Science.gov

Sample records for high temperature pebble

  1. The effects of temperatures on the pebble flow in a pebble bed high temperature reactor

    SciTech Connect

    Sen, R. S.; Cogliati, J. J.; Gougar, H. D.

    2012-07-01

    The core of a pebble bed high temperature reactor (PBHTR) moves during operation, a feature which leads to better fuel economy (online refueling with no burnable poisons) and lower fuel stress. The pebbles are loaded at the top and trickle to the bottom of the core after which the burnup of each is measured. The pebbles that are not fully burned are recirculated through the core until the target burnup is achieved. The flow pattern of the pebbles through the core is of importance for core simulations because it couples the burnup distribution to the core temperature and power profiles, especially in cores with two or more radial burnup 'zones '. The pebble velocity profile is a strong function of the core geometry and the friction between the pebbles and the surrounding structures (other pebbles or graphite reflector blocks). The friction coefficient for graphite in a helium environment is inversely related to the temperature. The Thorium High Temperature Reactor (THTR) operated in Germany between 1983 and 1989. It featured a two-zone core, an inner core (IC) and outer core (OC), with different fuel mixtures loaded in each zone. The rate at which the IC was refueled relative to the OC in THTR was designed to be 0.56. During its operation, however, this ratio was measured to be 0.76, suggesting the pebbles in the inner core traveled faster than expected. It has been postulated that the positive feedback effect between inner core temperature, burnup, and pebble flow was underestimated in THTR. Because of the power shape, the center of the core in a typical cylindrical PBHTR operates at a higher temperature than the region next to the side reflector. The friction between pebbles in the IC is lower than that in the OC, perhaps causing a higher relative flow rate and lower average burnup, which in turn yield a higher local power density. Furthermore, the pebbles in the center region have higher velocities than the pebbles next to the side reflector due to the

  2. Nonproliferation issue of the pebble bed high-temperature reactor

    SciTech Connect

    Teuchert, E.; Haas, K.A.

    1986-02-01

    The constraints of nonproliferation of weapons-grade fuel are most favorably observed in the medium enriched uranium (MEU) fuel cycle of the pebble bed high-temperature reactor, using 20% enriched uranium as feed and thorium as breed material. The cycle can be designed so that the uranium enrichment never exceeds the limitation defined for nonsensitive fuel. In the spent fuel, the amount of fissile plutonium is one order of magnitude lower than for the light water reactor and it is strongly denatured by the even-numbered plutonium isotopes. In the once-through option applied in the introductory phase of the reactor, the proliferation restraints of the plutonium are furnished by the choice of the carbon/heavy metal ratio higher than 450 and of the burnup of 100 MWd/kg heavy metal. The Pu/sub FISS/Pu/sub TOTAL/ is achieved as low as 37%, and the admixing of 8% of /sup 238/Pu would complicate its handling by the decay heat rating. In the closed MEU cycle, the /sup 238/U is continuously separated from the cycle by the use of two different types of fuel elements: Thorium and 20% enriched uranium are inserted into the feed elements, and the uranium recovered from the reprocessing is loaded into the burnup elements, without thorium. These elements are removed from the cycle without reprocessing. Again the proliferation risk of the fissile plutonium is minimized because of its very low quantity and high denaturization.

  3. High temperature gas-cooled reactor (HTGR) graphite pebble fuel: Review of technologies for reprocessing

    SciTech Connect

    Mcwilliams, A. J.

    2015-09-08

    This report reviews literature on reprocessing high temperature gas-cooled reactor graphite fuel components. A basic review of the various fuel components used in the pebble bed type reactors is provided along with a survey of synthesis methods for the fabrication of the fuel components. Several disposal options are considered for the graphite pebble fuel elements including the storage of intact pebbles, volume reduction by separating the graphite from fuel kernels, and complete processing of the pebbles for waste storage. Existing methods for graphite removal are presented and generally consist of mechanical separation techniques such as crushing and grinding chemical techniques through the use of acid digestion and oxidation. Potential methods for reprocessing the graphite pebbles include improvements to existing methods and novel technologies that have not previously been investigated for nuclear graphite waste applications. The best overall method will be dependent on the desired final waste form and needs to factor in the technical efficiency, political concerns, cost, and implementation.

  4. Pebble Fuel Handling and Reactivity Control for Salt-Cooled High Temperature Reactors

    SciTech Connect

    Peterson, Per; Greenspan, Ehud

    2015-02-09

    This report documents the work completed on the X-PREX facility under NEUP Project 11- 3172. This project seeks to demonstrate the viability of pebble fuel handling and reactivity control for fluoride salt-cooled high-temperature reactors (FHRs). The research results also improve the understanding of pebble motion in helium-cooled reactors, as well as the general, fundamental understanding of low-velocity granular flows. Successful use of pebble fuels in with salt coolants would bring major benefits for high-temperature reactor technology. Pebble fuels enable on-line refueling and operation with low excess reactivity, and thus simpler reactivity control and improved fuel utilization. If fixed fuel designs are used, the power density of salt- cooled reactors is limited to 10 MW/m3 to obtain adequate duration between refueling, but pebble fuels allow power densities in the range of 20 to 30 MW/m3. This can be compared to the typical modular helium reactor power density of 5 MW/m3. Pebble fuels also permit radial zoning in annular cores and use of thorium or graphite pebble blankets to reduce neutron fluences to outer radial reflectors and increase total power production. Combined with high power conversion efficiency, compact low-pressure primary and containment systems, and unique safety characteristics including very large thermal margins (>500°C) to fuel damage during transients and accidents, salt-cooled pebble fuel cores offer the potential to meet the major goals of the Advanced Reactor Concepts Development program to provide electricity at lower cost than light water reactors with improved safety and system performance.This report presents the facility description, experimental results, and supporting simulation methods of the new X-Ray Pebble Recirculation Experiment (X-PREX), which is now operational and being used to collect data on the behavior of slow dense granular flows relevant to pebble bed reactor core designs. The X

  5. Pebble Bed Reactors Design Optimization Methods and their Application to the Pebble Bed Fluoride Salt Cooled High Temperature Reactor (PB-FHR)

    NASA Astrophysics Data System (ADS)

    Cisneros, Anselmo Tomas, Jr.

    The Fluoride salt cooled High temperature Reactor (FHR) is a class of advanced nuclear reactors that combine the robust coated particle fuel form from high temperature gas cooled reactors, direct reactor auxillary cooling system (DRACS) passive decay removal of liquid metal fast reactors, and the transparent, high volumetric heat capacitance liquid fluoride salt working fluids---flibe (33%7Li2F-67%BeF)---from molten salt reactors. This combination of fuel and coolant enables FHRs to operate in a high-temperature low-pressure design space that has beneficial safety and economic implications. In 2012, UC Berkeley was charged with developing a pre-conceptual design of a commercial prototype FHR---the Pebble Bed- Fluoride Salt Cooled High Temperature Reactor (PB-FHR)---as part of the Nuclear Energy University Programs' (NEUP) integrated research project. The Mark 1 design of the PB-FHR (Mk1 PB-FHR) is 236 MWt flibe cooled pebble bed nuclear heat source that drives an open-air Brayton combine-cycle power conversion system. The PB-FHR's pebble bed consists of a 19.8% enriched uranium fuel core surrounded by an inert graphite pebble reflector that shields the outer solid graphite reflector, core barrel and reactor vessel. The fuel reaches an average burnup of 178000 MWt-d/MT. The Mk1 PB-FHR exhibits strong negative temperature reactivity feedback from the fuel, graphite moderator and the flibe coolant but a small positive temperature reactivity feedback of the inner reflector and from the outer graphite pebble reflector. A novel neutronics and depletion methodology---the multiple burnup state methodology was developed for an accurate and efficient search for the equilibrium composition of an arbitrary continuously refueled pebble bed reactor core. The Burnup Equilibrium Analysis Utility (BEAU) computer program was developed to implement this methodology. BEAU was successfully benchmarked against published results generated with existing equilibrium depletion codes VSOP

  6. High efficiency power generation from coal and wastes utilizing high temperature air combustion technology (Part 1: Performance of pebble bed gasifier for coal and wastes)

    SciTech Connect

    Kosaka, Hitoshi; Iwahashi, Takashi; Yoshida, Nobuhiro; Tsuji, Kiyoshi; Yoshikawa, Kunio; Kiga, Takashi; Tamamushi, Fumihiro; Makino, Kenji; Oonish, Hiroshi

    1998-07-01

    A new concept of a gasifier for coal and wastes is proposed where entrained bed and fixed pebble bed are combined. Main features of this pebble bed gasifier are high efficiency molten slag capture, high efficiency gasification and compactness. Coal and RFD combustion experiments using the pebble bed gasifier demonstrated high efficiency capture and continuous extraction of molten slag as well as complete char combustion with extra ordinarily short residence time of pulverized coal and crushed RDF at the temperature level of about 1,500 C within the pebble bed. Durability tests using high temperature electric furnace has shown that high density alumna is a good candidate for pebble material.

  7. Conceptual Design of a Very High Temperature Pebble-Bed Reactor

    SciTech Connect

    Hans D. Gougar; A. M. Ougouag; Richard M. Moore; W. K. Terry

    2003-11-01

    Efficient electricity and hydrogen production distinguish the Very High Temperature Reactor as the leading Generation IV advanced concept. This graphite-moderated, helium-cooled reactor achieves a requisite high outlet temperature while retaining the passive safety and proliferation resistance required of Generation IV designs. Furthermore, a recirculating pebble-bed VHTR can operate with minimal excess reactivity to yield improved fuel economy and superior resistance to ingress events. Using the PEBBED code developed at the INEEL, conceptual designs of 300 megawatt and 600 megawatt (thermal) Very High Temperature Pebble-Bed Reactors have been developed. The fuel requirements of these compare favorably to the South African PBMR. Passive safety is confirmed with the MELCOR accident analysis code.

  8. Pebble Bed Reactors Design Optimization Methods and their Application to the Pebble Bed Fluoride Salt Cooled High Temperature Reactor (PB-FHR)

    NASA Astrophysics Data System (ADS)

    Cisneros, Anselmo Tomas, Jr.

    The Fluoride salt cooled High temperature Reactor (FHR) is a class of advanced nuclear reactors that combine the robust coated particle fuel form from high temperature gas cooled reactors, direct reactor auxillary cooling system (DRACS) passive decay removal of liquid metal fast reactors, and the transparent, high volumetric heat capacitance liquid fluoride salt working fluids---flibe (33%7Li2F-67%BeF)---from molten salt reactors. This combination of fuel and coolant enables FHRs to operate in a high-temperature low-pressure design space that has beneficial safety and economic implications. In 2012, UC Berkeley was charged with developing a pre-conceptual design of a commercial prototype FHR---the Pebble Bed- Fluoride Salt Cooled High Temperature Reactor (PB-FHR)---as part of the Nuclear Energy University Programs' (NEUP) integrated research project. The Mark 1 design of the PB-FHR (Mk1 PB-FHR) is 236 MWt flibe cooled pebble bed nuclear heat source that drives an open-air Brayton combine-cycle power conversion system. The PB-FHR's pebble bed consists of a 19.8% enriched uranium fuel core surrounded by an inert graphite pebble reflector that shields the outer solid graphite reflector, core barrel and reactor vessel. The fuel reaches an average burnup of 178000 MWt-d/MT. The Mk1 PB-FHR exhibits strong negative temperature reactivity feedback from the fuel, graphite moderator and the flibe coolant but a small positive temperature reactivity feedback of the inner reflector and from the outer graphite pebble reflector. A novel neutronics and depletion methodology---the multiple burnup state methodology was developed for an accurate and efficient search for the equilibrium composition of an arbitrary continuously refueled pebble bed reactor core. The Burnup Equilibrium Analysis Utility (BEAU) computer program was developed to implement this methodology. BEAU was successfully benchmarked against published results generated with existing equilibrium depletion codes VSOP

  9. Feasibility of Burning First- and Second-Generation Plutonium in Pebble Bed High-Temperature Reactors

    SciTech Connect

    Haas, J.B.M. de; Kuijper, J.C

    2005-08-15

    The core physics investigations at the Nuclear Research Consultancy Group in the Netherlands, as part of the activities within the HTR-N project of the European Fifth Framework Program, are focused on the incineration of pure (first- and second-generation) Pu fuels in the reference pebble bed high-temperature gas-cooled reactor (HTR) HTR-MODUL with a continuous reload [MEDUL, (MEhrfach DUrchLauf, multipass)] fueling strategy in which the spherical fuel elements, or pebbles, pass through the core a number of times before being permanently discharged. For pebbles fueled with different loadings of plutonium, the feasibility of a sustained fuel cycle under nominal reactor conditions was investigated by means of the reactivity and temperature coefficients of the reactor. The HTR-MODUL was found to be a very effective reactor to reduce the stockpile of first-generation plutonium. It reduces the amount of plutonium to about one-sixth of the original and reduces the risk of proliferation by denaturing the plutonium vector. For second-generation plutonium the incineration is less favorable, as the amount of plutonium is only halved.

  10. INVESTIGATION OF BOUNDS ON PARTICLE PACKING IN PEBBLE-BED HIGH TEMPERATURE REACTORS

    SciTech Connect

    Nuclear Engineering and Design; Jan Leen Kloosterman; Wilfred F.G. van Rooijen; Hans D. Gougar; William K. Terry

    2006-03-01

    Models and methods are presented for determining practical limits of the packing density of TRISO particles in fuel pebbles for a pebble-bed reactor (PBR). These models are devised for designing and interpreting fuel testing experiments. Two processes for particle failure are accounted for: failure of touching particles at the pressing stage in the pebble manufacturing process, and failure due to inner pressure buildup during irradiation. The second process gains importance with increasing fuel temperature, which limits the particle packing density and the corresponding fuel enrichment. Suggestions for improvements to the models are presented.

  11. Plutonium and minor actinide utilisation in a pebble-bed high temperature reactor

    SciTech Connect

    Petrov, B. Y.; Kuijper, J. C.; Oppe, J.; De Haas, J. B. M.

    2012-07-01

    This paper contains results of the analysis of the pebble-bed high temperature gas-cooled PUMA reactor loaded with plutonium and minor actinide (Pu/MA) fuel. Starting from knowledge and experience gained in the Euratom FP5 projects HTR-N and HTR-N1, this study aims at demonstrating the potential of high temperature reactors to utilize or transmute Pu/MA fuel. The work has been performed within the Euratom FP6 project PUMA. A number of different fuel types and fuel configurations have been analyzed and compared with respect to incineration performance and safety-related reactor parameters. The results show the excellent plutonium and minor actinide burning capabilities of the high temperature reactor. The largest degree of incineration is attained in the case of an HTR fuelled by pure plutonium fuel as it remains critical at very deep burnup of the discharged pebbles. Addition of minor actinides to the fuel leads to decrease of the achievable discharge burnup and therefore smaller fraction of actinides incinerated during reactor operation. The inert-matrix fuel design improves the transmutation performance of the reactor, while the 'wallpaper' fuel does not have advantage over the standard fuel design in this respect. After 100 years of decay following the fuel discharge, the total amount of actinides remains almost unchanged for all of the fuel types considered. Among the plutonium isotopes, only the amount of Pu-241 is reduced significantly due to its relatively short half-life. (authors)

  12. Very High Temperature Reactor (VHTR) Deep Burn Core and Fuel Analysis -- Complete Design Selection for the Pebble Bed Reactor

    SciTech Connect

    B. Boer; A. M. Ougouag

    2010-09-01

    The Deep-Burn (DB) concept focuses on the destruction of transuranic nuclides from used light water reactor fuel. These transuranic nuclides are incorporated into TRISO coated fuel particles and used in gas-cooled reactors with the aim of a fractional fuel burnup of 60 to 70% in fissions per initial metal atom (FIMA). This high performance is expected through the use of multiple recirculation passes of the fuel in pebble form without any physical or chemical changes between passes. In particular, the concept does not call for reprocessing of the fuel between passes. In principle, the DB pebble bed concept employs the same reactor designs as the presently envisioned low-enriched uranium core designs, such as the 400 MWth Pebble Bed Modular Reactor (PBMR-400). Although it has been shown in the previous Fiscal Year (2009) that a PuO2 fueled pebble bed reactor concept is viable, achieving a high fuel burnup, while remaining within safety-imposed prescribed operational limits for fuel temperature, power peaking and temperature reactivity feedback coefficients for the entire temperature range, is challenging. The presence of the isotopes 239-Pu, 240-Pu and 241-Pu that have resonances in the thermal energy range significantly modifies the neutron thermal energy spectrum as compared to a ”standard,” UO2-fueled core. Therefore, the DB pebble bed core exhibits a relatively hard neutron energy spectrum. However, regions within the pebble bed that are near the graphite reflectors experience a locally softer spectrum. This can lead to power and temperature peaking in these regions. Furthermore, a shift of the thermal energy spectrum with increasing temperature can lead to increased absorption in the resonances of the fissile Pu isotopes. This can lead to a positive temperature reactivity coefficient for the graphite moderator under certain operating conditions. The effort of this task in FY 2010 has focused on the optimization of the core to maximize the pebble discharge

  13. High temperature chemical compatibility between SiC composites and Be pebbles

    NASA Astrophysics Data System (ADS)

    Alves, L. C.; Paúl, A.; da Silva, M. R.; Alves, E.; Riccardi, B.; Soares, J. C.

    2003-09-01

    SiC composite reinforced fibres are still considered to be an important material to be used in nuclear fusion reactors due to their high temperature and low neutron activation properties. Two different kinds of SiC/SiC f composite were manufactured, one of them presenting an extra SiC coating obtained by chemical vapour deposition technique. Several samples of both materials were placed inside a Be pebble bed and the whole set-up annealed at 800 °C for 550 h in a reducing atmosphere, simulating fusion reactor conditions. Surface chemical reactions were investigated with nuclear microprobe analyses techniques and complemented with SEM analysis. For the uncoated samples, surface oxidation is accompanied by a strong C depletion and a Be diffusion. Two different behaviours were found for the coated samples. One of those samples showed extended regions where surface was left almost unaltered. The general behaviour, however, was an increase in the number and extension of the cracks already observed at the surface of the coated virgin samples.

  14. Development and applications of methodologies for the neutronic design of the Pebble Bed Advanced High Temperature Reactor (PB-AHTR)

    NASA Astrophysics Data System (ADS)

    Fratoni, Massimiliano

    This study investigated the neutronic characteristics of the Pebble Bed Advanced High Temperature Reactor (PB-AHTR), a novel nuclear reactor concept that combines liquid salt (7LiF-BeF2---flibe) cooling and TRISO coated-particle fuel technology. The use of flibe enables operation at high power density and atmospheric pressure and improves passive decay-heat removal capabilities, but flibe, unlike conventional helium coolant, is not transparent to neutrons. The flibe occupies 40% of the PB-AHTR core volume and absorbs ˜8% of the neutrons, but also acts as an effective neutron moderator. Two novel methodologies were developed for calculating the time dependent and equilibrium core composition: (1) a simplified single pebble model that is relatively fast; (2) a full 3D core model that is accurate and flexible but computationally intensive. A parametric analysis was performed spanning a wide range of fuel kernel diameters and graphite-to-heavy metal atom ratios to determine the attainable burnup and reactivity coefficients. Using 10% enriched uranium ˜130 GWd/tHM burnup was found to be attainable, when the graphite-to-heavy metal atom ratio (C/HM) is in the range of 300 to 400. At this or smaller C/HM ratio all reactivity coefficients examined---coolant temperature, coolant small and full void, fuel temperature, and moderator temperature, were found to be negative. The PB-AHTR performance was compared to that of alternative options for HTRs, including the helium-cooled pebble-bed reactor and prismatic fuel reactors, both gas-cooled and flibe-cooled. The attainable burnup of all designs was found to be similar. The PB-AHTR generates at least 30% more energy per pebble than the He-cooled pebble-bed reactor. Compared to LWRs the PB-AHTR requires 30% less natural uranium and 20% less separative work per unit of electricity generated. For deep burn TRU fuel made from recycled LWR spent fuel, it was found that in a single pass through the core ˜66% of the TRU can be

  15. Comparative evaluation of pebble-bed and prismatic fueled high-temperature gas-cooled reactors

    SciTech Connect

    Kasten, P.R.; Bartine, D.E.

    1981-01-01

    A comparative evaluation has been performed of the HTGR and the Federal Republic of Germany's Pebble Bed Reactor (PBR) for potential commercial applications in the US. The evaluation considered two reactor sizes (1000 and 3000 MW(t)) and three process applications (steam cycle, direct cycle, and process heat, with outlet coolant temperatures of 750, 850, and 950/sup 0/C, respectively). The primary criterion for the comparison was the levelized (15-year) cost of producing electricity or process heat. Emphasis was placed on the cost impact of differences between the prismatic-type HTGR core, which requires periodic refuelings during reactor shutdowns, and the pebble bed PBR core, which is refueled continuously during reactor operations. Detailed studies of key technical issues using reference HTGR and PBR designs revealed that two cost components contributing to the levelized power costs are higher for the PBR: capital costs and operation and maintenance costs. A third cost component, associated with nonavailability penalties, tended to be higher for the PBR except for the process heat application, for which there is a large uncertainty in the HTGR nonavailability penalty at the 950/sup 0/C outlet coolant temperature. A fourth cost component, fuel cycle costs, is lower for the PBR, but not sufficiently lower to offset the capital cost component. Thus the HTGR appears to be slightly superior to the PBR in economic performance. Because of the advanced development of the HTGR concept, large HTGRs could also be commercialized in the US with lower R and D costs and shorter lead times than could large PBRs. It is recommended that the US gas-cooled thermal reactor program continue giving primary support to the HTGR, while also maintaining its cooperative PBR program with FRG.

  16. Safeguards-by-Design: Guidance for High Temperature Gas Reactors (HTGRs) With Pebble Fuel

    SciTech Connect

    Philip Casey Durst; Mark Schanfein

    2012-08-01

    The following is a guidance document from a series prepared for the U.S. Department of Energy (DOE) National Nuclear Security Administration (NNSA), under the Next Generation Safeguards Initiative (NGSI), to assist facility designers and operators in implementing international Safeguards-by-Design (SBD). SBD has two main objectives: (1) to avoid costly and time consuming redesign work or retrofits of new nuclear fuel cycle facilities and (2) to make the implementation of international safeguards more effective and efficient at such facilities. In the long term, the attainment of these goals would save industry and the International Atomic Energy Agency (IAEA) time, money, and resources and be mutually beneficial. This particular safeguards guidance document focuses on pebble fuel high temperature gas reactors (HTGR). The purpose of the IAEA safeguards system is to provide credible assurance to the international community that nuclear material and other specified items are not diverted from peaceful nuclear uses. The safeguards system consists of the IAEA’s statutory authority to establish safeguards; safeguards rights and obligations in safeguards agreements and additional protocols; and technical measures implemented pursuant to those agreements. Of foremost importance is the international safeguards agreement between the country and the IAEA, concluded pursuant to the Treaty on the Non-Proliferation of Nuclear Weapons (NPT). According to a 1992 IAEA Board of Governors decision, countries must: notify the IAEA of a decision to construct a new nuclear facility as soon as such decision is taken; provide design information on such facilities as the designs develop; and provide detailed design information based on construction plans at least 180 days prior to the start of construction, and on "as-built" designs at least 180 days before the first receipt of nuclear material. Ultimately, the design information will be captured in an IAEA Design Information

  17. PEBBLES

    SciTech Connect

    Cogliati, Joshua J.

    2010-09-01

    The PEBBLES code is a computer program designed to simulate the motion, packing and vibration of spheres that undergo various mechanical forces including gravitation, Hooke's law force and various friction forces. The frictional forces include true static friction that allows non-zero angles of repose. Each pebble is individually simulated using the distinct element method. The program outputs various tallies as textual numbers. These tallies include pebble position, pebble angular and linear velocity, force on the wall and between pebbles, probabilities of pebbles moving between different locations, accumulated amount of linear motion between pebbles, and average velocity in different regions of the container.

  18. PEBBLES

    Energy Science and Technology Software Center (ESTSC)

    2010-09-01

    The PEBBLES code is a computer program designed to simulate the motion, packing and vibration of spheres that undergo various mechanical forces including gravitation, Hooke's law force and various friction forces. The frictional forces include true static friction that allows non-zero angles of repose. Each pebble is individually simulated using the distinct element method. The program outputs various tallies as textual numbers. These tallies include pebble position, pebble angular and linear velocity, force on themore » wall and between pebbles, probabilities of pebbles moving between different locations, accumulated amount of linear motion between pebbles, and average velocity in different regions of the container.« less

  19. Analytical Solution of Fick's Law of the TRISO-Coated Fuel Particles and Fuel Elements in Pebble-Bed High Temperature Gas-Cooled Reactors

    NASA Astrophysics Data System (ADS)

    Cao, Jian-Zhu; Fang, Chao; Sun, Li-Feng

    2011-05-01

    Two kinds of approaches are built to solve the fission products diffusion models (Fick's equation) based on sphere fuel particles and sphere fuel elements exactly. Two models for homogenous TRISO-coated fuel particles and fuel elements used in pebble-bed high temperature gas-cooled reactors are presented, respectively. The analytical solution of Fick's equation for fission products diffusion in fuel particles is derived by variables separation. In the fuel element system, a modification of the diffusion coefficient from D to D/r is made to characterize the difference of diffusion rates in distinct areas and it is shown that the Laplace and Hankel transformations are effective as the diffusion coefficient in Fick's equation is dependant on the radius of the fuel element. Both the solutions are useful for the prediction of the fission product behaviors and could be programmed in the corresponding engineering calculations.

