M. Yu.; Ivanov, D. S.; Ivlev, N. A.; Karpenko, S. O.; Roldugin, D. S.; Tkachev, S. S.

    2014-01-01

    Design, analytical investigation, laboratory and in-flight testing of the attitude determination and control system (ADCS) of a microsatellites are considered. The system consists of three pairs of reaction wheels, three magnetorquers, a set of Sun sensors, a three-axis magnetometer and a control unit. The ADCS is designed for a small 10-50 kg LEO satellite. System development is accomplished in several steps: satellite dynamics preliminary study using asymptotical and numerical techniques, hardware and software design, laboratory testing of each actuator and sensor and the whole ADCS. Laboratory verification is carried out on the specially designed test-bench. In-flight ADCS exploitation results onboard the Russian microsatellite "Chibis-M" are presented. The satellite was developed, designed and manufactured by the Institute of Space Research of RAS. "Chibis-M" was launched by the "Progress-13M" cargo vehicle on January 25, 2012 after undocking from the International Space Station (ISS). This paper assess both the satellite and the ADCS mock-up dynamics. Analytical, numerical and laboratory study results are in good correspondence with in-flight data.

  16. Predicting Treatment Response of Colorectal Cancer Liver Metastases to Conventional Lipiodol-Based Transarterial Chemoembolization Using Diffusion-Weighted MR Imaging: Value of Pretreatment Apparent Diffusion Coefficients (ADC) and ADC Changes Under Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lahrsow, Maximilian, E-mail: mlahrsow@gmail.com; Albrecht, Moritz H.; Bickford, Matthew W.

    PurposeTo use absolute pretreatment apparent diffusion coefficients (ADC) derived from diffusion-weighted MR imaging (DWI) to predict response to repetitive cTACE for unresectable liver metastases of colorectal carcinoma (CRLM) at 1 and 3 months after start of treatment.Materials and MethodsFifty-five metastases in 34 patients were examined with DWI prior to treatment and 1 month after initial cTACE. Treatment was performed in 4-week intervals. Response was evaluated at 1 and 3 months after start of therapy. Metastases showing a decrease of ≥30% in axial diameter were classified as responding lesions.ResultsOne month after initial cTACE, seven lesions showed early response. There was no significant differencemore » in absolute pretreatment ADC values between responding and non-responding lesions (p = 0.94). Three months after initial cTACE, 17 metastases showed response. There was a significant difference (p = 0.021) between absolute pretreatment ADC values of lesions showing response (median 1.08 × 10{sup −3} mm{sup 2}/s) and no response (median 1.30 × 10{sup −3} mm{sup 2}/s). Pretreatment ADC showed fair diagnostic value to predict response (AUC 0.7). Lesions showing response at 3 months also revealed a significant increase in ADC between measurements before treatment and at one month after initial cTACE (p < 0.001). Applying an increase in ADC of 12.17%, response at 3 months after initial cTACE could be predicted with a sensitivity and specificity of 77 and 74%, respectively (AUC 0.817). Furthermore, there was a strong and significant correlation (r = 0.651, p < 0.001) between percentage change in size after third cTACE and percentage change in ADC.ConclusionIn patients with CRLM, ADC measurements are potential biomarkers for assessing response to cTACE.« less

  17. Apparent Diffusion Coefficient (ADC) value: a potential imaging biomarker that reflects the biological features of rectal cancer.

    PubMed

    Sun, Yiqun; Tong, Tong; Cai, Sanjun; Bi, Rui; Xin, Chao; Gu, Yajia

    2014-01-01

    We elected to analyze the correlation between the pre-treatment apparent diffusion coefficient (ADC) and the clinical, histological, and immunohistochemical status of rectal cancers. Forty-nine rectal cancer patients who received surgical resection without neoadjuvant therapy were selected that underwent primary MRI and diffusion-weighted imaging (DWI). Tumor ADC values were determined and analyzed to identify any correlations between these values and pre-treatment CEA or CA19-9 levels, and/or the histological and immunohistochemical properties of the tumor. Inter-observer agreement of confidence levels from two separate observers was suitable for ADC measurement (k  =  0.775). The pre-treatment ADC values of different T stage tumors were not equal (p  =  0.003). The overall trend was that higher T stage values correlated with lower ADC values. ADC values were also significantly lower for the following conditions: tumors with the presence of extranodal tumor deposits (p  =  0.006) and tumors with CA19-9 levels ≥ 35 g/ml (p  =  0.006). There was a negative correlation between Ki-67 LI and the ADC value (r  =  -0.318, p  =  0.026) and between the AgNOR count and the ADC value (r  =  -0.310, p  =  0.030). Significant correlations were found between the pre-treatment ADC values and T stage, extranodal tumor deposits, CA19-9 levels, Ki-67 LI, and AgNOR counts in our study. Lower ADC values were associated with more aggressive tumor behavior. Therefore, the ADC value may represent a useful biomarker for assessing the biological features and possible relationship to the status of identified rectal cancers.

  18. Factor Analysis of the Alcohol and Drug Confrontation Scale (ADCS)

    PubMed Central

    Polcin, Douglas L.; Galloway, Gantt P.; Bostrom, Alan; Greenfield, Thomas K.

    2007-01-01

    The Alcohol and Drug Confrontation Scale (ADCS) is a 72-item instrument that defines confrontation as an individual being told “bad things” might happen if they do not make changes to address alcohol or drug problems or maintain sobriety. Preliminary assessment of the ADCS using substance abusers entering SLH's revealed: 1) Scale items were frequently endorsed; 2) Confrontation was often experienced as accurate and helpful; and 3) Confronters' statements were viewed supportive and accurate. This study reports the results of a factor analysis on a larger sample 179 participants using baseline and 6 month follow-up data. Results yielded a clear two factor solution: 1) Internal Support (alpha = 0.80) and 2) External Intensity (alpha = 0.63). The two factors accounted for 58% of the variance. The ADCS offers a fresh and broader view of confrontation that can be reliably measured. PMID:17270360

  19. On the design of high-speed energy-efficient successive-approximation logic for asynchronous SAR ADCs

    NASA Astrophysics Data System (ADS)

    Yang, Jiaqi; Li, Ting; Yu, Mingyuan; Zhang, Shuangshuang; Lin, Fujiang; He, Lin

    2017-08-01

    This paper analyzes the power consumption and delay mechanisms of the successive-approximation (SA) logic of a typical asynchronous SAR ADC, and provides strategies to reduce both of them. Following these strategies, a unique direct-pass SA logic is proposed based on a full-swing once-triggered DFF and a self-locking tri-state gate. The unnecessary internal switching power of a typical TSPC DFF, which is commonly used in the SA logic, is avoided. The delay of the ready detector as well as the sequencer is removed from the critical path. A prototype SAR ADC based on the proposed SA logic is fabricated in 130 nm CMOS. It achieves a peak SNDR of 56.3 dB at 1.2 V supply and 65 MS/s sampling rate, and has a total power consumption of 555 μW, while the digital part consumes only 203 μW. Project supported by the National Natural Science Foundation of China (Nos. 61204033, 61331015), the Fundamental Research Funds for the Central Universities (No. WK2100230015), and the Funds of Science and Technology on Analog Integrated Circuit Laboratory (No. 9140C090111150C09041).

  20. Multiparametric MRI Apparent Diffusion Coefficient (ADC) Accuracy in Diagnosing Clinically Significant Prostate Cancer.

    PubMed

    Pepe, Pietro; D'Urso, Davide; Garufi, Antonio; Priolo, Giandomenico; Pennisi, Michele; Russo, Giorgio; Sabini, Maria Gabriella; Valastro, Lucia Maria; Galia, Antonio; Fraggetta, Filippo

    2017-01-01

    To evaluate the accuracy of multiparametric magnetic resonance imaging apparent diffusion coefficient (mpMRI ADC) in the diagnosis of clinically significant prostate cancer (PCa). From January 2016 to December 2016, 44 patients who underwent radical prostatectomy for PCa and mpMRI lesions suggestive of cancer were retrospectively evaluated at definitive specimen. The accuracy of suspicious mpMRI prostate imaging reporting and data system (PI-RADS ≥3) vs. ADC values in the diagnosis of Gleason score ≥7 was evaluated. Receiver operating characteristics (ROC) curve analysis gave back an ADC threshold of 0.747×10 -3 mm 2 /s to separate between Gleason Score 6 and ≥7. The diagnostic accuracy of ADC value (cut-off 0.747×10 -3 mm 2 /s) vs. PI-RADS score ≥3 in diagnosing PCa with Gleason score ≥7 was equal to 84% vs. 63.6% with an area under the curve (AUC) ROC of 0.81 vs. 0.71, respectively. ADC evaluation could support clinicians in decision making of patients with PI-RADS score <3 at risk for PCa. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  1. High resolution time interval meter

    DOEpatents

    Martin, A.D.

    1986-05-09

    Method and apparatus are provided for measuring the time interval between two events to a higher resolution than reliability available from conventional circuits and component. An internal clock pulse is provided at a frequency compatible with conventional component operating frequencies for reliable operation. Lumped constant delay circuits are provided for generating outputs at delay intervals corresponding to the desired high resolution. An initiation START pulse is input to generate first high resolution data. A termination STOP pulse is input to generate second high resolution data. Internal counters count at the low frequency internal clock pulse rate between the START and STOP pulses. The first and second high resolution data are logically combined to directly provide high resolution data to one counter and correct the count in the low resolution counter to obtain a high resolution time interval measurement.

  2. An 11-bit 200 MS/s subrange SAR ADC with low-cost integrated reference buffer

    NASA Astrophysics Data System (ADS)

    He, Xiuju; Gu, Xian; Li, Weitao; Jiang, Hanjun; Li, Fule; Wang, Zhihua

    2017-10-01

    This paper presents an 11-bit 200 MS/s subrange SAR ADC with an integrated reference buffer in 65 nm CMOS. The proposed ADC employs a 3.5-bit flash ADC for coarse conversion, and a compact timing scheme at the flash/SAR boundary to speed up the conversion. The flash decision is used to control charge compensating for the reference voltage to reduce its input-dependent fluctuation. Measurement results show that the fabricated ADC has achieved significant improvement by applying the reference charge compensation. In addition, the ADC achieves a maximum signal-to-noise-and-distortion ratio of 59.3 dB at 200 MS/s. It consumes 3.91 mW from a 1.2 V supply, including the reference buffer. Project supported by the Zhongxing Telecommunication Equipment Corporation and Beijing Microelectronics Technology Institute.

  3. [The value of high resolution diffusion weighted imaging in differentiating benign and malignant epithelial tumors of parotid gland].

    PubMed

    Wen, B H; Cheng, J L; Zhang, H X; Zhang, Z X; Wang, F F; Xue, K K

    2018-05-08

    Objective: To investigate the diagnostic value of RESOLVE DWI in the evaluation of benign and malignant epithelial tumors of parotid gland. Methods: A total of 106 patients in the First Affiliated Hospital of Zhengzhou University with epithelial tumors of parotid gland confirmed by pathology from July 2015 to October 2017 were retrospectively analyzed. All patients underwent preoperative routine MRI and RESOLVE DWI, the ADC average values were calculated, t test were used to compare the ADC values of benign and malignant epithelial tumors of parotid gland. Diagnostic performance of ADC value was compared using receiver operating characteristic (ROC)curves. Results: All lesions were solitary, including 69 benign epithelial tumors and 37 malignant epithelial tumors. The mean ADC values of pleomorphic adenoma and basal cell adenoma, adenolymphoma and malignant epithelial tumors were (1.47±0.16)×10(-3) mm(2)/s, (0.83±0.19)×10(-3) mm(2)/s and(1.14±0.14)×10(-3) mm(2)/s, the mean ADC value of adenolymphoma lower than the rest of the two groups, there were statistically significant differences among them ( P <0.05). Using 0.94×10(-3) mm(2)/s≤ADC value≤1.28×10(-3)mm(2)/s as the critical value for diagnosing malignant epithelial tumors of parotid gland and comparing with pathological results, the result obtained had a sensitivity of 81.1%, specificity of 88.9%. ADC value had high correlations compared with pathological results, kappa value was 0.600. Conclusion: RESOLVE DWI can be applied in differential diagnosis between benign and malignant epithelial tumors of parotid gland.

  4. A SAR-ADC using unit bridge capacitor and with calibration for the front-end electronics of PET imaging

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Wei, Tingcun; Li, Bo; Yang, Lifeng; Xue, Feifei; Hu, Yongcai

    2016-05-01

    This paper presents a 12-bit 1 MS/s successive approximation register-analog to digital converter (SAR-ADC) for the 32-channel front-end electronics of CZT-based PET imaging system. To reduce the capacitance mismatch, instead of the fractional capacitor, the unit capacitor is used as the bridge capacitor in the split-capacitor digital to analog converter (DAC) circuit. In addition, in order to eliminate the periodical DNL errors of -1 LSB which often exists in the SAR-ADC using the charge-redistributed DAC, a calibration algorithm is proposed and verified by the experiments. The proposed 12-bit 1 MS/s SAR-ADC is designed and implemented using a 0.35 μm CMOS technology, it occupies only an active area of 986×956 μm2. The measurement results show that, at the power supply of 3.3/5.0 V and the sampling rate of 1 MS/s, the ADC with calibration has a signal-to-noise-and-distortion ratio (SINAD) of 67.98 dB, the power dissipation of 5 mW, and a figure of merit (FOM) of 2.44 pJ/conv.-step. This ADC is with the features of high accuracy, low power and small layout area, it is especially suitable to the one-chip integration of the front-end readout electronics.

  5. Prediction of high-stage liver fibrosis using ADC value on diffusion-weighted imaging and quantitative enhancement ratio at the hepatobiliary phase of Gd-EOB-DTPA-enhanced MRI at 1.5 T.

    PubMed

    Harada, Taiyo L; Saito, Kazuhiro; Araki, Yoichi; Matsubayashi, Jun; Nagao, Toshitaka; Sugimoto, Katsutoshi; Tokuuye, Koichi

    2018-05-01

    Background Recently, diffusion-weighted imaging (DWI) and quantitative enhancement ratio measured at the hepatobiliary phase (HBP) of Gd-EOB-DTPA-enhanced magnetic resonance imaging (MRI) has been established as an effective method for evaluating liver fibrosis. Purpose To evaluate which is a more favorable surrogate marker in predicting high-stage liver fibrosis, apparently diffusion coefficient (ADC) value or quantitative enhancement ratio measured on HBP. Material and Methods Eighty-three patients with 99 surgically resected hepatic lesions were enrolled in this study. DWI was performed with b-values of 100 and 800 s/mm 2 . Regions of interest were set on ADC map, and the HBP of Gd-EOB-DTPA-enhanced MRI, to calculate ADC value, liver-to-muscle ratio (LMR), liver-to-spleen ratio (LSR), and contrast enhancement index (CEI) of liver. We compared these parameters between low-stage fibrosis (F0, F1, and F2) and high-stage fibrosis (F3 and F4). Receiver operating characteristic analysis was performed to compare the diagnostic performance when distinguishing low-stage fibrosis from high-stage fibrosis. Results LMR and CEI were significantly lower at high-stage fibrosis than at the low stage ( P < 0.01 and P = 0.04, respectively), whereas LSR did not show a significant difference ( P = 0.053). No significant difference was observed in diagnostic performance between LMR and CEI ( P = 0.185). The best sensitivity and specificity, when an LMR of 2.80 or higher was considered to be low-stage fibrosis, were 82.4% and 75.6%, respectively. ADC value showed no significant differences among fibrosis grades ( P = 0.320). Conclusion LMR and CEI were both adequate surrogate parameters to distinguish high-stage fibrosis from low-stage fibrosis.

  6. Differentiation of orbital lymphoma and idiopathic orbital inflammatory pseudotumor: combined diagnostic value of conventional MRI and histogram analysis of ADC maps.

    PubMed

    Ren, Jiliang; Yuan, Ying; Wu, Yingwei; Tao, Xiaofeng

    2018-05-02

    The overlap of morphological feature and mean ADC value restricted clinical application of MRI in the differential diagnosis of orbital lymphoma and idiopathic orbital inflammatory pseudotumor (IOIP). In this paper, we aimed to retrospectively evaluate the combined diagnostic value of conventional magnetic resonance imaging (MRI) and whole-tumor histogram analysis of apparent diffusion coefficient (ADC) maps in the differentiation of the two lesions. In total, 18 patients with orbital lymphoma and 22 patients with IOIP were included, who underwent both conventional MRI and diffusion weighted imaging before treatment. Conventional MRI features and histogram parameters derived from ADC maps, including mean ADC (ADC mean ), median ADC (ADC median ), skewness, kurtosis, 10th, 25th, 75th and 90th percentiles of ADC (ADC 10 , ADC 25 , ADC 75 , ADC 90 ) were evaluated and compared between orbital lymphoma and IOIP. Multivariate logistic regression analysis was used to identify the most valuable variables for discriminating. Differential model was built upon the selected variables and receiver operating characteristic (ROC) analysis was also performed to determine the differential ability of the model. Multivariate logistic regression showed ADC 10 (P = 0.023) and involvement of orbit preseptal space (P = 0.029) were the most promising indexes in the discrimination of orbital lymphoma and IOIP. The logistic model defined by ADC 10 and involvement of orbit preseptal space was built, which achieved an AUC of 0.939, with sensitivity of 77.30% and specificity of 94.40%. Conventional MRI feature of involvement of orbit preseptal space and ADC histogram parameter of ADC 10 are valuable in differential diagnosis of orbital lymphoma and IOIP.

  7. Apparent diffusion coefficient (ADC) does not correlate with different serological parameters in myositis and myopathy.

    PubMed

    Meyer, Hans-Jonas; Ziemann, Oliver; Kornhuber, Malte; Emmer, Alexander; Quäschling, Ulf; Schob, Stefan; Surov, Alexey

    2018-06-01

    Background Magnetic resonance imaging (MRI) is widely used in several muscle disorders. Diffusion-weighted imaging (DWI) is an imaging modality, which can reflect microstructural tissue composition. The apparent diffusion coefficient (ADC) is used to quantify the random motion of water molecules in tissue. Purpose To investigate ADC values in patients with myositis and non-inflammatory myopathy and to analyze possible associations between ADC and laboratory parameters in these patients. Material and Methods Overall, 17 patients with several myositis entities, eight patients with non-inflammatory myopathies, and nine patients without muscle disorder as a control group were included in the study (mean age = 55.3 ± 14.3 years). The diagnosis was confirmed by histopathology in every case. DWI was obtained in a 1.5-T scanner using two b-values: 0 and 1000 s/mm 2 . In all patients, the blood sample was acquired within three days to the MRI. The following serological parameters were estimated: C-reactive protein, lactate dehydrogenase, alanine aminotransferase, aspartate aminotransferase, creatine kinase, and myoglobine. Results The estimated mean ADC value for the myositis group was 1.89 ± 0.37 × 10 -3  mm 2 /s and for the non-inflammatory myopathy group was 1.79 ± 0.33 × 10 -3  mm 2 /s, respectively. The mean ADC values (1.15 ± 0.37 × 10 -3  mm 2 /s) were significantly higher to unaffected muscles (vs. myositis P = 0.0002 and vs. myopathy P = 0.0021). There were no significant correlations between serological parameters and ADC values. Conclusion Affected muscles showed statistically significantly higher ADC values than normal muscles. No linear correlations between ADC and serological parameters were identified.

  8. Feasibility of creating a high-resolution 3D diffusion tensor imaging based atlas of the human brainstem: A case study at 11.7T

    PubMed Central

    Aggarwal, Manisha; Zhang, Jiangyang; Pletnikova, Olga; Crain, Barbara; Troncoso, Juan; Mori, Susumu

    2013-01-01

    A three-dimensional stereotaxic atlas of the human brainstem based on high resolution ex vivo diffusion tensor imaging (DTI) is introduced. The atlas consists of high resolution (125–255 μm isotropic) three-dimensional DT images of the formalin-fixed brainstem acquired at 11.7T. The DTI data revealed microscopic neuroanatomical details, allowing three-dimensional visualization and reconstruction of fiber pathways including the decussation of the pyramidal tract fibers, and interdigitating fascicles of the corticospinal and transverse pontine fibers. Additionally, strong grey-white matter contrasts in the apparent diffusion coefficient (ADC) maps enabled precise delineation of grey matter nuclei in the brainstem, including the cranial nerve and the inferior olivary nuclei. Comparison with myelin-stained histology shows that at the level of resolution achieved in this study, the structural details resolved with DTI contrasts in the brainstem were comparable to anatomical delineation obtained with histological sectioning. Major neural structures delineated from DTI contrasts in the brainstem are segmented and three-dimensionally reconstructed. Further, the ex vivo DTI data are nonlinearly mapped to a widely-used in vivo human brain atlas, to construct a high-resolution atlas of the brainstem in the Montreal Neurological Institute (MNI) stereotaxic coordinate space. The results demonstrate the feasibility of developing a 3D DTI based atlas for detailed characterization of brainstem neuroanatomy with high resolution and contrasts, which will be a useful resource for research and clinical applications. PMID:23384518

  9. A research of a high precision multichannel data acquisition system

    NASA Astrophysics Data System (ADS)

    Zhong, Ling-na; Tang, Xiao-ping; Yan, Wei

    2013-08-01

    The output signals of the focusing system in lithography are analog. To convert the analog signals into digital ones which are more flexible and stable to process, a desirable data acquisition system is required. The resolution of data acquisition, to some extent, affects the accuracy of focusing. In this article, we first compared performance between the various kinds of analog-to-digital converters (ADC) available on the market at the moment. Combined with the specific requirements (sampling frequency, converting accuracy, numbers of channels etc) and the characteristics (polarization, amplitude range etc) of the analog signals, the model of the ADC to be used as the core chip in our hardware design was determined. On this basis, we chose other chips needed in the hardware circuit that would well match with ADC, then the overall hardware design was obtained. Validation of our data acquisition system was verified through experiments and it can be demonstrated that the system can effectively realize the high resolution conversion of the multi-channel analog signals and give the accurate focusing information in lithography.

  10. Correlation of ADC value with pathologic indexes in colorectal tumor homografts in Balb/c mouse.

    PubMed

    Li, Xiaojun; Jiang, Hongnan; Niu, Jinliang; Zheng, Ying

    2014-08-01

    Noninvasive diffusion-weighted magnetic resonance imaging (DWI) is a well-studied MR imaging technique for quantifying water diffusion especially in tumor area. The correlation between apparent diffusion coefficient (ADC) value and apoptosis or proliferation is not clear by now. This study aimed to investigate whether DWI-ADC value could be used as an imaging marker related with pathologic indexes of tumors. A total of 30 Balb/c mice with HT29 colorectal carcinoma were subjected to DWI and histologic analysis. The percentage of ADC changes and the apoptotic and proliferating indexes were calculated at predefined time points. Kolmogorov-Smirnov distances were considered to determine whether the percentage of ADC changes, and the apoptotic and proliferating indexes were normally distributed. An independent-samples t-test was used to analyze the difference between apoptotic and proliferating indexes in the two groups. THERE WAS A STATISTICALLY SIGNIFICANT DIFFERENCE IN PROLIFERATING INDEX BETWEEN THE RADIOTHERAPY AND CONTROL GROUPS (MEAN PROLIFERATING INDEX: 49.27% vs. 83.09%), and there was a statistically significant difference in apoptotic index between the two groups (mean apoptotic index: 37.7% vs. 2.71%). A significant positive correlation was found between the percentage of ADC changes of the viable tissue and apoptotic index. Pearson's correlation coefficient was 0.655 (P=0.015). A significant negative correlation was found between the percentage of ADC changes of the viable tissue and ki-67 proliferation index. Pearson's correlation coefficient was 0.734 (P<0.001). Our results suggest that ADC value may be used in measurement of cell apoptotic and proliferating indexes in colorectal carcinoma.

  11. A PC-based single-ADC multi-parameter data acquisition system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodring, M.; Kegel, G.H.R.; Egan, J.J.

    1995-10-01

    A personal computer (PC) based mult parameter data acquisition system using the Microsoft Window operating environment has been designed and constructed. An IBI AT compatible personal computer with an Intel 486DX5 microprocessor was combined with a National Instruments ATIDIO 32 digital I/O card, a single Canberra 8713 ADC with 13-bit resolution and a modified Canberra 8223 8-input analog multiplexer to acquil data from experiments carried out at the UML Van de Graa accelerator. The accelerator data acquisition (ADAC) computer environment was programmed in Microsoft Visual BASIC for use i Windows. ADAC allows event-mode data acquisition with up to eight parametersmore » (modifiable to 64) and the simultaneous display parameters during acquisition. Additional features of ADAC include replay of event-mode data and graphical analysis/display of data. TV ADAC environment is easy to upgrade or expand, inexpensive 1 implement, and is specifically designed to meet the needs of nuclei spectroscopy.« less

  12. Diagnostic value of diffusion weighted MRI and ADC in differential diagnosis of cavernous hemangioma of the liver.

    PubMed

    Tokgoz, Ozlem; Unlu, Ebru; Unal, Ilker; Serifoglu, Ismail; Oz, Ilker; Aktas, Elif; Caglar, Emrah

    2016-03-01

    To investigate the use of diffusion weighted magnetic resonance imaging (DWI) and the apparent diffusion coefficient (ADC) values in the diagnosis of hemangioma. The study population consisted of 72 patients with liver masses larger than 1 cm (72 focal lesions). DWI examination with a b value of 600 s/mm2 was carried out for all patients. After DWI examination, an ADC map was created and ADC values were measured for 72 liver masses and normal liver tissue (control group). The average ADC values of normal liver tissue and focal liver lesions, the "cut-off" ADC values, and the diagnostic sensitivity and specificity of the ADC map in diagnosing hemangioma, benign and malignant lesions were researched. Of the 72 liver masses, 51 were benign and 21 were malignant. Benign lesions comprised 38 hemangiomas and 13 simple cysts. Malignant lesions comprised 9 hepatocellular carcinomas, and 12 metastases. The highest ADC values were measured for cysts (3.782±0.53×10(-3) mm(2)/s) and hemangiomas (2.705±0.63×10(-3) mm(2)/s). The average ADC value of hemangiomas was significantly higher than malignant lesions and the normal control group (p<0.001). The average ADC value of cysts were significantly higher when compared to hemangiomas and normal control group (p<0.001). To distinguish hemangiomas from malignant liver lesions, the "cut-off" ADC value of 1.800×10(-3) mm(2)/s had a sensitivity of 97.4% and a specificity of 90.9%. To distinguish hemangioma from normal liver parenchyma the "cut-off" value of 1.858×10(-3) mm(2)/s had a sensitivity of 97.4% and a specificity of 95.7%. To distinguish benign liver lesions from malignant liver lesions the "cut-off" value of 1.800×10(-3) mm(2)/s had a sensitivity of 96.1% and a specificity of 90.0%. DWI and quantitative measurement of ADC values can be used in differential diagnosis of benign and malignant liver lesions and also in the diagnosis and differentiation of hemangiomas. When dynamic examination cannot distinguish cases with

  13. Development of a multiplexed readout with high position resolution for positron emission tomography

    NASA Astrophysics Data System (ADS)

    Lee, Sangwon; Choi, Yong; Kang, Jihoon; Jung, Jin Ho

    2017-04-01

    Detector signals for positron emission tomography (PET) are commonly multiplexed to reduce the number of digital processing channels so that the system can remain cost effective while also maintaining imaging performance. In this work, a multiplexed readout combining Anger position estimation algorithm and position decoder circuit (PDC) was developed to reduce the number of readout channels by a factor of 24, 96-to-4. The data acquisition module consisted of a TDC (50 ps resolution), 4-channel ADCs (12 bit, 105 MHz sampling rate), 2 GB SDRAM and USB3.0. The performance of the multiplexed readout was assessed with a high-resolution PET detector block composed of 2×3 detector modules, each consisting of an 8×8 array of 1.52×1.52×6 mm3 LYSO, a 4×4 array of 3×3 mm2 silicon photomultiplier (SiPM) and 13.4×13.4 mm2 light guide with 0.7 mm thickness. The acquired flood histogram showed that all 384 crystals could be resolved. The average energy resolution at 511 keV was 13.7±1.6% full-width-at-half-maximum (FWHM) and the peak-to-valley ratios of the flood histogram on the horizontal and vertical lines were 18.8±0.8 and 22.8±1.3, respectively. The coincidence resolving time of a pair of detector blocks was 6.2 ns FWHM. The reconstructed phantom image showed that rods down to a diameter of 1.6 mm could be resolved. The results of this study indicate that the multiplexed readout would be useful in developing a PET with a spatial resolution less than the pixel size of the photosensor, such as a SiPM array.

  14. High resolution 1280×1024, 15 μm pitch compact InSb IR detector with on-chip ADC

    NASA Astrophysics Data System (ADS)

    Nesher, O.; Pivnik, I.; Ilan, E.; Calalhorra, Z.; Koifman, A.; Vaserman, I.; Oiknine Schlesinger, J.; Gazit, R.; Hirsh, I.

    2009-05-01

    Over the last decade, SCD has developed and manufactured high quality InSb Focal Plane Arrays (FPAs), which are currently used in many applications worldwide. SCD's production line includes many different types of InSb FPA with formats of 320x256, 480x384 and 640x512 elements and with pitch sizes in the range of 15 to 30 μm. All these FPAs are available in various packaging configurations, including fully integrated Detector-Dewar-Cooler Assemblies (DDCA) with either closed-cycle Sterling or open-loop Joule-Thomson coolers. With an increasing need for higher resolution, SCD has recently developed a new large format 2-D InSb detector with 1280x1024 elements and a pixel size of 15μm. The InSb 15μm pixel technology has already been proven at SCD with the "Pelican" detector (640x512 elements), which was introduced at the Orlando conference in 2006. A new signal processor was developed at SCD for use in this mega-pixel detector. This Readout Integrated Circuit (ROIC) is designed for, and manufactured with, 0.18 μm CMOS technology. The migration from 0.5 to 0.18 μm CMOS technology supports SCD's roadmap for the reduction of pixel size and power consumption and is in line with the increasing demand for improved performance and on-chip functionality. Consequently, the new ROIC maintains the same level of performance and functionality with a 15 μm pitch, as exists in our 20 μm-pitch ROICs based on 0.5μm CMOS technology. Similar to Sebastian (SCD ROIC with A/D on chip), this signal processor also includes A/D converters on the chip and demonstrates the same level of performance, but with reduced power consumption. The pixel readout rate has been increased up to 160 MHz in order to support a high frame rate, resulting in 120 Hz operation with a window of 1024×1024 elements at ~130 mW. These A/D converters on chip save the need for using 16 A/D channels on board (in the case of an analog ROIC) which would operate at 10 MHz and consume about 8Watts A Dewar has been

  15. Assessment and quantification of sources of variability in breast apparent diffusion coefficient (ADC) measurements at diffusion weighted imaging.

    PubMed

    Giannotti, E; Waugh, S; Priba, L; Davis, Z; Crowe, E; Vinnicombe, S

    2015-09-01

    Apparent Diffusion Coefficient (ADC) measurements are increasingly used for assessing breast cancer response to neoadjuvant chemotherapy although little data exists on ADC measurement reproducibility. The purpose of this work was to investigate and characterise the magnitude of errors in ADC measures that may be encountered in such follow-up studies- namely scanner stability, scan-scan reproducibility, inter- and intra- observer measures and the most reproducible measurement of ADC. Institutional Review Board approval was obtained for the prospective study of healthy volunteers and written consent acquired for the retrospective study of patient images. All scanning was performed on a 3.0-T MRI scanner. Scanner stability was assessed using an ice-water phantom weekly for 12 weeks. Inter-scan repeatability was assessed across two scans of 10 healthy volunteers (26-61 years; mean: 44.7 years). Inter- and intra-reader analysis repeatability was measured in 52 carcinomas from clinical patients (29-70 years; mean: 50.0 years) by measuring the whole tumor ADC value on a single slice with maximum tumor diameter (ADCS) and the ADC value of a small region of interest (ROI) on the same slice (ADCmin). Repeatability was assessed using intraclass correlation coefficients (ICC) and coefficients of repeatability (CoR). Scanner stability contributed 6% error to phantom ADC measurements (0.071×10(-3)mm(2)/s; mean ADC=1.089×10(-3)mm(2)/s). The measured scan-scan CoR in the volunteers was 0.122×10(-3)mm(2)/s, contributing an error of 8% to the mean measured values (ADCscan1=1.529×10(-3)mm(2)/s; ADCscan2=1.507×10(-3)mm(2)/s). Technical and clinical observers demonstrated excellent intra-observer repeatability (ICC>0.9). Clinical observer CoR values were marginally better than technical observer measures (ADCS=0.035×10(-3)mm(2)/s vs. 0.097×10(-3)mm(2)/s; ADCmin=0.09×10(-3)mm(2)/s vs. 0.114×10(-3)mm(2)/s). Inter-reader ICC values were good 0.864 (ADCS) and fair 0.677 (ADCmin

  16. A two-step A/D conversion and column self-calibration technique for low noise CMOS image sensors.

    PubMed

    Bae, Jaeyoung; Kim, Daeyun; Ham, Seokheon; Chae, Youngcheol; Song, Minkyu

    2014-07-04

    In this paper, a 120 frames per second (fps) low noise CMOS Image Sensor (CIS) based on a Two-Step Single Slope ADC (TS SS ADC) and column self-calibration technique is proposed. The TS SS ADC is suitable for high speed video systems because its conversion speed is much faster (by more than 10 times) than that of the Single Slope ADC (SS ADC). However, there exist some mismatching errors between the coarse block and the fine block due to the 2-step operation of the TS SS ADC. In general, this makes it difficult to implement the TS SS ADC beyond a 10-bit resolution. In order to improve such errors, a new 4-input comparator is discussed and a high resolution TS SS ADC is proposed. Further, a feedback circuit that enables column self-calibration to reduce the Fixed Pattern Noise (FPN) is also described. The proposed chip has been fabricated with 0.13 μm Samsung CIS technology and the chip satisfies the VGA resolution. The pixel is based on the 4-TR Active Pixel Sensor (APS). The high frame rate of 120 fps is achieved at the VGA resolution. The measured FPN is 0.38 LSB, and measured dynamic range is about 64.6 dB.

  17. Metal Organic Framework Micro/Nanopillars of Cu(BTC)·3H₂O and Zn(ADC)·DMSO.

    PubMed

    Kojtari, Arben; Ji, Hai-Feng

    2015-04-09

    In this work, we report the optical and thermal properties of Cu(BTC)·3H₂O (BTC = 1,3,5-benzenetricarboxylic acid) and Zn(ADC)·DMSO (ADC = 9,10- anthracenedicarboxylic acid, DMSO = dimethyl sulfoxide) metal-organic frameworks (MOFs) micro/nanopillars. The morphologies of MOFs on surfaces are most in the form of micro/nanopillars that were vertically oriented on the surface. The size and morphology of the pillars depend on the evaporation time, concentration, solvent, substrate, and starting volume of solutions. The crystal structures of the nanopillars and micropillars are the same, confirmed by powder XRD. Zn(ADC)·DMSO pillars have a strong blue fluorescence. Most of ADC in the pillars are in the form of monomers, which is different from ADC in the solid powder.

  18. Prediction of non-linear pharmacokinetics in humans of an antibody-drug conjugate (ADC) when evaluation of higher doses in animals is limited by tolerability: Case study with an anti-CD33 ADC.

    PubMed

    Figueroa, Isabel; Leipold, Doug; Leong, Steve; Zheng, Bing; Triguero-Carrasco, Montserrat; Fourie-O'Donohue, Aimee; Kozak, Katherine R; Xu, Keyang; Schutten, Melissa; Wang, Hong; Polson, Andrew G; Kamath, Amrita V

    2018-05-14

    For antibody-drug conjugates (ADCs) that carry a cytotoxic drug, doses that can be administered in preclinical studies are typically limited by tolerability, leading to a narrow dose range that can be tested. For molecules with non-linear pharmacokinetics (PK), this limited dose range may be insufficient to fully characterize the PK of the ADC and limits translation to humans. Mathematical PK models are frequently used for molecule selection during preclinical drug development and for translational predictions to guide clinical study design. Here, we present a practical approach that uses limited PK and receptor occupancy (RO) data of the corresponding unconjugated antibody to predict ADC PK when conjugation does not alter the non-specific clearance or the antibody-target interaction. We used a 2-compartment model incorporating non-specific and specific (target mediated) clearances, where the latter is a function of RO, to describe the PK of anti-CD33 ADC with dose-limiting neutropenia in cynomolgus monkeys. We tested our model by comparing PK predictions based on the unconjugated antibody to observed ADC PK data that was not utilized for model development. Prospective prediction of human PK was performed by incorporating in vitro binding affinity differences between species for varying levels of CD33 target expression. Additionally, this approach was used to predict human PK of other previously tested anti-CD33 molecules with published clinical data. The findings showed that, for a cytotoxic ADC with non-linear PK and limited preclinical PK data, incorporating RO in the PK model and using data from the corresponding unconjugated antibody at higher doses allowed the identification of parameters to characterize monkey PK and enabled human PK predictions.

  19. Is there a systematic bias of apparent diffusion coefficient (ADC) measurements of the breast if measured on different workstations? An inter- and intra-reader agreement study.

    PubMed

    Clauser, Paola; Marcon, Magda; Maieron, Marta; Zuiani, Chiara; Bazzocchi, Massimo; Baltzer, Pascal A T

    2016-07-01

    To evaluate the influence of post-processing systems, intra- and inter-reader agreement on the variability of apparent diffusion coefficient (ADC) measurements in breast lesions. Forty-one patients with 41 biopsy-proven breast lesions gave their informed consent and were included in this prospective IRB-approved study. Magnetic resonance imaging (MRI) examinations were performed at 1.5 T using an EPI-DWI sequence, with b-values of 0 and 1000 s/mm(2). Two radiologists (R1, R2) reviewed the images in separate sessions and measured the ADC for lesion, using MRI-workstation (S-WS), PACS-workstation (P-WS) and a commercial DICOM viewer (O-SW). Agreement was evaluated using the intraclass correlation coefficient (ICC), Bland-Altman plots and coefficient of variation (CV). Thirty-one malignant, two high-risk and eight benign mass-like lesions were analysed. Intra-reader agreement was almost perfect (ICC-R1 = 0.974; ICC-R2 = 0.990) while inter-reader agreement was substantial (ICC from 0.615 to 0.682). Bland-Altman plots revealed a significant bias in ADC values measured between O-SW and S-WS (P = 0.025), no further systematic differences were identified. CV varied from 6.8 % to 7.9 %. Post-processing systems may have a significant, although minor, impact on ADC measurements in breast lesions. While intra-reader agreement is high, the main source of ADC variability seems to be caused by inter-reader variation. • ADC provides quantitative information on breast lesions independent from the system used. • ADC measurement using different workstations and software systems is generally reliable. • Systematic, but minor, differences may occur between different post-processing systems. • Inter-reader agreement of ADC measurements exceeded intra-reader agreement.

  20. XML at the ADC: Steps to a Next Generation Data Archive

    NASA Astrophysics Data System (ADS)

    Shaya, E.; Blackwell, J.; Gass, J.; Oliversen, N.; Schneider, G.; Thomas, B.; Cheung, C.; White, R. A.

    1999-05-01

    The eXtensible Markup Language (XML) is a document markup language that allows users to specify their own tags, to create hierarchical structures to qualify their data, and to support automatic checking of documents for structural validity. It is being intensively supported by nearly every major corporate software developer. Under the funds of a NASA AISRP proposal, the Astronomical Data Center (ADC, http://adc.gsfc.nasa.gov) is developing an infrastructure for importation, enhancement, and distribution of data and metadata using XML as the document markup language. We discuss the preliminary Document Type Definition (DTD, at http://adc.gsfc.nasa.gov/xml) which specifies the elements and their attributes in our metadata documents. This attempts to define both the metadata of an astronomical catalog and the `header' information of an astronomical table. In addition, we give an overview of the planned flow of data through automated pipelines from authors and journal presses into our XML archive and retrieval through the web via the XML-QL Query Language and eXtensible Style Language (XSL) scripts. When completed, the catalogs and journal tables at the ADC will be tightly hyperlinked to enhance data discovery. In addition one will be able to search on fragmentary information. For instance, one could query for a table by entering that the second author is so-and-so or that the third author is at such-and-such institution.

  1. Whole lesion histogram analysis of meningiomas derived from ADC values. Correlation with several cellularity parameters, proliferation index KI 67, nucleic content, and membrane permeability.

    PubMed

    Surov, Alexey; Hamerla, Gordian; Meyer, Hans Jonas; Winter, Karsten; Schob, Stefan; Fiedler, Eckhard

    2018-09-01

    To analyze several histopathological features and their possible correlations with whole lesion histogram analysis derived from ADC maps in meningioma. The retrospective study involved 36 patients with primary meningiomas. For every tumor, the following histogram analysis parameters of apparent diffusion coefficient (ADC) were calculated: ADC mean , ADC max , ADC min , ADC median , ADC mode , ADC percentiles: P10, P25, P75, P90, as well kurtosis, skewness, and entropy. All measures were performed by two radiologists. Proliferation index KI 67, minimal, maximal and mean cell count, total nucleic area, and expression of water channel aquaporin 4 (AQP4) were estimated. Spearman's correlation coefficient was used to analyze associations between investigated parameters. A perfect interobserver agreement for all ADC values (0.84-0.97) was identified. All ADC values correlated inversely with tumor cellularity with the strongest correlation between P10, P25 and mean cell count (-0.558). KI 67 correlated inversely with all ADC values except ADC min . ADC parameters did not correlate with total nucleic area. All ADC values correlated statistically significant with expression of AQP4. ADC histogram analysis is a valid method with an excellent interobserver agreement. Cellularity parameters and proliferation potential are associated with different ADC values. Membrane permeability may play a greater role for water diffusion than cell count and proliferation activity. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Very high resolution aerial films

    NASA Astrophysics Data System (ADS)

    Becker, Rolf

    1986-11-01

    The use of very high resolution aerial films in aerial photography is evaluated. Commonly used panchromatic, color, and CIR films and their high resolution equivalents are compared. Based on practical experience and systematic investigations, the very high image quality and improved height accuracy that can be achieved using these films are demonstrated. Advantages to be gained from this improvement and operational restrictions encountered when using high resolution film are discussed.

  3. Experimental demonstration of a real-time high-throughput digital DC blocker for compensating ADC imperfections in optical fast-OFDM receivers.

    PubMed

    Zhang, Lu; Ouyang, Xing; Shao, Xiaopeng; Zhao, Jian

    2016-06-27

    Performance degradation induced by the DC components at the output of real-time analogue-to-digital converter (ADC) is experimentally investigated for optical fast-OFDM receiver. To compensate this degradation, register transfer level (RTL) circuits for real-time digital DC blocker with 20GS/s throughput are proposed and implemented in field programmable gate array (FPGA). The performance of the proposed real-time digital DC blocker is experimentally investigated in a 15Gb/s optical fast-OFDM system with intensity modulation and direct detection over 40 km standard single-mode fibre. The results show that the fixed-point DC blocker has negligible performance penalty compared to the offline floating point one, and can overcome the error floor of the fast OFDM receiver caused by the DC components from the real-time ADC output.

  4. High-throughput metabolic stability studies in drug discovery by orthogonal acceleration time-of-flight (OATOF) with analogue-to-digital signal capture (ADC).

    PubMed

    Temesi, David G; Martin, Scott; Smith, Robin; Jones, Christopher; Middleton, Brian

    2010-06-30

    Screening assays capable of performing quantitative analysis on hundreds of compounds per week are used to measure metabolic stability during early drug discovery. Modern orthogonal acceleration time-of-flight (OATOF) mass spectrometers equipped with analogue-to-digital signal capture (ADC) now offer performance levels suitable for many applications normally supported by triple quadruple instruments operated in multiple reaction monitoring (MRM) mode. Herein the merits of MRM and OATOF with ADC detection are compared for more than 1000 compounds screened in rat and/or cryopreserved human hepatocytes over a period of 3 months. Statistical comparison of a structurally diverse subset indicated good agreement for the two detection methods. The overall success rate was higher using OATOF detection and data acquisition time was reduced by around 20%. Targeted metabolites of diazepam were detected in samples from a CLint determination performed at 1 microM. Data acquisition by positive and negative ion mode switching can be achieved on high-performance liquid chromatography (HPLC) peak widths as narrow as 0.2 min (at base), thus enabling a more comprehensive first pass analysis with fast HPLC gradients. Unfortunately, most existing OATOF instruments lack the software tools necessary to rapidly convert the huge amounts of raw data into quantified results. Software with functionality similar to open access triple quadrupole systems is needed for OATOF to truly compete in a high-throughput screening environment. Copyright 2010 John Wiley & Sons, Ltd.

  5. A fast combination calibration of foreground and background for pipelined ADCs

    NASA Astrophysics Data System (ADS)

    Kexu, Sun; Lenian, He

    2012-06-01

    This paper describes a fast digital calibration scheme for pipelined analog-to-digital converters (ADCs). The proposed method corrects the nonlinearity caused by finite opamp gain and capacitor mismatch in multiplying digital-to-analog converters (MDACs). The considered calibration technique takes the advantages of both foreground and background calibration schemes. In this combination calibration algorithm, a novel parallel background calibration with signal-shifted correlation is proposed, and its calibration cycle is very short. The details of this technique are described in the example of a 14-bit 100 Msample/s pipelined ADC. The high convergence speed of this background calibration is achieved by three means. First, a modified 1.5-bit stage is proposed in order to allow the injection of a large pseudo-random dithering without missing code. Second, before correlating the signal, it is shifted according to the input signal so that the correlation error converges quickly. Finally, the front pipeline stages are calibrated simultaneously rather than stage by stage to reduce the calibration tracking constants. Simulation results confirm that the combination calibration has a fast startup process and a short background calibration cycle of 2 × 221 conversions.

  6. Simultaneous Measurement of T2 and Apparent Diffusion Coefficient (T2+ADC) in the Heart With Motion-Compensated Spin Echo Diffusion-Weighted Imaging

    PubMed Central

    Aliotta, Eric; Moulin, Kévin; Zhang, Zhaohuan; Ennis, Daniel B.

    2018-01-01

    Purpose To evaluate a technique for simultaneous quantitative T2 and apparent diffusion coefficient (ADC) mapping in the heart (T2+ADC) using spin echo (SE) diffusion-weighted imaging (DWI). Theory and Methods T2 maps from T2+ADC were compared with single-echo SE in phantoms and with T2-prepared (T2-prep) balanced steady-state free precession (bSSFP) in healthy volunteers. ADC maps from T2+ADC were compared with conventional DWI in phantoms and in vivo. T2+ADC was also demonstrated in a patient with acute myocardial infarction (MI). Results Phantom T2 values from T2+ADC were closer to a single-echo SE reference than T2-prep bSSFP (−2.3 ± 6.0% vs 22.2 ± 16.3%; P < 0.01), and ADC values were in excellent agreement with DWI (0.28 ± 0.4%). In volunteers, myocardial T2 values from T2+ADC were significantly shorter than T2-prep bSSFP (35.8 ± 3.1 vs 46.8 ± 3.8 ms; P < 0.01); myocardial ADC was not significantly (N.S.) different between T2+ADC and conventional motion-compensated DWI (1.39 ± 0.18 vs 1.38 ± 0.18 mm2/ms; P = N.S.). In the patient, T2 and ADC were both significantly elevated in the infarct compared with remote myocardium (T2: 40.4 ± 7.6 vs 56.8 ± 22.0; P < 0.01; ADC: 1.47 ± 0.59 vs 1.65 ± 0.65 mm2/ms; P < 0.01). Conclusion T2+ADC generated coregistered, free-breathing T2 and ADC maps in healthy volunteers and a patient with acute MI with no cost in accuracy, precision, or scan time compared with DWI. PMID:28516485

  7. Joint groupwise registration and ADC estimation in the liver using a B-value weighted metric.

    PubMed

    Sanz-Estébanez, Santiago; Rabanillo-Viloria, Iñaki; Royuela-Del-Val, Javier; Aja-Fernández, Santiago; Alberola-López, Carlos

    2018-02-01

    The purpose of this work is to develop a groupwise elastic multimodal registration algorithm for robust ADC estimation in the liver on multiple breath hold diffusion weighted images. We introduce a joint formulation to simultaneously solve both the registration and the estimation problems. In order to avoid non-reliable transformations and undesirable noise amplification, we have included appropriate smoothness constraints for both problems. Our metric incorporates the ADC estimation residuals, which are inversely weighted according to the signal content in each diffusion weighted image. Results show that the joint formulation provides a statistically significant improvement in the accuracy of the ADC estimates. Reproducibility has also been measured on real data in terms of the distribution of ADC differences obtained from different b-values subsets. The proposed algorithm is able to effectively deal with both the presence of motion and the geometric distortions, increasing accuracy and reproducibility in diffusion parameters estimation. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  8. MO-F-CAMPUS-I-05: Quantitative ADC Measurement of Esophageal Cancer Before and After Chemoradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, L; UT MD Anderson Cancer Center, Houston, TX; Son, JB

    2015-06-15

    Purpose: We investigated whether quantitative diffusion imaging can be used as an imaging biomarker for early prediction of treatment response of esophageal cancer. Methods: Eight patients with esophageal cancer underwent a baseline and an interim MRI studies during chemoradiation on a 3T whole body MRI scanner with an 8-channel torso phased array coil. Each MRI study contained two axial diffusion-weighted imaging (DWI) series with a conventional DWI sequence and a reduced field-of-view DWI sequence (FOCUS) of varying b-values. ADC maps with two b-values were computed from conventional DWI images using a mono-exponential model. For each of DWI sequences, separate ADCallmore » was computed by fitting the signal intensity of images with all the b-values to a single exponential model. For the FOCUS sequence, a bi-exponential model was used to extract perfusion and diffusion coefficients (ADCperf and ADCdiff) and their contributions to the signal decay. A board-certified radiologist contoured the tumor region and mean ADC values and standard deviations of tumor and muscle ROIs were recorded from different ADC maps. Results: Our results showed that (1) the magnitude of ADCs from the same ROIs by the different analysis methods can be substantially different. (2) For a given method, the change between the baseline and interim muscle ADCs was relatively small (≤10%). In contrast, the change between the baseline and interim tumor ADCs was substantially larger, with the change in ADCdiff by FOCUS DWI showing the largest percentage change of 73.2%. (3) The range of the relative change of a specific parameter for different patients was also different. Conclusion: Presently, we do not have the final pathological confirmation of the treatment response for all the patients. However, for a few patients whose surgical specimen is available, the quantitative ADC changes have been found to be useful as a potential predictor for treatment response.« less

  9. Characteristics of ADC12/nano Al2O3composites with Addition of Ti Produced By Stir Casting Method

    NASA Astrophysics Data System (ADS)

    Zulfia, A.; Krisiphala; Ferdian, D.; Utomo, B. W.; Dhaneswara, D.

    2018-03-01

    The mechanical properties and microstructure of ADC12/nano Al2O3 matrix composites have been studied in this work. The composites were produced by stir casting method. ADC 12 as matrix composites was combined by Mg and Ti. The addition of Ti was varied from 0.02 to 0.08 wt-% as grain refinement wetting to improve mechanical properties such as tensile strength, hardness and wear resistance, while Mg addition was to promote wetting between ADC 12 and nano Al2O3. The optimum tensile strength was found at 0.04 wt-% addition of Ti with value of 132.5 MPa, further adding more Ti cause a poisoning mechanism that will hindered the grain refining process and reduce the tensile strength. The hardness and wear resistance of composites would also increase because of the refinement process. and the added Magnesium in the material that will form Mg2Si primary phases who have a high hardness value.

  10. In-pixel conversion with a 10 bit SAR ADC for next generation X-ray FELs

    NASA Astrophysics Data System (ADS)

    Lodola, L.; Batignani, G.; Benkechkache, M. A.; Bettarini, S.; Casarosa, G.; Comotti, D.; Dalla Betta, G. F.; Fabris, L.; Forti, F.; Grassi, M.; Latreche, S.; Malcovati, P.; Manghisoni, M.; Mendicino, R.; Morsani, F.; Paladino, A.; Pancheri, L.; Paoloni, E.; Ratti, L.; Re, V.; Rizzo, G.; Traversi, G.; Vacchi, C.; Verzellesi, G.; Xu, H.

    2016-07-01

    This work presents the design of an interleaved Successive Approximation Register (SAR) ADC, part of the readout channel for the PixFEL detector. The PixFEL project aims at substantially advancing the state-of-the-art in the field of 2D X-ray imaging for applications at the next generation Free Electron Laser (FEL) facilities. For this purpose, the collaboration is developing the fundamental microelectronic building blocks for the readout channel. This work focuses on the design of the ADC carried out in a 65 nm CMOS technology. To obtain a good tradeoff between power consumption, conversion speed and area occupation, an interleaved SAR ADC architecture was adopted.

  11. Treatment with the C5a receptor antagonist ADC-1004 reduces myocardial infarction in a porcine ischemia-reperfusion model

    PubMed Central

    2010-01-01

    Background Polymorphonuclear neutrophils, stimulated by the activated complement factor C5a, have been implicated in cardiac ischemia/reperfusion injury. ADC-1004 is a competitive C5a receptor antagonist that has been shown to inhibit complement related neutrophil activation. ADC-1004 shields the neutrophils from C5a activation before they enter the reperfused area, which could be a mechanistic advantage compared to previous C5a directed reperfusion therapies. We investigated if treatment with ADC-1004, according to a clinically applicable protocol, would reduce infarct size and microvascular obstruction in a large animal myocardial infarct model. Methods In anesthetized pigs (42-53 kg), a percutaneous coronary intervention balloon was inflated in the left anterior descending artery for 40 minutes, followed by 4 hours of reperfusion. Twenty minutes after balloon inflation the pigs were randomized to an intravenous bolus administration of ADC-1004 (175 mg, n = 8) or saline (9 mg/ml, n = 8). Area at risk (AAR) was evaluated by ex vivo SPECT. Infarct size and microvascular obstruction were evaluated by ex vivo MRI. The observers were blinded to the treatment at randomization and analysis. Results ADC-1004 treatment reduced infarct size by 21% (ADC-1004: 58.3 ± 3.4 vs control: 74.1 ± 2.9%AAR, p = 0.007). Microvascular obstruction was similar between the groups (ADC-1004: 2.2 ± 1.2 vs control: 5.3 ± 2.5%AAR, p = 0.23). The mean plasma concentration of ADC-1004 was 83 ± 8 nM at sacrifice. There were no significant differences between the groups with respect to heart rate, mean arterial pressure, cardiac output and blood-gas data. Conclusions ADC-1004 treatment reduces myocardial ischemia-reperfusion injury and represents a novel treatment strategy of myocardial infarct with potential clinical applicability. PMID:20875134

  12. Treatment with the C5a receptor antagonist ADC-1004 reduces myocardial infarction in a porcine ischemia-reperfusion model.

    PubMed

    van der Pals, Jesper; Koul, Sasha; Andersson, Patrik; Götberg, Matthias; Ubachs, Joey F A; Kanski, Mikael; Arheden, Håkan; Olivecrona, Göran K; Larsson, Bengt; Erlinge, David

    2010-09-27

    Polymorphonuclear neutrophils, stimulated by the activated complement factor C5a, have been implicated in cardiac ischemia/reperfusion injury. ADC-1004 is a competitive C5a receptor antagonist that has been shown to inhibit complement related neutrophil activation. ADC-1004 shields the neutrophils from C5a activation before they enter the reperfused area, which could be a mechanistic advantage compared to previous C5a directed reperfusion therapies. We investigated if treatment with ADC-1004, according to a clinically applicable protocol, would reduce infarct size and microvascular obstruction in a large animal myocardial infarct model. In anesthetized pigs (42-53 kg), a percutaneous coronary intervention balloon was inflated in the left anterior descending artery for 40 minutes, followed by 4 hours of reperfusion. Twenty minutes after balloon inflation the pigs were randomized to an intravenous bolus administration of ADC-1004 (175 mg, n = 8) or saline (9 mg/ml, n = 8). Area at risk (AAR) was evaluated by ex vivo SPECT. Infarct size and microvascular obstruction were evaluated by ex vivo MRI. The observers were blinded to the treatment at randomization and analysis. ADC-1004 treatment reduced infarct size by 21% (ADC-1004: 58.3 ± 3.4 vs control: 74.1 ± 2.9%AAR, p = 0.007). Microvascular obstruction was similar between the groups (ADC-1004: 2.2 ± 1.2 vs control: 5.3 ± 2.5%AAR, p = 0.23). The mean plasma concentration of ADC-1004 was 83 ± 8 nM at sacrifice. There were no significant differences between the groups with respect to heart rate, mean arterial pressure, cardiac output and blood-gas data. ADC-1004 treatment reduces myocardial ischemia-reperfusion injury and represents a novel treatment strategy of myocardial infarct with potential clinical applicability.

  13. High Resolution Diffusion-Weighted Imaging for Solitary Orbital Tumors : 3D Turbo Field Echo with Diffusion-Sensitized Driven-Equilibrium (DSDE-TFE) Preparation Technique.

    PubMed

    Hiwatashi, Akio; Togao, Osamu; Yamashita, Koji; Kikuchi, Kazufumi; Yoshikawa, Hiroshi; Obara, Makoto; Honda, Hiroshi

    2018-06-01

    To differentiate cystic from solid solitary intraorbital tumors using 3D turbo field echo with diffusion-sensitized driven-equilibrium preparation without contrast material. This retrospective study was approved by our institutional review boards, and written informed consent was waived. A total of 26 patients with intraorbital tumors were studied. Motion probing gradients were conducted at one direction with b‑values of 0 and 500 s/mm 2 . The voxel size was 1.5 × 1.5 × 1.5 mm 3 , and acquisition time was 5 min 22 s. Additionally, fat-suppressed T2-weighted imaging (T2WI) and T1WI were obtained. The apparent diffusion coefficients (ADC) of the lesions were measured. Signal intensity on conventional magnetic resonance imaging (MRI) compared to normal appearing white matter was also measured. Statistical analysis was performed with Mann-Whitney U-test, the Steel-Dwass test and the receiver operating characteristic (ROC) analysis. There were 10 cystic (7 dermoids, 2 epidermoids, and 1 cystadenoma) and 16 solid (8 cavernous hemangiomas, 6 pleomorphic adenomas, 1 adenocarcinoma, and 1 sebaceous carcinoma) tumors. The ADC of the cystic tumors (mean ± SD; 2.21 ± 0.76 × 10 -3 mm 2 /s) was statistically significantly lower than that of solid tumors (1.43 ± 0.41 × 10 -3 mm 2 /s; P < 0.05).; however, there were no statistically significant differences on conventional MRI (P > 0.05). There were no statistically significant differences among tumor subtypes in all parameters (P > 0.05). The ROC analysis showed the best diagnostic performance with ADC (Az = 0.77). With its insensitivity to field inhomogeneity and high spatial resolution, the 3D DSDE-TFE technique enabled us to discriminate cystic tumors from solid tumors.

  14. High-Resolution Autoradiography

    NASA Technical Reports Server (NTRS)

    Towe, George C; Gomberg, Henry J; Freemen, J W

    1955-01-01

    This investigation was made to adapt wet-process autoradiography to metallurgical samples to obtain high resolution of segregated radioactive elements in microstructures. Results are confined to development of the technique, which was perfected to a resolution of less than 10 microns. The radioactive samples included carbon-14 carburized iron and steel, nickel-63 electroplated samples, a powder product containing nickel-63, and tungsten-185 in N-155 alloy.

  15. Fast ADC based multichannel acquisition system for the GEM detector

    NASA Astrophysics Data System (ADS)

    Kasprowicz, G.; Czarski, T.; Chernyshova, M.; Dominik, W.; Jakubowska, K.; Karpinski, L.; Kierzkowski, K.; Pozniak, K.; Rzadkiewicz, J.; Scholz, M.; Zabolotny, W.

    2012-05-01

    A novel approach to the Gas Electron Multiplier1 (GEM) detector readout is presented. Unlike commonly used methods, based on discriminators, and analogue FIFOs,[ the method developed uses simultaneously sampling high speed ADCs and advanced FPGA-based processing logic to estimate the energy of every single photon. Such method is applied to every GEM strip signal. It is especially useful in case of crystal-based spectrometers for soft X-rays, where higher order reflections need to be identified and rejected. For the purpose of the detector readout, a novel conception of the measurement platform was developed.

  16. Influence of image registration on ADC images computed from free-breathing diffusion MRIs of the abdomen

    NASA Astrophysics Data System (ADS)

    Guyader, Jean-Marie; Bernardin, Livia; Douglas, Naomi H. M.; Poot, Dirk H. J.; Niessen, Wiro J.; Klein, Stefan

    2014-03-01

    The apparent diffusion coefficient (ADC) is an imaging biomarker providing quantitative information on the diffusion of water in biological tissues. This measurement could be of relevance in oncology drug development, but it suffers from a lack of reliability. ADC images are computed by applying a voxelwise exponential fitting to multiple diffusion-weighted MR images (DW-MRIs) acquired with different diffusion gradients. In the abdomen, respiratory motion induces misalignments in the datasets, creating visible artefacts and inducing errors in the ADC maps. We propose a multistep post-acquisition motion compensation pipeline based on 3D non-rigid registrations. It corrects for motion within each image and brings all DW-MRIs to a common image space. The method is evaluated on 10 datasets of free-breathing abdominal DW-MRIs acquired from healthy volunteers. Regions of interest (ROIs) are segmented in the right part of the abdomen and measurements are compared in the three following cases: no image processing, Gaussian blurring of the raw DW-MRIs and registration. Results show that both blurring and registration improve the visual quality of ADC images, but compared to blurring, registration yields visually sharper images. Measurement uncertainty is reduced both by registration and blurring. For homogeneous ROIs, blurring and registration result in similar median ADCs, which are lower than without processing. In a ROI at the interface between liver and kidney, registration and blurring yield different median ADCs, suggesting that uncorrected motion introduces a bias. Our work indicates that averaging procedures on the scanner should be avoided, as they remove the opportunity to perform motion correction.

  17. Construction of a High Temporal-spectral Resolution Spectrometer for Detection of Fast Transients from Observations of the Sun at 1.4 GHz.