  20. Porous Structure Analysis of the Packed Beds in a High-Temperature Reactor Pebble Bed Modules Heat Transfer Test Facility

    NASA Astrophysics Data System (ADS)

    Ren, Cheng; Yang, Xing-Tuan; Sun, Yan-Fei

    2013-02-01

    We analyse the porous structure of the packed beds in the heat transfer test facility built for high temperature gas cooled reactors from several aspects, such as oscillatory porosity, average porosity, thickness effect, coordination number and contact angle. An understanding and comparison of the porous structure of the facility bed and the real reactor core are developed to make recommendations for the design and analysis of the heat transfer test facility. The results show that there is very little difference between the porous characteristics of the two packed beds of spheres.

  1. Pebble bed conductors

    SciTech Connect

    Bromberg, L.; Sidorov, M.; Titus, P.

    1996-12-31

    A new type of magnet design is proposed, where the conductor is composed of conducting pebbles in a low-melting temperature conducting matrix. The magnet should have high radiation tolerance. At the end-of-life of the conductor, the pebbles can be circulated out of the magnet after the conducting matrix is molten. Application of this approach to the centerpost in the Low Aspect Ratio Device is discussed. 6 refs., 1 fig.

  2. Reactor Pressure Vessel Temperature Analysis for Prismatic and Pebble-Bed VHTR Designs

    SciTech Connect

    H. D. Gougar; C. B. Davis

    2006-04-01

    Analyses were performed to determine maximum temperatures in the reactor pressure vessel for two potential Very-High Temperature Reactor (VHTR) designs during normal operation and during a depressurized conduction cooldown accident. The purpose of the analyses was to aid in the determination of appropriate reactor vessel materials for the VHTR. The designs evaluated utilized both prismatic and pebble-bed cores that generated 600 MW of thermal power. Calculations were performed for fluid outlet temperatures of 900 and 950 °C, corresponding to the expected range for the VHTR. The analyses were performed using the RELAP5-3D and PEBBED-THERMIX computer codes. Results of the calculations were compared with preliminary temperature limits derived from the ASME pressure vessel code.

  3. TINTE Uncertainty Analysis of the Maximum Fuel Temperature During a DLOFC Event for the 400 MW Pebble Bed Modular Reactor

    SciTech Connect

    Strydom, Gerhard

    2004-07-01

    The Pebble Bed Modular Reactor (PBMR) is a high temperature, helium cooled, graphite moderated pebbled bed reactor, using a multi-pass fuelling scheme. The aim of this paper is to quantify the effects of uncertainties inherent to various reactor and material parameters on the maximum fuel temperature during a De-pressurized Loss of Forced Cooling (DLOFC) event. The data is obtained by using the transient computer code TINTE, which was specifically developed to assess the nuclear and thermal-hydraulic transient behavior of pebble bed high temperature reactor designs. TINTE calculates time-dependent neutron fluxes, heat source distributions and heat transfer rates between solids and gasses in a 2- D r-z geometry to obtain the global transient core temperature behavior. This study is based on the 400 MW PBMR core design status as at April 2003, and includes DLOFC calculations over a wide range of reactor and material parameters. Some of the parameters investigated for their effect on the fuel temperature during the DLOFC are: reactor fission power and decay heat, control rod movements and scram scenarios, coolant mass flow rates and helium coolant and graphite reflector properties (conductivity, emissivity and specific heat capacity). The results of this study indicate that the current estimates for the total DLOFC maximum fuel temperature, for a 400 MW PBMR reactor operating at 105% power, are within an uncertainty band of {+-}107 deg. C for a DLOFC with scram. The three most important parameters influencing the maximum fuel temperatures during a DLOFC are (in sequence of importance): the reactor power level, the amount of decay heat generated by the nuclear fuel after shutdown, and the thermal conductivity of the pebble bed fuel spheres. (author)

  4. An earthquake transient method for pebble-bed reactors and a fuel temperature model for TRISO fueled reactors

    NASA Astrophysics Data System (ADS)

    Ortensi, Javier

    This investigation is divided into two general topics: (1) a new method for analyzing the safe shutdown earthquake event in a pebble bed reactor core, and (2) the development of an explicit tristructural-isotropic fuel model for high temperature reactors. The safe shutdown earthquake event is one of the design basis accidents for the pebble bed reactor. The new method captures the dynamic geometric compaction of the pebble bed core. The neutronic and thermal-fluids grids are dynamically re-meshed to simulate the re-arrangement of the pebbles in the reactor during the earthquake. Results are shown for the PBMR-400 assuming it is subjected to the Idaho National Laboratory's design basis earthquake. The study concludes that the PBMR-400 can safely withstand the reactivity insertions induced by the slumping of the core and the resulting relative withdrawal of the control rods. This characteristic stems from the large negative Doppler feedback of the fuel. This Doppler feedback mechanism is a major contributor to the passive safety of gas-cooled, graphite-moderated, high-temperature reactors that use fuel based on TRISO particles. The correct prediction of the magnitude and time-dependence of this feedback effect is essential to the conduct of safety analyses for these reactors. An explicit TRISO fuel temperature model named THETRIS has been developed in this work and incorporated in the CYNOD-THERMIX-KONVEK suite of coupled codes. The new model yields similar results to those obtained with more complex methods, requiring multi-TRISO calculations within one control volume. The performance of the code during fast and moderately-slow transients is verified. These analyses show how explicit TRISO models improve the predictions of the fuel temperature, and consequently, of the power escalation. In addition, a brief study of the potential effects on the transient behavior of high-temperature reactors due to the presence of a gap inside the TRISO particles is included

  5. PEBBLES: A COMPUTER CODE FOR MODELING PACKING, FLOW AND RECIRCULATIONOF PEBBLES IN A PEBBLE BED REACTOR

    SciTech Connect

    Joshua J. Cogliati; Abderrafi M. Ougouag

    2006-10-01

    A comprehensive, high fidelity model for pebble flow has been developed and embodied in the PEBBLES computer code. In this paper, a description of the physical artifacts included in the model is presented and some results from using the computer code for predicting the features of pebble flow and packing in a realistic pebble bed reactor design are shown. The sensitivity of models to various physical parameters is also discussed.

  6. Granular flow in pebble bed reactors: Dust generation and scaling

    SciTech Connect

    Rycroft, C. H.; Lind, T.; Guentay, S.; Dehbi, A.

    2012-07-01

    In experimental prototypes of pebble bed reactors, significant quantities of graphite dust have been observed due to rubbing between pebbles as they flow through the core. At the high temperatures and pressures in these reactors, little data is available to understand the frictional properties of the pebble surfaces, and as a result, the Paul Scherrer Institut (Switzerland) proposes a conceptual design of a scaled-down version of a pebble bed reactor to investigate this issue in detail. In this paper, simulations of granular flow in pebble bed reactors using the discrete-element method are presented. Simulations in the full geometry (using 440,000 pebbles) are compared to those in geometries scaled down by 3:1 and 6:1. The simulations show complex behavior due to discrete pebble packing effects, meaning that pebble flow and dust generation in a scaled-down facility may be significantly different. The differences between velocity profiles, packing geometry, and pebble wear at the different scales are discussed. The results can aid in the design of the prototypical facility to more accurately reproduce the flow in a full-size reactor. (authors)

  7. High Temperature Fluoride Salt Test Loop

    SciTech Connect

    Aaron, Adam M.; Cunningham, Richard Burns; Fugate, David L.; Holcomb, David Eugene; Kisner, Roger A.; Peretz, Fred J.; Robb, Kevin R.; Wilson, Dane F.; Yoder, Jr, Graydon L.

    2015-12-01

    Effective high-temperature thermal energy exchange and delivery at temperatures over 600°C has the potential of significant impact by reducing both the capital and operating cost of energy conversion and transport systems. It is one of the key technologies necessary for efficient hydrogen production and could potentially enhance efficiencies of high-temperature solar systems. Today, there are no standard commercially available high-performance heat transfer fluids above 600°C. High pressures associated with water and gaseous coolants (such as helium) at elevated temperatures impose limiting design conditions for the materials in most energy systems. Liquid salts offer high-temperature capabilities at low vapor pressures, good heat transport properties, and reasonable costs and are therefore leading candidate fluids for next-generation energy production. Liquid-fluoride-salt-cooled, graphite-moderated reactors, referred to as Fluoride Salt Reactors (FHRs), are specifically designed to exploit the excellent heat transfer properties of liquid fluoride salts while maximizing their thermal efficiency and minimizing cost. The FHR s outstanding heat transfer properties, combined with its fully passive safety, make this reactor the most technologically desirable nuclear power reactor class for next-generation energy production. Multiple FHR designs are presently being considered. These range from the Pebble Bed Advanced High Temperature Reactor (PB-AHTR) [1] design originally developed by UC-Berkeley to the Small Advanced High-Temperature Reactor (SmAHTR) and the large scale FHR both being developed at ORNL [2]. The value of high-temperature, molten-salt-cooled reactors is also recognized internationally, and Czechoslovakia, France, India, and China all have salt-cooled reactor development under way. The liquid salt experiment presently being developed uses the PB-AHTR as its focus. One core design of the PB-AHTR features multiple 20 cm diameter, 3.2 m long fuel channels

  8. The challenges on uncertainty analysis for pebble bed HTGR

    SciTech Connect

    Hao, C.; Li, F.; Zhang, H.

    2012-07-01

    The uncertainty analysis is very popular and important, and many works have been done for Light Water Reactor (LWR), although the experience for the uncertainty analysis in High Temperature Gas cooled Reactor (HTGR) modeling is still in the primary stage. IAEA will launch a Coordination Research Project (CRP) on this topic soon. This paper addresses some challenges for the uncertainty analysis in HTGR modeling, based on the experience of OECD LWR Uncertainty Analysis in Modeling (UAM) activities, and taking into account the peculiarities of pebble bed HTGR designs. The main challenges for HTGR UAM are: the lack of experience, the totally different code packages, the coupling of power distribution, temperature distribution and burnup distribution through the temperature feedback and pebble flow. The most serious challenge is how to deal with the uncertainty in pebble flow, the uncertainty in pebble bed flow modeling, and their contribution to the uncertainty of maximum fuel temperature, which is the most interested parameter for the modular HTGR. (authors)

  9. Multiscale Analysis of Pebble Bed Reactors

    SciTech Connect

    Hans Gougar; Woo Yoon; Abderrafi Ougouag

    2010-10-01

    – The PEBBED code was developed at the Idaho National Laboratory for design and analysis of pebble-bed high temperature reactors. The diffusion-depletion-pebble-mixing algorithm of the original PEBBED code was enhanced through coupling with the THERMIX-KONVEK code for thermal fluid analysis and by the COMBINE code for online cross section generation. The COMBINE code solves the B-1 or B-3 approximations to the transport equation for neutron slowing down and resonance interactions in a homogeneous medium with simple corrections for shadowing and thermal self-shielding. The number densities of materials within specified regions of the core are averaged and transferred to COMBINE from PEBBED for updating during the burnup iteration. The simple treatment of self-shielding in previous versions of COMBINE led to inaccurate results for cross sections and unsatisfactory core performance calculations. A new version of COMBINE has been developed that treats all levels of heterogeneity using the 1D transport code ANISN. In a 3-stage calculation, slowing down is performed in 167 groups for each homogeneous subregion (kernel, particle layers, graphite shell, control rod absorber annulus, etc.) Particles in a local average pebble are homogenized using ANISN then passed to the next (pebble) stage. A 1D transport solution is again performed over the pebble geometry and the homogenized pebble cross sections are passed to a 1-d radial model of a wedge of the pebble bed core. This wedge may also include homogeneous reflector regions and a control rod region composed of annuli of different absorbing regions. Radial leakage effects are therefore captured with discrete ordinates transport while axial and azimuthal effects are captured with a transverse buckling term. In this paper, results of various PBR models will be compared with comparable models from literature. Performance of the code will be assessed.

  10. PEBBLE: a two-dimensional steady-state pebble bed reactor thermal hydraulics code

    SciTech Connect

    Vondy, D.R.

    1981-09-01

    This report documents the local implementation of the PEBBLE code to treat the two-dimensional steady-state pebble bed reactor thermal hydraulics problem. This code is implemented as a module of a computation system used for reactor core history calculations. Given power density data, the geometric description in (RZ), and basic heat removal conditions and thermal properties, the coolant properties, flow conditions, and temperature distributions in the pebble fuel elements are predicted. The calculation is oriented to the continuous fueling, steady state condition with consideration of the effect of the high energy neutron flux exposure and temperature history on the thermal conductivity. The coolant flow conditions are calculated for the same geometry as used in the neutronics calculation, power density and fluence data being used directly, and temperature results are made available for subsequent use.

  11. OPERATION PEBBLE. SUMMARY REPORT.

    ERIC Educational Resources Information Center

    NORRED, ROBERT B.

    A COMPREHENSIVE EVALUATION OF OPERATION PEBBLE'S 3 YEAR SUMMER PROGRAM FOR ECONOMICALLY AND EDUCATIONALLY DEPRIVED CHILDREN OF THE UPPER CUMBERLAND REGION OF TENNESSEE IS PRESENTED. THE INTENT OF THE PROJECT WAS TO INVOLVE THE CHILDREN IN EXPERIENCES THAT MIGHT EXPAND THE HORIZONS OF THEIR STAGNANT, HIGHLY STRUCTURED CULTURAL ENVIRONMENT, WITHOUT…

  12. Pebble bed pebble motion: Simulation and Application

    NASA Astrophysics Data System (ADS)

    Cogliati, Joshua J.

    Pebble bed reactors (PBR) have moving graphite fuel pebbles. This unique feature provides advantages, but also means that simulation of the reactor requires understanding the typical motion and location of the granular flow of pebbles. This dissertation presents a method for simulation of motion of the pebbles in a PBR. A new mechanical motion simulator, PEBBLES, efficiently simulates the key elements of motion of the pebbles in a PBR. This model simulates gravitational force and contact forces including kinetic and true static friction. It's used for a variety of tasks including simulation of the effect of earthquakes on a PBR, calculation of packing fractions, Dancoff factors, pebble wear and the pebble force on the walls. The simulator includes a new differential static friction model for the varied geometries of PBRs. A new static friction benchmark was devised via analytically solving the mechanics equations to determine the minimum pebble-to-pebble friction and pebble-to-surface friction for a five pebble pyramid. This pyramid check as well as a comparison to the Janssen formula was used to test the new static friction equations. Because larger pebble bed simulations involve hundreds of thousands of pebbles and long periods of time, the PEBBLES code has been parallelized. PEBBLES runs on shared memory architectures and distributed memory architectures. For the shared memory architecture, the code uses a new O(n) lock-less parallel collision detection algorithm to determine which pebbles are likely to be in contact. The new collision detection algorithm improves on the traditional non-parallel O(n log(n)) collision detection algorithm. These features combine to form a fast parallel pebble motion simulation. The PEBBLES code provides new capabilities for understanding and optimizing PBRs. The PEBBLES code has provided the pebble motion data required to calculate the motion of pebbles during a simulated earthquake. The PEBBLES code provides the ability to

  13. Monte Carlo studies on the burnup measurement for the high temperature gas cooling reactor

    NASA Astrophysics Data System (ADS)

    Yan, Wei-Hua; Zhang, Li-Guo; Zhang, Yan; Zhang, Zhao; Xiao, Zhi-Gang

    2013-11-01

    Online fuel pebble burnup measurement in a future high temperature gas cooling reactor is proposed for implementation through a high purity germanium (HPGe) gamma spectrometer. By using KORIGEN software and MCNP Monte Carlo simulations, the single pebble gamma radiations to be recorded in the detector are simulated under different irradiation histories. A specially developed algorithm is applied to analyze the generated spectra to reconstruct the gamma activity of the 137Cs monitoring nuclide. It is demonstrated that by taking into account the intense interfering peaks, the 137Cs activity in the spent pebbles can be derived with a standard deviation of 3.0% (1σ). The results support the feasibility of utilizing the HPGe spectrometry in the online determination of the pebble burnup in future modular pebble bed reactors.

  14. Calculational approach and results of the safe shutdown earthquake event for the pebble bed modular reactor

    SciTech Connect

    Van Heerden, G.; Sen, S.; Reitsma, F.

    2006-07-01

    The Pebble Bed Modular Reactor (PBMR) concept can be described as a high-temperature helium-cooled, graphite-moderated pebble-bed reactor with a multi-pass fuelling scheme. The fuel is contained in 6 cm diameter graphite spheres containing carbon-based coated UO{sub 2} kernels. An online fuel reload scheme is applied with the fuel spheres being circulated through the reactor. The pebble-bed reactor core thus consists of fuel pebbles packed in the core cavity in a random way. The packing densities and pebble flow is well known through analysis and tests done in the German experimental and development program. The pebble-bed typically has a packing fraction of 0.61. In the event of an earthquake this packing fraction may increase with the effect that the core geometry and core reactivity will change. The Safe Shutdown Earthquake (SSE) analysis performed for the PBMR 400 MW design is described in this paper, and it specifically covers SSE-induced pebble-bed packing fractions of 0.62 and 0.64. The main effects governing the addition of reactivity in the SSE event are the changes in core neutronic leakage due to the decreased core size and the decreased effectiveness of the control rods as the pebble-bed height decreases. This paper describes the models, methods and tools used to analyse the event, the results obtained for the different approaches and the consequences and safety implications of such an event. (authors)

  15. PEBBED ANALYSIS OF HOT SPOTS IN PEBBLE-BED REACTORS

    SciTech Connect

    Abderrafi M. Ougouag; Hans D. Gougar; William K. Terry; Frederik Reitsma; Wessel Joubert

    2005-09-01

    The Idaho National Laboratory’s PEBBED code and simple probability considerations are used to estimate the likelihood and consequences of the accumulation of highly reactive pebbles in the region of peak power in a pebble-bed reactor. The PEBBED code is briefly described, and the logic of the probability calculations is presented in detail. The results of the calculations appear to show that hot-spot formation produces only moderate increases in peak accident temperatures, and no increases at all in normal operating temperatures.

  16. Granular Dynamics in Pebble Bed Reactor Cores

    NASA Astrophysics Data System (ADS)

    Laufer, Michael Robert

    This study focused on developing a better understanding of granular dynamics in pebble bed reactor cores through experimental work and computer simulations. The work completed includes analysis of pebble motion data from three scaled experiments based on the annular core of the Pebble Bed Fluoride Salt-Cooled High- Temperature Reactor (PB-FHR). The experiments are accompanied by the development of a new discrete element simulation code, GRECO, which is designed to offer a simple user interface and simplified two-dimensional system that can be used for iterative purposes in the preliminary phases of core design. The results of this study are focused on the PB-FHR, but can easily be extended for gas-cooled reactor designs. Experimental results are presented for three Pebble Recirculation Experiments (PREX). PREX 2 and 3.0 are conventional gravity-dominated granular systems based on the annular PB-FHR core design for a 900 MWth commercial prototype plant and a 16 MWth test reactor, respectively. Detailed results are presented for the pebble velocity field, mixing at the radial zone interfaces, and pebble residence times. A new Monte Carlo algorithm was developed to study the residence time distributions of pebbles in different radial zones. These dry experiments demonstrated the basic viability of radial pebble zoning in cores with diverging geometry before pebbles reach the active core. Results are also presented from PREX 3.1, a scaled facility that uses simulant materials to evaluate the impact of coupled fluid drag forces on the granular dynamics in the PB-FHR core. PREX 3.1 was used to collect first of a kind pebble motion data in a multidimensional porous media flow field. Pebble motion data were collected for a range of axial and cross fluid flow configurations where the drag forces range from half the buoyancy force up to ten times greater than the buoyancy force. Detailed analysis is presented for the pebble velocity field, mixing behavior, and residence time

  17. An exploration hydrogeochemical study at the giant Pebble porphyry Cu-Au-Mo deposit, Alaska, USA, using high-resolution ICP-MS

    USGS Publications Warehouse

    Eppinger, Robert G.; Fey, David L.; Giles, Stuart A.; Kelley, Karen D.; Smith, Steven M.

    2012-01-01

    A hydrogeochemical study using high resolution ICP-MS was undertaken at the giant Pebble porphyry Cu-Au-Mo deposit and surrounding mineral occurrences. Surface water and groundwater samples from regional background and the deposit area were collected at 168 sites. Rigorous quality control reveals impressive results at low nanogram per litre (ng/l) levels. Sites with pH values below 5.1 are from ponds in the Pebble West area, where sulphide-bearing rubble crop is thinly covered. Relative to other study area waters, anomalous concentrations of Cu, Cd, K, Ni, Re, the REE, Tl, SO42− and F− are present in water samples from Pebble West. Samples from circum-neutral waters at Pebble East and parts of Pebble West, where cover is much thicker, have anomalous concentrations of Ag, As, In, Mn, Mo, Sb, Th, U, V, and W. Low-level anomalous concentrations for most of these elements were also found in waters surrounding nearby porphyry and skarn mineral occurrences. Many of these elements are present in low ng/l concentration ranges and would not have been detected using traditional quadrupole ICP-MS. Hydrogeochemical exploration paired with high resolution ICP-MS is a powerful new tool in the search for concealed deposits.

  18. The Transient 3-D Transport Coupled Code TORT-TD/ATTICA3D for High-Fidelity Pebble-Bed HTGR Analyses

    NASA Astrophysics Data System (ADS)

    Seubert, Armin; Sureda, Antonio; Lapins, Janis; Bader, Johannes; Laurien, Eckart

    2012-01-01

    This article describes the 3D discrete ordinates-based coupled code system TORT-TD/ATTICA3D that aims at steady state and transient analyses of pebble-bed high-temperature gas cooled reactors. In view of increasing computing power, the application of time-dependent neutron transport methods becomes feasible for best estimate evaluations of safety margins. The calculation capabilities of TORT-TD/ATTICA3D are presented along with the coupling approach, with focus on the time-dependent neutron transport features of TORT-TD. Results obtained for the OECD/NEA/NSC PBMR-400 benchmark demonstrate the transient capabilities of TORT-TD/ATTICA3D.

  19. Contact detection acceleration in pebble flow simulation for pebble bed reactor systems

    SciTech Connect

    Li, Y.; Ji, W.

    2013-07-01

    Pebble flow simulation plays an important role in the steady state and transient analysis of thermal-hydraulics and neutronics for Pebble Bed Reactors (PBR). The Discrete Element Method (DEM) and the modified Molecular Dynamics (MD) method are widely used to simulate the pebble motion to obtain the distribution of pebble concentration, velocity, and maximum contact stress. Although DEM and MD present high accuracy in the pebble flow simulation, they are quite computationally expensive due to the large quantity of pebbles to be simulated in a typical PBR and the ubiquitous contacts and collisions between neighboring pebbles that need to be detected frequently in the simulation, which greatly restricted their applicability for large scale PBR designs such as PBMR400. Since the contact detection accounts for more than 60% of the overall CPU time in the pebble flow simulation, the acceleration of the contact detection can greatly enhance the overall efficiency. In the present work, based on the design features of PBRs, two contact detection algorithms, the basic cell search algorithm and the bounding box search algorithm are investigated and applied to pebble contact detection. The influence from the PBR system size, core geometry and the searching cell size on the contact detection efficiency is presented. Our results suggest that for present PBR applications, the bounding box algorithm is less sensitive to the aforementioned effects and has superior performance in pebble contact detection compared with basic cell search algorithm. (authors)

  20. PEBBLES Mechanics Simulation Speedup

    SciTech Connect

    Joshua J. Cogliati; Abderrafi M. Ougouag

    2010-05-01

    Pebble bed reactors contain large numbers of spherical fuel elements arranged randomly. Determining the motion and location of these fuel elements is required for calculating certain parameters of pebble bed reactor operation. These simulations involve hundreds of thousands of pebbles and involve determining the entire core motion as pebbles are recirculated. Single processor algorithms for this are insufficient since they would take decades to centuries of wall-clock time. This paper describes the process of parallelizing and speeding up the PEBBLES pebble mechanics simulation code. Both shared memory programming with the Open Multi-Processing API and distributed memory programming with the Message Passing Interface API are used in simultaneously in this process. A new shared memory lock-less linear time collision detection algorithm is described. This method allows faster detection of pebbles in contact than generic methods. These combine to make full recirculations on AVR sized reactors possible in months of wall clock time.

  1. Innovative coal gasification system with high temperature air

    SciTech Connect

    Yoshikawa, K.; Katsushima, H.; Kasahara, M.; Hasegawa, T.; Tanaka, R.; Ootsuka, T.

    1997-12-31

    This paper proposes innovative coal gasification power generation systems where coal is gasified with high temperature air of about 1300K produced by gasified coal fuel gas. The main features of these systems are high thermal efficiency, low NO{sub x} emission, compact desulfurization and dust removal equipment and high efficiency molten slag removal with a very compact gasifier. Recent experimental results on the pebble bed coal gasifier appropriate for high temperature air coal gasification are reported, where 97.7% of coal ash is successfully caught in the pebble bed and extracted without clogging. A new concept of high temperature air preheating system is proposed which is characterized by its high reliability and low cost.

  2. Core Optimization of a Deep-Burn Pebble Bed Reactor

    SciTech Connect

    Brian Boer; Abderrafi M. Ougouag

    2010-06-01

    Achieving a high fuel burnup in the Deep-Burn (DB) pebble bed reactor design, while remaining within the limits for fuel temperature, power peaking and temperature reactivity feedback, is challenging. The high content of Pu and Minor Actinides in the Deep-Burn fuel significantly impacts the thermal neutron energy spectrum as compared to a ’standard’ UO2 fueled core. This can result in power and temperature peaking in the pebble bed core in locally thermalized regions near the graphite reflectors. Furthermore, the interplay of the Pu resonances of the neutron absorption cross sections at low-lying energies can lead to a positive temperature reactivity coefficient for the graphite moderator at certain operating conditions. The DB concept focuses on the destruction of spent fuel transuranics in TRISO coated particle fueled gas-cooled reactors with the aim of a fractional fuel burnup of 60-70% in fissions per initial metal atom (FIMA), using a single-pass, multi in-core fuel (re)cycling scheme. In principle, the DB pebble bed concept employs the same reactor designs as the present low enriched uranium core designs, i.e. the 400 MWth Pebble Bed Modular Reactor (PBMR-400). A Pu and Minor Actinide fueled PBMR-400 design serves as the starting point for a core optimization study. The fuel temperature, power peak, temperature reactivity coefficients, and burnup capabilities of the modified designs are analyzed with the PEBBED code. A code-to-code coupling with the PASTA code allows for the analysis of the TRISO fuel performance for both normal and Loss Of Forced Cooling conditions. An improved core design is sought, maximizing the fuel discharge burnup, while retaining negative temperature reactivity feedback coefficients for the entire temperature range and avoiding high fuel temperatures (fuel failure probabilities).

  3. The importance of the AVR pebble-bed reactor for the future of nuclear power

    SciTech Connect

    Pohl, P.

    2006-07-01

    The AVR pebble-bed high temperature gas-cooled reactor (HTGR) at Juelich (Germany)) operated from 1967 to 1988 and was certainly the most important HTGR project of the past. The reactor was the mass test bed for all development steps of HTGR pebble fuel. Some early fuel charges failed under high temperature conditions and contaminated the reactor. An accurate pebble measurement (Cs 137) allowed to clean the core from unwanted pebbles after 1981. The coolant activity went down and remained very low for the remaining reactor operation. A melt-wire experiment in 1986 revealed max. coolant temperatures of >1280 deg. C and fuel temperatures of >1350 deg. C, explained by under-estimated bypasses. The fuel still in the core achieved high burn-ups and showed under the extreme temperature conditions excellent fission product retention. Thus, the AVR operation qualified the HTGR fuel, and an average discharge burn-up of 112% fifa revealed an excellent fuel economy of the pebble-bed reactor. Furthermore, the AVR operation offers many meaningful data for code-to-experiment comparisons. (authors)

  4. Waste characteristics of spent nuclear fuel from a pebble bed reactor

    SciTech Connect

    Owen, P.E.

    1999-06-01

    A preliminary comparative assessment is made of the spent fuel characteristics and disposal aspects between a high temperature, gas cooled, reactor with a pebble bed core (PBR) and a pressurized water reactor (PWR). There are three significant differences which impact the disposal characteristics of PBR spent pebble fuel from PWR spent fuel assemblies. Pebble bed fuel has burnup as high as 100,000 MWD(t)/MTHM and thus, there is significantly less activity and decay heat in the fuel when it is disposed. The large amount of graphite in the waste form leads to a low power density and more waste per unit volume than a typical PWR. Pebble Fuel contains a protective layer of Silicon Carbide. The theoretical spacing of waste packages of spent pebble fuel given its unique characteristics as applied to the conditions of Yucca Mountain is of major concern when determining the cost of disposing of the larger volumes of spent pebble fuel. Graphite is a unique waste form and atypical of waste designated for Yucca Mountain. The interactions of silicon carbide with uranium oxide fuel and its implications to long term storage at the repository are examined. There are three primary conclusions to this thesis. First, the area required to store pebble fuel is less than the area required to store light water reactor spent fuel. Second, graphite has excellent characteristics as a waste form. The waste form of the spent pebble fuel is more robust and will perform better than light water reactor fuel at the United States repository at Yucca Mountain. Third, a secondary phase forms between the layers of silicon carbide and the uranium oxide fuel. The secondary phase retards the release of radionuclides to the environment.

  5. Computational and experimental prediction of dust production in pebble bed reactors, Part II

    SciTech Connect

    Mie Hiruta; Gannon Johnson; Maziar Rostamian; Gabriel P. Potirniche; Abderrafi M. Ougouag; Massimo Bertino; Louis Franzel; Akira Tokuhiro

    2013-10-01

    This paper is the continuation of Part I, which describes the high temperature and high pressure helium environment wear tests of graphite–graphite in frictional contact. In the present work, it has been attempted to simulate a Pebble Bed Reactor core environment as compared to Part I. The experimental apparatus, which is a custom-designed tribometer, is capable of performing wear tests at PBR relevant higher temperatures and pressures under a helium environment. This environment facilitates prediction of wear mass loss of graphite as dust particulates from the pebble bed. The experimental results of high temperature helium environment are used to anticipate the amount of wear mass produced in a pebble bed nuclear reactor.

  6. Automated Design and Optimization of Pebble-bed Reactor Cores

    SciTech Connect

    Hans D. Gougar; Abderrafi M. Ougouag; William K. Terry

    2010-07-01

    We present a conceptual design approach for high-temperature gas-cooled reactors using recirculating pebble-bed cores. The design approach employs PEBBED, a reactor physics code specifically designed to solve for and analyze the asymptotic burnup state of pebble-bed reactors, in conjunction with a genetic algorithm to obtain a core that maximizes a fitness value that is a function of user-specified parameters. The uniqueness of the asymptotic core state and the small number of independent parameters that define it suggest that core geometry and fuel cycle can be efficiently optimized toward a specified objective. PEBBED exploits a novel representation of the distribution of pebbles that enables efficient coupling of the burnup and neutron diffusion solvers. With this method, even complex pebble recirculation schemes can be expressed in terms of a few parameters that are amenable to modern optimization techniques. With PEBBED, the user chooses the type and range of core physics parameters that represent the design space. A set of traits, each with acceptable and preferred values expressed by a simple fitness function, is used to evaluate the candidate reactor cores. The stochastic search algorithm automatically drives the generation of core parameters toward the optimal core as defined by the user. The optimized design can then be modeled and analyzed in greater detail using higher resolution and more computationally demanding tools to confirm the desired characteristics. For this study, the design of pebble-bed high temperature reactor concepts subjected to demanding physical constraints demonstrated the efficacy of the PEBBED algorithm.

  7. Planetary growth by the accretion of pebbles

    NASA Astrophysics Data System (ADS)

    Lambrechts, Michiel; Johansen, Anders; Bitsch, Bertram; Morbidelli, Alessandro

    2015-11-01

    Pebbles, approximately cm-sized solids that drift through a protoplanetary disc, provide a reservoir of material that can be efficiently accreted by planetary embryos due to the dissipating effect of gas drag (Lambrechts & Johansen, 2012).Here, we will highlight the robust implications of pebble accretion on the formation of planets throughout the protoplanetary disc.In the outer disc, icy pebbles form by coagulation and consequently start drifting inwards. Nevertheless, we find that the pebble surface densities are sufficiently high to form giant planets on wide orbits, before the gas disc disperses after a few Myr (Lambrechts & Johansen, 2014). Growth is only halted when cores reach sizes of around 10 Earth masses, when their gravity creates pressure bumps trapping the inwards drifting pebbles.This accretion cutoff triggers the attraction of a massive gaseous envelope. Additionally, the fast growth of giant planets prevents the loss of the cores by type-I migration (Lambrechts et al 2014, Bitsch et al 2015).Closer to the star, interior to the ice line, pebble accretion takes on a different form. There, chondrule-sized particles lead to the formation of much smaller, Mars-sized embryos, before the pebble flux is terminated by the growth of the gas giants (Morbidelli et al, 2015). We will also discuss ongoing work on the conditions under which much larger Super-Earths can form.

  8. TEM study of impurity segregations in beryllium pebbles

    NASA Astrophysics Data System (ADS)

    Klimenkov, M.; Chakin, V.; Moeslang, A.; Rolli, R.

    2014-12-01

    Beryllium is planned to be used as a neutron multiplier in the Helium-cooled Pebble Bed European concept of a breeding blanket of demonstration power reactor DEMO. In order to evaluate the irradiation performance, individual pebbles and constrained pebble beds were neutron-irradiated at temperatures typical of fusion blankets. Beryllium pebbles 1 mm in diameter produced by the rotating electrode method were subjected to a TEM study before and after irradiation at High Flux Reactor, Petten, Netherlands at 861 K. The grain size varied in a wide range from sub-micron size up to several tens of micrometers, which indicated formation bimodal grain size distribution. Based on the application of combined electron energy loss spectroscopy and energy dispersive X-ray spectroscopy methods, we suggest that impurity precipitates play an important role in controlling the mechanical properties of beryllium. The impurity elements were present in beryllium at a sub-percent concentration form beryllide particles of a complex (Fe/Al/Mn/Cr)B composition. These particles are often ordered along dislocations lines, forming several micron-long chains. It can be suggested that fracture surfaces often extended along these chains in irradiated material.

  9. Formation of planetesimals in collapsing pebble clouds

    NASA Astrophysics Data System (ADS)

    Wahlberg Jansson, K.; Johansen, A.

    2014-07-01

    Asteroids and Kuiper belt objects are remnant planetesimals from the epoch of planet formation. Their physical properties hold important clues to understanding how minor bodies formed in the Solar Nebula. The first stage of the planet formation process is the accumulation of dust and ice grains into mm-cm-sized pebbles. Due to the interaction with the gas in the protoplanetary disk, these pebbles can clump together through the streaming instability and form gravitationally bound particle pebble 'clouds'. Pebbles in the cloud collide with each other, dissipating energy into heat. As the cloud loses energy, it contracts, and one would expect the particles to move faster and faster due to the negative heat capacity nature of self-gravitating systems. However, for high-mass clouds, the collapse is limited by free-fall and the cloud does not have time to virialize. This in turn leads to lower collision speeds but thanks to increased density also to increased collision rates and a runaway collapse. We investigate three important properties of the collapse: (i) the time-scale to collapse to solid density, (ii) the temporal evolution of the size spectrum of the pebbles, and (iii) the multiplicity of the resulting planetesimals. We find that planetesimals larger than 100 km in radius collapse on the free-fall time-scale of about 25 years. Lower-mass clouds have longer pebble collision time-scales and hence collapse much more slowly, with collapse times of a few hundred years for 10-km-scale planetesimals and a few thousand years for 1-km-scale planetesimals. The mass of the pebble cloud also determines the structure of the resulting planetesimal. The collision speed among the pebbles in low- mass clouds is below the threshold for fragmentation, forming pebble- pile planetesimals consisting of the primordial pebbles from the nebula. Planetesimals above 100 km in radius, on the other hand, consist of mixtures of dust (pebble fragments) and pebbles which have undergone

  10. Pebble Accretion and the Diversity of Planetary Systems

    NASA Astrophysics Data System (ADS)

    Chambers, J. E.

    2016-07-01

    This paper examines the standard model of planet formation, including pebble accretion, using numerical simulations. Planetary embryos that are large enough to become giant planets do not form beyond the ice line within a typical disk lifetime unless icy pebbles stick at higher speeds than in experiments using rocky pebbles. Systems like the solar system (small inner planets and giant outer planets) can form if icy pebbles are stickier than rocky pebbles, and if the planetesimal formation efficiency increases with pebble size, which prevents the formation of massive terrestrial planets. Growth beyond the ice line is dominated by pebble accretion. Most growth occurs early, when the surface density of the pebbles is high due to inward drift of the pebbles from the outer disk. Growth is much slower after the outer disk is depleted. The outcome is sensitive to the disk radius and turbulence level, which control the lifetime and maximum size of pebbles. The outcome is sensitive to the size of the largest planetesimals because there is a threshold mass for the onset of pebble accretion. The planetesimal formation rate is unimportant, provided that some large planetesimals form while the pebbles remain abundant. Two outcomes are seen, depending on whether pebble accretion begins while the pebbles are still abundant. Either multiple gas-giant planets form beyond the ice line, small planets form close to the star, and a Kuiper-belt-like disk of bodies is scattered outward by the giant planets; or no giants form and the bodies remain an Earth-mass or smaller.

  11. Two-Player Graph Pebbling

    NASA Astrophysics Data System (ADS)

    Prudente, Matthew James

    Given a graph G with pebbles on the vertices, we define a pebbling move as removing two pebbles from a vertex u, placing one pebble on a neighbor v, and discarding the other pebble, like a toll. The pebbling number pi( G) is the least number of pebbles needed so that every arrangement of pi(G) pebbles can place a pebble on any vertex through a sequence of pebbling moves. We introduce a new variation on graph pebbling called two-player pebbling. In this, players called the mover and the defender alternate moves, with the stipulation that the defender cannot reverse the previous move. The mover wins only if they can place a pebble on a specified vertex and the defender wins if the mover cannot. We define η(G), analogously, as the minimum number of pebbles such that given every configuration of the η( G) pebbles and every specified vertex r, the mover has a winning strategy. First, we will investigate upper bounds for η( G) on various classes of graphs and find a certain structure for which the defender has a winning strategy, no matter how many pebbles are in a configuration. Then, we characterize winning configurations for both players on a special class of diameter 2 graphs. Finally, we show winning configurations for the mover on paths using a recursive argument.

  12. Stress Analysis of Coated Particle Fuel in the Deep-Burn Pebble Bed Reactor Design

    SciTech Connect

    B. Boer; A. M. Ougouag

    2010-05-01

    High fuel temperatures and resulting fuel particle coating stresses can be expected in a Pu and minor actinide fueled Pebble Bed Modular Reactor (400 MWth) design as compared to the ’standard’ UO2 fueled core. The high discharge burnup aimed for in this Deep-Burn design results in increased power and temperature peaking in the pebble bed near the inner and outer reflector. Furthermore, the pebble power in a multi-pass in-core pebble recycling scheme is relatively high for pebbles that make their first core pass. This might result in an increase of the mechanical failure of the coatings, which serve as the containment of radioactive fission products in the PBMR design. To investigate the integrity of the particle fuel coatings as a function of the irradiation time (i.e. burnup), core position and during a Loss Of Forced Cooling (LOFC) incident the PArticle STress Analysis code (PASTA) has been coupled to the PEBBED code for neutronics, thermal-hydraulics and depletion analysis of the core. Two deep burn fuel types (Pu with or without initial MA fuel content) have been investigated with the new code system for normal and transient conditions including the effect of the statistical variation of thickness of the coating layers.

  13. Thermo-mechanical and neutron lifetime modeling and design of Be pebbles in the neutron multiplier for the LIFE engine

    SciTech Connect

    DeMange, P; Marian, J; de Caro, M S; Caro, A

    2009-03-16

    Concept designs for the laser-initiated fusion/fission engine (LIFE) include a neutron multiplication blanket containing Be pebbles flowing in a molten salt coolant. These pebbles must be designed to withstand the extreme irradiation and temperature conditions in the blanket to enable a safe and cost-effective operation of LIFE. In this work, we develop design criteria for spherical Be pebbles on the basis of their thermomechanical behavior under continued neutron exposure. We consider the effects of high fluence/fast flux on the elastic, thermal and mechanical properties of nuclear-grade Be. Our results suggest a maximum pebble diameter of 30 mm to avoid tensile failure, coated with an anti-corrosive, high-strength metallic shell to avoid failure by pebble contact. Moreover, we find that the operation temperature must always be kept above 450 C to enable creep to relax the stresses induced by swelling, which we estimate to be at least 16 months if uncoated and up to six years when coated. We identify the sources of uncertainty on the properties used and discuss the advantages of new intermetallic beryllides and their use in LIFE's neutron multiplier. To establish Be-pebble lifetimes with improved confidence, reliable experiments to measure irradiation creep must be performed.

  14. Pebble-bed pebble motion: Simulation and Applications

    SciTech Connect

    Joshua J. Cogliati; Abderrafi M. Ougouag

    2011-11-01

    Pebble bed reactors (PBR) have moving graphite fuel pebbles. This unique feature provides advantages, but also means that simulation of the reactor requires understanding the typical motion and location of the granular flow of pebbles. This report presents a method for simulation of motion of the pebbles in a PBR. A new mechanical motion simulator, PEBBLES, efficiently simulates the key elements of motion of the pebbles in a PBR. This model simulates gravitational force and contact forces including kinetic and true static friction. It's used for a variety of tasks including simulation of the effect of earthquakes on a PBR, calculation of packing fractions, Dancoff factors, pebble wear and the pebble force on the walls. The simulator includes a new differential static friction model for the varied geometries of PBRs. A new static friction benchmark was devised via analytically solving the mechanics equations to determine the minimum pebble-to-pebble friction and pebble-to-surface friction for a five pebble pyramid. This pyramid check as well as a comparison to the Janssen formula was used to test the new static friction equations. Because larger pebble bed simulations involve hundreds of thousands of pebbles and long periods of time, the PEBBLES code has been parallelized. PEBBLES runs on shared memory architectures and distributed memory architectures. For the shared memory architecture, the code uses a new O(n) lock-less parallel collision detection algorithm to determine which pebbles are likely to be in contact. The new collision detection algorithm improves on the traditional non-parallel O(n log(n)) collision detection algorithm. These features combine to form a fast parallel pebble motion simulation. The PEBBLES code provides new capabilities for understanding and optimizing PBRs. The PEBBLES code has provided the pebble motion data required to calculate the motion of pebbles during a simulated earthquake. The PEBBLES code provides the ability to determine

  15. Preliminary experimental evaluation of thermal conductivity of ceramic pebble beds

    NASA Astrophysics Data System (ADS)

    Aquaro, D.; Lo Frano, R.

    2014-04-01

    This paper illustrates the preliminary experimental tests for determining the effective thermal conductivity of ceramic pebble beds versus temperature and compression strains. Ceramic pebble beds are promising candidates to be used in breeding blankets for nuclear fusion reactor as breeder and neutron multiplier. The tests were performed with an experimental rig, built at the DICI-University of Pisa, which permits to determine the thermal conductivity of pebble beds in steady state conditions, at several temperatures and compression forces. The values of thermal conductivity of pebble beds are obtained as function of a known conductivity of an alumina disc. The assessment of the method has been performed determining the effective thermal conductivity of alumina pebbles beds of different diameters. Void fraction and compression strains are the parameters that mainly influence the variability of the thermal conductivity of the beds.

  16. CORE ANALYSIS, DESIGN AND OPTIMIZATION OF A DEEP-BURN PEBBLE BED REACTOR

    SciTech Connect

    B. Boer; A. M. Ougouag

    2010-05-01

    Achieving a high burnup in the Deep-Burn pebble bed reactor design, while remaining within the limits for fuel temperature, power peaking and temperature reactivity feedback, is challenging. The high content of Pu and Minor Actinides in the Deep-Burn fuel significantly impacts the thermal neutron energy spectrum. This can result in power and temperature peaking in the pebble bed core in locally thermalized regions near the graphite reflectors. Furthermore, the interplay of the Pu resonances of the neutron absorption cross sections at low-lying energies can lead to a positive temperature reactivity coefficient for the graphite moderator at certain operating conditions. To investigate the aforementioned effects a code system using existing codes has been developed for neutronic, thermal-hydraulic and fuel depletion analysis of Deep-Burn pebble bed reactors. A core analysis of a Deep-Burn Pebble Bed Modular Reactor (400 MWth) design has been performed for two Deep-Burn fuel types and possible improvements of the design with regard to power peaking and temperature reactivity feedback are identified.

  17. PEBBLES Operation and Theory Manual

    SciTech Connect

    Joshua J. Cogliati

    2010-09-01

    The PEBBLES manual describes the PEBBLES code. The PEBBLES code is a computer program designed to simulation the motion, packing and vibration of spheres that undergo various mechanical forces including gravitation, Hooke’s law force and various friction forces. The frictional forces include true static friction that allows non-zero angles of repose. Each pebble is individually simulated using the distinct element method.

  18. PEBBLES Operation and Theory Manual

    SciTech Connect

    Joshua J. Cogliati

    2011-02-01

    The PEBBLES manual describes the PEBBLES code. The PEBBLES code is a computer program designed to simulation the motion, packing and vibration of spheres that undergo various mechanical forces including gravitation, Hooke’s law force and various friction forces. The frictional forces include true static friction that allows non-zero angles of repose. Each pebble is individually simulated using the distinct element method.

  19. Pebble Puzzle Solved

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site] Figure 1 In the quest to determine if a pebble was jamming the rock abrasion tool on NASA's Mars Exploration Rover Opportunity, scientists and engineers examined this up-close, approximate true-color image of the tool. The picture was taken by the rover's panoramic camera, using filters centered at 601, 535, and 482 nanometers, at 12:47 local solar time on sol 200 (August 16, 2004).

    Colored spots have been drawn on this image corresponding to regions where panoramic camera reflectance spectra were acquired (see chart in Figure 1). Those regions are: the grinding wheel heads (yellow); the rock abrasion tool magnets (green); the supposed pebble (red); a sunlit portion of the aluminum rock abrasion tool housing (purple); and a shadowed portion of the rock abrasion tool housing (brown). These spectra demonstrated that the composition of the supposed pebble was clearly different from that of the sunlit and shadowed portions of the rock abrasion tool, while similar to that of the dust-coated rock abrasion tool magnets and grinding heads. This led the team to conclude that the object disabling the rock abrasion tool was indeed a martian pebble.

  20. Postirradiation examination of beryllium pebbles

    SciTech Connect

    Gelles, D.S.

    1998-03-01

    Postirradiation examinations of COBRA-1A beryllium pebbles irradiated in the EBR-II fast reactor at neutron fluences which generated 2700--3700 appm helium have been performed. Measurements included density change, optical microscopy, scanning electron microscopy, and transmission electron microscopy. The major change in microstructure is development of unusually shaped helium bubbles forming as highly non-equiaxed thin platelet-like cavities on the basal plane. Measurement of the swelling due to cavity formation was in good agreement with density change measurements.

  1. Computational fluid dynamics analysis of aerosol deposition in pebble beds

    NASA Astrophysics Data System (ADS)

    Mkhosi, Margaret Msongi

    2007-12-01

    The Pebble Bed Modular Reactor is a high temperature gas cooled reactor which uses helium gas as a coolant. The reactor uses spherical graphite pebbles as fuel. The fuel design is inherently resistant to the release of the radioactive material up to high temperatures; therefore, the plant can withstand a broad spectrum of accidents with limited release of radionuclides to the environment. Despite safety features of the concepts, these reactors still contain large inventories of radioactive materials. The transport of most of the radioactive materials in an accident occurs in the form of aerosol particles. In this dissertation, the limits of applicability of existing computational fluid dynamics code FLUENT to the prediction of aerosol transport have been explored. The code was run using the Reynolds Averaged Navier-Stokes turbulence models to determine the effects of different turbulence models on the prediction of aerosol particle deposition. Analyses were performed for up to three unit cells in the orthorhombic configuration. For low flow conditions representing natural circulation driven flow, the laminar flow model was used and the results were compared with existing experimental data for packed beds. The results compares well with experimental data in the low flow regime. For conditions corresponding to normal operating of the reactor, analyses were performed using the standard k-ɛ turbulence model. From the inertial deposition results, a correlation that can be used to estimate the deposition of aerosol particles within pebble beds given inlet flow conditions has been developed. These results were converted into a dimensionless form as a function of a modified Stokes number. Based on results obtained in the laminar regime and for individual pebbles, the correlation developed for the inertial impaction component of deposition is believed to be credible. The form of the correlation developed also allows these results to be applied to pebble beds of different

  2. High temperature furnace

    DOEpatents

    Borkowski, Casimer J.

    1976-08-03

    A high temperature furnace for use above 2000.degree.C is provided that features fast initial heating and low power consumption at the operating temperature. The cathode is initially heated by joule heating followed by electron emission heating at the operating temperature. The cathode is designed for routine large temperature excursions without being subjected to high thermal stresses. A further characteristic of the device is the elimination of any ceramic components from the high temperature zone of the furnace.

  3. High temperature sensor

    DOEpatents

    Tokarz, Richard D.

    1982-01-01

    A high temperature sensor includes a pair of electrical conductors separated by a mass of electrical insulating material. The insulating material has a measurable resistivity within the sensor that changes in relation to the temperature of the insulating material within a high temperature range (1,000 to 2,000 K.). When required, the sensor can be encased within a ceramic protective coating.

  4. Investigation on using neutron counting techniques for online burnup monitoring of pebble bed reactor fuels

    NASA Astrophysics Data System (ADS)

    Zhao, Zhongxiang

    Modular Pebble Bed Reactor (MPBR) is a high temperature gas-cooled nuclear power reactor. This project investigated the feasibility of using the passive neutron counting and active neutron/gamma counting for the on line fuel burnup measurement for MPBR. To investigate whether there is a correlation between neutron emission and fuel burnup, the MPBR fuel depletion was simulated under different irradiation conditions by ORIGEN2. It was found that the neutron emission from an irradiated pebble increases with burnup super-linearly and reaches to 104 neutron/sec/pebble at the discharge burnup. The photon emission from an irradiated pebble was found to be in the order of 1013 photon/sec/pebble at all burnup levels. Analysis shows that the neutron emission rate of an irradiated pebble is sensitive to its burnup history and the spectral-averaged one-group cross sections used in the depletion calculations, which consequently leads to large uncertainty in the correlation between neutron emission and burnup. At low burnup levels, the uncertainty in the neutron emission/burnup correlation is too high and the neutron emission rate is too low so that it is impossible to determine a pebble's burnup by on-line neutron counting at low burnup levels. At high burnup levels, the uncertainty in the neutron emission rate becomes less but is still large in quantity. However, considering the super-linear feature of the correlation, the uncertainty in burnup determination was found to be ˜7% at the discharge burnup, which is acceptable. Therefore, total neutron emission rate of a pebble can be used as a burnup indicator to determine whether a pebble should be discharged or not. The feasibility of using passive neutron counting methods for the on-line burnup measurement was investigated by using a general Monte Carlo code, MCNP, to assess the detectability of the neutron emission and the capability to discriminate gamma noise by commonly used neutron detectors. It was found that both He-3

  5. Reprocessing of lithium titanate pebbles by graphite bed method

    NASA Astrophysics Data System (ADS)

    Hong, Ming; Zhang, Yingchun; Xiang, Maoqiao; Zhang, Yun

    2015-04-01

    Lithium titanate enriched by 6Li isotope is considered as a candidate of tritium breeding materials for fusion reactors due to its excellent performance. The reuse of burned Li2TiO3 pebbles is an important issue because of the high costs of 6Li-enriched materials and waste considerations. For this purpose, reprocessing of Li2TiO3 pebbles by graphite bed method was developed. Simulative Li2TiO3 pebbles with low-lithium content according to the expected lithium burn-up were fabricated. After that, Li2TiO3 pebbles were re-fabricated with lithium carbonate as lithium additives, in order to gain the composition of lithium titanate with a Li/Ti ratio of 2. The process was optimized to obtain reprocessed Li2TiO3 pebbles that were suitable for reuse as ceramic breeder. Density, porosity, grain size and crushing load of the reprocessed pebbles were characterized. This process did not deteriorate the properties of the reprocessed pebbles and was almost no waste generation.