    NASA Astrophysics Data System (ADS)

    Casillas-Perez, G. A.; Jeyakumar, S.; Perez-Enriquez, R.

    2014-12-01

    Transients explosive events with time durations from nanoseconds to several hours, are observed in the Sun at high energy bands such as gamma ray and xray. In the radio band, several types of radio bursts are commonly detected from the ground. A few observations of the Sun in the past have also detected a new class of fast transients which are known to have short-live electromagnetic emissions with durations less than 100 ms. The mechanisms that produce such fast transiets remain unclear. Observations of such fast transients over a wide bandwidth is necessary to uderstand the underlying physical process that produce such fast transients. Due to their very large flux densities, fast radio transients can be observed at high time resolution using small antennas in combination with digital signal processing techniques. In this work we report the progress of an spectrometer that is currently in construction at the Observatorio de la Luz of the Universidad de Guanajuato. The instrument which will have the purpose of detecting solar fast radio transients, involves the use of digital devices such as FPGA and ADC cards, in addition with a receiver with high temporal-spectral resolution centered at 1.4 GHz and a pair of 2.3 m satellite dish.

  18. Iterative current mode per pixel ADC for 3D SoftChip implementation in CMOS

    NASA Astrophysics Data System (ADS)

    Lachowicz, Stefan W.; Rassau, Alexander; Lee, Seung-Minh; Eshraghian, Kamran; Lee, Mike M.

    2003-04-01

    Mobile multimedia communication has rapidly become a significant area of research and development constantly challenging boundaries on a variety of technological fronts. The processing requirements for the capture, conversion, compression, decompression, enhancement, display, etc. of increasingly higher quality multimedia content places heavy demands even on current ULSI (ultra large scale integration) systems, particularly for mobile applications where area and power are primary considerations. The ADC presented in this paper is designed for a vertically integrated (3D) system comprising two distinct layers bonded together using Indium bump technology. The top layer is a CMOS imaging array containing analogue-to-digital converters, and a buffer memory. The bottom layer takes the form of a configurable array processor (CAP), a highly parallel array of soft programmable processors capable of carrying out complex processing tasks directly on data stored in the top plane. This paper presents a ADC scheme for the image capture plane. The analogue photocurrent or sampled voltage is transferred to the ADC via a column or a column/row bus. In the proposed system, an array of analogue-to-digital converters is distributed, so that a one-bit cell is associated with one sensor. The analogue-to-digital converters are algorithmic current-mode converters. Eight such cells are cascaded to form an 8-bit converter. Additionally, each photo-sensor is equipped with a current memory cell, and multiple conversions are performed with scaled values of the photocurrent for colour processing.

  19. A 10 bit 200 MS/s pipeline ADC using loading-balanced architecture in 0.18 μm CMOS

    NASA Astrophysics Data System (ADS)

    Wang, Linfeng; Meng, Qiao; Zhi, Hao; Li, Fei

    2017-07-01

    A new loading-balanced architecture for high speed and low power consumption pipeline analog-to-digital converter (ADC) is presented in this paper. The proposed ADC uses SHA-less, op-amp and capacitor-sharing technique, capacitor-scaling scheme to reduce the die area and power consumption. A new capacitor-sharing scheme was proposed to cancel the extra reset phase of the feedback capacitors. The non-standard inter-stage gain increases the feedback factor of the first stage and makes it equal to the second stage, by which, the load capacitor of op-amp shared by the first and second stages is balanced. As for the fourth stage, the capacitor and op-amp no longer scale down. From the system’s point of view, all load capacitors of the shared OTAs are balanced by employing a loading-balanced architecture. The die area and power consumption are optimized maximally. The ADC is implemented in a 0.18 μm 1P6M CMOS technology, and occupies a die area of 1.2 × 1.2 mm{}2. The measurement results show a 55.58 dB signal-to-noise-and-distortion ratio (SNDR) and 62.97 dB spurious-free dynamic range (SFDR) with a 25 MHz input operating at a 200 MS/s sampling rate. The proposed ADC consumes 115 mW at 200 MS/s from a 1.8 V supply.

  20. High resolution digital delay timer

    DOEpatents

    Martin, Albert D.

    1988-01-01

    Method and apparatus are provided for generating an output pulse following a trigger pulse at a time delay interval preset with a resolution which is high relative to a low resolution available from supplied clock pulses. A first lumped constant delay (20) provides a first output signal (24) at predetermined interpolation intervals corresponding to the desired high resolution time interval. Latching circuits (26, 28) latch the high resolution data (24) to form a first synchronizing data set (60). A selected time interval has been preset to internal counters (142, 146, 154) and corrected for circuit propagation delay times having the same order of magnitude as the desired high resolution. Internal system clock pulses (32, 34) count down the counters to generate an internal pulse delayed by an interval which is functionally related to the preset time interval. A second LCD (184) corrects the internal signal with the high resolution time delay. A second internal pulse is then applied to a third LCD (74) to generate a second set of synchronizing data (76) which is complementary with the first set of synchronizing data (60) for presentation to logic circuits (64). The logic circuits (64) further delay the internal output signal (72) to obtain a proper phase relationship of an output signal (80) with the internal pulses (32, 34). The final delayed output signal (80) thereafter enables the output pulse generator (82) to produce the desired output pulse (84) at the preset time delay interval following input of the trigger pulse (10, 12).

  1. ADC histogram analysis of muscle lymphoma - Correlation with histopathology in a rare entity.

    PubMed

    Meyer, Hans-Jonas; Pazaitis, Nikolaos; Surov, Alexey

    2018-06-21

    Diffusion weighted imaging (DWI) is able to reflect histopathology architecture. A novel imaging approach, namely histogram analysis, is used to further characterize lesion on MRI. The purpose of this study is to correlate histogram parameters derived from apparent diffusion coefficient- (ADC) maps with histopathology parameters in muscle lymphoma. Eight patients (mean age 64.8 years, range 45-72 years) with histopathologically confirmed muscle lymphoma were retrospectively identified. Cell count, total nucleic and average nucleic areas were estimated using ImageJ. Additionally, Ki67-index was calculated. DWI was obtained on a 1.5T scanner by using the b values of 0 and 1000 s/mm2. Histogram analysis was performed as a whole lesion measurement by using a custom-made Matlabbased application. The correlation analysis revealed statistically significant correlation between cell count and ADCmean (p=-0.76, P=0.03) as well with ADCp75 (p=-0.79, P=0.02). Kurtosis and entropy correlated with average nucleic area (p=-0.81, P=0.02, p=0.88, P=0.007, respectively). None of the analyzed ADC parameters correlated with total nucleic area and with Ki67-index. This study identified significant correlations between cellularity and histogram parameters derived from ADC maps in muscle lymphoma. Thus, histogram analysis parameters reflect histopathology in muscle tumors. Advances in knowledge: Whole lesion ADC histogram analysis is able to reflect histopathology parameters in muscle lymphomas.

  2. Utility of DWI with quantitative ADC values in ovarian tumors: a meta-analysis of diagnostic test performance.

    PubMed

    Pi, Shan; Cao, Rong; Qiang, Jin Wei; Guo, Yan Hui

    2018-01-01

    Background Diffusion-weighted imaging (DWI) and quantitative apparent diffusion coefficient (ADC) values are widely used in the differential diagnosis of ovarian tumors. Purpose To assess the diagnostic performance of quantitative ADC values in ovarian tumors. Material and Methods PubMed, Embase, the Cochrane Library, and local databases were searched for studies assessing ovarian tumors using quantitative ADC values. We quantitatively analyzed the diagnostic performances for two clinical problems: benign vs. malignant tumors and borderline vs. malignant tumors. We evaluated diagnostic performances by the pooled sensitivity and specificity values and by summary receiver operating characteristic (SROC) curves. Subgroup analyses were used to analyze study heterogeneity. Results From the 742 studies identified in the search results, 16 studies met our inclusion criteria. A total of ten studies evaluated malignant vs. benign ovarian tumors and six studies assessed malignant vs. borderline ovarian tumors. Regarding the diagnostic accuracy of quantitative ADC values for distinguishing between malignant and benign ovarian tumors, the pooled sensitivity and specificity values were 0.91 and 0.91, respectively. The area under the SROC curve (AUC) was 0.96. For differentiating borderline from malignant tumors, the pooled sensitivity and specificity values were 0.89 and 0.79, and the AUC was 0.91. The methodological quality of the included studies was moderate. Conclusion Quantitative ADC values could serve as useful preoperative markers for predicting the nature of ovarian tumors. Nevertheless, prospective trials focused on standardized imaging parameters are needed to evaluate the clinical value of quantitative ADC values in ovarian tumors.

  3. ADC Quantification of the Vertebral Bone Marrow Water Component: Removing the Confounding Effect of Residual Fat.

    PubMed

    Dieckmeyer, Michael; Ruschke, Stefan; Eggers, Holger; Kooijman, Hendrik; Rummeny, Ernst J; Kirschke, Jan S; Baum, Thomas; Karampinos, Dimitrios C

    2017-10-01

    To remove the confounding effect of unsuppressed fat on the imaging-based apparent diffusion coefficient (ADC) of the vertebral bone marrow water component when using spectrally selective fat suppression and to compare and validate the proposed quantification strategy against diffusion-weighted magnetic resonance spectroscopy (DW-MRS). Twelve subjects underwent diffusion-weighted imaging (DWI) and DW-MRS of the vertebral bone marrow. A theoretical model was developed to take into account and correct the effects of residual fat on ADC, incorporating additional measurements for proton density fat fraction (PDFF) and water T 2 (T 2w ). Uncorrected and corrected DWI-based ADC was compared with DW-MRS-based ADC using the Bland-Altman method. There was a systematic bias equal to 0.118 ± 0.116 × 10 -3 mm 2 /s between DWI and DW-MRS when no correction was performed. Taking into account measured PDFF and constant T 2w reduced the bias to 0.006 ± 0.128 × 10 -3 mm 2 /s. Using the proposed approach with both individually measured PDFF and T 2w reduced both the bias and the limits of agreement between DWI and DW-MRS (0.018 ± 0.065 × 10 -3 mm 2 /s). By taking into account the presence of residual fat in a modified signal model that incorporates additional individual measurements of PDFF and T 2w , good agreement of imaging-based ADC with MRS-based ADC can be achieved in vertebral bone marrow. Magn Reson Med 78:1432-1441, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  4. Utility of whole-lesion ADC histogram metrics for assessing the malignant potential of pancreatic intraductal papillary mucinous neoplasms (IPMNs).

    PubMed

    Hoffman, David H; Ream, Justin M; Hajdu, Christina H; Rosenkrantz, Andrew B

    2017-04-01

    To evaluate whole-lesion ADC histogram metrics for assessing the malignant potential of pancreatic intraductal papillary mucinous neoplasms (IPMNs), including in comparison with conventional MRI features. Eighteen branch-duct IPMNs underwent MRI with DWI prior to resection (n = 16) or FNA (n = 2). A blinded radiologist placed 3D volumes-of-interest on the entire IPMN on the ADC map, from which whole-lesion histogram metrics were generated. The reader also assessed IPMN size, mural nodularity, and adjacent main-duct dilation. Benign (low-to-intermediate grade dysplasia; n = 10) and malignant (high-grade dysplasia or invasive adenocarcinoma; n = 8) IPMNs were compared. Whole-lesion ADC histogram metrics demonstrating significant differences between benign and malignant IPMNs were: entropy (5.1 ± 0.2 vs. 5.4 ± 0.2; p = 0.01, AUC = 86%); mean of the bottom 10th percentile (2.2 ± 0.4 vs. 1.6 ± 0.7; p = 0.03; AUC = 81%); and mean of the 10-25th percentile (2.8 ± 0.4 vs. 2.3 ± 0.6; p = 0.04; AUC = 79%). The overall mean ADC, skewness, and kurtosis were not significantly different between groups (p ≥ 0.06; AUC = 50-78%). For entropy (highest performing histogram metric), an optimal threshold of >5.3 achieved a sensitivity of 100%, a specificity of 70%, and an accuracy of 83% for predicting malignancy. No significant difference (p = 0.18-0.64) was observed between benign and malignant IPMNs for cyst size ≥3 cm, adjacent main-duct dilatation, or mural nodule. At multivariable analysis of entropy in combination with all other ADC histogram and conventional MRI features, entropy was the only significant independent predictor of malignancy (p = 0.004). Although requiring larger studies, ADC entropy obtained from 3D whole-lesion histogram analysis may serve as a biomarker for identifying the malignant potential of IPMNs, independent of conventional MRI features.

  5. SU-F-303-13: Initial Evaluation of Four Dimensional Diffusion- Weighted MRI (4D-DWI) and Its Effect On Apparent Diffusion Coefficient (ADC) Measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Y; Yin, F; Czito, B

    2015-06-15

    Purpose: Diffusion-weighted imaging(DWI) has been shown to have superior tumor-to-tissue contrast for cancer detection.This study aims at developing and evaluating a four dimensional DWI(4D-DWI) technique using retrospective sorting method for imaging respiratory motion for radiotherapy planning,and evaluate its effect on Apparent Diffusion Coefficient(ADC) measurement. Materials/Methods: Image acquisition was performed by repeatedly imaging a volume of interest using a multi-slice single-shot 2D-DWI sequence in the axial planes and cine MRI(served as reference) using FIESTA sequence.Each 2D-DWI image were acquired in xyz-diffusion-directions with a high b-value(b=500s/mm2).The respiratory motion was simultaneously recorded using bellows.Retrospective sorting was applied in each direction to reconstruct 4D-DWI.Themore » technique was evaluated using a computer simulated 4D-digital human phantom(XCAT),a motion phantom and a healthy volunteer under an IRB-approved study.Motion trajectories of regions-of-interests(ROI) were extracted from 4D-DWI and compared with reference.The mean motion trajectory amplitude differences(D) between the two was calculated.To quantitatively analyze the motion artifacts,XCAT were controlled to simulate regular motion and the motions of 10 liver cancer patients.4D-DWI,free-breathing DWI(FB- DWI) were reconstructed.Tumor volume difference(VD) of each phase of 4D-DWI and FB-DWI from the input static tumor were calculated.Furthermore, ADC was measured for each phase of 4D-DWI and FB-DWI data,and mean tumor ADC values(M-ADC) were calculated.Mean M-ADC over all 4D-DWI phases was compared with M-ADC calculated from FB-DWI. Results: 4D-DWI of XCAT,the motion phantom and the healthy volunteer demonstrated the respiratory motion clearly.ROI D values were 1.9mm,1.7mm and 2.0mm,respectively.For motion artifacts analysis,XCAT 4D-DWI images show much less motion artifacts compare to FB-DWI.Mean VD for 4D-WDI and FB-DWI were 8.5±1.4% and 108±15

  6. A Close Loop Low-Power and High Speed 130 nm CMOS Sample and Hold Circuit Based on Switched Capacitor for ADC Module

    NASA Astrophysics Data System (ADS)

    Nasir, Z.; Ruslan, S. H.

    2017-08-01

    A sample and hold (S/H) block is typically used as an analogue to digital interface in the analogue to digital converter (ADC) system. Since ADC is widely used in processing signals, the power consumption of the ADC must be lowered to conserve energy. Therefore the S/H circuit must be of a low powered too. Sampling phase and hold phase are the two phases of the operation cycle of the S/H circuit. Switched capacitor (SC) techniques have been developed in order to allow the integration on a single silicon chip of both digital and analogue functions. By controlling switches around the SC, the SC circuit works by passing charge into and out of a capacitor. SC circuits are suitable for on chip implementations because they replace a resistor with switches and capacitors. In this research, a closed-loop sample and hold circuit based on SC is designed and simulated with Cadence EDA tools. The schematic, layout, and simulation of the circuit is done using generic Silterra 130 nm technology file. All the analysis is done using Virtuoso Analog Design Environment. Layout and schematic are drawn using Virtuoso Schematic Editor and Virtuoso Layout Editor, Calibre is used for post layout simulation. The closed loop S/H circuit based on SC is successfully designed and able to sample and hold the analogue input waveform. The power consumption of the circuit is 0.919 mW and the propagation delay is 64.96 ps.

  7. Using high-resolution displays for high-resolution cardiac data.

    PubMed

    Goodyer, Christopher; Hodrien, John; Wood, Jason; Kohl, Peter; Brodlie, Ken

    2009-07-13

    The ability to perform fast, accurate, high-resolution visualization is fundamental to improving our understanding of anatomical data. As the volumes of data increase from improvements in scanning technology, the methods applied to visualization must evolve. In this paper, we address the interactive display of data from high-resolution magnetic resonance imaging scanning of a rabbit heart and subsequent histological imaging. We describe a visualization environment involving a tiled liquid crystal display panel display wall and associated software, which provides an interactive and intuitive user interface. The oView software is an OpenGL application that is written for the VR Juggler environment. This environment abstracts displays and devices away from the application itself, aiding portability between different systems, from desktop PCs to multi-tiled display walls. Portability between display walls has been demonstrated through its use on walls at the universities of both Leeds and Oxford. We discuss important factors to be considered for interactive two-dimensional display of large three-dimensional datasets, including the use of intuitive input devices and level of detail aspects.

  8. Containment challenges in HPAPI manufacture for ADC generation.

    PubMed

    Dunny, Elizabeth; O'Connor, Imelda; Bones, Jonathan

    2017-06-01

    Antibody-drug conjugates (ADCs) are emerging as an impactful class of therapeutics for the treatment of cancer because of their ability to harness the specificity of an antibody and the cytotoxic potential of the payload to target and destroy cancer cells. However, the potent nature of the cytotoxic payload creates associated manufacturing challenges for active pharmaceutical ingredient (API) manufacturers, because huge investment in containment technology is required to ensure the protection of operators and the environment. Here, we examine the differing attitudes to high-potency categorisation and levels of containment control. We also provide an overview of the most widely used containment strategies for facility design, powder handling, purification, analysis, and cleaning. Finally, we briefly consider the health and safety regulatory challenges associated with the manufacture of cytotoxic payloads for use in antibody-drug conjugates. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Design and initial performance of PlanTIS: a high-resolution positron emission tomograph for plants

    NASA Astrophysics Data System (ADS)

    Beer, S.; Streun, M.; Hombach, T.; Buehler, J.; Jahnke, S.; Khodaverdi, M.; Larue, H.; Minwuyelet, S.; Parl, C.; Roeb, G.; Schurr, U.; Ziemons, K.

    2010-02-01

    Positron emitters such as 11C, 13N and 18F and their labelled compounds are widely used in clinical diagnosis and animal studies, but can also be used to study metabolic and physiological functions in plants dynamically and in vivo. A very particular tracer molecule is 11CO2 since it can be applied to a leaf as a gas. We have developed a Plant Tomographic Imaging System (PlanTIS), a high-resolution PET scanner for plant studies. Detectors, front-end electronics and data acquisition architecture of the scanner are based on the ClearPET™ system. The detectors consist of LSO and LuYAP crystals in phoswich configuration which are coupled to position-sensitive photomultiplier tubes. Signals are continuously sampled by free running ADCs, and data are stored in a list mode format. The detectors are arranged in a horizontal plane to allow the plants to be measured in the natural upright position. Two groups of four detector modules stand face-to-face and rotate around the field-of-view. This special system geometry requires dedicated image reconstruction and normalization procedures. We present the initial performance of the detector system and first phantom and plant measurements.

  10. Design and initial performance of PlanTIS: a high-resolution positron emission tomograph for plants.

    PubMed

    Beer, S; Streun, M; Hombach, T; Buehler, J; Jahnke, S; Khodaverdi, M; Larue, H; Minwuyelet, S; Parl, C; Roeb, G; Schurr, U; Ziemons, K

    2010-02-07

    Positron emitters such as (11)C, (13)N and (18)F and their labelled compounds are widely used in clinical diagnosis and animal studies, but can also be used to study metabolic and physiological functions in plants dynamically and in vivo. A very particular tracer molecule is (11)CO(2) since it can be applied to a leaf as a gas. We have developed a Plant Tomographic Imaging System (PlanTIS), a high-resolution PET scanner for plant studies. Detectors, front-end electronics and data acquisition architecture of the scanner are based on the ClearPET system. The detectors consist of LSO and LuYAP crystals in phoswich configuration which are coupled to position-sensitive photomultiplier tubes. Signals are continuously sampled by free running ADCs, and data are stored in a list mode format. The detectors are arranged in a horizontal plane to allow the plants to be measured in the natural upright position. Two groups of four detector modules stand face-to-face and rotate around the field-of-view. This special system geometry requires dedicated image reconstruction and normalization procedures. We present the initial performance of the detector system and first phantom and plant measurements.

  11. Modifications of the optical properties for DAM-ADC nuclear track detector exposed to alpha particles

    NASA Astrophysics Data System (ADS)

    Rammah, Y. S.; Awad, E. M.

    2018-05-01

    Modifications of the optical properties of diallyl maleate-allyl diglycol carbonate (DAM-ADC) nuclear detector induced by alpha particles are described. DAM-ADC samples were irradiated perpendicularly by thin 241Am disk source that emits alpha particles with 5.48 MeV. The optical absorption has been measured using the ultraviolet-visible (UV-1100) spectroscopy. It was found that DAM-ADC polymer shows substantial modifications in its optical characteristics upon irradiated with alpha particles with different energies. The optical energy band gap (Egap) for the detector was calculated for the direct and the indirect allowed transitions in K-space using two approaches (Tauc's model and absorption spectrum fitting (ASF) method). Urbach's energy (Ea), number of carbon atoms per conjugated length (N), number of carbon atoms per cluster (M), and refractive index (n) for the present samples were determined. Results reveal that the values of energy gap in direct transition are greater than those of indirect, before and after irradiation. (Egap), (Ea), (N), (M), and (n) of the present samples are changed significantly with irradiation time and value of alpha energy. Results reflect the possibility of using DAM-ADC polymer track detectors to estimate alpha particle energies using the variation of the absorbance.

  12. High Spatiotemporal Resolution Prostate MRI

    DTIC Science & Technology

    2016-09-01

    1 AD AWARD NUMBER: W81XWH-15-1-0341 TITLE: High Spatiotemporal Resolution Prostate MRI PRINCIPAL INVESTIGATOR: Stephen J. Riederer CONTRACTING...REPORT TYPE Annual 3. DATES COVERED 15 Aug 2015 - 14 Aug 2016 4. TITLE AND SUBTITLE High Spatiotemporal Resolution Prostate MRI 5a. CONTRACT NUMBER...improved means using MRI for detecting prostate cancer with the potential for differentiating disease aggressiveness. The hypothesis is that dynamic

  13. Mixed Linear/Square-Root Encoded Single-Slope Ramp Provides Low-Noise ADC with High Linearity for Focal Plane Arrays

    NASA Technical Reports Server (NTRS)

    Wrigley, Chris J.; Hancock, Bruce R.; Newton, Kenneth W.; Cunningham, Thomas J.

    2013-01-01

    code values that must be allocated to each portion. The distortion problem is solved by using a lookup table to convert captured code values back to signal levels. The values in this table will be similar to the intended ramp value, but with a correction for the finite bandwidth effects. Continuous-time comparators are used, and their bandwidth is set below the step rate, which smoothes the ramp and reduces the noise. No settling time is needed, as would be the case for clocked comparators, but the low bandwidth enhances the distortion of the non-linear portion. This is corrected by use of a return lookup table, which differs from the one used to generate the ramp. The return lookup table is obtained by calibrating against a stepped precision DC reference. This results in a residual non-linearity well below the quantization noise. This method can also compensate for differential non-linearity (DNL) in the DAC used to generate the ramp. The use of a ramp with a combination of linear and quadratic portions for a single-slope ADC is novel. The number of steps is minimized by keeping the step size just below the photon shot noise. This in turn maximizes the speed of the conversion. High resolution is maintained by keeping small quantization steps at low signals, and noise is minimized by allowing the lowest analog bandwidth, all without increasing the quantization noise. A calibrated return lookup table allows the system to maintain excellent linearity.

  14. High Resolution Image Reconstruction from Projection of Low Resolution Images DIffering in Subpixel Shifts

    NASA Technical Reports Server (NTRS)

    Mareboyana, Manohar; Le Moigne-Stewart, Jacqueline; Bennett, Jerome

    2016-01-01

    In this paper, we demonstrate a simple algorithm that projects low resolution (LR) images differing in subpixel shifts on a high resolution (HR) also called super resolution (SR) grid. The algorithm is very effective in accuracy as well as time efficiency. A number of spatial interpolation techniques using nearest neighbor, inverse-distance weighted averages, Radial Basis Functions (RBF) etc. used in projection yield comparable results. For best accuracy of reconstructing SR image by a factor of two requires four LR images differing in four independent subpixel shifts. The algorithm has two steps: i) registration of low resolution images and (ii) shifting the low resolution images to align with reference image and projecting them on high resolution grid based on the shifts of each low resolution image using different interpolation techniques. Experiments are conducted by simulating low resolution images by subpixel shifts and subsampling of original high resolution image and the reconstructing the high resolution images from the simulated low resolution images. The results of accuracy of reconstruction are compared by using mean squared error measure between original high resolution image and reconstructed image. The algorithm was tested on remote sensing images and found to outperform previously proposed techniques such as Iterative Back Projection algorithm (IBP), Maximum Likelihood (ML), and Maximum a posterior (MAP) algorithms. The algorithm is robust and is not overly sensitive to the registration inaccuracies.

  15. Whole-lesion ADC histogram and texture analysis in predicting recurrence of cervical cancer treated with CCRT.

    PubMed

    Meng, Jie; Zhu, Lijing; Zhu, Li; Xie, Li; Wang, Huanhuan; Liu, Song; Yan, Jing; Liu, Baorui; Guan, Yue; He, Jian; Ge, Yun; Zhou, Zhengyang; Yang, Xiaofeng

    2017-11-03

    To explore the value of whole-lesion apparent diffusion coefficient (ADC) histogram and texture analysis in predicting tumor recurrence of advanced cervical cancer treated with concurrent chemo-radiotherapy (CCRT). 36 women with pathologically confirmed advanced cervical squamous carcinomas were enrolled in this prospective study. 3.0 T pelvic MR examinations including diffusion weighted imaging (b = 0, 800 s/mm 2 ) were performed before CCRT (pre-CCRT) and at the end of 2nd week of CCRT (mid-CCRT). ADC histogram and texture features were derived from the whole volume of cervical cancers. With a mean follow-up of 25 months (range, 11 ∼ 43), 10/36 (27.8%) patients ended with recurrence. Pre-CCRT 75th, 90th, correlation, autocorrelation and mid-CCRT ADC mean , 10th, 25th, 50th, 75th, 90th, autocorrelation can effectively differentiate the recurrence from nonrecurrence group with area under the curve ranging from 0.742 to 0.850 (P values range, 0.001 ∼ 0.038). Pre- and mid-treatment whole-lesion ADC histogram and texture analysis hold great potential in predicting tumor recurrence of advanced cervical cancer treated with CCRT.

  16. High-Resolution X-Ray Telescopes

    NASA Technical Reports Server (NTRS)

    ODell, Stephen L.; Brissenden, Roger J.; Davis, William; Elsner, Ronald F.; Elvis, Martin; Freeman, Mark; Gaetz, Terry; Gorenstein, Paul; Gubarev, Mikhail V.

    2010-01-01

    Fundamental needs for future x-ray telescopes: a) Sharp images => excellent angular resolution. b) High throughput => large aperture areas. Generation-X optics technical challenges: a) High resolution => precision mirrors & alignment. b) Large apertures => lots of lightweight mirrors. Innovation needed for technical readiness: a) 4 top-level error terms contribute to image size. b) There are approaches to controlling those errors. Innovation needed for manufacturing readiness. Programmatic issues are comparably challenging.

  17. Inter- and intraobserver agreement of ADC measurements of lung cancer in free breathing, breath-hold and respiratory triggered diffusion-weighted MRI.

    PubMed

    Cui, Lei; Yin, Jian-Bing; Hu, Chun-Hong; Gong, Shen-Chu; Xu, Jun-Feng; Yang, Ju-Shun

    2016-01-01

    To prospectively evaluate the inter- and intraobserver agreement of apparent diffusion coefficient (ADC) measurements in free breathing, breath-hold, and respiratory triggered diffusion-weighted imaging (DWI) of lung cancer. Twenty-two patients with lung cancer (tumor size >2cm) underwent DWIs (3.0T) in three imaging methods. Lesion ADCs were measured twice by both of the two independent observers and compared. No statistical significance was found among methods, though respiratory-triggered DWI tended to have higher ADCs than breath-hold DWI. Great inter- and intraobserver agreement was shown. ADCs had good inter- and intraobserver agreement in all three DWI methods. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. High-resolution scanning precession electron diffraction: Alignment and spatial resolution.

    PubMed

    Barnard, Jonathan S; Johnstone, Duncan N; Midgley, Paul A

    2017-03-01

    Methods are presented for aligning the pivot point of a precessing electron probe in the scanning transmission electron microscope (STEM) and for assessing the spatial resolution in scanning precession electron diffraction (SPED) experiments. The alignment procedure is performed entirely in diffraction mode, minimising probe wander within the bright-field (BF) convergent beam electron diffraction (CBED) disk and is used to obtain high spatial resolution SPED maps. Through analysis of the power spectra of virtual bright-field images extracted from the SPED data, the precession-induced blur was measured as a function of precession angle. At low precession angles, SPED spatial resolution was limited by electronic noise in the scan coils; whereas at high precession angles SPED spatial resolution was limited by tilt-induced two-fold astigmatism caused by the positive spherical aberration of the probe-forming lens. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Evaluation of commercial ADC radiation tolerance for accelerator experiments

    DOE PAGES

    Chen, K.; Chen, H.; Kierstead, J.; ...

    2015-08-17

    Electronic components used in high energy physics experiments are subjected to a radiation background composed of high energy hadrons, mesons and photons. These particles can induce permanent and transient effects that affect the normal device operation. Ionizing dose and displacement damage can cause chronic damage which disable the device permanently. Transient effects or single event effects are in general recoverable with time intervals that depend on the nature of the failure. The magnitude of these effects is technology dependent with feature size being one of the key parameters. Analog to digital converters are components that are frequently used in detectormore » front end electronics, generally placed as close as possible to the sensing elements to maximize signal fidelity. We report on radiation effects tests conducted on 17 commercially available analog to digital converters and extensive single event effect measurements on specific twelve and fourteen bit ADCs that presented high tolerance to ionizing dose. We discuss mitigation strategies for single event effects (SEE) for their use in the large hadron collider environment.« less

  20. New concept high-speed and high-resolution color scanner

    NASA Astrophysics Data System (ADS)

    Nakashima, Keisuke; Shinoda, Shin'ichi; Konishi, Yoshiharu; Sugiyama, Kenji; Hori, Tetsuya

    2003-05-01

    We have developed a new concept high-speed and high-resolution color scanner (Blinkscan) using digital camera technology. With our most advanced sub-pixel image processing technology, approximately 12 million pixel image data can be captured. High resolution imaging capability allows various uses such as OCR, color document read, and document camera. The scan time is only about 3 seconds for a letter size sheet. Blinkscan scans documents placed "face up" on its scan stage and without any special illumination lights. Using Blinkscan, a high-resolution color document can be easily inputted into a PC at high speed, a paperless system can be built easily. It is small, and since the occupancy area is also small, setting it on an individual desk is possible. Blinkscan offers the usability of a digital camera and accuracy of a flatbed scanner with high-speed processing. Now, about several hundred of Blinkscan are mainly shipping for the receptionist operation in a bank and a security. We will show the high-speed and high-resolution architecture of Blinkscan. Comparing operation-time with conventional image capture device, the advantage of Blinkscan will make clear. And image evaluation for variety of environment, such as geometric distortions or non-uniformity of brightness, will be made.

  1. Study of the optical properties and the carbonaceous clusters in DAM-ADC solid state nuclear track detectors

    NASA Astrophysics Data System (ADS)

    Rammah, Y. S.; Abdalla, A. M.

    2017-12-01

    The optical properties of DAM-ADC solid state nuclear track detectors (SSNTDs) were investigated. Samples of DAM-ADC detector were irradiated at room temperature with gamma doses in the range of 100-500 kGy using 1.25 MeV 60Co source of dose rate 4 kGy/h. The optical characterization of these detectors have been studied through the measurements of UV-visible absorption spectra of blank and γ- irradiated samples. The optical energy band gaps, Eg for the detectors were obtained from the direct and the indirect allowed transitions in K-space using two methods (Tauc's model and absorption spectrum fitting (ASF) method). The absorbance of DAM-ADC detector was found to increase with increasing of the gamma absorbed dose. The width of the tail of localized states in the band gap, Eu was evaluated with the Urbach's method. The number of carbon atoms per conjugated length (N), the number of carbon atoms per cluster (M), and refractive index (n) for the present samples were determined. Both of the direct and the indirect band gaps of DAM-ADC detector decrease with increasing of the gamma absorbed dose. Urbach's energy decreased significantly for the detector. An increase in N, M, and n with increasing of the gamma absorbed dose was noticed. Results shed light on the effect of gamma irradiations of DAM-ADC SSNTDs to suitable industrial applications and to modify the optical properties through gamma-induced modifications of the polymer structure.

  2. Adjustable Nyquist-rate System for Single-Bit Sigma-Delta ADC with Alternative FIR Architecture

    NASA Astrophysics Data System (ADS)

    Frick, Vincent; Dadouche, Foudil; Berviller, Hervé

    2016-09-01

    This paper presents a new smart and compact system dedicated to control the output sampling frequency of an analogue-to-digital converters (ADC) based on single-bit sigma-delta (ΣΔ) modulator. This system dramatically improves the spectral analysis capabilities of power network analysers (power meters) by adjusting the ADC's sampling frequency to the input signal's fundamental frequency with a few parts per million accuracy. The trade-off between straightforwardness and performance that motivated the choice of the ADC's architecture are preliminary discussed. It particularly comes along with design considerations of an ultra-steep direct-form FIR that is optimised in terms of size and operating speed. Thanks to compact standard VHDL language description, the architecture of the proposed system is particularly suitable for application-specific integrated circuit (ASIC) implementation-oriented low-power and low-cost power meter applications. Field programmable gate array (FPGA) prototyping and experimental results validate the adjustable sampling frequency concept. They also show that the system can perform better in terms of implementation and power capabilities compared to dedicated IP resources.

  3. High-resolution echocardiography

    NASA Technical Reports Server (NTRS)

    Nathan, R.

    1979-01-01

    High resolution computer aided ultrasound system provides two-and three-dimensional images of beating heart from many angles. System provides means for determining whether small blood vessels around the heart are blocked or if heart wall is moving normally without interference of dead and noncontracting muscle tissue.

  4. MR elastography to measure the effects of cancer and pathology fixation on prostate biomechanics, and comparison with T 1, T 2 and ADC

    NASA Astrophysics Data System (ADS)

    McGrath, Deirdre M.; Lee, Jenny; Foltz, Warren D.; Samavati, Navid; van der Kwast, Theo; Jewett, Michael A. S.; Chung, Peter; Ménard, Cynthia; Brock, Kristy K.

    2017-02-01

    MRI is under evaluation for image-guided intervention for prostate cancer. The sensitivity and specificity of MRI parameters is determined via correlation with the gold-standard of histopathology. Whole-mount histopathology of prostatectomy specimens can be digitally registered to in vivo imaging for correlation. When biomechanical-based deformable registration is employed to account for deformation during histopathology processing, the ex vivo biomechanical properties are required. However, these properties are altered by pathology fixation, and vary with disease. Hence, this study employs magnetic resonance elastography (MRE) to measure ex vivo prostate biomechanical properties before and after fixation. A quasi-static MRE method was employed to measure high resolution maps of Young’s modulus (E) before and after fixation of canine prostate and prostatectomy specimens (n  =  4) from prostate cancer patients who had previously received radiation therapy. For comparison, T 1, T 2 and apparent diffusion coefficient (ADC) were measured in parallel. E (kPa) varied across clinical anatomy and for histopathology-identified tumor: peripheral zone: 99(±22), central gland: 48(±37), tumor: 85(±53), and increased consistently with fixation (factor of 11  ±  5 p  <  0.02). T 2 decreased consistently with fixation, while changes in T 1 and ADC were more complex and inconsistent. The biomechanics of the clinical prostate specimens varied greatly with fixation, and to a lesser extent with disease and anatomy. The data obtained will improve the precision of prostate pathology correlation, leading to more accurate disease detection and targeting.

  5. High-resolution land cover classification using low resolution global data

    NASA Astrophysics Data System (ADS)

    Carlotto, Mark J.

    2013-05-01

    A fusion approach is described that combines texture features from high-resolution panchromatic imagery with land cover statistics derived from co-registered low-resolution global databases to obtain high-resolution land cover maps. The method does not require training data or any human intervention. We use an MxN Gabor filter bank consisting of M=16 oriented bandpass filters (0-180°) at N resolutions (3-24 meters/pixel). The size range of these spatial filters is consistent with the typical scale of manmade objects and patterns of cultural activity in imagery. Clustering reduces the complexity of the data by combining pixels that have similar texture into clusters (regions). Texture classification assigns a vector of class likelihoods to each cluster based on its textural properties. Classification is unsupervised and accomplished using a bank of texture anomaly detectors. Class likelihoods are modulated by land cover statistics derived from lower resolution global data over the scene. Preliminary results from a number of Quickbird scenes show our approach is able to classify general land cover features such as roads, built up area, forests, open areas, and bodies of water over a wide range of scenes.

  6. Whole-animal imaging with high spatio-temporal resolution

    NASA Astrophysics Data System (ADS)

    Chhetri, Raghav; Amat, Fernando; Wan, Yinan; Höckendorf, Burkhard; Lemon, William C.; Keller, Philipp J.

    2016-03-01

    We developed isotropic multiview (IsoView) light-sheet microscopy in order to image fast cellular dynamics, such as cell movements in an entire developing embryo or neuronal activity throughput an entire brain or nervous system, with high resolution in all dimensions, high imaging speeds, good physical coverage and low photo-damage. To achieve high temporal resolution and high spatial resolution at the same time, IsoView microscopy rapidly images large specimens via simultaneous light-sheet illumination and fluorescence detection along four orthogonal directions. In a post-processing step, these four views are then combined by means of high-throughput multiview deconvolution to yield images with a system resolution of ≤ 450 nm in all three dimensions. Using IsoView microscopy, we performed whole-animal functional imaging of Drosophila embryos and larvae at a spatial resolution of 1.1-2.5 μm and at a temporal resolution of 2 Hz for up to 9 hours. We also performed whole-brain functional imaging in larval zebrafish and multicolor imaging of fast cellular dynamics across entire, gastrulating Drosophila embryos with isotropic, sub-cellular resolution. Compared with conventional (spatially anisotropic) light-sheet microscopy, IsoView microscopy improves spatial resolution at least sevenfold and decreases resolution anisotropy at least threefold. Compared with existing high-resolution light-sheet techniques, such as lattice lightsheet microscopy or diSPIM, IsoView microscopy effectively doubles the penetration depth and provides subsecond temporal resolution for specimens 400-fold larger than could previously be imaged.

  7. Structural studies on the decameric S. typhimurium arginine decarboxylase (ADC): Pyridoxal 5'-phosphate binding induces conformational changes.

    PubMed

    Deka, G; Bharath, S R; Savithri, H S; Murthy, M R N

    2017-09-02

    Enteric pathogens such as Salmonella typhimurium colonize the human gut in spite of the lethal acidic pH environment (pH < 2.5) due to the activation of inducible acid tolerance response (ATR) systems. The pyridoxal 5'-phosphate (PLP)-dependent enzyme, biodegradative arginine decarboxylase (ADC, encoded by AdiA), is a component of an ATR system. The enzyme consumes a cytoplasmic proton in the process of arginine degradation to agmatine. Arginine-agmatine antiporter (AdiC) exchanges the product agmatine for arginine. In this manuscript, we describe the structure of Salmonella typhimurium ADC (StADC). The decameric structure assembled from five dimers related by a non crystallographic 5-fold symmetry represents the first apo-form of the enzyme. The structure suggests that PLP-binding is not a prerequisite for oligomerization. Comparison with E. coli ADC reveals that PLP-binding is accompanied by the movement and ordering of two loops (residues 150-159 and 191-197) and a few active site residues such as His256 and Lys257. A number of residues important for substrate binding are disordered in the apo-StADC structure indicating that PLP binding is important for substrate binding. Unlike the interactions between 5-fold related protomers, interactions that stabilize the dimeric structure are not pH dependent. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Comparison and reproducibility of ADC measurements in breathhold, respiratory triggered, and free-breathing diffusion-weighted MR imaging of the liver.

    PubMed

    Kwee, Thomas C; Takahara, Taro; Koh, Dow-Mu; Nievelstein, Rutger A J; Luijten, Peter R

    2008-11-01

    To compare and determine the reproducibility of apparent diffusion coefficient (ADC) measurements of the normal liver parenchyma in breathhold, respiratory triggered, and free-breathing diffusion-weighted magnetic resonance imaging (DWI). Eleven healthy volunteers underwent three series of DWI. Each DWI series consisted of one breathhold, one respiratory triggered, and two free-breathing (thick and thin slice acquisition) scans of the liver, at b-values of 0 and 500 s/mm2. ADCs of the liver parenchyma were compared by using nonparametric tests. Reproducibility was assessed by the Bland-Altman method. Mean ADCs (in 10(-3) mm2/sec) in respiratory triggered DWI (2.07-2.27) were significantly higher than mean ADCs in breathhold DWI (1.57-1.62), thick slice free-breathing DWI (1.62-1.65), and thin slice free-breathing DWI (1.57-1.66) (P<0.005). Ranges of mean difference in ADC measurement+/-limits of agreement between two scans were -0.02-0.05+/-0.16-0.24 in breathhold DWI, -0.14-0.20+/-0.59-0.60 in respiratory triggered DWI, -0.03-0.03+/-0.20-0.29 in thick slice free-breathing DWI, and -0.01-0.09+/-0.21-0.29 in thin slice free-breathing DWI. ADC measurements of the normal liver parenchyma in respiratory triggered DWI are significantly higher and less reproducible than in breathhold and free-breathing DWI. Copyright (c) 2008 Wiley-Liss, Inc.

  9. High Spatial Resolution Thermal Satellite Technologies

    NASA Technical Reports Server (NTRS)

    Ryan, Robert

    2003-01-01

    This document in the form of viewslides, reviews various low-cost alternatives to high spatial resolution thermal satellite technologies. There exists no follow-on to Landsat 7 or ASTER high spatial resolution thermal systems. This document reviews the results of the investigation in to the use of new technologies to create a low-cost useful alternative. Three suggested technologies are examined. 1. Conventional microbolometer pushbroom modes offers potential for low cost Landsat Data Continuity Mission (LDCM) thermal or ASTER capability with at least 60-120 ground sampling distance (GSD). 2. Backscanning could produce MultiSpectral Thermal Imager performance without cooled detectors. 3. Cooled detector could produce hyperspectral thermal class system or extremely high spatial resolution class instrument.

  10. A Bidirectional Neural Interface IC with Chopper Stabilized BioADC Array and Charge Balanced Stimulator

    PubMed Central

    Greenwald, Elliot; So, Ernest; Wang, Qihong; Mollazadeh, Mohsen; Maier, Christoph; Etienne-Cummings, Ralph; Cauwenberghs, Gert; Thakor, Nitish

    2016-01-01

    We present a bidirectional neural interface with a 4-channel biopotential analog-to-digital converter (bioADC) and a 4-channel current-mode stimulator in 180nm CMOS. The bioADC directly transduces microvolt biopotentials into a digital representation without a voltage-amplification stage. Each bioADC channel comprises a continuous-time first-order ΔΣ modulator with a chopper-stabilized OTA input and current feedback, followed by a second-order comb-filter decimator with programmable oversampling ratio. Each stimulator channel contains two independent digital-to-analog converters for anodic and cathodic current generation. A shared calibration circuit matches the amplitude of the anodic and cathodic currents for charge balancing. Powered from a 1.5V supply, the analog and digital circuits in each recording channel draw on average 1.54 μA and 2.13 μA of supply current, respectively. The bioADCs achieve an SNR of 58 dB and a SFDR of >70 dB, for better than 9-b ENOB. Intracranial EEG recordings from an anesthetized rat are shown and compared to simultaneous recordings from a commercial reference system to validate performance in-vivo. Additionally, we demonstrate bidirectional operation by recording cardiac modulation induced through vagus nerve stimulation, and closed-loop control of cardiac rhythm. The micropower operation, direct digital readout, and integration of electrical stimulation circuits make this interface ideally suited for closed-loop neuromodulation applications. PMID:27845676

  11. A 10 GS/s time-interleaved ADC in 0.25 micrometer CMOS technology

    NASA Astrophysics Data System (ADS)

    Aytar, Oktay; Tangel, Ali; Afacan, Engin

    2017-11-01

    This paper presents design and simulation of a 4-bit 10 GS/s time interleaved ADC in 0.25 micrometer CMOS technology. The designed TI-ADC has 4 channels including 4-bit flash ADC in each channel, in which area and power efficiency are targeted. Therefore, basic standard cell logic gates are preferred. Meanwhile, the aspect ratios in the gate designs are kept as small as possible considering the speed performance. In the literature, design details of the timing control circuits have not been provided, whereas the proposed timing control process is comprehensively explained and design details of the proposed timing control process are clearly presented in this study. The proposed circuits producing consecutive pulses for timing control of the input S/H switches (ie the analog demultiplexer front-end circuitry) and the very fast digital multiplexer unit at the output are the main contributions of this study. The simulation results include +0.26/-0.22 LSB of DNL and +0.01/-0.44 LSB of INL, layout area of 0.27 mm2, and power consumption of 270 mW. The provided power consumption, DNL and INL measures are observed at 100 MHz input with 10 GS/s sampling rate.

  12. A PFM-based MWIR DROIC employing off-pixel fine conversion of photocharge to digital using integrated column ADCs

    NASA Astrophysics Data System (ADS)

    Abbasi, S.; Galioglu, A.; Shafique, A.; Ceylan, O.; Yazici, M.; Gurbuz, Y.

    2017-02-01

    A 32x32 prototype of a digital readout IC (DROIC) for medium-wave infrared focal plane arrays (MWIR IR-FPAs) is presented. The DROIC employs in-pixel photocurrent to digital conversion based on a pulse frequency modulation (PFM) loop and boasts a novel feature of off-pixel residue conversion using 10-bit column SAR ADCs. The remaining charge at the end of integration in typical PFM based digital pixel sensors is usually wasted. Previous works employing in-pixel extended counting methods make use of extra memory and counters to convert this left-over charge to digital, thereby performing fine conversion of the incident photocurrent. This results in a low quantization noise and hence keeps the readout noise low. However, focal plane arrays (FPAs) with small pixel pitch are constrained in pixel area, which makes it difficult to benefit from in-pixel extended counting circuitry. Thus, in this work, a novel approach to measure the residue outside the pixel using column -parallel SAR ADCs has been proposed. Moreover, a modified version of the conventional PFM based pixel has been designed to help hold the residue charge and buffer it to the column ADC. In addition to the 2D array of pixels, the prototype consists of 32 SAR ADCs, a timing controller block and a memory block to buffer the residue data coming out of the ADCs. The prototype has been designed and fabricated in 90nm CMOS.

  13. Ultra-high resolution coded wavefront sensor.

    PubMed

    Wang, Congli; Dun, Xiong; Fu, Qiang; Heidrich, Wolfgang

    2017-06-12

    Wavefront sensors and more general phase retrieval methods have recently attracted a lot of attention in a host of application domains, ranging from astronomy to scientific imaging and microscopy. In this paper, we introduce a new class of sensor, the Coded Wavefront Sensor, which provides high spatio-temporal resolution using a simple masked sensor under white light illumination. Specifically, we demonstrate megapixel spatial resolution and phase accuracy better than 0.1 wavelengths at reconstruction rates of 50 Hz or more, thus opening up many new applications from high-resolution adaptive optics to real-time phase retrieval in microscopy.

  14. The value of whole lesion ADC histogram profiling to differentiate between morphologically indistinguishable ring enhancing lesions-comparison of glioblastomas and brain abscesses.

    PubMed

    Horvath-Rizea, Diana; Surov, Alexey; Hoffmann, Karl-Titus; Garnov, Nikita; Vörkel, Cathrin; Kohlhof-Meinecke, Patricia; Ganslandt, Oliver; Bäzner, Hansjörg; Gihr, Georg Alexander; Kalman, Marcell; Henkes, Elina; Henkes, Hans; Schob, Stefan

    2018-04-06

    Morphologically similar appearing ring enhancing lesions in the brain parenchyma can be caused by a number of distinct pathologies, however, they consistently represent life-threatening conditions. The two most frequently encountered diseases manifesting as such are glioblastoma multiforme (GBM) and brain abscess (BA), each requiring disparate therapeutical approaches. As a result of their morphological resemblance, essential treatment might be significantly delayed or even ommited, in case results of conventional imaging remain inconclusive. Therefore, our study aimed to investigate, whether ADC histogram profiling reliably can distinguish between both entities, thus enhancing the differential diagnostic process and preventing treatment failure in this highly critical context. 103 patients (51 BA, 52 GBM) with histopathologically confirmed diagnosis were enrolled. Pretreatment diffusion weighted imaging (DWI) was obtained in a 1.5T system using b values of 0, 500, and 1000 s/mm 2 . Whole lesion ADC volumes were analyzed using a histogram-based approach. Statistical analysis was performed using SPSS version 23. All investigated parameters were statistically different in comparison of both groups. Most importantly, ADCp10 was able to differentiate reliably between BA and GBM with excellent accuracy (0.948) using a cutpoint value of 70 × 10 -5 mm 2 × s -1 . ADC whole lesion histogram profiling provides a valuable tool to differentiate between morphologically indistinguishable mass lesions. Among the investigated parameters, the 10th percentile of the ADC volume distinguished best between GBM and BA.

  15. The value of whole lesion ADC histogram profiling to differentiate between morphologically indistinguishable ring enhancing lesions–comparison of glioblastomas and brain abscesses

    PubMed Central

    Hoffmann, Karl-Titus; Garnov, Nikita; Vörkel, Cathrin; Kohlhof-Meinecke, Patricia; Ganslandt, Oliver; Bäzner, Hansjörg; Gihr, Georg Alexander; Kalman, Marcell; Henkes, Elina; Henkes, Hans; Schob, Stefan

    2018-01-01

    Background Morphologically similar appearing ring enhancing lesions in the brain parenchyma can be caused by a number of distinct pathologies, however, they consistently represent life-threatening conditions. The two most frequently encountered diseases manifesting as such are glioblastoma multiforme (GBM) and brain abscess (BA), each requiring disparate therapeutical approaches. As a result of their morphological resemblance, essential treatment might be significantly delayed or even ommited, in case results of conventional imaging remain inconclusive. Therefore, our study aimed to investigate, whether ADC histogram profiling reliably can distinguish between both entities, thus enhancing the differential diagnostic process and preventing treatment failure in this highly critical context. Methods 103 patients (51 BA, 52 GBM) with histopathologically confirmed diagnosis were enrolled. Pretreatment diffusion weighted imaging (DWI) was obtained in a 1.5T system using b values of 0, 500, and 1000 s/mm2. Whole lesion ADC volumes were analyzed using a histogram-based approach. Statistical analysis was performed using SPSS version 23. Results All investigated parameters were statistically different in comparison of both groups. Most importantly, ADCp10 was able to differentiate reliably between BA and GBM with excellent accuracy (0.948) using a cutpoint value of 70 × 10−5 mm2 × s−1. Conclusions ADC whole lesion histogram profiling provides a valuable tool to differentiate between morphologically indistinguishable mass lesions. Among the investigated parameters, the 10th percentile of the ADC volume distinguished best between GBM and BA. PMID:29719596

  16. Enhanced High Resolution RBS System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pollock, Thomas J.; Hass, James A.; Klody, George M.

    2011-06-01

    Improvements in full spectrum resolution with the second NEC high resolution RBS system are summarized. Results for 50 A ring TiN/HfO films on Si yielding energy resolution on the order of 1 keV are also presented. Detector enhancements include improved pulse processing electronics, upgraded shielding for the MCP/RAE detector, and reduced noise generated from pumping. Energy resolution measurements on spectra front edge coupled with calculations using 0.4mStr solid angle show that beam energy spread at 400 KeV from the Pelletron registered accelerator is less than 100 eV. To improve user throughput, magnet control has been added to the automatic datamore » collection. Depth profiles derived from experimental data are discussed. For the thin films profiled, depth resolutions were on the Angstrom level with the non-linear energy/channel conversions ranging from 100 to 200 eV.« less

  17. A design method for high performance seismic data acquisition based on oversampling delta-sigma modulation

    NASA Astrophysics Data System (ADS)

    Gao, Shanghua; Xue, Bing

    2017-04-01

    The dynamic range of the currently most widely used 24-bit seismic data acquisition devices is 10-20 dB lower than that of broadband seismometers, and this can affect the completeness of seismic waveform recordings under certain conditions. However, this problem is not easy to solve because of the lack of analog to digital converter (ADC) chips with more than 24 bits in the market. So the key difficulties for higher-resolution data acquisition devices lie in achieving more than 24-bit ADC circuit. In the paper, we propose a method in which an adder, an integrator, a digital to analog converter chip, a field-programmable gate array, and an existing low-resolution ADC chip are used to build a third-order 16-bit oversampling delta-sigma modulator. This modulator is equipped with a digital decimation filter, thus forming a complete analog to digital converting circuit. Experimental results show that, within the 0.1-40 Hz frequency range, the circuit board's dynamic range reaches 158.2 dB, its resolution reaches 25.99 dB, and its linearity error is below 2.5 ppm, which is better than what is achieved by the commercial 24-bit ADC chips ADS1281 and CS5371. This demonstrates that the proposed method may alleviate or even solve the amplitude-limitation problem that broadband observation systems so commonly have to face during strong earthquakes.

  18. The Flash ADC system and PMT waveform reconstruction for the Daya Bay experiment

    NASA Astrophysics Data System (ADS)

    Huang, Yongbo; Chang, Jinfan; Cheng, Yaping; Chen, Zhang; Hu, Jun; Ji, Xiaolu; Li, Fei; Li, Jin; Li, Qiuju; Qian, Xin; Jetter, Soeren; Wang, Wei; Wang, Zheng; Xu, Yu; Yu, Zeyuan

    2018-07-01

    To better understand the energy response of the Antineutrino Detector (AD), the Daya Bay Reactor Neutrino Experiment installed a full Flash ADC readout system on one AD that allowed for simultaneous data taking with the current readout system. This paper presents the design, data acquisition, and simulation of the Flash ADC system, and focuses on the PMT waveform reconstruction algorithms. For liquid scintillator calorimetry, the most critical requirement to waveform reconstruction is linearity. Several common reconstruction methods were tested but the linearity performance was not satisfactory. A new method based on the deconvolution technique was developed with 1% residual non-linearity, which fulfills the requirement. The performance was validated with both data and Monte Carlo (MC) simulations, and 1% consistency between them has been achieved.

  19. High resolution data acquisition

    DOEpatents

    Thornton, G.W.; Fuller, K.R.

    1993-04-06

    A high resolution event interval timing system measures short time intervals such as occur in high energy physics or laser ranging. Timing is provided from a clock, pulse train, and analog circuitry for generating a triangular wave synchronously with the pulse train (as seen in diagram on patent). The triangular wave has an amplitude and slope functionally related to the time elapsed during each clock pulse in the train. A converter forms a first digital value of the amplitude and slope of the triangle wave at the start of the event interval and a second digital value of the amplitude and slope of the triangle wave at the end of the event interval. A counter counts the clock pulse train during the interval to form a gross event interval time. A computer then combines the gross event interval time and the first and second digital values to output a high resolution value for the event interval.

  20. High resolution data acquisition

    DOEpatents

    Thornton, Glenn W.; Fuller, Kenneth R.

    1993-01-01

    A high resolution event interval timing system measures short time intervals such as occur in high energy physics or laser ranging. Timing is provided from a clock (38) pulse train (37) and analog circuitry (44) for generating a triangular wave (46) synchronously with the pulse train (37). The triangular wave (46) has an amplitude and slope functionally related to the time elapsed during each clock pulse in the train. A converter (18, 32) forms a first digital value of the amplitude and slope of the triangle wave at the start of the event interval and a second digital value of the amplitude and slope of the triangle wave at the end of the event interval. A counter (26) counts the clock pulse train (37) during the interval to form a gross event interval time. A computer (52) then combines the gross event interval time and the first and second digital values to output a high resolution value for the event interval.

  1. Design and characterization of a 12-bit 10MS/s 10mW pipelined SAR ADC for CZT-based hard X-ray imager

    NASA Astrophysics Data System (ADS)

    Xue, F.; Gao, W.; Duan, Y.; Zheng, R.; Hu, Y.

    2018-02-01

    This paper presents a 12-bit pipelined successive approximation register (SAR) ADC for CZT-based hard X-ray Imager. The proposed ADC is comprised of a first-stage 6-bit SAR-based Multiplying Digital Analog Converter (MDAC) and a second-stage 8-bit SAR ADC. A novel MDAC architecture using Vcm-based Switching method is employed to maximize the energy efficiency and improve the linearity of the ADC. Moreover, the unit-capacitor array instead of the binary-weighted capacitor array is adopted to improve the conversion speed and linearity of the ADC in the first-stage MDAC. In addition, a new layout design method for the binary-weighted capacitor array is proposed to reduce the capacitor mismatches and make the routing become easier and less-time-consuming. Finally, several radiation-hardened-by-design technologies are adopted in the layout design against space radiation effects. The prototype chip was fabricated in 0.18 μm mixed-signal 1.8V/3.3V process and operated at 1.8 V supply. The chip occupies a core area of only 0.58 mm2. The proposed pipelined SAR ADC achieves a peak signal-to-noise-and-distortion ratio (SNDR) of 66.7 dB and a peak spurious-free dynamic range (SFDR) of 78.6 dB at 10 MS/s sampling rate and consumes 10 mW. The figure of merit (FOM) of the proposed ADC is 0.56 pJ/conversion-step.

  2. Molecular Basis of Valine-Citrulline-PABC Linker Instability in Site-Specific ADCs and Its Mitigation by Linker Design.

    PubMed

    Dorywalska, Magdalena; Dushin, Russell; Moine, Ludivine; Farias, Santiago E; Zhou, Dahui; Navaratnam, Thayalan; Lui, Victor; Hasa-Moreno, Adela; Casas, Meritxell Galindo; Tran, Thomas-Toan; Delaria, Kathy; Liu, Shu-Hui; Foletti, Davide; O'Donnell, Christopher J; Pons, Jaume; Shelton, David L; Rajpal, Arvind; Strop, Pavel

    2016-05-01

    The degree of stability of antibody-drug linkers in systemic circulation, and the rate of their intracellular processing within target cancer cells are among the key factors determining the efficacy of antibody-drug conjugates (ADC) in vivo Previous studies demonstrated the susceptibility of cleavable linkers, as well as auristatin-based payloads, to enzymatic cleavage in rodent plasma. Here, we identify Carboxylesterase 1C as the enzyme responsible for the extracellular hydrolysis of valine-citrulline-p-aminocarbamate (VC-PABC)-based linkers in mouse plasma. We further show that the activity of Carboxylesterase 1C towards VC-PABC-based linkers, and consequently the stability of ADCs in mouse plasma, can be effectively modulated by small chemical modifications to the linker. While the introduced modifications can protect the VC-PABC-based linkers from extracellular cleavage, they do not significantly alter the intracellular linker processing by the lysosomal protease Cathepsin B. The distinct substrate preference of the serum Carboxylesterase 1C offers the opportunity to modulate the extracellular stability of cleavable ADCs without diminishing the intracellular payload release required for ADC efficacy. Mol Cancer Ther; 15(5); 958-70. ©2016 AACR. ©2016 American Association for Cancer Research.

  3. High resolution surface plasmon microscopy for cell imaging

    NASA Astrophysics Data System (ADS)

    Argoul, F.; Monier, K.; Roland, T.; Elezgaray, J.; Berguiga, L.

    2010-04-01

    We introduce a new non-labeling high resolution microscopy method for cellular imaging. This method called SSPM (Scanning Surface Plasmon Microscopy) pushes down the resolution limit of surface plasmon resonance imaging (SPRi) to sub-micronic scales. High resolution SPRi is obtained by the surface plasmon lauching with a high numerical aperture objective lens. The advantages of SPPM compared to other high resolution SPRi's rely on three aspects; (i) the interferometric detection of the back reflected light after plasmon excitation, (ii) the twodimensional scanning of the sample for image reconstruction, (iii) the radial polarization of light, enhancing both resolution and sensitivity. This microscope can afford a lateral resolution of - 150 nm in liquid environment and - 200 nm in air. We present in this paper images of IMR90 fibroblasts obtained with SSPM in dried environment. Internal compartments such as nucleus, nucleolus, mitochondria, cellular and nuclear membrane can be recognized without labelling. We propose an interpretation of the ability of SSPM to reveal high index contrast zones by a local decomposition of the V (Z) function describing the response of the SSPM.

  4. High speed analog-to-digital conversion with silicon photonics

    NASA Astrophysics Data System (ADS)

    Holzwarth, C. W.; Amatya, R.; Araghchini, M.; Birge, J.; Byun, H.; Chen, J.; Dahlem, M.; DiLello, N. A.; Gan, F.; Hoyt, J. L.; Ippen, E. P.; Kärtner, F. X.; Khilo, A.; Kim, J.; Kim, M.; Motamedi, A.; Orcutt, J. S.; Park, M.; Perrott, M.; Popovic, M. A.; Ram, R. J.; Smith, H. I.; Zhou, G. R.; Spector, S. J.; Lyszczarz, T. M.; Geis, M. W.; Lennon, D. M.; Yoon, J. U.; Grein, M. E.; Schulein, R. T.; Frolov, S.; Hanjani, A.; Shmulovich, J.