  6. Fabrication of Li2TiO3 pebbles with small grain size via hydrothermal and improved dry-rolling methods

    NASA Astrophysics Data System (ADS)

    Zhang, Wen; Zhou, Qilai; Xue, Lihong; Yan, Youwei

    2015-09-01

    Lithium titanate (Li2TiO3) ceramic pebbles were successfully fabricated by using hydrothermal and improved dry-rolling method. In the present work, ultra-fine Li2TiO3 powder of high reactivity was prepared via hydrothermal reaction, using anatase titania and lithium hydroxide as raw materials. The as-synthesized Li2TiO3 powder exhibits an average crystalline size as small as 100 nm. Improved dry-rolling method was employed to fabricate Li2TiO3 pebbles. The green pebbles can be well-sintered (81% T.D.) at a temperature as low as 850 °C for 3 h. The pebbles have good sphericity (1.08) and narrow diameter distribution (1.0-1.2 mm) with a crush load of 35 N. Scanning electron microscope (SEM) observations of pebbles showed that the ceramic grain size was below 1 μm and atomic emission spectrometer fitted with inductively coupled plasma (ICP-AES) results confirmed that atomic ratio of Li to Ti in the fabricated pebbles was 1.97.

  7. High-Temperature Superconductivity

    NASA Astrophysics Data System (ADS)

    Tanaka, Shoji

    2006-12-01

    A general review on high-temperature superconductivity was made. After prehistoric view and the process of discovery were stated, the special features of high-temperature superconductors were explained from the materials side and the physical properties side. The present status on applications of high-temperature superconductors were explained on superconducting tapes, electric power cables, magnets for maglev trains, electric motors, superconducting quantum interference device (SQUID) and single flux quantum (SFQ) devices and circuits.

  8. High temperature refrigerator

    DOEpatents

    Steyert, Jr., William A.

    1978-01-01

    A high temperature magnetic refrigerator which uses a Stirling-like cycle in which rotating magnetic working material is heated in zero field and adiabatically magnetized, cooled in high field, then adiabatically demagnetized. During this cycle said working material is in heat exchange with a pumped fluid which absorbs heat from a low temperature heat source and deposits heat in a high temperature reservoir. The magnetic refrigeration cycle operates at an efficiency 70% of Carnot.

  9. High temperature measuring device

    DOEpatents

    Tokarz, Richard D.

    1983-01-01

    A temperature measuring device for very high design temperatures (to 2,000.degree. C.). The device comprises a homogenous base structure preferably in the form of a sphere or cylinder. The base structure contains a large number of individual walled cells. The base structure has a decreasing coefficient of elasticity within the temperature range being monitored. A predetermined quantity of inert gas is confined within each cell. The cells are dimensionally stable at the normal working temperature of the device. Increases in gaseous pressure within the cells will permanently deform the cell walls at temperatures within the high temperature range to be measured. Such deformation can be correlated to temperature by calibrating similarly constructed devices under known time and temperature conditions.

  10. High-temperature sensor

    DOEpatents

    Not Available

    1981-01-29

    A high temperature sensor is described which includes a pair of electrical conductors separated by a mass of electrical insulating material. The insulating material has a measurable resistivity within the sensor that changes in relation to the temperature of the insulating material within a high temperature range (1000 to 2000/sup 0/K). When required, the sensor can be encased within a ceramic protective coating.

  11. The growth of planets by pebble accretion in evolving protoplanetary discs

    NASA Astrophysics Data System (ADS)

    Bitsch, Bertram; Lambrechts, Michiel; Johansen, Anders

    2015-10-01

    The formation of planets depends on the underlying protoplanetary disc structure, which in turn influences both the accretion and migration rates of embedded planets. The disc itself evolves on time scales of several Myr, during which both temperature and density profiles change as matter accretes onto the central star. Here we used a detailed model of an evolving disc to determine the growth of planets by pebble accretion and their migration through the disc. Cores that reach their pebble isolation mass accrete gas to finally form giant planets with extensive gas envelopes, while planets that do not reach pebble isolation mass are stranded as ice giants and ice planets containing only minor amounts of gas in their envelopes. Unlike earlier population synthesis models, our model works without any artificial reductions in migration speed and for protoplanetary discs with gas and dust column densities similar to those inferred from observations. We find that in our nominal disc model, the emergence of planetary embryos preferably should occur after approximately 2 Myr in order to not exclusively form gas giants, but also ice giants and smaller planets. The high pebble accretion rates ensure that critical core masses for gas accretion can be reached at all orbital distances. Gas giant planets nevertheless experience significant reduction in semi-major axes by migration. Considering instead planetesimal accretion for planetary growth, we show that formation time scales are too long to compete with the migration time scales and the dissipation time of the protoplanetary disc. All in all, we find that pebble accretion overcomes many of the challenges in the formation of ice and gas giants in evolving protoplanetary discs. Appendices are available in electronic form at http://www.aanda.org

  12. High-Temperature Superconductivity

    SciTech Connect

    Peter Johnson

    2008-11-05

    Like astronomers tweaking images to gain a more detailed glimpse of distant stars, physicists at Brookhaven National Laboratory have found ways to sharpen images of the energy spectra in high-temperature superconductors — materials that carry electrical c

  13. High-Temperature Superconductivity

    ScienceCinema

    Peter Johnson

    2010-01-08

    Like astronomers tweaking images to gain a more detailed glimpse of distant stars, physicists at Brookhaven National Laboratory have found ways to sharpen images of the energy spectra in high-temperature superconductors ? materials that carry electrical c

  14. High Temperature Capacitor Development

    SciTech Connect

    John Kosek

    2009-06-30

    The absence of high-temperature electronics is an obstacle to the development of untapped energy resources (deep oil, gas and geothermal). US natural gas consumption is projected to grow from 22 trillion cubic feet per year (tcf) in 1999 to 34 tcf in 2020. Cumulatively this is 607 tcf of consumption by 2020, while recoverable reserves using current technology are 177 tcf. A significant portion of this shortfall may be met by tapping deep gas reservoirs. Tapping these reservoirs represents a significant technical challenge. At these depths, temperatures and pressures are very high and may require penetrating very hard rock. Logistics of supporting 6.1 km (20,000 ft) drill strings and the drilling processes are complex and expensive. At these depths up to 50% of the total drilling cost may be in the last 10% of the well depth. Thus, as wells go deeper it is increasingly important that drillers are able to monitor conditions down-hole such as temperature, pressure, heading, etc. Commercial off-the-shelf electronics are not specified to meet these operating conditions. This is due to problems associated with all aspects of the electronics including the resistors and capacitors. With respect to capacitors, increasing temperature often significantly changes capacitance because of the strong temperature dependence of the dielectric constant. Higher temperatures also affect the equivalent series resistance (ESR). High-temperature capacitors usually have low capacitance values because of these dielectric effects and because packages are kept small to prevent mechanical breakage caused by thermal stresses. Electrolytic capacitors do not operate at temperatures above 150oC due to dielectric breakdown. The development of high-temperature capacitors to be used in a high-pressure high-temperature (HPHT) drilling environment was investigated. These capacitors were based on a previously developed high-voltage hybridized capacitor developed at Giner, Inc. in conjunction with a

  15. High-temperature electronics

    NASA Technical Reports Server (NTRS)

    Matus, Lawrence G.; Seng, Gary T.

    1990-01-01

    To meet the needs of the aerospace propulsion and space power communities, the high temperature electronics program at the Lewis Research Center is developing silicon carbide (SiC) as a high temperature semiconductor material. This program supports a major element of the Center's mission - to perform basic and developmental research aimed at improving aerospace propulsion systems. Research is focused on developing the crystal growth, characterization, and device fabrication technologies necessary to produce a family of SiC devices.

  16. High temperature pressure gauge

    DOEpatents

    Echtler, J. Paul; Scandrol, Roy O.

    1981-01-01

    A high temperature pressure gauge comprising a pressure gauge positioned in fluid communication with one end of a conduit which has a diaphragm mounted in its other end. The conduit is filled with a low melting metal alloy above the diaphragm for a portion of its length with a high temperature fluid being positioned in the remaining length of the conduit and in the pressure gauge.

  17. High-temperature electronics

    NASA Astrophysics Data System (ADS)

    Matus, Lawrence G.; Seng, Gary T.

    1990-02-01

    To meet the needs of the aerospace propulsion and space power communities, the high temperature electronics program at the Lewis Research Center is developing silicon carbide (SiC) as a high temperature semiconductor material. This program supports a major element of the Center's mission - to perform basic and developmental research aimed at improving aerospace propulsion systems. Research is focused on developing the crystal growth, characterization, and device fabrication technologies necessary to produce a family of SiC devices.

  18. High temperature electronics

    NASA Astrophysics Data System (ADS)

    Seng, Gary T.

    1991-03-01

    In recent years, the aerospace propulsion and space power communities have acknowledged a growing need for electronic devices that are capable of sustained high-temperature operation. Aeropropulsion applications for high-temperature electronic devices include engine ground test instrumentation such as multiplexers, analog-to-digital converters, and telemetry systems capable of withstanding hot section engine temperatures in excess of 600 C. Uncooled operation of control and condition monitoring systems in advanced supersonic aircraft would subject the electronics to temperatures in excess of 300 C. Similarly, engine-mounted integrated electronic sensors could reach temperatures which exceed 500 C. In addition to aeronautics, there are many other areas that could benefit from the existence of high-temperature electronic devices. Space applications include power electronic devices for space platforms and satellites. Since power electronics require radiators to shed waste heat, electronic devices that operate at higher temperatures would allow a reduction in radiator size. Terrestrial applications include deep-well drilling instrumentation, high power electronics, and nuclear reactor instrumentation and control. To meet the needs of the applications mentioned previously, the high-temperature electronics (HTE) program at the Lewis Research Center is developing silicon carbide (SiC) as a high-temperature semiconductor material. Research is focused on developing the crystal growth, growth modeling, characterization, and device fabrication technologies necessary to produce a family of SiC devices. Interest in SiC has grown dramatically in recent years due to solid advances in the technology. Much research remains to be performed, but SiC appears ready to emerge as a useful semiconductor material.

  19. Material Control and Accounting Design Considerations for High-Temperature Gas Reactors

    SciTech Connect

    Trond Bjornard; John Hockert

    2011-08-01

    The subject of this report is domestic safeguards and security by design (2SBD) for high-temperature gas reactors, focusing on material control and accountability (MC&A). The motivation for the report is to provide 2SBD support to the Next Generation Nuclear Plant (NGNP) project, which was launched by Congress in 2005. This introductory section will provide some background on the NGNP project and an overview of the 2SBD concept. The remaining chapters focus specifically on design aspects of the candidate high-temperature gas reactors (HTGRs) relevant to MC&A, Nuclear Regulatory Commission (NRC) requirements, and proposed MC&A approaches for the two major HTGR reactor types: pebble bed and prismatic. Of the prismatic type, two candidates are under consideration: (1) GA's GT-MHR (Gas Turbine-Modular Helium Reactor), and (2) the Modular High-Temperature Reactor (M-HTR), a derivative of Areva's Antares reactor. The future of the pebble-bed modular reactor (PBMR) for NGNP is uncertain, as the PBMR consortium partners (Westinghouse, PBMR [Pty] and The Shaw Group) were unable to agree on the path forward for NGNP during 2010. However, during the technology assessment of the conceptual design phase (Phase 1) of the NGNP project, AREVA provided design information and technology assessment of their pebble bed fueled plant design called the HTR-Module concept. AREVA does not intend to pursue this design for NGNP, preferring instead a modular reactor based on the prismatic Antares concept. Since MC&A relevant design information is available for both pebble concepts, the pebble-bed HTGRs considered in this report are: (1) Westinghouse PBMR; and (2) AREVA HTR-Module. The DOE Office of Nuclear Energy (DOE-NE) sponsors the Fuel Cycle Research and Development program (FCR&D), which contains an element specifically focused on the domestic (or state) aspects of SBD. This Material Protection, Control and Accountancy Technology (MPACT) program supports the present work summarized in

  20. High temperature probe

    DOEpatents

    Swan, Raymond A.

    1994-01-01

    A high temperature probe for sampling, for example, smokestack fumes, and is able to withstand temperatures of 3000.degree. F. The probe is constructed so as to prevent leakage via the seal by placing the seal inside the water jacket whereby the seal is not exposed to high temperature, which destroys the seal. The sample inlet of the probe is also provided with cooling fins about the area of the seal to provide additional cooling to prevent the seal from being destroyed. Also, a heated jacket is provided for maintaining the temperature of the gas being tested as it passes through the probe. The probe includes pressure sensing means for determining the flow velocity of an efficient being sampled. In addition, thermocouples are located in various places on the probe to monitor the temperature of the gas passing there through.

  1. High temperature structural silicides

    SciTech Connect

    Petrovic, J.J.

    1997-03-01

    Structural silicides have important high temperature applications in oxidizing and aggressive environments. Most prominent are MoSi{sub 2}-based materials, which are borderline ceramic-intermetallic compounds. MoSi{sub 2} single crystals exhibit macroscopic compressive ductility at temperatures below room temperature in some orientations. Polycrystalline MoSi{sub 2} possesses elevated temperature creep behavior which is highly sensitive to grain size. MoSi{sub 2}-Si{sub 3}N{sub 4} composites show an important combination of oxidation resistance, creep resistance, and low temperature fracture toughness. Current potential applications of MoSi{sub 2}-based materials include furnace heating elements, molten metal lances, industrial gas burners, aerospace turbine engine components, diesel engine glow plugs, and materials for glass processing.

  2. High Temperature ESP Monitoring

    SciTech Connect

    Jack Booker; Brindesh Dhruva

    2011-06-20

    The objective of the High Temperature ESP Monitoring project was to develop a downhole monitoring system to be used in wells with bottom hole well temperatures up to 300°C for measuring motor temperature, formation pressure, and formation temperature. These measurements are used to monitor the health of the ESP motor, to track the downhole operating conditions, and to optimize the pump operation. A 220 ºC based High Temperature ESP Monitoring system was commercially released for sale with Schlumberger ESP motors April of 2011 and a 250 ºC system with will be commercially released at the end of Q2 2011. The measurement system is now fully qualified, except for the sensor, at 300 °C.

  3. High temperature electronics technology

    NASA Astrophysics Data System (ADS)

    Dening, J. C.; Hurtle, D. E.

    1984-03-01

    This report summarizes the barrier metallization developments accomplished in a program intended to develop 300 C electronic controls capability for potential on-engine aircraft engine application. In addition, this report documents preliminary life test results at 300 C and above and discusses improved design practices required for high temperature integrated injection logic semiconductors. Previous Phase 1 activities focused on determining the viability of operating silicon semiconductor devices over the -55 C to +300 C temperature range. This feasibility was substantiated but the need for additional design work and process development was indicated. Phase 2 emphasized the development of a high temperature metallization system as the primary development need for high temperature silicon semiconductor applications.

  4. Pebbles and Cobbles at MPF Site

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Pebbles are seen in lander images, along with cobbles. For example, in this picture, we see the same pebbles that were visible in the Sojourner rover image of the 'Cabbage Patch' (PIA00984). In addition, a cobble within the rock 'Lamb' (upper left) is apparent. This indicates that Lamb may be a conglomerate (Lamb is 0.32 m x 0.15 m).

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  5. On-line interrogation of pebble bed reactor fuel using passive gamma-ray spectrometry

    NASA Astrophysics Data System (ADS)

    Chen, Jianwei

    The Pebble Bed Reactor (PBR) is a helium-cooled, graphite-moderated high temperature nuclear power reactor. In addition to its inherently safe design, a unique feature of this reactor is its multipass fuel cycle in which graphite fuel pebbles (of varying enrichment) are randomly loaded and continuously circulated through the core until they reach their prescribed end-of-life burnup limit (˜80,000--100,000 MWD/MTU). Unlike the situation with conventional light water reactors (LWRs), depending solely on computational methods to perform in-core fuel management will be highly inaccurate. As a result, an on-line measurement approach becomes the only accurate method to assess whether a particular pebble has reached its end-of-life burnup limit. In this work, an investigation was performed to assess the feasibility of passive gamma-ray spectrometry assay as an approach for on-line interrogation of PBR fuel for the simultaneous determination of burnup and enrichment on a pebble-by-pebble basis. Due to the unavailability of irradiated or fresh pebbles, Monte Carlo simulations were used to study the gamma-ray spectra of the PBR fuel at various levels of burnup. A pebble depletion calculation was performed using the ORIGEN code, which yielded the gamma-ray source term that was introduced into the input of an MCNP simulation. The MCNP simulation assumed the use of a high-purity coaxial germanium detector. Due to the lack of one-group high temperature reactor cross sections for ORIGEN, a heterogeneous MCNP model was developed to describe a typical PBR core. Subsequently, the code MONTEBURNS was used to couple the MCNP model and ORIGEN. This approach allowed the development of the burnup-dependent, one-group spectral-averaged PBR cross sections to be used in the ORIGEN pebble depletion calculation. Based on the above studies, a relative approach for performing the measurements was established. The approach is based on using the relative activities of Np-239/I-132 in combination

  6. High Temperature Piezoelectric Drill

    NASA Technical Reports Server (NTRS)

    Bao, Xiaoqi; Scott, James; Boudreau, Kate; Bar-Cohen, Yoseph; Sherrit, Stewart; Badescu, Mircea; Shrout, Tom; Zhang, Shujun

    2009-01-01

    The current NASA Decadal mission planning effort has identified Venus as a significant scientific target for a surface in-situ sampling/analyzing mission. The Venus environment represents several extremes including high temperature (460 deg C), high pressure (9 MPa), and potentially corrosive (condensed sulfuric acid droplets that adhere to surfaces during entry) environments. This technology challenge requires new rock sampling tools for these extreme conditions. Piezoelectric materials can potentially operate over a wide temperature range. Single crystals, like LiNbO3, have a Curie temperature that is higher than 1000 deg C and the piezoelectric ceramics Bismuth Titanate higher than 600 deg C. A study of the feasibility of producing piezoelectric drills that can operate in the temperature range up to 500 deg C was conducted. The study includes the high temperature properties investigations of engineering materials and piezoelectric ceramics with different formulas and doping. The drilling performances of a prototype Ultrasonic/Sonic Drill/Corer (USDC) using high temperate piezoelectric ceramics and single crystal were tested at temperature up to 500 deg C. The detailed results of our study and a discussion of the future work on performance improvements are presented in this paper.

  7. High-Temperature Lubricants

    NASA Technical Reports Server (NTRS)

    1984-01-01

    In the early 1980's, Lewis Research Center began a program to develop high-temperature lubricants for use on future aircraft flying at three or more times the speed of sound, which can result in vehicle skin temperatures as high as 1,600 degrees Fahrenheit. A material that emerged from this research is a plasma-sprayed, self-lubricating metal- glass-fluoride coating able to reduce oxidation at very high temperatures. Technology is now in commercial use under the trade name Surf-Kote C-800, marketed by Hohman Plating and Manufacturing Inc. and manufactured under a patent license from NASA. Among its uses are lubrication for sliding contact bearings, shaft seals for turbopumps, piston rings for high performance compressors and hot glass processing machinery; it is also widely used in missile and space applications.

  8. High temperature hydraulic seals

    NASA Astrophysics Data System (ADS)

    Williams, K. R.

    1993-05-01

    This program investigated and evaluated high temperature hydraulic sealing technology, including seals, fluids, and actuator materials. Test limits for fluid pressure and temperature were 8000 psi and 700 F respectively. The original plan to investigate CTFE fluid at 350 F as well as other fluids at higher temperatures was reduced in scope to include only the higher temperature investigation. Seals were obtained from 11 manufacturers. Design requirements including materials, dimensions, clearances, and tolerances were established and test modules were constructed from the detail designs which were produced. Nine piston seals and one rod seal were tested at temperatures ranging from -65 to +600 F and pressures to 6000 psi. Fluid performance under these conditions was evaluated. Details of this activity and results of the effort are summarized in this report.

  9. Computational and experimental prediction of dust production in pebble bed reactors -- Part I

    SciTech Connect

    Maziar Rostamian; Gannon Johnson; Mie Hiruta; Gabriel P. Potirniche; Abderrafi M. Ougouag; Joshua J. Cogliati; Akira Tokuhiro

    2013-10-01

    This paper describes the computational modeling and simulation, and experimental testing of graphite moderators in frictional contacts as anticipated in a pebble bed reactor. The potential of carbonaceous particulate generation due to frictional contact at the surface of pebbles and the ensuing entrainment and transport into the gas coolant are safety concerns at elevated temperatures under accident scenarios such as air ingress in the high temperature gas-cooled reactor. The safety concerns are due to the documented ability of carbonaceous particulates to adsorb fission products and transport them in the primary circuit of the pebble bed reactor, thus potentially giving rise to a relevant source term under accident scenarios. Here, a finite element approach is implemented to develop a nonlinear wear model in air environment. In this model, material wear coefficient is related to the changes in asperity height during wear. The present work reports a comparison between the finite element simulations and the experimental results obtained using a custom-designed tribometer. The experimental and computational results are used to estimate the quantity of nuclear grade graphite dust produced from a typical anticipated configuration. In Part II, results from a helium environment at higher temperatures and pressures are experimentally studied.

  10. Characterization of Li2TiO3 pebbles by graphite bed process

    NASA Astrophysics Data System (ADS)

    Hong, Ming; Zhang, Yingchun; Mi, Yingying; Fu, Baojian

    2013-10-01

    Lithium titanate (Li2TiO3) is an important tritium breeder for fusion blanket concepts. In the present study, Li2TiO3 ceramic pebbles were successfully fabricated by a graphite bed process. In this process, graphite bed which had been engraved with spherical pits acted as a casting mould. Droplets of Li2TiO3 suspensions were dispersed into the spherical pits to form pebbles due to the hydrophobic nature of the graphite powder. After drying, green pebbles were sieved and sintered to produce Li2TiO3 pebbles. The fabrication process and properties of the pebbles have been investigated. The experimental results showed that the sphericity of Li2TiO3 pebbles was influenced by solid/liquid ratio and diameter. XRD results demonstrated that Li2TiO3 pebbles with high purity have been prepared by the graphite bed process. SEM revealed that the pebbles have uniform microstructure and adequate open porosity. The Li2TiO3 pebbles sintered at 1150 °C have optimal properties, such as high density (about 90% TD) and high crush load (about 40 N).

  11. Fabrication of Li4SiO4 pebbles by wet method with modified powders synthesized via sol-gel process

    NASA Astrophysics Data System (ADS)

    Yu, Xiaohe; Yang, Mao; Lu, Tiecheng; Wei, Nian; Wei, Jianjun; Shi, Yanli; Huang, Zhangyi; Xiang, Xiaogang; Zhang, Qinghua; Zhang, Wei

    2015-01-01

    Li4SiO4 pebbles have been recognized as attractive tritium breeder materials in the fusion reactor blanket of international thermonuclear experimental reactor (ITER). In this work, we present a facile method to prepare Li4SiO4 pebbles of high density and sphericity by using a directive wet method with the Li4SiO4 powders synthesized via sol-gel process. The Li4SiO4 powders were prepared with two-step calcinating method, followed by a ball-milling process. Thermal and phase analysis, morphologies and sintering behaviors observations of the pebbles were carried out systematically. Experimental results show that the pure phase powders with white color that prepared by using two-step calcinating method is different from the powders prepared by the traditional direct calcinating method. The subsequent ball milling process proves to be effective to improve the relative density of the sintered body. When sintered at the temperature as low as 850 °C for 4 h, the favorable Li4SiO4 pebbles with uniform size (∼1 mm), good sphericity (1.02), and high density (above 90% T.D.) were fabricated by using a directive wet method. The as-fabricated pebbles hold good potential as tritium breeding materials for blankets.

  12. Formation of pebble-pile planetesimals

    NASA Astrophysics Data System (ADS)

    Wahlberg Jansson, Karl; Johansen, Anders

    2014-10-01

    Asteroids and Kuiper belt objects are remnant planetesimals from the epoch of planet formation. The first stage of planet formation is the accumulation of dust and ice grains into mm- and cm-sized pebbles. These pebbles can clump together through the streaming instability and form gravitationally bound pebble clouds. Pebbles inside such a cloud will undergo mutual collisions, dissipating energy into heat. As the cloud loses energy, it gradually contracts towards solid density. We model this process and investigate two important properties of the collapse: (i) the collapse timescale and (ii) the temporal evolution of the pebble size distribution. Our numerical model of the pebble cloud is zero-dimensional and treats collisions with a statistical method. We find that planetesimals with radii larger than ~100 km collapse on the free-fall timescale of ~25 years. Lower-mass clouds have longer pebble collision timescales and collapse much more slowly, with collapse times of a few hundred years for 10 km scale planetesimals and a few thousand years for 1 km scale planetesimals. The mass of the pebble cloud also determines the interior structure of the resulting planetesimal. The pebble collision speeds in low-mass clouds are below the threshold for fragmentation, forming pebble-pile planetesimals consisting of the primordial pebbles from the protoplanetary disk. Planetesimals above 100 km in radius, on the other hand, consist of mixtures of dust (pebble fragments) and pebbles which have undergone substantial collisions with dust and other pebbles. The Rosetta mission to the comet 67P/Churyumov-Gerasimenko and the New Horizons mission to Pluto will provide valuable information about the structure of planetesimals in the solar system. Our model predicts that 67P is a pebble-pile planetesimal consisting of primordial pebbles from the solar nebula, while the pebbles in the cloud which contracted to form Pluto must have been ground down substantially during the collapse.

  13. High Temperature Structural Foam

    NASA Technical Reports Server (NTRS)

    Weiser, Erik S.; Baillif, Faye F.; Grimsley, Brian W.; Marchello, Joseph M.

    1997-01-01

    The Aerospace Industry is experiencing growing demand for high performance polymer foam. The X-33 program needs structural foam insulation capable of retaining its strength over a wide range of environmental conditions. The High Speed Research Program has a need for low density core splice and potting materials. This paper reviews the state of the art in foam materials and describes experimental work to fabricate low density, high shear strength foam which can withstand temperatures from -220 C to 220 C. Commercially available polymer foams exhibit a wide range of physical properties. Some with densities as low as 0.066 g/cc are capable of co-curing at temperatures as high as 182 C. Rohacell foams can be resin transfer molded at temperatures up to 180 C. They have moduli of elasticity of 0.19 MPa, tensile strengths of 3.7 Mpa and compressive strengths of 3.6 MPa. The Rohacell foams cannot withstand liquid hydrogen temperatures, however Imi-Tech markets Solimide (trademark) foams which withstand temperatures from -250 C to 200 C, but they do not have the required structural integrity. The research activity at NASA Langley Research Center focuses on using chemical blowing agents to produce polyimide thermoplastic foams capable of meeting the above performance requirements. The combination of blowing agents that decompose at the minimum melt viscosity temperature together with plasticizers to lower the viscosity has been used to produce foams by both extrusion and oven heating. The foams produced exhibit good environmental stability while maintaining structural properties.

  14. HIGH TEMPERATURE THERMOCOUPLE

    DOEpatents

    Eshayu, A.M.

    1963-02-12

    This invention contemplates a high temperature thermocouple for use in an inert or a reducing atmosphere. The thermocouple limbs are made of rhenium and graphite and these limbs are connected at their hot ends in compressed removable contact. The rhenium and graphite are of high purity and are substantially stable and free from diffusion into each other even without shielding. Also, the graphite may be thick enough to support the thermocouple in a gas stream. (AEC)

  15. High temperature thermometric phosphors

    DOEpatents

    Allison, Stephen W.; Cates, Michael R.; Boatner, Lynn A.; Gillies, George T.

    1999-03-23

    A high temperature phosphor consists essentially of a material having the general formula LuPO.sub.4 :Dy.sub.(x),Eu.sub.y) wherein: 0.1 wt %.ltoreq.x.ltoreq.20 wt % and 0.1 wt %.ltoreq.y.ltoreq.20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopent. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions.

  16. High temperature thermometric phosphors

    DOEpatents

    Allison, S.W.; Cates, M.R.; Boatner, L.A.; Gillies, G.T.

    1999-03-23

    A high temperature phosphor consists essentially of a material having the general formula LuPO{sub 4}:Dy{sub x},Eu{sub y} wherein: 0.1 wt % {<=} x {<=} 20 wt % and 0.1 wt % {<=} y {<=} 20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopant. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions. 2 figs.

  17. High-temperature electronics

    NASA Astrophysics Data System (ADS)

    Seng, Gary T.

    1987-11-01

    In recent years, there was a growing need for electronics capable of sustained high-temperature operation for aerospace propulsion system instrumentation, control and condition monitoring, and integrated sensors. The desired operating temperature in some applications exceeds 600 C, which is well beyond the capability of currently available semiconductor devices. Silicon carbide displays a number of properties which make it very attractive as a semiconductor material, one of which is the ability to retain its electronic integrity at temperatures well above 600 C. An IR-100 award was presented to NASA Lewis in 1983 for developing a chemical vapor deposition process to grow single crystals of this material on standard silicon wafers. Silicon carbide devices were demonstrated above 400 C, but much work remains in the areas of crystal growth, characterization, and device fabrication before the full potential of silicon carbide can be realized. The presentation will conclude with current and future high-temperature electronics program plans. Although the development of silicon carbide falls into the category of high-risk research, the future looks promising, and the potential payoffs are tremendous.

  18. High temperature adsorption measurements

    SciTech Connect

    Bertani, R.; Parisi, L.; Perini, R.; Tarquini, B.

    1996-01-24

    Adsorption phenomena are a rich and rather new field of study in geothermal research, in particular at very high temperature. ENEL is interested in the exploitation of geothermal regions with superheated steam, and it is important to understand the behavior of water-rock interaction. We have analyzed in the 170-200 °C temperature range four samples of Monteverdi cuttings; the next experimental effort will be at 220 °C and over in 1996. The first results of the 1995 runs are collected in this paper. We can highlight four main items: 1. At relative pressures over 0.6 the capillarity forces are very important. 2. There is no significant temperature effect. 3. Adsorbed water can be present, and it is able to multiply by a factor of 15 the estimated reserve of super-heated steam only. 4. Pores smaller than 15 Å do not contribute to the adsorbed mass.

  19. High temperature adsorption measurements

    SciTech Connect

    Bertani, R.; Parisi, L.; Perini, R.; Tarquini, B.

    1996-12-31

    Adsorption phenomena are a rich and rather new field of study in geothermal research, in particular at very high temperature. ENEL is interested in the exploitation of geothermal regions with super-heated steam, and it is important to understand the behavior of water-rock interaction. We have analyzed in the 170-200{degrees}C temperature range four samples of Monteverdi cuttings; the next experimental effort will be at 220{degrees}C and over in 1996. The first results of the 1995 runs are collected in this paper. We can highlight four main items: (1) At relative pressures over 0.6 the capillarity forces are very important. (2) There is no significant temperature effect. (3) Adsorbed water can be present, and it is able to multiply by a factor of 15 the estimated reserve of super-heated steam only. (4) Pores smaller than 15 {Angstrom} do not contribute to the adsorbed mass.

  20. Final Report on Utilization of TRU TRISO Fuel as Applied to HTR Systems Part I: Pebble Bed Reactors

    SciTech Connect

    Brian Boer; Abderrafi M. Ougouag

    2011-03-01

    The Deep-Burn (DB) concept [ ] focuses on the destruction of transuranic nuclides from used light water reactor (LWR) fuel. These transuranic nuclides are incorporated into tri-isotopic (TRISO) coated fuel particles and used in gas-cooled reactors with the aim of a fractional fuel burnup of 60 to 70% in fissions per initial metal atom (FIMA). This high performance is expected through the use of multiple recirculation passes of the fuel in pebble form without any physical or chemical changes between passes. In particular, the concept does not call for reprocessing of the fuel between passes. In principle, the DB pebble bed concept employs the same reactor designs as the presently envisioned low-enriched uranium core designs, such as the 400 MWth Pebble Bed Modular Reactor (PBMR-400) [ ]. Although it has been shown in the previous Fiscal Year (FY) (2009) that a PuO2 fueled pebble bed reactor concept is viable, achieving a high fuel burnup while remaining within safety-imposed prescribed operational limits for fuel temperature, power peaking, and temperature reactivity feedback coefficients for the entire temperature range, is challenging. The presence of the isotopes 239Pu, 240Pu, and 241Pu that have resonances in the thermal energy range significantly modifies the neutron thermal energy spectrum as compared to a standard, UO2-fueled core. Therefore, the DB pebble bed core exhibits a relatively hard neutron energy spectrum. However, regions within the pebble bed that are near the graphite reflectors experience a locally softer spectrum. This can lead to power and temperature peaking in these regions. Furthermore, a shift of the thermal energy spectrum with increasing temperature can lead to increased absorption in the resonances of the fissile Pu isotopes. This can lead to a positive temperature reactivity coefficient for the graphite moderator under certain operating conditions. Regarding the coated particle performance, the FY 2009 investigations showed that no

  1. High Temperature Metallic Seal Development

    NASA Astrophysics Data System (ADS)

    Datta, Amit; More, D. Greg

    2002-10-01

    A high temperature static seal capable of long term operation at temperature ranging from 1400 F to 1800 F is presented. The contents include: 1) Development approach; 2) Stress relaxation curves; 3) High temperature seal test rig; 4) High temperature seal design; and 5) High temperature seal testing. This paper is in viewgraph form.

  2. High temperature future

    SciTech Connect

    Sheinkopf, K.

    1994-09-01

    During the past few years, there have been dramatic accomplishments and success of high temperature solar thermal systems and significant development of these systems. High temperature technologies, about 500 F and higher, such as dish engines, troughs, central receiver power towers and solar process heat systems, have been tested, demonstrated and used in an array of applications, including many cost-effective utility bulk power production and demand side supply projects in the United States. Large systems provide power and hot water to prisons, schools, nursing homes and other institutions. Joint ventures with industry, utility projects, laboratory design assistance and other activities are building a solid industry of US solar thermal systems ready for use today.

  3. High Temperature Thermosets

    NASA Technical Reports Server (NTRS)

    Hergenrother, Paul M.

    1999-01-01

    A thermoset or network polymer is an organic material where the molecules are tied together through chemical bonds (crosslinks) and therefore they cannot move past one another. As a result, these materials exhibit a certain degree of dimensional stability. The chemical composition and the degree of crosslink density of the thermoset have a pronounced effect upon the properties. High temperature thermosets offer a favorable combination of properties that makes them attractive for many applications. Their most important features are the excellent processability particularly of the low molecular weight precusor forms, the chemical and solvent resistance and the dimensional stability. The market for high temperature thermosets will increase as new uses for them are uncovered and new thermosets with better combinations of properties are developed.

  4. High-temperature superconductivity

    NASA Astrophysics Data System (ADS)

    Chin, Ken C.

    1990-01-01

    The current status of high-temperature superconductivity (HTSC) and near-term prospects are briefly reviewed with particular reference to Lockheed's experience. Emphasis is placed on an integrated approach to systems applications of HTSC thin films, which hold the greatest near-term promise. These new materials are applied in the production of smaller, more sensitive, and more efficient electronic components to meet the ever-increasing demands for higher-performance signal acquisition and processing systems, communications systems, and computers.

  5. High temperature adhesives

    NASA Technical Reports Server (NTRS)

    St.clair, Terry L.

    1991-01-01

    The aerospace and electronics industries have an ever increasing need for higher performance materials. In recent years, linear aromatic polyimides have been proven to be a superior class of materials for various applications in these industries. The use of this class of polymers as adhesives is continuing to increase. Several NASA Langley developed polyimides show considerable promise as adhesives because of their high glass transition temperatures, thermal stability, resistance to solvents/water, and their potential for cost effective manufacture.

  6. Tightly Coupled Multiphysics Algorithm for Pebble Bed Reactors

    SciTech Connect

    HyeongKae Park; Dana Knoll; Derek Gaston; Richard Martineau

    2010-10-01

    We have developed a tightly coupled multiphysics simulation tool for the pebble-bed reactor (PBR) concept, a type of Very High-Temperature gas-cooled Reactor (VHTR). The simulation tool, PRONGHORN, takes advantages of the Multiphysics Object-Oriented Simulation Environment library, and is capable of solving multidimensional thermal-fluid and neutronics problems implicitly with a Newton-based approach. Expensive Jacobian matrix formation is alleviated via the Jacobian-free Newton-Krylov method, and physics-based preconditioning is applied to minimize Krylov iterations. Motivation for the work is provided via analysis and numerical experiments on simpler multiphysics reactor models. We then provide detail of the physical models and numerical methods in PRONGHORN. Finally, PRONGHORN's algorithmic capability is demonstrated on a number of PBR test cases.

  7. High temperature strain gages

    NASA Technical Reports Server (NTRS)

    Gregory, Otto J. (Inventor); You, Tao (Inventor)

    2011-01-01

    A ceramic strain gage based on reactively sputtered indium-tin-oxide (ITO) thin films is used to monitor the structural integrity of components employed in aerospace propulsion systems operating at temperatures in excess of 1500.degree. C. A scanning electron microscopy (SEM) of the thick ITO sensors reveals a partially sintered microstructure comprising a contiguous network of submicron ITO particles with well defined necks and isolated nanoporosity. Densification of the ITO particles was retarded during high temperature exposure with nitrogen thus stabilizing the nanoporosity. ITO strain sensors were prepared by reactive sputtering in various nitrogen/oxygen/argon partial pressures to incorporate more nitrogen into the films. Under these conditions, sintering and densification of the ITO particles containing these nitrogen rich grain boundaries was retarded and a contiguous network of nano-sized ITO particles was established.

  8. High Temperature Piezoelectric Drill

    NASA Technical Reports Server (NTRS)

    Bao, Xiaoqi; Bar-Cohen, Yoseph; Sherrit, Stewart; Badescu, Mircea; Shrout, Tom

    2012-01-01

    Venus is one of the planets in the solar systems that are considered for potential future exploration missions. It has extreme environment where the average temperature is 460 deg C and its ambient pressure is about 90 atm. Since the existing actuation technology cannot maintain functionality under the harsh conditions of Venus, it is a challenge to perform sampling and other tasks that require the use of moving parts. Specifically, the currently available electromagnetic actuators are limited in their ability to produce sufficiently high stroke, torque, or force. In contrast, advances in developing electro-mechanical materials (such as piezoelectric and electrostrictive) have enabled potential actuation capabilities that can be used to support such missions. Taking advantage of these materials, we developed a piezoelectric actuated drill that operates at the temperature range up to 500 deg C and the mechanism is based on the Ultrasonic/Sonic Drill/Corer (USDC) configuration. The detailed results of our study are presented in this paper

  9. Advanced core design and fuel management for pebble-bed reactors

    NASA Astrophysics Data System (ADS)

    Gougar, Hans David

    A method for designing and optimizing recirculating pebble-bed reactor cores is presented. At the heart of the method is a new reactor physics computer code, PEBBED, which accurately and efficiently computes the neutronic and material properties of the asymptotic (equilibrium) fuel cycle. This core state is shown to be unique for a given core geometry, power level, discharge burnup, and fuel circulation policy. Fuel circulation in the pebble-bed can be described in terms of a few well-defined parameters and expressed as a recirculation matrix. The implementation of a few heat-transfer relations suitable for high-temperature gas-cooled reactors allows for the rapid estimation of thermal properties critical for safe operation. Thus, modeling and design optimization of a given pebble-bed core can be performed quickly and efficiently via the manipulation of a limited number key parameters. Automation of the optimization process is achieved by manipulation of these parameters using a genetic algorithm. The end result is an economical, passively safe, proliferation-resistant nuclear power plant.

  10. Advanced Core Design And Fuel Management For Pebble-Bed Reactors

    SciTech Connect

    Hans D. Gougar; Abderrafi M. Ougouag; William K. Terry

    2004-10-01

    A method for designing and optimizing recirculating pebble-bed reactor cores is presented. At the heart of the method is a new reactor physics computer code, PEBBED, which accurately and efficiently computes the neutronic and material properties of the asymptotic (equilibrium) fuel cycle. This core state is shown to be unique for a given core geometry, power level, discharge burnup, and fuel circulation policy. Fuel circulation in the pebble-bed can be described in terms of a few well?defined parameters and expressed as a recirculation matrix. The implementation of a few heat?transfer relations suitable for high-temperature gas-cooled reactors allows for the rapid estimation of thermal properties critical for safe operation. Thus, modeling and design optimization of a given pebble-bed core can be performed quickly and efficiently via the manipulation of a limited number key parameters. Automation of the optimization process is achieved by manipulation of these parameters using a genetic algorithm. The end result is an economical, passively safe, proliferation-resistant nuclear power plant.

  11. Deleterious Thermal Effects Due To Randomized Flow Paths in Pebble Bed, and Particle Bed Style Reactors

    NASA Technical Reports Server (NTRS)

    Moran, Robert P.

    2013-01-01

    A review of literature associated with Pebble Bed and Particle Bed reactor core research has revealed a systemic problem inherent to reactor core concepts which utilize randomized rather than structured coolant channel flow paths. For both the Pebble Bed and Particle Bed Reactor designs; case studies reveal that for indeterminate reasons, regions within the core would suffer from excessive heating leading to thermal runaway and localized fuel melting. A thermal Computational Fluid Dynamics model was utilized to verify that In both the Pebble Bed and Particle Bed Reactor concepts randomized coolant channel pathways combined with localized high temperature regions would work together to resist the flow of coolant diverting it away from where it is needed the most to cooler less resistive pathways where it is needed the least. In other words given the choice via randomized coolant pathways the reactor coolant will take the path of least resistance, and hot zones offer the highest resistance. Having identified the relationship between randomized coolant channel pathways and localized fuel melting it is now safe to assume that other reactor concepts that utilize randomized coolant pathways such as the foam core reactor are also susceptible to this phenomenon.

  12. High temperature detonator

    DOEpatents

    Johnson, James O.; Dinegar, Robert H.

    1988-01-01

    A detonator assembly is provided which is usable at high temperatures about 300.degree. C. A detonator body is provided with an internal volume defining an anvil surface. A first acceptor explosive is disposed on the anvil surface. A donor assembly having an ignition element, an explosive material, and a flying plate, are placed in the body effective to accelerate the flying plate to impact the first acceptor explosive on the anvil for detonating the first acceptor explosive. A second acceptor explosive is eccentrically located in detonation relationship with the first acceptor explosive to thereafter effect detonation of a main charge.

  13. High temperature drilling fluids

    SciTech Connect

    Stong, R.E.; Walinsky, S.W.

    1986-01-28

    This patent describes an aqueous drilling fluid suitable for high-temperature use. This fluid is composed of a water base. Clay is suspended in the base and from about 0.01-25 pounds per barrel total composition of a hydrolyzed terpolymer of maleic anhydride, styrene and a third monomer selected from acrylamide, methacrylamide, acrylic acid and metacrylic acid. The molar ratio of maleic anhydride to styrene to the third monomer is from about 30:10:60 to 50:40:10, and the alkali metal, ammonium and lower aliphatic amine salts thereof, the weight-average molecular weight of the hydrolyzed terpolymer is from about 500-10,000.

  14. High temperature filter materials

    SciTech Connect

    Alvin, M.A.; Lippert, T.E.; Bachovchin, D.M.; Tressler, R.E.

    1992-12-01

    Objectives of this program are to identify the potential long-term thermal/chemical effects that advanced coal-based power generating system environments have on the stability of porous ceramic filter materials, as well as to assess the influence of these effects on filter operating performance and life. We have principally focused our efforts on developing an understanding of the stability of the alumina/mullite filter material at high temperature (i.e., 870, 980, and 1100{degrees}C) under oxidizing conditions which contain gas phase alkali species. Testing has typically been performed in two continuous flow-through, high temperature test facilities at the Westinghouse Science and Technology Center, using 7 cm diameter {times} 6.4 mm thick discs. (Alvin, 1992) Each disc of ceramic filter material is exposed for periods of 100 to 3,000 hours in duration. Additional efforts have been performed at Westinghouse to broaden our understanding of the stability of cordierite, cordierite-silicon nitride, reaction and sintered silicon nitride, and clay bonded silicon carbide under similar simulated advanced coal fired process conditions. The results of these efforts are presented in this paper.

  15. High temperature filter materials

    SciTech Connect

    Alvin, M.A.; Lippert, T.E.; Bachovchin, D.M. . Science and Technology Center); Tressler, R.E. )

    1992-01-01

    Objectives of this program are to identify the potential long-term thermal/chemical effects that advanced coal-based power generating system environments have on the stability of porous ceramic filter materials, as well as to assess the influence of these effects on filter operating performance and life. We have principally focused our efforts on developing an understanding of the stability of the alumina/mullite filter material at high temperature (i.e., 870, 980, and 1100[degrees]C) under oxidizing conditions which contain gas phase alkali species. Testing has typically been performed in two continuous flow-through, high temperature test facilities at the Westinghouse Science and Technology Center, using 7 cm diameter [times] 6.4 mm thick discs. (Alvin, 1992) Each disc of ceramic filter material is exposed for periods of 100 to 3,000 hours in duration. Additional efforts have been performed at Westinghouse to broaden our understanding of the stability of cordierite, cordierite-silicon nitride, reaction and sintered silicon nitride, and clay bonded silicon carbide under similar simulated advanced coal fired process conditions. The results of these efforts are presented in this paper.

  16. High Temperature Protonic Conductors

    NASA Technical Reports Server (NTRS)

    Dynys, Fred; Berger, Marie-Helen; Sayir, Ali

    2007-01-01

    High Temperature Protonic Conductors (HTPC) with the perovskite structure are envisioned for electrochemical membrane applications such as H2 separation, H2 sensors and fuel cells. Successive membrane commercialization is dependent upon addressing issues with H2 permeation rate and environmental stability with CO2 and H2O. HTPC membranes are conventionally fabricated by solid-state sintering. Grain boundaries and the presence of intergranular second phases reduce the proton mobility by orders of magnitude than the bulk crystalline grain. To enhanced protonic mobility, alternative processing routes were evaluated. A laser melt modulation (LMM) process was utilized to fabricate bulk samples, while pulsed laser deposition (PLD) was utilized to fabricate thin film membranes . Sr3Ca(1+x)Nb(2-x)O9 and SrCe(1-x)Y(x)O3 bulk samples were fabricated by LMM. Thin film BaCe(0.85)Y(0.15)O3 membranes were fabricated by PLD on porous substrates. Electron microscopy with chemical mapping was done to characterize the resultant microstructures. High temperature protonic conduction was measured by impedance spectroscopy in wet air or H2 environments. The results demonstrate the advantage of thin film membranes to thick membranes but also reveal the negative impact of defects or nanoscale domains on protonic conductivity.

  17. Validation of SCALE for High Temperature Gas-Cooled Reactors Analysis

    SciTech Connect

    Ilas, Germina; Ilas, Dan; Kelly, Ryan P; Sunny, Eva E

    2012-08-01

    This report documents verification and validation studies carried out to assess the performance of the SCALE code system methods and nuclear data for modeling and analysis of High Temperature Gas-Cooled Reactor (HTGR) configurations. Validation data were available from the International Handbook of Evaluated Reactor Physics Benchmark Experiments (IRPhE Handbook), prepared by the International Reactor Physics Experiment Evaluation Project, for two different HTGR designs: prismatic and pebble bed. SCALE models have been developed for HTTR, a prismatic fuel design reactor operated in Japan and HTR-10, a pebble bed reactor operated in China. The models were based on benchmark specifications included in the 2009, 2010, and 2011 releases of the IRPhE Handbook. SCALE models for the HTR-PROTEUS pebble bed configuration at the PROTEUS critical facility in Switzerland have also been developed, based on benchmark specifications included in a 2009 IRPhE draft benchmark. The development of the SCALE models has involved a series of investigations to identify particular issues associated with modeling the physics of HTGRs and to understand and quantify the effect of particular modeling assumptions on calculation-to-experiment comparisons.

  18. High Temperature Aquifer Storage

    NASA Astrophysics Data System (ADS)

    Ueckert, Martina; Niessner, Reinhard; Baumann, Thomas

    2015-04-01

    Combined heat and power generation (CHP) is highly efficient because excess heat is used for heating and/or process energy. However, the demand of heat energy varies considerably throughout the year while the demand for electrical energy is rather constant. It seems economically and ecologically highly beneficial for municipalities and large power consumers such as manufacturing plants to store excess heat in groundwater aquifers and to recuperate this energy at times of higher demand. Apart from the hydrogeological conditions, high transmissivity and favorable pressure gradients, the hydrochemical conditions are crucial for long-term operation. Within the project High Temperature Aquifer Storage, scientists investigate storage and recuperation of excess heat energy into the bavarian Malm aquifer. After one year of planning, construction, and the successful drilling of a research well to 495 m b.s.l. the first large scale heat storage test in the Malm aquifer was finished just before Christmas 2014. An enormous technical challenge was the disruption of the carbonate equilibrium - modeling results indicated a carbonate precipitation of 10-50 kg/d in the heat exchangers. The test included five injection pulses of hot water (60 °C up to 110 °C) and four tracer pulses, each consisting of a reactive and a conservative fluorescent dye. Injection and production rates were 15 L/s. About 4 TJ of heat energy were necessary to achieve the desired water temperatures. Electrical conductivity, pH and temperature were recorded at a bypass where also samples were taken. A laboratory container at the drilling site was equipped for the analysis of the concentration of the tracers and the cation concentrations at sampling intervals of down to 15 minutes. Additional water samples were taken and analyzed for major ions and trace elements in the laboratory. The disassembled heat exchanger proved that precipitation was successfully prevented by adding CO2 to the water before heating

  19. High Temperature Inspection System

    SciTech Connect

    Robinson, C.W.