    2009-02-01

    Sampling rates of high-performance electronic analog-to-digital converters (ADC) are fundamentally limited by the timing jitter of the electronic clock. This limit is overcome in photonic ADC's by taking advantage of the ultra-low timing jitter of femtosecond lasers. We have developed designs and strategies for a photonic ADC that is capable of 40 GSa/s at a resolution of 8 bits. This system requires a femtosecond laser with a repetition rate of 2 GHz and timing jitter less than 20 fs. In addition to a femtosecond laser this system calls for the integration of a number of photonic components including: a broadband modulator, optical filter banks, and photodetectors. Using silicon-on-insulator (SOI) as the platform we have fabricated these individual components. The silicon optical modulator is based on a Mach-Zehnder interferometer architecture and achieves a VπL of 2 Vcm. The filter banks comprise 40 second-order microring-resonator filters with a channel spacing of 80 GHz. For the photodetectors we are exploring ion-bombarded silicon waveguide detectors and germanium films epitaxially grown on silicon utilizing a process that minimizes the defect density.

  5. Whole-tumor apparent diffusion coefficient (ADC) histogram analysis to differentiate benign peripheral neurogenic tumors from soft tissue sarcomas.

    PubMed

    Nakajo, Masanori; Fukukura, Yoshihiko; Hakamada, Hiroto; Yoneyama, Tomohide; Kamimura, Kiyohisa; Nagano, Satoshi; Nakajo, Masayuki; Yoshiura, Takashi

    2018-02-22

    Apparent diffusion coefficient (ADC) histogram analyses have been used to differentiate tumor grades and predict therapeutic responses in various anatomic sites with moderate success. To determine the ability of diffusion-weighted imaging (DWI) with a whole-tumor ADC histogram analysis to differentiate benign peripheral neurogenic tumors (BPNTs) from soft tissue sarcomas (STSs). Retrospective study, single institution. In all, 25 BPNTs and 31 STSs. Two-b value DWI (b-values = 0, 1000s/mm 2 ) was at 3.0T. The histogram parameters of whole-tumor for ADC were calculated by two radiologists and compared between BPNTs and STSs. Nonparametric tests were performed for comparisons between BPNTs and STSs. P < 0.05 was considered statistically significant. The ability of each parameter to differentiate STSs from BPNTs was evaluated using area under the curve (AUC) values derived from a receiver operating characteristic curve analysis. The mean ADC and all percentile parameters were significantly lower in STSs than in BPNTs (P < 0.001-0.009), with AUCs of 0.703-0.773. However, the coefficient of variation (P = 0.020 and AUC = 0.682) and skewness (P = 0.012 and AUC = 0.697) were significantly higher in STSs than in BPNTs. Kurtosis (P = 0.295) and entropy (P = 0.604) did not differ significantly between BPNTs and STSs. Whole-tumor ADC histogram parameters except kurtosis and entropy differed significantly between BPNTs and STSs. 3 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018. © 2018 International Society for Magnetic Resonance in Medicine.

  6. Using High Spatial Resolution Digital Imagery

    DTIC Science & Technology

    2005-02-01

    digital base maps were high resolution U.S. Geological Survey (USGS) Digital Orthophoto Quarter Quadrangles (DOQQ). The Root Mean Square Errors (RMSE...next step was to assign real world coordinates to the linear im- age. The mosaics were geometrically registered to the panchromatic orthophotos ...useable thematic map from high-resolution imagery. A more practical approach may be to divide the Refuge into a set of smaller areas, or tiles

  7. Liver diffusion-weighted MR imaging: reproducibility comparison of ADC measurements obtained with multiple breath-hold, free-breathing, respiratory-triggered, and navigator-triggered techniques.

    PubMed

    Chen, Xin; Qin, Lei; Pan, Dan; Huang, Yanqi; Yan, Lifen; Wang, Guangyi; Liu, Yubao; Liang, Changhong; Liu, Zaiyi

    2014-04-01

    To prospectively compare the reproducibility of normal liver apparent diffusion coefficient (ADC) measurements by using different respiratory motion compensation techniques with multiple breath-hold (MBH), free-breathing (FB), respiratory-triggered (RT), and navigator-triggered (NT) diffusion-weighted (DW) imaging and to compare the ADCs at different liver anatomic locations. The study protocol was approved by the institutional review board, and written informed consent was obtained from each participant. Thirty-nine volunteers underwent liver DW imaging twice. Imaging was performed with a 1.5-T MR imager with MBH, FB, RT, and NT techniques (b = 0, 100, and 500 sec/mm(2)). Three representative sections--superior, central, and inferior--were selected on left and right liver lobes, respectively. On each selected section, three regions of interest were drawn, and ADCs were measured. Analysis of variance was used to assess ADCs among the four techniques and various anatomic locations. Reproducibility of ADCs was assessed with the Bland-Altman method. ADCs obtained with MBH (range: right lobe, [1.641-1.662] × 10(-3)mm(2)/sec; left lobe, [2.034-2.054] ×10(-3)mm(2)/sec) were higher than those obtained with FB (right, [1.349-1.391] ×10(-3)mm(2)/sec; left, [1.630-1.700] ×10(-3)mm(2)/sec), RT (right, [1.439-1.455] ×10(-3)mm(2)/sec; left, [1.720-1.755] ×10(-3)mm(2)/sec), or NT (right, [1.387-1.400] ×10(-3)mm(2)/sec; left, [1.661-1.736] ×10(-3)mm(2)/sec) techniques (P < .001); however, no significant difference was observed between ADCs obtained with FB, RT, and NT techniques (P = .130 to P >.99). ADCs showed a trend to decrease moving from left to right. Reproducibility in the left liver lobe was inferior to that in the right, and the central middle segment in the right lobe had the most reproducible ADC. Statistical differences in ADCs were observed in the left-right direction in the right lobe (P < .001), but they were not observed in the superior-inferior direction

  8. High-spatial resolution and high-spectral resolution detector for use in the measurement of solar flare hard X-rays

    NASA Technical Reports Server (NTRS)

    Desai, U. D.; Orwig, Larry E.

    1988-01-01

    In the areas of high spatial resolution, the evaluation of a hard X-ray detector with 65 micron spatial resolution for operation in the energy range from 30 to 400 keV is proposed. The basic detector is a thick large-area scintillator faceplate, composed of a matrix of high-density scintillating glass fibers, attached to a proximity type image intensifier tube with a resistive-anode digital readout system. Such a detector, combined with a coded-aperture mask, would be ideal for use as a modest-sized hard X-ray imaging instrument up to X-ray energies as high as several hundred keV. As an integral part of this study it was also proposed that several techniques be critically evaluated for X-ray image coding which could be used with this detector. In the area of high spectral resolution, it is proposed to evaluate two different types of detectors for use as X-ray spectrometers for solar flares: planar silicon detectors and high-purity germanium detectors (HPGe). Instruments utilizing these high-spatial-resolution detectors for hard X-ray imaging measurements from 30 to 400 keV and high-spectral-resolution detectors for measurements over a similar energy range would be ideally suited for making crucial solar flare observations during the upcoming maximum in the solar cycle.

  9. Pretreatment ADC histogram analysis is a predictive imaging biomarker for bevacizumab treatment but not chemotherapy in recurrent glioblastoma.

    PubMed

    Ellingson, B M; Sahebjam, S; Kim, H J; Pope, W B; Harris, R J; Woodworth, D C; Lai, A; Nghiemphu, P L; Mason, W P; Cloughesy, T F

    2014-04-01

    Pre-treatment ADC characteristics have been shown to predict response to bevacizumab in recurrent glioblastoma multiforme. However, no studies have examined whether ADC characteristics are specific to this particular treatment. The purpose of the current study was to determine whether ADC histogram analysis is a bevacizumab-specific or treatment-independent biomarker of treatment response in recurrent glioblastoma multiforme. Eighty-nine bevacizumab-treated and 43 chemotherapy-treated recurrent glioblastoma multiformes never exposed to bevacizumab were included in this study. In all patients, ADC values in contrast-enhancing ROIs from MR imaging examinations performed at the time of recurrence, immediately before commencement of treatment for recurrence, were extracted and the resulting histogram was fitted to a mixed model with a double Gaussian distribution. Mean ADC in the lower Gaussian curve was used as the primary biomarker of interest. The Cox proportional hazards model and log-rank tests were used for survival analysis. Cox multivariate regression analysis accounting for the interaction between bevacizumab- and non-bevacizumab-treated patients suggested that the ability of the lower Gaussian curve to predict survival is dependent on treatment (progression-free survival, P = .045; overall survival, P = .003). Patients with bevacizumab-treated recurrent glioblastoma multiforme with a pretreatment lower Gaussian curve > 1.2 μm(2)/ms had a significantly longer progression-free survival and overall survival compared with bevacizumab-treated patients with a lower Gaussian curve < 1.2 μm(2)/ms. No differences in progression-free survival or overall survival were observed in the chemotherapy-treated cohort. Bevacizumab-treated patients with a mean lower Gaussian curve > 1.2 μm(2)/ms had a significantly longer progression-free survival and overall survival compared with chemotherapy-treated patients. The mean lower Gaussian curve from ADC histogram analysis is a

  10. High resolution MR microscopy

    NASA Astrophysics Data System (ADS)

    Ciobanu, Luisa

    images on phantoms [11, 12] and biological samples (paramecia, algae, brain tissue, lipidic mesophases) obtained using using magnetic field gradients as large as 50 Tesla/meter (5000 G/cm) [13] and micro-coils [14]. Images have voxel resolution as high as (3.7 mum by 3.3 mum by 3.3 mum), or 41 mu m3 (41 femtoliters, containing 2.7 x 10 12 proton spins) [12], marginally the highest voxel resolution reported to date. They are also fully three dimensional, with wide fields of view.

  11. Extension of least squares spectral resolution algorithm to high-resolution lipidomics data.

    PubMed

    Zeng, Ying-Xu; Mjøs, Svein Are; David, Fabrice P A; Schmid, Adrien W

    2016-03-31

    Lipidomics, which focuses on the global study of molecular lipids in biological systems, has been driven tremendously by technical advances in mass spectrometry (MS) instrumentation, particularly high-resolution MS. This requires powerful computational tools that handle the high-throughput lipidomics data analysis. To address this issue, a novel computational tool has been developed for the analysis of high-resolution MS data, including the data pretreatment, visualization, automated identification, deconvolution and quantification of lipid species. The algorithm features the customized generation of a lipid compound library and mass spectral library, which covers the major lipid classes such as glycerolipids, glycerophospholipids and sphingolipids. Next, the algorithm performs least squares resolution of spectra and chromatograms based on the theoretical isotope distribution of molecular ions, which enables automated identification and quantification of molecular lipid species. Currently, this methodology supports analysis of both high and low resolution MS as well as liquid chromatography-MS (LC-MS) lipidomics data. The flexibility of the methodology allows it to be expanded to support more lipid classes and more data interpretation functions, making it a promising tool in lipidomic data analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. High Resolution CryoFESEM of Microbial Surfaces

    NASA Astrophysics Data System (ADS)

    Erlandsen, Stanley; Lei, Ming; Martin-Lacave, Ines; Dunny, Gary; Wells, Carol

    2003-08-01

    The outer surfaces of three microorganisms, Giardia lamblia, Enterococcus faecalis, and Proteus mirabilis, were investigated by cryo-immobilization followed by sublimation of extracellular ice and cryocoating with either Pt alone or Pt plus carbon. Cryocoated samples were examined at [minus sign]125°C in either an in-lens field emission SEM or a below-the-lens field emission SEM. Cryocoating with Pt alone was sufficient for low magnification observation, but attempts to do high-resolution imaging resulted in radiolysis and cracking of the specimen surface. Double coating with Pt and carbon, in combination with high resolution backscatter electron detectors, enabled high-resolution imaging of the glycocalyx of bacteria, revealing a sponge-like network over the surface. High resolution examination of bacterial flagella also revealed a periodic substructure. Common artifacts included radiolysis leading to “cracking” of the surface, and insufficient deposition of Pt resulting in the absence of detectable surface topography.

  13. Development of multichannel analyzer using sound card ADC for nuclear spectroscopy system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ibrahim, Maslina Mohd; Yussup, Nolida; Lombigit, Lojius

    This paper describes the development of Multi-Channel Analyzer (MCA) using sound card analogue to digital converter (ADC) for nuclear spectroscopy system. The system was divided into a hardware module and a software module. Hardware module consist of detector NaI (Tl) 2” by 2”, Pulse Shaping Amplifier (PSA) and a build in ADC chip from readily available in any computers’ sound system. The software module is divided into two parts which are a pre-processing of raw digital input and the development of the MCA software. Band-pass filter and baseline stabilization and correction were implemented for the pre-processing. For the MCA development,more » the pulse height analysis method was used to process the signal before displaying it using histogram technique. The development and tested result for using the sound card as an MCA are discussed.« less

  14. Communication Impairment in the AIDS Dementia Complex (ADC): A Case Report

    ERIC Educational Resources Information Center

    McCabe, Patricia J.; Sheard, Christine; Code, Chris

    2008-01-01

    This article details three examinations of communication impairment over 13 months in a man with AIDS dementia complex (ADC) and compares his performance on standardised language testing with that of two control participants. He had mild language impairments as measured on standardised tests but was severely impaired in pragmatic language skills.…

  15. High-resolution regional climate model evaluation using variable-resolution CESM over California

    NASA Astrophysics Data System (ADS)

    Huang, X.; Rhoades, A.; Ullrich, P. A.; Zarzycki, C. M.

    2015-12-01

    Understanding the effect of climate change at regional scales remains a topic of intensive research. Though computational constraints remain a problem, high horizontal resolution is needed to represent topographic forcing, which is a significant driver of local climate variability. Although regional climate models (RCMs) have traditionally been used at these scales, variable-resolution global climate models (VRGCMs) have recently arisen as an alternative for studying regional weather and climate allowing two-way interaction between these domains without the need for nudging. In this study, the recently developed variable-resolution option within the Community Earth System Model (CESM) is assessed for long-term regional climate modeling over California. Our variable-resolution simulations will focus on relatively high resolutions for climate assessment, namely 28km and 14km regional resolution, which are much more typical for dynamically downscaled studies. For comparison with the more widely used RCM method, the Weather Research and Forecasting (WRF) model will be used for simulations at 27km and 9km. All simulations use the AMIP (Atmospheric Model Intercomparison Project) protocols. The time period is from 1979-01-01 to 2005-12-31 (UTC), and year 1979 was discarded as spin up time. The mean climatology across California's diverse climate zones, including temperature and precipitation, is analyzed and contrasted with the Weather Research and Forcasting (WRF) model (as a traditional RCM), regional reanalysis, gridded observational datasets and uniform high-resolution CESM at 0.25 degree with the finite volume (FV) dynamical core. The results show that variable-resolution CESM is competitive in representing regional climatology on both annual and seasonal time scales. This assessment adds value to the use of VRGCMs for projecting climate change over the coming century and improve our understanding of both past and future regional climate related to fine

  16. High-Resolution Data for a Low-Resolution World

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brady, Brendan Williams

    2016-05-10

    In the past 15 years, the upper section of Cañon de Valle has been severely altered by wildfires and subsequent runoff events. Loss of root structures on high-angle slopes results in debris flow and sediment accumulation in the narrow canyon bottom. The original intent of the study described here was to better understand the changes occurring in watershed soil elevations over the course of several post-fire years. An elevation dataset from 5 years post-Cerro Grande fire was compared to high-resolution LiDAR data from 14 years post-Cerro Grande fire (also 3 years post-Las Conchas fire). The following analysis was motivated bymore » a problematic comparison of these datasets of unlike resolution, and therefore focuses on what the data reveals of itself. The objective of this study is to highlight the effects vegetation can have on remote sensing data that intends to read ground surface elevation.« less

  17. Rapid high resolution T1 mapping as a marker of brain development: Normative ranges in key regions of interest.

    PubMed

    Eminian, Sylvain; Hajdu, Steven David; Meuli, Reto Antoine; Maeder, Philippe; Hagmann, Patric

    2018-01-01

    We studied in a clinical setting the age dependent T1 relaxation time as a marker of normal late brain maturation and compared it to conventional techniques, namely the apparent diffusion coefficient (ADC). Forty-two healthy subjects ranging from ages 1 year to 20 years were included in our study. T1 brain maps in which the intensity of each pixel corresponded to T1 relaxation times were generated based on MR imaging data acquired using a MP2RAGE sequence. During the same session, diffusion tensor imaging data was collected. T1 relaxation times and ADC in white matter and grey matter were measured in seven clinically relevant regions of interest and were correlated to subjects' age. In the basal ganglia, there was a small, yet significant, decrease in T1 relaxation time (-0.45 ≤R≤-0.59, p<10-2) and ADC (-0.60≤R≤-0.65, p<10-4) as a function of age. In the frontal and parietal white matter, there was a significant decrease in T1 relaxation time (-0.62≤R≤-0.68, p<10-4) and ADC (-0.81≤R≤-0.85, p<10-4) as a function of age. T1 relaxation time changes in the corpus callosum and internal capsule were less relevant for this age range. There was no significant difference between the correlation of T1 relaxation time and ADC with respect to age (p-value = 0.39). The correlation between T1 relaxation and ADC is strong in the white matter but only moderate in basal ganglia over this age period. T1 relaxation time is a marker of brain maturation or myelination during late brain development. Between the age of 1 and 20 years, T1 relaxation time decreases as a function of age in the white matter and basal ganglia. The greatest changes occur in frontal and parietal white matter. These regions are known to mature in the final stage of development and are mainly composed of association circuits. Age-correlation is not significantly different between T1 relaxation time and ADC. Therefore, T1 relaxation time does not appear to be a superior marker of brain maturation

  18. High-resolution electron microscope

    NASA Technical Reports Server (NTRS)

    Nathan, R.

    1977-01-01

    Employing scanning transmission electron microscope as interferometer, relative phases of diffraction maximums can be determined by analysis of dark field images. Synthetic aperture technique and Fourier-transform computer processing of amplitude and phase information provide high resolution images at approximately one angstrom.

  19. High angular resolution at LBT

    NASA Astrophysics Data System (ADS)

    Conrad, A.; Arcidiacono, C.; Bertero, M.; Boccacci, P.; Davies, A. G.; Defrere, D.; de Kleer, K.; De Pater, I.; Hinz, P.; Hofmann, K. H.; La Camera, A.; Leisenring, J.; Kürster, M.; Rathbun, J. A.; Schertl, D.; Skemer, A.; Skrutskie, M.; Spencer, J. R.; Veillet, C.; Weigelt, G.; Woodward, C. E.

    2015-12-01

    High angular resolution from ground-based observatories stands as a key technology for advancing planetary science. In the window between the angular resolution achievable with 8-10 meter class telescopes, and the 23-to-40 meter giants of the future, LBT provides a glimpse of what the next generation of instruments providing higher angular resolution will provide. We present first ever resolved images of an Io eruption site taken from the ground, images of Io's Loki Patera taken with Fizeau imaging at the 22.8 meter LBT [Conrad, et al., AJ, 2015]. We will also present preliminary analysis of two data sets acquired during the 2015 opposition: L-band fringes at Kurdalagon and an occultation of Loki and Pele by Europa (see figure). The light curves from this occultation will yield an order of magnitude improvement in spatial resolution along the path of ingress and egress. We will conclude by providing an overview of the overall benefit of recent and future advances in angular resolution for planetary science.

  20. A method for generating high resolution satellite image time series

    NASA Astrophysics Data System (ADS)

    Guo, Tao

    2014-10-01

    There is an increasing demand for satellite remote sensing data with both high spatial and temporal resolution in many applications. But it still is a challenge to simultaneously improve spatial resolution and temporal frequency due to the technical limits of current satellite observation systems. To this end, much R&D efforts have been ongoing for years and lead to some successes roughly in two aspects, one includes super resolution, pan-sharpen etc. methods which can effectively enhance the spatial resolution and generate good visual effects, but hardly preserve spectral signatures and result in inadequate analytical value, on the other hand, time interpolation is a straight forward method to increase temporal frequency, however it increase little informative contents in fact. In this paper we presented a novel method to simulate high resolution time series data by combing low resolution time series data and a very small number of high resolution data only. Our method starts with a pair of high and low resolution data set, and then a spatial registration is done by introducing LDA model to map high and low resolution pixels correspondingly. Afterwards, temporal change information is captured through a comparison of low resolution time series data, and then projected onto the high resolution data plane and assigned to each high resolution pixel according to the predefined temporal change patterns of each type of ground objects. Finally the simulated high resolution data is generated. A preliminary experiment shows that our method can simulate a high resolution data with a reasonable accuracy. The contribution of our method is to enable timely monitoring of temporal changes through analysis of time sequence of low resolution images only, and usage of costly high resolution data can be reduces as much as possible, and it presents a highly effective way to build up an economically operational monitoring solution for agriculture, forest, land use investigation

  1. High spatial resolution compressed sensing (HSPARSE) functional MRI.

    PubMed

    Fang, Zhongnan; Van Le, Nguyen; Choy, ManKin; Lee, Jin Hyung

    2016-08-01

    To propose a novel compressed sensing (CS) high spatial resolution functional MRI (fMRI) method and demonstrate the advantages and limitations of using CS for high spatial resolution fMRI. A randomly undersampled variable density spiral trajectory enabling an acceleration factor of 5.3 was designed with a balanced steady state free precession sequence to achieve high spatial resolution data acquisition. A modified k-t SPARSE method was then implemented and applied with a strategy to optimize regularization parameters for consistent, high quality CS reconstruction. The proposed method improves spatial resolution by six-fold with 12 to 47% contrast-to-noise ratio (CNR), 33 to 117% F-value improvement and maintains the same temporal resolution. It also achieves high sensitivity of 69 to 99% compared the original ground-truth, small false positive rate of less than 0.05 and low hemodynamic response function distortion across a wide range of CNRs. The proposed method is robust to physiological noise and enables detection of layer-specific activities in vivo, which cannot be resolved using the highest spatial resolution Nyquist acquisition. The proposed method enables high spatial resolution fMRI that can resolve layer-specific brain activity and demonstrates the significant improvement that CS can bring to high spatial resolution fMRI. Magn Reson Med 76:440-455, 2016. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.

  2. A Fast Multiple Sampling Method for Low-Noise CMOS Image Sensors With Column-Parallel 12-bit SAR ADCs

    PubMed Central

    Kim, Min-Kyu; Hong, Seong-Kwan; Kwon, Oh-Kyong

    2015-01-01

    This paper presents a fast multiple sampling method for low-noise CMOS image sensor (CIS) applications with column-parallel successive approximation register analog-to-digital converters (SAR ADCs). The 12-bit SAR ADC using the proposed multiple sampling method decreases the A/D conversion time by repeatedly converting a pixel output to 4-bit after the first 12-bit A/D conversion, reducing noise of the CIS by one over the square root of the number of samplings. The area of the 12-bit SAR ADC is reduced by using a 10-bit capacitor digital-to-analog converter (DAC) with four scaled reference voltages. In addition, a simple up/down counter-based digital processing logic is proposed to perform complex calculations for multiple sampling and digital correlated double sampling. To verify the proposed multiple sampling method, a 256 × 128 pixel array CIS with 12-bit SAR ADCs was fabricated using 0.18 μm CMOS process. The measurement results shows that the proposed multiple sampling method reduces each A/D conversion time from 1.2 μs to 0.45 μs and random noise from 848.3 μV to 270.4 μV, achieving a dynamic range of 68.1 dB and an SNR of 39.2 dB. PMID:26712765

  3. A Fast Multiple Sampling Method for Low-Noise CMOS Image Sensors With Column-Parallel 12-bit SAR ADCs.

    PubMed

    Kim, Min-Kyu; Hong, Seong-Kwan; Kwon, Oh-Kyong

    2015-12-26

    This paper presents a fast multiple sampling method for low-noise CMOS image sensor (CIS) applications with column-parallel successive approximation register analog-to-digital converters (SAR ADCs). The 12-bit SAR ADC using the proposed multiple sampling method decreases the A/D conversion time by repeatedly converting a pixel output to 4-bit after the first 12-bit A/D conversion, reducing noise of the CIS by one over the square root of the number of samplings. The area of the 12-bit SAR ADC is reduced by using a 10-bit capacitor digital-to-analog converter (DAC) with four scaled reference voltages. In addition, a simple up/down counter-based digital processing logic is proposed to perform complex calculations for multiple sampling and digital correlated double sampling. To verify the proposed multiple sampling method, a 256 × 128 pixel array CIS with 12-bit SAR ADCs was fabricated using 0.18 μm CMOS process. The measurement results shows that the proposed multiple sampling method reduces each A/D conversion time from 1.2 μs to 0.45 μs and random noise from 848.3 μV to 270.4 μV, achieving a dynamic range of 68.1 dB and an SNR of 39.2 dB.

  4. Confirmatory Factor Analysis and Test-Retest Reliability of the Alcohol and Drug Confrontation Scale (ADCS)

    PubMed Central

    Polcin, Douglas L.; Galloway, Gantt P.; Bond, Jason; Korcha, Rachael; Greenfield, Thomas K.

    2008-01-01

    The addiction field lacks an accepted definition and reliable measure of confrontation. The Alcohol and Drug Confrontation Scale (ADCS) defines confrontation as warnings about the potential consequences of substance use. To assess psychometric properties, 323 individual entering recovery houses in U.S. urban and suburban areas were interviewed between 2003 and 2005 (20% women, 68% white). Analyses included test-retest reliability, confirmatory factor analysis, and measures of internal consistency. Findings support the ADCS as a reliable way of assessing two factors: Internal Support and External intensity. Confrontation was experienced as supportive, accurate and helpful. Additional studies should assess confrontation in different contexts. PMID:20686635

  5. An ultra-low power self-timed column-level ADC for a CMOS pixel sensor based vertex detector

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Wang, M.

    2014-11-01

    The International Large Detector (ILD) is a detector concept for the future linear collider experiment. The vertex detector is the key tool to achieve high precision measurements for flavor tagging, which puts stringent requirements on the CMOS pixel sensors. Due to the cooling systems which deteriorate the material budget and increase the multiple scattering, it is important to reduce the power consumption. This paper presents an ultra-low power self-timed column-level ADC for the CMOS pixel sensors, aiming to equip the outer layers of the vertex detector. The ADC was designed to operate in two modes (active and idle) adapted to the low hit density in the outer layers. The architecture employs an enhanced sample-and-hold circuit and a self-timed technique. The total power consumption with a 3-V supply is 225μW during idle mode, which is the most frequent situation. This value rises to 425μW in the case of the active mode. It occupies an area of 35 × 590μm2.

  6. High resolution spectrograph. [for LST

    NASA Technical Reports Server (NTRS)

    Peacock, K.

    1975-01-01

    The high resolution spectrograph (HRS) is designed to be used with the Large Space Telescope (LST) for the study of spectra of point and extended targets in the spectral range 110 to 410 nm. It has spectral resolutions of 1,000; 30,000; and 100,000 and has a field of view as large as 10 arc sec. The spectral range and resolution are selectable using interchangeable optical components and an echelle spectrograph is used to display a cross dispersed spectrum on the photocathode of either of 2 SEC orthicon image tubes. Provisions are included for wavelength calibration, target identification and acquisition and thermal control. The system considerations of the instrument are described.

  7. Resolution enhancement of low-quality videos using a high-resolution frame

    NASA Astrophysics Data System (ADS)

    Pham, Tuan Q.; van Vliet, Lucas J.; Schutte, Klamer

    2006-01-01

    This paper proposes an example-based Super-Resolution (SR) algorithm of compressed videos in the Discrete Cosine Transform (DCT) domain. Input to the system is a Low-Resolution (LR) compressed video together with a High-Resolution (HR) still image of similar content. Using a training set of corresponding LR-HR pairs of image patches from the HR still image, high-frequency details are transferred from the HR source to the LR video. The DCT-domain algorithm is much faster than example-based SR in spatial domain 6 because of a reduction in search dimensionality, which is a direct result of the compact and uncorrelated DCT representation. Fast searching techniques like tree-structure vector quantization 16 and coherence search1 are also key to the improved efficiency. Preliminary results on MJPEG sequence show promising result of the DCT-domain SR synthesis approach.

  8. A cloud mask methodology for high resolution remote sensing data combining information from high and medium resolution optical sensors

    NASA Astrophysics Data System (ADS)

    Sedano, Fernando; Kempeneers, Pieter; Strobl, Peter; Kucera, Jan; Vogt, Peter; Seebach, Lucia; San-Miguel-Ayanz, Jesús

    2011-09-01

    This study presents a novel cloud masking approach for high resolution remote sensing images in the context of land cover mapping. As an advantage to traditional methods, the approach does not rely on thermal bands and it is applicable to images from most high resolution earth observation remote sensing sensors. The methodology couples pixel-based seed identification and object-based region growing. The seed identification stage relies on pixel value comparison between high resolution images and cloud free composites at lower spatial resolution from almost simultaneously acquired dates. The methodology was tested taking SPOT4-HRVIR, SPOT5-HRG and IRS-LISS III as high resolution images and cloud free MODIS composites as reference images. The selected scenes included a wide range of cloud types and surface features. The resulting cloud masks were evaluated through visual comparison. They were also compared with ad-hoc independently generated cloud masks and with the automatic cloud cover assessment algorithm (ACCA). In general the results showed an agreement in detected clouds higher than 95% for clouds larger than 50 ha. The approach produced consistent results identifying and mapping clouds of different type and size over various land surfaces including natural vegetation, agriculture land, built-up areas, water bodies and snow.

  9. Single sensor processing to obtain high resolution color component signals

    NASA Technical Reports Server (NTRS)

    Glenn, William E. (Inventor)

    2010-01-01

    A method for generating color video signals representative of color images of a scene includes the following steps: focusing light from the scene on an electronic image sensor via a filter having a tri-color filter pattern; producing, from outputs of the sensor, first and second relatively low resolution luminance signals; producing, from outputs of the sensor, a relatively high resolution luminance signal; producing, from a ratio of the relatively high resolution luminance signal to the first relatively low resolution luminance signal, a high band luminance component signal; producing, from outputs of the sensor, relatively low resolution color component signals; and combining each of the relatively low resolution color component signals with the high band luminance component signal to obtain relatively high resolution color component signals.

  10. High-Resolution Mass Spectrometers

    NASA Astrophysics Data System (ADS)

    Marshall, Alan G.; Hendrickson, Christopher L.

    2008-07-01

    Over the past decade, mass spectrometry has been revolutionized by access to instruments of increasingly high mass-resolving power. For small molecules up to ˜400 Da (e.g., drugs, metabolites, and various natural organic mixtures ranging from foods to petroleum), it is possible to determine elemental compositions (CcHhNnOoSsPp…) of thousands of chemical components simultaneously from accurate mass measurements (the same can be done up to 1000 Da if additional information is included). At higher mass, it becomes possible to identify proteins (including posttranslational modifications) from proteolytic peptides, as well as lipids, glycoconjugates, and other biological components. At even higher mass (˜100,000 Da or higher), it is possible to characterize posttranslational modifications of intact proteins and to map the binding surfaces of large biomolecule complexes. Here we review the principles and techniques of the highest-resolution analytical mass spectrometers (time-of-flight and Fourier transform ion cyclotron resonance and orbitrap mass analyzers) and describe some representative high-resolution applications.

  11. Coregistration of high-resolution Mars orbital images

    NASA Astrophysics Data System (ADS)

    Sidiropoulos, Panagiotis; Muller, Jan-Peter

    2015-04-01

    The systematic orbital imaging of the Martian surface started 4 decades ago from NASA's Viking Orbiter 1 & 2 missions, which were launched in August 1975, and acquired orbital images of the planet between 1976 and 1980. The result of this reconnaissance was the first medium-resolution (i.e. ≤ 300m/pixel) global map of Mars, as well as a variety of high-resolution images (reaching up to 8m/pixel) of special regions of interest. Over the last two decades NASA has sent 3 more spacecraft with onboard instruments for high-resolution orbital imaging: Mars Global Surveyor (MGS) having onboard the Mars Orbital Camera - Narrow Angle (MOC-NA), Mars Odyssey having onboard the Thermal Emission Imaging System - Visual (THEMIS-VIS) and the Mars Reconnaissance Orbiter (MRO) having on board two distinct high-resolution cameras, Context Camera (CTX) and High-Resolution Imaging Science Experiment (HiRISE). Moreover, ESA has the multispectral High resolution Stereo Camera (HRSC) onboard ESA's Mars Express with resolution up to 12.5m since 2004. Overall, this set of cameras have acquired more than 400,000 high-resolution images, i.e. with resolution better than 100m and as fine as 25 cm/pixel. Notwithstanding the high spatial resolution of the available NASA orbital products, their accuracy of areo-referencing is often very poor. As a matter of fact, due to pointing inconsistencies, usually form errors in roll attitude, the acquired products may actually image areas tens of kilometers far away from the point that they are supposed to be looking at. On the other hand, since 2004, the ESA Mars Express has been acquiring stereo images through the High Resolution Stereo Camera (HRSC), with resolution that is usually 12.5-25 metres per pixel. The achieved coverage is more than 64% for images with resolution finer than 20 m/pixel, while for ~40% of Mars, Digital Terrain Models (DTMs) have been produced with are co-registered with MOLA [Gwinner et al., 2010]. The HRSC images and DTMs

  12. Preoperative grading of supratentorial nonenhancing gliomas by high b-value diffusion-weighted 3 T magnetic resonance imaging.

    PubMed

    Han, Haiwei; Han, Chengkun; Wu, Xiurong; Zhong, Shan; Zhuang, Xiongjie; Tan, Guowei; Wu, Hua

    2017-05-01

    The purpose of this study was to determine the difference in discrimination between high- and low-grade supratentorial nonenhancing gliomas (HGGs and LGGs, respectively) when using apparent diffusion coefficient (ADC) values with high or standard b-value. Thirty-nine patients underwent conventional magnetic resonance imaging and diffusion-weighted imaging (DWI) with standard and high b-values (b = 1000 and 3000 s/mm 2 , respectively). Minimum, maximum, and mean ADC values (ADC MIN , ADC MAX , and ADC MEAN , respectively) were measured from ADC maps with both b-values. Receiver operating curve analysis was used to determine the cutoff ADC values for distinguishing between nonenhancing HGGs and LGGs. ADC MIN , ADC MAX , and ADC MEAN values for the nonenhancing HGGs were lower than those for LGGs. These differences were much larger when a high b-value was used (all P < 0.0001) than when a standard b-value was used (P = 0.0001, <0.0001, and <0.0001, respectively). Discriminant analysis indicated that the greatest likelihood for discriminating HGGs and LGGs when ADC MEAN was obtained with a high b-value, with cutoff value of 0.814 × 10 -3  mm 2 /s. ADC values obtained with a high b-value can be useful for grading and surgical management of nonenhancing HGGs and LGGs. The lowest degree of overlap was obtained when ADC MEAN was determined with a b-value of 3000 s/mm 2 .

  13. High throughput screening of ligand binding to macromolecules using high resolution powder diffraction

    DOEpatents

    Von Dreele, Robert B.; D'Amico, Kevin

    2006-10-31

    A process is provided for the high throughput screening of binding of ligands to macromolecules using high resolution powder diffraction data including producing a first sample slurry of a selected polycrystalline macromolecule material and a solvent, producing a second sample slurry of a selected polycrystalline macromolecule material, one or more ligands and the solvent, obtaining a high resolution powder diffraction pattern on each of said first sample slurry and the second sample slurry, and, comparing the high resolution powder diffraction pattern of the first sample slurry and the high resolution powder diffraction pattern of the second sample slurry whereby a difference in the high resolution powder diffraction patterns of the first sample slurry and the second sample slurry provides a positive indication for the formation of a complex between the selected polycrystalline macromolecule material and at least one of the one or more ligands.

  14. A 300-mV 220-nW event-driven ADC with real-time QRS detection for wearable ECG sensors.

    PubMed

    Zhang, Xiaoyang; Lian, Yong

    2014-12-01

    This paper presents an ultra-low-power event-driven analog-to-digital converter (ADC) with real-time QRS detection for wearable electrocardiogram (ECG) sensors in wireless body sensor network (WBSN) applications. Two QRS detection algorithms, pulse-triggered (PUT) and time-assisted PUT (t-PUT), are proposed based on the level-crossing events generated from the ADC. The PUT detector achieves 97.63% sensitivity and 97.33% positive prediction in simulation on the MIT-BIH Arrhythmia Database. The t-PUT improves the sensitivity and positive prediction to 97.76% and 98.59% respectively. Fabricated in 0.13 μm CMOS technology, the ADC with QRS detector consumes only 220 nW measured under 300 mV power supply, making it the first nanoWatt compact analog-to-information (A2I) converter with embedded QRS detector.

  15. Texton-based super-resolution for achieving high spatiotemporal resolution in hybrid camera system

    NASA Astrophysics Data System (ADS)

    Kamimura, Kenji; Tsumura, Norimichi; Nakaguchi, Toshiya; Miyake, Yoichi

    2010-05-01

    Many super-resolution methods have been proposed to enhance the spatial resolution of images by using iteration and multiple input images. In a previous paper, we proposed the example-based super-resolution method to enhance an image through pixel-based texton substitution to reduce the computational cost. In this method, however, we only considered the enhancement of a texture image. In this study, we modified this texton substitution method for a hybrid camera to reduce the required bandwidth of a high-resolution video camera. We applied our algorithm to pairs of high- and low-spatiotemporal-resolution videos, which were synthesized to simulate a hybrid camera. The result showed that the fine detail of the low-resolution video can be reproduced compared with bicubic interpolation and the required bandwidth could be reduced to about 1/5 in a video camera. It was also shown that the peak signal-to-noise ratios (PSNRs) of the images improved by about 6 dB in a trained frame and by 1.0-1.5 dB in a test frame, as determined by comparison with the processed image using bicubic interpolation, and the average PSNRs were higher than those obtained by the well-known Freeman’s patch-based super-resolution method. Compared with that of the Freeman’s patch-based super-resolution method, the computational time of our method was reduced to almost 1/10.

  16. Immersion Gratings for Infrared High-resolution Spectroscopy

    NASA Astrophysics Data System (ADS)

    Sarugaku, Yuki; Ikeda, Yuji; Kobayashi, Naoto; Kaji, Sayumi; Sukegawa, Takashi; Sugiyama, Shigeru; Nakagawa, Takao; Arasaki, Takayuki; Kondo, Sohei; Nakanishi, Kenshi; Yasui, Chikako; Kawakita, Hideyo

    2016-10-01

    High-resolution spectroscopy in the infrared wavelength range is essential for observations of minor isotopologues, such as HDO for water, and prebiotic organic molecules like hydrocarbons/P-bearing molecules because numerous vibrational molecular bands (including non-polar molecules) are located in this wavelength range. High spectral resolution enables us to detect weak lines without spectral line confusion. This technique has been widely used in planetary sciences, e.g., cometary coma (H2O, CO, and organic molecules), the martian atmosphere (CH4, CO2, H2O and HDO), and the upper atmosphere of gas giants (H3+ and organic molecules such as C2H6). Spectrographs with higher resolution (and higher sensitivity) still have a potential to provide a plenty of findings. However, because the size of spectrographs scales with the spectral resolution, it is difficult to realize it.Immersion grating (IG), which is a diffraction grating wherein the diffraction surface is immersed in a material with a high refractive index (n > 2), provides n times higher spectral resolution compared to a reflective grating of the same size. Because IG reduces the size of spectrograph to 1/n compared to the spectrograph with the same spectral resolution using a conventional reflective grating, it is widely acknowledged as a key optical device to realize compact spectrographs with high spectral resolution.Recently, we succeeded in fabricating a CdZnTe immersion grating with the theoretically predicted diffraction efficiency by machining process using an ultrahigh-precision five-axis processing machine developed by Canon Inc. Using the same technique, we completed a practical germanium (Ge) immersion grating with both a reflection coating on the grating surface and the an AR coating on the entrance surface. It is noteworthy that the wide wavelength range from 2 to 20 um can be covered by the two immersion gratings.In this paper, we present the performances and the applications of the immersion

  17. HRSC: High resolution stereo camera

    USGS Publications Warehouse

    Neukum, G.; Jaumann, R.; Basilevsky, A.T.; Dumke, A.; Van Gasselt, S.; Giese, B.; Hauber, E.; Head, J. W.; Heipke, C.; Hoekzema, N.; Hoffmann, H.; Greeley, R.; Gwinner, K.; Kirk, R.; Markiewicz, W.; McCord, T.B.; Michael, G.; Muller, Jan-Peter; Murray, J.B.; Oberst, J.; Pinet, P.; Pischel, R.; Roatsch, T.; Scholten, F.; Willner, K.

    2009-01-01

    The High Resolution Stereo Camera (HRSC) on Mars Express has delivered a wealth of image data, amounting to over 2.5 TB from the start of the mapping phase in January 2004 to September 2008. In that time, more than a third of Mars was covered at a resolution of 10-20 m/pixel in stereo and colour. After five years in orbit, HRSC is still in excellent shape, and it could continue to operate for many more years. HRSC has proven its ability to close the gap between the low-resolution Viking image data and the high-resolution Mars Orbiter Camera images, leading to a global picture of the geological evolution of Mars that is now much clearer than ever before. Derived highest-resolution terrain model data have closed major gaps and provided an unprecedented insight into the shape of the surface, which is paramount not only for surface analysis and geological interpretation, but also for combination with and analysis of data from other instruments, as well as in planning for future missions. This chapter presents the scientific output from data analysis and highlevel data processing, complemented by a summary of how the experiment is conducted by the HRSC team members working in geoscience, atmospheric science, photogrammetry and spectrophotometry. Many of these contributions have been or will be published in peer-reviewed journals and special issues. They form a cross-section of the scientific output, either by summarising the new geoscientific picture of Mars provided by HRSC or by detailing some of the topics of data analysis concerning photogrammetry, cartography and spectral data analysis.

  18. High resolution scintillation detector with semiconductor readout

    DOEpatents

    Levin, Craig S.; Hoffman, Edward J.

    2000-01-01

    A novel high resolution scintillation detector array for use in radiation imaging such as high resolution Positron Emission Tomography (PET) which comprises one or more parallelepiped crystals with at least one long surface of each crystal being in intimate contact with a semiconductor photodetector such that photons generated within each crystal by gamma radiation passing therethrough is detected by the photodetector paired therewith.

  19. High-Resolution Global Soil Moisture Map

    NASA Image and Video Library

    2015-05-19

    High-resolution global soil moisture map from NASA SMAP combined radar and radiometer instruments, acquired between May 4 and May 11, 2015 during SMAP commissioning phase. The map has a resolution of 5.6 miles (9 kilometers). The data gap is due to turning the instruments on and off during testing. http://photojournal.jpl.nasa.gov/catalog/PIA19337

  20. High-resolution DEM Effects on Geophysical Flow Models

    NASA Astrophysics Data System (ADS)

    Williams, M. R.; Bursik, M. I.; Stefanescu, R. E. R.; Patra, A. K.

    2014-12-01

    Geophysical mass flow models are numerical models that approximate pyroclastic flow events and can be used to assess the volcanic hazards certain areas may face. One such model, TITAN2D, approximates granular-flow physics based on a depth-averaged analytical model using inputs of basal and internal friction, material volume at a coordinate point, and a GIS in the form of a digital elevation model (DEM). The volume of modeled material propagates over the DEM in a way that is governed by the slope and curvature of the DEM surface and the basal and internal friction angles. Results from TITAN2D are highly dependent upon the inputs to the model. Here we focus on a single input: the DEM, which can vary in resolution. High resolution DEMs are advantageous in that they contain more surface details than lower-resolution models, presumably allowing modeled flows to propagate in a way more true to the real surface. However, very high resolution DEMs can create undesirable artifacts in the slope and curvature that corrupt flow calculations. With high-resolution DEMs becoming more widely available and preferable for use, determining the point at which high resolution data is less advantageous compared to lower resolution data becomes important. We find that in cases of high resolution, integer-valued DEMs, very high-resolution is detrimental to good model outputs when moderate-to-low (<10-15°) slope angles are involved. At these slope angles, multiple adjacent DEM cell elevation values are equal due to the need for the DEM to approximate the low slope with a limited set of integer values for elevation. The first derivative of the elevation surface thus becomes zero. In these cases, flow propagation is inhibited by these spurious zero-slope conditions. Here we present evidence for this "terracing effect" from 1) a mathematically defined simulated elevation model, to demonstrate the terracing effects of integer valued data, and 2) a real-world DEM where terracing must be

  1. First results of a highly granulated 3D CdTe detector module for PET

    NASA Astrophysics Data System (ADS)

    Chmeissani, Mokhtar; Kolstein, Machiel; Macias-Montero, José Gabriel; Puigdengoles, Carles; García, Jorge; Prats, Xavier; Martínez, Ricardo

    2018-01-01

    We present the performance of a highly granulated 3D detector module for PET, consisting of a stack of pixelated CdTe detectors. Each detector module has 2 cm  ×  2 cm  ×  2 cm of CdTe material, subdivided into 4000 voxels, where each voxel has size 1 mm  ×  1 mm  ×  2 mm and is connected to its own read-out electronics via a BiSn solder ball. Each read-out channel consists of a preamp, a discriminator, a shaper, a peak-and-hold circuit and a 10 bits SAR ADC. The preamp has variable gain where at the maximum gain the ADC resolution is equivalent to 0.7 keV. Each ASIC chip reads 100 CdTe pixel channels and has one TDC to measure the time stamp of the triggered events, with a time resolution of less than 1 ns. With the bias voltage set at  -250 V mm-1 and for 17838 working channels out of a total of 20 000, we have obtained an average energy resolution of 2.2% FWHM for 511 keV photons. For 511 keV photons that have undergone Compton scattering, we measured an energy resolution of 3.2% FWHM. A timing resolution for PET coincidence events of 60 ns FWHM was found.

  2. A mixed signal ECG processing platform with an adaptive sampling ADC for portable monitoring applications.

    PubMed

    Kim, Hyejung; Van Hoof, Chris; Yazicioglu, Refet Firat

    2011-01-01

    This paper describes a mixed-signal ECG processing platform with an 12-bit ADC architecture that can adapt its sampling rate according to the input signals rate of change. This enables the sampling of ECG signals with significantly reduced data rate without loss of information. The presented adaptive sampling scheme reduces the ADC power consumption, enables the processing of ECG signals with lower power consumption, and reduces the power consumption of the radio while streaming the ECG signals. The test results show that running a CWT-based R peak detection algorithm using the adaptively sampled ECG signals consumes only 45.6 μW and it leads to 36% less overall system power consumption.

  3. Extension of the ADC Charge-Collection Model to Include Multiple Junctions

    NASA Technical Reports Server (NTRS)

    Edmonds, Larry D.

    2011-01-01

    The ADC model is a charge-collection model derived for simple p-n junction silicon diodes having a single reverse-biased p-n junction at one end and an ideal substrate contact at the other end. The present paper extends the model to include multiple junctions, and the goal is to estimate how collected charge is shared by the different junctions.

  4. Diffusion weighted MRI and 18F-FDG PET/CT in non-small cell lung cancer (NSCLC): does the apparent diffusion coefficient (ADC) correlate with tracer uptake (SUV)?

    PubMed

    Regier, M; Derlin, T; Schwarz, D; Laqmani, A; Henes, F O; Groth, M; Buhk, J-H; Kooijman, H; Adam, G

    2012-10-01

    To investigate the potential correlation of the apparent diffusion coefficient assessed by diffusion-weighted MRI (DWI) and glucose metabolism determined by the standardized uptake value (SUV) at 18F-FDG PET/CT in non-small cell lung cancer (NSCLC). 18F-FDG PET/CT and DWI (TR/TE, 2000/66 ms; b-values, 0 and 500 s/mm(2)) were performed in 41 consecutive patients with histologically verified NSCLC. Analysing the PET-CT data calculation of the mean (SUV(mean)) and maximum (SUV(max)) SUV was performed. By placing a region-of-interest (ROI) encovering the entire tumor mean (ADC(mean)) and minimum ADC (ADC(min)) were determined by two independent radiologists. Results of 18F-FDG PET-CT and DWI were compared on a per-patient basis. For statistical analysis Pearson's correlation coefficient, Bland-Altman and regression analysis were assessed. Data analysis revealed a significant inverse correlation of the ADC(min) and SUV(max) (r=-0.46; p=0.032). Testing the correlation of the ADC(min) and SUV(max) for each histological subtype separately revealed that the inverse correlation was good for both adenocarcinomas (r=-0.47; p=0.03) and squamouscell carcinomas (r=-0.71; p=0.002), respectively. No significant correlation was found for the comparison of ADC(min) and SUV(mean) (r=-0.29; p=0.27), ADC(mean) vs. SUV(mean) (r=-0.28; p=0.31) or ADC(mean) vs. SUV(max) (r=-0.33; p=0.23). The κ-value of 0.88 indicated a good agreement between both observers. This preliminary study is the first to verify the relation between the SUV and the ADC in NSCLC. The significant inverse correlation of these two quantitative imaging approaches points out the association of metabolic activity and tumor cellularity. Therefore, DWI with ADC measurement might represent a new prognostic marker in NSCLC. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  5. O-space with high resolution readouts outperforms radial imaging.

    PubMed

    Wang, Haifeng; Tam, Leo; Kopanoglu, Emre; Peters, Dana C; Constable, R Todd; Galiana, Gigi

    2017-04-01

    While O-Space imaging is well known to accelerate image acquisition beyond traditional Cartesian sampling, its advantages compared to undersampled radial imaging, the linear trajectory most akin to O-Space imaging, have not been detailed. In addition, previous studies have focused on ultrafast imaging with very high acceleration factors and relatively low resolution. The purpose of this work is to directly compare O-Space and radial imaging in their potential to deliver highly undersampled images of high resolution and minimal artifacts, as needed for diagnostic applications. We report that the greatest advantages to O-Space imaging are observed with extended data acquisition readouts. A sampling strategy that uses high resolution readouts is presented and applied to compare the potential of radial and O-Space sequences to generate high resolution images at high undersampling factors. Simulations and phantom studies were performed to investigate whether use of extended readout windows in O-Space imaging would increase k-space sampling and improve image quality, compared to radial imaging. Experimental O-Space images acquired with high resolution readouts show fewer artifacts and greater sharpness than radial imaging with equivalent scan parameters. Radial images taken with longer readouts show stronger undersampling artifacts, which can cause small or subtle image features to disappear. These features are preserved in a comparable O-Space image. High resolution O-Space imaging yields highly undersampled images of high resolution and minimal artifacts. The additional nonlinear gradient field improves image quality beyond conventional radial imaging. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. High-sensitivity Leak-testing Method with High-Resolution Integration Technique

    NASA Astrophysics Data System (ADS)

    Fujiyoshi, Motohiro; Nonomura, Yutaka; Senda, Hidemi

    A high-resolution leak-testing method named HR (High-Resolution) Integration Technique has been developed for MEMS (Micro Electro Mechanical Systems) sensors such as a vibrating angular-rate sensor housed in a vacuum package. Procedures of the method to obtain high leak-rate resolution were as follows. A package filled with helium gas was kept in a small accumulation chamber to accumulate helium gas leaking from the package. After the accumulation, the accumulated helium gas was introduced into a mass spectrometer in a short period of time, and the flux of the helium gas was measured by the mass spectrometer as a transient phenomenon. The leak-rate of the package was calculated from the detected transient waveform of the mass spectrometer and the accumulation time of the helium gas in the accumulation chamber. Because the density of the helium gas in the vacuum chamber increased and the accumulated helium gas was measured in a very short period of time with the mass spectrometer, the peak strength of the transient waveform became high and the signal to noise ratio was much improved. The detectable leak-rate resolution of the technique reached 1×10-15 (Pa·m3/s). This resolution is 103 times superior to that of the conventional helium vacuum integration method. The accuracy of the measuring system was verified with a standard helium gas leak source. The results were well matched between theoretical calculation based on the leak-rate of the source and the experimental results within only 2% error.

  7. High-resolution wavefront control of high-power laser systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brase, J; Brown, C; Carrano, C

    1999-07-08

    Nearly every new large-scale laser system application at LLNL has requirements for beam control which exceed the current level of available technology. For applications such as inertial confinement fusion, laser isotope separation, laser machining, and laser the ability to transport significant power to a target while maintaining good beam quality is critical. There are many ways that laser wavefront quality can be degraded. Thermal effects due to the interaction of high-power laser or pump light with the internal optical components or with the ambient gas are common causes of wavefront degradation. For many years, adaptive optics based on thing deformablemore » glass mirrors with piezoelectric or electrostrictive actuators have be used to remove the low-order wavefront errors from high-power laser systems. These adaptive optics systems have successfully improved laser beam quality, but have also generally revealed additional high-spatial-frequency errors, both because the low-order errors have been reduced and because deformable mirrors have often introduced some high-spatial-frequency components due to manufacturing errors. Many current and emerging laser applications fall into the high-resolution category where there is an increased need for the correction of high spatial frequency aberrations which requires correctors with thousands of degrees of freedom. The largest Deformable Mirrors currently available have less than one thousand degrees of freedom at a cost of approximately $1M. A deformable mirror capable of meeting these high spatial resolution requirements would be cost prohibitive. Therefore a new approach using a different wavefront control technology is needed. One new wavefront control approach is the use of liquid-crystal (LC) spatial light modulator (SLM) technology for the controlling the phase of linearly polarized light. Current LC SLM technology provides high-spatial-resolution wavefront control, with hundreds of thousands of degrees of

  8. A high resolution soil moisture radiometer

    NASA Technical Reports Server (NTRS)

    Dod, L. R.

    1980-01-01

    The design of an L-band high resolution soil moisture radiometer is described. The selected system is a planar slotted waveguide array at L-band frequencies. The square aperture is 74.75 m by 74.75 m subdivided into 8 tilted subarrays. The system has a 290 km circular orbit and provides a spatial resolution of 1 km. The aperture forms 230 simultaneous beams in a cross-track pattern which covers a swath 420 km wide. A revisit time of 6 days is provided for an orbit inclination of 50 deg. The 1 km resolution cell allows an integration time of 1/7 second and sharing this time period sequentially between two orthogonal polarization modes can provide a temperature resolution of 0.7 K.

  9. High resolution optical DNA mapping

    NASA Astrophysics Data System (ADS)

    Baday, Murat

    Many types of diseases including cancer and autism are associated with copy-number variations in the genome. Most of these variations could not be identified with existing sequencing and optical DNA mapping methods. We have developed Multi-color Super-resolution technique, with potential for high throughput and low cost, which can allow us to recognize more of these variations. Our technique has made 10--fold improvement in the resolution of optical DNA mapping. Using a 180 kb BAC clone as a model system, we resolved dense patterns from 108 fluorescent labels of two different colors representing two different sequence-motifs. Overall, a detailed DNA map with 100 bp resolution was achieved, which has the potential to reveal detailed information about genetic variance and to facilitate medical diagnosis of genetic disease.

  10. ADC as a useful diagnostic tool for differentiating benign and malignant vertebral bone marrow lesions and compression fractures: a systematic review and meta-analysis.

    PubMed

    Suh, Chong Hyun; Yun, Seong Jong; Jin, Wook; Lee, Sun Hwa; Park, So Young; Ryu, Chang-Woo

    2018-07-01

    To assess the sensitivity and specificity of quantitative assessment of the apparent diffusion coefficient (ADC) for differentiating benign and malignant vertebral bone marrow lesions (BMLs) and compression fractures (CFs) METHODS: An electronic literature search of MEDLINE and EMBASE was conducted. Bivariate modelling and hierarchical summary receiver operating characteristic modelling were performed to evaluate the diagnostic performance of ADC for differentiating vertebral BMLs. Subgroup analysis was performed for differentiating benign and malignant vertebral CFs. Meta-regression analyses according to subject, study and diffusion-weighted imaging (DWI) characteristics were performed. Twelve eligible studies (748 lesions, 661 patients) were included. The ADC exhibited a pooled sensitivity of 0.89 (95% confidence interval [CI] 0.80-0.94) and a pooled specificity of 0.87 (95% CI 0.78-0.93) for differentiating benign and malignant vertebral BMLs. In addition, the pooled sensitivity and specificity for differentiating benign and malignant CFs were 0.92 (95% CI 0.82-0.97) and 0.91 (95% CI 0.87-0.94), respectively. In the meta-regression analysis, the DWI slice thickness was a significant factor affecting heterogeneity (p < 0.01); thinner slice thickness (< 5 mm) showed higher specificity (95%) than thicker slice thickness (81%). Quantitative assessment of ADC is a useful diagnostic tool for differentiating benign and malignant vertebral BMLs and CFs. • Quantitative assessment of ADC is useful in differentiating vertebral BMLs. • Quantitative ADC assessment for BMLs had sensitivity of 89%, specificity of 87%. • Quantitative ADC assessment for CFs had sensitivity of 92%, specificity of 91%. • The specificity is highest (95%) with thinner (< 5 mm) DWI slice thickness.

  11. Effect of Al-TiB Addition on the Mechanical Properties and Microstructure of Al-ADC12/NanoSiC Produced by Stir Casting Methods

    NASA Astrophysics Data System (ADS)

    Dhaneswara, D.; Zulfia, A.; Pramudita, T. P.; Ferdian, D.; Utomo, B. W.

    2018-03-01

    Addition of Ti-B grain refiner in Al-ADC12/nanoSiC composite results in improvement of tensile strength, hardness, and wear resistance through grain refinement. In this research, composite of Al-ADC12/nano SiC (0.15 %vf) with variations of TiB respectively (0.0), (0.02), (0.04), (0.06), dan (0.08) wt% were produced by stir casting. 10% of Mg were added to promote wettability between reinforce and matrix. It was found the best addition of TiB is 0.04 wt% Ti-B which results 135,9 MPa in tensile strength, 46 HRB in hardness, and 1.47x10-5 mm3/s as wear rate. The increase in mechanical properties of composites mainly because of Al3Ti acts as nucleants which initiates the grain refinement and the existence of MgAl2O4 phase indicates an interphase between nano SiC and ADC12 matrix. However, the increase of Ti-B addition after optimum number gives no significant results. High composition of iron and magnesium addition will form intermetallic phase β-Fe, π-Fe, and Mg2Si.

  12. Requirements on high resolution detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koch, A.

    For a number of microtomography applications X-ray detectors with a spatial resolution of 1 {mu}m are required. This high spatial resolution will influence and degrade other parameters of secondary importance like detective quantum efficiency (DQE), dynamic range, linearity and frame rate. This note summarizes the most important arguments, for and against those detector systems which could be considered. This article discusses the mutual dependencies between the various figures which characterize a detector, and tries to give some ideas on how to proceed in order to improve present technology.

  13. Superconducting High Resolution Fast-Neutron Spectrometers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hau, Ionel Dragos

    2006-01-01

    Superconducting high resolution fast-neutron calorimetric spectrometers based on 6LiF and TiB{sub 2} absorbers have been developed. These novel cryogenic spectrometers measure the temperature rise produced in exothermal (n, α) reactions with fast neutrons in 6Li and 10B-loaded materials with heat capacity C operating at temperatures T close to 0.1 K. Temperature variations on the order of 0.5 mK are measured with a Mo/Cu thin film multilayer operated in the transition region between its superconducting and its normal state. The advantage of calorimetry for high resolution spectroscopy is due to the small phonon excitation energies k BT on the order ofmore » μeV that serve as signal carriers, resulting in an energy resolution ΔE ~ (k BT 2C) 1/2, which can be well below 10 keV. An energy resolution of 5.5 keV has been obtained with a Mo/Cu superconducting sensor and a TiB 2 absorber using thermal neutrons from a 252Cf neutron source. This resolution is sufficient to observe the effect of recoil nuclei broadening in neutron spectra, which has been related to the lifetime of the first excited state in 7Li. Fast-neutron spectra obtained with a 6Li-enriched LiF absorber show an energy resolution of 16 keV FWHM, and a response in agreement with the 6Li(n, α) 3H reaction cross section and Monte Carlo simulations for energies up to several MeV. The energy resolution of order of a few keV makes this novel instrument applicable to fast-neutron transmission spectroscopy based on the unique elemental signature provided by the neutron absorption and scattering resonances. The optimization of the energy resolution based on analytical and numerical models of the detector response is discussed in the context of these applications.« less

  14. A High Resolution Scale-of-four

    DOE R&D Accomplishments Database

    Fitch, V.

    1949-08-25

    A high resolution scale-of-four has been developed to be used in conjunction with the nuclear particle detection devices in applications where the counting rate is unusually high. Specifically, it is intended to precede the commercially available medium resolution scaling circuits and so decrease the resolving time of the counting system. The circuit will function reliably on continuously recurring pulses separated by less than 0.1 microseconds. It will resolve two pulses (occurring at a moderate repetition rate) which are spaced at 0.04 microseconds. A five-volt input signal is sufficient to actuate the device.

  15. Comparison of BOLD, diffusion-weighted fMRI and ADC-fMRI for stimulation of the primary visual system with a block paradigm.

    PubMed

    Nicolas, R; Gros-Dagnac, H; Aubry, F; Celsis, P

    2017-06-01

    The blood oxygen level-dependent (BOLD) effect is extensively used for functional MRI (fMRI) but presents some limitations. Diffusion-weighted fMRI (DfMRI) has been proposed as a method more tightly linked to neuronal activity. This work proposes a protocol of DfMRI acquired for several b-values and diffusion directions that is compared to gradient-echo BOLD (GE-BOLD) and to repeated spin-echo BOLD (SE-BOLD, acquisitions performed with b=0s/mm 2 ), which was also used to ensure the reproducibility of the response. A block stimulation paradigm of the primary visual system (V1) was performed in 12 healthy subjects with checkerboard alternations (2Hz frequency). DfMRI was performed at 3T with 5 b-values (b=1500, 1000, 500, 250, 0s/mm 2 ) with TR/TE=1004/93ms, Δ/δ=45.4ms/30ms, and 6 spatial directions for diffusion measures. GE-BOLD was performed with a similar block stimulation design timing. Apparent Diffusion Coefficient (ADC)-fMRI was computed with all b-values used. An identical Z-score level was used for all fMRI modalities for the comparison of volumes of activation. ADC-fMRI and SE-BOLD fMRI activation locations were compared in a voxel-based analysis to a cytoarchitectural probability map of V1. SE-BOLD activation volumes represented only 55% of the GE-BOLD activation volumes (P<0.0001). DfMRI activation volumes averaged for all b-values acquired represented only 12% of GE-BOLD (P<0.0001) and only 22% of SE-BOLD activation volumes (P<0.005). Compared to SE-BOLD-fMRI, ADC-fMRI activations showed fewer pixels outside of V1 and a higher average probability of belonging to V1. DfMRI and ADC-fMRI acquisition at 3T could be easily post-processed with common neuro-imaging software. DfMRI and ADC-fMRI activation volumes were significantly smaller than those obtained with SE-BOLD. ADC-fMRI activations were more precisely localized in V1 than those of SE-BOLD-fMRI. This validated the increased capability of ADC-fMRI compared to BOLD to enhance the precision of

  16. High resolution metric imaging payload

    NASA Astrophysics Data System (ADS)

    Delclaud, Y.