    1999-01-26

    The Remote and Specialty Equipment Section (RSES) of the Savannah River Technology Center has developed a High Temperature Inspection System (HTIS) for remotely viewing the interior of the Defense Waste Processing Facility (DWPF) melter pour spout. The DWPF is a vitrification facility at the Savannah River Site where radioactive waste is processed, mixed and melted with glass frit in an electrically heated melter, and poured into canisters for long-term storage. The glass mixture is transferred from the melter to the canisters via the pour spout, a vertical interface between the melter and the canisters. During initial operation of the melter, problems were experienced with wicking of the glass stream to the sides of the pour spout resulting in pluggage of the pour spout. A removable insert was developed to eliminate the wicking problem. Routine cleaning of the pour spout and replacement of the insert requires that the pour spout interior be inspected on a regular basis. The HTIS was developed to perform the inspection. The HTIS provides two video images: one view for aligning the HTIS with the pour spout and the other for inspecting the pour spout wall condition and other surfaces. The HTIS is carried into the melter cell using an overhead crane and is remotely connected to the cell's telerobotic manipulator (TRM). An operator uses the TRM to insert the HTIS into the 2-inch (5.08 cm) diameter pour spout, rotate it 360 degrees, and then remove it. This application created many challenges for the inspection device, especially regarding size and temperature. The HTIS design allows the video cameras to stay below a safe operating temperature during use in the 1100 degrees C environment. Many devices are designed to penetrate a wall and extend into a heated chamber only a few inches, but the HTIS is inserted into the heated chamber 22 inches (55.88 cm). Other devices can handle the insertion length and small diameter, but they are not designed to handle the high

  20. High Temperature Aquifer Storage

    NASA Astrophysics Data System (ADS)

    Ueckert, Martina; Niessner, Reinhard; Baumann, Thomas

    2016-04-01

    Combined heat and power generation (CHP) is highly efficient because excess heat is used for heating and/or process energy. However, the demand of heat energy varies considerably throughout the year while the demand for electrical energy is rather constant. It seems economically and ecologically highly beneficial for municipalities and large power consumers such as manufacturing plants to store excess heat in groundwater aquifers and to recuperate this energy at times of higher demand. Within the project High Temperature Aquifer Storage, scientists investigate storage and recuperation of excess heat energy into the bavarian Malm aquifer. Apart from high transmissivity and favorable pressure gradients, the hydrochemical conditions are crucial for long-term operation. An enormous technical challenge is the disruption of the carbonate equilibrium - modeling results indicated a carbonate precipitation of 10 - 50 kg/d in the heat exchangers. The test included five injection pulses of hot water (60 °C up to 110 °C) and four tracer pulses, each consisting of a reactive and a conservative fluorescent dye, into a depth of about 300 m b.s.l. resp. 470 m b.s.l. Injection and production rates were 15 L/s. To achieve the desired water temperatures, about 4 TJ of heat energy were necessary. Electrical conductivity, pH and temperature were recorded at a bypass where also samples were taken. A laboratory container at the drilling site was equipped for analysing the concentration of the dyes and the major cations at sampling intervals of down to 15 minutes. Additional water samples were taken and analysed in the laboratory. The disassembled heat exchanger prooved that precipitation was successfully prevented by adding CO2 to the water before heating. Nevertheless, hydrochemical data proved both, dissolution and precipitation processes in the aquifer. This was also suggested by the hydrochemical modelling with PhreeqC and is traced back to mixture dissolution and changing

  1. High temperature interfacial superconductivity

    SciTech Connect

    Bozovic, Ivan; Logvenov, Gennady; Gozar, Adrian Mihai

    2012-06-19

    High-temperature superconductivity confined to nanometer-scale interfaces has been a long standing goal because of potential applications in electronic devices. The spontaneous formation of a superconducting interface in bilayers consisting of an insulator (La.sub.2CuO.sub.4) and a metal (La.sub.1-xSr.sub.xCuO.sub.4), neither of which is superconducting per se, is described. Depending upon the layering sequence of the bilayers, T.sub.c may be either .about.15 K or .about.30 K. This highly robust phenomenon is confined to within 2-3 nm around the interface. After exposing the bilayer to ozone, T.sub.c exceeds 50 K and this enhanced superconductivity is also shown to originate from a 1 to 2 unit cell thick interfacial layer. The results demonstrate that engineering artificial heterostructures provides a novel, unconventional way to fabricate stable, quasi two-dimensional high T.sub.c phases and to significantly enhance superconducting properties in other superconductors. The superconducting interface may be implemented, for example, in SIS tunnel junctions or a SuFET.

  2. High-temperature resins

    NASA Technical Reports Server (NTRS)

    Serafini, T. T.

    1982-01-01

    The basic chemistry, cure processes, properties, and applications of high temperature resins known as polyimides are surveyed. Condensation aromatic polymides are prepared by reacting aromatic diamines with aromatic dianhydrides, aromatic tetracarboxylic acids, or with dialkyl esters of aromatic tetracarboxylic acids, depending on the intended end use. The first is for coatings or films while the latter two are more suitable for polyimide matrix resins. Prepreg solutions are made by dissolving reactants in an aprotic solvent, and advances in the addition of a diamine on the double bond and radical polymerization of the double bond are noted to have yielded a final cure product with void-free characteristics. Attention is given to properties of the Skybond, Pyralin, and NR-150B polyimide prepreg materials and characteristics of aging in the NP-150 polyimides. Finally, features of the NASA-developed PMR polyimides are reviewed.

  3. Pebble Bed Reactor Dust Production Model

    SciTech Connect

    Abderrafi M. Ougouag; Joshua J. Cogliati

    2008-09-01

    The operation of pebble bed reactors, including fuel circulation, can generate graphite dust, which in turn could be a concern for internal components; and to the near field in the remote event of a break in the coolant circuits. The design of the reactor system must, therefore, take the dust into account and the operation must include contingencies for dust removal and for mitigation of potential releases. Such planning requires a proper assessment of the dust inventory. This paper presents a predictive model of dust generation in an operating pebble bed with recirculating fuel. In this preliminary work the production model is based on the use of the assumption of proportionality between the dust production and the normal force and distance traveled. The model developed in this work uses the slip distances and the inter-pebble forces computed by the authors’ PEBBLES. The code, based on the discrete element method, simulates the relevant static and kinetic friction interactions between the pebbles as well as the recirculation of the pebbles through the reactor vessel. The interaction between pebbles and walls of the reactor vat is treated using the same approach. The amount of dust produced is proportional to the wear coefficient for adhesive wear (taken from literature) and to the slip volume, the product of the contact area and the slip distance. The paper will compare the predicted volume with the measured production rates. The simulation tallies the dust production based on the location of creation. Two peak production zones from intra pebble forces are predicted within the bed. The first zone is located near the pebble inlet chute due to the speed of the dropping pebbles. The second peak zone occurs lower in the reactor with increased pebble contact force due to the weight of supported pebbles. This paper presents the first use of a Discrete Element Method simulation of pebble bed dust production.

  4. High Temperature Hybrid Elastomers

    NASA Astrophysics Data System (ADS)

    Drake, Kerry Anthony

    Conventional high temperature elastomers are produced by chain polymerization of olefinic or fluorinated olefinic monomers. Ultimate thermal stabilities are limited by backbone bond strengths, lower thermal stability of cross-link sites relative to backbone bonds, and depolymerization or "unzipping" at high temperatures. In order to develop elastomers with enhanced thermal stability, hybrid thermally cross-linkable polymers that consisted only of organic-inorganic and aromatic bonds were synthesized and evaluated. The addition of phenylethynyl or phenylacetylinic functional groups to these polymers resulted in conversion of the polymers into high temperature elastomers when cross-linked by thermal curing. Polyphenyoxydiphenylsilanes were synthesized via several different condensation reactions. Results of these synthetic reactions, which utilized both hydroquinone and biphenol as monomers, were systematically evaluated to determine the optimal synthetic conditions for subsequent endcapping reactions. It was determined that dichlorodiphenylsilane condensations with biphenol in toluene or THF were best suited for this work. Use of excess dichlorodiphenylsilane yielded polymers of appropriate molecular weights with terminal reactive chlorosilane groups that could be utilized for coupling with phenylethynyl reagents in a subsequent reaction. Two new synthetic routes were developed to endcap biphenoxysilanes with ethynyl containing substituents, to yield polymers with cross-linkable end groups. Endcapping by lithiumphenylacetylide and 4[(4-fluorophenylethynyl))phenol yielded two new polymers that could be thermally cross-linked on heating above 300 °C. Successful endcapping was verified chemically by 13C NMR, FTIR and Raman analysis. Exothermic peaks consistent with ethynyl curing reactions were observed in endcapped polymers by DSC. A new diacetylinic polymer was prepared through reaction of 4,4'-buta-1,3-diyne-1,4-diyldiphenol and dichlorodiphenylsilane. This

  5. In situ tritium recovery behavior from Li 2TiO 3 pebble bed under neutron pulse operation

    NASA Astrophysics Data System (ADS)

    Tsuchiya, K.; Kikukawa, A.; Hoshino, T.; Nakamichi, M.; Yamada, H.; Yamaki, D.; Enoeda, M.; Ishitsuka, E.; Kawamura, H.; Ito, H.; Hayashi, K.

    2004-08-01

    A binary pebble bed of lithium titanate (Li 2TiO 3) was irradiated in the Japan Materials Testing Reactor (JMTR), and its tritium recovery characteristics bed was studied under pulsed neutron operations. The temperature at the outside edge of the pebble bed increased from 300 to 350 °C immediately after the window of hafnium (Hf) neutron absorber was turned toward the reactor core, while the tritium recovery rate increased gradually. The ratio of tritium recovery rate to generation rate at the high-power, ( R/ G) high, approached the saturated value of unity at about 20 h of operation. Overall tritium recovery behavior under the pulsed operation was similar to that under the steady state power operation. An estimated time constant of about 3 h for the tritium recovery was much longer than the thermal time constant of about 100 s.

  6. High Temperature Superconducting Materials Database

    National Institute of Standards and Technology Data Gateway

    SRD 149 NIST High Temperature Superconducting Materials Database (Web, free access)   The NIST High Temperature Superconducting Materials Database (WebHTS) provides evaluated thermal, mechanical, and superconducting property data for oxides and other nonconventional superconductors.

  7. Recovery and recycling of lithium value from spent lithium titanate (Li2TiO3) pebbles

    NASA Astrophysics Data System (ADS)

    Mandal, D.

    2013-09-01

    In the first generation fusion reactors the fusion of deuterium (D) and tritium (T) is considered to produce energy to meet the future energy demand. Deuterium is available in nature whereas, tritium is not. Lithium-6 (Li6) isotope has the ability to produce tritium in the n, α nuclear reaction with neutrons. Thus lithium-based ceramics enriched by Li6 isotope are considered for the tritium generation for its use in future fusion reactors. Lithium titanate is one such Li-based ceramic material being considered for its some attractive properties viz., high thermal and chemical stability, high thermal conductivity, and low tritium solubility. It is reported in the literature, that the burn up of these pebbles in the fusion reactor will be limited to only 15-17 atomic percentage. At the end of life, the pebbles will contain more than 45% unused Li6 isotope. Due to the high cost of enriched Li6 and the waste disposal considerations, it is necessary to recover the unused Li from the spent lithium titanate pebbles. Till date, only the feasibilities of different processes are reported, but no process details are available. Experiments were carried out for the recovery of Li from simulated Li2TiO3 pebbles and to reuse of lithium in lithium titanate pebble fabrication. The details of the experiments and results are discussed in this paper. Simulated lithium titanate (Li2TiO3) pebbles. The objective of the study is to develop a process which can be used to recover lithium value form the spent Li2TiO3 pebbles from future fusion reactor. The Li2TiO3 pebbles used in the study were synthesized and fabricated by the solid state reaction process developed by Mandal et al. described in details somewhere else [1,2]. Spherical Li2TiO3 pebbles of size 1.0 mm were used and the properties of the Li2TiO3 pebbles used in the study are shown in Table 1. Hydrochloric acid (HCl), of 99.8% purity, purchased from Merck and Loba Chemicals, Mumbai, India. To leach lithium from Li2TiO3

  8. Tritium release kinetics from Li 2TiO 3 pebbles as prepared by soft-wet-chemistry

    NASA Astrophysics Data System (ADS)

    Casadio, S.; van der Laan, J. G.; Alvani, C.; Magielsen, A. J.; Stijkel, M. P.

    2004-08-01

    Lithium meta titanate pebbles has been prepared from agglomeration-sintering powders which were obtained by Li-Ti-peroxo-complex solution precursor (Li 2TiO 3 dissolved at room temperature in H 2O + 40% H 2O 2 and stabilized with citric acid). Through this wet route Li 2TiO 3 pebbles with high density(˜92% of T.D.) has been obtained and the tritium release behavior has been tested `in-pile' by the EXOTIC-8.9 experiment (˜440 days of irradiation at full power in the high neutron flux of HFR-Petten). Tritium residence times ( τ) in the pebbles has been measured during irradiation between 550 and 400 °C and He + 0.1%H 2 purge gas composition. By a thermally activated process (activation energy=111 kJ/mol) with 410 °C as minimum temperature the tritium residence time is found to be about 1 day, which places this specimen in a good ranking position among those tested by the EXOTIC-series. A clear increase of the tritium release rate has been observed by increased H 2 concentration (up to 1%) in the He purge. Out-of-pile ramp-annealing tritium desorption (TPD) tests on short-time irradiated pebbles has been also performed by various devices and conditions. The kinetic parameters from the TPD investigation gave consistent results with those characterizing the equilibrium times of tritium release rate after the gas composition and temperature transients imposed on the specimen during the in-pile experiment.

  9. Evaluation of proposed German safety criteria for high-temperature gas-cooled reactors

    SciTech Connect

    Barsell, A.W.

    1980-05-01

    This work reviews proposed safety criteria prepared by the German Bundesministerium des Innern (BMI) for future licensing of gas-cooled high-temperature reactor (HTR) concepts in the Federal Republic of Germany. Comparison is made with US General Design Criteria (GDCs) in 10CFR50 Appendix A and with German light water reactor (LWR) criteria. Implications for the HTR design relative to the US design and safety approach are indicated. Both inherent characteristics and design features of the steam cycle, gas turbine, and process heat concepts are taken into account as well as generic design options such as a pebble bed or prismatic core.

  10. Characteristics of Li 2O pebbles fabricated by the melting granulation method

    NASA Astrophysics Data System (ADS)

    Tsuchiya, Kunihiko; Kawamura, Hiroshi; Nakamichi, Masaru; Imaizumi, Hideki; Saito, Minoru; Kanzawa, Tohru; Nagakura, Masaaki

    1995-03-01

    Lithium ceramics have been considered as candidates for solid breeder materials for fusion reactors. In lithium ceramics, lithium oxide (Li 2O) is one of the best tritium breeders from the standpoint of high lithium density and high thermal conductivity. Recently, several studies have been carried out on the fabrication of small, spherical Li 2O forms to reduce the induced thermal stress in the breeder. A mass-production process for making small pebbles was developed using the melting granulation method. In the present work, the characteristics of Li 2O pebbles fabricated by this method, and mass transfer properties within a Li 2O pebble bed, are discussed.

  11. Nuclear Safeguards Considerations For The Pebble Bed Modular Reactor (PBMR)

    SciTech Connect

    Phillip Casey Durst; David Beddingfield; Brian Boyer; Robert Bean; Michael Collins; Michael Ehinger; David Hanks; David L. Moses; Lee Refalo

    2009-10-01

    High temperature reactors (HTRs) have been considered since the 1940s, and have been constructed and demonstrated in the United Kingdom (Dragon), United States (Peach Bottom and Fort Saint Vrain), Japan (HTTR), Germany (AVR and THTR-300), and have been the subject of conceptual studies in Russia (VGM). The attraction to these reactors is that they can use a variety of reactor fuels, including abundant thorium, which upon reprocessing of the spent fuel can produce fissile U-233. Hence, they could extend the stocks of available uranium, provided the fuel is reprocessed. Another attractive attribute is that HTRs typically operate at a much higher temperature than conventional light water reactors (LWRs), because of the use of pyrolytic carbon and silicon carbide coated (TRISO) fuel particles embedded in ceramic graphite. Rather than simply discharge most of the unused heat from the working fluid in the power plant to the environment, engineers have been designing reactors for 40 years to recover this heat and make it available for district heating or chemical conversion plants. Demonstrating high-temperature nuclear energy conversion was the purpose behind Fort Saint Vrain in the United States, THTR-300 in Germany, HTTR in Japan, and HTR-10 and HTR-PM, being built in China. This resulted in nuclear reactors at least 30% or more thermodynamically efficient than conventional LWRs, especially if the waste heat can be effectively utilized in chemical processing plants. A modern variant of high temperature reactors is the Pebble Bed Modular Reactor (PBMR). Originally developed in the United States and Germany, it is now being redesigned and marketed by the Republic of South Africa and China. The team examined historical high temperature and high temperature gas reactors (HTR and HTGR) and reviewed safeguards considerations for this reactor. The following is a preliminary report on this topic prepared under the ASA-100 Advanced Safeguards Project in support of the NNSA Next

  12. High temperature lubricating process

    DOEpatents

    Taylor, R.W.; Shell, T.E.

    1979-10-04

    It has been difficult to provide adequate lubrication for load bearing, engine components when such engines are operating in excess of about 475/sup 0/C. The present invention is a process for providing a solid lubricant on a load bearing, solid surface, such as in an engine being operated at temperatures in excess of about 475/sup 0/C. The process comprises contacting and maintaining the following steps: a gas phase is provided which includes at least one component reactable in a temperature dependent reaction to form a solid lubricant; the gas phase is contacted with the load bearing surface; the load bearing surface is maintained at a temperature which causes reaction of the gas phase component and the formation of the solid lubricant; and the solid lubricant is formed directly on the load bearing surface. The method is particularly suitable for use with ceramic engines.

  13. Assessment of RELAP5-3D for Analysis of Very High Temperature Gas-Cooled Reactors

    SciTech Connect

    Chang Oh; Larry Siefken; Cliff Davis

    2005-10-01

    The RELAP5-3D© computer code is being improved for the analysis of very high temperature gas-cooled reactors. Diffusion and natural circulation can be important phenomena in gas-cooled reactors following a loss-of-coolant accident. Recent improvements to the code include the addition of models that simulate pressure loss across a pebble bed and molecular diffusion. These models were assessed using experimental data. The diffusion model was assessed using data from inverted U-tube experiments. The code’s capability to simulate natural circulation of air through a pebble bed was assessed using data from the NACOK facility. The calculated results were in reasonable agreement with the measured values.

  14. AN EXPERIMENT TO STUDY PEBBLE BED LIQUID-FLUORIDE-SALT HEAT TRANSFER

    SciTech Connect

    Yoder Jr, Graydon L; Aaron, Adam M; Heatherly, Dennis Wayne; Holcomb, David Eugene; Kisner, Roger A; McCarthy, Mike; Peretz, Fred J; Wilgen, John B; Wilson, Dane F

    2011-01-01

    A forced-convection liquid-fluoride-salt loop is being constructed at Oak Ridge National Laboratory (ORNL). This loop was designed as a versatile experimental facility capable of supporting general thermal/fluid/corrosion testing of liquid fluoride salts. The initial test configuration is designed to support the Pebble Bed Advanced High-Temperature Reactor and incorporates a test section designed to examine the heat transfer behavior of FLiNaK salt in a heated pebble bed. The loop is constructed of Inconel 600 and is capable of operating at up to 700oC. It contains a total of 72 kg of FLiNaK salt and uses an overhung impeller centrifugal sump pump that can provide FLiNaK flow at 4.5 kg/s with a head of 0.125 MPa. The test section is made of silicon carbide (SiC) and contains approximately 600 graphite spheres, 3 cm in diameter. The pebble bed is heated using a unique inductive technique. A forced induction air cooler removes the heat added to the pebble bed. The salt level within the loop is maintained by controlling an argon cover gas pressure. Salt purification is performed in batch mode by transferring the salt from the loop into a specially made nickel crucible system designed to remove oxygen, moisture and other salt impurities. Materials selection for the loop and test section material was informed by 3 months of Inconel 600 and SiC corrosion testing as well as tests examining subcomponent performance in the salt. Several SiC-to-Inconel 600 mechanical joint designs were considered before final salt and gas seals were chosen. Structural calculations of the SiC test section were performed to arrive at a satisfactory test section configuration. Several pump vendors provided potential loop pump designs; however, because of cost, the pump was designed and fabricated in-house. The pump includes a commercial rotating dry gas shaft seal to maintain loop cover gas inventory. The primary instrumentation on the loop includes temperature, pressure, and loop flow rate

  15. High-Temperature Piezoelectric Sensing

    PubMed Central

    Jiang, Xiaoning; Kim, Kyungrim; Zhang, Shujun; Johnson, Joseph; Salazar, Giovanni

    2014-01-01

    Piezoelectric sensing is of increasing interest for high-temperature applications in aerospace, automotive, power plants and material processing due to its low cost, compact sensor size and simple signal conditioning, in comparison with other high-temperature sensing techniques. This paper presented an overview of high-temperature piezoelectric sensing techniques. Firstly, different types of high-temperature piezoelectric single crystals, electrode materials, and their pros and cons are discussed. Secondly, recent work on high-temperature piezoelectric sensors including accelerometer, surface acoustic wave sensor, ultrasound transducer, acoustic emission sensor, gas sensor, and pressure sensor for temperatures up to 1,250 °C were reviewed. Finally, discussions of existing challenges and future work for high-temperature piezoelectric sensing are presented. PMID:24361928

  16. High-temperature bearing lubricants

    NASA Technical Reports Server (NTRS)

    Anderson, W. J.; Parker, R. J.; Zaretsky, E. V.

    1968-01-01

    Synthetic paraffinic oil lubricates ball bearings at temperatures in the 600 degrees F range. The lubricant contains antiwear and antifoam additives, is thermally stable in the high temperature range, but requires protection from oxygen.

  17. High temperature LSI

    NASA Technical Reports Server (NTRS)

    Dening, D. C.; Ragonese, L. J.; Lee, C. Y.

    1982-01-01

    Integrated injection logic (1,2) technology for reliable operation under a -55 C to +300 C, temperature range is discussed. Experimental measurements indicate that an 80 mv signal swing is available at 300 C with 100 micro A injection current per gate. In addition, modeling results predict how large gate fan-ins can decrease the maximum thermal operational limits. These operational limits and the longterm reliability factors associated with device metallization are evaluated via specialized test mask.

  18. Studies on a high-temperature regenerative heat exchanger for closed-cycle MHD power generation

    SciTech Connect

    Kim, Y. ); Shinagawa, Y.; Yoshikawa, K.; Shioda, S. )

    1990-01-01

    This paper reports on a numerical heat- transfer analysis in the combustion chamber of a pebble bed regenerative heat exchanger carried out for the heating period. A radiative zone method coupled with chemical and two-dimensional fluid dynamic calculations is employed in the analysis, and the results agree well with the measured data. The analysis also shows that higher temperature can be obtained at the top of the pebble bed by optimizing the geometries of the combustion chamber and the burner.

  19. METHODS FOR MODELING THE PACKING OF FUEL ELEMENTS IN PEBBLE BED REACTORS

    SciTech Connect

    Abderrafi M. Ougouag; Joshua J. Cogliati; Jan-Leen Kloosterman

    2005-09-01

    Two methods for the modeling of the packing of pebbles in the pebble bed reactors are presented and compared. The first method is based on random generation of potential centers for the pebbles, followed by rejection of points that are not compatible with the geometric constraint of no (or limited) pebbles overlap. The second method models the actual physical packing process, accounting for the dynamic of pebbles as they are dropped onto the pebble bed and as they settle therein. A simplification in the latter model is the assumption of a starting point with very dilute packing followed by settling. The results from the two models are compared and the properties of the second model and the dependence of its results on many of the modeling parameters are presented. The first model (with no overlap allowed) has been implemented into a code to compute Dancoff factors. The second model will soon be implemented into that same code and will also be used to model flow of pebbles in a reactor and core densification in the simulation of earthquakes. Both methods reproduce experimental values well, with the latter displaying a high level of fidelity.

  20. Thermo-mechanical Modelling of Pebble Beds in Fusion Blankets and its Implementation by a Return-Mapping Algorithm

    SciTech Connect

    Gan, Yixiang; Kamlah, Marc

    2008-07-01

    In this investigation, a thermo-mechanical model of pebble beds is adopted and developed based on experiments by Dr. Reimann at Forschungszentrum Karlsruhe (FZK). The framework of the present material model is composed of a non-linear elastic law, the Drucker-Prager-Cap theory, and a modified creep law. Furthermore, the volumetric inelastic strain dependent thermal conductivity of beryllium pebble beds is taken into account and full thermo-mechanical coupling is considered. Investigation showed that the Drucker-Prager-Cap model implemented in ABAQUS can not fulfill the requirements of both the prediction of large creep strains and the hardening behaviour caused by creep, which are of importance with respect to the application of pebble beds in fusion blankets. Therefore, UMAT (user defined material's mechanical behaviour) and UMATHT (user defined material's thermal behaviour) routines are used to re-implement the present thermo-mechanical model in ABAQUS. An elastic predictor radial return mapping algorithm is used to solve the non-associated plasticity iteratively, and a proper tangent stiffness matrix is obtained for cost-efficiency in the calculation. An explicit creep mechanism is adopted for the prediction of time-dependent behaviour in order to represent large creep strains in high temperature. Finally, the thermo-mechanical interactions are implemented in a UMATHT routine for the coupled analysis. The oedometric compression tests and creep tests of pebble beds at different temperatures are simulated with the help of the present UMAT and UMATHT routines, and the comparison between the simulation and the experiments is made. (authors)

  1. High-temperature-measuring device

    DOEpatents

    Not Available

    1981-01-27

    A temperature measuring device for very high design temperatures (to 2000/sup 0/C) is described. The device comprises a homogenous base structure preferably in the form of a sphere or cylinder. The base structure contains a large number of individual walled cells. The base structure has a decreasing coefficient of elasticity within the temperature range being monitored. A predetermined quantity of inert gas is confined within each cell. The cells are dimensonally stable at the normal working temperature of the device. Increases in gaseous pressure within the cells will permanently deform the cell walls at temperatures within the high temperature range to be measured. Such deformation can be correlated to temperature by calibrating similarly constructed devices under known time and temperature conditions.

  2. High temperature interface superconductivity

    NASA Astrophysics Data System (ADS)

    Gozar, A.; Bozovic, I.