    2017-11-01

    Alcatel Space Industries has become Europe's leader in the field of high and very high resolution optical payloads, in the frame work of earth observation system able to provide military government with metric images from space. This leadership allowed ALCATEL to propose for the export market, within a French collaboration frame, a complete space based system for metric observation.

  17. High-Resolution Land Use and Land Cover Mapping

    USGS Publications Warehouse

    ,

    1999-01-01

    As the Nation?s population grows, quantifying, monitoring, and managing land use becomes increasingly important. The U.S. Geological Survey (USGS) has a long heritage of leadership and innovation in land use and land cover (LULC) mapping that has been the model both nationally and internationally for over 20 years. At present, the USGS is producing high-resolution LULC data for several watershed and urban areas within the United States. This high-resolution LULC mapping is part of an ongoing USGS Land Cover Characterization Program (LCCP). The four components of the LCCP are global (1:2,000,000-scale), national (1:100,000-scale), urban (1:24,000-scale), and special projects (various scales and time periods). Within the urban and special project components, the USGS Rocky Mountain Mapping Center (RMMC) is collecting historical as well as contemporary high-resolution LULC data. RMMC?s high-resolution LULC mapping builds on the heritage and success of previous USGS LULC programs and provides LULC information to meet user requirements.

  18. An 8 bit 1 MS/s SAR ADC with 7.72-ENOB

    NASA Astrophysics Data System (ADS)

    Duan, Jihai; Zhu, Zhiyong; Deng, Jinli; Xu, Weilin

    2017-08-01

    This paper presents a low power 8-bit 1 MS/s SAR ADC with 7.72-bit ENOB. Without an op-amp, an improved segmented capacitor DAC is proposed to reduce the capacitance and the chip area. A dynamic latch comparator with output offset voltage storage technology is used to improve the precision. Adding an extra positive feedback in the latch is to increase the speed. What is more, two pairs of CMOS switches are utilized to eliminate the kickback noise introduced by the latch. The proposed SAR ADC was fabricated in SMIC 0.18 {{μ }}{{m}} CMOS technology. The measured results show that this design achieves an SFDR of 61.8 dB and an ENOB of 7.72 bits, and it consumes 67.5 μW with the FOM of 312 fJ/conversion-step at 1 MS/s sample under 1.8 V power supply. Project supported by the National Natural Science Foundation of China (Nos. 61161003, 61264001, 61166004) and the Guangxi Key Laboratory of Precision Navigation Technology and Application Foundation (No. DH201501).

  19. High resolution NMR imaging using a high field yokeless permanent magnet.

    PubMed

    Kose, Katsumi; Haishi, Tomoyuki

    2011-01-01

    We measured the homogeneity and stability of the magnetic field of a high field (about 1.04 tesla) yokeless permanent magnet with 40-mm gap for high resolution nuclear magnetic resonance (NMR) imaging. Homogeneity was evaluated using a 3-dimensional (3D) lattice phantom and 3D spin-echo imaging sequences. In the central sphere (20-mm diameter), peak-to-peak magnetic field inhomogeneity was about 60 ppm, and the root-mean-square was 8 ppm. We measured room temperature, magnet temperature, and NMR frequency of the magnet simultaneously every minute for about 68 hours with and without the thermal insulator of the magnet. A simple mathematical model described the magnet's thermal property. Based on magnet performance, we performed high resolution (up to [20 µm](2)) imaging with internal NMR lock sequences of several biological samples. Our results demonstrated the usefulness of the high field small yokeless permanent magnet for high resolution NMR imaging.

  20. A high-resolution time-to-digital converter using a three-level resolution

    NASA Astrophysics Data System (ADS)

    Dehghani, Asma; Saneei, Mohsen; Mahani, Ali

    2016-08-01

    In this article, a three-level resolution Vernier delay line time-to-digital converter (TDC) was proposed. The proposed TDC core was based on the pseudo-differential digital architecture that made it insensitive to nMOS and pMOS transistor mismatches. It also employed a Vernier delay line (VDL) in conjunction with an asynchronous read-out circuitry. The time interval resolution was equal to the difference of delay between buffers of upper and lower chains. Then, via the extra chain included in the lower delay line, resolution was controlled and power consumption was reduced. This method led to high resolution and low power consumption. The measurement results of TDC showed a resolution of 4.5 ps, 12-bit output dynamic range, and integral nonlinearity of 1.5 least significant bits. This TDC achieved the consumption of 68.43 µW from 1.1-V supply.

  1. Automatic optimization high-speed high-resolution OCT retinal imaging at 1μm

    NASA Astrophysics Data System (ADS)

    Cua, Michelle; Liu, Xiyun; Miao, Dongkai; Lee, Sujin; Lee, Sieun; Bonora, Stefano; Zawadzki, Robert J.; Mackenzie, Paul J.; Jian, Yifan; Sarunic, Marinko V.

    2015-03-01

    High-resolution OCT retinal imaging is important in providing visualization of various retinal structures to aid researchers in better understanding the pathogenesis of vision-robbing diseases. However, conventional optical coherence tomography (OCT) systems have a trade-off between lateral resolution and depth-of-focus. In this report, we present the development of a focus-stacking optical coherence tomography (OCT) system with automatic optimization for high-resolution, extended-focal-range clinical retinal imaging. A variable-focus liquid lens was added to correct for de-focus in real-time. A GPU-accelerated segmentation and optimization was used to provide real-time layer-specific enface visualization as well as depth-specific focus adjustment. After optimization, multiple volumes focused at different depths were acquired, registered, and stitched together to yield a single, high-resolution focus-stacked dataset. Using this system, we show high-resolution images of the ONH, from which we extracted clinically-relevant parameters such as the nerve fiber layer thickness and lamina cribrosa microarchitecture.

  2. High-Resolution Broadband Spectral Interferometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erskine, D J; Edelstein, J

    2002-08-09

    We demonstrate solar spectra from a novel interferometric method for compact broadband high-resolution spectroscopy. The spectral interferometer (SI) is a hybrid instrument that uses a spectrometer to externally disperse the output of a fixed-delay interferometer. It also has been called an externally dispersed interferometer (EDI). The interferometer can be used with linear spectrometers for imaging spectroscopy or with echelle spectrometers for very broad-band coverage. EDI's heterodyning technique enhances the spectrometer's response to high spectral-density features, increasing the effective resolution by factors of several while retaining its bandwidth. The method is extremely robust to instrumental insults such as focal spot sizemore » or displacement. The EDI uses no moving parts, such as purely interferometric FTS spectrometers, and can cover a much wider simultaneous bandpass than other internally dispersed interferometers (e.g. HHS or SHS).« less

  3. The Impact of Horizontal and Temporal Resolution on Convection and Precipitation with High-Resolution GEOS-5

    NASA Technical Reports Server (NTRS)

    Putman, William P.

    2012-01-01

    Using a high-resolution non-hydrostatic version of GEOS-5 with the cubed-sphere finite-volume dynamical core, the impact of spatial and temporal resolution on cloud properties will be evaluated. There are indications from examining convective cluster development in high resolution GEOS-5 forecasts that the temporal resolution within the model may playas significant a role as horizontal resolution. Comparing modeled convective cloud clusters versus satellite observations of brightness temperature, we have found that improved. temporal resolution in GEOS-S accounts for a significant portion of the improvements in the statistical distribution of convective cloud clusters. Using satellite simulators in GEOS-S we will compare the cloud optical properties of GEOS-S at various spatial and temporal resolutions with those observed from MODIS. The potential impact of these results on tropical cyclone formation and intensity will be examined as well.

  4. High resolution PFPE-based molding High resolution PFPE-based molding High resolution PFPE-based molding techniques for nanofabrication of high pattern density sub-20 nm features: A fundamental materials approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Stuart S; Samulski, Edward; Lopez, Renee

    2010-01-01

    ABSTRACT. Described herein is the development and investigation of PFPE-based elastomers for high resolution replica molding applications. The modulus of the elastomeric materials was increased through synthetic and additive approaches while maintaining relatively low surface energies (<25 mN/m). Using practically relevant large area master templates, we show that the resolution of the molds is strongly dependant upon the elastomeric mold modulus. A composite mold approach was used to form flexible molds out of stiff, high modulus materials that allow for replication of sub-20 nm post structures. Sub-100 nm line grating master templates, formed using e-beam lithography, were used to determinemore » the experimental stability of the molding materials. It was observed that as the feature spacing decreased, high modulus composite molds were able to effectively replicate the nano-grating structures without cracking or tear-out defects that typically occur with high modulus elastomers.« less

  5. High-Resolution Array with Prony, MUSIC, and ESPRIT Algorithms

    DTIC Science & Technology

    1992-08-25

    N avalI Research La bora tory AD-A255 514 Washington, DC 20375-5320 NRL/FR/5324-92-9397 High-resolution Array with Prony, music , and ESPRIT...unlimited t"orm n pprovoiREPORT DOCUMENTATION PAGE OMB. o 0 104 0188 4. TITLE AND SUBTITLE S. FUNDING NUMBERS High-resolution Array with Prony. MUSIC . and...the array high-resolution properties of three algorithms: the Prony algo- rithm, the MUSIC algorithm, and the ESPRIT algorithm. MUSIC has been much

  6. Fabricating High-Resolution X-Ray Collimators

    NASA Technical Reports Server (NTRS)

    Appleby, Michael; Atkinson, James E.; Fraser, Iain; Klinger, Jill

    2008-01-01

    A process and method for fabricating multi-grid, high-resolution rotating modulation collimators for arcsecond and sub-arcsecond x-ray and gamma-ray imaging involves photochemical machining and precision stack lamination. The special fixturing and etching techniques that have been developed are used for the fabrication of multiple high-resolution grids on a single array substrate. This technology has application in solar and astrophysics and in a number of medical imaging applications including mammography, computed tomography (CT), single photon emission computed tomography (SPECT), and gamma cameras used in nuclear medicine. This collimator improvement can also be used in non-destructive testing, hydrodynamic weapons testing, and microbeam radiation therapy.

  7. Configurable analog-digital conversion using the neural engineering framework

    PubMed Central

    Mayr, Christian G.; Partzsch, Johannes; Noack, Marko; Schüffny, Rene

    2014-01-01

    Efficient Analog-Digital Converters (ADC) are one of the mainstays of mixed-signal integrated circuit design. Besides the conventional ADCs used in mainstream ICs, there have been various attempts in the past to utilize neuromorphic networks to accomplish an efficient crossing between analog and digital domains, i.e., to build neurally inspired ADCs. Generally, these have suffered from the same problems as conventional ADCs, that is they require high-precision, handcrafted analog circuits and are thus not technology portable. In this paper, we present an ADC based on the Neural Engineering Framework (NEF). It carries out a large fraction of the overall ADC process in the digital domain, i.e., it is easily portable across technologies. The analog-digital conversion takes full advantage of the high degree of parallelism inherent in neuromorphic networks, making for a very scalable ADC. In addition, it has a number of features not commonly found in conventional ADCs, such as a runtime reconfigurability of the ADC sampling rate, resolution and transfer characteristic. PMID:25100933

  8. A high-resolution regional reanalysis for Europe

    NASA Astrophysics Data System (ADS)

    Ohlwein, C.

    2015-12-01

    Reanalyses gain more and more importance as a source of meteorological information for many purposes and applications. Several global reanalyses projects (e.g., ERA, MERRA, CSFR, JMA9) produce and verify these data sets to provide time series as long as possible combined with a high data quality. Due to a spatial resolution down to 50-70km and 3-hourly temporal output, they are not suitable for small scale problems (e.g., regional climate assessment, meso-scale NWP verification, input for subsequent models such as river runoff simulations). The implementation of regional reanalyses based on a limited area model along with a data assimilation scheme is able to generate reanalysis data sets with high spatio-temporal resolution. Within the Hans-Ertel-Centre for Weather Research (HErZ), the climate monitoring branch concentrates efforts on the assessment and analysis of regional climate in Germany and Europe. In joint cooperation with DWD (German Meteorological Service), a high-resolution reanalysis system based on the COSMO model has been developed. The regional reanalysis for Europe matches the domain of the CORDEX EURO-11 specifications, albeit at a higher spatial resolution, i.e., 0.055° (6km) instead of 0.11° (12km) and comprises the assimilation of observational data using the existing nudging scheme of COSMO complemented by a special soil moisture analysis with boundary conditions provided by ERA-Interim data. The reanalysis data set covers the past 20 years. Extensive evaluation of the reanalysis is performed using independent observations with special emphasis on precipitation and high-impact weather situations indicating a better representation of small scale variability. Further, the evaluation shows an added value of the regional reanalysis with respect to the forcing ERA Interim reanalysis and compared to a pure high-resolution dynamical downscaling approach without data assimilation.

  9. High Spatial Resolution Commercial Satellite Imaging Product Characterization

    NASA Technical Reports Server (NTRS)

    Ryan, Robert E.; Pagnutti, Mary; Blonski, Slawomir; Ross, Kenton W.; Stnaley, Thomas

    2005-01-01

    NASA Stennis Space Center's Remote Sensing group has been characterizing privately owned high spatial resolution multispectral imaging systems, such as IKONOS, QuickBird, and OrbView-3. Natural and man made targets were used for spatial resolution, radiometric, and geopositional characterizations. Higher spatial resolution also presents significant adjacency effects for accurate reliable radiometry.

  10. High efficiency multishot interleaved spiral-in/out: acquisition for high-resolution BOLD fMRI.

    PubMed

    Jung, Youngkyoo; Samsonov, Alexey A; Liu, Thomas T; Buracas, Giedrius T

    2013-08-01

    Growing demand for high spatial resolution blood oxygenation level dependent (BOLD) functional magnetic resonance imaging faces a challenge of the spatial resolution versus coverage or temporal resolution tradeoff, which can be addressed by methods that afford increased acquisition efficiency. Spiral acquisition trajectories have been shown to be superior to currently prevalent echo-planar imaging in terms of acquisition efficiency, and high spatial resolution can be achieved by employing multiple-shot spiral acquisition. The interleaved spiral in/out trajectory is preferred over spiral-in due to increased BOLD signal contrast-to-noise ratio (CNR) and higher acquisition efficiency than that of spiral-out or noninterleaved spiral in/out trajectories (Law & Glover. Magn Reson Med 2009; 62:829-834.), but to date applicability of the multishot interleaved spiral in/out for high spatial resolution imaging has not been studied. Herein we propose multishot interleaved spiral in/out acquisition and investigate its applicability for high spatial resolution BOLD functional magnetic resonance imaging. Images reconstructed from interleaved spiral-in and -out trajectories possess artifacts caused by differences in T2 decay, off-resonance, and k-space errors associated with the two trajectories. We analyze the associated errors and demonstrate that application of conjugate phase reconstruction and spectral filtering can substantially mitigate these image artifacts. After applying these processing steps, the multishot interleaved spiral in/out pulse sequence yields high BOLD CNR images at in-plane resolution below 1 × 1 mm while preserving acceptable temporal resolution (4 s) and brain coverage (15 slices of 2 mm thickness). Moreover, this method yields sufficient BOLD CNR at 1.5 mm isotropic resolution for detection of activation in hippocampus associated with cognitive tasks (Stern memory task). The multishot interleaved spiral in/out acquisition is a promising technique for

  11. SPARTAN II: An Instructional High Resolution Land Combat Model

    DTIC Science & Technology

    1993-03-01

    93M-09 SPARTAN II: AN INSTRUCTIONAL HIGH RESOLUTION LAND COMBAT MODEL THESIS DWquALfl’ 4 Presented to the Faculty of the School of Engineering of the...ADVISOR NAJ Edward Negrelli/ENS REALDER MAJ Bruce Marl an/MA LD1 { The goal of this thesis was to improve SPARTAN, a high resolution land combat model...should serve as a useful tool for learning about the advantages and disadvantages of high resolution combat modeling. I wish to thank I4AJ Edward

  12. High Resolution Orientation Imaging Microscopy

    DTIC Science & Technology

    2012-05-02

    Structure of In-Situ Deformations of Steel , TMS, San Diego, 2011 13. Jay Basinger, David Fullwood, Brent Adams, EBSD Detail Extraction for Greater Spatial...Its use has contributed to the development of new steels , aluminum alloys, high TC superconductors, electronic materials, lead-free solders, optical...Resolution The simulated pattern method has been used to recover lattice tetragonality in high-strength low- alloy steels . Since the level of

  13. High-resolution Interferometer Sounder (HIS), phase 2

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The High-resolution Interferometer Sounder (HIS) was successfully built, tested, and flight proven on the NASA U-2/ER-2 high altitude aircraft. The HIS demonstration has shown that, by using the technology of Fourier Transform Spectroscopy (FTS), it is possible to measure the spectrum of upwelling infrared radiance needed for temperature and humidity sounding with high spectral resolution and high radiometric precision. By resolving individual carbon dioxide lines, the retrieved temperature profiles have vertical resolutions of 1 to 2 km and RMS errors less than 1 C, about 2 to 4 times better than possible with current sounders. Implementing this capability on satellite sounders will greatly enhance the dynamical information content of temperature measurements from space. The aircraft model HIS is now a resource which should be used to support field experiments in mesoscale meteorology, to monitor trace gas concentrations and to better understand their effects on climate, to monitor the surface radiation budget and the radiative effects of clouds, and to collect data for research into retrieval techniques, especially under partially cloudy conditions.

  14. Quantitative liver ADC measurements using diffusion-weighted MRI at 3 Tesla: evaluation of reproducibility and perfusion dependence using different techniques for respiratory compensation.

    PubMed

    Larsen, Nis Elbrønd; Haack, Søren; Larsen, Lars Peter Skovgaard; Pedersen, Erik Morre

    2013-10-01

    Diffusion weighted imaging (DWI) of the liver suffers from low signal to noise making 3 Tesla (3 T) an attractive option, but 3 T data is scarce. It was the aim to study the influence of different b values and respiratory compensation methods (RCM) on the apparent diffusion coefficient (ADC) level and on ADC reproducibility at 3 T. Ten healthy volunteers and 12 patients with malignant liver lesions underwent repeated (2-22 days) breathhold, free-breathing and respiratory triggered DWI at 3 T using b values between 0 and 1,000 s/mm(2). The ADCs changed up to 150% in healthy livers and up to 48% in malignant lesions depending on b value combinations. Best ADC reproducibility in healthy livers were obtained with respiratory triggering (95% limits of agreement: ±0.12) and free-breathing (±0.14). In malignant lesions equivalent reproducibility was obtained with less RCM dependence. The use of a lower maximum b value (b = 500) decreased reproducibility (±0.14 to ±0.32) in both normal liver and malignant lesions. Large differences in absolute ADC values and reproducibility caused by varying combinations of clinically realistic b values were demonstrated. Different RCMs caused smaller differences. Lowering maximum b value to 500 increased limits of agreement up to a factor of two. Serial ADC changes larger than approximately 15% can be detected confidently on an individual basis in both malignant lesions and normal liver parenchyma at 3 T using appropriate b values and respiratory compensation.

  15. An atlas of high-resolution IRAS maps on nearby galaxies

    NASA Technical Reports Server (NTRS)

    Rice, Walter

    1993-01-01

    An atlas of far-infrared IRAS maps with near 1 arcmin angular resolution of 30 optically large galaxies is presented. The high-resolution IRAS maps were produced with the Maximum Correlation Method (MCM) image construction and enhancement technique developed at IPAC. The MCM technique, which recovers the spatial information contained in the overlapping detector data samples of the IRAS all-sky survey scans, is outlined and tests to verify the structural reliability and photometric integrity of the high-resolution maps are presented. The infrared structure revealed in individual galaxies is discussed. The atlas complements the IRAS Nearby Galaxy High-Resolution Image Atlas, the high-resolution galaxy images encoded in FITS format, which is provided to the astronomical community as an IPAC product.

  16. Large-field high-resolution mosaic movies

    NASA Astrophysics Data System (ADS)

    Hammerschlag, Robert H.; Sliepen, Guus; Bettonvil, Felix C. M.; Jägers, Aswin P. L.; Sütterlin, Peter; Martin, Sara F.

    2012-09-01

    Movies with fields-of-view larger than normal for high-resolution telescopes will give a better understanding of processes on the Sun, such as filament and active region developments and their possible interactions. New active regions can influence, by their emergence, their environment to the extent of possibly serving as an igniter of the eruption of a nearby filament. A method to create a large field-of-view is to join several fields-of-view into a mosaic. Fields are imaged quickly one after another using fast telescope-pointing. Such a pointing cycle has been automated at the Dutch Open Telescope (DOT), a high-resolution solar telescope located on the Canary Island La Palma. The observer can draw with the computer mouse the desired total field in the guider-telescope image of the whole Sun. The guider telescope is equipped with an H-alpha filter and electronic enhancement of contrast in the image for good visibility of filaments and prominences. The number and positions of the subfields are calculated automatically and represented by an array of bright points indicating the subfield centers inside the drawn rectangle of the total field on the computer screen with the whole-sun image. When the exposures start the telescope repeats automatically the sequence of subfields. Automatic production of flats is also programmed including defocusing and fast motion over the solar disk of the image field. For the first time mosaic movies were programmed from stored information on automated telescope motions from one field to the next. The mosaic movies fill the gap between whole-sun images with limited resolution of synoptic telescopes including space instruments and small-field high-cadence movies of high-resolution solar telescopes.

  17. High Spectral Resolution, High Cadence, Imaging X-Ray Microcalorimeters for Solar Physics

    NASA Technical Reports Server (NTRS)

    Bandler, Simon R.; Bailey, Catherine N.; Bookbinder, Jay A.; DeLuca, Edward E.; Chervenak, Jay A.; Eckart, Megan E.; Finkbeiner, Fred M.; Kelley, Daniel P.; Kelley, Richard L.; Kilbourne, Caroline A.; hide

    2010-01-01

    High spectral resolution, high cadence, imaging x-ray spectroscopy has the potential to revolutionize the study of the solar corona. To that end we have been developing transition-edge-sensor (TES) based x-ray micro calorimeter arrays for future solar physics missions where imaging and high energy resolution spectroscopy will enable previously impossible studies of the dynamics and energetics of the solar corona. The characteristics of these x-ray microcalorimeters are significantly different from conventional micro calorimeters developed for astrophysics because they need to accommodate much higher count rates (300-1000 cps) while maintaining high energy resolution of less than 4 eV FWHM in the X-ray energy band of 0.2-10 keV. The other main difference is a smaller pixel size (less than 75 x 75 square microns) than is typical for x-ray micro calorimeters in order to provide angular resolution less than 1 arcsecond. We have achieved at energy resolution of 2.15 eV at 6 keV in a pixel with a 12 x 12 square micron TES sensor and 34 x 34 x 9.1 micron gold absorber, and a resolution of 2.30 eV at 6 keV in a pixel with a 35 x 35 micron TES and a 57 x 57 x 9.1 micron gold absorber. This performance has been achieved in pixels that are fabricated directly onto solid substrates, ie. they are not supported by silicon nitride membranes. We present the results from these detectors, the expected performance at high count-rates, and prospects for the use of this technology for future Solar missions.

  18. High-resolution MRI in detecting subareolar breast abscess.

    PubMed

    Fu, Peifen; Kurihara, Yasuyuki; Kanemaki, Yoshihide; Okamoto, Kyoko; Nakajima, Yasuo; Fukuda, Mamoru; Maeda, Ichiro

    2007-06-01

    Because subareolar breast abscess has a high recurrence rate, a more effective imaging technique is needed to comprehensively visualize the lesions and guide surgery. We performed a high-resolution MRI technique using a microscopy coil to reveal the characteristics and extent of subareolar breast abscess. High-resolution MRI has potential diagnostic value in subareolar breast abscess. This technique can be used to guide surgery with the aim of reducing the recurrence rate.

  19. Titania High-Resolution Color Composite

    NASA Image and Video Library

    1996-01-29

    This high-resolution color composite of Titania was made from NASA Voyager 2 images taken Jan. 24, 1986, as the spacecraft neared its closest approach to Uranus. A large, trenchlike feature is seen near the terminator. http://photojournal.jpl.nasa.gov/catalog/PIA00036

  20. Recent applications of gas chromatography with high-resolution mass spectrometry.

    PubMed

    Špánik, Ivan; Machyňáková, Andrea

    2018-01-01

    Gas chromatography coupled to high-resolution mass spectrometry is a powerful analytical method that combines excellent separation power of gas chromatography with improved identification based on an accurate mass measurement. These features designate gas chromatography with high-resolution mass spectrometry as the first choice for identification and structure elucidation of unknown volatile and semi-volatile organic compounds. Gas chromatography with high-resolution mass spectrometry quantitative analyses was previously focused on the determination of dioxins and related compounds using magnetic sector type analyzers, a standing requirement of many international standards. The introduction of a quadrupole high-resolution time-of-flight mass analyzer broadened interest in this method and novel applications were developed, especially for multi-target screening purposes. This review is focused on the development and the most interesting applications of gas chromatography coupled to high-resolution mass spectrometry towards analysis of environmental matrices, biological fluids, and food safety since 2010. The main attention is paid to various approaches and applications of gas chromatography coupled to high-resolution mass spectrometry for non-target screening to identify contaminants and to characterize the chemical composition of environmental, food, and biological samples. The most interesting quantitative applications, where a significant contribution of gas chromatography with high-resolution mass spectrometry over the currently used methods is expected, will be discussed as well. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Reconfigurable radio receiver with fractional sample rate converter and multi-rate ADC based on LO-derived sampling clock

    NASA Astrophysics Data System (ADS)

    Park, Sungkyung; Park, Chester Sungchung

    2018-03-01

    A composite radio receiver back-end and digital front-end, made up of a delta-sigma analogue-to-digital converter (ADC) with a high-speed low-noise sampling clock generator, and a fractional sample rate converter (FSRC), is proposed and designed for a multi-mode reconfigurable radio. The proposed radio receiver architecture contributes to saving the chip area and thus lowering the design cost. To enable inter-radio access technology handover and ultimately software-defined radio reception, a reconfigurable radio receiver consisting of a multi-rate ADC with its sampling clock derived from a local oscillator, followed by a rate-adjustable FSRC for decimation, is designed. Clock phase noise and timing jitter are examined to support the effectiveness of the proposed radio receiver. A FSRC is modelled and simulated with a cubic polynomial interpolator based on Lagrange method, and its spectral-domain view is examined in order to verify its effect on aliasing, nonlinearity and signal-to-noise ratio, giving insight into the design of the decimation chain. The sampling clock path and the radio receiver back-end data path are designed in a 90-nm CMOS process technology with 1.2V supply.

  2. Multi-resolution voxel phantom modeling: a high-resolution eye model for computational dosimetry

    NASA Astrophysics Data System (ADS)

    Caracappa, Peter F.; Rhodes, Ashley; Fiedler, Derek

    2014-09-01

    Voxel models of the human body are commonly used for simulating radiation dose with a Monte Carlo radiation transport code. Due to memory limitations, the voxel resolution of these computational phantoms is typically too large to accurately represent the dimensions of small features such as the eye. Recently reduced recommended dose limits to the lens of the eye, which is a radiosensitive tissue with a significant concern for cataract formation, has lent increased importance to understanding the dose to this tissue. A high-resolution eye model is constructed using physiological data for the dimensions of radiosensitive tissues, and combined with an existing set of whole-body models to form a multi-resolution voxel phantom, which is used with the MCNPX code to calculate radiation dose from various exposure types. This phantom provides an accurate representation of the radiation transport through the structures of the eye. Two alternate methods of including a high-resolution eye model within an existing whole-body model are developed. The accuracy and performance of each method is compared against existing computational phantoms.

  3. High-resolution ground-based spectroscopy: where and how ?

    NASA Astrophysics Data System (ADS)

    Pallavicini, R.

    2002-07-01

    An overview is presented of high-resolution optical spectrographs in operation or under development at large telescopes, with emphasis on those facilities best suited for the study of late-type stars and stellar surface inhomogeneities. Plans for the development of new high-resolution spectroscopic instruments are discussed with emphasis on the ICE spectrograph for the PEPSI spectropolarimeter at the LBT.

  4. High Spectral Resolution Lidar: System Calibration

    NASA Astrophysics Data System (ADS)

    Vivek Vivekanandan, J.; Morley, Bruce; Spuler, Scott; Eloranta, Edwin

    2015-04-01

    One of the unique features of the high spectral resolution lidar (HSRL) is simultaneous measurements of backscatter and extinction of atmosphere. It separates molecular scattering from aerosol and cloud particle backscatter based on their Doppler spectrum width. Scattering from aerosol and cloud particle are referred as Mie scattering. Molecular or Rayleigh scattering is used as a reference for estimating aerosol extinction and backscatter cross-section. Absolute accuracy of the backscattered signals and their separation into Rayleigh and Mie scattering depends on spectral purity of the transmitted signals, accurate measurement of transmit power, and precise performance of filters. Internal calibration is used to characterize optical subsystems Descriptions of high spectral resolution lidar system and its measurement technique can be found in Eloronta (2005) and Hair et al.(2001). Four photon counting detectors are used to measure the backscatter from the combined Rayleigh and molecular scattering (high and low gain), molecular scattering and cross-polarized signal. All of the detectors are sensitive to crosstalk or leakage through the optical filters used to separate the received signals and special data files are used to remove these effects as much as possible. Received signals are normalized with respect to the combined channel response to Mie and Rayleigh scattering. The laser transmit frequency is continually monitored and tuned to the 1109 Iodine absorption line. Aerosol backscatter cross-section is measured by referencing the aerosol return signal to the molecular return signal. Extinction measurements are calculated based on the differences between the expected (theoretical) and actual change in the molecular return. In this paper an overview of calibration of the HSRL is presented. References: Eloranta, E. W., High Spectral Resolution Lidar in Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere, Klaus Weitkamp editor, Springer Series in Optical

  5. High-Resolution Intravital Microscopy

    PubMed Central

    Andresen, Volker; Pollok, Karolin; Rinnenthal, Jan-Leo; Oehme, Laura; Günther, Robert; Spiecker, Heinrich; Radbruch, Helena; Gerhard, Jenny; Sporbert, Anje; Cseresnyes, Zoltan; Hauser, Anja E.; Niesner, Raluca

    2012-01-01

    Cellular communication constitutes a fundamental mechanism of life, for instance by permitting transfer of information through synapses in the nervous system and by leading to activation of cells during the course of immune responses. Monitoring cell-cell interactions within living adult organisms is crucial in order to draw conclusions on their behavior with respect to the fate of cells, tissues and organs. Until now, there is no technology available that enables dynamic imaging deep within the tissue of living adult organisms at sub-cellular resolution, i.e. detection at the level of few protein molecules. Here we present a novel approach called multi-beam striped-illumination which applies for the first time the principle and advantages of structured-illumination, spatial modulation of the excitation pattern, to laser-scanning-microscopy. We use this approach in two-photon-microscopy - the most adequate optical deep-tissue imaging-technique. As compared to standard two-photon-microscopy, it achieves significant contrast enhancement and up to 3-fold improved axial resolution (optical sectioning) while photobleaching, photodamage and acquisition speed are similar. Its imaging depth is comparable to multifocal two-photon-microscopy and only slightly less than in standard single-beam two-photon-microscopy. Precisely, our studies within mouse lymph nodes demonstrated 216% improved axial and 23% improved lateral resolutions at a depth of 80 µm below the surface. Thus, we are for the first time able to visualize the dynamic interactions between B cells and immune complex deposits on follicular dendritic cells within germinal centers (GCs) of live mice. These interactions play a decisive role in the process of clonal selection, leading to affinity maturation of the humoral immune response. This novel high-resolution intravital microscopy method has a huge potential for numerous applications in neurosciences, immunology, cancer research and developmental biology

  6. Analysis of the impact of spatial resolution on land/water classifications using high-resolution aerial imagery

    USGS Publications Warehouse

    Enwright, Nicholas M.; Jones, William R.; Garber, Adrienne L.; Keller, Matthew J.

    2014-01-01

    Long-term monitoring efforts often use remote sensing to track trends in habitat or landscape conditions over time. To most appropriately compare observations over time, long-term monitoring efforts strive for consistency in methods. Thus, advances and changes in technology over time can present a challenge. For instance, modern camera technology has led to an increasing availability of very high-resolution imagery (i.e. submetre and metre) and a shift from analogue to digital photography. While numerous studies have shown that image resolution can impact the accuracy of classifications, most of these studies have focused on the impacts of comparing spatial resolution changes greater than 2 m. Thus, a knowledge gap exists on the impacts of minor changes in spatial resolution (i.e. submetre to about 1.5 m) in very high-resolution aerial imagery (i.e. 2 m resolution or less). This study compared the impact of spatial resolution on land/water classifications of an area dominated by coastal marsh vegetation in Louisiana, USA, using 1:12,000 scale colour-infrared analogue aerial photography (AAP) scanned at four different dot-per-inch resolutions simulating ground sample distances (GSDs) of 0.33, 0.54, 1, and 2 m. Analysis of the impact of spatial resolution on land/water classifications was conducted by exploring various spatial aspects of the classifications including density of waterbodies and frequency distributions in waterbody sizes. This study found that a small-magnitude change (1–1.5 m) in spatial resolution had little to no impact on the amount of water classified (i.e. percentage mapped was less than 1.5%), but had a significant impact on the mapping of very small waterbodies (i.e. waterbodies ≤ 250 m2). These findings should interest those using temporal image classifications derived from very high-resolution aerial photography as a component of long-term monitoring programs.

  7. A case of a resectable single hepatic epithelioid hemangioendothelioma with characteristic imaging by ADC map.

    PubMed

    Okano, Hiroshi; Nakajima, Hideki; Tochio, Tomomasa; Suga, Daisuke; Kumazawa, Hiroaki; Isono, Yoshiaki; Tanaka, Hiroki; Matsusaki, Shimpei; Sase, Tomohiro; Saito, Tomonori; Mukai, Katsumi; Nishimura, Akira; Matsushima, Nobuyoshi; Baba, Youichirou; Murata, Tetsuya; Hamada, Takashi; Taoka, Hiroki

    2015-12-01

    A 47-year-old woman with a single-nodule hepatic tumor was referred to our hospital. She had no symptoms. The tumor was located at the surface of the right lobe of the liver; it showed peripheral low signal intensity on a magnetic resonance imaging apparent diffusion coefficient (ADC) map, and an influx of blood flow into the peripheral area of the tumor at the early vascular phase on perflubutane microbubble (Sonazoid(®)) contrast-enhanced (CE) ultrasonography. Since we suspected a malignant tumor, the patient underwent surgical resection. The hepatic tumor was resected curatively. Pathological examination revealed that the tumor was composed of epithelioid cells with an epithelioid structure and/or cord-like structure. Immunohistochemical staining was positive for cluster of differentiation 34 and factor VIII-related antigen. Based on the above, a final diagnosis of hepatic epithelioid hemangioendothelioma (EHE) was made. Hepatic EHE is a rare hepatic tumor: only a few cases of hepatic EHE with curative resection have been reported. We were unable to reach a diagnosis of hepatic EHE by imaging studies; however, an ADC map was useful in showing the malignant potential of the tumor, and CE ultrasonography was useful in revealing the peripheral blood flow of the tumor. When an unusual hepatic mass is encountered, hepatic EHE should be kept in mind, and the mass should be inspected with more than one imaging modality, including an ADC map, in the process of differential diagnosis.

  8. Image Quality in High-resolution and High-cadence Solar Imaging

    NASA Astrophysics Data System (ADS)

    Denker, C.; Dineva, E.; Balthasar, H.; Verma, M.; Kuckein, C.; Diercke, A.; González Manrique, S. J.

    2018-03-01

    Broad-band imaging and even imaging with a moderate bandpass (about 1 nm) provides a photon-rich environment, where frame selection (lucky imaging) becomes a helpful tool in image restoration, allowing us to perform a cost-benefit analysis on how to design observing sequences for imaging with high spatial resolution in combination with real-time correction provided by an adaptive optics (AO) system. This study presents high-cadence (160 Hz) G-band and blue continuum image sequences obtained with the High-resolution Fast Imager (HiFI) at the 1.5-meter GREGOR solar telescope, where the speckle-masking technique is used to restore images with nearly diffraction-limited resolution. The HiFI employs two synchronized large-format and high-cadence sCMOS detectors. The median filter gradient similarity (MFGS) image-quality metric is applied, among others, to AO-corrected image sequences of a pore and a small sunspot observed on 2017 June 4 and 5. A small region of interest, which was selected for fast-imaging performance, covered these contrast-rich features and their neighborhood, which were part of Active Region NOAA 12661. Modifications of the MFGS algorithm uncover the field- and structure-dependency of this image-quality metric. However, MFGS still remains a good choice for determining image quality without a priori knowledge, which is an important characteristic when classifying the huge number of high-resolution images contained in data archives. In addition, this investigation demonstrates that a fast cadence and millisecond exposure times are still insufficient to reach the coherence time of daytime seeing. Nonetheless, the analysis shows that data acquisition rates exceeding 50 Hz are required to capture a substantial fraction of the best seeing moments, significantly boosting the performance of post-facto image restoration.

  9. High-resolution EEG (HR-EEG) and magnetoencephalography (MEG).

    PubMed

    Gavaret, M; Maillard, L; Jung, J

    2015-03-01

    High-resolution EEG (HR-EEG) and magnetoencephalography (MEG) allow the recording of spontaneous or evoked electromagnetic brain activity with excellent temporal resolution. Data must be recorded with high temporal resolution (sampling rate) and high spatial resolution (number of channels). Data analyses are based on several steps with selection of electromagnetic signals, elaboration of a head model and use of algorithms in order to solve the inverse problem. Due to considerable technical advances in spatial resolution, these tools now represent real methods of ElectroMagnetic Source Imaging. HR-EEG and MEG constitute non-invasive and complementary examinations, characterized by distinct sensitivities according to the location and orientation of intracerebral generators. In the presurgical assessment of drug-resistant partial epilepsies, HR-EEG and MEG can characterize and localize interictal activities and thus the irritative zone. HR-EEG and MEG often yield significant additional data that are complementary to other presurgical investigations and particularly relevant in MRI-negative cases. Currently, the determination of the epileptogenic zone and functional brain mapping remain rather less well-validated indications. In France, in 2014, HR-EEG is now part of standard clinical investigation of epilepsy, while MEG remains a research technique. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  10. Advanced very high resolution radiometer

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The advanced very high resolution radiometer development program is considered. The program covered the design, construction, and test of a breadboard model, engineering model, protoflight model, mechanical structural model, and a life test model. Special bench test and calibration equipment was also developed for use on the program.

  11. Consecutive assessment of FA and ADC values of normal lumbar nerve roots from the junction of the dura mater.

    PubMed

    Miyagi, Ryo; Sakai, Toshinori; Yamabe, Eiko; Yoshioka, Hiroshi

    2015-06-27

    Diffusion weighted imaging (DWI) and diffusion tensor imaging (DTI) are widely used in the evaluation of the central nervous system and recently have been reported as a potential tool for diagnosis of the peripheral nerve or the lumbar nerve entrapment. The purpose of this study was to evaluate consecutive changes in apparent diffusion coefficient (ADC) and fractional anisotropy (FA) values of normal lumbar nerve roots from the junction of the dura mater. The lumbar spinal nerves were examined in 6 male healthy volunteers (mean age, 35 years) with no experiences of sciatica, with a 3.0-T MR unit using a five-element phased-array surface coil. DTI was performed with the following imaging parameters: 11084.6/73.7 ms for TR/TE; b-value, 800 s/mm2; MPG, 33 directions; slice thickness, 1.5 mm; and total scan time, 7 min 35 s. ADC and FA values at all consecutive points along the L4, L5 and S1 nerves were quantified on every 1.5 mm slice from the junction of the dura mater using short fiber tracking. ADC values of all L4, 5, and S1 nerve roots decreased linearly up to 15 mm from the dura junction and was constant distally afterward. ADC values in the proximal portion demonstrated S1 > L5 > L4 (p < 0.05). On the other hand, FA values increased linearly up to 15 mm from the dura junction, and was constant distally afterward. FA values in the proximal portion showed L4 > L5 > S1 (p < 0.05). Our study demonstrated that ADC and FA values of each L4, 5, and S1 at the proximal portion from the junction of the dura matter changed linearly. It would be useful to know the normal profile of DTI values by location of each nerve root so that we can detect subtle abnormalities in each nerve root.

  12. High Spatiotemporal Resolution Prostate MRI

    DTIC Science & Technology

    2017-09-01

    AWARD NUMBER: W81XWH-15-1-0341 TITLE: High Spatiotemporal Resolution Prostate MRI PRINCIPAL INVESTIGATOR: Stephen J. Riederer, Ph.D...views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army...ADDRESS. 1. REPORT DATE September 2017 2. REPORT TYPE Annual 3. DATES COVERED 15 Aug 2016 - 14 Aug 2017 4. TITLE AND SUBTITLE High Spatiotemporal

  13. High-resolution streaming video integrated with UGS systems

    NASA Astrophysics Data System (ADS)

    Rohrer, Matthew

    2010-04-01

    Imagery has proven to be a valuable complement to Unattended Ground Sensor (UGS) systems. It provides ultimate verification of the nature of detected targets. However, due to the power, bandwidth, and technological limitations inherent to UGS, sacrifices have been made to the imagery portion of such systems. The result is that these systems produce lower resolution images in small quantities. Currently, a high resolution, wireless imaging system is being developed to bring megapixel, streaming video to remote locations to operate in concert with UGS. This paper will provide an overview of how using Wifi radios, new image based Digital Signal Processors (DSP) running advanced target detection algorithms, and high resolution cameras gives the user an opportunity to take high-powered video imagers to areas where power conservation is a necessity.

  14. Preoperative grading of supratentorial gliomas using high or standard b-value diffusion-weighted MR imaging at 3T.

    PubMed

    Cihangiroglu, M M; Ozturk-Isik, E; Firat, Z; Kilickesmez, O; Ulug, A M; Ture, U

    2017-03-01

    The goal of this study was to compare diffusion-weighted magnetic resonance imaging (DW-MRI) using high b-value (b=3000s/mm 2 ) to DW-MRI using standard b-value (b=1000s/mm 2 ) in the preoperative grading of supratentorial gliomas. Fifty-three patients with glioma had brain DW-MRI at 3T using two different b-values (b=1000s/mm 2 and b=3000s/mm 2 ). There were 35 men and 18 women with a mean age of 40.5±17.1 years (range: 18-79 years). Mean, minimum, maximum, and range of apparent diffusion coefficient (ADC) values for solid tumor ROIs (ADC mean , ADC min , ADC max , and ADC diff ), and the normalized ADC (ADC ratio ) were calculated. A Kruskal-Wallis statistic with Bonferroni correction for multiple comparisons was applied to detect significant ADC parameter differences between tumor grades by including or excluding 19 patients with an oligodendroglioma. Receiver operating characteristic curve analysis was conducted to define appropriate cutoff values for grading gliomas. No differences in ADC derived parameters were found between grade II and grade III gliomas. Mean ADC values using standard b-value were 1.17±0.27×10 -3 mm 2 /s [range: 0.63-1.61], 1.05±0.22×10 -3 mm 2 /s [range: 0.73-1.33], and 0.86±0.23×10 -3 mm 2 /s [range: 0.52-1.46] for grades II, III and IV gliomas, respectively. Using high b-value, mean ADC values were 0.89±0.24×10 -3 mm 2 /s [range: 0.42-1.25], 0.82±0.20×10 -3 mm 2 /s [range: 0.56-1.10], and 0.59±0.17×10 -3 mm 2 /s [range: 0.40-1.01] for grades II, III and IV gliomas, respectively. ADC mean , ADC ratio , ADC max , and ADC min were different between grade II and grade IV gliomas at both standard and high b-values. Differences in ADC mean , ADC max , and ADC diff were found between grade III and grade IV only using high b-value. ADC parameters derived from DW-MRI using a high b-value allows a better differential diagnosis of gliomas, especially for differentiating grades III and IV, than those derived from DW-MRI using a standard

  15. High-resolution reconstruction for terahertz imaging.

    PubMed

    Xu, Li-Min; Fan, Wen-Hui; Liu, Jia

    2014-11-20

    We present a high-resolution (HR) reconstruction model and algorithms for terahertz imaging, taking advantage of super-resolution methodology and algorithms. The algorithms used include projection onto a convex sets approach, iterative backprojection approach, Lucy-Richardson iteration, and 2D wavelet decomposition reconstruction. Using the first two HR reconstruction methods, we successfully obtain HR terahertz images with improved definition and lower noise from four low-resolution (LR) 22×24 terahertz images taken from our homemade THz-TDS system at the same experimental conditions with 1.0 mm pixel. Using the last two HR reconstruction methods, we transform one relatively LR terahertz image to a HR terahertz image with decreased noise. This indicates potential application of HR reconstruction methods in terahertz imaging with pulsed and continuous wave terahertz sources.

  16. AVHRR/1-FM Advanced Very High Resolution Radiometer

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The advanced very high resolution radiometer is discussed. The program covers design, construction, and test of a breadboard model, engineering model, protoflight model, mechanical/structural model, and a life test model. Special bench test and calibration equipment was developed for use on the program. The flight model program objectives were to fabricate, assemble and test four of the advanced very high resolution radiometers along with a bench cooler and collimator.

  17. High Efficiency Multi-shot Interleaved Spiral-In/Out Acquisition for High Resolution BOLD fMRI

    PubMed Central

    Jung, Youngkyoo; Samsonov, Alexey A.; Liu, Thomas T.; Buracas, Giedrius T.

    2012-01-01

    Growing demand for high spatial resolution BOLD functional MRI faces a challenge of the spatial resolution vs. coverage or temporal resolution tradeoff, which can be addressed by methods that afford increased acquisition efficiency. Spiral acquisition trajectories have been shown to be superior to currently prevalent echo-planar imaging in terms of acquisition efficiency, and high spatial resolution can be achieved by employing multiple-shot spiral acquisition. The interleaved spiral in-out trajectory is preferred over spiral-in due to increased BOLD signal CNR and higher acquisition efficiency than that of spiral-out or non-interleaved spiral in/out trajectories (1), but to date applicability of the multi-shot interleaved spiral in-out for high spatial resolution imaging has not been studied. Herein we propose multi-shot interleaved spiral in-out acquisition and investigate its applicability for high spatial resolution BOLD fMRI. Images reconstructed from interleaved spiral-in and -out trajectories possess artifacts caused by differences in T2* decay, off-resonance and k-space errors associated with the two trajectories. We analyze the associated errors and demonstrate that application of conjugate phase reconstruction and spectral filtering can substantially mitigate these image artifacts. After applying these processing steps, the multishot interleaved spiral in-out pulse sequence yields high BOLD CNR images at in-plane resolution below 1x1 mm while preserving acceptable temporal resolution (4 s) and brain coverage (15 slices of 2 mm thickness). Moreover, this method yields sufficient BOLD CNR at 1.5 mm isotropic resolution for detection of activation in hippocampus associated with cognitive tasks (Stern memory task). The multi-shot interleaved spiral in-out acquisition is a promising technique for high spatial resolution BOLD fMRI applications. PMID:23023395

  18. CrIS High Resolution Hyperspectral Radiances

    NASA Astrophysics Data System (ADS)

    Hepplewhite, C. L.; Strow, L. L.; Motteler, H.; Desouza-Machado, S. G.; Tobin, D. C.; Martin, G.; Gumley, L.

    2014-12-01

    The CrIS hyperspectral sounder flying on Suomi-NPPpresently has reduced spectral resolution in the mid-wave andshort-wave spectral bands due to truncation of the interferograms inorbit. CrIS has occasionally downlinked full interferograms for thesebands (0.8 cm max path, or 0.625 cm-1 point spacing) for a feworbits up to a full day. Starting Oct.1, 2014 CrIS will be commandedto download full interferograms continuously for the remainder of themission, although NOAA will not immediately produce high-spectralresolution Sensor Data Records (SDRs). Although the originalmotivation for operating in high-resolution mode was improved spectralcalibration, these new data will also improve (1) vertical sensitivityto water vapor, and (2) greatly increase the CrIS sensitivity tocarbon monoxide. This should improve (1) NWP data assimilation ofwater vapor and (2) provide long-term continuity of carbon monoxideretrievals begun with MOPITT on EOS-TERRA and AIRS on EOS-AQUA. Wehave developed a SDR algorithm to produce calibrated high-spectralresolution radiances which includes several improvements to theexisting CrIS SDR algorithm, and will present validation of thesehigh-spectral resolution radiances using a variety of techniques,including bias evaluation versus NWP model data and inter-comparisonsto AIRS and IASI using simultaneous nadir overpasses (SNOs). Theauthors are presently working to implement this algorithm for NASASuomi NPP Program production of Earth System Data Records.

  19. High resolution gamma-ray spectroscopy at high count rates with a prototype High Purity Germanium detector

    NASA Astrophysics Data System (ADS)

    Cooper, R. J.; Amman, M.; Vetter, K.

    2018-04-01

    High-resolution gamma-ray spectrometers are required for applications in nuclear safeguards, emergency response, and fundamental nuclear physics. To overcome one of the shortcomings of conventional High Purity Germanium (HPGe) detectors, we have developed a prototype device capable of achieving high event throughput and high energy resolution at very high count rates. This device, the design of which we have previously reported on, features a planar HPGe crystal with a reduced-capacitance strip electrode geometry. This design is intended to provide good energy resolution at the short shaping or digital filter times that are required for high rate operation and which are enabled by the fast charge collection afforded by the planar geometry crystal. In this work, we report on the initial performance of the system at count rates up to and including two million counts per second.

  20. A reconfigurable medically cohesive biomedical front-end with ΣΔ ADC in 0.18µm CMOS.

    PubMed

    Jha, Pankaj; Patra, Pravanjan; Naik, Jairaj; Acharya, Amit; Rajalakshmi, P; Singh, Shiv Govind; Dutta, Ashudeb

    2015-08-01

    This paper presents a generic programmable analog front-end (AFE) for acquisition and digitization of various biopotential signals. This includes a lead-off detection circuit, an ultra-low current capacitively coupled signal conditioning stage with programmable gain and bandwidth, a new mixed signal automatic gain control (AGC) mechanism and a medically cohesive reconfigurable ΣΔ ADC. The full system is designed in UMC 0.18μm CMOS. The AFE achieves an overall linearity of more 10 bits with 0.47μW power consumption. The ADC provides 2(nd) order noise-shaping while using single integrator and an ENOB of ~11 bits with 5μW power consumption. The system was successfully verified for various ECG signals from PTB database. This system is intended for portable batteryless u-Healthcare devices.

  1. High Resolution Thermometry for EXACT

    NASA Technical Reports Server (NTRS)

    Panek, J. S.; Nash, A. E.; Larson, M.; Mulders, N.

    2000-01-01

    High Resolution Thermometers (HRTs) based on SQUID detection of the magnetization of a paramagnetic salt or a metal alloy has been commonly used for sub-nano Kelvin temperature resolution in low temperature physics experiments. The main applications to date have been for temperature ranges near the lambda point of He-4 (2.177 K). These thermometers made use of materials such as Cu(NH4)2Br4 *2H2O, GdCl3, or PdFe. None of these materials are suitable for EXACT, which will explore the region of the He-3/He-4 tricritical point at 0.87 K. The experiment requirements and properties of several candidate paramagnetic materials will be presented, as well as preliminary test results.

  2. The investigation of classification methods of high-resolution imagery

    Treesearch

    Tracey S. Frescino; Gretchen G. Moisen; Larry DeBlander; Michel Guerin

    2007-01-01

    As remote-sensing technology advances, high-resolution imagery, such as Quickbird and photography from the National Agriculture Imagery Program (NAIP), is becoming more readily available for use in forestry applications. Quickbird imagery is currently the highest resolution imagery commercially available. It consists of 2.44-m (8-ft) resolution multispectral bands...

  3. Evacuee Compliance Behavior Analysis using High Resolution Demographic Information

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Wei; Han, Lee; Liu, Cheng

    2014-01-01

    The purpose of this study is to examine whether evacuee compliance behavior with route assignments from different resolutions of demographic data would impact the evacuation performance. Most existing evacuation strategies assume that travelers will follow evacuation instructions, while in reality a certain percent of evacuees do not comply with prescribed instructions. In this paper, a comparison study of evacuation assignment based on Traffic Analysis Zones (TAZ) and high resolution LandScan USA Population Cells (LPC) were conducted for the detailed road network representing Alexandria, Virginia. A revised platform for evacuation modeling built on high resolution demographic data and activity-based microscopic trafficmore » simulation is proposed. The results indicate that evacuee compliance behavior affects evacuation efficiency with traditional TAZ assignment, but it does not significantly compromise the efficiency with high resolution LPC assignment. The TAZ assignment also underestimates the real travel time during evacuation, especially for high compliance simulations. This suggests that conventional evacuation studies based on TAZ assignment might not be effective at providing efficient guidance to evacuees. From the high resolution data perspective, traveler compliance behavior is an important factor but it does not impact the system performance significantly. The highlight of evacuee compliance behavior analysis should be emphasized on individual evacuee level route/shelter assignments, rather than the whole system performance.« less

  4. NOAA's Use of High-Resolution Imagery

    NASA Technical Reports Server (NTRS)

    Hund, Erik

    2007-01-01

    NOAA's use of high-resolution imagery consists of: a) Shoreline mapping and nautical chart revision; b) Coastal land cover mapping; c) Benthic habitat mapping; d) Disaster response; and e) Imagery collection and support for coastal programs.

  5. Development of high resolution target monitor.

    DOT National Transportation Integrated Search

    2008-01-01

    The proposed High-resolution Target Movement Monitor uses triangulation theory but in a unique way. Unlike the commercially available triangulation systems which use sensing diodes to perceive reflected laser signatures and are limited to very short ...

  6. Detection of ISAba1 in association with a novel allelic variant of the β-lactamase ADC-82 and class D β-lactamase genes mediating carbapenem resistance among the clinical isolates of MDR A. baumannii.

    PubMed

    Saranathan, Rajagopalan; Kumari, Rinki; Kalaivani, Ramakrishnan; Suresh, Sah; Rani, Anshu; Purty, Shashikala; Prashanth, K

    2017-03-01

    The objective of the present study is to investigate the diverse resistance determinants, their association with insertion sequence mobile elements and predilection of a particular clone for such associations in Acinetobacter baumannii. Fifty-four consecutive isolates collected during 2011-2012 from a tertiary care hospital were subjected to susceptibility testing followed by PCR screening of commonly reported β-lactamases and 16S rRNA methyltransferase encoding genes. The integrity of resistance-nodulation-cell division efflux pump-related genes in their respective operons was also investigated. β-Lactamase genes such as blaADC (100 %), blaOXA-23 (81 %), blaPER-1 (81 %), blaIMP-1 (31 %) and blaNDM-1 (15 %) were found to be present more frequently while blaVIM-2 and blaOXA-24 were not observed in our study population. ISAba1 was associated only with blaOXA-51-like like (30 %), blaOXA-23-like (55 %) and blaADC-like (33 %). armA was found in 87 % of isolates and ISAba1 linked with one novel variant of ADC, namely blaADC-82, which was identified to have 15 nucleotide differences with blaADC-79, and this finding is of much significance. In many isolates, efflux pump genes were not intact, resulting in severely altered effluxing functions. For the first time, we have identified ISAba1-mediated disruption of adeN among the isolates of ST 195B, which would have led to overexpression of AdeIJK efflux pump causing elevated resistance. Multilocus sequence typing revealed the predominance of CC 92B (IC-IIB) and CC 447B clonal complexes. High incidence of IC-II clones, novel resistance determinants (ADC-82) and elevated resistance mediated by ISAba1 reported here will be of enormous importance while assessing the emergence of extremely resistant A. baumannii in India.

  7. High resolution tsunami inversion for 2010 Chile earthquake

    NASA Astrophysics Data System (ADS)

    Wu, T.-R.; Ho, T.-C.

    2011-12-01

    We investigate the feasibility of inverting high-resolution vertical seafloor displacement from tsunami waveforms. An inversion method named "SUTIM" (small unit tsunami inversion method) is developed to meet this goal. In addition to utilizing the conventional least-square inversion, this paper also enhances the inversion resolution by Grid-Shifting method. A smooth constraint is adopted to gain stability. After a series of validation and performance tests, SUTIM is used to study the 2010 Chile earthquake. Based upon data quality and azimuthal distribution, we select tsunami waveforms from 6 GLOSS stations and 1 DART buoy record. In total, 157 sub-faults are utilized for the high-resolution inversion. The resolution reaches 10 sub-faults per wavelength. The result is compared with the distribution of the aftershocks and waveforms at each gauge location with very good agreement. The inversion result shows that the source profile features a non-uniform distribution of the seafloor displacement. The highly elevated vertical seafloor is mainly concentrated in two areas: one is located in the northern part of the epicentre, between 34° S and 36° S; the other is in the southern part, between 37° S and 38° S.

  8. Rayleigh-wave mode separation by high-resolution linear radon transform

    USGS Publications Warehouse

    Luo, Y.; Xia, J.; Miller, R.D.; Xu, Y.; Liu, J.; Liu, Q.

    2009-01-01

    Multichannel analysis of surface waves (MASW) method is an effective tool for obtaining vertical shear wave profiles from a single non-invasive measurement. One key step of the MASW method is generation of a dispersion image and extraction of a reliable dispersion curve from raw multichannel shot records. Because different Rayleigh-wave modes normally interfere with each other in the time and space domain, it is necessary to perform mode separation and reconstruction to increase the accuracy of phase velocities determined from a dispersion image. In this paper, we demonstrate the effectiveness of high-resolution linear Radon transform (LRT) as a means of separating and reconstructing multimode, dispersive Rayleigh-wave energy. We first introduce high-resolution LRT methods and Rayleigh-wave mode separation using high-resolution LRT. Next, we use synthetic data and a real-world example to demonstrate the effectiveness of Rayleigh-wave mode separation using high-resolution LRT. Our synthetic and real-world results demonstrate that (1) high-resolution LRT successfully separates and reconstructs multimode dispersive Rayleigh-wave energy with high resolution allowing the multimode energy to be more accurately determined. The horizontal resolution of the Rayleigh-wave method can be increased by extraction of dispersion curves from a pair of traces in the mode-separated shot gather and (2) multimode separation and reconstruction expand the usable frequency range of higher mode dispersive energy, which increases the depth of investigation and provides a means for accurately determining cut-off frequencies. ?? 2009 The Authors Journal compilation ?? 2009 RAS.

  9. Survey of currently available high-resolution raster graphics systems

    NASA Technical Reports Server (NTRS)

    Jones, Denise R.

    1987-01-01

    Presented are data obtained on high-resolution raster graphics engines currently available on the market. The data were obtained through survey responses received from various vendors and also from product literature. The questionnaire developed for this survey was basically a list of characteristics desired in a high performance color raster graphics system which could perform real-time aircraft simulations. Several vendors responded to the survey, with most reporting on their most advanced high-performance, high-resolution raster graphics engine.

  10. Design of resolution/power controllable Asynchronous Sigma-Delta Modulator

    NASA Astrophysics Data System (ADS)

    Deshmukh, Anita Arvind; Deshmukh, Raghvendra B.

    2016-12-01

    This paper presents the design of a Programmable Asynchronous Modulator (PAM) with field control of resolution and power. A novel variable hysteresis Schmitt Trigger (ST) is used for external programmability. Asynchronous Sigma-Delta Modulator (ASDM) implementation with external control voltages is proposed to supervise the resolution and power. This architecture with reduced circuit complexity considerably improves the earlier realizations by eliminating multiple current sources as well switched capacitor circuits and results in power saving up to 87 %. Proposed PAM design demonstrates an improved SNDR of 115 dB, DR of 96 dB, and power consumption below 280 μW. It illustrates Effective Number of Bits (ENOB) to 18.81 and Figure of Merit (FoM) to 0.15 fJ/conversion step. Modulator is implemented in Cadence UMC Hspice 0.18 μm CMOS analog technology. Off-chip PAM control for resolution/power performance has potential applications in battery operated ultra low power applications like IoT; where ADC is one of the major power consuming components. It offers the promise for an efficient performance with power saving.

  11. Fast response neutron emission monitor for fusion reactor using stilbene scintillator and Flash-ADC.

    PubMed

    Itoga, T; Ishikawa, M; Baba, M; Okuji, T; Oishi, T; Nakhostin, M; Nishitani, T

    2007-01-01

    The stilbene neutron detector which has been used for neutron emission profile monitoring in JT-60U has been improved, to respond to the requirement to observe the high-frequency phenomena in megahertz region such as toroidicity-induced Alfvén Eigen mode in burning plasma as well as the spatial profile and the energy spectrum. This high-frequency phenomenon is of great interest and one of the key issues in plasma physics in recent years. To achieve a fast response in the stilbene detector, a Flash-ADC is applied and the wave form of the anode signal stored directly, and neutron/gamma discrimination was carried out via software with a new scheme for data acquisition mode to extend the count rate limit to MHz region from 1.3 x 10(5) neutron/s in the past, and confirmed the adequacy of the method.

  12. Urban cover mapping using digital, high-resolution aerial imagery

    Treesearch

    Soojeong Myeong; David J. Nowak; Paul F. Hopkins; Robert H. Brock

    2003-01-01

    High-spatial resolution digital color-infrared aerial imagery of Syracuse, NY was analyzed to test methods for developing land cover classifications for an urban area. Five cover types were mapped: tree/shrub, grass/herbaceous, bare soil, water and impervious surface. Challenges in high-spatial resolution imagery such as shadow effect and similarity in spectral...