    2016-02-01

    High-Tc superconductivity at interfaces has a history of more than a couple of decades. In this review we focus our attention on copper-oxide based heterostructures and multi-layers. We first discuss the technique, atomic layer-by-layer molecular beam epitaxy (ALL-MBE) engineering, that enabled High-Tc Interface Superconductivity (HT-IS), and the challenges associated with the realization of high quality interfaces. Then we turn our attention to the experiments which shed light on the structure and properties of interfacial layers, allowing comparison to those of single-phase films and bulk crystals. Both 'passive' hetero-structures as well as surface-induced effects by external gating are discussed. We conclude by comparing HT-IS in cuprates and in other classes of materials, especially Fe-based superconductors, and by examining the grand challenges currently laying ahead for the field.

  3. High temperature interface superconductivity

    DOE PAGESBeta

    Gozar, A.; Bozovic, I.

    2016-01-20

    High-Tc superconductivity at interfaces has a history of more than a couple of decades. In this review we focus our attention on copper-oxide based heterostructures and multi-layers. We first discuss the technique, atomic layer-by-layer molecular beam epitaxy (ALL-MBE) engineering, that enabled High-Tc Interface Superconductivity (HT-IS), and the challenges associated with the realization of high quality interfaces. Then we turn our attention to the experiments which shed light on the structure and properties of interfacial layers, allowing comparison to those of single-phase films and bulk crystals. Both ‘passive’ hetero-structures as well as surface-induced effects by external gating are discussed. Here, wemore » conclude by comparing HT-IS in cuprates and in other classes of materials, especially Fe-based superconductors, and by examining the grand challenges currently laying ahead for the field.« less

  4. High-temperature ceramic receivers

    SciTech Connect

    Jarvinen, P. O.

    1980-01-01

    An advanced ceramic dome cavity receiver is discussed which heats pressurized gas to temperatures above 1800/sup 0/F (1000/sup 0/C) for use in solar Brayton power systems of the dispersed receiver/dish or central receiver type. Optical, heat transfer, structural, and ceramic material design aspects of the receiver are reported and the development and experimental demonstration of a high-temperature seal between the pressurized gas and the high-temperature silicon carbide dome material is described.

  5. PEBBLES Simulation of Static Friction and New Static Friction Benchmark

    SciTech Connect

    Joshua J. Cogliati; Abderrafi M. Ougouag

    2010-05-01

    Pebble bed reactors contain large numbers of spherical fuel elements arranged randomly. Determining the motion and location of these fuel elements is required for calculating certain parameters of pebble bed reactor operation. This paper documents the PEBBLES static friction model. This model uses a three dimensional differential static friction approximation extended from the two dimensional Cundall and Strack model. The derivation of determining the rotational transformation of pebble to pebble static friction force is provided. A new implementation for a differential rotation method for pebble to container static friction force has been created. Previous published methods are insufficient for pebble bed reactor geometries. A new analytical static friction benchmark is documented that can be used to verify key static friction simulation parameters. This benchmark is based on determining the exact pebble to pebble and pebble to container static friction coefficients required to maintain a stable five sphere pyramid.

  6. Projects of High-Temperature Nuclear Reactors

    NASA Astrophysics Data System (ADS)

    Ekmanis, J.; Tomsons, E.; Zeltiņš, N.

    2013-04-01

    Part 2 of the overview gives emphasis to the projects of high-temperature NRs, whose development is an area of active engagement for the specialists from the USA, France, Japan, Russia, China, the Netherlands, and Germany. Projects of several powerful NRs of the HTGR type for commercial use had been worked out in the USA and Germany already by 1970 but not yet implemented. Augstas temperatūras ar gāzes dzesēšanu HTGR (High Temperature Gas cooled Reactor) tipa kodolreaktoru (KR) izstrādes koncepcija bija piedāvāta 1956. gadā Lielbritānijā. Apmēram tanī pašā laikā minētā tipa KR izstrādi uzsāka Vācijā un ASV. HTGR tipa KR kodoldegviela un kodoldegvielas atražošanas materiāla sīkās daļiņas ar diametru apmēram 0.5 mm pārklātas ar vairākām aizsargkārtām un atrodas grafīta neitronu palēninātājā, kas aizsargā daļiņas no neitronu palēninātāja un dzesētāja iedarbes. Augstas temperatūras KR bez hēlija gāzes siltumnesēja var izmantot šķidrus metālus (nātriju, svinu vai svina-bismuta sakausējumu) un izkausētu sāli. Pašlaik darbojās divi augstas temperatūras ar hēlija gāzi dzesēti eksperimentālie HTGR tipa KR. Viens Japānā "HTTR" no 1998. gada oktobra (sākts būvēt 1991. gada 15. martā) ar 30 MWth siltuma jaudu. Otrs Ķīnā "HTR-10" no 2000.gada decembra (sākts būvēt 1995. gada14. jūnijā) ar 10 MWth siltuma jaudu. Ķīnā Shandong provincē 2011.gada aprīlī uzsāka augstas temperatūras "HTR-PM" (High Temperature Gas-cooled Reactor - Pebble bed Module) tipa kodolreaktora celtniecību ar 250 MWth siltuma jaudu. Augstas temperatūras kodolreaktoru izstrādē pašlaik aktīvi iesaistīti ASV, Francijas, Japānas, Krievijas, Ķīnas, Nīderlandes un Vācijas speciālisti.

  7. An Experimental Test Facility to Support Development of the Fluoride Salt Cooled High Temperature Reactor

    SciTech Connect

    Yoder Jr, Graydon L; Aaron, Adam M; Cunningham, Richard Burns; Fugate, David L; Holcomb, David Eugene; Kisner, Roger A; Peretz, Fred J; Robb, Kevin R; Wilgen, John B; Wilson, Dane F

    2014-01-01

    The need for high-temperature (greater than 600 C) energy exchange and delivery systems is significantly increasing as the world strives to improve energy efficiency and develop alternatives to petroleum-based fuels. Liquid fluoride salts are one of the few energy transport fluids that have the capability of operating at high temperatures in combination with low system pressures. The Fluoride Salt-Cooled High-Temperature Reactor design uses fluoride salt to remove core heat and interface with a power conversion system. Although a significant amount of experimentation has been performed with these salts, specific aspects of this reactor concept will require experimental confirmation during the development process. The experimental facility described here has been constructed to support the development of the Fluoride Salt Cooled High Temperature Reactor concept. The facility is capable of operating at up to 700 C and incorporates a centrifugal pump to circulate FLiNaK salt through a removable test section. A unique inductive heating technique is used to apply heat to the test section, allowing heat transfer testing to be performed. An air-cooled heat exchanger removes added heat. Supporting loop infrastructure includes a pressure control system; trace heating system; and a complement of instrumentation to measure salt flow, temperatures, and pressures around the loop. The initial experiment is aimed at measuring fluoride salt heat transfer inside a heated pebble bed similar to that used for the core of the pebble bed advanced high-temperature reactor. This document describes the details of the loop design, auxiliary systems used to support the facility, the inductive heating system, and facility capabilities.

  8. High Temperature Solar Cell Development

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Raffaelle, Ryne P.; Merritt, Danielle

    2004-01-01

    The majority of satellites and near-earth probes developed to date have used photovoltaic arrays for power generation. If future mission to probe environments close to the sun will be able to use photovoltaic power, solar cells that can function at high temperatures, under high light intensity, and high radiation conditions must be developed. In this paper, we derive the optimum bandgap as a function of the operating temperature.

  9. Advanced High Temperature Structural Seals

    NASA Technical Reports Server (NTRS)

    Newquist, Charles W.; Verzemnieks, Juris; Keller, Peter C.; Rorabaugh, Michael; Shorey, Mark

    2002-01-01

    This program addresses the development of high temperature structural seals for control surfaces for a new generation of small reusable launch vehicles. Successful development will contribute significantly to the mission goal of reducing launch cost for small, 200 to 300 pound payloads. Development of high temperature seals is mission enabling. For instance, ineffective control surface seals can result in high temperature (3100 F) flows in the elevon area exceeding structural material limits. Longer sealing life will allow use for many missions before replacement, contributing to the reduction of hardware, operation and launch costs.

  10. Development of high strength, high temperature ceramics

    NASA Technical Reports Server (NTRS)

    Hall, W. B.

    1982-01-01

    Improvement in the high-pressure turbopumps, both fuel and oxidizer, in the Space Shuttle main engine were considered. The operation of these pumps is limited by temperature restrictions of the metallic components used in these pumps. Ceramic materials that retain strength at high temperatures and appear to be promising candidates for use as turbine blades and impellers are discussed. These high strength materials are sensitive to many related processing parameters such as impurities, sintering aids, reaction aids, particle size, processing temperature, and post thermal treatment. The specific objectives of the study were to: (1) identify and define the processing parameters that affect the properties of Si3N4 ceramic materials, (2) design and assembly equipment required for processing high strength ceramics, (3) design and assemble test apparatus for evaluating the high temperature properties of Si3N4, and (4) conduct a research program of manufacturing and evaluating Si3N4 materials as applicable to rocket engine applications.

  11. High temperature turbine engine structure

    DOEpatents

    Boyd, Gary L.

    1990-01-01

    A high temperature turbine engine includes a hybrid ceramic/metallic rotor member having ceramic/metal joint structure. The disclosed joint is able to endure higher temperatures than previously possible, and aids in controlling heat transfer in the rotor member.

  12. High temperature structural insulating material

    DOEpatents

    Chen, W.Y.

    1984-07-27

    A high temperature structural insulating material useful as a liner for cylinders of high temperature engines through the favorable combination of high service temperature (above about 800/sup 0/C), low thermal conductivity (below about 0.2 W/m/sup 0/C), and high compressive strength (above about 250 psi). The insulating material is produced by selecting hollow ceramic beads with a softening temperature above about 800/sup 0/C, a diameter within the range of 20-200 ..mu..m, and a wall thickness in the range of about 2 to 4 ..mu..m; compacting the beads and a compatible silicate binder composition under pressure and sintering conditions to provide the desired structural form with the structure having a closed-cell, compact array of bonded beads.

  13. High temperature structural insulating material

    DOEpatents

    Chen, Wayne Y.

    1987-01-06

    A high temperature structural insulating material useful as a liner for cylinders of high temperature engines through the favorable combination of high service temperature (above about 800.degree. C.), low thermal conductivity (below about 0.2 W/m.degree. C.), and high compressive strength (above about 250 psi). The insulating material is produced by selecting hollow ceramic beads with a softening temperature above about 800.degree. C., a diameter within the range of 20-200 .mu.m, and a wall thickness in the range of about 2-4 .mu.m; compacting the beads and a compatible silicate binder composition under pressure and sintering conditions to provide the desired structural form with the structure having a closed-cell, compact array of bonded beads.

  14. High temperature structural insulating material

    DOEpatents

    Chen, Wayne Y.

    1987-01-01

    A high temperature structural insulating material useful as a liner for cylinders of high temperature engines through the favorable combination of high service temperature (above about 800.degree. C.), low thermal conductivity (below about 0.2 W/m.degree. C.), and high compressive strength (above about 250 psi). The insulating material is produced by selecting hollow ceramic beads with a softening temperature above about 800.degree. C., a diameter within the range of 20-200 .mu.m, and a wall thickness in the range of about 2-4 .mu.m; compacting the beads and a compatible silicate binder composition under pressure and sintering conditions to provide the desired structural form with the structure having a closed-cell, compact array of bonded beads.

  15. Containerless high temperature calorimeter apparatus

    NASA Technical Reports Server (NTRS)

    Lacy, L. L.; Nisen, D. B. (Inventor)

    1981-01-01

    A calorimeter apparatus for measuring high temperature thermophysical properties of materials is disclosed which includes a containerless heating apparatus in which the specimen is suspended and heated by electron bombardment.

  16. Advanced High Temperature Structural Seals

    NASA Technical Reports Server (NTRS)

    Newquist, Charles W.; Verzemnieks, Juris; Keller, Peter C.; Shorey, Mark W.; Steinetz, Bruce (Technical Monitor)

    2000-01-01

    This program addresses the development of high temperature structural seals for control surfaces for a new generation of small reusable launch vehicles. Successful development will contribute significantly to the mission goal of reducing launch cost for small, 200 to 300 lb payloads. Development of high temperature seals is mission enabling. For instance, ineffective control surface seals can result in high temperature (3100 F) flows in the elevon area exceeding structural material limits. Longer sealing life will allow use for many missions before replacement, contributing to the reduction of hardware, operation and launch costs. During the first phase of this program the existing launch vehicle control surface sealing concepts were reviewed, the aerothermal environment for a high temperature seal design was analyzed and a mock up of an arc-jet test fixture for evaluating seal concepts was fabricated.

  17. Thermal Hydraulics of the Very High Temperature Gas Cooled Reactor

    SciTech Connect

    Chang Oh; Eung Kim; Richard Schultz; Mike Patterson; Davie Petti

    2009-10-01

    The U.S Department of Energy (DOE) is conducting research on the Very High Temperature Reactor (VHTR) design concept for the Next Generation Nuclear Plant (NGNP) Project. The reactor design will be a graphite moderated, thermal neutron spectrum reactor that will produce electricity and hydrogen in a highly efficient manner. The NGNP reactor core will be either a prismatic graphite block type core or a pebble bed core. The NGNP will use very high-burnup, low-enriched uranium, TRISO-coated fuel, and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during reactor core-accidents. The objectives of the NGNP Project are to: Demonstrate a full-scale prototype VHTR that is commercially licensed by the U.S. Nuclear Regulatory Commission, and Demonstrate safe and economical nuclear-assisted production of hydrogen and electricity. The DOE laboratories, led by the INL, perform research and development (R&D) that will be critical to the success of the NGNP, primarily in the areas of: • High temperature gas reactor fuels behavior • High temperature materials qualification • Design methods development and validation • Hydrogen production technologies • Energy conversion. This paper presents current R&D work that addresses fundamental thermal hydraulics issues that are relevant to a variety of possible NGNP designs.

  18. Air Ingress Analyses on a High Temperature Gas-Cooled Reactor

    SciTech Connect

    Oh, Chang H; Moore, Richard Leroy; Merrill, Brad Johnson; Petti, David Andrew

    2001-11-01

    A primary-pipe break accident is one of the design-basis accidents of a high-temperature gas-cooled reactor (HTGR). When this accident occurs, air is anticipated to enter the reactor core from the break and oxidize the in-core graphite structure in the modular pebble bed reactor (MPBR). This paper presents the results of the graphite oxidation model developed as part of the Idaho National Engineering and Environmental Laboratory's Direct Research and Development effort. Although gas reactors have been tried in the past with limited success, the innovations of modularity and integrated state-ofart control systems coupled with improved fuel design and a pebble bed core make this design potentially very attractive from an economic and technical perspective. A schematic diagram on a reference design of the MPBR has been established on a major component level (INEEL & MIT, 1999). Steady-state and transient thermal hydraulics models will be produced with key parameters established for these conditions at all major components. Development of an integrated plant model to allow for transient analysis on a more sophisticated level is now being developed. In this paper, preliminary results of the hypothetical air ingress are presented. A graphite oxidation model was developed to determine temperature and the control mechanism in the spherical graphite geometry.

  19. High temperature current mirror amplifier

    DOEpatents

    Patterson, III, Raymond B.

    1984-05-22

    A high temperature current mirror amplifier having biasing means in the transdiode connection of the input transistor for producing a voltage to maintain the base-collector junction reversed-biased and a current means for maintaining a current through the biasing means at high temperatures so that the base-collector junction of the input transistor remained reversed-biased. For accuracy, a second current mirror is provided with a biasing means and current means on the input leg.

  20. Development Status of the PEBBLES Code for Pebble Mechanics: Improved Physical Models and Speed-up

    SciTech Connect

    Joshua J. Cogliati; Abderrafi M. Ougouag

    2009-09-01

    PEBBLES is a code for simulating the motion of all the pebbles in a pebble bed reactor. Since pebble bed reactors are packed randomly and not precisely placed, the location of the fuel elements in the reactor is not deterministically known. Instead, when determining operating parameters the motion of the pebbles can be simulated and stochastic locations can be found. The PEBBLES code can output information relevant for other simulations of the pebble bed reactors such as the positions of the pebbles in the reactor, packing fraction change in an earthquake, and velocity profiles created by recirculation. The goal for this level three milestone was to speedup the PEBBLES code through implementation on massively parallel computer. Work on this goal has resulted in speeding up both the single processor version and creation of a new parallel version of PEBBLES. Both the single processor version and the parallel running capability of the PEBBLES code have improved since the fiscal year start. The hybrid MPI/OpenMP PEBBLES version was created this year to run on the increasingly common cluster hardware profile that combines nodes with multiple processors that share memory and a cluster of nodes that are networked together. The OpenMP portions use the Open Multi-Processing shared memory parallel processing model to split the task across processors in a single node that shares memory. The Message Passing Interface (MPI) portion uses messages to communicate between different nodes over a network. The following are wall clock speed up for simulating an NGNP-600 sized reactor. The single processor version runs 1.5 times faster compared to the single processor version at the beginning of the fiscal year. This speedup is primarily due to the improved static friction model described in the report. When running on 64 processors, the new MPI/OpenMP hybrid version has a wall clock speed up of 22 times compared to the current single processor version. When using 88 processors, a

  1. Development Status of the PEBBLES Code for Pebble Mechanics: Improved Physical Models and Speed-up

    SciTech Connect

    Joshua J. Cogliati; Abderrafi M. Ougouag

    2009-12-01

    PEBBLES is a code for simulating the motion of all the pebbles in a pebble bed reactor. Since pebble bed reactors are packed randomly and not precisely placed, the location of the fuel elements in the reactor is not deterministically known. Instead, when determining operating parameters the motion of the pebbles can be simulated and stochastic locations can be found. The PEBBLES code can output information relevant for other simulations of the pebble bed reactors such as the positions of the pebbles in the reactor, packing fraction change in an earthquake, and velocity profiles created by recirculation. The goal for this level three milestone was to speedup the PEBBLES code through implementation on massively parallel computer. Work on this goal has resulted in speeding up both the single processor version and creation of a new parallel version of PEBBLES. Both the single processor version and the parallel running capability of the PEBBLES code have improved since the fiscal year start. The hybrid MPI/OpenMP PEBBLES version was created this year to run on the increasingly common cluster hardware profile that combines nodes with multiple processors that share memory and a cluster of nodes that are networked together. The OpenMP portions use the Open Multi-Processing shared memory parallel processing model to split the task across processors in a single node that shares memory. The Message Passing Interface (MPI) portion uses messages to communicate between different nodes over a network. The following are wall clock speed up for simulating an NGNP-600 sized reactor. The single processor version runs 1.5 times faster compared to the single processor version at the beginning of the fiscal year. This speedup is primarily due to the improved static friction model described in the report. When running on 64 processors, the new MPI/OpenMP hybrid version has a wall clock speed up of 22 times compared to the current single processor version. When using 88 processors, a

  2. On the evaluation of pebble bed reactor critical experiments using the PEBBED code

    SciTech Connect

    Hans D. Gougar; R. Sonat Sen

    2001-10-01

    The PEBBED pebble bed reactor fuel management code under development at the Idaho National Laboratory is designed for rapid design and analysis of pebble bed high temperature reactors (PBRs). Embedded within the code are the THERMIX-KONVEK thermal fluid solver and the COMBINE-7 spectrum generation code for inline cross section homogenization. Because 1D symmetry can be found at each stage of core heterogeneity; spherical at TRISO and pebble levels, and cylindrical at the control rod and core levels, the 1-D transport capability of ANISN is assumed to be sufficient in most cases for generating flux solutions for cross section homogenization. Furthermore, it is fast enough to be executed during the analysis or the equilibrium core. Multi-group diffusion-based design codes such as PEBBED and VSOP are not expected to yield the accuracy and resolution of continuous energy Monte Carlo codes for evaluation of critical experiments. Nonetheless, if the preparation of multigroup cross sections can adequately capture the physics of the mixing of PBR fuel elements and leakage from the core, reasonable results may be obtained. In this paper, results of the application of PEBBED to two critical experiments (HTR Proteus and HTR-10) and associated computational models are presented. The embedded 1-D transport solver is shown to capture the double heterogeneity of the pebble fuel in unit cell calculations. Eigenvalue calculations of a whole core are more challenging, particularly if the boron concentration is uncertain. The sensitivity of major safety parameters to variations in modeling assumptions, however, is shown to be minimal. The embedded transport solver can also be used to obtain control rod worths but only with adjustment of the local spectrum. Results are compared to those of other codes as well as Core 4 of the HTR-Proteus experiment which contains partially inserted rods. They indicate the need for a reference solution to adjust the radius of the graphite in the

  3. Forming Giant Planet Cores by Pebble Accretion -- Why Slow and Steady wins the Race

    NASA Astrophysics Data System (ADS)

    Kretke, Katherine A.; Levison, Harold F.

    2014-05-01

    In recent years there has been a radical new solution proposed to solve the problem of giant planet core formation. "Pebbles", particles ranging from centimeters to meters in size, have been shown to accrete extremely efficiently due to aerodynamic drag. Large capture cross-sections combined with fast pebble drift rates can allow a single planetesimal to grow from Ceres size to 10s of Earth masses well within the lifetime of gaseous circumstellar disks. However, at large sizes, the the capture-cross section of pebbles goes with the Hill sphere, forcing pebble accretion to becomes a fundamentally "oligarchic-like" process. This makes it difficult to form a few giant planet cores; instead a more generic result is many 10s to 100s of competing oligarchs. In this work, we present a way to get around this oligarchic dilemma If pebbles are assumed to form slowly over a long period of time, then the planetesimal growth rates are slow enough for the planetesimals to dynamically excite each other. As the larger planetisimals/proto-planets stir their smaller companions, these smaller bodies are excited to such a degree that they spend only a small fraction of their orbits embedded in the cooler pebble disk. This allows the larger bodies to starve their neighbors and maintain a relative runaway growth rate to high mass, effectively forming the cores of giant planets.

  4. High temperature lightweight foamed cements

    DOEpatents

    Sugama, Toshifumi.

    1989-10-03

    Cement slurries are disclosed which are suitable for use in geothermal wells since they can withstand high temperatures and high pressures. The formulation consists of cement, silica flour, water, a retarder, a foaming agent, a foam stabilizer, and a reinforcing agent. A process for producing these cements is also disclosed. 3 figs.

  5. High temperature lightweight foamed cements

    DOEpatents

    Sugama, Toshifumi

    1989-01-01

    Cement slurries are disclosed which are suitable for use in geothermal wells since they can withstand high temperatures and high pressures. The formulation consists of cement, silica flour, water, a retarder, a foaming agent, a foam stabilizer, and a reinforcing agent. A process for producing these cements is also disclosed.

  6. Temperature controlled high voltage regulator

    DOEpatents

    Chiaro, Jr., Peter J.; Schulze, Gerald K.

    2004-04-20

    A temperature controlled high voltage regulator for automatically adjusting the high voltage applied to a radiation detector is described. The regulator is a solid state device that is independent of the attached radiation detector, enabling the regulator to be used by various models of radiation detectors, such as gas flow proportional radiation detectors.

  7. High temperature electronic gain device

    DOEpatents

    McCormick, J. Byron; Depp, Steven W.; Hamilton, Douglas J.; Kerwin, William J.

    1979-01-01

    An integrated thermionic device suitable for use in high temperature, high radiation environments. Cathode and control electrodes are deposited on a first substrate facing an anode on a second substrate. The substrates are sealed to a refractory wall and evacuated to form an integrated triode vacuum tube.

  8. Gallium phosphide high temperature diodes

    SciTech Connect

    Chaffin, R.J.; Dawson, L.R.

    1981-01-01

    The purpose of this work is to develop high temperature (> 300/sup 0/C) diodes for geothermal and other energy applications. A comparison of reverse leakage currents of Si, GaAs and GaP is made. Diodes made from GaP should be usable to > 500/sup 0/C. An LPE process for producing high quality, grown junction GaP diodes is described. This process uses low vapor pressure Mg as a dopant which allows multiple boat growth in the same LPE run. These LPE wafers have been cut into die and metallized to make the diodes. These diodes produce leakage currents below 10/sup -3/ A/cm/sup 2/ at 400/sup 0/C while exhibiting good high temperature rectification characteristics. High temperature life test data is presented which shows exceptional stability of the V-I characteristics.

  9. High temperature Seebeck coefficient metrology

    SciTech Connect

    Martin, J.; Tritt, T.; Uher, C.

    2010-12-15

    We present an overview of the challenges and practices of thermoelectric metrology on bulk materials at high temperature (300 to 1300 K). The Seebeck coefficient, when combined with thermal and electrical conductivity, is an essential property measurement for evaluating the potential performance of novel thermoelectric materials. However, there is some question as to which measurement technique(s) provides the most accurate determination of the Seebeck coefficient at high temperature. This has led to the implementation of nonideal practices that have further complicated the confirmation of reported high ZT materials. To ensure meaningful interlaboratory comparison of data, thermoelectric measurements must be reliable, accurate, and consistent. This article will summarize and compare the relevant measurement techniques and apparatus designs required to effectively manage uncertainty, while also providing a reference resource of previous advances in high temperature thermoelectric metrology.

  10. Temperature optimization of high con

    NASA Astrophysics Data System (ADS)

    Sabry, M.

    2016-06-01

    Active cooling is essential for solar cells operating under high optical concentration ratios. A system comprises four solar cells that are in thermal contact on top of a copper tube is proposed. Water is flowing inside the tube in order to reduce solar cells temperature for increasing their performance. Computational Fluid Dynamics (CFD) simulation of such system has been performed in order to investigate the effect of water flow rate, tube internal diameter, and convective heat transfer coefficient on the temperature of the solar cells. It is found that increasing convective heat transfer coefficient has a significant effect on reducing solar cells temperatures operating at low flow rates and high optical concentration ratios. Also, a further increase of water flow rate has no effect on reducing cells temperatures.