  13. High resolution SETI: Experiences and prospects

    NASA Astrophysics Data System (ADS)

    Horowitz, Paul; Clubok, Ken

    Megachannel spectroscopy with sub-Hertz resolution constitutes an attractive strategy for a microwave search for extraterrestrial intelligence (SETI), assuming the transmission of a narrowband radiofrequency beacon. Such resolution matches the properties of the interstellar medium, and the necessary Doppler corrections provide a high degree of interference rejection. We have constructed a frequency-agile receiver with an FFT-based 8 megachannel digital spectrum analyzer, on-line signal recognition, and multithreshold archiving. We are using it to conduct a meridian transit search of the northern sky at the Harvard-Smithsonian 26-m antenna, with a second identical system scheduled to begin observations in Argentina this month. Successive 400 kHz spectra, at 0.05 Hz resolution, are searched for features characteristic of an intentional narrowband beacon transmission. These spectra are centered on guessable frequencies (such as λ21 cm), referenced successively to the local standard of rest, the galactic barycenter, and the cosmic blackbody rest frame. This search has rejected interference admirably, but is greatly limited both in total frequency coverage and sensitivity to signals other than carriers. We summarize five years of high resolution SETI at Harvard, in the context of answering the questions "How useful is narrowband SETI, how serious are its limitations, what can be done to circumvent them, and in what direction should SETI evolve?" Increasingly powerful signal processing hardware, combined with ever-higher memory densities, are particularly relevant, permitting the construction of compact and affordable gigachannel spectrum analyzers covering hundreds of megahertz of instantaneous bandwidth.

  14. The high-resolution regional reanalysis COSMO-REA6

    NASA Astrophysics Data System (ADS)

    Ohlwein, C.

    2016-12-01

    Reanalyses gain more and more importance as a source of meteorological information for many purposes and applications. Several global reanalyses projects (e.g., ERA, MERRA, CSFR, JMA9) produce and verify these data sets to provide time series as long as possible combined with a high data quality. Due to a spatial resolution down to 50-70km and 3-hourly temporal output, they are not suitable for small scale problems (e.g., regional climate assessment, meso-scale NWP verification, input for subsequent models such as river runoff simulations). The implementation of regional reanalyses based on a limited area model along with a data assimilation scheme is able to generate reanalysis data sets with high spatio-temporal resolution. Within the Hans-Ertel-Centre for Weather Research (HErZ), the climate monitoring branch concentrates efforts on the assessment and analysis of regional climate in Germany and Europe. In joint cooperation with DWD (German Meteorological Service), a high-resolution reanalysis system based on the COSMO model has been developed. The regional reanalysis for Europe matches the domain of the CORDEX EURO-11 specifications, albeit at a higher spatial resolution, i.e., 0.055° (6km) instead of 0.11° (12km) and comprises the assimilation of observational data using the existing nudging scheme of COSMO complemented by a special soil moisture analysis with boundary conditions provided by ERA-Interim data. The reanalysis data set covers the past 20 years. Extensive evaluation of the reanalysis is performed using independent observations with special emphasis on precipitation and high-impact weather situations indicating a better representation of small scale variability. Further, the evaluation shows an added value of the regional reanalysis with respect to the forcing ERA Interim reanalysis and compared to a pure high-resolution dynamical downscaling approach without data assimilation.

  15. High-resolution X-ray crystal structure of bovine H-protein using the high-pressure cryocooling method.

    PubMed

    Higashiura, Akifumi; Ohta, Kazunori; Masaki, Mika; Sato, Masaru; Inaka, Koji; Tanaka, Hiroaki; Nakagawa, Atsushi

    2013-11-01

    Recently, many technical improvements in macromolecular X-ray crystallography have increased the number of structures deposited in the Protein Data Bank and improved the resolution limit of protein structures. Almost all high-resolution structures have been determined using a synchrotron radiation source in conjunction with cryocooling techniques, which are required in order to minimize radiation damage. However, optimization of cryoprotectant conditions is a time-consuming and difficult step. To overcome this problem, the high-pressure cryocooling method was developed (Kim et al., 2005) and successfully applied to many protein-structure analyses. In this report, using the high-pressure cryocooling method, the X-ray crystal structure of bovine H-protein was determined at 0.86 Å resolution. Structural comparisons between high- and ambient-pressure cryocooled crystals at ultra-high resolution illustrate the versatility of this technique. This is the first ultra-high-resolution X-ray structure obtained using the high-pressure cryocooling method.

  16. High-resolution high-efficiency multilayer Fresnel zone plates for soft and hard x-rays

    NASA Astrophysics Data System (ADS)

    Sanli, Umut T.; Keskinbora, Kahraman; Gregorczyk, Keith; Leister, Jonas; Teeny, Nicolas; Grévent, Corinne; Knez, Mato; Schütz, Gisela

    2015-09-01

    X-ray microscopy enables high spatial resolutions, high penetration depths and characterization of a broad range of materials. Calculations show that nanometer range resolution is achievable in the hard X-ray regime by using Fresnel zone plates (FZPs) if certain conditions are satisfied. However, this requires, among other things, aspect ratios of several thousands. The multilayer (ML) type FZPs, having virtually unlimited aspect ratios, are strong candidates to achieve single nanometer resolutions. Our research is focused on the fabrication of ML-FZPs which encompasses deposition of multilayers over a glass fiber via the atomic layer deposition (ALD), which is subsequently sliced in the optimum thickness for the X-ray energy by a focused ion beam (FIB). We recently achieved aberration free imaging by resolving 21 nm features with an efficiency of up to 12.5 %, the highest imaging resolution achieved by an ML-FZP. We also showed efficient focusing of 7.9 keV X-rays down to 30 nm focal spot size (FWHM). For resolutions below ~10 nm, efficiencies would decrease significantly due to wave coupling effects. To compensate this effect high efficiency, low stress materials have to be researched, as lower intrinsic stresses will allow fabrication of larger FZPs with higher number of zones, leading to high light intensity at the focus. As a first step we fabricated an ML-FZP with a diameter of 62 μm, an outermost zone width of 12 nm and 452 active zones. Further strategies for fabrication of high resolution high efficiency multilayer FZPs will also be discussed.

  17. High-spectral resolution solar microwave observations

    NASA Technical Reports Server (NTRS)

    Hurford, G. J.

    1986-01-01

    The application of high-spectral resolution microwave observations to the study of solar activity is discussed with particular emphasis on the frequency dependence of microwave emission from solar active regions. A shell model of gyroresonance emission from active regions is described which suggest that high-spectral resolution, spatially-resolved observations can provide quantitative information about the magnetic field distribution at the base of the corona. Corresponding observations of a single sunspot with the Owens Valley frequency-agile interferometer at 56 frequencies between 1.2 and 14 Ghs are presented. The overall form of the observed size and brightness temperature spectra was consistent with expectations based on the shell model, although there were differences of potential physical significance. The merits and weaknesses of microwave spectroscopy as a technique for measuring magnetic fields in the solar corona are briefly discussed.

  18. High Resolution PET with 250 micrometer LSO Detectors and Adaptive Zoom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cherry, Simon R.; Qi, Jinyi

    2012-01-08

    There have been impressive improvements in the performance of small-animal positron emission tomography (PET) systems since their first development in the mid 1990s, both in terms of spatial resolution and sensitivity, which have directly contributed to the increasing adoption of this technology for a wide range of biomedical applications. Nonetheless, current systems still are largely dominated by the size of the scintillator elements used in the detector. Our research predicts that developing scintillator arrays with an element size of 250 {micro}m or smaller will lead to an image resolution of 500 {micro}m when using 18F- or 64Cu-labeled radiotracers, giving amore » factor of 4-8 improvement in volumetric resolution over the highest resolution research systems currently in existence. This proposal had two main objectives: (i) To develop and evaluate much higher resolution and efficiency scintillator arrays that can be used in the future as the basis for detectors in a small-animal PET scanner where the spatial resolution is dominated by decay and interaction physics rather than detector size. (ii) To optimize one such high resolution, high sensitivity detector and adaptively integrate it into the existing microPET II small animal PET scanner as a 'zoom-in' detector that provides higher spatial resolution and sensitivity in a limited region close to the detector face. The knowledge gained from this project will provide valuable information for building future PET systems with a complete ring of very high-resolution detector arrays and also lay the foundations for utilizing high-resolution detectors in combination with existing PET systems for localized high-resolution imaging.« less

  19. Achieving High Resolution Timer Events in Virtualized Environment.

    PubMed

    Adamczyk, Blazej; Chydzinski, Andrzej

    2015-01-01

    Virtual Machine Monitors (VMM) have become popular in different application areas. Some applications may require to generate the timer events with high resolution and precision. This however may be challenging due to the complexity of VMMs. In this paper we focus on the timer functionality provided by five different VMMs-Xen, KVM, Qemu, VirtualBox and VMWare. Firstly, we evaluate resolutions and precisions of their timer events. Apparently, provided resolutions and precisions are far too low for some applications (e.g. networking applications with the quality of service). Then, using Xen virtualization we demonstrate the improved timer design that greatly enhances both the resolution and precision of achieved timer events.

  20. Fast front-end electronics for semiconductor tracking detectors: Trends and perspectives

    NASA Astrophysics Data System (ADS)

    Rivetti, Angelo

    2014-11-01

    In the past few years, extensive research efforts pursued by both the industry and the academia have lead to major improvements in the performance of Analog to Digital Converters (ADCs) and Time to Digital Converters (TDCs). ADCs achieving 8-10 bit resolution, 50-100 MHz conversion frequency and less than 1 mW power consumption are the today's standard, while TDCs have reached sub-picosecond time resolution. These results have been made possible by architectural upgrades combined with the use of ultra deep submicron CMOS technologies with minimum feature size of 130 nm or smaller. Front-end ASICs in which a prompt digitization is followed by signal conditioning in the digital domain can now be envisaged also within the tight power budget typically available in high density tracking systems. Furthermore, tracking detectors embedding high resolution timing capabilities are gaining interest. In the paper, ADC's and TDC's developments which are of particular relevance for the design front-end electronics for semiconductor trackers are discussed along with the benefits and challenges of exploiting such high performance building blocks in implementing the next generation of ASICs for high granularity particle detectors.

  1. Panretinal, high-resolution color photography of the mouse fundus.

    PubMed

    Paques, Michel; Guyomard, Jean-Laurent; Simonutti, Manuel; Roux, Michel J; Picaud, Serge; Legargasson, Jean-François; Sahel, José-Alain

    2007-06-01

    To analyze high-resolution color photographs of the mouse fundus. A contact fundus camera based on topical endoscopy fundus imaging (TEFI) was built. Fundus photographs of C57 and Balb/c mice obtained by TEFI were qualitatively analyzed. High-resolution digital imaging of the fundus, including the ciliary body, was routinely obtained. The reflectance and contrast of retinal vessels varied significantly with the amount of incident and reflected light and, thus, with the degree of fundus pigmentation. The combination of chromatic and spherical aberration favored blue light imaging, in term of both field and contrast. TEFI is a small, low-cost system that allows high-resolution color fundus imaging and fluorescein angiography in conscious mice. Panretinal imaging is facilitated by the presence of the large rounded lens. TEFI significantly improves the quality of in vivo photography of retina and ciliary process of mice. Resolution is, however, affected by chromatic aberration, and should be improved by monochromatic imaging.

  2. Cryogenic, high-resolution x-ray detector with high count rate capability

    DOEpatents

    Frank, Matthias; Mears, Carl A.; Labov, Simon E.; Hiller, Larry J.; Barfknecht, Andrew T.

    2003-03-04

    A cryogenic, high-resolution X-ray detector with high count rate capability has been invented. The new X-ray detector is based on superconducting tunnel junctions (STJs), and operates without thermal stabilization at or below 500 mK. The X-ray detector exhibits good resolution (.about.5-20 eV FWHM) for soft X-rays in the keV region, and is capable of counting at count rates of more than 20,000 counts per second (cps). Simple, FET-based charge amplifiers, current amplifiers, or conventional spectroscopy shaping amplifiers can provide the electronic readout of this X-ray detector.

  3. Investigation of aquaporins and apparent diffusion coefficient from ultra-high b-values in a rat model of diabetic nephropathy.

    PubMed

    Wang, Yu; Zhang, Heng; Zhang, Ruzhi; Zhao, Zhoushe; Xu, Ziqian; Wang, Lei; Liu, Rongbo; Gao, Fabao

    2017-01-01

    To assess kidney damage in a rat model of type-2 diabetic nephropathy based on apparent diffusion coefficient (ADC) data obtained from ultra-high b-values and discuss its relationship to the expression of aquaporins (AQPs). This study was approved by the institutional Animal Care and Use Committee. Thirty male Sprague-Dawley rats were randomised into two groups: (1) untreated controls and (2) diabetes mellitus (DM). All rats underwent diffusion-weighted imaging (DWI) with 18 b-values (0-4500 s/mm 2 ). Maps of low ADC (ADC low ), standard ADC (ADC st ) and ultra-high ADC (ADC uh ) were calculated from low b-values (0-200 s/mm 2 ), standard b-values (300-1500 s/mm 2 ) and ultra-high b-values (1700-4500 s/mm 2 ), respectively. The expression of AQPs in the kidneys was studied using immunohistochemistry. Laboratory parameters of diabetic and kidney functions, ADC low , ADC st , ADC uh , and the optical density (OD) of AQP expression in the two groups were compared using an independent t test. Correlations between ADCs and the OD of AQP expression were evaluated by Pearson's correlation analysis. ADC uh were significantly higher in the cortex (CO), outer stripe of the outer medulla (OS) and inner stripe of the outer medulla (IS), and the OD values of AQ-2 were significantly higher in the OS, IS and inner medulla (IM) in DM animals compared with control animals. ADC uh and OD values of AQP-2 expression were positively correlated in the OS, IS and IM of the kidney. ADC uh may work as useful metrics for early detection of kidney damage in diabetic nephropathy and may be associated with AQP-2 expression.

  4. CNV detection method optimized for high-resolution arrayCGH by normality test.

    PubMed

    Ahn, Jaegyoon; Yoon, Youngmi; Park, Chihyun; Park, Sanghyun

    2012-04-01

    High-resolution arrayCGH platform makes it possible to detect small gains and losses which previously could not be measured. However, current CNV detection tools fitted to early low-resolution data are not applicable to larger high-resolution data. When CNV detection tools are applied to high-resolution data, they suffer from high false-positives, which increases validation cost. Existing CNV detection tools also require optimal parameter values. In most cases, obtaining these values is a difficult task. This study developed a CNV detection algorithm that is optimized for high-resolution arrayCGH data. This tool operates up to 1500 times faster than existing tools on a high-resolution arrayCGH of whole human chromosomes which has 42 million probes whose average length is 50 bases, while preserving false positive/negative rates. The algorithm also uses a normality test, thereby removing the need for optimal parameters. To our knowledge, this is the first formulation for CNV detecting problems that results in a near-linear empirical overall complexity for real high-resolution data. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Fiber optic cable-based high-resolution, long-distance VGA extenders

    NASA Astrophysics Data System (ADS)

    Rhee, Jin-Geun; Lee, Iksoo; Kim, Heejoon; Kim, Sungjoon; Koh, Yeon-Wan; Kim, Hoik; Lim, Jiseok; Kim, Chur; Kim, Jungwon

    2013-02-01

    Remote transfer of high-resolution video information finds more applications in detached display applications for large facilities such as theaters, sports complex, airports, and security facilities. Active optical cables (AOCs) provide a promising approach for enhancing both the transmittable resolution and distance that standard copper-based cables cannot reach. In addition to the standard digital formats such as HDMI, the high-resolution, long-distance transfer of VGA format signals is important for applications where high-resolution analog video ports should be also supported, such as military/defense applications and high-resolution video camera links. In this presentation we present the development of a compressionless, high-resolution (up to WUXGA, 1920x1200), long-distance (up to 2 km) VGA extenders based on serialized technique. We employed asynchronous serial transmission and clock regeneration techniques, which enables lower cost implementation of VGA extenders by removing the necessity for clock transmission and large memory at the receiver. Two 3.125-Gbps transceivers are used in parallel to meet the required maximum video data rate of 6.25 Gbps. As the data are transmitted asynchronously, 24-bit pixel clock time stamp is employed to regenerate video pixel clock accurately at the receiver side. In parallel to the video information, stereo audio and RS-232 control signals are transmitted as well.

  6. High resolution manometry findings in patients with esophageal epiphrenic diverticula.

    PubMed

    Vicentine, Fernando P P; Herbella, Fernando A M; Silva, Luciana C; Patti, Marco G

    2011-12-01

    The pathophysiology of esophageal epiphrenic diverticula is still uncertain even though a concomitant motility disorder is found in the majority of patients in different series. High resolution manometry may allow detection of motor abnormalities in a higher number of patients with esophageal epiphrenic diverticula compared with conventional manometry. This study aims to evaluate the high resolution manometry findings in patients with esophageal epiphrenic diverticula. Nine individuals (mean age 63 ± 10 years, 4 females) with esophageal epiphrenic diverticula underwent high resolution manometry. A single diverticulum was observed in eight patients and multiple diverticula in one. Visual analysis of conventional tracings and color pressure plots for identification of segmental abnormalities was performed by two researchers experienced in high resolution manometry. Upper esophageal sphincter was normal in all patients. Esophageal body was abnormal in eight patients; lower esophageal sphincter was abnormal in seven patients. Named esophageal motility disorders were found in seven patients: achalasia in six, diffuse esophageal spasm in one. In one patient, a segmental hypercontractile zone was noticed with pressure of 196 mm Hg. High resolution manometry demonstrated motor abnormalities in all patients with esophageal epiphrenic diverticula.

  7. Constraining Stochastic Parametrisation Schemes Using High-Resolution Model Simulations

    NASA Astrophysics Data System (ADS)

    Christensen, H. M.; Dawson, A.; Palmer, T.

    2017-12-01

    Stochastic parametrisations are used in weather and climate models as a physically motivated way to represent model error due to unresolved processes. Designing new stochastic schemes has been the target of much innovative research over the last decade. While a focus has been on developing physically motivated approaches, many successful stochastic parametrisation schemes are very simple, such as the European Centre for Medium-Range Weather Forecasts (ECMWF) multiplicative scheme `Stochastically Perturbed Parametrisation Tendencies' (SPPT). The SPPT scheme improves the skill of probabilistic weather and seasonal forecasts, and so is widely used. However, little work has focused on assessing the physical basis of the SPPT scheme. We address this matter by using high-resolution model simulations to explicitly measure the `error' in the parametrised tendency that SPPT seeks to represent. The high resolution simulations are first coarse-grained to the desired forecast model resolution before they are used to produce initial conditions and forcing data needed to drive the ECMWF Single Column Model (SCM). By comparing SCM forecast tendencies with the evolution of the high resolution model, we can measure the `error' in the forecast tendencies. In this way, we provide justification for the multiplicative nature of SPPT, and for the temporal and spatial scales of the stochastic perturbations. However, we also identify issues with the SPPT scheme. It is therefore hoped these measurements will improve both holistic and process based approaches to stochastic parametrisation. Figure caption: Instantaneous snapshot of the optimal SPPT stochastic perturbation, derived by comparing high-resolution simulations with a low resolution forecast model.

  8. Experiments and FEM simulations of fracture behaviors for ADC12 aluminum alloy under impact load

    NASA Astrophysics Data System (ADS)

    Hu, Yumei; Xiao, Yue; Jin, Xiaoqing; Zheng, Haoran; Zhou, Yinge; Shao, Jinhua

    2016-11-01

    Using the combination of experiment and simulation, the fracture behavior of the brittle metal named ADC12 aluminum alloy was studied. Five typical experiments were carried out on this material, with responding data collected on different stress states and dynamic strain rates. Fractographs revealed that the morphologies of fractured specimen under several rates showed different results, indicating that the fracture was predominantly a brittle one in nature. Simulations of the fracture processes of those specimens were conducted by Finite Element Method, whilst consistency was observed between simulations and experiments. In simulation, the Johnson- Cook model was chosen to describe the damage development and to predict the failure using parameters determined from those experimental data. Subsequently, an ADC12 engine mount bracket crashing simulation was conducted and the results indicated good agreement with the experiments. The accordance showed that our research can provide an accurate description for the deforming and fracture processes of the studied alloy.

  9. High-spatial-resolution nanoparticle x-ray fluorescence tomography

    NASA Astrophysics Data System (ADS)

    Larsson, Jakob C.; Vâgberg, William; Vogt, Carmen; Lundström, Ulf; Larsson, Daniel H.; Hertz, Hans M.

    2016-03-01

    X-ray fluorescence tomography (XFCT) has potential for high-resolution 3D molecular x-ray bio-imaging. In this technique the fluorescence signal from targeted nanoparticles (NPs) is measured, providing information about the spatial distribution and concentration of the NPs inside the object. However, present laboratory XFCT systems typically have limited spatial resolution (>1 mm) and suffer from long scan times and high radiation dose even at high NP concentrations, mainly due to low efficiency and poor signal-to-noise ratio. We have developed a laboratory XFCT system with high spatial resolution (sub-100 μm), low NP concentration and vastly decreased scan times and dose, opening up the possibilities for in-vivo small-animal imaging research. The system consists of a high-brightness liquid-metal-jet microfocus x-ray source, x-ray focusing optics and an energy-resolving photon-counting detector. By using the source's characteristic 24 keV line-emission together with carefully matched molybdenum nanoparticles the Compton background is greatly reduced, increasing the SNR. Each measurement provides information about the spatial distribution and concentration of the Mo nanoparticles. A filtered back-projection method is used to produce the final XFCT image.

  10. Functional decline in the elderly with MCI: Cultural adaptation of the ADCS-ADL scale.

    PubMed

    Cintra, Fabiana Carla Matos da Cunha; Cintra, Marco Túlio Gualberto; Nicolato, Rodrigo; Bertola, Laiss; Ávila, Rafaela Teixeira; Malloy-Diniz, Leandro Fernandes; Moraes, Edgar Nunes; Bicalho, Maria Aparecida Camargos

    2017-07-01

    Translate, transcultural adaptation and application to Brazilian Portuguese of the Alzheimer's Disease Cooperative Study - Activities of Daily Living (ADCS-ADL) scale as a cognitive screening instrument. We applied the back translation added with pretest and bilingual methods. The sample was composed by 95 elderly individuals and their caregivers. Thirty-two (32) participants were diagnosed as mild cognitive impairment (MCI) patients, 33 as Alzheimer's disease (AD) patients and 30 were considered as cognitively normal individuals. There were only little changes on the scale. The Cronbach alpha coefficient was 0.89. The scores were 72.9 for control group, followed by MCI (65.1) and by AD (55.9), with a p-value < 0.001. The ROC curve value was 0.89. We considered a cut point of 72 and we observed a sensibility of 86.2%, specificity of 70%, positive predictive value of 86.2%, negative predictive value of 70%, positive likelihood ratio of 2.9 and negative likelihood ratio of 0.2. ADCS-ADL scale presents satisfactory psychometric properties to discriminate between MCI, AD and normal cognition.

  11. High resolution ultrasonic spectroscopy system for nondestructive evaluation

    NASA Technical Reports Server (NTRS)

    Chen, C. H.

    1991-01-01

    With increased demand for high resolution ultrasonic evaluation, computer based systems or work stations become essential. The ultrasonic spectroscopy method of nondestructive evaluation (NDE) was used to develop a high resolution ultrasonic inspection system supported by modern signal processing, pattern recognition, and neural network technologies. The basic system which was completed consists of a 386/20 MHz PC (IBM AT compatible), a pulser/receiver, a digital oscilloscope with serial and parallel communications to the computer, an immersion tank with motor control of X-Y axis movement, and the supporting software package, IUNDE, for interactive ultrasonic evaluation. Although the hardware components are commercially available, the software development is entirely original. By integrating signal processing, pattern recognition, maximum entropy spectral analysis, and artificial neural network functions into the system, many NDE tasks can be performed. The high resolution graphics capability provides visualization of complex NDE problems. The phase 3 efforts involve intensive marketing of the software package and collaborative work with industrial sectors.

  12. B-spline algebraic diagrammatic construction: Application to photoionization cross-sections and high-order harmonic generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruberti, M.; Averbukh, V.; Decleva, P.

    2014-10-28

    We present the first implementation of the ab initio many-body Green's function method, algebraic diagrammatic construction (ADC), in the B-spline single-electron basis. B-spline versions of the first order [ADC(1)] and second order [ADC(2)] schemes for the polarization propagator are developed and applied to the ab initio calculation of static (photoionization cross-sections) and dynamic (high-order harmonic generation spectra) quantities. We show that the cross-section features that pose a challenge for the Gaussian basis calculations, such as Cooper minima and high-energy tails, are found to be reproduced by the B-spline ADC in a very good agreement with the experiment. We also presentmore » the first dynamic B-spline ADC results, showing that the effect of the Cooper minimum on the high-order harmonic generation spectrum of Ar is correctly predicted by the time-dependent ADC calculation in the B-spline basis. The present development paves the way for the application of the B-spline ADC to both energy- and time-resolved theoretical studies of many-electron phenomena in atoms, molecules, and clusters.« less

  13. Obtaining high-resolution velocity spectra using weighted semblance

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Saleh; Kahoo, Amin Roshandel; Porsani, Milton J.; Kalateh, Ali Nejati

    2017-02-01

    Velocity analysis employs coherency measurement along a hyperbolic or non-hyperbolic trajectory time window to build velocity spectra. Accuracy and resolution are strictly related to the method of coherency measurements. Semblance, the most common coherence measure, has poor resolution velocity which affects one's ability to distinguish and pick distinct peaks. Increase the resolution of the semblance velocity spectra causes the accuracy of estimated velocity for normal moveout correction and stacking is improved. The low resolution of semblance spectra depends on its low sensitivity to velocity changes. In this paper, we present a new weighted semblance method that ensures high-resolution velocity spectra. To increase the resolution of semblance spectra, we introduce two weighting functions based on the first to second singular values ratio of the time window and the position of the seismic wavelet in the time window to the semblance equation. We test the method on both synthetic and real field data to compare the resolution of weighted and conventional semblance methods. Numerical examples with synthetic and real seismic data indicate that the new proposed weighted semblance method provides higher resolution than conventional semblance and can separate the reflectors which are mixed in the semblance spectrum.

  14. ADC biomarker for head and neck tumors

    NASA Astrophysics Data System (ADS)

    Pacheco-Bravo, Irlanda; Hidalgo-Tobon, Silvia; Zaragoza, Kena; Reynoso-Noverón, Nancy; De Celis-Alonso, Benito; Delgado-Hernandez, Rosa

    2014-11-01

    According to the World Cancer Report, by 2020, global incidence of cancer may increase by 50%, which means 15 million new cases. In 2000, malignant tumors were the cause of 12% of the almost 56 million deaths worldwide due to all causes[1-4]. 18 men and 19 women, with an average age of 53 ± 14 years with diagnosis of head and neck cancer were scanned using a 1.5-T MR imaging unit (Signa HDxt; GE Medical Systems). Echo-planar DW imaging was performed in the transverse plane before the contrast material injection. Three b values were applied: 40, 100, and 800 sec/mm2. Primary tumors and nodes were evaluated, with diameters greater than 43 ± 15mm. In our study, ADC data for b-values of 40 showed correlation for identification of malignancy in primary tumors, and in the case of nodes there is a tendency toward malignancy in sequences in which a b-value of 800 is used.

  15. Reproducible high-resolution multispectral image acquisition in dermatology

    NASA Astrophysics Data System (ADS)

    Duliu, Alexandru; Gardiazabal, José; Lasser, Tobias; Navab, Nassir

    2015-07-01

    Multispectral image acquisitions are increasingly popular in dermatology, due to their improved spectral resolution which enables better tissue discrimination. Most applications however focus on restricted regions of interest, imaging only small lesions. In this work we present and discuss an imaging framework for high-resolution multispectral imaging on large regions of interest.

  16. Waveform digitization for high resolution timing detectors with silicon photomultipliers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ronzhin, A.; Albrow, M. G.; Los, S.

    2012-03-01

    The results of time resolution studies with silicon photomultipliers (SiPMs) read out with high bandwidth constant fraction discrimination electronics were presented earlier [1-3]. Here we describe the application of fast waveform digitization readout based on the DRS4 chip [4], a switched capacitor array (SCA) produced by the Paul Scherrer Institute, to further our goal of developing high time resolution detectors based on SiPMs. The influence of the SiPM signal shape on the time resolution was investigated. Different algorithms to obtain the best time resolution are described, and test beam results are presented.

  17. Dual-axis confocal microscope for high-resolution in vivo imaging

    PubMed Central

    Wang, Thomas D.; Mandella, Michael J.; Contag, Christopher H.; Kino, Gordon S.

    2007-01-01

    We describe a novel confocal microscope that uses separate low-numerical-aperture objectives with the illumination and collection axes crossed at angle θ from the midline. This architecture collects images in scattering media with high transverse and axial resolution, long working distance, large field of view, and reduced noise from scattered light. We measured transverse and axial (FWHM) resolution of 1.3 and 2.1 μm, respectively, in free space, and confirm subcellular resolution in excised esophageal mucosa. The optics may be scaled to millimeter dimensions and fiber coupled for collection of high-resolution images in vivo. PMID:12659264

  18. High Resolution Energetic X-ray Imager (HREXI)

    NASA Astrophysics Data System (ADS)

    Grindlay, Jonathan

    We propose to design and build the first imaging hard X-ray detector system that incorporates 3D stacking of closely packed detector readouts in finely-spaced imaging arrays with their required data processing and control electronics. In virtually all imaging astronomical detectors, detector readout is done with flex connectors or connections that are not vertical but rather horizontal , requiring loss of focal plane area. For high resolution pixel detectors needed for high speed event-based X-ray imaging, from low energy applications (CMOS) with focusing X-ray telescopes, to hard X-ray applications with pixelated CZT for large area coded aperture telescopes, this new detector development offers great promise. We propose to extend our previous and current APRA supported ProtoEXIST program that has developed the first large area imaging CZT detectors and demonstrated their astrophysical capabilities on two successful balloon flight to a next generation High Resolution Energetic X-ray Imager (HREXI), which would incorporate microvia technology for the first time to connect the readout ASIC on each CZT crystal directly to its control and data processing system. This 3-dimensional stacking of detector and readout/control system means that large area (>2m2) imaging detector planes for a High Resolution Wide-field hard X-ray telescope can be built with initially greatly reduced detector gaps and ultimately with no gaps. This increases detector area, efficiency, and simplicity of detector integration. Thus higher sensitivity wide-field imagers will be possible at lower cost. HREXI will enable a post-Swift NASA mission such as the EREXS concept proposed to PCOS to be conducted as a future MIDEX mission. This mission would conduct a high resolution (<2 arcmin) , broad band (5 200 keV) hard X-ray survey of black holes on all scales with ~10X higher sensitivity than Swift. In the current era of Time Domain Astrophysics, such a survey capability, in conjunction with a n

  19. High-Resolution Adaptive Optics Test-Bed for Vision Science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilks, S C; Thomspon, C A; Olivier, S S

    2001-09-27

    We discuss the design and implementation of a low-cost, high-resolution adaptive optics test-bed for vision research. It is well known that high-order aberrations in the human eye reduce optical resolution and limit visual acuity. However, the effects of aberration-free eyesight on vision are only now beginning to be studied using adaptive optics to sense and correct the aberrations in the eye. We are developing a high-resolution adaptive optics system for this purpose using a Hamamatsu Parallel Aligned Nematic Liquid Crystal Spatial Light Modulator. Phase-wrapping is used to extend the effective stroke of the device, and the wavefront sensing and wavefrontmore » correction are done at different wavelengths. Issues associated with these techniques will be discussed.« less

  20. High-resolution confocal Raman microscopy using pixel reassignment.

    PubMed

    Roider, Clemens; Ritsch-Marte, Monika; Jesacher, Alexander

    2016-08-15

    We present a practical modification of fiber-coupled confocal Raman scanning microscopes that is able to provide high confocal resolution in conjunction with high light collection efficiency. For this purpose, the single detection fiber is replaced by a hexagonal lenslet array in combination with a hexagonally packed round-to-linear multimode fiber bundle. A multiline detector is used to collect individual Raman spectra for each fiber. Data post-processing based on pixel reassignment allows one to improve the lateral resolution by up to 41% compared to a single fiber of equal light collection efficiency. We present results from an experimental implementation featuring seven collection fibers, yielding a resolution improvement of about 30%. We believe that our implementation represents an attractive upgrade for existing confocal Raman microscopes that employ multi-line detectors.

  1. Ultra-high resolution AMOLED

    NASA Astrophysics Data System (ADS)

    Wacyk, Ihor; Prache, Olivier; Ghosh, Amal

    2011-06-01

    AMOLED microdisplays continue to show improvement in resolution and optical performance, enhancing their appeal for a broad range of near-eye applications such as night vision, simulation and training, situational awareness, augmented reality, medical imaging, and mobile video entertainment and gaming. eMagin's latest development of an HDTV+ resolution technology integrates an OLED pixel of 3.2 × 9.6 microns in size on a 0.18 micron CMOS backplane to deliver significant new functionality as well as the capability to implement a 1920×1200 microdisplay in a 0.86" diagonal area. In addition to the conventional matrix addressing circuitry, the HDTV+ display includes a very lowpower, low-voltage-differential-signaling (LVDS) serialized interface to minimize cable and connector size as well as electromagnetic emissions (EMI), an on-chip set of look-up-tables for digital gamma correction, and a novel pulsewidth- modulation (PWM) scheme that together with the standard analog control provides a total dimming range of 0.05cd/m2 to 2000cd/m2 in the monochrome version. The PWM function also enables an impulse drive mode of operation that significantly reduces motion artifacts in high speed scene changes. An internal 10-bit DAC ensures that a full 256 gamma-corrected gray levels are available across the entire dimming range, resulting in a measured dynamic range exceeding 20-bits. This device has been successfully tested for operation at frame rates ranging from 30Hz up to 85Hz. This paper describes the operational features and detailed optical and electrical test results for the new AMOLED WUXGA resolution microdisplay.

  2. Achieving High Resolution Timer Events in Virtualized Environment

    PubMed Central

    Adamczyk, Blazej; Chydzinski, Andrzej

    2015-01-01

    Virtual Machine Monitors (VMM) have become popular in different application areas. Some applications may require to generate the timer events with high resolution and precision. This however may be challenging due to the complexity of VMMs. In this paper we focus on the timer functionality provided by five different VMMs—Xen, KVM, Qemu, VirtualBox and VMWare. Firstly, we evaluate resolutions and precisions of their timer events. Apparently, provided resolutions and precisions are far too low for some applications (e.g. networking applications with the quality of service). Then, using Xen virtualization we demonstrate the improved timer design that greatly enhances both the resolution and precision of achieved timer events. PMID:26177366

  3. Generalized Nonlinear Chirp Scaling Algorithm for High-Resolution Highly Squint SAR Imaging

    PubMed Central

    He, Zhihua; He, Feng; Dong, Zhen; Wu, Manqing

    2017-01-01

    This paper presents a modified approach for high-resolution, highly squint synthetic aperture radar (SAR) data processing. Several nonlinear chirp scaling (NLCS) algorithms have been proposed to solve the azimuth variance of the frequency modulation rates that are caused by the linear range walk correction (LRWC). However, the azimuth depth of focusing (ADOF) is not handled well by these algorithms. The generalized nonlinear chirp scaling (GNLCS) algorithm that is proposed in this paper uses the method of series reverse (MSR) to improve the ADOF and focusing precision. It also introduces a high order processing kernel to avoid the range block processing. Simulation results show that the GNLCS algorithm can enlarge the ADOF and focusing precision for high-resolution highly squint SAR data. PMID:29112151

  4. Generalized Nonlinear Chirp Scaling Algorithm for High-Resolution Highly Squint SAR Imaging.

    PubMed

    Yi, Tianzhu; He, Zhihua; He, Feng; Dong, Zhen; Wu, Manqing

    2017-11-07

    This paper presents a modified approach for high-resolution, highly squint synthetic aperture radar (SAR) data processing. Several nonlinear chirp scaling (NLCS) algorithms have been proposed to solve the azimuth variance of the frequency modulation rates that are caused by the linear range walk correction (LRWC). However, the azimuth depth of focusing (ADOF) is not handled well by these algorithms. The generalized nonlinear chirp scaling (GNLCS) algorithm that is proposed in this paper uses the method of series reverse (MSR) to improve the ADOF and focusing precision. It also introduces a high order processing kernel to avoid the range block processing. Simulation results show that the GNLCS algorithm can enlarge the ADOF and focusing precision for high-resolution highly squint SAR data.

  5. Multifeature-based high-resolution palmprint recognition.

    PubMed

    Dai, Jifeng; Zhou, Jie

    2011-05-01

    Palmprint is a promising biometric feature for use in access control and forensic applications. Previous research on palmprint recognition mainly concentrates on low-resolution (about 100 ppi) palmprints. But for high-security applications (e.g., forensic usage), high-resolution palmprints (500 ppi or higher) are required from which more useful information can be extracted. In this paper, we propose a novel recognition algorithm for high-resolution palmprint. The main contributions of the proposed algorithm include the following: 1) use of multiple features, namely, minutiae, density, orientation, and principal lines, for palmprint recognition to significantly improve the matching performance of the conventional algorithm. 2) Design of a quality-based and adaptive orientation field estimation algorithm which performs better than the existing algorithm in case of regions with a large number of creases. 3) Use of a novel fusion scheme for an identification application which performs better than conventional fusion methods, e.g., weighted sum rule, SVMs, or Neyman-Pearson rule. Besides, we analyze the discriminative power of different feature combinations and find that density is very useful for palmprint recognition. Experimental results on the database containing 14,576 full palmprints show that the proposed algorithm has achieved a good performance. In the case of verification, the recognition system's False Rejection Rate (FRR) is 16 percent, which is 17 percent lower than the best existing algorithm at a False Acceptance Rate (FAR) of 10(-5), while in the identification experiment, the rank-1 live-scan partial palmprint recognition rate is improved from 82.0 to 91.7 percent.

  6. High Resolution Bathymetry Estimation Improvement with Single Image Super-Resolution Algorithm Super-Resolution Forests

    DTIC Science & Technology

    2017-01-26

    Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/5514--17-9692 High Resolution Bathymetry Estimation Improvement with Single Image Super...collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources...gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate

  7. High Resolution Measurement of the Glycolytic Rate

    PubMed Central

    Bittner, Carla X.; Loaiza, Anitsi; Ruminot, Iván; Larenas, Valeria; Sotelo-Hitschfeld, Tamara; Gutiérrez, Robin; Córdova, Alex; Valdebenito, Rocío; Frommer, Wolf B.; Barros, L. Felipe

    2010-01-01

    The glycolytic rate is sensitive to physiological activity, hormones, stress, aging, and malignant transformation. Standard techniques to measure the glycolytic rate are based on radioactive isotopes, are not able to resolve single cells and have poor temporal resolution, limitations that hamper the study of energy metabolism in the brain and other organs. A new method is described in this article, which makes use of a recently developed FRET glucose nanosensor to measure the rate of glycolysis in single cells with high temporal resolution. Used in cultured astrocytes, the method showed for the first time that glycolysis can be activated within seconds by a combination of glutamate and K+, supporting a role for astrocytes in neurometabolic and neurovascular coupling in the brain. It was also possible to make a direct comparison of metabolism in neurons and astrocytes lying in close proximity, paving the way to a high-resolution characterization of brain energy metabolism. Single-cell glycolytic rates were also measured in fibroblasts, adipocytes, myoblasts, and tumor cells, showing higher rates for undifferentiated cells and significant metabolic heterogeneity within cell types. This method should facilitate the investigation of tissue metabolism at the single-cell level and is readily adaptable for high-throughput analysis. PMID:20890447

  8. High Resolution X-ray-Induced Acoustic Tomography

    PubMed Central

    Xiang, Liangzhong; Tang, Shanshan; Ahmad, Moiz; Xing, Lei

    2016-01-01

    Absorption based CT imaging has been an invaluable tool in medical diagnosis, biology, and materials science. However, CT requires a large set of projection data and high radiation dose to achieve superior image quality. In this letter, we report a new imaging modality, X-ray Induced Acoustic Tomography (XACT), which takes advantages of high sensitivity to X-ray absorption and high ultrasonic resolution in a single modality. A single projection X-ray exposure is sufficient to generate acoustic signals in 3D space because the X-ray generated acoustic waves are of a spherical nature and propagate in all directions from their point of generation. We demonstrate the successful reconstruction of gold fiducial markers with a spatial resolution of about 350 μm. XACT reveals a new imaging mechanism and provides uncharted opportunities for structural determination with X-ray. PMID:27189746

  9. High Resolution Rapid Revisits Insar Monitoring of Surface Deformation

    NASA Astrophysics Data System (ADS)

    Singhroy, V.; Li, J.; Charbonneau, F.

    2014-12-01

    Monitoring surface deformation on strategic energy and transportation corridors requires high resolution spatial and temporal InSAR images for mitigation and safety purposes. High resolution air photos, lidar and other satellite images are very useful in areas where the landslides can be fatal. Recently, radar interferometry (InSAR) techniques using more rapid revisit images from several radar satellites are increasingly being used in active deformation monitoring. The Canadian RADARSAT Constellation (RCM) is a three-satellite mission that will provide rapid revisits of four days interferometric (InSAR) capabilities that will be very useful for complex deformation monitoring. For instance, the monitoring of surface deformation due to permafrost activity, complex rock slide motion and steam assisted oil extraction will benefit from this new rapid revisit capability. This paper provide examples of how the high resolution (1-3 m) rapid revisit InSAR capabilities will improve our monitoring of surface deformation and provide insights in understanding triggering mechanisms. We analysed over a hundred high resolution InSAR images over a two year period on three geologically different sites with various configurations of topography, geomorphology, and geology conditions. We show from our analysis that the more frequent InSAR acquisitions are providing more information in understanding the rates of movement and failure process of permafrost triggered retrogressive thaw flows; the complex motion of an asymmetrical wedge failure of an active rock slide and the identification of over pressure zones related to oil extraction using steam injection. Keywords: High resolution, InSAR, rapid revisits, triggering mechanisms, oil extraction.

  10. High-resolution axial MR imaging of tibial stress injuries

    PubMed Central

    2012-01-01

    Purpose To evaluate the relative involvement of tibial stress injuries using high-resolution axial MR imaging and the correlation with MR and radiographic images. Methods A total of 33 patients with exercise-induced tibial pain were evaluated. All patients underwent radiograph and high-resolution axial MR imaging. Radiographs were taken at initial presentation and 4 weeks later. High-resolution MR axial images were obtained using a microscopy surface coil with 60 × 60 mm field of view on a 1.5T MR unit. All images were evaluated for abnormal signals of the periosteum, cortex and bone marrow. Results Nineteen patients showed no periosteal reaction at initial and follow-up radiographs. MR imaging showed abnormal signals in the periosteal tissue and partially abnormal signals in the bone marrow. In 7 patients, periosteal reaction was not seen at initial radiograph, but was detected at follow-up radiograph. MR imaging showed abnormal signals in the periosteal tissue and entire bone marrow. Abnormal signals in the cortex were found in 6 patients. The remaining 7 showed periosteal reactions at initial radiograph. MR imaging showed abnormal signals in the periosteal tissue in 6 patients. Abnormal signals were seen in the partial and entire bone marrow in 4 and 3 patients, respectively. Conclusions Bone marrow abnormalities in high-resolution axial MR imaging were related to periosteal reactions at follow-up radiograph. Bone marrow abnormalities might predict later periosteal reactions, suggesting shin splints or stress fractures. High-resolution axial MR imaging is useful in early discrimination of tibial stress injuries. PMID:22574840

  11. High resolution time interval counter

    DOEpatents

    Condreva, Kenneth J.

    1994-01-01

    A high resolution counter circuit measures the time interval between the occurrence of an initial and a subsequent electrical pulse to two nanoseconds resolution using an eight megahertz clock. The circuit includes a main counter for receiving electrical pulses and generating a binary word--a measure of the number of eight megahertz clock pulses occurring between the signals. A pair of first and second pulse stretchers receive the signal and generate a pair of output signals whose widths are approximately sixty-four times the time between the receipt of the signals by the respective pulse stretchers and the receipt by the respective pulse stretchers of a second subsequent clock pulse. Output signals are thereafter supplied to a pair of start and stop counters operable to generate a pair of binary output words representative of the measure of the width of the pulses to a resolution of two nanoseconds. Errors associated with the pulse stretchers are corrected by providing calibration data to both stretcher circuits, and recording start and stop counter values. Stretched initial and subsequent signals are combined with autocalibration data and supplied to an arithmetic logic unit to determine the time interval in nanoseconds between the pair of electrical pulses being measured.

  12. High resolution time interval counter

    DOEpatents

    Condreva, K.J.

    1994-07-26

    A high resolution counter circuit measures the time interval between the occurrence of an initial and a subsequent electrical pulse to two nanoseconds resolution using an eight megahertz clock. The circuit includes a main counter for receiving electrical pulses and generating a binary word--a measure of the number of eight megahertz clock pulses occurring between the signals. A pair of first and second pulse stretchers receive the signal and generate a pair of output signals whose widths are approximately sixty-four times the time between the receipt of the signals by the respective pulse stretchers and the receipt by the respective pulse stretchers of a second subsequent clock pulse. Output signals are thereafter supplied to a pair of start and stop counters operable to generate a pair of binary output words representative of the measure of the width of the pulses to a resolution of two nanoseconds. Errors associated with the pulse stretchers are corrected by providing calibration data to both stretcher circuits, and recording start and stop counter values. Stretched initial and subsequent signals are combined with autocalibration data and supplied to an arithmetic logic unit to determine the time interval in nanoseconds between the pair of electrical pulses being measured. 3 figs.

  13. A Procedure for High Resolution Satellite Imagery Quality Assessment

    PubMed Central

    Crespi, Mattia; De Vendictis, Laura

    2009-01-01

    Data products generated from High Resolution Satellite Imagery (HRSI) are routinely evaluated during the so-called in-orbit test period, in order to verify if their quality fits the desired features and, if necessary, to obtain the image correction parameters to be used at the ground processing center. Nevertheless, it is often useful to have tools to evaluate image quality also at the final user level. Image quality is defined by some parameters, such as the radiometric resolution and its accuracy, represented by the noise level, and the geometric resolution and sharpness, described by the Modulation Transfer Function (MTF). This paper proposes a procedure to evaluate these image quality parameters; the procedure was implemented in a suitable software and tested on high resolution imagery acquired by the QuickBird, WorldView-1 and Cartosat-1 satellites. PMID:22412312

  14. High-resolution 3D imaging of polymerized photonic crystals by lab-based x-ray nanotomography with 50-nm resolution

    NASA Astrophysics Data System (ADS)

    Yin, Leilei; Chen, Ying-Chieh; Gelb, Jeff; Stevenson, Darren M.; Braun, Paul A.

    2010-09-01

    High resolution x-ray computed tomography is a powerful non-destructive 3-D imaging method. It can offer superior resolution on objects that are opaque or low contrast for optical microscopy. Synchrotron based x-ray computed tomography systems have been available for scientific research, but remain difficult to access for broader users. This work introduces a lab-based high-resolution x-ray nanotomography system with 50nm resolution in absorption and Zernike phase contrast modes. Using this system, we have demonstrated high quality 3-D images of polymerized photonic crystals which have been analyzed for band gap structures. The isotropic volumetric data shows excellent consistency with other characterization results.

  15. High Resolution Regional Climate Simulations over Alaska

    NASA Astrophysics Data System (ADS)

    Monaghan, A. J.; Clark, M. P.; Arnold, J.; Newman, A. J.; Musselman, K. N.; Barlage, M. J.; Xue, L.; Liu, C.; Gutmann, E. D.; Rasmussen, R.

    2016-12-01

    In order to appropriately plan future projects to build and maintain infrastructure (e.g., dams, dikes, highways, airports), a number of U.S. federal agencies seek to better understand how hydrologic regimes may shift across the country due to climate change. Building on the successful completion of a series of high-resolution WRF simulations over the Colorado River Headwaters and contiguous USA, our team is now extending these simulations over the challenging U.S. States of Alaska and Hawaii. In this presentation we summarize results from a newly completed 4-km resolution WRF simulation over Alaska spanning 2002-2016 at 4-km spatial resolution. Our aim is to gain insight into the thermodynamics that drive key precipitation processes, particularly the extremes that are most damaging to infrastructure.

  16. High-resolution nuclear magnetic resonance studies of proteins.

    PubMed

    Jonas, Jiri

    2002-03-25

    The combination of advanced high-resolution nuclear magnetic resonance (NMR) techniques with high-pressure capability represents a powerful experimental tool in studies of protein folding. This review is organized as follows: after a general introduction of high-pressure, high-resolution NMR spectroscopy of proteins, the experimental part deals with instrumentation. The main section of the review is devoted to NMR studies of reversible pressure unfolding of proteins with special emphasis on pressure-assisted cold denaturation and the detection of folding intermediates. Recent studies investigating local perturbations in proteins and the experiments following the effects of point mutations on pressure stability of proteins are also discussed. Ribonuclease A, lysozyme, ubiquitin, apomyoglobin, alpha-lactalbumin and troponin C were the model proteins investigated.

  17. Obtaining high resolution XUV coronal images

    NASA Technical Reports Server (NTRS)

    Golub, L.; Spiller, E.

    1992-01-01

    Photographs obtained during three flights of an 11 inch diameter normal incident soft X-ray (wavelength 63.5 A) telescope are analyzed and the data are compared to the results expected from tests of the mirror surfaces. Multilayer coated X ray telescopes have the potential for 0.01 arcsec resolution, and there is optimism that such high quality mirrors can be built. Some of the factors which enter into the performance actually achieved in practice are as follows: quality of the mirror substrate, quality of the multilayer coating, and number of photons collected. Measurements of multilayer mirrors show that the actual performance achieved in the solar X-ray images demonstrates a reduction in the scattering compared to that calculated from the topography of the top surface of the multilayer. In the brief duration of a rocket flight, the resolution is also limited by counting statistics from the number of photons collected. At X-ray Ultraviolet (XUV) wavelengths from 171 to 335 A the photon flux should be greater than 10(exp 10) ph/sec, so that a resolution better than 0.1 arcsec might be achieved, if mirror quality does not provide a limit first. In a satellite, a large collecting area will be needed for the highest resolution.

  18. High spatial resolution distributed optical fiber dynamic strain sensor with enhanced frequency and strain resolution.

    PubMed

    Masoudi, Ali; Newson, Trevor P

    2017-01-15

    A distributed optical fiber dynamic strain sensor with high spatial and frequency resolution is demonstrated. The sensor, which uses the ϕ-OTDR interrogation technique, exhibited a higher sensitivity thanks to an improved optical arrangement and a new signal processing procedure. The proposed sensing system is capable of fully quantifying multiple dynamic perturbations along a 5 km long sensing fiber with a frequency and spatial resolution of 5 Hz and 50 cm, respectively. The strain resolution of the sensor was measured to be 40 nε.

  19. High-resolution x-ray imaging using a structured scintillator.

    PubMed

    Hormozan, Yashar; Sychugov, Ilya; Linnros, Jan

    2016-02-01

    In this study, the authors introduce a new generation of finely structured scintillators with a very high spatial resolution (a few micrometers) compared to conventional scintillators, yet maintaining a thick absorbing layer for improved detectivity. Their concept is based on a 2D array of high aspect ratio pores which are fabricated by ICP etching, with spacings (pitches) of a few micrometers, on silicon and oxidation of the pore walls. The pores were subsequently filled by melting of powdered CsI(Tl), as the scintillating agent. In order to couple the secondary emitted photons of the back of the scintillator array to a CCD device, having a larger pixel size than the pore pitch, an open optical microscope with adjustable magnification was designed and implemented. By imaging a sharp edge, the authors were able to calculate the modulation transfer function (MTF) of this finely structured scintillator. The x-ray images of individually resolved pores suggest that they have been almost uniformly filled, and the MTF measurements show the feasibility of a few microns spatial resolution imaging, as set by the scintillator pore size. Compared to existing techniques utilizing CsI needles as a structured scintillator, their results imply an almost sevenfold improvement in resolution. Finally, high resolution images, taken by their detector, are presented. The presented work successfully shows the functionality of their detector concept for high resolution imaging and further fabrication developments are most likely to result in higher quantum efficiencies.

  20. Science with High Spatial Resolution Far-Infrared Data

    NASA Technical Reports Server (NTRS)

    Terebey, Susan (Editor); Mazzarella, Joseph M. (Editor)

    1994-01-01

    The goal of this workshop was to discuss new science and techniques relevant to high spatial resolution processing of far-infrared data, with particular focus on high resolution processing of IRAS data. Users of the maximum correlation method, maximum entropy, and other resolution enhancement algorithms applicable to far-infrared data gathered at the Infrared Processing and Analysis Center (IPAC) for two days in June 1993 to compare techniques and discuss new results. During a special session on the third day, interested astronomers were introduced to IRAS HIRES processing, which is IPAC's implementation of the maximum correlation method to the IRAS data. Topics discussed during the workshop included: (1) image reconstruction; (2) random noise; (3) imagery; (4) interacting galaxies; (5) spiral galaxies; (6) galactic dust and elliptical galaxies; (7) star formation in Seyfert galaxies; (8) wavelet analysis; and (9) supernova remnants.

  1. High resolution ceramic gun for projection CRT

    NASA Astrophysics Data System (ADS)

    Muchi, T.; Tagami, S.; Saito, T.

    1995-08-01

    A ceramic resistor with high-resistivity and a low thermal coefficient has been developed. The use of this ceramic material as a cylindrical electrode realizes an electrostatic lens with low spherical aberration. A ceramic electron gun based on a new concept has been developed for high resolution projection CRTs.

  2. SALT high resolution spectroscopy of GX339-4 in outburst

    NASA Astrophysics Data System (ADS)

    Buckley, D. A. H.; Aydi, E.; Kotze, M. M.; Gandhi, P.; Altamirano, D.; Charles, P. A.; Russell, D.

    2017-10-01

    High resolution (R = 15,000) spectroscopy of the current outbursting black hole transient GX339-4 (ATel #10797) was obtained with the SALT High Resolution Spectrograph (HRS; Crause et al. 2014, Proc SPIE, 91476) on 2017-09-29 starting at 17:28 UTC, during evening twilight.

  3. High Resolution Model Intercomparison Project (HighResMIP v1.0) for CMIP6

    NASA Astrophysics Data System (ADS)

    Haarsma, Reindert J.; Roberts, Malcolm J.; Vidale, Pier Luigi; Senior, Catherine A.; Bellucci, Alessio; Bao, Qing; Chang, Ping; Corti, Susanna; Fučkar, Neven S.; Guemas, Virginie; von Hardenberg, Jost; Hazeleger, Wilco; Kodama, Chihiro; Koenigk, Torben; Leung, L. Ruby; Lu, Jian; Luo, Jing-Jia; Mao, Jiafu; Mizielinski, Matthew S.; Mizuta, Ryo; Nobre, Paulo; Satoh, Masaki; Scoccimarro, Enrico; Semmler, Tido; Small, Justin; von Storch, Jin-Song

    2016-11-01

    Robust projections and predictions of climate variability and change, particularly at regional scales, rely on the driving processes being represented with fidelity in model simulations. The role of enhanced horizontal resolution in improved process representation in all components of the climate system is of growing interest, particularly as some recent simulations suggest both the possibility of significant changes in large-scale aspects of circulation as well as improvements in small-scale processes and extremes. However, such high-resolution global simulations at climate timescales, with resolutions of at least 50 km in the atmosphere and 0.25° in the ocean, have been performed at relatively few research centres and generally without overall coordination, primarily due to their computational cost. Assessing the robustness of the response of simulated climate to model resolution requires a large multi-model ensemble using a coordinated set of experiments. The Coupled Model Intercomparison Project 6 (CMIP6) is the ideal framework within which to conduct such a study, due to the strong link to models being developed for the CMIP DECK experiments and other model intercomparison projects (MIPs). Increases in high-performance computing (HPC) resources, as well as the revised experimental design for CMIP6, now enable a detailed investigation of the impact of increased resolution up to synoptic weather scales on the simulated mean climate and its variability. The High Resolution Model Intercomparison Project (HighResMIP) presented in this paper applies, for the first time, a multi-model approach to the systematic investigation of the impact of horizontal resolution. A coordinated set of experiments has been designed to assess both a standard and an enhanced horizontal-resolution simulation in the atmosphere and ocean. The set of HighResMIP experiments is divided into three tiers consisting of atmosphere-only and coupled runs and spanning the period 1950-2050, with the

  4. High Resolution Model Intercomparison Project (HighResMIP v1.0) for CMIP6

    DOE PAGES

    Haarsma, Reindert J.; Roberts, Malcolm J.; Vidale, Pier Luigi; ...

    2016-11-22

    Robust projections and predictions of climate variability and change, particularly at regional scales, rely on the driving processes being represented with fidelity in model simulations. The role of enhanced horizontal resolution in improved process representation in all components of the climate system is of growing interest, particularly as some recent simulations suggest both the possibility of significant changes in large-scale aspects of circulation as well as improvements in small-scale processes and extremes. However, such high-resolution global simulations at climate timescales, with resolutions of at least 50 km in the atmosphere and 0.25° in the ocean, have been performed at relativelymore » few research centres and generally without overall coordination, primarily due to their computational cost. Assessing the robustness of the response of simulated climate to model resolution requires a large multi-model ensemble using a coordinated set of experiments. The Coupled Model Intercomparison Project 6 (CMIP6) is the ideal framework within which to conduct such a study, due to the strong link to models being developed for the CMIP DECK experiments and other model intercomparison projects (MIPs). Increases in high-performance computing (HPC) resources, as well as the revised experimental design for CMIP6, now enable a detailed investigation of the impact of increased resolution up to synoptic weather scales on the simulated mean climate and its variability. The High Resolution Model Intercomparison Project (HighResMIP) presented in this paper applies, for the first time, a multi-model approach to the systematic investigation of the impact of horizontal resolution. A coordinated set of experiments has been designed to assess both a standard and an enhanced horizontal-resolution simulation in the atmosphere and ocean. The set of HighResMIP experiments is divided into three tiers consisting of atmosphere-only and coupled runs and spanning the period 1950

  5. High-resolution mid-infrared observations of NGC 7469

    NASA Technical Reports Server (NTRS)

    Miles, J. W.; Houck, J. R.; Hayward, T. L.

    1994-01-01

    We present a high-resolution 11.7 micrometer image of the starburst/Seyfert hybrid galaxy NGC 7469 using the Hale 5 m telescope at Palomar Observatory. Our map, with diffraction limited spatial resolution of 0.6 sec, shows a 3 sec diameter ring of emission around an unresolved nucleus. The map is similar to the Very Large Array (VLA) 6 cm map of this galaxy made with 0.4 sec resolution by Wilson et al. (1991). About half of the mid-infrared flux in our map emerges from the unresolved nucleus. We also present spatially resolved low resolution spectra that show that the 11.3 micrometer polycyclic aromatic hydrocarbon (PAH) feature comes from the circumnuclear ring but not from the nucleus of the galaxy.

  6. High Resolution BPM for Linear Colliders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simon, C.; Chel, S.; Luong, M.

    2006-11-20

    A high resolution Beam Position Monitor (BPM) is necessary for the beam-based alignment systems of high energy and low emittance electron linacs. Such a monitor is developed in the framework of the European CARE/SRF programme, in a close collaboration between DESY and CEA/DSM/DAPNIA. This monitor is a radiofrequency re-entrant cavity, which can be used either at room or cryogenic temperature, in an environment where dust particle contamination has to be avoided, such as superconducting cavities in a cryomodule. A first prototype of a re-entrant BPM has already delivered measurements at 2K. inside the first cryomodule (ACC1) on the TESLA Testmore » Facility 2 (TTF2). The performances of this BPM are analyzed both experimentally and theoretically, and the limitations of this existing system clearly identified. A new cavity and new electronics have been designed in order to improve the position resolution down to 1 {mu}m and the damping time down to 10 ns.« less

  7. Subranging technique using superconducting technology

    DOEpatents

    Gupta, Deepnarayan

    2003-01-01

    Subranging techniques using "digital SQUIDs" are used to design systems with large dynamic range, high resolution and large bandwidth. Analog-to-digital converters (ADCs) embodying the invention include a first SQUID based "coarse" resolution circuit and a second SQUID based "fine" resolution circuit to convert an analog input signal into "coarse" and "fine" digital signals for subsequent processing. In one embodiment, an ADC includes circuitry for supplying an analog input signal to an input coil having at least a first inductive section and a second inductive section. A first superconducting quantum interference device (SQUID) is coupled to the first inductive section and a second SQUID is coupled to the second inductive section. The first SQUID is designed to produce "coarse" (large amplitude, low resolution) output signals and the second SQUID is designed to produce "fine" (low amplitude, high resolution) output signals in response to the analog input signals.

  8. Near-real-time mosaics from high-resolution side-scan sonar

    USGS Publications Warehouse

    Danforth, William W.; O'Brien, Thomas F.; Schwab, W.C.

    1991-01-01

    High-resolution side-scan sonar has proven to be a very effective tool for stuyding and understanding the surficial geology of the seafloor. Since the mid-1970s, the US Geological Survey has used high-resolution side-scan sonar systems for mapping various areas of the continental shelf. However, two problems typically encountered included the short range and the high sampling rate of high-resolution side-scan sonar systems and the acquisition and real-time processing of the enormous volume of sonar data generated by high-resolution suystems. These problems were addressed and overcome in August 1989 when the USGS conducted a side-scan sonar and bottom sampling survey of a 1000-sq-km section of the continental shelf in the Gulf of Farallones located offshore of San Francisco. The primary goal of this survey was to map an area of critical interest for studying continental shelf sediment dynamics. This survey provided an opportunity to test an image processing scheme that enabled production of a side-scan sonar hard-copy mosaic during the cruise in near real-time.

  9. Accelerated high-resolution photoacoustic tomography via compressed sensing

    NASA Astrophysics Data System (ADS)

    Arridge, Simon; Beard, Paul; Betcke, Marta; Cox, Ben; Huynh, Nam; Lucka, Felix; Ogunlade, Olumide; Zhang, Edward

    2016-12-01

    Current 3D photoacoustic tomography (PAT) systems offer either high image quality or high frame rates but are not able to deliver high spatial and temporal resolution simultaneously, which limits their ability to image dynamic processes in living tissue (4D PAT). A particular example is the planar Fabry-Pérot (FP) photoacoustic scanner, which yields high-resolution 3D images but takes several minutes to sequentially map the incident photoacoustic field on the 2D sensor plane, point-by-point. However, as the spatio-temporal complexity of many absorbing tissue structures is rather low, the data recorded in such a conventional, regularly sampled fashion is often highly redundant. We demonstrate that combining model-based, variational image reconstruction methods using spatial sparsity constraints with the development of novel PAT acquisition systems capable of sub-sampling the acoustic wave field can dramatically increase the acquisition speed while maintaining a good spatial resolution: first, we describe and model two general spatial sub-sampling schemes. Then, we discuss how to implement them using the FP interferometer and demonstrate the potential of these novel compressed sensing PAT devices through simulated data from a realistic numerical phantom and through measured data from a dynamic experimental phantom as well as from in vivo experiments. Our results show that images with good spatial resolution and contrast can be obtained from highly sub-sampled PAT data if variational image reconstruction techniques that describe the tissues structures with suitable sparsity-constraints are used. In particular, we examine the use of total variation (TV) regularization enhanced by Bregman iterations. These novel reconstruction strategies offer new opportunities to dramatically increase the acquisition speed of photoacoustic scanners that employ point-by-point sequential scanning as well as reducing the channel count of parallelized schemes that use detector arrays.

  10. Design and Performance of a 1 ms High-Speed Vision Chip with 3D-Stacked 140 GOPS Column-Parallel PEs †.

    PubMed

    Nose, Atsushi; Yamazaki, Tomohiro; Katayama, Hironobu; Uehara, Shuji; Kobayashi, Masatsugu; Shida, Sayaka; Odahara, Masaki; Takamiya, Kenichi; Matsumoto, Shizunori; Miyashita, Leo; Watanabe, Yoshihiro; Izawa, Takashi; Muramatsu, Yoshinori; Nitta, Yoshikazu; Ishikawa, Masatoshi

    2018-04-24

    We have developed a high-speed vision chip using 3D stacking technology to address the increasing demand for high-speed vision chips in diverse applications. The chip comprises a 1/3.2-inch, 1.27 Mpixel, 500 fps (0.31 Mpixel, 1000 fps, 2 × 2 binning) vision chip with 3D-stacked column-parallel Analog-to-Digital Converters (ADCs) and 140 Giga Operation per Second (GOPS) programmable Single Instruction Multiple Data (SIMD) column-parallel PEs for new sensing applications. The 3D-stacked structure and column parallel processing architecture achieve high sensitivity, high resolution, and high-accuracy object positioning.

  11. High-resolution coded-aperture design for compressive X-ray tomography using low resolution detectors

    NASA Astrophysics Data System (ADS)

    Mojica, Edson; Pertuz, Said; Arguello, Henry

    2017-12-01

    One of the main challenges in Computed Tomography (CT) is obtaining accurate reconstructions of the imaged object while keeping a low radiation dose in the acquisition process. In order to solve this problem, several researchers have proposed the use of compressed sensing for reducing the amount of measurements required to perform CT. This paper tackles the problem of designing high-resolution coded apertures for compressed sensing computed tomography. In contrast to previous approaches, we aim at designing apertures to be used with low-resolution detectors in order to achieve super-resolution. The proposed method iteratively improves random coded apertures using a gradient descent algorithm subject to constraints in the coherence and homogeneity of the compressive sensing matrix induced by the coded aperture. Experiments with different test sets show consistent results for different transmittances, number of shots and super-resolution factors.

  12. High resolution, high rate x-ray spectrometer

    DOEpatents

    Goulding, F.S.; Landis, D.A.

    1983-07-14

    It is an object of the invention to provide a pulse processing system for use with detected signals of a wide dynamic range which is capable of very high counting rates, with high throughput, with excellent energy resolution and a high signal-to-noise ratio. It is a further object to provide a pulse processing system wherein the fast channel resolving time is quite short and substantially independent of the energy of the detected signals. Another object is to provide a pulse processing system having a pile-up rejector circuit which will allow the maximum number of non-interfering pulses to be passed to the output. It is also an object of the invention to provide new methods for generating substantially symmetrically triangular pulses for use in both the main and fast channels of a pulse processing system.

  13. Refinement procedure for the image alignment in high-resolution electron tomography.

    PubMed

    Houben, L; Bar Sadan, M

    2011-01-01

    High-resolution electron tomography from a tilt series of transmission electron microscopy images requires an accurate image alignment procedure in order to maximise the resolution of the tomogram. This is the case in particular for ultra-high resolution where even very small misalignments between individual images can dramatically reduce the fidelity of the resultant reconstruction. A tomographic-reconstruction based and marker-free method is proposed, which uses an iterative optimisation of the tomogram resolution. The method utilises a search algorithm that maximises the contrast in tomogram sub-volumes. Unlike conventional cross-correlation analysis it provides the required correlation over a large tilt angle separation and guarantees a consistent alignment of images for the full range of object tilt angles. An assessment based on experimental reconstructions shows that the marker-free procedure is competitive to the reference of marker-based procedures at lower resolution and yields sub-pixel accuracy even for simulated high-resolution data. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Quantitative evaluation of benign and malignant vertebral fractures with diffusion-weighted MRI: what is the optimum combination of b values for ADC-based lesion differentiation with the single-shot turbo spin-echo sequence?

    PubMed

    Geith, Tobias; Schmidt, Gerwin; Biffar, Andreas; Dietrich, Olaf; Duerr, Hans Roland; Reiser, Maximilian; Baur-Melnyk, Andrea

    2014-09-01

    The purpose of our study was to determine the optimum combination of b values for calculating the apparent diffusion coefficient (ADC) using a diffusion-weighted (DW) single-shot turbo spin-echo (TSE) sequence in the differentiation between acute benign and malignant vertebral body fractures. Twenty-six patients with osteoporotic (mean age, 69 years; range, 31.5-86.2 years) and 20 patients with malignant vertebral fractures (mean age, 63.4 years; range, 24.7-86.4 years) were studied. T1-weighted, STIR, and T2-weighted sequences were acquired at 1.5 T. A DW single-shot TSE sequence at different b values (100, 250, 400, and 600 s/mm(2)) was applied. On the DW images for each evaluated fracture, an ROI was manually adapted to the area of hyperintense signal intensity on STIR-hypointense signal on T1-weighted images. For each ROI, nine different combinations of two, three, and four b values were used to calculate the ADC using a least-squares algorithm. The Student t test and Mann-Whitney U test were used to determine significant differences between benign and malignant fractures. An ROC analysis and the Youden index were used to determine cutoff values for assessment of the highest sensitivity and specificity for the different ADC values. The positive (PPV) and negative predictive values (NPV) were also determined. All calculated ADCs (except the combination of b = 400 s/mm(2) and b = 600 s/mm(2)) showed statistically significant differences between benign and malignant vertebral body fractures, with benign fractures having higher ADCs than malignant ones. The use of higher b values resulted in lower ADCs than those calculated with low b values. The highest AUC (0.85) showed the ADCs calculated with b = 100 and 400 s/mm(2), and the second highest AUC (0.829) showed the ADCs calculated with b = 100, 250, and 400 s/mm(2). The Youden index with equal weight given to sensitivity and specificity suggests use of an ADC calculated with b = 100, 250, and 400 s/mm(2) (cutoff

  15. Texture analysis of high-resolution FLAIR images for TLE

    NASA Astrophysics Data System (ADS)

    Jafari-Khouzani, Kourosh; Soltanian-Zadeh, Hamid; Elisevich, Kost

    2005-04-01

    This paper presents a study of the texture information of high-resolution FLAIR images of the brain with the aim of determining the abnormality and consequently the candidacy of the hippocampus for temporal lobe epilepsy (TLE) surgery. Intensity and volume features of the hippocampus from FLAIR images of the brain have been previously shown to be useful in detecting the abnormal hippocampus in TLE. However, the small size of the hippocampus may limit the texture information. High-resolution FLAIR images show more details of the abnormal intensity variations of the hippocampi and therefore are more suitable for texture analysis. We study and compare the low and high-resolution FLAIR images of six epileptic patients. The hippocampi are segmented manually by an expert from T1-weighted MR images. Then the segmented regions are mapped on the corresponding FLAIR images for texture analysis. The 2-D wavelet transforms of the hippocampi are employed for feature extraction. We compare the ability of the texture features from regular and high-resolution FLAIR images to distinguish normal and abnormal hippocampi. Intracranial EEG results as well as surgery outcome are used as gold standard. The results show that the intensity variations of the hippocampus are related to the abnormalities in the TLE.

  16. FDR-controlled metabolite annotation for high-resolution imaging mass spectrometry.

    PubMed

    Palmer, Andrew; Phapale, Prasad; Chernyavsky, Ilya; Lavigne, Regis; Fay, Dominik; Tarasov, Artem; Kovalev, Vitaly; Fuchser, Jens; Nikolenko, Sergey; Pineau, Charles; Becker, Michael; Alexandrov, Theodore

    2017-01-01

    High-mass-resolution imaging mass spectrometry promises to localize hundreds of metabolites in tissues, cell cultures, and agar plates with cellular resolution, but it is hampered by the lack of bioinformatics tools for automated metabolite identification. We report pySM, a framework for false discovery rate (FDR)-controlled metabolite annotation at the level of the molecular sum formula, for high-mass-resolution imaging mass spectrometry (https://github.com/alexandrovteam/pySM). We introduce a metabolite-signal match score and a target-decoy FDR estimate for spatial metabolomics.

  17. Characterization and Higher-Order Structure Assessment of an Interchain Cysteine-Based ADC: Impact of Drug Loading and Distribution on the Mechanism of Aggregation.

    PubMed

    Guo, Jianxin; Kumar, Sandeep; Chipley, Mark; Marcq, Olivier; Gupta, Devansh; Jin, Zhaowei; Tomar, Dheeraj S; Swabowski, Cecily; Smith, Jacquelynn; Starkey, Jason A; Singh, Satish K

    2016-03-16

    The impact of drug loading and distribution on higher order structure and physical stability of an interchain cysteine-based antibody drug conjugate (ADC) has been studied. An IgG1 mAb was conjugated with a cytotoxic auristatin payload following the reduction of interchain disulfides. The 2-D LC-MS analysis shows that there is a preference for certain isomers within the various drug to antibody ratios (DARs). The physical stability of the unconjugated monoclonal antibody, the ADC, and isolated conjugated species with specific DAR, were compared using calorimetric, thermal, chemical denaturation and molecular modeling techniques, as well as techniques to assess hydrophobicity. The DAR was determined to have a significant impact on the biophysical properties and stability of the ADC. The CH2 domain was significantly perturbed in the DAR6 species, which was attributable to quaternary structural changes as assessed by molecular modeling. At accelerated storage temperatures, the DAR6 rapidly forms higher molecular mass species, whereas the DAR2 and the unconjugated mAb were largely stable. Chemical denaturation study indicates that DAR6 may form multimers while DAR2 and DAR4 primarily exist in monomeric forms in solution at ambient conditions. The physical state differences were correlated with a dramatic increase in the hydrophobicity and a reduction in the surface tension of the DAR6 compared to lower DAR species. Molecular modeling of the various DAR species and their conformers demonstrates that the auristatin-based linker payload directly contributes to the hydrophobicity of the ADC molecule. Higher order structural characterization provides insight into the impact of conjugation on the conformational and colloidal factors that determine the physical stability of cysteine-based ADCs, with implications for process and formulation development.

  18. Microfabrication of High Resolution X-ray Magnetic Calorimeters

    NASA Astrophysics Data System (ADS)

    Hsieh, Wen-Ting; Bandler, Simon R.; Kelly, Daniel P.; Porst, Jan P.; Rotzinger, Hannes; Seidel, George M.; Stevenson, Thomas R.

    2009-12-01

    Metallic magnetic calorimeter (MMC) is one of the most promising x-ray detector technologies for providing the very high energy resolution needed for future astronomical x-ray imaging spectroscopy. For this purpose, we have developed micro-fabricated 5×5 arrays of MMC of which each individual pixel has excellent energy resolution as good as 3.4 eV at 6 keV x-ray. Here we report on the fabrication techniques developed to achieve good resolution and high efficiency. These include: processing of a thin insulation layer for strong magnetic coupling between the AuEr sensor film and the niobium pick-up coil; production of overhanging absorbers for enhanced efficiency of x-ray absorption; fabrication on SiN membranes to minimize the effects on energy resolution from athermal phonon loss. We have also improved the deposition of the magnetic sensor film such that the film magnetization is nearly completely that is expected from the AuEr sputter target bulk material. In addition, we have included a study of a positional sensitive design, the Hydra design, which allows thermal coupling of four absorbers to a common MMC sensor and circuit.

  19. Interferometer. [high resolution

    NASA Technical Reports Server (NTRS)

    Breckinridge, J. B.; Norton, R. H.; Schindler, R. A. (Inventor)

    1981-01-01

    A high resolution interferometer is described. The interferometer is insensitive to slight misalignment of its elements, avoids channeling in the spectrum, generates a maximum equal path fringe contrast, produces an even two sided interferogram without critical matching of the wedge angles of the beamsplitter and compensator wedges, and is optically phase tunable. The interferometer includes a mirror along the path of each beam component produced by the beamsplitter, for reflecting the beam component from the beamsplitter, for reflecting the beam component from the beamsplitter to a corresponding retroreflector and for reflecting the beam returned by the retroreflector back to the beamsplitter. A wedge located along each beam component path, is large enough to cover the retroreflector, so that each beam component passes through the wedge during movement towards the retroreflector and away therefrom.

  20. Constructing a WISE High Resolution Galaxy Atlas

    NASA Technical Reports Server (NTRS)

    Jarrett, T. H.; Masci, F.; Tsai, C. W.; Petty, S.; Cluver, M.; Assef, Roberto J.; Benford, D.; Blain, A.; Bridge, C.; Donoso, E.; hide

    2012-01-01

    After eight months of continuous observations, the Wide-field Infrared Survey Explorer (WISE) mapped the entire sky at 3.4 micron, 4.6 micron, 12 micron, and 22 micron. We have begun a dedicated WISE High Resolution Galaxy Atlas project to fully characterize large, nearby galaxies and produce a legacy image atlas and source catalog. Here we summarize the deconvolution techniques used to significantly improve the spatial resolution of WISE imaging, specifically designed to study the internal anatomy of nearby galaxies. As a case study, we present results for the galaxy NGC 1566, comparing the WISE enhanced-resolution image processing to that of Spitzer, Galaxy Evolution Explorer, and ground-based imaging. This is the first paper in a two-part series; results for a larger sample of nearby galaxies are presented in the second paper.

  1. High resolution spectroscopy in the microwave and far infrared

    NASA Technical Reports Server (NTRS)

    Pickett, Herbert M.

    1990-01-01

    High resolution rotational spectroscopy has long been central to remote sensing techniques in atmospheric sciences and astronomy. As such, laboratory measurements must supply the required data to make direct interpretation of data for instruments which sense atmospheres using rotational spectra. Spectral measurements in the microwave and far infrared regions are also very powerful tools when combined with infrared measurements for characterizing the rotational structure of vibrational spectra. In the past decade new techniques were developed which have pushed high resolution spectroscopy into the wavelength region between 25 micrometers and 2 mm. Techniques to be described include: (1) harmonic generation of microwave sources, (2) infrared laser difference frequency generation, (3) laser sideband generation, and (4) ultrahigh resolution interferometers.

  2. High resolution collimator system for X-ray detector

    DOEpatents

    Eberhard, Jeffrey W.; Cain, Dallas E.

    1987-01-01

    High resolution in an X-ray computerized tomography (CT) inspection system is achieved by using a collimator/detector combination to limit the beam width of the X-ray beam incident on a detector element to the desired resolution width. In a detector such as a high pressure Xenon detector array, a narrow tapered collimator is provided above a wide detector element. The collimator slits have any desired width, as small as a few mils at the top, the slit width is easily controlled, and they are fabricated on standard machines. The slit length determines the slice thickness of the CT image.

  3. High-resolution low-dose scanning transmission electron microscopy.

    PubMed

    Buban, James P; Ramasse, Quentin; Gipson, Bryant; Browning, Nigel D; Stahlberg, Henning

    2010-01-01

    During the past two decades instrumentation in scanning transmission electron microscopy (STEM) has pushed toward higher intensity electron probes to increase the signal-to-noise ratio of recorded images. While this is suitable for robust specimens, biological specimens require a much reduced electron dose for high-resolution imaging. We describe here protocols for low-dose STEM image recording with a conventional field-emission gun STEM, while maintaining the high-resolution capability of the instrument. Our findings show that a combination of reduced pixel dwell time and reduced gun current can achieve radiation doses comparable to low-dose TEM.

  4. Beamline P02.1 at PETRA III for high-resolution and high-energy powder diffraction

    PubMed Central

    Dippel, Ann-Christin; Liermann, Hanns-Peter; Delitz, Jan Torben; Walter, Peter; Schulte-Schrepping, Horst; Seeck, Oliver H.; Franz, Hermann

    2015-01-01

    Powder X-ray diffraction techniques largely benefit from the superior beam quality provided by high-brilliance synchrotron light sources in terms of photon flux and angular resolution. The High Resolution Powder Diffraction Beamline P02.1 at the storage ring PETRA III (DESY, Hamburg, Germany) combines these strengths with the power of high-energy X-rays for materials research. The beamline is operated at a fixed photon energy of 60 keV (0.207 Å wavelength). A high-resolution monochromator generates the highly collimated X-ray beam of narrow energy bandwidth. Classic crystal structure determination in reciprocal space at standard and non-ambient conditions are an essential part of the scientific scope as well as total scattering analysis using the real space information of the pair distribution function. Both methods are complemented by in situ capabilities with time-resolution in the sub-second regime owing to the high beam intensity and the advanced detector technology for high-energy X-rays. P02.1’s efficiency in solving chemical and crystallographic problems is illustrated by presenting key experiments that were carried out within these fields during the early stage of beamline operation. PMID:25931084

  5. SAPHIRE (scintillator avalanche photoconductor with high resolution emitter readout) for low dose x-ray imaging: Spatial resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Dan; Zhao Wei

    2008-07-15

    An indirect flat panel imager (FPI) with programmable avalanche gain and field emitter array (FEA) readout is being investigated for low-dose and high resolution x-ray imaging. It is made by optically coupling a structured x-ray scintillator, e.g., thallium (Tl) doped cesium iodide (CsI), to an amorphous selenium (a-Se) avalanche photoconductor called high-gain avalanche rushing amorphous photoconductor (HARP). The charge image created by the scintillator/HARP (SHARP) combination is read out by the electron beams emitted from the FEA. The proposed detector is called scintillator avalanche photoconductor with high resolution emitter readout (SAPHIRE). The programmable avalanche gain of HARP can improve themore » low dose performance of indirect FPI while the FEA can be made with pixel sizes down to 50 {mu}m. Because of the avalanche gain, a high resolution type of CsI (Tl), which has not been widely used in indirect FPI due to its lower light output, can be used to improve the high spatial frequency performance. The purpose of the present article is to investigate the factors affecting the spatial resolution of SAPHIRE. Since the resolution performance of the SHARP combination has been well studied, the focus of the present work is on the inherent resolution of the FEA readout method. The lateral spread of the electron beam emitted from a 50 {mu}mx50 {mu}m pixel FEA was investigated with two different electron-optical designs: mesh-electrode-only and electrostatic focusing. Our results showed that electrostatic focusing can limit the lateral spread of electron beams to within the pixel size of down to 50 {mu}m. Since electrostatic focusing is essentially independent of signal intensity, it will provide excellent spatial uniformity.« less

  6. High-resolution two dimensional advective transport

    USGS Publications Warehouse

    Smith, P.E.; Larock, B.E.

    1989-01-01

    The paper describes a two-dimensional high-resolution scheme for advective transport that is based on a Eulerian-Lagrangian method with a flux limiter. The scheme is applied to the problem of pure-advection of a rotated Gaussian hill and shown to preserve the monotonicity property of the governing conservation law.

  7. Evaluation of High Resolution Imagery and Elevation Data

    DTIC Science & Technology

    2009-06-01

    the value of cutting-edge geospatial tools while keeping the data constant, the present experiment evaluated the effect of higher resolution imagery...and elevation data while keeping the tools constant. The high resolution data under evaluation was generated from TEC’s Buckeye system, an...results. As researchers and developers provide increasingly advanced tools to process data more quickly and accurately, it is necessary to assess each

  8. Ultra high spatial and temporal resolution breast imaging at 7T.

    PubMed

    van de Bank, B L; Voogt, I J; Italiaander, M; Stehouwer, B L; Boer, V O; Luijten, P R; Klomp, D W J

    2013-04-01

    There is a need to obtain higher specificity in the detection of breast lesions using MRI. To address this need, Dynamic Contrast-Enhanced (DCE) MRI has been combined with other structural and functional MRI techniques. Unfortunately, owing to time constraints structural images at ultra-high spatial resolution can generally not be obtained during contrast uptake, whereas the relatively low spatial resolution of functional imaging (e.g. diffusion and perfusion) limits the detection of small lesions. To be able to increase spatial as well as temporal resolution simultaneously, the sensitivity of MR detection needs to increase as well as the ability to effectively accelerate the acquisition. The required gain in signal-to-noise ratio (SNR) can be obtained at 7T, whereas acceleration can be obtained with high-density receiver coil arrays. In this case, morphological imaging can be merged with DCE-MRI, and other functional techniques can be obtained at higher spatial resolution, and with less distortion [e.g. Diffusion Weighted Imaging (DWI)]. To test the feasibility of this concept, we developed a unilateral breast coil for 7T. It comprises a volume optimized dual-channel transmit coil combined with a 30-channel receive array coil. The high density of small coil elements enabled efficient acceleration in any direction to acquire ultra high spatial resolution MRI of close to 0.6 mm isotropic detail within a temporal resolution of 69 s, high spatial resolution MRI of 1.5 mm isotropic within an ultra high temporal resolution of 6.7 s and low distortion DWI at 7T, all validated in phantoms, healthy volunteers and a patient with a lesion in the right breast classified as Breast Imaging Reporting and Data System (BI-RADS) IV. Copyright © 2012 John Wiley & Sons, Ltd.

  9. High-resolution x-ray imaging using a structured scintillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hormozan, Yashar, E-mail: hormozan@kth.se; Sychugov, Ilya; Linnros, Jan

    2016-02-15

    Purpose: In this study, the authors introduce a new generation of finely structured scintillators with a very high spatial resolution (a few micrometers) compared to conventional scintillators, yet maintaining a thick absorbing layer for improved detectivity. Methods: Their concept is based on a 2D array of high aspect ratio pores which are fabricated by ICP etching, with spacings (pitches) of a few micrometers, on silicon and oxidation of the pore walls. The pores were subsequently filled by melting of powdered CsI(Tl), as the scintillating agent. In order to couple the secondary emitted photons of the back of the scintillator arraymore » to a CCD device, having a larger pixel size than the pore pitch, an open optical microscope with adjustable magnification was designed and implemented. By imaging a sharp edge, the authors were able to calculate the modulation transfer function (MTF) of this finely structured scintillator. Results: The x-ray images of individually resolved pores suggest that they have been almost uniformly filled, and the MTF measurements show the feasibility of a few microns spatial resolution imaging, as set by the scintillator pore size. Compared to existing techniques utilizing CsI needles as a structured scintillator, their results imply an almost sevenfold improvement in resolution. Finally, high resolution images, taken by their detector, are presented. Conclusions: The presented work successfully shows the functionality of their detector concept for high resolution imaging and further fabrication developments are most likely to result in higher quantum efficiencies.« less

  10. High resolution modeling of a small urban catchment

    NASA Astrophysics Data System (ADS)

    Skouri-Plakali, Ilektra; Ichiba, Abdellah; Gires, Auguste; Tchiguirinskaia, Ioulia; Schertzer, Daniel

    2016-04-01

    Flooding is one of the most complex issues that urban environments have to deal with. In France, flooding remains the first natural risk with 72% of decrees state of natural disaster issued between October 1982 and mid-November 2014. Flooding is a result of meteorological extremes that are usually aggravated by the hydrological behavior of urban catchments and human factors. The continuing urbanization process is indeed changing the whole urban water cycle by limiting the infiltration and promoting runoff. Urban environments are very complex systems due to their extreme variability, the interference between human activities and natural processes but also the effect of the ongoing urbanization process that changes the landscape and hardly influences their hydrologic behavior. Moreover, many recent works highlight the need to simulate all urban water processes at their specific temporal and spatial scales. However, considering urban catchments heterogeneity still challenging for urban hydrology, even after advances noticed in term of high-resolution data collection and computational resources. This issue is more to be related to the architecture of urban models being used and how far these models are ready to take into account the extreme variability of urban catchments. In this work, high spatio-temporal resolution modeling is performed for a small and well-equipped urban catchment. The aim of this work is to identify urban modeling needs in terms of spatial and temporal resolution especially for a very small urban area (3.7 ha urban catchment located in the Perreux-sur-Marne city at the southeast of Paris) MultiHydro model was selected to carry out this work, it is a physical based and fully distributed model that interacts four existing modules each of them representing a portion of the water cycle in urban environments. MultiHydro was implemented at 10m, 5m and 2m resolution. Simulations were performed at different spatio-temporal resolutions and analyzed with

  11. High-resolution absorption measurements of NH3 at high temperatures: 500-2100 cm-1

    NASA Astrophysics Data System (ADS)

    Barton, Emma J.; Yurchenko, Sergei N.; Tennyson, Jonathan; Clausen, Sønnik; Fateev, Alexander

    2015-12-01

    High-resolution absorption spectra of NH3 in the region 500-2100 cm-1 at temperatures up to 1027 °C and approximately atmospheric pressure (1013±20 mbar) are measured. NH3 concentrations of 1000 ppm, 0.5% and 1% in volume fraction were used in the measurements. Spectra are recorded in high temperature gas flow cells using a Fourier Transform Infrared (FTIR) spectrometer at a nominal resolution of 0.09 cm-1. Measurements at 22.7 °C are compared to high-resolution cross sections available from the Pacific Northwest National Laboratory (PNNL). The higher temperature spectra are analysed by comparison to a variational line list, BYTe, and experimental energy levels determined using the MARVEL procedure. Approximately 2000 lines have been assigned, of which 851 are newly assigned to mainly hot bands involving vibrational states as high as v2=5.

  12. A High Resolution Phase Shifting Interferometer.

    NASA Astrophysics Data System (ADS)

    Bayda, Michael; Bartscher, Christoph; Wilkinson, Allen

    1997-03-01

    Configuration, operation, and performance details of a high resolution phase shifting Twyman-Green interferometer are presented. The instrument was used for density relaxation experiments of very compressible liquid-vapor critical fluids.(A companion talk in the Nonequilibrium Phenomena session under Complex Fluids presents density equilibration work.) A sample assembly contained the cell, beam splitter, phase shifter, and mirrors inside a 6 cm diameter by 6 cm long aluminum cylinder. This sample assembly was contained inside a thermostat stable to 50 μK RMS deviation. A thin phase retarding Liquid Crystal Cell (LCC) was placed in the reference arm of the interferometer. The LCC provided four cumulative 90 degree phase shifts to produce four images used in computing each phase map. The Carré technique was used to calculate a phase value for each pixel from the four intensities of each pixel. Four images for one phase map could be acquired in less than two seconds. The spatial resolution was 25 μm. The phase resolution of the interferometer in a six second period was better than λ/400. The phase stability of the interferometer during 25 hours was better than λ/70. Factors affecting timing, resolution, and other phase shifting devices will be discussed. WWW Presentation

  13. High-resolution phylogenetic microbial community profiling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singer, Esther; Bushnell, Brian; Coleman-Derr, Devin

    Over the past decade, high-throughput short-read 16S rRNA gene amplicon sequencing has eclipsed clone-dependent long-read Sanger sequencing for microbial community profiling. The transition to new technologies has provided more quantitative information at the expense of taxonomic resolution with implications for inferring metabolic traits in various ecosystems. We applied single-molecule real-time sequencing for microbial community profiling, generating full-length 16S rRNA gene sequences at high throughput, which we propose to name PhyloTags. We benchmarked and validated this approach using a defined microbial community. When further applied to samples from the water column of meromictic Sakinaw Lake, we show that while community structuresmore » at the phylum level are comparable between PhyloTags and Illumina V4 16S rRNA gene sequences (iTags), variance increases with community complexity at greater water depths. PhyloTags moreover allowed less ambiguous classification. Last, a platform-independent comparison of PhyloTags and in silico generated partial 16S rRNA gene sequences demonstrated significant differences in community structure and phylogenetic resolution across multiple taxonomic levels, including a severe underestimation in the abundance of specific microbial genera involved in nitrogen and methane cycling across the Lake's water column. Thus, PhyloTags provide a reliable adjunct or alternative to cost-effective iTags, enabling more accurate phylogenetic resolution of microbial communities and predictions on their metabolic potential.« less

  14. High-resolution phylogenetic microbial community profiling

    DOE PAGES

    Singer, Esther; Bushnell, Brian; Coleman-Derr, Devin; ...

    2016-02-09

    Over the past decade, high-throughput short-read 16S rRNA gene amplicon sequencing has eclipsed clone-dependent long-read Sanger sequencing for microbial community profiling. The transition to new technologies has provided more quantitative information at the expense of taxonomic resolution with implications for inferring metabolic traits in various ecosystems. We applied single-molecule real-time sequencing for microbial community profiling, generating full-length 16S rRNA gene sequences at high throughput, which we propose to name PhyloTags. We benchmarked and validated this approach using a defined microbial community. When further applied to samples from the water column of meromictic Sakinaw Lake, we show that while community structuresmore » at the phylum level are comparable between PhyloTags and Illumina V4 16S rRNA gene sequences (iTags), variance increases with community complexity at greater water depths. PhyloTags moreover allowed less ambiguous classification. Last, a platform-independent comparison of PhyloTags and in silico generated partial 16S rRNA gene sequences demonstrated significant differences in community structure and phylogenetic resolution across multiple taxonomic levels, including a severe underestimation in the abundance of specific microbial genera involved in nitrogen and methane cycling across the Lake's water column. Thus, PhyloTags provide a reliable adjunct or alternative to cost-effective iTags, enabling more accurate phylogenetic resolution of microbial communities and predictions on their metabolic potential.« less

  15. Development of a high-resolution cavity-beam position monitor

    NASA Astrophysics Data System (ADS)

    Inoue, Yoichi; Hayano, Hitoshi; Honda, Yosuke; Takatomi, Toshikazu; Tauchi, Toshiaki; Urakawa, Junji; Komamiya, Sachio; Nakamura, Tomoya; Sanuki, Tomoyuki; Kim, Eun-San; Shin, Seung-Hwan; Vogel, Vladimir

    2008-06-01

    We have developed a high-resolution cavity-beam position monitor (BPM) to be used at the focal point of the ATF2, which is a test beam line that is now being built to demonstrate stable orbit control at ˜nanometer resolution. The design of the cavity structure was optimized for the Accelerator Test Facility (ATF) beam in various ways. For example, the cavity has a rectangular shape in order to isolate two dipole modes in orthogonal directions, and a relatively thin gap that is less sensitive to trajectory inclination. A two stage homodyne mixer with highly sensitive electronics and phase-sensitive detection was also developed. Two BPM blocks, each containing two cavity BPMs, were installed in the existing ATF beam line using a rigid support frame. After testing the basic characteristics, we measured the resolution using three BPMs. The system demonstrated 8.7 nm position resolution over a dynamic range of 5μm.

  16. High-resolution ab initio three-dimensional x-ray diffraction microscopy

    DOE PAGES

    Chapman, Henry N.; Barty, Anton; Marchesini, Stefano; ...

    2006-01-01

    Coherent x-ray diffraction microscopy is a method of imaging nonperiodic isolated objects at resolutions limited, in principle, by only the wavelength and largest scattering angles recorded. We demonstrate x-ray diffraction imaging with high resolution in all three dimensions, as determined by a quantitative analysis of the reconstructed volume images. These images are retrieved from the three-dimensional diffraction data using no a priori knowledge about the shape or composition of the object, which has never before been demonstrated on a nonperiodic object. We also construct two-dimensional images of thick objects with greatly increased depth of focus (without loss of transverse spatialmore » resolution). These methods can be used to image biological and materials science samples at high resolution with x-ray undulator radiation and establishes the techniques to be used in atomic-resolution ultrafast imaging at x-ray free-electron laser sources.« less

  17. High resolution Fourier interferometer-spectrophotopolarimeter

    NASA Technical Reports Server (NTRS)

    Fymat, A. L. (Inventor)

    1976-01-01

    A high-resolution Fourier interferometer-spectrophotopolarimeter is provided using a single linear polarizer-analyzer the transmission axis azimuth of which is positioned successively in the three orientations of 0 deg, 45 deg, and 90 deg, in front of a detector; four flat mirrors, three of which are switchable to either of two positions to direct an incoming beam from an interferometer to the polarizer-analyzer around a sample cell transmitted through a medium in a cell and reflected by medium in the cell; and four fixed focussing lenses, all located in a sample chamber attached at the exit side of the interferometer. This arrangement can provide the distribution of energy and complete polarization state across the spectrum of the reference light entering from the interferometer; the same light after a fixed-angle reflection from the sample cell containing a medium to be analyzed; and the same light after direct transmission through the same sample cell, with the spectral resolution provided by the interferometer.

  18. High-resolution and high-throughput multichannel Fourier transform spectrometer with two-dimensional interferogram warping compensation

    NASA Astrophysics Data System (ADS)

    Watanabe, A.; Furukawa, H.

    2018-04-01

    The resolution of multichannel Fourier transform (McFT) spectroscopy is insufficient for many applications despite its extreme advantage of high throughput. We propose an improved configuration to realise both performance using a two-dimensional area sensor. For the spectral resolution, we obtained the interferogram of a larger optical path difference by shifting the area sensor without altering any optical components. The non-linear phase error of the interferometer was successfully corrected using a phase-compensation calculation. Warping compensation was also applied to realise a higher throughput to accumulate the signal between vertical pixels. Our approach significantly improved the resolution and signal-to-noise ratio by factors of 1.7 and 34, respectively. This high-resolution and high-sensitivity McFT spectrometer will be useful for detecting weak light signals such as those in non-invasive diagnosis.

  19. High-resolution AM LCD development for avionic applications

    NASA Astrophysics Data System (ADS)

    Lamberth, Larry S.; Laddu, Ravindra R.; Harris, Doug; Sarma, Kalluri R.; Li, Wang-Yang; Chien, C. C.; Chu, C. Y.; Lee, C. S.; Kuo, Chen-Lung

    2003-09-01

    For the first time, an avionic grade MVA AM LCD with wide viewing angle has been developed for use in either landscape or portrait mode. The development of a high resolution Multi-domain Vertical Alignment (MVA) Active Matrix Liquid Crystal Display (AM LCD) is described. Challenges met in this development include achieving the required performance with high luminance and sunlight readability while meeting stringent optical (image quality) and environmental performance requirements of avionics displays. In this paper the optical and environmental performance of this high resolution 14.1" MVA-AM-LCD are discussed and some performance comparisons to conventional AM-LCDs are documented. This AM LCD has found multiple Business Aviation and Military display applications and cockpit pictures are presented.

  20. Evaluation of a High-Resolution Regional Reanalysis for Europe

    NASA Astrophysics Data System (ADS)

    Ohlwein, C.; Wahl, S.; Keller, J. D.; Bollmeyer, C.

    2014-12-01

    Reanalyses gain more and more importance as a source of meteorological information for many purposes and applications. Several global reanalyses projects (e.g., ERA, MERRA, CSFR, JMA9) produce and verify these data sets to provide time series as long as possible combined with a high data quality. Due to a spatial resolution down to 50-70km and 3-hourly temporal output, they are not suitable for small scale problems (e.g., regional climate assessment, meso-scale NWP verification, input for subsequent models such as river runoff simulations). The implementation of regional reanalyses based on a limited area model along with a data assimilation scheme is able to generate reanalysis data sets with high spatio-temporal resolution. Within the Hans-Ertel-Centre for Weather Research (HErZ), the climate monitoring branch concentrates efforts on the assessment and analysis of regional climate in Germany and Europe. In joint cooperation with DWD (German Meteorological Service), a high-resolution reanalysis system based on the COSMO model has been developed. The regional reanalysis for Europe matches the domain of the CORDEX EURO-11 specifications, albeit at a higher spatial resolution, i.e., 0.055° (6km) instead of 0.11° (12km) and comprises the assimilation of observational data using the existing nudging scheme of COSMO complemented by a special soil moisture analysis with boundary conditions provided by ERA-Interim data. The reanalysis data set covers 6 years (2007-2012) and is currently extended to 16 years. Extensive evaluation of the reanalysis is performed using independent observations with special emphasis on precipitation and high-impact weather situations indicating a better representation of small scale variability. Further, the evaluation shows an added value of the regional reanalysis with respect to the forcing ERA Interim reanalysis and compared to a pure high-resolution dynamical downscaling approach without data assimilation.

  1. High-resolution x-ray tomography using laboratory sources

    NASA Astrophysics Data System (ADS)

    Tkachuk, Andrei; Feser, Michael; Cui, Hongtao; Duewer, Fred; Chang, Hauyee; Yun, Wenbing

    2006-08-01

    X-ray computed tomography (XCT) is a powerful nondestructive 3D imaging technique, which enables the visualization of the three dimensional structure of complex, optically opaque samples. High resolution XCT using Fresnel zone plate lenses has been confined in the past to synchrotron radiation centers due to the need for a bright and intense source of x-rays. This confinement severely limits the availability and accessibility of x-ray microscopes and the wide proliferation of this methodology. We are describing a sub-50nm resolution XCT system operating at 8 keV in absorption and Zernike phase contrast mode based on a commercially available laboratory x-ray source. The system utilizes high-efficiency Fresnel zone plates with an outermost zone width of 35 nm and 700 nm structure height resulting in a current spatial resolution better than 50 nm. In addition to the technical description of the system and specifications, we present application examples in the semiconductor field.

  2. High-resolution harmonic motion imaging (HR-HMI) for tissue biomechanical property characterization

    PubMed Central

    Ma, Teng; Qian, Xuejun; Chiu, Chi Tat; Yu, Mingyue; Jung, Hayong; Tung, Yao-Sheng; Shung, K. Kirk

    2015-01-01

    Background Elastography, capable of mapping the biomechanical properties of biological tissues, serves as a useful technique for clinicians to perform disease diagnosis and determine stages of many diseases. Many acoustic radiation force (ARF) based elastography, including acoustic radiation force impulse (ARFI) imaging and harmonic motion imaging (HMI), have been developed to remotely assess the elastic properties of tissues. However, due to the lower operating frequencies of these approaches, their spatial resolutions are insufficient for revealing stiffness distribution on small scale applications, such as cancerous tumor margin detection, atherosclerotic plaque composition analysis and ophthalmologic tissue characterization. Though recently developed ARF-based optical coherence elastography (OCE) methods open a new window for the high resolution elastography, shallow imaging depths significantly limit their usefulness in clinics. Methods The aim of this study is to develop a high-resolution HMI method to assess the tissue biomechanical properties with acceptable field of view (FOV) using a 4 MHz ring transducer for efficient excitation and a 40 MHz needle transducer for accurate detection. Under precise alignment of two confocal transducers, the high-resolution HMI system has a lateral resolution of 314 µm and an axial resolution of 
147 µm with an effective FOV of 2 mm in depth. Results The performance of this high resolution imaging system was validated on the agar-based tissue mimicking phantoms with different stiffness distributions. These data demonstrated the imaging system’s improved resolution and sensitivity on differentiating materials with varying stiffness. In addition, ex vivo imaging of a human atherosclerosis coronary artery demonstrated the capability of high resolution HMI in identifying layer-specific structures and characterizing atherosclerotic plaques based on their stiffness differences. Conclusions All together high resolution HMI

  3. High-resolution harmonic motion imaging (HR-HMI) for tissue biomechanical property characterization.

    PubMed

    Ma, Teng; Qian, Xuejun; Chiu, Chi Tat; Yu, Mingyue; Jung, Hayong; Tung, Yao-Sheng; Shung, K Kirk; Zhou, Qifa

    2015-02-01

    Elastography, capable of mapping the biomechanical properties of biological tissues, serves as a useful technique for clinicians to perform disease diagnosis and determine stages of many diseases. Many acoustic radiation force (ARF) based elastography, including acoustic radiation force impulse (ARFI) imaging and harmonic motion imaging (HMI), have been developed to remotely assess the elastic properties of tissues. However, due to the lower operating frequencies of these approaches, their spatial resolutions are insufficient for revealing stiffness distribution on small scale applications, such as cancerous tumor margin detection, atherosclerotic plaque composition analysis and ophthalmologic tissue characterization. Though recently developed ARF-based optical coherence elastography (OCE) methods open a new window for the high resolution elastography, shallow imaging depths significantly limit their usefulness in clinics. The aim of this study is to develop a high-resolution HMI method to assess the tissue biomechanical properties with acceptable field of view (FOV) using a 4 MHz ring transducer for efficient excitation and a 40 MHz needle transducer for accurate detection. Under precise alignment of two confocal transducers, the high-resolution HMI system has a lateral resolution of 314 µm and an axial resolution of 
147 µm with an effective FOV of 2 mm in depth. The performance of this high resolution imaging system was validated on the agar-based tissue mimicking phantoms with different stiffness distributions. These data demonstrated the imaging system's improved resolution and sensitivity on differentiating materials with varying stiffness. In addition, ex vivo imaging of a human atherosclerosis coronary artery demonstrated the capability of high resolution HMI in identifying layer-specific structures and characterizing atherosclerotic plaques based on their stiffness differences. All together high resolution HMI appears to be a promising ultrasound

  4. High-resolution phylogenetic microbial community profiling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singer, Esther; Coleman-Derr, Devin; Bowman, Brett

    2014-03-17

    The representation of bacterial and archaeal genome sequences is strongly biased towards cultivated organisms, which belong to merely four phylogenetic groups. Functional information and inter-phylum level relationships are still largely underexplored for candidate phyla, which are often referred to as microbial dark matter. Furthermore, a large portion of the 16S rRNA gene records in the GenBank database are labeled as environmental samples and unclassified, which is in part due to low read accuracy, potential chimeric sequences produced during PCR amplifications and the low resolution of short amplicons. In order to improve the phylogenetic classification of novel species and advance ourmore » knowledge of the ecosystem function of uncultivated microorganisms, high-throughput full length 16S rRNA gene sequencing methodologies with reduced biases are needed. We evaluated the performance of PacBio single-molecule real-time (SMRT) sequencing in high-resolution phylogenetic microbial community profiling. For this purpose, we compared PacBio and Illumina metagenomic shotgun and 16S rRNA gene sequencing of a mock community as well as of an environmental sample from Sakinaw Lake, British Columbia. Sakinaw Lake is known to contain a large age of microbial species from candidate phyla. Sequencing results show that community structure based on PacBio shotgun and 16S rRNA gene sequences is highly similar in both the mock and the environmental communities. Resolution power and community representation accuracy from SMRT sequencing data appeared to be independent of GC content of microbial genomes and was higher when compared to Illumina-based metagenome shotgun and 16S rRNA gene (iTag) sequences, e.g. full-length sequencing resolved all 23 OTUs in the mock community, while iTags did not resolve closely related species. SMRT sequencing hence offers various potential benefits when characterizing uncharted microbial communities.« less

  5. Analysis strategies for high-resolution UHF-fMRI data.

    PubMed

    Polimeni, Jonathan R; Renvall, Ville; Zaretskaya, Natalia; Fischl, Bruce

    2018-03-01

    Functional MRI (fMRI) benefits from both increased sensitivity and specificity with increasing magnetic field strength, making it a key application for Ultra-High Field (UHF) MRI scanners. Most UHF-fMRI studies utilize the dramatic increases in sensitivity and specificity to acquire high-resolution data reaching sub-millimeter scales, which enable new classes of experiments to probe the functional organization of the human brain. This review article surveys advanced data analysis strategies developed for high-resolution fMRI at UHF. These include strategies designed to mitigate distortion and artifacts associated with higher fields in ways that attempt to preserve spatial resolution of the fMRI data, as well as recently introduced analysis techniques that are enabled by these extremely high-resolution data. Particular focus is placed on anatomically-informed analyses, including cortical surface-based analysis, which are powerful techniques that can guide each step of the analysis from preprocessing to statistical analysis to interpretation and visualization. New intracortical analysis techniques for laminar and columnar fMRI are also reviewed and discussed. Prospects for single-subject individualized analyses are also presented and discussed. Altogether, there are both specific challenges and opportunities presented by UHF-fMRI, and the use of proper analysis strategies can help these valuable data reach their full potential. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. A High-Resolution Stopwatch for Cents

    ERIC Educational Resources Information Center

    Gingl, Z.; Kopasz, K.

    2011-01-01

    A very low-cost, easy-to-make stopwatch is presented to support various experiments in mechanics. The high-resolution stopwatch is based on two photodetectors connected directly to the microphone input of a sound card. Dedicated free open-source software has been developed and made available to download. The efficiency is demonstrated by a free…

  7. Theoretical Problems in High Resolution Solar Physics, 2

    NASA Technical Reports Server (NTRS)

    Athay, G. (Editor); Spicer, D. S. (Editor)

    1987-01-01

    The Science Working Group for the High Resolution Solar Observatory (HRSO) laid plans beginning in 1984 for a series of workshops designed to stimulate a broadbased input from the scientific community to the HRSO mission. These workshops have the dual objectives of encouraging an early start on the difficult theoretical problems in radiative transfer, magnetohydrodynamics, and plasma physics that will be posed by the HRSO data, and maintaining current discussions of results in high resolution solar studies. This workshop was the second in the series. The workshop format presented invited review papers during the formal sessions and contributed poster papers for discussions during open periods. Both are presented.

  8. High resolution land surface geophysical parameters estimation from ALOS PALSAR data

    USDA-ARS?s Scientific Manuscript database

    High resolution land surface geophysical products, such as soil moisture, surface roughness and vegetation water content, are essential for a variety of applications ranging from water management to regional climate predictions. In India high resolution geophysical products, in particular soil moist...

  9. A High Resolution TDI CCD Camera forMicrosatellite (HRCM)

    NASA Astrophysics Data System (ADS)

    Hao, Yuncai; Zheng, You; Dong, Ying; Li, Tao; Yu, Shijie

    In resent years it is a important development direction in the commercial remote sensing field to obtain (1-5)m high ground resolution from space using microsatellite. Thanks to progress of new technologies, new materials and new detectors it is possible to develop 1m ground resolution space imaging system with weight less than 20kg. Based on many years works on optical system design a project of very high resolution TDI CCD camera using in space was proposed by the authors of this paper. The performance parameters and optical lay-out of the HRCM was presented. A compact optical design and results analysis for the system was given in the paper also. and small fold mirror to take a line field of view usable for TDI CCD and short outer size. The length along the largest size direction is about 1/4 of the focal length. And two 4096X96(grades) line TDI CCD will be used as the focal plane detector. The special optical parts are fixed near before the final image for getting the ground pixel resolution higher than the Nyquist resolution of the detector using the sub-pixel technique which will be explained in the paper. In the system optical SiC will be used as the mirror material, the C-C composite material will be used as the material of the mechanical structure framework. The circle frame of the primary and secondary mirrors will use one time turning on a machine tool in order to assuring concentric request for alignment of the system. In general the HRCM have the performance parameters with 2.5m focal length, 20 FOV, 1/11relative aperture, (0.4-0.8) micrometer spectral range, 10 micron pixel size of TDI CCD, weight less than 20kg, 1m ground pixel resolution at flying orbit 500km high. Design and analysis of the HRCM put up in the paper indicate that HRCM have many advantages to use it in space. Keywords High resolution TDI CCD Sub-pixel imaging Light-weighted optical system SiC mirror

  10. High Resolution, High Frame Rate Video Technology

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Papers and working group summaries presented at the High Resolution, High Frame Rate Video (HHV) Workshop are compiled. HHV system is intended for future use on the Space Shuttle and Space Station Freedom. The Workshop was held for the dual purpose of: (1) allowing potential scientific users to assess the utility of the proposed system for monitoring microgravity science experiments; and (2) letting technical experts from industry recommend improvements to the proposed near-term HHV system. The following topics are covered: (1) State of the art in the video system performance; (2) Development plan for the HHV system; (3) Advanced technology for image gathering, coding, and processing; (4) Data compression applied to HHV; (5) Data transmission networks; and (6) Results of the users' requirements survey conducted by NASA.

  11. Generating High-Temporal and Spatial Resolution TIR Image Data

    NASA Astrophysics Data System (ADS)

    Herrero-Huerta, M.; Lagüela, S.; Alfieri, S. M.; Menenti, M.

    2017-09-01

    Remote sensing imagery to monitor global biophysical dynamics requires the availability of thermal infrared data at high temporal and spatial resolution because of the rapid development of crops during the growing season and the fragmentation of most agricultural landscapes. Conversely, no single sensor meets these combined requirements. Data fusion approaches offer an alternative to exploit observations from multiple sensors, providing data sets with better properties. A novel spatio-temporal data fusion model based on constrained algorithms denoted as multisensor multiresolution technique (MMT) was developed and applied to generate TIR synthetic image data at both temporal and spatial high resolution. Firstly, an adaptive radiance model is applied based on spectral unmixing analysis of . TIR radiance data at TOA (top of atmosphere) collected by MODIS daily 1-km and Landsat - TIRS 16-day sampled at 30-m resolution are used to generate synthetic daily radiance images at TOA at 30-m spatial resolution. The next step consists of unmixing the 30 m (now lower resolution) images using the information about their pixel land-cover composition from co-registered images at higher spatial resolution. In our case study, TIR synthesized data were unmixed to the Sentinel 2 MSI with 10 m resolution. The constrained unmixing preserves all the available radiometric information of the 30 m images and involves the optimization of the number of land-cover classes and the size of the moving window for spatial unmixing. Results are still being evaluated, with particular attention for the quality of the data streams required to apply our approach.

  12. Reproducibility and calibration of MMC-based high-resolution gamma detectors

    DOE PAGES

    Bates, C. R.; Pies, C.; Kempf, S.; ...

    2016-07-15

    Here, we describe a prototype γ-ray detector based on a metallic magnetic calorimeter with an energy resolution of 46 eV at 60 keV and a reproducible response function that follows a simple second-order polynomial. The simple detector calibration allows adding high-resolution spectra from different pixels and different cool-downs without loss in energy resolution to determine γ-ray centroids with high accuracy. As an example of an application in nuclear safeguards enabled by such a γ-ray detector, we discuss the non-destructive assay of 242Pu in a mixed-isotope Pu sample.

  13. High frequency resolution terahertz time-domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Sangala, Bagvanth Reddy

    2013-12-01

    A new method for the high frequency resolution terahertz time-domain spectroscopy is developed based on the characteristic matrix method. This method is useful for studying planar samples or stack of planar samples. The terahertz radiation was generated by optical rectification in a ZnTe crystal and detected by another ZnTe crystal via electro-optic sampling method. In this new characteristic matrix based method, the spectra of the sample and reference waveforms will be modeled by using characteristic matrices. We applied this new method to measure the optical constants of air. The terahertz transmission through the layered systems air-Teflon-air-Quartz-air and Nitrogen gas-Teflon-Nitrogen gas-Quartz-Nitrogen gas was modeled by the characteristic matrix method. A transmission coefficient is derived from these models which was optimized to fit the experimental transmission coefficient to extract the optical constants of air. The optimization of an error function involving the experimental complex transmission coefficient and the theoretical transmission coefficient was performed using patternsearch algorithm of MATLAB. Since this method takes account of the echo waveforms due to reflections in the layered samples, this method allows analysis of longer time-domain waveforms giving rise to very high frequency resolution in the frequency-domain. We have presented the high frequency resolution terahertz time-domain spectroscopy of air and compared the results with the literature values. We have also fitted the complex susceptibility of air to the Lorentzian and Gaussian functions to extract the linewidths.

  14. Enhancing GIS Capabilities for High Resolution Earth Science Grids

    NASA Astrophysics Data System (ADS)

    Koziol, B. W.; Oehmke, R.; Li, P.; O'Kuinghttons, R.; Theurich, G.; DeLuca, C.

    2017-12-01

    Applications for high performance GIS will continue to increase as Earth system models pursue more realistic representations of Earth system processes. Finer spatial resolution model input and output, unstructured or irregular modeling grids, data assimilation, and regional coordinate systems present novel challenges for GIS frameworks operating in the Earth system modeling domain. This presentation provides an overview of two GIS-driven applications that combine high performance software with big geospatial datasets to produce value-added tools for the modeling and geoscientific community. First, a large-scale interpolation experiment using National Hydrography Dataset (NHD) catchments, a high resolution rectilinear CONUS grid, and the Earth System Modeling Framework's (ESMF) conservative interpolation capability will be described. ESMF is a parallel, high-performance software toolkit that provides capabilities (e.g. interpolation) for building and coupling Earth science applications. ESMF is developed primarily by the NOAA Environmental Software Infrastructure and Interoperability (NESII) group. The purpose of this experiment was to test and demonstrate the utility of high performance scientific software in traditional GIS domains. Special attention will be paid to the nuanced requirements for dealing with high resolution, unstructured grids in scientific data formats. Second, a chunked interpolation application using ESMF and OpenClimateGIS (OCGIS) will demonstrate how spatial subsetting can virtually remove computing resource ceilings for very high spatial resolution interpolation operations. OCGIS is a NESII-developed Python software package designed for the geospatial manipulation of high-dimensional scientific datasets. An overview of the data processing workflow, why a chunked approach is required, and how the application could be adapted to meet operational requirements will be discussed here. In addition, we'll provide a general overview of OCGIS

  15. High-resolution radiography by means of a hodoscope

    DOEpatents

    De Volpi, Alexander

    1978-01-01

    The fast neutron hodoscope, a device that produces neutron radiographs with coarse space resolution in a short time, is modified to produce neutron or gamma radiographs of relatively thick samples and with high space resolution. The modification comprises motorizing a neutron and gamma collimator to permit a controlled scanning pattern, simultaneous collection of data in a number of hodoscope channels over a period of time, and computerized image reconstruction of the data thus gathered.

  16. A Portable, High Resolution, Surface Measurement Device

    NASA Technical Reports Server (NTRS)

    Ihlefeld, Curtis M.; Burns, Bradley M.; Youngquist, Robert C.

    2012-01-01

    A high resolution, portable, surface measurement device has been demonstrated to provide micron-resolution topographical plots. This device was specifically developed to allow in-situ measurements of defects on the Space Shuttle Orbiter windows, but is versatile enough to be used on a wide variety of surfaces. This paper discusses the choice of an optical sensor and then the decisions required to convert a lab bench optical measurement device into an ergonomic portable system. The necessary trade-offs between performance and portability are presented along with a description of the device developed to measure Orbiter window defects.

  17. Scanning Transmission Electron Microscopy at High Resolution

    PubMed Central

    Wall, J.; Langmore, J.; Isaacson, M.; Crewe, A. V.

    1974-01-01

    We have shown that a scanning transmission electron microscope with a high brightness field emission source is capable of obtaining better than 3 Å resolution using 30 to 40 keV electrons. Elastic dark field images of single atoms of uranium and mercury are shown which demonstrate this fact as determined by a modified Rayleigh criterion. Point-to-point micrograph resolution between 2.5 and 3.0 Å is found in dark field images of micro-crystallites of uranium and thorium compounds. Furthermore, adequate contrast is available to observe single atoms as light as silver. Images PMID:4521050

  18. Partial homogeneity based high-resolution nuclear magnetic resonance spectra under inhomogeneous magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Zhiliang; Lin, Liangjie; Lin, Yanqin, E-mail: linyq@xmu.edu.cn, E-mail: chenz@xmu.edu.cn

    2014-09-29

    In nuclear magnetic resonance (NMR) technique, it is of great necessity and importance to obtain high-resolution spectra, especially under inhomogeneous magnetic fields. In this study, a method based on partial homogeneity is proposed for retrieving high-resolution one-dimensional NMR spectra under inhomogeneous fields. Signals from series of small voxels, which characterize high resolution due to small sizes, are recorded simultaneously. Then, an inhomogeneity correction algorithm is developed based on pattern recognition to correct the influence brought by field inhomogeneity automatically, thus yielding high-resolution information. Experiments on chemical solutions and fish spawn were carried out to demonstrate the performance of the proposedmore » method. The proposed method serves as a single radiofrequency pulse high-resolution NMR spectroscopy under inhomogeneous fields and may provide an alternative of obtaining high-resolution spectra of in vivo living systems or chemical-reaction systems, where performances of conventional techniques are usually degenerated by field inhomogeneity.« less

  19. Computational high-resolution optical imaging of the living human retina

    NASA Astrophysics Data System (ADS)

    Shemonski, Nathan D.; South, Fredrick A.; Liu, Yuan-Zhi; Adie, Steven G.; Scott Carney, P.; Boppart, Stephen A.

    2015-07-01

    High-resolution in vivo imaging is of great importance for the fields of biology and medicine. The introduction of hardware-based adaptive optics (HAO) has pushed the limits of optical imaging, enabling high-resolution near diffraction-limited imaging of previously unresolvable structures. In ophthalmology, when combined with optical coherence tomography, HAO has enabled a detailed three-dimensional visualization of photoreceptor distributions and individual nerve fibre bundles in the living human retina. However, the introduction of HAO hardware and supporting software adds considerable complexity and cost to an imaging system, limiting the number of researchers and medical professionals who could benefit from the technology. Here we demonstrate a fully automated computational approach that enables high-resolution in vivo ophthalmic imaging without the need for HAO. The results demonstrate that computational methods in coherent microscopy are applicable in highly dynamic living systems.

  20. Design of UAV high resolution image transmission system

    NASA Astrophysics Data System (ADS)

    Gao, Qiang; Ji, Ming; Pang, Lan; Jiang, Wen-tao; Fan, Pengcheng; Zhang, Xingcheng

    2017-02-01

    In order to solve the problem of the bandwidth limitation of the image transmission system on UAV, a scheme with image compression technology for mini UAV is proposed, based on the requirements of High-definition image transmission system of UAV. The video codec standard H.264 coding module and key technology was analyzed and studied for UAV area video communication. Based on the research of high-resolution image encoding and decoding technique and wireless transmit method, The high-resolution image transmission system was designed on architecture of Android and video codec chip; the constructed system was confirmed by experimentation in laboratory, the bit-rate could be controlled easily, QoS is stable, the low latency could meets most applied requirement not only for military use but also for industrial applications.

  1. High-resolution scanning electron microscopy of frozen-hydrated cells.

    PubMed

    Walther, P; Chen, Y; Pech, L L; Pawley, J B

    1992-11-01

    Cryo-fixed yeast Paramecia and sea urchin embryos were investigated with an in-lens type field-emission SEM using a cold stage. The goal was to further develop and investigate the processing of frozen samples for the low-temperature scanning electron microscope (LTSEM). Uncoated frozen-hydrated samples were imaged with the low-voltage backscattered electron signal (BSE). Resolution and contrast were sufficient to visualize cross-fractured membranes, nuclear pores and small vesicles in the cytoplasm. It is assumed that the resolution of this approach is limited by the extraction depth of the BSE which depends upon the accelerating voltage of the primary beam (V0). In this study, the lowest possible V0 was 2.6 kV because below this value the sensitivity of the BSE detector is insufficient. It is concluded that the resolution of the uncoated specimen could be improved if equipment were available for high-resolution BSE imaging at 0.5-2 kV. Higher resolution was obtained with platinum cryo-coated samples, on which intramembranous particles were easily imaged. These images even show the ring-like appearance of the hexagonally arranged intramembranous particles known from high-resolution replica studies. On fully hydrated samples at high magnification, the observation time for a particular area is limited by mass loss caused by electron irradiation. Other potential sources of artefacts are the deposition of water vapour contamination and shrinkage caused by the sublimation of ice. Imaging of partially dehydrated (partially freeze-dried) samples, e.g. high-pressure frozen Paramecium and sea urchin embryos, will probably become the main application in cell biology. In spite of possible shrinkage problems, this approach has a number of advantages compared with any other electron microscopy preparation method: no chemical fixation is necessary, eliminating this source of artefacts; due to partial removal of the water additional structures in the cytoplasm can be investigated

  2. Fusing Unmanned Aerial Vehicle Imagery with High Resolution Hydrologic Modeling (Invited)

    NASA Astrophysics Data System (ADS)

    Vivoni, E. R.; Pierini, N.; Schreiner-McGraw, A.; Anderson, C.; Saripalli, S.; Rango, A.

    2013-12-01

    After decades of development and applications, high resolution hydrologic models are now common tools in research and increasingly used in practice. More recently, high resolution imagery from unmanned aerial vehicles (UAVs) that provide information on land surface properties have become available for civilian applications. Fusing the two approaches promises to significantly advance the state-of-the-art in terms of hydrologic modeling capabilities. This combination will also challenge assumptions on model processes, parameterizations and scale as land surface characteristics (~0.1 to 1 m) may now surpass traditional model resolutions (~10 to 100 m). Ultimately, predictions from high resolution hydrologic models need to be consistent with the observational data that can be collected from UAVs. This talk will describe our efforts to develop, utilize and test the impact of UAV-derived topographic and vegetation fields on the simulation of two small watersheds in the Sonoran and Chihuahuan Deserts at the Santa Rita Experimental Range (Green Valley, AZ) and the Jornada Experimental Range (Las Cruces, NM). High resolution digital terrain models, image orthomosaics and vegetation species classification were obtained from a fixed wing airplane and a rotary wing helicopter, and compared to coarser analyses and products, including Light Detection and Ranging (LiDAR). We focus the discussion on the relative improvements achieved with UAV-derived fields in terms of terrain-hydrologic-vegetation analyses and summer season simulations using the TIN-based Real-time Integrated Basin Simulator (tRIBS) model. Model simulations are evaluated at each site with respect to a high-resolution sensor network consisting of six rain gauges, forty soil moisture and temperature profiles, four channel runoff flumes, a cosmic-ray soil moisture sensor and an eddy covariance tower over multiple summer periods. We also discuss prospects for the fusion of high resolution models with novel

  3. High resolution flow field prediction for tail rotor aeroacoustics

    NASA Technical Reports Server (NTRS)

    Quackenbush, Todd R.; Bliss, Donald B.

    1989-01-01

    The prediction of tail rotor noise due to the impingement of the main rotor wake poses a significant challenge to current analysis methods in rotorcraft aeroacoustics. This paper describes the development of a new treatment of the tail rotor aerodynamic environment that permits highly accurate resolution of the incident flow field with modest computational effort relative to alternative models. The new approach incorporates an advanced full-span free wake model of the main rotor in a scheme which reconstructs high-resolution flow solutions from preliminary, computationally inexpensive simulations with coarse resolution. The heart of the approach is a novel method for using local velocity correction terms to capture the steep velocity gradients characteristic of the vortex-dominated incident flow. Sample calculations have been undertaken to examine the principal types of interactions between the tail rotor and the main rotor wake and to examine the performance of the new method. The results of these sample problems confirm the success of this approach in capturing the high-resolution flows necessary for analysis of rotor-wake/rotor interactions with dramatically reduced computational cost. Computations of radiated sound are also carried out that explore the role of various portions of the main rotor wake in generating tail rotor noise.

  4. High resolution OCT image generation using super resolution via sparse representation

    NASA Astrophysics Data System (ADS)

    Asif, Muhammad; Akram, Muhammad Usman; Hassan, Taimur; Shaukat, Arslan; Waqar, Razi

    2017-02-01

    In this paper we propose a technique for obtaining a high resolution (HR) image from a single low resolution (LR) image -using joint learning dictionary - on the basis of image statistic research. It suggests that with an appropriate choice of an over-complete dictionary, image patches can be well represented as a sparse linear combination. Medical imaging for clinical analysis and medical intervention is being used for creating visual representations of the interior of a body, as well as visual representation of the function of some organs or tissues (physiology). A number of medical imaging techniques are in use like MRI, CT scan, X-rays and Optical Coherence Tomography (OCT). OCT is one of the new technologies in medical imaging and one of its uses is in ophthalmology where it is being used for analysis of the choroidal thickness in the eyes in healthy and disease states such as age-related macular degeneration, central serous chorioretinopathy, diabetic retinopathy and inherited retinal dystrophies. We have proposed a technique for enhancing the OCT images which can be used for clearly identifying and analyzing the particular diseases. Our method uses dictionary learning technique for generating a high resolution image from a single input LR image. We train two joint dictionaries, one with OCT images and the second with multiple different natural images, and compare the results with previous SR technique. Proposed method for both dictionaries produces HR images which are comparatively superior in quality with the other proposed method of SR. Proposed technique is very effective for noisy OCT images and produces up-sampled and enhanced OCT images.

  5. Broadband high resolution X-ray spectral analyzer

    DOEpatents

    Silver, Eric H.; Legros, Mark; Madden, Norm W.; Goulding, Fred; Landis, Don

    1998-01-01

    A broad bandwidth high resolution x-ray fluorescence spectrometer has a performance that is superior in many ways to those currently available. It consists of an array of 4 large area microcalorimeters with 95% quantum efficiency at 6 keV and it produces x-ray spectra between 0.2 keV and 7 keV with an energy resolution of 7 to 10 eV. The resolution is obtained at input count rates per array element of 10 to 50 Hz in real-time, with analog pulse processing and thermal pile-up rejection. This performance cannot be matched by currently available x-ray spectrometers. The detectors are incorporated into a compact and portable cryogenic refrigerator system that is ready for use in many analytical spectroscopy applications as a tool for x-ray microanalysis or in research applications such as laboratory and astrophysical x-ray and particle spectroscopy.

  6. Broadband high resolution X-ray spectral analyzer

    DOEpatents

    Silver, E.H.; Legros, M.; Madden, N.W.; Goulding, F.; Landis, D.

    1998-07-07

    A broad bandwidth high resolution X-ray fluorescence spectrometer has a performance that is superior in many ways to those currently available. It consists of an array of 4 large area microcalorimeters with 95% quantum efficiency at 6 keV and it produces X-ray spectra between 0.2 keV and 7 keV with an energy resolution of 7 to 10 eV. The resolution is obtained at input count rates per array element of 10 to 50 Hz in real-time, with analog pulse processing and thermal pile-up rejection. This performance cannot be matched by currently available X-ray spectrometers. The detectors are incorporated into a compact and portable cryogenic refrigerator system that is ready for use in many analytical spectroscopy applications as a tool for X-ray microanalysis or in research applications such as laboratory and astrophysical X-ray and particle spectroscopy. 6 figs.

  7. The development of high resolution silicon x-ray microcalorimeters

    NASA Astrophysics Data System (ADS)

    Porter, F. S.; Kelley, R. L.; Kilbourne, C. A.

    2005-12-01

    Recently we have produced x-ray microcalorimeters with resolving powers approaching 2000 at 5.9 keV using a spare XRS microcalorimeter array. We attached 400 um square, 8 um thick HgTe absorbers using a variety of attachment methods to an XRS array and ran the detector array at temperatures between 40 and 60 mK. The best results were for absorbers attached using the standard XRS absorber-pixel thermal isolation scheme utilizing SU8 polymer tubes. In this scenario we achieved a resolution of 3.2 eV FWHM at 5.9 keV. Substituting a silicon spacer for the SU8 tubes also yielded sub-4eV results. In contrast, absorbers attached directly to the thermistor produced significant position dependence and thus degraded resolution. Finally, we tested standard 640um-square XRS detectors at reduced bias power at 50mK and achieved a resolution of 3.7eV, a 50% improvement over the XRS flight instrument. Implanted silicon microcalorimeters are a mature flight-qualified technology that still has a substantial phase space for future development. We will discuss these new high resolution results, the various absorber attachment schemes, planned future improvements, and, finally, their relevance to future high resolution x-ray spectrometers including Constellation-X.

  8. High Frequency High Spectral Resolution Focal Plane Arrays for AtLAST

    NASA Astrophysics Data System (ADS)

    Baryshev, Andrey

    2018-01-01

    Large collecting area single dish telescope such as ATLAST will be especially effective for medium (R 1000) and high (R 50000) spectral resolution observations. Large focal plane array is a natural solution to increase mapping speed. For medium resolution direct detectors with filter banks (KIDs) and or heterodyne technology can be employed. We will analyze performance limits of comparable KID and SIS focal plane array taking into account quantum limit and high background condition of terrestrial observing site. For large heterodyne focal plane arrays, a high current density AlN junctions open possibility of large instantaneous bandwidth >40%. This and possible multi frequency band FPSs presents a practical challenge for spatial sampling and scanning strategies. We will discuss phase array feeds as a possible solution, including a modular back-end system, which can be shared between KID and SIS based FPA. Finally we will discuss achievable sensitivities and pixel co unts for a high frequency (>500 GHz) FPAs and address main technical challenges: LO distribution, wire counts, bias line multiplexing, and monolithic vs. discrete mixer component integration.

  9. On high-resolution reciprocal-space mapping with a triple-crystal diffractometer for high-energy X-rays.

    PubMed

    Liss, K D; Royer, A; Tschentscher, T; Suortti, P; Williams, A P

    1998-03-01

    High-energy X-rav diffraction by means of triple-crystal techniques is a powerful tool for investigating dislocations and strain in bulk materials. Radiation with an energy typically higher than 80 keV combines the advantage of low attenuation with high resolution at large momentum transfers. The triple-crystal diffractometer at the High Energy Beamline of the European Synchrotron Radiation Facility is described. It is shown how the transverse and longitudinal resolution depend on the choice of the crystal reflection, and how the orientation of a reciprocal-lattice distortion in an investigated sample towards the resolution element of the instrument can play an important role. This effect is demonstrated on a single crystal of silicon where a layer of macro pores reveals satellites around the Bragg reflection. The resulting longitudinal distortion can be investigated using the high transverse resolution of the instrument when choosing an appropriate reflection.

  10. A new omni-directional multi-camera system for high resolution surveillance

    NASA Astrophysics Data System (ADS)

    Cogal, Omer; Akin, Abdulkadir; Seyid, Kerem; Popovic, Vladan; Schmid, Alexandre; Ott, Beat; Wellig, Peter; Leblebici, Yusuf

    2014-05-01

    Omni-directional high resolution surveillance has a wide application range in defense and security fields. Early systems used for this purpose are based on parabolic mirror or fisheye lens where distortion due to the nature of the optical elements cannot be avoided. Moreover, in such systems, the image resolution is limited to a single image sensor's image resolution. Recently, the Panoptic camera approach that mimics the eyes of flying insects using multiple imagers has been presented. This approach features a novel solution for constructing a spherically arranged wide FOV plenoptic imaging system where the omni-directional image quality is limited by low-end sensors. In this paper, an overview of current Panoptic camera designs is provided. New results for a very-high resolution visible spectrum imaging and recording system inspired from the Panoptic approach are presented. The GigaEye-1 system, with 44 single cameras and 22 FPGAs, is capable of recording omni-directional video in a 360°×100° FOV at 9.5 fps with a resolution over (17,700×4,650) pixels (82.3MP). Real-time video capturing capability is also verified at 30 fps for a resolution over (9,000×2,400) pixels (21.6MP). The next generation system with significantly higher resolution and real-time processing capacity, called GigaEye-2, is currently under development. The important capacity of GigaEye-1 opens the door to various post-processing techniques in surveillance domain such as large perimeter object tracking, very-high resolution depth map estimation and high dynamicrange imaging which are beyond standard stitching and panorama generation methods.

  11. Fuzzy Classification of High Resolution Remote Sensing Scenes Using Visual Attention Features.

    PubMed

    Li, Linyi; Xu, Tingbao; Chen, Yun

    2017-01-01

    In recent years the spatial resolutions of remote sensing images have been improved greatly. However, a higher spatial resolution image does not always lead to a better result of automatic scene classification. Visual attention is an important characteristic of the human visual system, which can effectively help to classify remote sensing scenes. In this study, a novel visual attention feature extraction algorithm was proposed, which extracted visual attention features through a multiscale process. And a fuzzy classification method using visual attention features (FC-VAF) was developed to perform high resolution remote sensing scene classification. FC-VAF was evaluated by using remote sensing scenes from widely used high resolution remote sensing images, including IKONOS, QuickBird, and ZY-3 images. FC-VAF achieved more accurate classification results than the others according to the quantitative accuracy evaluation indices. We also discussed the role and impacts of different decomposition levels and different wavelets on the classification accuracy. FC-VAF improves the accuracy of high resolution scene classification and therefore advances the research of digital image analysis and the applications of high resolution remote sensing images.

  12. EMODnet High Resolution Seabed Mapping - further developing a high resolution digital bathymetry for European seas

    NASA Astrophysics Data System (ADS)

    Schaap, D.; Schmitt, T.

    2017-12-01

    Access to marine data is a key issue for the EU Marine Strategy Framework Directive and the EU Marine Knowledge 2020 agenda and includes the European Marine Observation and Data Network (EMODnet) initiative. EMODnet aims at assembling European marine data, data products and metadata from diverse sources in a uniform way. The EMODnet Bathymetry project has developed Digital Terrain Models (DTM) for the European seas. These have been produced from survey and aggregated data sets that are indexed with metadata by adopting the SeaDataNet Catalogue services. SeaDataNet is a network of major oceanographic data centres around the European seas that manage, operate and further develop a pan-European infrastructure for marine and ocean data management. The latest EMODnet Bathymetry DTM release has a grid resolution of 1/8 arcminute and covers all European sea regions. Use has been made of circa 7800 gathered survey datasets and composite DTMs. Catalogues and the EMODnet DTM are published at the dedicated EMODnet Bathymetry portal including a versatile DTM viewing and downloading service. End December 2016 the Bathymetry project has been succeeded by EMODnet High Resolution Seabed Mapping (HRSM). This continues gathering of bathymetric in-situ data sets with extra efforts for near coastal waters and coastal zones. In addition Satellite Derived Bathymetry data are included to fill gaps in coverage of the coastal zones. The extra data and composite DTMs will increase the coverage of the European seas and its coastlines, and provide input for producing an EMODnet DTM with a common resolution of 1/16 arc minutes. The Bathymetry Viewing and Download service will be upgraded to provide a multi-resolution map and including 3D viewing. The higher resolution DTMs will also be used to determine best-estimates of the European coastline for a range of tidal levels (HAT, MHW, MSL, Chart Datum, LAT), thereby making use of a tidal model for Europe. Extra challenges will be `moving to the

  13. High resolution microphotonic needle for endoscopic imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Tadayon, Mohammad Amin; Mohanty, Aseema; Roberts, Samantha P.; Barbosa, Felippe; Lipson, Michal

    2017-02-01

    GRIN (Graded index) lens have revolutionized micro endoscopy enabling deep tissue imaging with high resolution. The challenges of traditional GRIN lenses are their large size (when compared with the field of view) and their limited resolution. This is because of the relatively weak NA in standard graded index lenses. Here we introduce a novel micro-needle platform for endoscopy with much higher resolution than traditional GRIN lenses and a FOV that corresponds to the whole cross section of the needle. The platform is based on polymeric (SU-8) waveguide integrated with a microlens micro fabricated on a silicon substrate using a unique molding process. Due to the high index of refraction of the material the NA of the needle is much higher than traditional GRIN lenses. We tested the probe in a fluorescent dye solution (19.6 µM Alexa Flour 647 solution) and measured a numerical aperture of 0.25, focal length of about 175 µm and minimal spot size of about 1.6 µm. We show that the platform can image a sample with the field of view corresponding to the cross sectional area of the waveguide (80x100 µm2). The waveguide size can in principle be modified to vary size of the imaging field of view. This demonstration, combined with our previous work demonstrating our ability to implant the high NA needle in a live animal, shows that the proposed system can be used for deep tissue imaging with very high resolution and high field of view.

  14. High-resolution clustered pinhole (131)Iodine SPECT imaging in mice.

    PubMed

    van der Have, Frans; Ivashchenko, Oleksandra; Goorden, Marlies C; Ramakers, Ruud M; Beekman, Freek J

    2016-08-01

    High-resolution pre-clinical (131)I SPECT can facilitate development of new radioiodine therapies for cancer. To this end, it is important to limit resolution-degrading effects of pinhole edge penetration by the high-energy γ-photons of iodine. Here we introduce, optimize and validate (131)I SPECT performed with a dedicated high-energy clustered multi-pinhole collimator. A SPECT-CT system (VECTor/CT) with stationary gamma-detectors was equipped with a tungsten collimator with clustered pinholes. Images were reconstructed with pixel-based OSEM, using a dedicated (131)I system matrix that models the distance- and energy-dependent resolution and sensitivity of each pinhole, as well as the intrinsic detector blurring and variable depth of interaction in the detector. The system performance was characterized with phantoms and in vivo static and dynamic (131)I-NaI scans of mice. Reconstructed image resolution reached 0.6mm, while quantitative accuracy measured with a (131)I filled syringe reaches an accuracy of +3.6±3.5% of the gold standard value. In vivo mice scans illustrated a clear shape of the thyroid and biodistribution of (131)I within the animal. Pharmacokinetics of (131)I was assessed with 15-s time frames from the sequence of dynamic images and time-activity curves of (131)I-NaI. High-resolution quantitative and fast dynamic (131)I SPECT in mice is possible by means of a high-energy collimator and optimized system modeling. This enables analysis of (131)I uptake even within small organs in mice, which can be highly valuable for development and optimization of targeted cancer therapies. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Using high spectral resolution spectrophotometry to study broad mineral absorption features on Mars

    NASA Technical Reports Server (NTRS)

    Blaney, D. L.; Crisp, D.

    1993-01-01

    Traditionally telescopic measurements of mineralogic absorption features have been made using relatively low to moderate (R=30-300) spectral resolution. Mineralogic absorption features tend to be broad so high resolution spectroscopy (R greater than 10,000) does not provide significant additional compositional information. Low to moderate resolution spectroscopy allows an observer to obtain data over a wide wavelength range (hundreds to thousands of wavenumbers) compared to the several wavenumber intervals that are collected using high resolution spectrometers. However, spectrophotometry at high resolution has major advantages over lower resolution spectroscopy in situations that are applicable to studies of the Martian surface, i.e., at wavelengths where relatively weak surface absorption features and atmospheric gas absorption features both occur.

  16. High-resolution fiber-optic microendoscopy for in situ cellular imaging.

    PubMed

    Pierce, Mark; Yu, Dihua; Richards-Kortum, Rebecca

    2011-01-11

    Many biological and clinical studies require the longitudinal study and analysis of morphology and function with cellular level resolution. Traditionally, multiple experiments are run in parallel, with individual samples removed from the study at sequential time points for evaluation by light microscopy. Several intravital techniques have been developed, with confocal, multiphoton, and second harmonic microscopy all demonstrating their ability to be used for imaging in situ. With these systems, however, the required infrastructure is complex and expensive, involving scanning laser systems and complex light sources. Here we present a protocol for the design and assembly of a high-resolution microendoscope which can be built in a day using off-the-shelf components for under US$5,000. The platform offers flexibility in terms of image resolution, field-of-view, and operating wavelength, and we describe how these parameters can be easily modified to meet the specific needs of the end user. We and others have explored the use of the high-resolution microendoscope (HRME) in in vitro cell culture, in excised and living animal tissues, and in human tissues in vivo. Users have reported the use of several different fluorescent contrast agents, including proflavine, benzoporphyrin-derivative monoacid ring A (BPD-MA), and fluoroscein, all of which have received full, or investigational approval from the FDA for use in human subjects. High-resolution microendoscopy, in the form described here, may appeal to a wide range of researchers working in the basic and clinical sciences. The technique offers an effective and economical approach which complements traditional benchtop microscopy, by enabling the user to perform high-resolution, longitudinal imaging in situ.

  17. Circuit for high resolution decoding of multi-anode microchannel array detectors

    NASA Technical Reports Server (NTRS)

    Kasle, David B. (Inventor)

    1995-01-01

    A circuit for high resolution decoding of multi-anode microchannel array detectors consisting of input registers accepting transient inputs from the anode array; anode encoding logic circuits connected to the input registers; midpoint pipeline registers connected to the anode encoding logic circuits; and pixel decoding logic circuits connected to the midpoint pipeline registers is described. A high resolution algorithm circuit operates in parallel with the pixel decoding logic circuit and computes a high resolution least significant bit to enhance the multianode microchannel array detector's spatial resolution by halving the pixel size and doubling the number of pixels in each axis of the anode array. A multiplexer is connected to the pixel decoding logic circuit and allows a user selectable pixel address output according to the actual multi-anode microchannel array detector anode array size. An output register concatenates the high resolution least significant bit onto the standard ten bit pixel address location to provide an eleven bit pixel address, and also stores the full eleven bit pixel address. A timing and control state machine is connected to the input registers, the anode encoding logic circuits, and the output register for managing the overall operation of the circuit.

  18. Landslide model performance in a high resolution small-scale landscape

    NASA Astrophysics Data System (ADS)

    De Sy, V.; Schoorl, J. M.; Keesstra, S. D.; Jones, K. E.; Claessens, L.

    2013-05-01

    The frequency and severity of shallow landslides in New Zealand threatens life and property, both on- and off-site. The physically-based shallow landslide model LAPSUS-LS is tested for its performance in simulating shallow landslide locations induced by a high intensity rain event in a small-scale landscape. Furthermore, the effect of high resolution digital elevation models on the performance was tested. The performance of the model was optimised by calibrating different parameter values. A satisfactory result was achieved with a high resolution (1 m) DEM. Landslides, however, were generally predicted lower on the slope than mapped erosion scars. This discrepancy could be due to i) inaccuracies in the DEM or in other model input data such as soil strength properties; ii) relevant processes for this environmental context that are not included in the model; or iii) the limited validity of the infinite length assumption in the infinite slope stability model embedded in the LAPSUS-LS. The trade-off between a correct prediction of landslides versus stable cells becomes increasingly worse with coarser resolutions; and model performance decreases mainly due to altering slope characteristics. The optimal parameter combinations differ per resolution. In this environmental context the 1 m resolution topography resembles actual topography most closely and landslide locations are better distinguished from stable areas than for coarser resolutions. More gain in model performance could be achieved by adding landslide process complexities and parameter heterogeneity of the catchment.

  19. Design Method For Ultra-High Resolution Linear CCD Imagers

    NASA Astrophysics Data System (ADS)

    Sheu, Larry S.; Truong, Thanh; Yuzuki, Larry; Elhatem, Abdul; Kadekodi, Narayan

    1984-11-01

    This paper presents the design method to achieve ultra-high resolution linear imagers. This method utilizes advanced design rules and novel staggered bilinear photo sensor arrays with quadrilinear shift registers. Design constraint in the detector arrays and shift registers are analyzed. Imager architecture to achieve ultra-high resolution is presented. The characteristics of MTF, aliasing, speed, transfer efficiency and fine photolithography requirements associated with this architecture are also discussed. A CCD imager with advanced 1.5 um minimum feature size was fabricated. It is intended as a test vehicle for the next generation small sampling pitch ultra-high resolution CCD imager. Standard double-poly, two-phase shift registers were fabricated at an 8 um pitch using the advanced design rules. A special process step that blocked the source-drain implant from the shift register area was invented. This guaranteed excellent performance of the shift registers regardless of the small poly overlaps. A charge transfer efficiency of better than 0.99995 and maximum transfer speed of 8 MHz were achieved. The imager showed excellent performance. The dark current was less than 0.2 mV/ms, saturation 250 mV, adjacent photoresponse non-uniformity ± 4% and responsivity 0.7 V/ μJ/cm2 for the 8 μm x 6 μm photosensor size. The MTF was 0.6 at 62.5 cycles/mm. These results confirm the feasibility of the next generation ultra-high resolution CCD imagers.

  20. High-resolution dynamic 31 P-MRSI using a low-rank tensor model.

    PubMed

    Ma, Chao; Clifford, Bryan; Liu, Yuchi; Gu, Yuning; Lam, Fan; Yu, Xin; Liang, Zhi-Pei

    2017-08-01

    To develop a rapid 31 P-MRSI method with high spatiospectral resolution using low-rank tensor-based data acquisition and image reconstruction. The multidimensional image function of 31 P-MRSI is represented by a low-rank tensor to capture the spatial-spectral-temporal correlations of data. A hybrid data acquisition scheme is used for sparse sampling, which consists of a set of "training" data with limited k-space coverage to capture the subspace structure of the image function, and a set of sparsely sampled "imaging" data for high-resolution image reconstruction. An explicit subspace pursuit approach is used for image reconstruction, which estimates the bases of the subspace from the "training" data and then reconstructs a high-resolution image function from the "imaging" data. We have validated the feasibility of the proposed method using phantom and in vivo studies on a 3T whole-body scanner and a 9.4T preclinical scanner. The proposed method produced high-resolution static 31 P-MRSI images (i.e., 6.9 × 6.9 × 10 mm 3 nominal resolution in a 15-min acquisition at 3T) and high-resolution, high-frame-rate dynamic 31 P-MRSI images (i.e., 1.5 × 1.5 × 1.6 mm 3 nominal resolution, 30 s/frame at 9.4T). Dynamic spatiospectral variations of 31 P-MRSI signals can be efficiently represented by a low-rank tensor. Exploiting this mathematical structure for data acquisition and image reconstruction can lead to fast 31 P-MRSI with high resolution, frame-rate, and SNR. Magn Reson Med 78:419-428, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  1. THz holography in reflection using a high resolution microbolometer array.

    PubMed

    Zolliker, Peter; Hack, Erwin

    2015-05-04

    We demonstrate a digital holographic setup for Terahertz imaging of surfaces in reflection. The set-up is based on a high-power continuous wave (CW) THz laser and a high-resolution (640 × 480 pixel) bolometer detector array. Wave propagation to non-parallel planes is used to reconstruct the object surface that is rotated relative to the detector plane. In addition we implement synthetic aperture methods for resolution enhancement and compare Fourier transform phase retrieval to phase stepping methods. A lateral resolution of 200 μm and a relative phase sensitivity of about 0.4 rad corresponding to a depth resolution of 6 μm are estimated from reconstructed images of two specially prepared test targets, respectively. We highlight the use of digital THz holography for surface profilometry as well as its potential for video-rate imaging.

  2. High-resolution schemes for hyperbolic conservation laws

    NASA Technical Reports Server (NTRS)

    Harten, A.

    1982-01-01

    A class of new explicit second order accurate finite difference schemes for the computation of weak solutions of hyperbolic conservation laws is presented. These highly nonlinear schemes are obtained by applying a nonoscillatory first order accurae scheme to an appropriately modified flux function. The so derived second order accurate schemes achieve high resolution while preserving the robustness of the original nonoscillatory first order accurate scheme.

  3. High resolution imaging at Palomar

    NASA Technical Reports Server (NTRS)

    Kulkarni, Shrinivas R.

    1992-01-01

    For the last two years we have embarked on a program of understanding the ultimate limits of ground-based optical imaging. We have designed and fabricated a camera specifically for high resolution imaging. This camera has now been pressed into service at the prime focus of the Hale 5 m telescope. We have concentrated on two techniques: the Non-Redundant Masking (NRM) and Weigelt's Fully Filled Aperture (FFA) method. The former is the optical analog of radio interferometry and the latter is a higher order extension of the Labeyrie autocorrelation method. As in radio Very Long Baseline Interferometry (VLBI), both these techniques essentially measure the closure phase and, hence, true image construction is possible. We have successfully imaged binary stars and asteroids with angular resolution approaching the diffraction limit of the telescope and image quality approaching that of a typical radio VLBI map. In addition, we have carried out analytical and simulation studies to determine the ultimate limits of ground-based optical imaging, the limits of space-based interferometric imaging, and investigated the details of imaging tradeoffs of beam combination in optical interferometers.

  4. Ultrathin high-resolution flexographic printing using nanoporous stamps

    PubMed Central

    Kim, Sanha; Sojoudi, Hossein; Zhao, Hangbo; Mariappan, Dhanushkodi; McKinley, Gareth H.; Gleason, Karen K.; Hart, A. John

    2016-01-01

    Since its invention in ancient times, relief printing, commonly called flexography, has been used to mass-produce artifacts ranging from decorative graphics to printed media. Now, higher-resolution flexography is essential to manufacturing low-cost, large-area printed electronics. However, because of contact-mediated liquid instabilities and spreading, the resolution of flexographic printing using elastomeric stamps is limited to tens of micrometers. We introduce engineered nanoporous microstructures, comprising polymer-coated aligned carbon nanotubes (CNTs), as a next-generation stamp material. We design and engineer the highly porous microstructures to be wetted by colloidal inks and to transfer a thin layer to a target substrate upon brief contact. We demonstrate printing of diverse micrometer-scale patterns of a variety of functional nanoparticle inks, including Ag, ZnO, WO3, and CdSe/ZnS, onto both rigid and compliant substrates. The printed patterns have highly uniform nanoscale thickness (5 to 50 nm) and match the stamp features with high fidelity (edge roughness, ~0.2 μm). We derive conditions for uniform printing based on nanoscale contact mechanics, characterize printed Ag lines and transparent conductors, and achieve continuous printing at a speed of 0.2 m/s. The latter represents a combination of resolution and throughput that far surpasses industrial printing technologies. PMID:27957542

  5. High-resolution multimodal clinical multiphoton tomography of skin

    NASA Astrophysics Data System (ADS)

    König, Karsten

    2011-03-01

    This review focuses on multimodal multiphoton tomography based on near infrared femtosecond lasers. Clinical multiphoton tomographs for 3D high-resolution in vivo imaging have been placed into the market several years ago. The second generation of this Prism-Award winning High-Tech skin imaging tool (MPTflex) was introduced in 2010. The same year, the world's first clinical CARS studies have been performed with a hybrid multimodal multiphoton tomograph. In particular, non-fluorescent lipids and water as well as mitochondrial fluorescent NAD(P)H, fluorescent elastin, keratin, and melanin as well as SHG-active collagen has been imaged with submicron resolution in patients suffering from psoriasis. Further multimodal approaches include the combination of multiphoton tomographs with low-resolution wide-field systems such as ultrasound, optoacoustical, OCT, and dermoscopy systems. Multiphoton tomographs are currently employed in Australia, Japan, the US, and in several European countries for early diagnosis of skin cancer, optimization of treatment strategies, and cosmetic research including long-term testing of sunscreen nanoparticles as well as anti-aging products.

  6. Integrated High Resolution Monitoring of Mediterranean vegetation

    NASA Astrophysics Data System (ADS)

    Cesaraccio, Carla; Piga, Alessandra; Ventura, Andrea; Arca, Angelo; Duce, Pierpaolo; Mereu, Simone

    2017-04-01

    The study of the vegetation features in a complex and highly vulnerable ecosystems, such as Mediterranean maquis, leads to the need of using continuous monitoring systems at high spatial and temporal resolution, for a better interpretation of the mechanisms of phenological and eco-physiological processes. Near-surface remote sensing techniques are used to quantify, at high temporal resolution, and with a certain degree of spatial integration, the seasonal variations of the surface optical and radiometric properties. In recent decades, the design and implementation of global monitoring networks involved the use of non-destructive and/or cheaper approaches such as (i) continuous surface fluxes measurement stations, (ii) phenological observation networks, and (iii) measurement of temporal and spatial variations of the vegetation spectral properties. In this work preliminary results from the ECO-SCALE (Integrated High Resolution Monitoring of Mediterranean vegetation) project are reported. The project was manly aimed to develop an integrated system for environmental monitoring based on digital photography, hyperspectral radiometry , and micrometeorological techniques during three years of experimentation (2013-2016) in a Mediterranean site of Italy (Capo Caccia, Alghero). The main results concerned the analysis of chromatic coordinates indices from digital images, to characterized the phenological patterns for typical shrubland species, determining start and duration of the growing season, and the physiological status in relation to different environmental drought conditions; then the seasonal patterns of canopy phenology, was compared to NEE (Net Ecosystem Exchange) patterns, showing similarities. However, maximum values of NEE and ER (Ecosystem respiration), and short term variation, seemed mainly tuned by inter annual pattern of meteorological variables, in particular of temperature recorded in the months preceding the vegetation green-up. Finally, green signals

  7. A high resolution on-chip delay sensor with low supply-voltage sensitivity for high-performance electronic systems.

    PubMed

    Sheng, Duo; Lai, Hsiu-Fan; Chan, Sheng-Min; Hong, Min-Rong

    2015-02-13

    An all-digital on-chip delay sensor (OCDS) circuit with high delay-measurement resolution and low supply-voltage sensitivity for efficient detection and diagnosis in high-performance electronic system applications is presented. Based on the proposed delay measurement scheme, the quantization resolution of the proposed OCDS can be reduced to several picoseconds. Additionally, the proposed cascade-stage delay measurement circuit can enhance immunity to supply-voltage variations of the delay measurement resolution without extra self-biasing or calibration circuits. Simulation results show that the delay measurement resolution can be improved to 1.2 ps; the average delay resolution variation is 0.55% with supply-voltage variations of ±10%. Moreover, the proposed delay sensor can be implemented in an all-digital manner, making it very suitable for high-performance electronic system applications as well as system-level integration.

  8. ON THE IMPACT OF SUPER RESOLUTION WSR-88D DOPPLER RADAR DATA ASSIMILATION ON HIGH RESOLUTION NUMERICAL MODEL FORECASTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiswell, S

    2009-01-11

    Assimilation of radar velocity and precipitation fields into high-resolution model simulations can improve precipitation forecasts with decreased 'spin-up' time and improve short-term simulation of boundary layer winds (Benjamin, 2004 & 2007; Xiao, 2008) which is critical to improving plume transport forecasts. Accurate description of wind and turbulence fields is essential to useful atmospheric transport and dispersion results, and any improvement in the accuracy of these fields will make consequence assessment more valuable during both routine operation as well as potential emergency situations. During 2008, the United States National Weather Service (NWS) radars implemented a significant upgrade which increased the real-timemore » level II data resolution to 8 times their previous 'legacy' resolution, from 1 km range gate and 1.0 degree azimuthal resolution to 'super resolution' 250 m range gate and 0.5 degree azimuthal resolution (Fig 1). These radar observations provide reflectivity, velocity and returned power spectra measurements at a range of up to 300 km (460 km for reflectivity) at a frequency of 4-5 minutes and yield up to 13.5 million point observations per level in super-resolution mode. The migration of National Weather Service (NWS) WSR-88D radars to super resolution is expected to improve warning lead times by detecting small scale features sooner with increased reliability; however, current operational mesoscale model domains utilize grid spacing several times larger than the legacy data resolution, and therefore the added resolution of radar data is not fully exploited. The assimilation of super resolution reflectivity and velocity data into high resolution numerical weather model forecasts where grid spacing is comparable to the radar data resolution is investigated here to determine the impact of the improved data resolution on model predictions.« less

  9. Cross-correlation photothermal optical coherence tomography with high effective resolution.

    PubMed

    Tang, Peijun; Liu, Shaojie; Chen, Junbo; Yuan, Zhiling; Xie, Bingkai; Zhou, Jianhua; Tang, Zhilie

    2017-12-01

    We developed a cross-correlation photothermal optical coherence tomography (CC-PTOCT) system for photothermal imaging with high lateral and axial resolution. The CC-PTOCT system consists of a phase-sensitive OCT system, a modulated pumping laser, and a digital cross-correlator. The pumping laser was used to induce the photothermal effect in the sample, causing a slight phase modulation of the OCT signals. A spatial phase differentiation method was employed to reduce phase accumulation. The noise brought by the phase differentiation method and the strong background noise were suppressed efficiently by the cross-correlator, which was utilized to extract the photothermal signals from the modulated signals. Combining the cross-correlation technique with spatial phase differentiation can improve both lateral and axial resolution of the PTOCT imaging system. Clear photothermal images of blood capillaries of a mouse ear in vivo were successfully obtained with high lateral and axial resolution. The experimental results demonstrated that this system can enhance the effective transverse resolution, effective depth resolution, and contrast of the PTOCT image effectively, aiding the ongoing development of the accurate 3D functional imaging.

  10. An angle encoder for super-high resolution and super-high accuracy using SelfA

    NASA Astrophysics Data System (ADS)

    Watanabe, Tsukasa; Kon, Masahito; Nabeshima, Nobuo; Taniguchi, Kayoko

    2014-06-01

    Angular measurement technology at high resolution for applications such as in hard disk drive manufacturing machines, precision measurement equipment and aspherical process machines requires a rotary encoder with high accuracy, high resolution and high response speed. However, a rotary encoder has angular deviation factors during operation due to scale error or installation error. It has been assumed to be impossible to achieve accuracy below 0.1″ in angular measurement or control after the installation onto the rotating axis. Self-calibration (Lu and Trumper 2007 CIRP Ann. 56 499; Kim et al 2011 Proc. MacroScale; Probst 2008 Meas. Sci. Technol. 19 015101; Probst et al Meas. Sci. Technol. 9 1059; Tadashi and Makoto 1993 J. Robot. Mechatronics 5 448; Ralf et al 2006 Meas. Sci. Technol. 17 2811) and cross-calibration (Probst et al 1998 Meas. Sci. Technol. 9 1059; Just et al 2009 Precis. Eng. 33 530; Burnashev 2013 Quantum Electron. 43 130) technologies for a rotary encoder have been actively discussed on the basis of the principle of circular closure. This discussion prompted the development of rotary tables which achieve reliable and high accuracy angular verification. We apply these technologies for the development of a rotary encoder not only to meet the requirement of super-high accuracy but also to meet that of super-high resolution. This paper presents the development of an encoder with 221 = 2097 152 resolutions per rotation (360°), that is, corresponding to a 0.62″ signal period, achieved by the combination of a laser rotary encoder supplied by Magnescale Co., Ltd and a self-calibratable encoder (SelfA) supplied by The National Institute of Advanced Industrial Science & Technology (AIST). In addition, this paper introduces the development of a rotary encoder to guarantee ±0.03″ accuracy at any point of the interpolated signal, with respect to the encoder at the minimum resolution of 233, that is, corresponding to a 0.0015″ signal period after

  11. A High-resolution Reanalysis for the European CORDEX Region

    NASA Astrophysics Data System (ADS)

    Bentzien, Sabrina; Bollmeyer, Christoph; Crewell, Susanne; Friederichs, Petra; Hense, Andreas; Keller, Jan; Keune, Jessica; Kneifel, Stefan; Ohlwein, Christian; Pscheidt, Ieda; Redl, Stephanie; Steinke, Sandra

    2014-05-01

    A High-resolution Reanalysis for the European CORDEX Region Within the Hans-Ertel-Centre for Weather Research (HErZ), the climate monitoring branch concentrates efforts on the assessment and analysis of regional climate in Germany and Europe. In joint cooperation with DWD (German Meteorological Service), a high-resolution reanalysis system based on the COSMO model has been developed. Reanalyses gain more and more importance as a source of meteorological information for many purposes and applications. Several global reanalyses projects (e.g., ERA, MERRA, CSFR, JMA9) produce and verify these data sets to provide time series as long as possible combined with a high data quality. Due to a spatial resolution down to 50-70km and 3-hourly temporal output, they are not suitable for small scale problems (e.g., regional climate assessment, meso-scale NWP verification, input for subsequent models such as river runoff simulations). The implementation of regional reanalyses based on a limited area model along with a data assimilation scheme is able to generate reanalysis data sets with high spatio-temporal resolution. The work presented here focuses on the regional reanalysis for Europe with a domain matching the CORDEX-EURO-11 specifications, albeit at a higher spatial resolution, i.e., 0.055° (6km) instead of 0.11° (12km). The COSMO reanalysis system comprises the assimilation of observational data using the existing nudging scheme of COSMO and is complemented by a special soil moisture analysis and boundary conditions given by ERA-interim data. The reanalysis data set currently covers 6 years (2007-2012). The evaluation of the reanalyses is done using independent observations with special emphasis on precipitation and high-impact weather situations. The development and evaluation of the COSMO-based reanalysis for the CORDEX-Euro domain can be seen as a preparation for joint European activities on the development of an ensemble system of regional reanalyses for Europe.

  12. High resolution Doppler lidar

    NASA Technical Reports Server (NTRS)

    Abreu, Vincent J.; Hays, Paul B.; Barnes, John E.

    1989-01-01

    A high resolution lidar system was implemented to measure winds in the lower atmosphere. The wind speed along the line of sight was determined by measuring the Doppler shift of the aerosol backscattered laser signal. The system in its present configuration is stable, and behaves as indicated by theoretical simulations. This system was built to demonstrate the capabilities of the detector system as a prototype for a spaceborne lidar. The detector system investigated consisted of a plane Fabry-Perot etalon, and a 12-ring anode detector. This system is generically similar to the Fabry-Perot interferometer developed for passive wind measurements on board the Dynamics Explorer satellite. That this detector system performs well in a lidar configuration was demonstrated.

  13. Low-resolution ship detection from high-altitude aerial images

    NASA Astrophysics Data System (ADS)

    Qi, Shengxiang; Wu, Jianmin; Zhou, Qing; Kang, Minyang

    2018-02-01

    Ship detection from optical images taken by high-altitude aircrafts such as unmanned long-endurance airships and unmanned aerial vehicles has broad applications in marine fishery management, ship monitoring and vessel salvage. However, the major challenge is the limited capability of information processing on unmanned high-altitude platforms. Furthermore, in order to guarantee the wide detection range, unmanned aircrafts generally cruise at high altitudes, resulting in imagery with low-resolution targets and strong clutters suffered by heavy clouds. In this paper, we propose a low-resolution ship detection method to extract ships from these high-altitude optical images. Inspired by a recent research on visual saliency detection indicating that small salient signals could be well detected by a gradient enhancement operation combined with Gaussian smoothing, we propose the facet kernel filtering to rapidly suppress cluttered backgrounds and delineate candidate target regions from the sea surface. Then, the principal component analysis (PCA) is used to compute the orientation of the target axis, followed by a simplified histogram of oriented gradient (HOG) descriptor to characterize the ship shape property. Finally, support vector machine (SVM) is applied to discriminate real targets and false alarms. Experimental results show that the proposed method actually has high efficiency in low-resolution ship detection.

  14. Attitude Determination and Control Subsystem (ADCS) Preparations for the EPOXI Flyby of Comet Haley 2

    NASA Technical Reports Server (NTRS)

    Luna, Michael E.; Collins, Stephen M.

    2011-01-01

    On November 4, 2010 the already "in-flight" Deep Impact spacecraft flew within 700km of comet 103P/Hartley 2 as part of its extended mission EPOXI, the 5th time to date any spacecraft visited a comet. In 2005, the spacecraft had previously imaged a probe impact comet Tempel 1. The EPOXI flyby marked the first time in history that two comets were explored with the same instruments on a re-used spacecraft-with hardware and software originally designed and optimized for a different mission. This made the function of the attitude determination and control subsystem (ADCS) critical to the successful execution of the EPOXI flyby. As part of the spacecraft team preparations, the ADCS team had to perform thorough sequence reviews, key spacecraft activities and onboard calibrations. These activities included: review of background sequences for the initial conditions vector, sun sensor coefficients, and reaction wheel assembly (RWA) de-saturations; design and execution of 10 trajectory correction maneuvers; science calibration of the two telescope instruments; a flight demonstration of the fastest turns conducted by the spacecraft between Earth and comet point; and assessment of RWA health (given RWA problems on other spacecraft).

  15. Bendable X-ray Optics for High Resolution Imaging

    NASA Technical Reports Server (NTRS)

    Gubarev, M.; Ramsey, B.; Kilaru, K.; Atkins, C.; Broadway, D.

    2014-01-01

    Current state-of the-art for x-ray optics fabrication calls for either the polishing of massive substrates into high-angular-resolution mirrors or the replication of thin, lower-resolution, mirrors from perfectly figured mandrels. Future X-ray Missions will require a change in this optics fabrication paradigm in order to achieve sub-arcsecond resolution in light-weight optics. One possible approach to this is to start with perfectly flat, light-weight surface, bend it into a perfect cone, form the desired mirror figure by material deposition, and insert the resulting mirror into a telescope structure. Such an approach is currently being investigated at MSFC, and a status report will be presented detailing the results of finite element analyses, bending tests and differential deposition experiments.

  16. Gas scintillation glass GEM detector for high-resolution X-ray imaging and CT

    NASA Astrophysics Data System (ADS)

    Fujiwara, T.; Mitsuya, Y.; Fushie, T.; Murata, K.; Kawamura, A.; Koishikawa, A.; Toyokawa, H.; Takahashi, H.

    2017-04-01

    A high-spatial-resolution X-ray-imaging gaseous detector has been developed with a single high-gas-gain glass gas electron multiplier (G-GEM), scintillation gas, and optical camera. High-resolution X-ray imaging of soft elements is performed with a spatial resolution of 281 μm rms and an effective area of 100×100 mm. In addition, high-resolution X-ray 3D computed tomography (CT) is successfully demonstrated with the gaseous detector. It shows high sensitivity to low-energy X-rays, which results in high-contrast radiographs of objects containing elements with low atomic numbers. In addition, the high yield of scintillation light enables fast X-ray imaging, which is an advantage for constructing CT images with low-energy X-rays.

  17. Comparison of Two Grid Refinement Approaches for High Resolution Regional Climate Modeling: MPAS vs WRF

    NASA Astrophysics Data System (ADS)

    Leung, L.; Hagos, S. M.; Rauscher, S.; Ringler, T.

    2012-12-01

    This study compares two grid refinement approaches using global variable resolution model and nesting for high-resolution regional climate modeling. The global variable resolution model, Model for Prediction Across Scales (MPAS), and the limited area model, Weather Research and Forecasting (WRF) model, are compared in an idealized aqua-planet context with a focus on the spatial and temporal characteristics of tropical precipitation simulated by the models using the same physics package from the Community Atmosphere Model (CAM4). For MPAS, simulations have been performed with a quasi-uniform resolution global domain at coarse (1 degree) and high (0.25 degree) resolution, and a variable resolution domain with a high-resolution region at 0.25 degree configured inside a coarse resolution global domain at 1 degree resolution. Similarly, WRF has been configured to run on a coarse (1 degree) and high (0.25 degree) resolution tropical channel domain as well as a nested domain with a high-resolution region at 0.25 degree nested two-way inside the coarse resolution (1 degree) tropical channel. The variable resolution or nested simulations are compared against the high-resolution simulations that serve as virtual reality. Both MPAS and WRF simulate 20-day Kelvin waves propagating through the high-resolution domains fairly unaffected by the change in resolution. In addition, both models respond to increased resolution with enhanced precipitation. Grid refinement induces zonal asymmetry in precipitation (heating), accompanied by zonal anomalous Walker like circulations and standing Rossby wave signals. However, there are important differences between the anomalous patterns in MPAS and WRF due to differences in the grid refinement approaches and sensitivity of model physics to grid resolution. This study highlights the need for "scale aware" parameterizations in variable resolution and nested regional models.

  18. High-Resolution Audio with Inaudible High-Frequency Components Induces a Relaxed Attentional State without Conscious Awareness.

    PubMed

    Kuribayashi, Ryuma; Nittono, Hiroshi

    2017-01-01

    High-resolution audio has a higher sampling frequency and a greater bit depth than conventional low-resolution audio such as compact disks. The higher sampling frequency enables inaudible sound components (above 20 kHz) that are cut off in low-resolution audio to be reproduced. Previous studies of high-resolution audio have mainly focused on the effect of such high-frequency components. It is known that alpha-band power in a human electroencephalogram (EEG) is larger when the inaudible high-frequency components are present than when they are absent. Traditionally, alpha-band EEG activity has been associated with arousal level. However, no previous studies have explored whether sound sources with high-frequency components affect the arousal level of listeners. The present study examined this possibility by having 22 participants listen to two types of a 400-s musical excerpt of French Suite No. 5 by J. S. Bach (on cembalo, 24-bit quantization, 192 kHz A/D sampling), with or without inaudible high-frequency components, while performing a visual vigilance task. High-alpha (10.5-13 Hz) and low-beta (13-20 Hz) EEG powers were larger for the excerpt with high-frequency components than for the excerpt without them. Reaction times and error rates did not change during the task and were not different between the excerpts. The amplitude of the P3 component elicited by target stimuli in the vigilance task increased in the second half of the listening period for the excerpt with high-frequency components, whereas no such P3 amplitude change was observed for the other excerpt without them. The participants did not distinguish between these excerpts in terms of sound quality. Only a subjective rating of inactive pleasantness after listening was higher for the excerpt with high-frequency components than for the other excerpt. The present study shows that high-resolution audio that retains high-frequency components has an advantage over similar and indistinguishable digital sound

  19. Σ-Δ modulator for a programmable gain, low-power, high-linearity automotive sensor interface

    NASA Astrophysics Data System (ADS)

    de la Rosa, Jose M.; Medeiro, Fernando; Perez-Verdu, Belen; del Rio, Rocio; Rodriguez-Vazquez, Angel

    2003-04-01

    Smart sensors play a critical role in modern automotive electronic systems, covering a wide range of data capturing functions and operating under adverse environmental conditions - temperature range of [-40¦C,175¦C]. In such sensors, the signal provided by transducers is composed of an offset voltage, which depends on the manufacturing process, and a low-frequency signal carrying the information. In practice, the offset voltage is subject to temperature variations, thus causing a shifting of the signal range to be measured. Therefore, the measuring circuit driving the sensor, normally formed by a low-noise preamplifier and an Analog-to-Digital Converter (ADC), must accommodate the complete range of possible offsets and real signals. In this scenario, the use of ADCs based on Sigma-Delta Modulators (SDMs) is convenient for several reasons. On the one hand, the noise-shaping performed by SDMs allows to achieve high resolution (16-17bits), in the band of interest (10-20kHz), with less power consumption than full Nyquist ADCs. On the other hand, the action of feedback renders SDMs very linear, and high-linearity is a must for automotive applications. Last but not least, the robustness of SDMs with respect to circuit imperfections make them suitable to include programmable gain without significant performance degradation. This feature allows to accommodate the complete range of possible offsets and information signals in a sensor interface with relaxed specifications for the preamplifier circuitry. This paper describes the design and implementation of a third-order cascade (2-1) SDM with programmable gain in a 0.35mm CMOS technology - the type of technology commonly employed for automotive applications (deep submicron is mostly employed for telecom). It is capable of handling signals up to 20-kHz bandwidth with 17-bit resolution. The programmable gain is implemented by a capacitor array whose unitary capacitors are connected or disconnected depending on the value of

  20. Gamma-Ray Imager With High Spatial And Spectral Resolution

    NASA Technical Reports Server (NTRS)

    Callas, John L.; Varnell, Larry S.; Wheaton, William A.; Mahoney, William A.

    1996-01-01

    Gamma-ray instrument developed to enable both two-dimensional imaging at relatively high spatial resolution and spectroscopy at fractional-photon-energy resolution of about 10 to the negative 3rd power in photon-energy range from 10 keV to greater than 10 MeV. In its spectroscopic aspect, instrument enables identification of both narrow and weak gamma-ray spectral peaks.

  1. Toshiba TDF-500 High Resolution Viewing And Analysis System

    NASA Astrophysics Data System (ADS)

    Roberts, Barry; Kakegawa, M.; Nishikawa, M.; Oikawa, D.

    1988-06-01

    A high resolution, operator interactive, medical viewing and analysis system has been developed by Toshiba and Bio-Imaging Research. This system provides many advanced features including high resolution displays, a very large image memory and advanced image processing capability. In particular, the system provides CRT frame buffers capable of update in one frame period, an array processor capable of image processing at operator interactive speeds, and a memory system capable of updating multiple frame buffers at frame rates whilst supporting multiple array processors. The display system provides 1024 x 1536 display resolution at 40Hz frame and 80Hz field rates. In particular, the ability to provide whole or partial update of the screen at the scanning rate is a key feature. This allows multiple viewports or windows in the display buffer with both fixed and cine capability. To support image processing features such as windowing, pan, zoom, minification, filtering, ROI analysis, multiplanar and 3D reconstruction, a high performance CPU is integrated into the system. This CPU is an array processor capable of up to 400 million instructions per second. To support the multiple viewer and array processors' instantaneous high memory bandwidth requirement, an ultra fast memory system is used. This memory system has a bandwidth capability of 400MB/sec and a total capacity of 256MB. This bandwidth is more than adequate to support several high resolution CRT's and also the fast processing unit. This fully integrated approach allows effective real time image processing. The integrated design of viewing system, memory system and array processor are key to the imaging system. It is the intention to describe the architecture of the image system in this paper.

  2. Fuzzy Classification of High Resolution Remote Sensing Scenes Using Visual Attention Features

    PubMed Central

    Xu, Tingbao; Chen, Yun

    2017-01-01

    In recent years the spatial resolutions of remote sensing images have been improved greatly. However, a higher spatial resolution image does not always lead to a better result of automatic scene classification. Visual attention is an important characteristic of the human visual system, which can effectively help to classify remote sensing scenes. In this study, a novel visual attention feature extraction algorithm was proposed, which extracted visual attention features through a multiscale process. And a fuzzy classification method using visual attention features (FC-VAF) was developed to perform high resolution remote sensing scene classification. FC-VAF was evaluated by using remote sensing scenes from widely used high resolution remote sensing images, including IKONOS, QuickBird, and ZY-3 images. FC-VAF achieved more accurate classification results than the others according to the quantitative accuracy evaluation indices. We also discussed the role and impacts of different decomposition levels and different wavelets on the classification accuracy. FC-VAF improves the accuracy of high resolution scene classification and therefore advances the research of digital image analysis and the applications of high resolution remote sensing images. PMID:28761440

  3. Low-temperature high-Z gamma-detectors with very high energy resolution

    NASA Astrophysics Data System (ADS)

    Pobes, Carlos; Brofferio, Chiara; Bucci, Carlo; Cremonesi, Oliviero; Fiorini, Ettore; Giuliani, Andrea; Nucciotti, Angelo; Pavan, Maura; Pedretti, Marisa; Pessina, Gianluigi; Pirro, Stefano; Previtali, Ezio; Sisti, Monica; Vanzini, Marco; Zanotti, Luigi

    2001-12-01

    High-Z low-temperature calorimeters are developed by an Italian collaboration (Milano-Como-Gran Sasso Underground Laboratories) in order to search for rare nuclear events and Dark Matter massive candidates. They exhibit an excellent energy resolution, close to that of Ge-diodes, but a much higher efficiency. Different high-Z materials were initially employed . A many-years optimisation work on tellurium oxide (TeO2) lead to impressive results: devices with total masses around 750 g present FWHM energy resolutions on gamma-ray peaks ranging from 1 KeV (close to the 5 KeV energy threshold) to 2.6 KeV at 2615 KeV (208Tl gamma line). A 3.2 KeV FWHM energy resolution was obtained at 5.4 MeV (210Po alpha line), which is by far the best one ever achieved with any alpha detector. These devices, operated at about 10 mK, consist of a TeO2 single crystal thermally coupled to a 50 mg Neutron Transmutation Doped (NTD) Ge crystal working as a temperature sensor. Special care was devoted to methods for response linearization and temporal stabilisation. Devices based on the same principle and specifically optimised could find applications in several fields like gamma-ray astrophysics, nuclear physics searches, environmental monitoring and radiation metrology.

  4. Mesosacle eddies in a high resolution OGCM and coupled ocean-atmosphere GCM

    NASA Astrophysics Data System (ADS)

    Yu, Y.; Liu, H.; Lin, P.

    2017-12-01

    The present study described high-resolution climate modeling efforts including oceanic, atmospheric and coupled general circulation model (GCM) at the state key laboratory of numerical modeling for atmospheric sciences and geophysical fluid dynamics (LASG), Institute of Atmospheric Physics (IAP). The high-resolution OGCM is established based on the latest version of the LASG/IAP Climate system Ocean Model (LICOM2.1), but its horizontal resolution and vertical resolution are increased to 1/10° and 55 layers, respectively. Forced by the surface fluxes from the reanalysis and observed data, the model has been integrated for approximately more than 80 model years. Compared with the simulation of the coarse-resolution OGCM, the eddy-resolving OGCM not only better simulates the spatial-temporal features of mesoscale eddies and the paths and positions of western boundary currents but also reproduces the large meander of the Kuroshio Current and its interannual variability. Another aspect, namely, the complex structures of equatorial Pacific currents and currents in the coastal ocean of China, are better captured due to the increased horizontal and vertical resolution. Then we coupled the high resolution OGCM to NCAR CAM4 with 25km resolution, in which the mesoscale air-sea interaction processes are better captured.

  5. The Joint Astrophysical Plasmadynamic Experiment (J-PEX): a high-resolution rocket spectrometer

    NASA Astrophysics Data System (ADS)

    Barstow, Martin A.; Bannister, Nigel P.; Cruddace, Raymond G.; Kowalski, Michael P.; Wood, Kent S.; Yentis, Daryl J.; Gursky, Herbert; Barbee, Troy W., Jr.; Goldstein, William H.; Kordas, Joseph F.; Fritz, Gilbert G.; Culhane, J. Leonard; Lapington, Jonathan S.

    2003-02-01

    We report on the successful sounding rocket flight of the high resolution (R=3000-4000) J-PEX EUV spectrometer. J-PEX is a novel normal incidence instrument, which combines the focusing and dispersive elements of the spectrometer into a single optical element, a multilayer-coated grating. The high spectral resolution achieved has had to be matched by unprecedented high spatial resolution in the imaging microchannel plate detector used to record the data. We illustrate the performance of the complete instrument through an analysis of the 220-245Å spectrum of the white dwarf G191-B2B obtained with a 300 second exposure. The high resolution allows us to detect a low-density ionized helium component along the line of sight to the star and individual absorption lines from heavier elements in the photosphere.

  6. Ultrasound-aided high-resolution biophotonic imaging

    NASA Astrophysics Data System (ADS)

    Wang, Lihong V.

    2003-10-01

    We develop novel biophotonic imaging for early-cancer detection, a grand challenge in cancer research, using nonionizing electromagnetic and ultrasonic waves. Unlike ionizing x-ray radiation, nonionizing electromagnetic waves such as optical waves are safe for biomedical applications and reveal new contrast mechanisms and functional information. For example, our spectroscopic oblique-incidence reflectometry can detect skin cancers based on functional hemoglobin parameters and cell nuclear size with 95% accuracy. Unfortunately, electromagnetic waves in the nonionizing spectral region do not penetrate biological tissue in straight paths as do x-rays. Consequently, high-resolution tomography based on nonionizing electromagnetic waves alone, as demonstrated by our Mueller optical coherence tomography, is limited to superficial tissue imaging. Ultrasonic imaging, on the contrary, furnishes good imaging resolution but has poor contrast in early-stage tumors and has strong speckle artifacts as well. We developed ultrasound-mediated imaging modalities by combining electromagnetic and ultrasonic waves synergistically. The hybrid modalities yield speckle-free electromagnetic-contrast at ultrasonic resolution in relatively large biological tissue. In ultrasound-modulated (acousto)-optical tomography, a focused ultrasonic wave encodes diffuse laser light in scattering biological tissue. In photo-acoustic (thermo-acoustic) tomography, a low-energy laser (RF) pulse induces ultrasonic waves in biological tissue due to thermoelastic expansion.

  7. High Resolution Doppler Imager

    NASA Technical Reports Server (NTRS)

    Hays, Paul B.

    1999-01-01

    This report summarizes the accomplishments of the High Resolution Doppler Imager (HRDI) on UARS spacecraft during the period 4/l/96 - 3/31/99. During this period, HRDI operation, data processing, and data analysis continued, and there was a high level of vitality in the HRDI project. The HRDI has been collecting data from the stratosphere, mesosphere, and lower thermosphere since instrument activation on October 1, 1991. The HRDI team has stressed three areas since operations commenced: 1) operation of the instrument in a manner which maximizes the quality and versatility of the collected data; 2) algorithm development and validation to produce a high-quality data product; and 3) scientific studies, primarily of the dynamics of the middle atmosphere. There has been no significant degradation in the HRDI instrument since operations began nearly 8 years ago. HRDI operations are fairly routine, although we have continued to look for ways to improve the quality of the scientific product, either by improving existing modes, or by designing new ones. The HRDI instrument has been programmed to collect data for new scientific studies, such as measurements of fluorescence from plants, measuring cloud top heights, and lower atmosphere H2O.

  8. Specimen preparation for high-resolution cryo-EM

    PubMed Central

    Passmore, Lori A.; Russo, Christopher J.

    2016-01-01

    Imaging a material with electrons at near-atomic resolution requires a thin specimen that is stable in the vacuum of the transmission electron microscope. For biological samples, this comprises a thin layer of frozen aqueous solution containing the biomolecular complex of interest. The process of preparing a high-quality specimen is often the limiting step in the determination of structures by single-particle electron cryomicroscopy (cryo-EM). Here we describe a systematic approach for going from a purified biomolecular complex in aqueous solution to high-resolution electron micrographs that are suitable for 3D structure determination. This includes a series of protocols for the preparation of vitrified specimens on various specimen supports, including all-gold and graphene. We also describe techniques for troubleshooting when a preparation fails to yield suitable specimens, and common mistakes to avoid during each part of the process. Finally, we include recommendations for obtaining the highest quality micrographs from prepared specimens with current microscope, detector and support technology. PMID:27572723

  9. High resolution atomic force microscopy of double-stranded RNA.

    PubMed

    Ares, Pablo; Fuentes-Perez, Maria Eugenia; Herrero-Galán, Elías; Valpuesta, José M; Gil, Adriana; Gomez-Herrero, Julio; Moreno-Herrero, Fernando

    2016-06-09

    Double-stranded (ds) RNA mediates the suppression of specific gene expression, it is the genetic material of a number of viruses, and a key activator of the innate immune response against viral infections. The ever increasing list of roles played by dsRNA in the cell and its potential biotechnological applications over the last decade has raised an interest for the characterization of its mechanical properties and structure, and that includes approaches using Atomic Force Microscopy (AFM) and other single-molecule techniques. Recent reports have resolved the structure of dsDNA with AFM at unprecedented resolution. However, an equivalent study with dsRNA is still lacking. Here, we have visualized the double helix of dsRNA under near-physiological conditions and at sufficient resolution to resolve the A-form sub-helical pitch periodicity. We have employed different high-sensitive force-detection methods and obtained images with similar spatial resolution. Therefore, we show here that the limiting factors for high-resolution AFM imaging of soft materials in liquid medium are, rather than the imaging mode, the force between the tip and the sample and the sharpness of the tip apex.

  10. High-resolution mass spectrometric analysis of biomass pyrolysis vapors

    DOE PAGES

    Christensen, Earl; Evans, Robert J.; Carpenter, Daniel

    2017-01-19

    Vapors generated from the pyrolysis of lignocellulosic biomass are made up of a complex mixture of oxygenated compounds. Direct analysis of these vapors provides insight into the mechanisms of depolymerization of cellulose, hemicellulose, and lignin as well as insight into reactions that may occur during condensation of pyrolysis vapors into bio-oil. Studies utilizing pyrolysis molecular beam mass spectrometry have provided valuable information regarding the chemical composition of pyrolysis vapors. Mass spectrometers generally employed with these instruments have low mass resolution of approximately a mass unit. The presence of chemical species with identical unit mass but differing elemental formulas cannot bemore » resolved with these instruments and are therefore detected as a single ion. In this study we analyzed the pyrolysis vapors of several biomass sources using a high-resolution double focusing mass spectrometer. High-resolution analysis of pyrolysis vapors allowed for speciation of several compounds that would be detected as a single ion with unit mass resolution. Lastly, these data not only provide greater detail into the composition of pyrolysis vapors but also highlight differences between vapors generated from multiple biomass feedstocks.« less

  11. High-energy, high-resolution x-ray imaging for metallic cultural heritages

    NASA Astrophysics Data System (ADS)

    Hoshino, Masato; Uesugi, Kentaro; Shikaku, Ryuji; Yagi, Naoto

    2017-10-01

    An x-ray micro-imaging technique to visualize high-resolution structure of cultural heritages made of iron or copper has been developed. It utilizes high-energy x-rays from a bending magnet at the SPring-8 synchrotron radiation facility. A white x-ray beam was attenuated by 0.5 mm tungsten and 2.0 mm lead absorbers resulting in the peak energy of 200 keV. The tungsten absorber eliminated the photon energy peak below the absorption edge of lead. A sample was rotated over 180 degrees in 500 s and projection images were continuously collected with an exposure time of 500 ms by an sCMOS camera equipped with a scintillator. Tomographic reconstruction of an ancient sword containing of both copper and iron was successfully obtained at a voxel size of 14.8 μm. Beam hardening was found to cause 2.5 % differences in density in a reconstructed image of a homogeneous stainless-steel rod. Ring artefacts were reduced by continuously moving the absorbers. This work demonstrates feasibility of high-energy, high-resolution imaging at a synchrotron beamline which may be generally useful for inspecting metallic objects.

  12. Wide-aperture aspherical lens for high-resolution terahertz imaging

    NASA Astrophysics Data System (ADS)

    Chernomyrdin, Nikita V.; Frolov, Maxim E.; Lebedev, Sergey P.; Reshetov, Igor V.; Spektor, Igor E.; Tolstoguzov, Viktor L.; Karasik, Valeriy E.; Khorokhorov, Alexei M.; Koshelev, Kirill I.; Schadko, Aleksander O.; Yurchenko, Stanislav O.; Zaytsev, Kirill I.

    2017-01-01

    In this paper, we introduce wide-aperture aspherical lens for high-resolution terahertz (THz) imaging. The lens has been designed and analyzed by numerical methods of geometrical optics and electrodynamics. It has been made of high-density polyethylene by shaping at computer-controlled lathe and characterized using a continuous-wave THz imaging setup based on a backward-wave oscillator and Golay detector. The concept of image contrast has been implemented to estimate image quality. According to the experimental data, the lens allows resolving two points spaced at 0.95λ distance with a contrast of 15%. To highlight high resolution in the THz images, the wide-aperture lens has been employed for studying printed electronic circuit board containing sub-wavelength-scale elements. The observed results justify the high efficiency of the proposed lens design.

  13. The design of preamplifier and ADC circuit base on weak e-optical signal

    NASA Astrophysics Data System (ADS)

    Fen, Leng; Ying-ping, Yang; Ya-nan, Yu; Xiao-ying, Xu

    2011-02-01

    Combined with the demand of the process of weak e-optical signal in QPD detection system, the article introduced the circuit principle of deigning preamplifier and ADC circuit with I/V conversion, instrumentation amplifier, low-pass filter and 16-bit A/D transformation. At the same time the article discussed the circuit's noise suppression and isolation according to the characteristics of the weak signal, and gave the method of software rectification. Finally, tested the weak signal with keithley2000, and got a good effect.

  14. Localization-based super-resolution imaging meets high-content screening.

    PubMed

    Beghin, Anne; Kechkar, Adel; Butler, Corey; Levet, Florian; Cabillic, Marine; Rossier, Olivier; Giannone, Gregory; Galland, Rémi; Choquet, Daniel; Sibarita, Jean-Baptiste

    2017-12-01

    Single-molecule localization microscopy techniques have proven to be essential tools for quantitatively monitoring biological processes at unprecedented spatial resolution. However, these techniques are very low throughput and are not yet compatible with fully automated, multiparametric cellular assays. This shortcoming is primarily due to the huge amount of data generated during imaging and the lack of software for automation and dedicated data mining. We describe an automated quantitative single-molecule-based super-resolution methodology that operates in standard multiwell plates and uses analysis based on high-content screening and data-mining software. The workflow is compatible with fixed- and live-cell imaging and allows extraction of quantitative data like fluorophore photophysics, protein clustering or dynamic behavior of biomolecules. We demonstrate that the method is compatible with high-content screening using 3D dSTORM and DNA-PAINT based super-resolution microscopy as well as single-particle tracking.

  15. Observation of tropical cyclones by high resolution scatterometry

    NASA Astrophysics Data System (ADS)

    Quilfen, Y.; Chapron, B.; Elfouhaily, T.; Katsaros, K.; Tournadre, J.

    1998-04-01

    Unprecedented views of surface wind fields in tropical cyclones (hereafter TCs) are provided by the European Remote Sensing Satellite (ERS) C band scatterometer. Scatterometer measurements at C band are able to penetrate convective storms clouds, observing the surface wind fields with good accuracy. However the resolution of the measurements (50×50 km2) limits the interpretation of the scatterometer signals in such mesoscale events. The strong gradients of the surface wind existing at scales of a few kms are smoothed in the measured features such as the intensity and location of the wind maxima, and the position of the center. Beyond the ERS systems, the scatterometers on-board the ADEOS and METOP satellites, designed by the Jet Propulsion Laboratory and by the European Space Agency, respectively, will be able to produce measurements of the backscattering coefficient at about 25×25 km2 resolution. A few sets of ERS-1 orbits sampling TC events were produced with an experimental 25×25 km2 resolution. Enhancing the resolution by a factor of 2 allows location of the wind maxima and minima in a TC with a much better accuracy than at 50 km resolution. In addition, a better resolution reduces the geophysical noise (variability of wind speed within the cell and effect of rain) that dominates the radiometric noise and hence improves the definition of the backscattering measurements. A comprehensive analysis of the backscattering measurements in the case of high winds and high sea states obtained within TCs is proposed in order to refine the interpretation of the wind vector derived from a backscattering model that is currently only calibrated up to moderate winds (<20 m/s) in neutral conditions. Observations of the TOPEX-POSEIDON dual-frequency altimeter are also used for that purpose. Patterns of the surface winds in TCs are described and characteristic features concerning asymmetries in the maximum winds and in the divergence field are discussed.

  16. High-resolution RCMs as pioneers for future GCMs

    NASA Astrophysics Data System (ADS)

    Schar, C.; Ban, N.; Arteaga, A.; Charpilloz, C.; Di Girolamo, S.; Fuhrer, O.; Hoefler, T.; Leutwyler, D.; Lüthi, D.; Piaget, N.; Ruedisuehli, S.; Schlemmer, L.; Schulthess, T. C.; Wernli, H.

    2017-12-01

    Currently large efforts are underway to refine the horizontal resolution of global and regional climate models to O(1 km), with the intent to represent convective clouds explicitly rather than using semi-empirical parameterizations. This refinement will move the governing equations closer to first principles and is expected to reduce the uncertainties of climate models. High resolution is particularly attractive in order to better represent critical cloud feedback processes (e.g. related to global climate sensitivity and extratropical summer convection) and extreme events (such as heavy precipitation events, floods, and hurricanes). The presentation will be illustrated using decade-long simulations at 2 km horizontal grid spacing, some of these covering the European continent on a computational mesh with 1536x1536x60 grid points. To accomplish such simulations, use is made of emerging heterogeneous supercomputing architectures, using a version of the COSMO limited-area weather and climate model that is able to run entirely on GPUs. Results show that kilometer-scale resolution dramatically improves the simulation of precipitation in terms of the diurnal cycle and short-term extremes. The modeling framework is used to address changes of precipitation scaling with climate change. It is argued that already today, modern supercomputers would in principle enable global atmospheric convection-resolving climate simulations, provided appropriately refactored codes were available, and provided solutions were found to cope with the rapidly growing output volume. A discussion will be provided of key challenges affecting the design of future high-resolution climate models. It is suggested that km-scale RCMs should be exploited to pioneer this terrain, at a time when GCMs are not yet available at such resolutions. Areas of interest include the development of new parameterization schemes adequate for km-scale resolution, the exploration of new validation methodologies and data

  17. Methylation-Sensitive High Resolution Melting (MS-HRM).

    PubMed

    Hussmann, Dianna; Hansen, Lise Lotte

    2018-01-01

    Methylation-Sensitive High Resolution Melting (MS-HRM) is an in-tube, PCR-based method to detect methylation levels at specific loci of interest. A unique primer design facilitates a high sensitivity of the assays enabling detection of down to 0.1-1% methylated alleles in an unmethylated background.Primers for MS-HRM assays are designed to be complementary to the methylated allele, and a specific annealing temperature enables these primers to anneal both to the methylated and the unmethylated alleles thereby increasing the sensitivity of the assays. Bisulfite treatment of the DNA prior to performing MS-HRM ensures a different base composition between methylated and unmethylated DNA, which is used to separate the resulting amplicons by high resolution melting.The high sensitivity of MS-HRM has proven useful for detecting cancer biomarkers in a noninvasive manner in urine from bladder cancer patients, in stool from colorectal cancer patients, and in buccal mucosa from breast cancer patients. MS-HRM is a fast method to diagnose imprinted diseases and to clinically validate results from whole-epigenome studies. The ability to detect few copies of methylated DNA makes MS-HRM a key player in the quest for establishing links between environmental exposure, epigenetic changes, and disease.

  18. Large-scale microfluidics providing high-resolution and high-throughput screening of Caenorhabditis elegans poly-glutamine aggregation model

    NASA Astrophysics Data System (ADS)

    Mondal, Sudip; Hegarty, Evan; Martin, Chris; Gökçe, Sertan Kutal; Ghorashian, Navid; Ben-Yakar, Adela

    2016-10-01

    Next generation drug screening could benefit greatly from in vivo studies, using small animal models such as Caenorhabditis elegans for hit identification and lead optimization. Current in vivo assays can operate either at low throughput with high resolution or with low resolution at high throughput. To enable both high-throughput and high-resolution imaging of C. elegans, we developed an automated microfluidic platform. This platform can image 15 z-stacks of ~4,000 C. elegans from 96 different populations using a large-scale chip with a micron resolution in 16 min. Using this platform, we screened ~100,000 animals of the poly-glutamine aggregation model on 25 chips. We tested the efficacy of ~1,000 FDA-approved drugs in improving the aggregation phenotype of the model and identified four confirmed hits. This robust platform now enables high-content screening of various C. elegans disease models at the speed and cost of in vitro cell-based assays.

  19. High-resolution mechanical imaging of the kidney.

    PubMed

    Streitberger, Kaspar-Josche; Guo, Jing; Tzschätzsch, Heiko; Hirsch, Sebastian; Fischer, Thomas; Braun, Jürgen; Sack, Ingolf

    2014-02-07

    The objective of this study was to test the feasibility and reproducibility of in vivo high-resolution mechanical imaging of the asymptomatic human kidney. Hereby nine volunteers were examined at three different physiological states of urinary bladder filling (a normal state, urinary urgency, and immediately after urinary relief). Mechanical imaging was performed of the in vivo kidney using three-dimensional multifrequency magnetic resonance elastography combined with multifrequency dual elastovisco inversion. Other than in classical elastography, where the storage and loss shear moduli are evaluated, we analyzed the magnitude |G(⁎)| and the phase angle φ of the complex shear modulus reconstructed by simultaneous inversion of full wave field data corresponding to 7 harmonic drive frequencies from 30 to 60Hz and a resolution of 2.5mm cubic voxel size. Mechanical parameter maps were derived with a spatial resolution superior to that in previous work. The group-averaged values of |G(⁎)| were 2.67±0.52kPa in the renal medulla, 1.64±0.17kPa in the cortex, and 1.17±0.21kPa in the hilus. The phase angle φ (in radians) was 0.89±0.12 in the medulla, 0.83±0.09 in the cortex, and 0.72±0.06 in the hilus. All regional differences were significant (P<0.001), while no significant variation was found in relation to different stages of bladder filling. In summary our study provides first high-resolution maps of viscoelastic parameters of the three anatomical regions of the kidney. |G(⁎)| and φ provide novel information on the viscoelastic properties of the kidney, which is potentially useful for the detection of renal lesions or fibrosis. © 2013 Published by Elsevier Ltd.

  20. High-resolution terahertz inline digital holography based on quantum cascade laser

    NASA Astrophysics Data System (ADS)

    Deng, Qinghua; Li, Weihua; Wang, Xuemin; Li, Zeyu; Huang, Haochong; Shen, Changle; Zhan, Zhiqiang; Zou, Ruijiao; Jiang, Tao; Wu, Weidong

    2017-11-01

    A key requirement to put terahertz (THz) imaging systems into applications is high resolution. Based on a self-developed THz quantum cascade laser (QCL), we demonstrate a THz inline digital holography imaging system with high lateral resolution. In our case, the lateral resolution of this holography imaging system is pushed to about 70 μm, which is close to the intrinsic resolution limit of this system. To the best of our knowledge, this is much smaller than what has been reported up to now. This is attributed to a series of improvements, such as shortening the QCL wavelength, increasing Nx and Ny by the synthetic aperture method, smoothing the source beam profile, and diminishing vibration due to the cryorefrigeration device. This kind of holography system with a resolution smaller than 100 μm opens the door for many imaging experiments. It will turn the THz imaging systems into applications.

  1. Analysis and characterization of high-resolution and high-aspect-ratio imaging fiber bundles.

    PubMed

    Motamedi, Nojan; Karbasi, Salman; Ford, Joseph E; Lomakin, Vitaliy

    2015-11-10

    High-contrast imaging fiber bundles (FBs) are characterized and modeled for wide-angle and high-resolution imaging applications. Scanning electron microscope images of FB cross sections are taken to measure physical parameters and verify the variations of irregular fibers due to the fabrication process. Modal analysis tools are developed that include irregularities in the fiber core shapes and provide results in agreement with experimental measurements. The modeling demonstrates that the irregular fibers significantly outperform a perfectly regular "ideal" array. Using this method, FBs are designed that can provide high contrast with core pitches of only a few wavelengths of the guided light. Structural modifications of the commercially available FB can reduce the core pitch by 60% for higher resolution image relay.

  2. High-intensity xenon plasma discharge lamp for bulk-sensitive high-resolution photoemission spectroscopy.

    PubMed

    Souma, S; Sato, T; Takahashi, T; Baltzer, P

    2007-12-01

    We have developed a highly brilliant xenon (Xe) discharge lamp operated by microwave-induced electron cyclotron resonance (ECR) for ultrahigh-resolution bulk-sensitive photoemission spectroscopy (PES). We observed at least eight strong radiation lines from neutral or singly ionized Xe atoms in the energy region of 8.4-10.7 eV. The photon flux of the strongest Xe I resonance line at 8.437 eV is comparable to that of the He Ialpha line (21.218 eV) from the He-ECR discharge lamp. Stable operation for more than 300 h is achieved by efficient air-cooling of a ceramic tube in the resonance cavity. The high bulk sensitivity and high-energy resolution of PES using the Xe lines are demonstrated for some typical materials.

  3. Adaptive optics high-resolution IR spectroscopy with silicon grisms and immersion gratings

    NASA Astrophysics Data System (ADS)

    Ge, Jian; McDavitt, Daniel L.; Chakraborty, Abhijit; Bernecker, John L.; Miller, Shane

    2003-02-01

    The breakthrough of silicon immersion grating technology at Penn State has the ability to revolutionize high-resolution infrared spectroscopy when it is coupled with adaptive optics at large ground-based telescopes. Fabrication of high quality silicon grism and immersion gratings up to 2 inches in dimension, less than 1% integrated scattered light, and diffraction-limited performance becomes a routine process thanks to newly developed techniques. Silicon immersion gratings with etched dimensions of ~ 4 inches are being developed at Penn State. These immersion gratings will be able to provide a diffraction-limited spectral resolution of R = 300,000 at 2.2 micron, or 130,000 at 4.6 micron. Prototype silicon grisms have been successfully used in initial scientific observations at the Lick 3m telescope with adaptive optics. Complete K band spectra of a total of 6 T Tauri and Ae/Be stars and their close companions at a spectral resolution of R ~ 3000 were obtained. This resolving power was achieved by using a silicon echelle grism with a 5 mm pupil diameter in an IR camera. These results represent the first scientific observations conducted by the high-resolution silicon grisms, and demonstrate the extremely high dispersing power of silicon-based gratings. New discoveries from this high spatial and spectral resolution IR spectroscopy will be reported. The future of silicon-based grating applications in ground-based AO IR instruments is promising. Silicon immersion gratings will make very high-resolution spectroscopy (R > 100,000) feasible with compact instruments for implementation on large telescopes. Silicon grisms will offer an efficient way to implement low-cost medium to high resolution IR spectroscopy (R ~ 1000-50000) through the conversion of existing cameras into spectrometers by locating a grism in the instrument's pupil location.

  4. High-resolution mapping of forest carbon stocks in the Colombian Amazon

    NASA Astrophysics Data System (ADS)

    Asner, G. P.; Clark, J. K.; Mascaro, J.; Galindo García, G. A.; Chadwick, K. D.; Navarrete Encinales, D. A.; Paez-Acosta, G.; Cabrera Montenegro, E.; Kennedy-Bowdoin, T.; Duque, Á.; Balaji, A.; von Hildebrand, P.; Maatoug, L.; Bernal, J. F. Phillips; Yepes Quintero, A. P.; Knapp, D. E.; García Dávila, M. C.; Jacobson, J.; Ordóñez, M. F.

    2012-07-01

    High-resolution mapping of tropical forest carbon stocks can assist forest management and improve implementation of large-scale carbon retention and enhancement programs. Previous high-resolution approaches have relied on field plot and/or light detection and ranging (LiDAR) samples of aboveground carbon density, which are typically upscaled to larger geographic areas using stratification maps. Such efforts often rely on detailed vegetation maps to stratify the region for sampling, but existing tropical forest maps are often too coarse and field plots too sparse for high-resolution carbon assessments. We developed a top-down approach for high-resolution carbon mapping in a 16.5 million ha region (> 40%) of the Colombian Amazon - a remote landscape seldom documented. We report on three advances for large-scale carbon mapping: (i) employing a universal approach to airborne LiDAR-calibration with limited field data; (ii) quantifying environmental controls over carbon densities; and (iii) developing stratification- and regression-based approaches for scaling up to regions outside of LiDAR coverage. We found that carbon stocks are predicted by a combination of satellite-derived elevation, fractional canopy cover and terrain ruggedness, allowing upscaling of the LiDAR samples to the full 16.5 million ha region. LiDAR-derived carbon maps have 14% uncertainty at 1 ha resolution, and the regional map based on stratification has 28% uncertainty in any given hectare. High-resolution approaches with quantifiable pixel-scale uncertainties will provide the most confidence for monitoring changes in tropical forest carbon stocks. Improved confidence will allow resource managers and decision makers to more rapidly and effectively implement actions that better conserve and utilize forests in tropical regions.

  5. Solid-state mAbs and ADCs subjected to heat-stress stability conditions can be covalently modified with buffer and excipient molecules.

    PubMed

    Valliere-Douglass, John F; Lewis, Patsy; Salas-Solano, Oscar; Jiang, Shan

    2015-02-01

    We report that a unique type of chemical modification occurs on lyophilized proteins. Freeze-dried mAbs and antibody-drug conjugates (ADCs) can be covalently modified with buffer and excipient molecules on the side chains of Glu, Asp, Thr, and Ser amino acids when subjected to temperature stress. The reaction occurs primarily via condensation of common buffers and excipients such as histidine, tris, trehalose and sucrose, with Glu and Asp carboxylates in the primary sequence of proteins. The reaction was also found to proceed through condensation of carboxylate containing buffers such as citrate, with Thr and Ser hydroxyls in the primary sequence of proteins. Based on the mass of the covalent adducts observed on mAbs and ADCs, it is apparent that the reaction produces water as a product and is thus favored in a low moisture environments such as a lyophilized protein cake. Herein, we present the evidence for the covalent modification of proteins drawn from case studies of in-depth characterization of heat-stressed mAbs and ADCs in the solid state. We also demonstrate how common charge variant assays such as imaged capillary isoelectric focusing and mass spectrometry can be used to monitor this specific class of protein modification. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  6. Integrated tests of a high speed VXS switch card and 250 MSPS flash ADCs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    H. Dong, C. Cuevas, D. Curry, E. Jastrzembski, F. Barbosa, J. Wilson, M. Taylor, B. Raydo

    2008-01-01

    High trigger rate nuclear physics experiments proposed for the 12 GeV upgrade at the Thomas Jefferson National Accelerator Facility create a need for new high speed digital systems for energy summing. Signals from electronic detectors will be captured with the Jefferson Lab FADC module, which collects and processes data from 16 charged particle sensors with 10 or 12 bit resolution at 250 MHz sample rate. Up to sixteen FADC modules transfer energy information to a central energy summing module for each readout crate. The sums from the crates are combined to form a global energy sum that is used tomore » trigger data readout for all modules. The Energy Sum module and FADC modules have been designed using the VITA-41 VME64 switched serial (VXS) standard. The VITA- 41 standard defines payload and switch slot module functions, and offers an elegant engineered solution for Multi-Gigabit serial transmission on a standard VITA-41 backplane. The Jefferson Lab Energy Sum module receives data serially at a rate of up to 6 Giga-bits per second from the FADC modules. Both FADC and Energy Sum modules have been designed and assembled and this paper describes the integrated tests using both high speed modules in unison« less

  7. The implementation of sea ice model on a regional high-resolution scale

    NASA Astrophysics Data System (ADS)

    Prasad, Siva; Zakharov, Igor; Bobby, Pradeep; McGuire, Peter

    2015-09-01

    The availability of high-resolution atmospheric/ocean forecast models, satellite data and access to high-performance computing clusters have provided capability to build high-resolution models for regional ice condition simulation. The paper describes the implementation of the Los Alamos sea ice model (CICE) on a regional scale at high resolution. The advantage of the model is its ability to include oceanographic parameters (e.g., currents) to provide accurate results. The sea ice simulation was performed over Baffin Bay and the Labrador Sea to retrieve important parameters such as ice concentration, thickness, ridging, and drift. Two different forcing models, one with low resolution and another with a high resolution, were used for the estimation of sensitivity of model results. Sea ice behavior over 7 years was simulated to analyze ice formation, melting, and conditions in the region. Validation was based on comparing model results with remote sensing data. The simulated ice concentration correlated well with Advanced Microwave Scanning Radiometer for EOS (AMSR-E) and Ocean and Sea Ice Satellite Application Facility (OSI-SAF) data. Visual comparison of ice thickness trends estimated from the Soil Moisture and Ocean Salinity satellite (SMOS) agreed with the simulation for year 2010-2011.

  8. An Overview of High-Resolution, Non-Dispersive, Imaging Spectrometers for High-Energy Photons

    NASA Technical Reports Server (NTRS)

    Kilbourne, Caroline

    2010-01-01

    High-resolution x-ray spectroscopy has become a powerful tool for studying the evolving universe. The grating spectrometers on the XMM and Chandra satellites initiated a new era in x-ray astronomy. Despite their successes, there is still need for instrumentation that can provide higher spectral resolution with high throughput in the Fe-K band and for extended sources. What is needed is a non-dispersive imaging spectrometer - essentially a 14-bit x-ray color camera. And a requirement for a nondispersive spectrometer designed to provide eV-scale spectral resolution is a temperature below 0.1 K. The required spectral resolution and the constraints of thermodynamics and engineering dictate the temperature regime nearly independently of the details of the sensor or the read-out technology. Low-temperature spectrometers can be divided into two classes - - equilibrium and non-equilibrium. In the equilibrium devices, or calorimeters, the energy is deposited in an isolated thermal mass and the resulting increase in temperature is measured. In the non-equilibrium devices, the absorbed energy produces quantized excitations that are counted to determine the energy. The two approaches have different strong points, and within each class a variety of optimizations have been pursued. I will present the basic fundamentals of operation and the details of the most successful device designs to date. I will also discuss how the measurement priorities (resolution, energy band, count rate) influence the optimal choice of detector technology.

  9. Performance of a high resolution cavity beam position monitor system

    NASA Astrophysics Data System (ADS)

    Walston, Sean; Boogert, Stewart; Chung, Carl; Fitsos, Pete; Frisch, Joe; Gronberg, Jeff; Hayano, Hitoshi; Honda, Yosuke; Kolomensky, Yury; Lyapin, Alexey; Malton, Stephen; May, Justin; McCormick, Douglas; Meller, Robert; Miller, David; Orimoto, Toyoko; Ross, Marc; Slater, Mark; Smith, Steve; Smith, Tonee; Terunuma, Nobuhiro; Thomson, Mark; Urakawa, Junji; Vogel, Vladimir; Ward, David; White, Glen

    2007-07-01

    It has been estimated that an RF cavity Beam Position Monitor (BPM) could provide a position measurement resolution of less than 1 nm. We have developed a high resolution cavity BPM and associated electronics. A triplet comprised of these BPMs was installed in the extraction line of the Accelerator Test Facility (ATF) at the High Energy Accelerator Research Organization (KEK) for testing with its ultra-low emittance beam. The three BPMs were each rigidly mounted inside an alignment frame on six variable-length struts which could be used to move the BPMs in position and angle. We have developed novel methods for extracting the position and tilt information from the BPM signals including a robust calibration algorithm which is immune to beam jitter. To date, we have demonstrated a position resolution of 15.6 nm and a tilt resolution of 2.1 μrad over a dynamic range of approximately ±20 μm.

  10. Arginine decarboxylase (ADC) and agmatinase (AGMAT): an alternative pathway for synthesis of polyamines in pig conceptuses and uteri

    USDA-ARS?s Scientific Manuscript database

    Arginine, a precursor for the synthesis of nitric oxide (NO) and polyamines, is critical for implantation and development of the conceptus. We first reported that the arginine decarboxylase (ADC)/agmatinase(AGMAT) pathway as an alternative pathway for synthesis of polyamines in the ovine conceptuses...

  11. High-resolution three-dimensional imaging with compress sensing

    NASA Astrophysics Data System (ADS)

    Wang, Jingyi; Ke, Jun

    2016-10-01

    LIDAR three-dimensional imaging technology have been used in many fields, such as military detection. However, LIDAR require extremely fast data acquisition speed. This makes the manufacture of detector array for LIDAR system is very difficult. To solve this problem, we consider using compress sensing which can greatly decrease the data acquisition and relax the requirement of a detection device. To use the compressive sensing idea, a spatial light modulator will be used to modulate the pulsed light source. Then a photodetector is used to receive the reflected light. A convex optimization problem is solved to reconstruct the 2D depth map of the object. To improve the resolution in transversal direction, we use multiframe image restoration technology. For each 2D piecewise-planar scene, we move the SLM half-pixel each time. Then the position where the modulated light illuminates will changed accordingly. We repeat moving the SLM to four different directions. Then we can get four low-resolution depth maps with different details of the same plane scene. If we use all of the measurements obtained by the subpixel movements, we can reconstruct a high-resolution depth map of the sense. A linear minimum-mean-square error algorithm is used for the reconstruction. By combining compress sensing and multiframe image restoration technology, we reduce the burden on data analyze and improve the efficiency of detection. More importantly, we obtain high-resolution depth maps of a 3D scene.

  12. FALCON: fast and unbiased reconstruction of high-density super-resolution microscopy data

    NASA Astrophysics Data System (ADS)

    Min, Junhong; Vonesch, Cédric; Kirshner, Hagai; Carlini, Lina; Olivier, Nicolas; Holden, Seamus; Manley, Suliana; Ye, Jong Chul; Unser, Michael

    2014-04-01

    Super resolution microscopy such as STORM and (F)PALM is now a well known method for biological studies at the nanometer scale. However, conventional imaging schemes based on sparse activation of photo-switchable fluorescent probes have inherently slow temporal resolution which is a serious limitation when investigating live-cell dynamics. Here, we present an algorithm for high-density super-resolution microscopy which combines a sparsity-promoting formulation with a Taylor series approximation of the PSF. Our algorithm is designed to provide unbiased localization on continuous space and high recall rates for high-density imaging, and to have orders-of-magnitude shorter run times compared to previous high-density algorithms. We validated our algorithm on both simulated and experimental data, and demonstrated live-cell imaging with temporal resolution of 2.5 seconds by recovering fast ER dynamics.

  13. FALCON: fast and unbiased reconstruction of high-density super-resolution microscopy data

    PubMed Central

    Min, Junhong; Vonesch, Cédric; Kirshner, Hagai; Carlini, Lina; Olivier, Nicolas; Holden, Seamus; Manley, Suliana; Ye, Jong Chul; Unser, Michael

    2014-01-01

    Super resolution microscopy such as STORM and (F)PALM is now a well known method for biological studies at the nanometer scale. However, conventional imaging schemes based on sparse activation of photo-switchable fluorescent probes have inherently slow temporal resolution which is a serious limitation when investigating live-cell dynamics. Here, we present an algorithm for high-density super-resolution microscopy which combines a sparsity-promoting formulation with a Taylor series approximation of the PSF. Our algorithm is designed to provide unbiased localization on continuous space and high recall rates for high-density imaging, and to have orders-of-magnitude shorter run times compared to previous high-density algorithms. We validated our algorithm on both simulated and experimental data, and demonstrated live-cell imaging with temporal resolution of 2.5 seconds by recovering fast ER dynamics. PMID:24694686

  14. Binary Cepheids From High-Angular Resolution

    NASA Astrophysics Data System (ADS)

    Gallenne, A.; Mérand, A.; Kervella, P.

    2015-12-01

    Optical interferometry is the only technique giving access to milli-arcsecond (mas) spatial resolution. This is a powerful and unique tool to detect the close orbiting companions of Cepheids, and offers an unique opportunity to make progress in resolving the Cepheid mass discrepancy. Our goal in studying binary Cepheids is to measure the astrometric position of the high-contrast companion, and then combine them with spectroscopic measurements to derive the orbital elements, distances, and dynamical masses. In the course of this program, we developed a new tool, CANDID, to search for high-contrast companions and set detection limits from interferometric observations

  15. High resolution powder diffraction at HASYLAB

    NASA Astrophysics Data System (ADS)

    Wroblewski, Thomas; Ihringer, Jorg; Maichle, Josef

    1988-04-01

    HASYLAB's beamline F1 was modified for powder diffraction in a triple-axis geometry. The diffractometer consists of two independent circles for θ and 2θ motion on either side of the beam. The θ circle can be translated along its axis. This makes the instrument highly flexible for the installation of different attachments like a cryostat which was used for low temperature measurements on the new high Tc superconductors. Measurements on zeolites demonstrate the excellent resolution and signal-to-noise ratio. Novel measuring strategies concerning the use of multiple analyzers, the examination of phase transitions and anomalous dispersion are presented.

  16. Rapid calibrated high-resolution hyperspectral imaging using tunable laser source

    NASA Astrophysics Data System (ADS)

    Nguyen, Lam K.; Margalith, Eli

    2009-05-01

    We present a novel hyperspectral imaging technique based on tunable laser technology. By replacing the broadband source and tunable filters of a typical NIR imaging instrument, several advantages are realized, including: high spectral resolution, highly variable field-of-views, fast scan-rates, high signal-to-noise ratio, and the ability to use optical fiber for efficient and flexible sample illumination. With this technique, high-resolution, calibrated hyperspectral images over the NIR range can be acquired in seconds. The performance of system features will be demonstrated on two example applications: detecting melamine contamination in wheat gluten and separating bovine protein from wheat protein in cattle feed.

  17. High Resolution Higher Energy X-ray Microscope for Mesoscopic Materials

    NASA Astrophysics Data System (ADS)

    Snigireva, I.; Snigirev, A.

    2013-10-01

    We developed a novel X-ray microscopy technique to study mesoscopically structured materials, employing compound refractive lenses. The easily seen advantage of lens-based methodology is the possibility to retrieve high resolution diffraction pattern and real-space images in the same experimental setup. Methodologically the proposed approach is similar to the studies of crystals by high resolution transmission electron microscopy. The proposed microscope was applied for studying of mesoscopic materials such as natural and synthetic opals, inverted photonic crystals.

  18. High sensitivity, wide coverage, and high-resolution NIR non-cryogenic spectrograph, WINERED

    NASA Astrophysics Data System (ADS)

    Ikeda, Yuji; Kobayashi, Naoto; Kondo, Sohei; Otsubo, Shogo; Hamano, Satoshi; Sameshima, Hiroaki; Yoshikawa, Tomoshiro; Fukue, Kei; Nakanishi, Kenshi; Kawanishi, Takafumi; Nakaoka, Tetsuya; Kinoshita, Masaomi; Kitano, Ayaka; Asano, Akira; Takenaka, Keiichi; Watase, Ayaka; Mito, Hiroyuki; Yasui, Chikako; Minami, Atsushi; Izumu, Natsuko; Yamamoto, Ryo; Mizumoto, Misaki; Arasaki, Takayuki; Arai, Akira; Matsunaga, Noriyuki; Kawakita, Hideyo

    2016-08-01

    Near-infrared (NIR) high-resolution spectroscopy is a fundamental observational method in astronomy. It provides significant information on the kinematics, the magnetic fields, and the chemical abundances, of astronomical objects embedded in or behind the highly extinctive clouds or at the cosmological distances. Scientific requirements have accelerated the development of the technology required for NIR high resolution spectrographs using 10 m telescopes. WINERED is a near-infrared (NIR) high-resolution spectrograph that is currently mounted on the 1.3 m Araki telescope of the Koyama Astronomical Observatory in Kyoto-Sangyo University, Japan, and has been successfully operated for three years. It covers a wide wavelength range from 0.90 to 1.35 μm (the z-, Y-, and J-bands) with a spectral resolution of R = 28,000 (Wide-mode) and R = 80,000 (Hires-Y and Hires-J modes). WINERED has three distinctive features: (i) optics with no cold stop, (ii) wide spectral coverage, and (iii) high sensitivity. The first feature, originating from the Joyce proposal, was first achieved by WINERED, with a short cutoff infrared array, cold baffles, and custom-made thermal blocking filters, and resulted in reducing the time for development, alignment, and maintenance, as well as the total cost. The second feature is realized with the spectral coverage of Δλ/λ 1/6 in a single exposure. This wide coverage is realized by a combination of a decent optical design with a cross-dispersed echelle and a large format array (2k x 2k HAWAII- 2RG). The Third feature, high sensitivity, is achieved via the high-throughput optics (>60 %) and the very low noise of the system. The major factors affecting the high throughput are the echelle grating and the VPH cross-disperser with high diffraction efficiencies of 83 % and 86 %, respectively, and the high QE of HAWAII-2RG (83 % at 1.23 μm). The readout noise of the electronics and the ambient thermal background radiation at longer wavelengths could be

  19. Coronal Heating and the Need for High-Resolution Observations

    NASA Technical Reports Server (NTRS)

    Klimchuk, James A.

    2008-01-01

    Despite excellent progress in recent years in understanding coronal heating, there remain many crucial questions that are still unanswered. Limitations in the observations are one important reason. Both theoretical and observational considerations point to the importance of small spatial scales, impulsive energy release, strong dynamics, and extreme plasma nonuniformity. As a consequence, high spatial resolution, broad temperature coverage, high temperature fidelity, and sensitivity to velocities and densities are all critical observational parameters. Current instruments lack one or more of these properties, and this has led to considerable ambiguity and confusion. In this talk, I will discuss recent ideas about coronal heating and emphasize that high spatial resolution observations, especially spectroscopic observations, are needed to make major progress on this important problem.

  20. Metabolomics of Breast Cancer Using High-Resolution Magic Angle Spinning Magnetic Resonance Spectroscopy: Correlations with 18F-FDG Positron Emission Tomography-Computed Tomography, Dynamic Contrast-Enhanced and Diffusion-Weighted Imaging MRI.

    PubMed

    Yoon, Haesung; Yoon, Dahye; Yun, Mijin; Choi, Ji Soo; Park, Vivian Youngjean; Kim, Eun-Kyung; Jeong, Joon; Koo, Ja Seung; Yoon, Jung Hyun; Moon, Hee Jung; Kim, Suhkmann; Kim, Min Jung

    2016-01-01

    Our goal in this study was to find correlations between breast cancer metabolites and conventional quantitative imaging parameters using high-resolution magic angle spinning (HR-MAS) magnetic resonance spectroscopy (MRS) and to find breast cancer subgroups that show high correlations between metabolites and imaging parameters. Between August 2010 and December 2013, we included 53 female patients (mean age 49.6 years; age range 32-75 years) with a total of 53 breast lesions assessed by the Breast Imaging Reporting and Data System. They were enrolled under the following criteria: breast lesions larger than 1 cm in diameter which 1) were suspicious for malignancy on mammography or ultrasound (US), 2) were pathologically confirmed to be breast cancer with US-guided core-needle biopsy (CNB) 3) underwent 3 Tesla MRI with dynamic contrast-enhanced (DCE) and diffusion-weighted imaging (DWI) and positron emission tomography-computed tomography (PET-CT), and 4) had an attainable immunohistochemistry profile from CNB. We acquired spectral data by HR-MAS MRS with CNB specimens and expressed the data as relative metabolite concentrations. We compared the metabolites with the signal enhancement ratio (SER), maximum standardized FDG uptake value (SUV max), apparent diffusion coefficient (ADC), and histopathologic prognostic factors for correlation. We calculated Spearman correlations and performed a partial least squares-discriminant analysis (PLS-DA) to further classify patient groups into subgroups to find correlation differences between HR-MAS spectroscopic values and conventional imaging parameters. In a multivariate analysis, the PLS-DA models built with HR-MAS MRS metabolic profiles showed visible discrimination between high and low SER, SUV, and ADC. In luminal subtype breast cancer, compared to all cases, high SER, ADV, and SUV were more closely clustered by visual assessment. Multiple metabolites were correlated with SER and SUV in all cases. Multiple metabolites showed

  1. Toward high-resolution NMR spectroscopy of microscopic liquid samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butler, Mark C.; Mehta, Hardeep S.; Chen, Ying

    A longstanding limitation of high-resolution NMR spectroscopy is the requirement for samples to have macroscopic dimensions. Commercial probes, for example, are designed for volumes of at least 5 mL, in spite of decades of work directed toward the goal of miniaturization. Progress in miniaturizing inductive detectors has been limited by a perceived need to meet two technical requirements: (1) minimal separation between the sample and the detector, which is essential for sensitivity, and (2) near-perfect magnetic-field homogeneity at the sample, which is typically needed for spectral resolution. The first of these requirements is real, but the second can be relaxed,more » as we demonstrate here. By using pulse sequences that yield high-resolution spectra in an inhomogeneous field, we eliminate the need for near-perfect field homogeneity and the accompanying requirement for susceptibility matching of microfabricated detector components. With this requirement removed, typical imperfections in microfabricated components can be tolerated, and detector dimensions can be matched to those of the sample, even for samples of volume << 5 uL. Pulse sequences that are robust to field inhomogeneity thus enable small-volume detection with optimal sensitivity. We illustrate the potential of this approach to miniaturization by presenting spectra acquired with a flat-wire detector that can easily be scaled to subnanoliter volumes. In particular, we report high-resolution NMR spectroscopy of an alanine sample of volume 500 pL.« less

  2. 0–0 Energies Using Hybrid Schemes: Benchmarks of TD-DFT, CIS(D), ADC(2), CC2, and BSE/GW formalisms for 80 Real-Life Compounds

    PubMed Central

    2015-01-01

    The 0–0 energies of 80 medium and large molecules have been computed with a large panel of theoretical formalisms. We have used an approach computationally tractable for large molecules, that is, the structural and vibrational parameters are obtained with TD-DFT, the solvent effects are accounted for with the PCM model, whereas the total and transition energies have been determined with TD-DFT and with five wave function approaches accounting for contributions from double excitations, namely, CIS(D), ADC(2), CC2, SCS-CC2, and SOS-CC2, as well as Green’s function based BSE/GW approach. Atomic basis sets including diffuse functions have been systematically applied, and several variations of the PCM have been evaluated. Using solvent corrections obtained with corrected linear-response approach, we found that three schemes, namely, ADC(2), CC2, and BSE/GW allow one to reach a mean absolute deviation smaller than 0.15 eV compared to the measurements, the two former yielding slightly better correlation with experiments than the latter. CIS(D), SCS-CC2, and SOS-CC2 provide significantly larger deviations, though the latter approach delivers highly consistent transition energies. In addition, we show that (i) ADC(2) and CC2 values are extremely close to each other but for systems absorbing at low energies; (ii) the linear-response PCM scheme tends to overestimate solvation effects; and that (iii) the average impact of nonequilibrium correction on 0–0 energies is negligible. PMID:26574326

  3. Novel high-resolution VGA QWIP detector

    NASA Astrophysics Data System (ADS)

    Kataria, H.; Asplund, C.; Lindberg, A.; Smuk, S.; Alverbro, J.; Evans, D.; Sehlin, S.; Becanovic, S.; Tinghag, P.; Höglund, L.; Sjöström, F.; Costard, E.

    2017-02-01

    Continuing with its legacy of producing high performance infrared detectors, IRnova introduces its high resolution LWIR IDDCA (Integrated Detector Dewar Cooler assembly) based on QWIP (quantum well infrared photodetector) technology. The Focal Plane Array (FPA) has 640×512 pixels, with small (15μm) pixel pitch, and is based on the FLIRIndigo ISC0403 Readout Integrated Circuit (ROIC). The QWIP epitaxial structures are grown by metal-organic vapor phase epitaxy (MOVPE) at IRnova. Detector stability and response uniformity inherent to III/V based material will be demonstrated in terms of high performing detectors. Results showing low NETD at high frame rate will be presented. This makes it one of the first 15μm pitch QWIP based LWIR IDDCA commercially available on the market. High operability and stability of our other QWIP based products will also be shared.

  4. Stars and their Environments at High-Resolution with IGRINS

    NASA Astrophysics Data System (ADS)

    Mace, Gregory; Jaffe, Daniel; Kaplan, Kyle; Kidder, Benjamin; Oh, Heeyoung; Sneden, Christopher; Afşar, Melike

    2016-06-01

    TheImmersion Grating Infrared Spectrometer (IGRINS) is a revolutionary instrument that exploits broad spectral coverage at high-resolution in the near-infrared. There are no moving parts in IGRINS and its high-throughput white-pupil design maximizes sensitivity. IGRINS on the 2.7 meter Harlan J. Smith Telescope at McDonald Observatory is nearly as sensitive as CRIRES at the 8 meter Very Large Telescope. However, IGRINS at R=45,000 has more than 30 times the spectral grasp of CRIRES. The use of an immersion grating facilitates a compact cryostat while providing simultaneous H and K band observations with complete wavelength coverage from 1.45 - 2.45 microns. Here we discuss details of instrument performance and summarize the application of IGRINS to stellar characterization, star formation in regions like Taurus and Ophiuchus, the interstellar medium, and photodissociation regions. IGRINS has the largest spectral grasp of any high-resolution, near-infrared spectrograph, allowing us to study star formation and evolution in unprecedented detail. With its fixed format and high sensitivity, IGRINS is a great survey instrument for star clusters, high signal-to-noise (SNR>300) studies of field stars, and for mapping the interstellar medium. As a prototype for GMTNIRS on the Giant Magellan Telescope, IGRINS represents the future of high-resolution spectroscopy. In the future IGRINS will be deployed to numerous facilities and will remain a versatile instrument for the community while producing a rich archive of uniform spectra.

  5. Assessment of prediction skill in equatorial Pacific Ocean in high resolution model of CFS

    NASA Astrophysics Data System (ADS)

    Arora, Anika; Rao, Suryachandra A.; Pillai, Prasanth; Dhakate, Ashish; Salunke, Kiran; Srivastava, Ankur

    2018-01-01

    The effect of increasing atmospheric resolution on prediction skill of El Niño southern oscillation phenomenon in climate forecast system model is explored in this paper. Improvement in prediction skill for sea surface temperature (SST) and winds at all leads compared to low resolution model in the tropical Indo-Pacific basin is observed. High resolution model is able to capture extreme events reasonably well. As a result, the signal to noise ratio is improved in the high resolution model. However, spring predictability barrier (SPB) for summer months in Nino 3 and Nino 3.4 region is stronger in high resolution model, in spite of improvement in overall prediction skill and dynamics everywhere else. Anomaly correlation coefficient of SST in high resolution model with observations in Nino 3.4 region targeting boreal summer months when predicted at lead times of 3-8 months in advance decreased compared its lower resolution counterpart. It is noted that higher variance of winds predicted in spring season over central equatorial Pacific compared to observed variance of winds results in stronger than normal response on subsurface ocean, hence increases SPB for boreal summer months in high resolution model.

  6. High-resolution near real-time drought monitoring in South Asia

    NASA Astrophysics Data System (ADS)

    Aadhar, Saran; Mishra, Vimal

    2017-10-01

    Drought in South Asia affect food and water security and pose challenges for millions of people. For policy-making, planning, and management of water resources at sub-basin or administrative levels, high-resolution datasets of precipitation and air temperature are required in near-real time. We develop a high-resolution (0.05°) bias-corrected precipitation and temperature data that can be used to monitor near real-time drought conditions over South Asia. Moreover, the dataset can be used to monitor climatic extremes (heat and cold waves, dry and wet anomalies) in South Asia. A distribution mapping method was applied to correct bias in precipitation and air temperature, which performed well compared to the other bias correction method based on linear scaling. Bias-corrected precipitation and temperature data were used to estimate Standardized precipitation index (SPI) and Standardized Precipitation Evapotranspiration Index (SPEI) to assess the historical and current drought conditions in South Asia. We evaluated drought severity and extent against the satellite-based Normalized Difference Vegetation Index (NDVI) anomalies and satellite-driven Drought Severity Index (DSI) at 0.05°. The bias-corrected high-resolution data can effectively capture observed drought conditions as shown by the satellite-based drought estimates. High resolution near real-time dataset can provide valuable information for decision-making at district and sub-basin levels.

  7. High-Resolution Near Real-Time Drought Monitoring in South Asia

    NASA Astrophysics Data System (ADS)

    Aadhar, S.; Mishra, V.

    2017-12-01

    Drought in South Asia affect food and water security and pose challenges for millions of people. For policy-making, planning and management of water resources at the sub-basin or administrative levels, high-resolution datasets of precipitation and air temperature are required in near-real time. Here we develop a high resolution (0.05 degree) bias-corrected precipitation and temperature data that can be used to monitor near real-time drought conditions over South Asia. Moreover, the dataset can be used to monitor climatic extremes (heat waves, cold waves, dry and wet anomalies) in South Asia. A distribution mapping method was applied to correct bias in precipitation and air temperature (maximum and minimum), which performed well compared to the other bias correction method based on linear scaling. Bias-corrected precipitation and temperature data were used to estimate Standardized precipitation index (SPI) and Standardized Precipitation Evapotranspiration Index (SPEI) to assess the historical and current drought conditions in South Asia. We evaluated drought severity and extent against the satellite-based Normalized Difference Vegetation Index (NDVI) anomalies and satellite-driven Drought Severity Index (DSI) at 0.05˚. We find that the bias-corrected high-resolution data can effectively capture observed drought conditions as shown by the satellite-based drought estimates. High resolution near real-time dataset can provide valuable information for decision-making at district and sub- basin levels.

  8. High Resolution Thz and FIR Spectroscopy of SOCl_2

    NASA Astrophysics Data System (ADS)

    Martin-Drumel, M. A.; Cuisset, A.; Sadovskii, D. A.; Mouret, G.; Hindle, F.; Pirali, O.

    2013-06-01

    Thionyl chloride (SOCl_2) is an extremely powerful oxidant widely used in industrial processes and playing a role in the chemistry of the atmosphere. In addition, it has a molecular configuration similar to that of phosgene (COCl_2), and is therefore of particular interest for security and defense applications. Low resolution vibrational spectra of gas phase SOCl_2 as well as high resolution pure rotational transitions up to 25 GHz have previously been investigated. To date no high resolution data are reported at frequencies higher than 25 GHz. We have investigated the THz absorption spectrum of SOCl_2 in the spectral region 70-650 GHz using a frequency multiplier chain coupled to a 1 m long single path cell containing a pressure of about 15 μbar. At the time of the writing, about 8000 pure rotational transitions of SO^{35}Cl_2 with highest J and K_a values of 110 and 50 respectively have been assigned on the spectrum. We have also recorded the high resolution FIR spectra of SOCl_2 in the spectral range 50-700 wn using synchrotron radiation at the AILES beamline of SOLEIL facility. A White-type cell aligned with an absorption path length of 150 m has been used to record, at a resolution of 0.001 wn, two spectra at pressures of 5 and 56 μbar of SOCl_2. On these spectra all FIR modes of SOCl_2 are observed (ν_2 to ν_6) and present a resolved rotational structure. Their analysis is in progress. T. J. Johnson et al., J. Phys. Chem. A 107, 6183 (2003) D. E. Martz and R. T. Lagemann, J. Chem. Phys. 22,1193 (1954) H. S. P. Müller and M. C. L. Gerry, J. Chem. Soc. Faraday Trans. 90, 3473 (1994)

  9. High resolution, high frame rate video technology development plan and the near-term system conceptual design

    NASA Technical Reports Server (NTRS)

    Ziemke, Robert A.

    1990-01-01

    The objective of the High Resolution, High Frame Rate Video Technology (HHVT) development effort is to provide technology advancements to remove constraints on the amount of high speed, detailed optical data recorded and transmitted for microgravity science and application experiments. These advancements will enable the development of video systems capable of high resolution, high frame rate video data recording, processing, and transmission. Techniques such as multichannel image scan, video parameter tradeoff, and the use of dual recording media were identified as methods of making the most efficient use of the near-term technology.

  10. High-resolution retinal imaging using adaptive optics and Fourier-domain optical coherence tomography

    DOEpatents

    Olivier, Scot S.; Werner, John S.; Zawadzki, Robert J.; Laut, Sophie P.; Jones, Steven M.

    2010-09-07

    This invention permits retinal images to be acquired at high speed and with unprecedented resolution in three dimensions (4.times.4.times.6 .mu.m). The instrument achieves high lateral resolution by using adaptive optics to correct optical aberrations of the human eye in real time. High axial resolution and high speed are made possible by the use of Fourier-domain optical coherence tomography. Using this system, we have demonstrated the ability to image microscopic blood vessels and the cone photoreceptor mosaic.

  11. High resolution telescope

    DOEpatents

    Massie, Norbert A.; Oster, Yale

    1992-01-01

    A large effective-aperture, low-cost optical telescope with diffraction-limited resolution enables ground-based observation of near-earth space objects. The telescope has a non-redundant, thinned-aperture array in a center-mount, single-structure space frame. It employs speckle interferometric imaging to achieve diffraction-limited resolution. The signal-to-noise ratio problem is mitigated by moving the wavelength of operation to the near-IR, and the image is sensed by a Silicon CCD. The steerable, single-structure array presents a constant pupil. The center-mount, radar-like mount enables low-earth orbit space objects to be tracked as well as increases stiffness of the space frame. In the preferred embodiment, the array has elemental telescopes with subaperture of 2.1 m in a circle-of-nine configuration. The telescope array has an effective aperture of 12 m which provides a diffraction-limited resolution of 0.02 arc seconds. Pathlength matching of the telescope array is maintained by an electro-optical system employing laser metrology. Speckle imaging relaxes pathlength matching tolerance by one order of magnitude as compared to phased arrays. Many features of the telescope contribute to substantial reduction in costs. These include eliminating the conventional protective dome and reducing on-site construction activites. The cost of the telescope scales with the first power of the aperture rather than its third power as in conventional telescopes.

  12. Riverine Imaging

    DTIC Science & Technology

    2011-12-16

    25 Gain Over Direct Path- ~"- Wii j ’:.!. • ’- I Worst Case Loss = 6 dB for this h=1m target ^ 10’ 10 Resolved Pulse Width at -1 OdB...fundamental rejection (i.e. good balance ) is needed in the multiplier stage. The good news is that the last three approaches, and in particular, the... balanced mixers, SiGe baseband amplifiers, and 16-bit ADCs. Very high resolution (dynamic range) and high speed ADC’s are available at low cost and

  13. Mastering high resolution tip-enhanced Raman spectroscopy: towards a shift of perception.

    PubMed

    Richard-Lacroix, Marie; Zhang, Yao; Dong, Zhenchao; Deckert, Volker

    2017-07-03

    Recent years have seen tremendous improvement of our understanding of high resolution reachable in TERS experiments, forcing us to re-evaluate our understanding of the intrinsic limits of this field, but also exposing several inconsistencies. On the one hand, more and more recent experimental results have provided us with clear indications of spatial resolutions down to a few nanometres or even on the subnanometre scale. Moreover, lessons learned from recent theoretical investigations clearly support such high resolutions, and vice versa the obvious theoretical impossibility to evade high resolution from a purely plasmonic point of view. On the other hand, most of the published TERS results still, to date, claim a resolution on the order of tens of nanometres that would be somehow limited by the tip apex, a statement well accepted for the past 2 decades. Overall, this now leads the field to a fundamental question: how can this divergence be justified? The answer to this question brings up an equally critical one: how can this gap be bridged? This review aims at raising a fundamental discussion related to the resolution limits of tip-enhanced Raman spectroscopy, at revisiting our comprehension of the factors limiting it both from a theoretical and an experimental point of view and at providing indications on how to move the field ahead. It is our belief that a much deeper understanding of the real accessible lateral resolution in TERS and the practical factors that limit them will simultaneously help us to fully explore the potential of this technique for studying nanoscale features in organic, inorganic and biological systems, and also to improve both the reproducibility and the accuracy of routine TERS studies. A significant improvement of our comprehension of the accessible resolution in TERS is thus critical for a broad audience, even in certain contexts where high resolution TERS is not the desired outcome.

  14. Nowcasting for a high-resolution weather radar network

    NASA Astrophysics Data System (ADS)

    Ruzanski, Evan

    Short-term prediction (nowcasting) of high-impact weather events can lead to significant improvement in warnings and advisories and is of great practical importance. Nowcasting using weather radar reflectivity data has been shown to be particularly useful. The Collaborative Adaptive Sensing of the Atmosphere (CASA) radar network provides high-resolution reflectivity data amenable to producing valuable nowcasts. The high-resolution nature of CASA data requires the use of an efficient nowcasting approach, which necessitated the development of the Dynamic Adaptive Radar Tracking of Storms (DARTS) and sinc kernel-based advection nowcasting methodology. This methodology was implemented operationally in the CASA Distributed Collaborative Adaptive Sensing (DCAS) system in a robust and efficient manner necessitated by the high-resolution nature of CASA data and distributed nature of the environment in which the nowcasting system operates. Nowcasts up to 10 min to support emergency manager decision-making and 1--5 min to steer the CASA radar nodes to better observe the advecting storm patterns for forecasters and researchers are currently provided by this system. Results of nowcasting performance during the 2009 CASA IP experiment are presented. Additionally, currently state-of-the-art scale-based filtering methods were adapted and evaluated for use in the CASA DCAS to provide a scale-based analysis of nowcasting. DARTS was also incorporated in the Weather Support to Deicing Decision Making system to provide more accurate and efficient snow water equivalent nowcasts for aircraft deicing decision support relative to the radar-based nowcasting method currently used in the operational system. Results of an evaluation using data collected from 2007--2008 by the Weather Service Radar-1988 Doppler (WSR-88D) located near Denver, Colorado, and the National Center for Atmospheric Research Marshall Test Site near Boulder, Colorado, are presented. DARTS was also used to study the

  15. The front-end data conversion and readout electronics for the CMS ECAL upgrade

    NASA Astrophysics Data System (ADS)

    Mazza, G.; Cometti, S.

    2018-03-01

    The High Luminosity LHC (HL-LHC) will require a significant upgrade of the readout electronics for the CMS Electromagnetic Calorimeter (ECAL). The Very Front-End (VFE) output signal will be sampled at 160 MS/s (i.e. four times the current sampling rate) with a 13 bits resolution. Therefore, a high-speed, high-resolution ADC is required. Moreover, each readout channel will produce 2.08 Gb/s, thus requiring a fast data transmission circuitry. A new readout architecture, based on two 12 bit, 160 MS/s ADCs, lossless data compression algorithms and fast serial links have been developed for the ECAL upgrade. These functions will be integrated in a single ASIC which is currently under design in a commercial CMOS 65 nm technology using radiation damage mitigation techniques.

  16. Thin polymer etalon arrays for high-resolution photoacoustic imaging

    PubMed Central

    Hou, Yang; Huang, Sheng-Wen; Ashkenazi, Shai; Witte, Russell; O’Donnell, Matthew

    2009-01-01

    Thin polymer etalons are demonstrated as high-frequency ultrasound sensors for three-dimensional (3-D) high-resolution photoacoustic imaging. The etalon, a Fabry-Perot optical resonator, consists of a thin polymer slab sandwiched between two gold layers. It is probed with a scanning continuous-wave (CW) laser for ultrasound array detection. Detection bandwidth of a 20-μm-diam array element exceeds 50 MHz, and the ultrasound sensitivity is comparable to polyvinylidene fluoride (PVDF) equivalents of similar size. In a typical photoacoustic imaging setup, a pulsed laser beam illuminates the imaging target, where optical energy is absorbed and acoustic waves are generated through the thermoelastic effect. An ultrasound detection array is formed by scanning the probing laser beam on the etalon surface in either a 1-D or a 2-D configuration, which produces 2-D or 3-D images, respectively. Axial and lateral resolutions have been demonstrated to be better than 20 μm. Detailed characterizations of the optical and acoustical properties of the etalon, as well as photoacoustic imaging results, suggest that thin polymer etalon arrays can be used as ultrasound detectors for 3-D high-resolution photoacoustic imaging applications. PMID:19123679

  17. Utilization of Short-Simulations for Tuning High-Resolution Climate Model

    NASA Astrophysics Data System (ADS)

    Lin, W.; Xie, S.; Ma, P. L.; Rasch, P. J.; Qian, Y.; Wan, H.; Ma, H. Y.; Klein, S. A.

    2016-12-01

    Many physical parameterizations in atmospheric models are sensitive to resolution. Tuning the models that involve a multitude of parameters at high resolution is computationally expensive, particularly when relying primarily on multi-year simulations. This work describes a complementary set of strategies for tuning high-resolution atmospheric models, using ensembles of short simulations to reduce the computational cost and elapsed time. Specifically, we utilize the hindcast approach developed through the DOE Cloud Associated Parameterization Testbed (CAPT) project for high-resolution model tuning, which is guided by a combination of short (< 10 days ) and longer ( 1 year) Perturbed Parameters Ensemble (PPE) simulations at low resolution to identify model feature sensitivity to parameter changes. The CAPT tests have been found to be effective in numerous previous studies in identifying model biases due to parameterized fast physics, and we demonstrate that it is also useful for tuning. After the most egregious errors are addressed through an initial "rough" tuning phase, longer simulations are performed to "hone in" on model features that evolve over longer timescales. We explore these strategies to tune the DOE ACME (Accelerated Climate Modeling for Energy) model. For the ACME model at 0.25° resolution, it is confirmed that, given the same parameters, major biases in global mean statistics and many spatial features are consistent between Atmospheric Model Intercomparison Project (AMIP)-type simulations and CAPT-type hindcasts, with just a small number of short-term simulations for the latter over the corresponding season. The use of CAPT hindcasts to find parameter choice for the reduction of large model biases dramatically improves the turnaround time for the tuning at high resolution. Improvement seen in CAPT hindcasts generally translates to improved AMIP-type simulations. An iterative CAPT-AMIP tuning approach is therefore adopted during each major tuning

  18. High-Resolution of Electron Microscopy of Montmorillonite and Montmorillonite/Epoxy Nanocomposites

    DTIC Science & Technology

    2005-01-01

    AFRL-ML-WP-TP-2006-464 HIGH-RESOLUTION OF ELECTRON MICROSCOPY OF MONTMORILLONITE AND MONTMORILLONITE /EPOXY NANOCOMPOSITES Lawrence F...HIGH-RESOLUTION OF ELECTRON MICROSCOPY OF MONTMORILLONITE AND MONTMORILLONITE /EPOXY NANOCOMPOSITES 5c. PROGRAM ELEMENT NUMBER 62102F 5d...transmission electron microscopy the structure and morphology of montmorillonite (MMT), a material of current interest for use in polymer nanocomposites, was

  19. High Resolution Optical Imaging through the Atmosphere

    DTIC Science & Technology

    1989-12-28

    34Iterative Blind Deconvolution Method and its Applications’, Opt. Lett., 13, p.54 7 . Fienup, J.R. 1978, Opt. Lett., 3, 27. Karovska , M., Nisenson, P., and...Noyes, R. (1987), ’High Angular Resolution Speckle Imaging of Alpha Ori", BAAS, Vol.19, No. 2. Karovska , M., Koechlin, L., Nisenson, P., Papaliolios...Publishers. Karovska , M., Nisenson, P., Papaliolios, C., Stendley, C. (1989), "High Angular Speckle Observations of SN1987A. Days 40-580.", BAAS, Vol

  20. High-resolution Mapping of Forest Carbon Stocks in the Colombian Amazon

    NASA Astrophysics Data System (ADS)

    Asner, G. P.; Clark, J. K.; Mascaro, J.; Galindo García, G. A.; Chadwick, K. D.; Navarrete Encinales, D. A.; Paez-Acosta, G.; Cabrera Montenegro, E.; Kennedy-Bowdoin, T.; Duque, Á.; Balaji, A.; von Hildebrand, P.; Maatoug, L.; Bernal, J. F. Phillips; Knapp, D. E.; García Dávila, M. C.; Jacobson, J.; Ordóñez, M. F.

    2012-03-01

    High-resolution mapping of tropical forest carbon stocks can assist forest management and improve implementation of large-scale carbon retention and enhancement programs. Previous high-resolution approaches have relied on field plot and/or Light Detection and Ranging (LiDAR) samples of aboveground carbon density, which are typically upscaled to larger geographic areas using stratification maps. Such efforts often rely on detailed vegetation maps to stratify the region for sampling, but existing tropical forest maps are often too coarse and field plots too sparse for high resolution carbon assessments. We developed a top-down approach for high-resolution carbon mapping in a 16.5 million ha region (>40 %) of the Colombian Amazon - a remote landscape seldom documented. We report on three advances for large-scale carbon mapping: (i) employing a universal approach to airborne LiDAR-calibration with limited field data; (ii) quantifying environmental controls over carbon densities; and (iii) developing stratification- and regression-based approaches for scaling up to regions outside of LiDAR coverage. We found that carbon stocks are predicted by a combination of satellite-derived elevation, fractional canopy cover and terrain ruggedness, allowing upscaling of the LiDAR samples to the full 16.5 million ha region. LiDAR-derived carbon mapping samples had 14.6 % uncertainty at 1 ha resolution, and regional maps based on stratification and regression approaches had 25.6 % and 29.6 % uncertainty, respectively, in any given hectare. High-resolution approaches with reported local-scale uncertainties will provide the most confidence for monitoring changes in tropical forest carbon stocks. Improved confidence will allow resource managers and decision-makers to more rapidly and effectively implement actions that better conserve and utilize forests in tropical regions.