  11. Design of Complex Systems to Achieve Passive Safety: Natural Circulation Cooling of Liquid Salt Pebble Bed Reactors

    NASA Astrophysics Data System (ADS)

    Scarlat, Raluca Olga

    This dissertation treats system design, modeling of transient system response, and characterization of individual phenomena and demonstrates a framework for integration of these three activities early in the design process of a complex engineered system. A system analysis framework for prioritization of experiments, modeling, and development of detailed design is proposed. Two fundamental topics in thermal-hydraulics are discussed, which illustrate the integration of modeling and experimentation with nuclear reactor design and safety analysis: thermal-hydraulic modeling of heat generating pebble bed cores, and scaled experiments for natural circulation heat removal with Boussinesq liquids. The case studies used in this dissertation are derived from the design and safety analysis of a pebble bed fluoride salt cooled high temperature nuclear reactor (PB-FHR), currently under development in the United States at the university and national laboratories level. In the context of the phenomena identification and ranking table (PIRT) methodology, new tools and approaches are proposed and demonstrated here, which are specifically relevant to technology in the early stages of development, and to analysis of passive safety features. A system decomposition approach is proposed. Definition of system functional requirements complements identification and compilation of the current knowledge base for the behavior of the system. Two new graphical tools are developed for ranking of phenomena importance: a phenomena ranking map, and a phenomena identification and ranking matrix (PIRM). The functional requirements established through this methodology were used for the design and optimization of the reactor core, and for the transient analysis and design of the passive natural circulation driven decay heat removal system for the PB-FHR. A numerical modeling approach for heat-generating porous media, with multi-dimensional fluid flow is presented. The application of this modeling

  12. Containerless high-temperature calorimeter

    NASA Technical Reports Server (NTRS)

    Lacy, L. L.; Nisen, D. B.; Robinson, M. B.

    1979-01-01

    Samples are heated by electron bombardment in high-temperature calorimeter that operates from 1,000 to 3,600 C yet consumes less that 100 watts at temperatures less than 2,500 C. Contamination of samples is kept to minimum by suspending them from wire in vacuum chamber. Various sample slopes such as wires, dishs, spheres, rods, or irregular bodies can be accommodated and only about 100 nq of samples are needed for accurate measurements.

  13. HIgh Temperature Photocatalysis over Semiconductors

    NASA Astrophysics Data System (ADS)

    Westrich, Thomas A.

    Due in large part to in prevalence of solar energy, increasing demand of energy production (from all sources), and the uncertain future of petroleum energy feedstocks, solar energy harvesting and other photochemical systems will play a major role in the developing energy market. This dissertation focuses on a novel photochemical reaction process: high temperature photocatalysis (i.e., photocatalysis conducted above ambient temperatures, T ≥ 100°C). The overarching hypothesis of this process is that photo-generated charge carriers are able to constructively participate in thermo-catalytic chemical reactions, thereby increasing catalytic rates at one temperature, or maintaining catalytic rates at lower temperatures. The photocatalytic oxidation of carbon deposits in an operational hydrocarbon reformer is one envisioned application of high temperature photocatalysis. Carbon build-up during hydrocarbon reforming results in catalyst deactivation, in the worst cases, this was shown to happen in a period of minutes with a liquid hydrocarbon. In the presence of steam, oxygen, and above-ambient temperatures, carbonaceous deposits were photocatalytically oxidized over very long periods (t ≥ 24 hours). This initial experiment exemplified the necessity of a fundamental assessment of high temperature photocatalytic activity. Fundamental understanding of the mechanisms that affect photocatalytic activity as a function of temperatures was achieved using an ethylene photocatalytic oxidation probe reaction. Maximum ethylene photocatalytic oxidation rates were observed between 100 °C and 200 °C; the maximum photocatalytic rates were approximately a factor of 2 larger than photocatalytic rates at ambient temperatures. The loss of photocatalytic activity at temperatures above 200 °C is due to a non-radiative multi-phonon recombination mechanism. Further, it was shown that the fundamental rate of recombination (as a function of temperature) can be effectively modeled as a

  14. Multiphysics methods development for high temperature gas reactor analysis

    NASA Astrophysics Data System (ADS)

    Seker, Volkan

    Multiphysics computational methods were developed to perform design and safety analysis of the next generation Pebble Bed High Temperature Gas Cooled Reactors. A suite of code modules was developed to solve the coupled thermal-hydraulics and neutronics field equations. The thermal-hydraulics module is based on the three dimensional solution of the mass, momentum and energy equations in cylindrical coordinates within the framework of the porous media method. The neutronics module is a part of the PARCS (Purdue Advanced Reactor Core Simulator) code and provides a fine mesh finite difference solution of the neutron diffusion equation in three dimensional cylindrical coordinates. Coupling of the two modules was performed by mapping the solution variables from one module to the other. Mapping is performed automatically in the code system by the use of a common material mesh in both modules. The standalone validation of the thermal-hydraulics module was performed with several cases of the SANA experiment and the standalone thermal-hydraulics exercise of the PBMR-400 benchmark problem. The standalone neutronics module was validated by performing the relevant exercises of the PBMR-268 and PBMR-400 benchmark problems. Additionally, the validation of the coupled code system was performed by analyzing several steady state and transient cases of the OECD/NEA PBMR-400 benchmark problem.

  15. High-Temperature Optical Sensor

    NASA Technical Reports Server (NTRS)

    Adamovsky, Grigory; Juergens, Jeffrey R.; Varga, Donald J.; Floyd, Bertram M.

    2010-01-01

    A high-temperature optical sensor (see Figure 1) has been developed that can operate at temperatures up to 1,000 C. The sensor development process consists of two parts: packaging of a fiber Bragg grating into a housing that allows a more sturdy thermally stable device, and a technological process to which the device is subjected to in order to meet environmental requirements of several hundred C. This technology uses a newly discovered phenomenon of the formation of thermally stable secondary Bragg gratings in communication-grade fibers at high temperatures to construct robust, optical, high-temperature sensors. Testing and performance evaluation (see Figure 2) of packaged sensors demonstrated operability of the devices at 1,000 C for several hundred hours, and during numerous thermal cycling from 400 to 800 C with different heating rates. The technology significantly extends applicability of optical sensors to high-temperature environments including ground testing of engines, flight propulsion control, thermal protection monitoring of launch vehicles, etc. It may also find applications in such non-aerospace arenas as monitoring of nuclear reactors, furnaces, chemical processes, and other hightemperature environments where other measurement techniques are either unreliable, dangerous, undesirable, or unavailable.

  16. High Temperature Transparent Furnace Development

    NASA Technical Reports Server (NTRS)

    Bates, Stephen C.

    1997-01-01

    This report describes the use of novel techniques for heat containment that could be used to build a high temperature transparent furnace. The primary objective of the work was to experimentally demonstrate transparent furnace operation at 1200 C. Secondary objectives were to understand furnace operation and furnace component specification to enable the design and construction of a low power prototype furnace for delivery to NASA in a follow-up project. The basic approach of the research was to couple high temperature component design with simple concept demonstration experiments that modify a commercially available transparent furnace rated at lower temperature. A detailed energy balance of the operating transparent furnace was performed, calculating heat losses through the furnace components as a result of conduction, radiation, and convection. The transparent furnace shells and furnace components were redesigned to permit furnace operation at at least 1200 C. Techniques were developed that are expected to lead to significantly improved heat containment compared with current transparent furnaces. The design of a thermal profile in a multizone high temperature transparent furnace design was also addressed. Experiments were performed to verify the energy balance analysis, to demonstrate some of the major furnace improvement techniques developed, and to demonstrate the overall feasibility of a high temperature transparent furnace. The important objective of the research was achieved: to demonstrate the feasibility of operating a transparent furnace at 1200 C.

  17. High temperature superconductor current leads

    DOEpatents

    Hull, J.R.; Poeppel, R.B.

    1995-06-20

    An electrical lead is disclosed having one end for connection to an apparatus in a cryogenic environment and the other end for connection to an apparatus outside the cryogenic environment. The electrical lead includes a high temperature superconductor wire and an electrically conductive material distributed therein, where the conductive material is present at the one end of the lead at a concentration in the range of from 0 to about 3% by volume, and at the other end of the lead at a concentration of less than about 20% by volume. Various embodiments are shown for groups of high temperature superconductor wires and sheaths. 9 figs.

  18. High temperature superconductor current leads

    DOEpatents

    Hull, John R.; Poeppel, Roger B.

    1995-01-01

    An electrical lead having one end for connection to an apparatus in a cryogenic environment and the other end for connection to an apparatus outside the cryogenic environment. The electrical lead includes a high temperature superconductor wire and an electrically conductive material distributed therein, where the conductive material is present at the one end of the lead at a concentration in the range of from 0 to about 3% by volume, and at the other end of the lead at a concentration of less than about 20% by volume. Various embodiments are shown for groups of high temperature superconductor wires and sheaths.

  19. High Temperature Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    1985-01-01

    These are the proceedings of the High Temperature Polymer Matrix Composites Conference held at the NASA Lewis Research Center on March 16 to 18, 1983. The purpose of the conference is to provide scientists and engineers working in the field of high temperature polymer matrix composites an opportunity to review, exchange, and assess the latest developments in this rapidly expanding area of materials technology. Technical papers are presented in the following areas: (1) matrix development; (2) adhesive development; (3) characterization; (4) environmental effects; and (5) applications.

  20. High temperature current mirror amplifier

    DOEpatents

    Patterson, R.B. III.

    1984-05-22

    Disclosed is a high temperature current mirror amplifier having biasing means in the transdiode connection of the input transistor for producing a voltage to maintain the base-collector junction reversed-biased and a current means for maintaining a current through the biasing means at high temperatures so that the base-collector junction of the input transistor remained reversed-biased. For accuracy, a second current mirror is provided with a biasing means and current means on the input leg. 2 figs.

  1. High temperature solar thermal technology

    NASA Technical Reports Server (NTRS)

    Leibowitz, L. P.; Hanseth, E. J.; Peelgren, M. L.

    1980-01-01

    Some advanced technology concepts under development for high-temperature solar thermal energy systems to achieve significant energy cost reductions and performance gains and thus promote the application of solar thermal power technology are presented. Consideration is given to the objectives, current efforts and recent test and analysis results in the development of high-temperature (950-1650 C) ceramic receivers, thermal storage module checker stoves, and the use of reversible chemical reactions to transport collected solar energy. It is pointed out that the analysis and testing of such components will accelerate the commercial deployment of solar energy.

  2. "Green" High-Temperature Polymers

    NASA Technical Reports Server (NTRS)

    Meador, Michael A.

    1998-01-01

    PMR-15 is a processable, high-temperature polymer developed at the NASA Lewis Research Center in the 1970's principally for aeropropulsion applications. Use of fiber-reinforced polymer matrix composites in these applications can lead to substantial weight savings, thereby leading to improved fuel economy, increased passenger and payload capacity, and better maneuverability. PMR-15 is used fairly extensively in military and commercial aircraft engines components seeing service temperatures as high as 500 F (260 C), such as the outer bypass duct for the F-404 engine. The current world-wide market for PMR-15 materials (resins, adhesives, and composites) is on the order of $6 to 10 million annually.

  3. Experimental and computational investigation of flow of pebbles in a pebble bed nuclear reactor

    NASA Astrophysics Data System (ADS)

    Khane, Vaibhav B.

    The Pebble Bed Reactor (PBR) is a 4th generation nuclear reactor which is conceptually similar to moving bed reactors used in the chemical and petrochemical industries. In a PBR core, nuclear fuel in the form of pebbles moves slowly under the influence of gravity. Due to the dynamic nature of the core, a thorough understanding about slow and dense granular flow of pebbles is required from both a reactor safety and performance evaluation point of view. In this dissertation, a new integrated experimental and computational study of granular flow in a PBR has been performed. Continuous pebble re-circulation experimental set-up, mimicking flow of pebbles in a PBR, is designed and developed. Experimental investigation of the flow of pebbles in a mimicked test reactor was carried out for the first time using non-invasive radioactive particle tracking (RPT) and residence time distribution (RTD) techniques to measure the pebble trajectory, velocity, overall/zonal residence times, flow patterns etc. The tracer trajectory length and overall/zonal residence time is found to increase with change in pebble's initial seeding position from the center towards the wall of the test reactor. Overall and zonal average velocities of pebbles are found to decrease from the center towards the wall. Discrete element method (DEM) based simulations of test reactor geometry were also carried out using commercial code EDEM(TM) and simulation results were validated using the obtained benchmark experimental data. In addition, EDEM(TM) based parametric sensitivity study of interaction properties was carried out which suggests that static friction characteristics play an important role from a packed/pebble beds structural characterization point of view. To make the RPT technique viable for practical applications and to enhance its accuracy, a novel and dynamic technique for RPT calibration was designed and developed. Preliminary feasibility results suggest that it can be implemented as a non

  4. High-temperature plasma physics

    SciTech Connect

    Furth, H.P.

    1988-03-01

    Both magnetic and inertial confinement research are entering the plasma parameter range of fusion reactor interest. This paper reviews the individual and common technical problems of these two approaches to the generation of thermonuclear plasmas, and describes some related applications of high-temperature plasma physics.

  5. High-Temperature Electrostatic Levitator

    NASA Technical Reports Server (NTRS)

    Rhim, Won-Kyu; Chung, Sang K.

    1994-01-01

    High-temperature electrostatic levitator provides independent control of levitation and heating of sample in vacuum. Does not cause electromagnetic stirring in molten sample (such stirring causes early nucleation in undercooling). Maintenance of levitating force entails control of electrostatic field and electrical charge on sample.

  6. High-Temperature Vibration Damper

    NASA Technical Reports Server (NTRS)

    Clarke, Alan; Litwin, Joel; Krauss, Harold

    1987-01-01

    Device for damping vibrations functions at temperatures up to 400 degrees F. Dampens vibrational torque loads as high as 1,000 lb-in. but compact enough to be part of helicopter rotor hub. Rotary damper absorbs energy from vibrating rod, dissipating it in turbulent motion of viscous hydraulic fluid forced by moving vanes through small orifices.

  7. A solar high temperature kiln

    NASA Astrophysics Data System (ADS)

    Huettenhoelscher, N.; Bergmann, K.

    1981-11-01

    The feasibility of using solar energy in developing countries for baking ceramic construction materials was investigated. The solar high temperature kiln is described. It uses two parabolic concentrators which direct available radiation into the baking chamber. The Sun tracker has only one axis. Preliminary test results with the prototype kiln were satisfactory.

  8. High temperature turbine engine structure

    DOEpatents

    Boyd, Gary L.

    1991-01-01

    A high temperature turbine engine includes a rotor portion having axially stacked adjacent ceramic rotor parts. A ceramic/ceramic joint structure transmits torque between the rotor parts while maintaining coaxial alignment and axially spaced mutually parallel relation thereof despite thermal and centrifugal cycling.

  9. Supercell Depletion Studies for Prismatic High Temperature Reactors

    SciTech Connect

    J. Ortensi

    2012-10-01

    The traditional two-step method of analysis is not accurate enough to represent the neutronic effects present in the prismatic high temperature reactor concept. The long range coupling of the various regions in high temperature reactors poses a set of challenges that are not seen in either LWRs or fast reactors. Unlike LWRs, which exhibit large, localized effects, the dominant effects in PMRs are, for the most part, distributed over larger regions, but with lower magnitude. The 1-D in-line treatment currently used in pebble bed reactor analysis is not sufficient because of the 2-D nature of the prismatic blocks. Considerable challenges exist in the modeling of blocks in the vicinity of reflectors, which, for current small modular reactor designs with thin annular cores, include the majority of the blocks. Additional challenges involve the treatment of burnable poisons, operational and shutdown control rods. The use of a large domain for cross section preparation provides a better representation of the neutron spectrum, enables the proper modeling of BPs and CRs, allows the calculation of generalized equivalence theory parameters, and generates a relative power distribution that can be used in compact power reconstruction. The purpose of this paper is to quantify the effects of the reflector, burnable poison, and operational control rods on an LEU design and to delineate an analysis approach for the Idaho National Laboratory. This work concludes that the use of supercells should capture these long-range effects in the preparation of cross sections and along with a set of triangular meshes to treat BPs, and CRs a high fidelity neutronics computation is attainable.

  10. Experimental characterization of ceramic pebble beds

    NASA Astrophysics Data System (ADS)

    Zaccari, N.; Aquaro, D.

    2009-04-01

    Several materials have been developed in Europe and Japan for the DEMO reactor that will be tested in ITER. The paper describes a solid breeder for nuclear fusion reactor exploiting ceramic pebbles made of Lithium Orthosilicate (Li 4SiO 4) and Lithium metatinate (Li 2TiO 3), with a diameter ranging between 0.5 mm and 1 mm. The main advantages of the pebbles are resistance to thermal stresses and the possibility to easily fill the complex geometries of the blanket. The results of experimental tests are presented, which enable the determination of the behaviour of single pebbles under compression and the parameters of the pebble beds needed to define their constitutive equations. Several standard tests on samples of pebble beds were performed: triaxial, direct shear and compression. The parameters of the Cam-Clay model were obtained from these tests. This model is normally used to describe soil materials (clay, sand) but in our case was used to simulate the triaxial tests with a finite elements computer code. The numerical results show a good agreement with the theoretical ones. Therefore this model could be used to determine the mechanical behaviour of the solid breeding blanket under normal and accidental conditions.

  11. High temperature, high power piezoelectric composite transducers.

    PubMed

    Lee, Hyeong Jae; Zhang, Shujun; Bar-Cohen, Yoseph; Sherrit, Stewart

    2014-01-01

    Piezoelectric composites are a class of functional materials consisting of piezoelectric active materials and non-piezoelectric passive polymers, mechanically attached together to form different connectivities. These composites have several advantages compared to conventional piezoelectric ceramics and polymers, including improved electromechanical properties, mechanical flexibility and the ability to tailor properties by using several different connectivity patterns. These advantages have led to the improvement of overall transducer performance, such as transducer sensitivity and bandwidth, resulting in rapid implementation of piezoelectric composites in medical imaging ultrasounds and other acoustic transducers. Recently, new piezoelectric composite transducers have been developed with optimized composite components that have improved thermal stability and mechanical quality factors, making them promising candidates for high temperature, high power transducer applications, such as therapeutic ultrasound, high power ultrasonic wirebonding, high temperature non-destructive testing, and downhole energy harvesting. This paper will present recent developments of piezoelectric composite technology for high temperature and high power applications. The concerns and limitations of using piezoelectric composites will also be discussed, and the expected future research directions will be outlined. PMID:25111242

  12. High Temperature, High Power Piezoelectric Composite Transducers

    PubMed Central

    Lee, Hyeong Jae; Zhang, Shujun; Bar-Cohen, Yoseph; Sherrit, StewarT.

    2014-01-01

    Piezoelectric composites are a class of functional materials consisting of piezoelectric active materials and non-piezoelectric passive polymers, mechanically attached together to form different connectivities. These composites have several advantages compared to conventional piezoelectric ceramics and polymers, including improved electromechanical properties, mechanical flexibility and the ability to tailor properties by using several different connectivity patterns. These advantages have led to the improvement of overall transducer performance, such as transducer sensitivity and bandwidth, resulting in rapid implementation of piezoelectric composites in medical imaging ultrasounds and other acoustic transducers. Recently, new piezoelectric composite transducers have been developed with optimized composite components that have improved thermal stability and mechanical quality factors, making them promising candidates for high temperature, high power transducer applications, such as therapeutic ultrasound, high power ultrasonic wirebonding, high temperature non-destructive testing, and downhole energy harvesting. This paper will present recent developments of piezoelectric composite technology for high temperature and high power applications. The concerns and limitations of using piezoelectric composites will also be discussed, and the expected future research directions will be outlined. PMID:25111242

  13. Containerless high temperature property measurements

    NASA Technical Reports Server (NTRS)

    Nordine, Paul C.; Weber, J. K. Richard; Krishnan, Shankar; Anderson, Collin D.

    1991-01-01

    Containerless processing in the low gravity environment of space provides the opportunity to increase the temperature at which well controlled processing of and property measurements on materials is possible. This project was directed towards advancing containerless processing and property measurement techniques for application to materials research at high temperatures in space. Containerless high temperature material property studies include measurements of the vapor pressure, melting temperature, optical properties, and spectral emissivities of solid boron. The reaction of boron with nitrogen was also studied by laser polarimetric measurement of boron nitride film growth. The optical properties and spectral emissivities were measured for solid and liquid silicon, niobium, and zirconium; liquid aluminum and titanium; and liquid Ti-Al alloys of 5 to 60 atomic pct. titanium. Alternative means for noncontact temperature measurement in the absence of material emissivity data were evaluated. Also, the application of laser induced fluorescence for component activity measurements in electromagnetic levitated liquids was studied, along with the feasibility of a hybrid aerodynamic electromagnetic levitation technique.

  14. High-temperature containerless calorimeter

    NASA Technical Reports Server (NTRS)

    Robinson, M. B.; Lacy, L. L.

    1985-01-01

    A high-temperature (greater than 1500 K) containerless calorimeter is described and its usefulness demonstrated. The calorimeter uses the technique of omnidirectional electron bombardment of pendant drops to achieve an isothermal test environment. The small heat input into the sample (i.e., 15-50 W) can be controlled and measured. The apparatus can be used to determine the total hemispherical emissivity, specific heat, heat of fusion, surface tension, and equilibrium melting temperature of small molten drops in the temperature range of 1500 to 3500 K. The total hemispherical emissivity and specific heat of pure niobium and two alloys of niobium-germanium have been measured in the temperature range of 1700 to 2400 K. As reported in the literature, the total hemispherical emissivity varied as a function of temperature. However, specific heat values for both the pure metal and alloys seem to be independent of temperature. Specific heat for the liquid alloy phase was also measured and compared to the solid phase.

  15. Solute strengthening at high temperatures

    NASA Astrophysics Data System (ADS)

    Leyson, G. P. M.; Curtin, W. A.

    2016-08-01

    The high temperature behavior of solute strengthening has previously been treated approximately using various scaling arguments, resulting in logarithmic and power-law scalings for the stress-dependent energy barrier Δ E(τ ) versus stress τ. Here, a parameter-free solute strengthening model is extended to high temperatures/low stresses without any a priori assumptions on the functional form of Δ E(τ ) . The new model predicts that the well-established low-temperature, with energy barrier Δ {{E}\\text{b}} and zero temperature flow stress {τy0} , transitions to a near-logarithmic form for stresses in the regime 0.2<τ /{τy0}≤slant 0.5 and then transitions to a power-law form at even lower stresses τ /{τy0}<0.03 . Δ {{E}\\text{b}} and {τy0} remains as the reference energy and stress scales over the entire range of stresses. The model is applied to literature data on solution strengthening in Cu alloys and captures the experimental results quantitatively and qualitatively. Most importantly, the model accurately captures the transition in strength from the low-temperature to intermediate-temperature and the associated transition for the activation volume. Overall, the present analysis unifies the different qualitative models in the literature and, when coupled with the previous parameter-free solute strengthening model, provides a single predictive model for solute strengthening as a function of composition, temperature, and strain rate over the full range of practical utility.

  16. Experimental investigation of the pebble bed structure by using gamma ray tomography

    NASA Astrophysics Data System (ADS)

    Ahmed, Fadha Shakir

    Pebble Bed Reactors offer a future for new nuclear energy plants. They are small, inherently safe, and can be competitive with fossil fuels. The fuel forms a randomly stacked pebble with non-uniform fuel densities. The thermal-mechanical behavior of pebble bed reactor core is depends strongly on the spatial variation of packing fraction in the bed and in particular on the number of contacts between pebbles, and between the pebbles and the blanket walls. To investigate these effects, experimental data to characterize bed structure are needed along with other numerical simulation and computational tools for validation. In this study, a powerful technique of high-energy gamma-ray computed tomography (CT scanner system) is employed for the first time for the quantification of the structure of pebble bed in term of the cross-sectional time-averaged void and distributions, it radial profiles and the statistical analysis. The alternative minimization (AM) iteration algorithm is used for image reconstruction. The spatial resolution of the CT scan is about 2 mm with 100 x 100 pixel used to reconstruct the cross-sectional image. Results of tomography with this advanced technique on three different pebble sizes at different axial levels are presented. The bed consisted of a glass spheres (Marbles) with a diameter d1= 1.27 cm, d2= 2.54 cm and d3= 5 cm in a Plexiglas cylinder with diameter D = 30.48 cm (D/d1 = 24, D/d2 = 12 and D/d3 = 6), and had an average void fraction epsilon1= 0.389, epsilon2 = 0.40 and epsilon 3 =0.43, respectively. The radial void fraction profile showed large oscillations with the bigger pebble diameters and the void fraction is higher on the wall with a minimum void fraction of 0.33 at 0.68 pebble diameter away from the wall. It was found that the void distribution in random packed bed depends strongly on the pebble diameter with respect to the bed diameter (D/d p) and the packing mode. The oscillation is quiet large with the smaller aspect ratio (D

  17. High temperature sorbents for oxygen

    NASA Technical Reports Server (NTRS)

    Sharma, Pramod K. (Inventor)

    1994-01-01

    A sorbent capable of removing trace amounts of oxygen (ppt) from a gas stream at a high temperature above 200 C comprising a porous alumina silicate support, such as zeolite, containing from 1 to 10 percent by weight of ion exchanged transition metal, such as copper or cobalt ions, and 0.05 to 1.0 percent by weight of an activator selected from a platinum group metal such as platinum is described. The activation temperature, oxygen sorption, and reducibility are all improved by the presence of the platinum activator.

  18. High Temperature Sorbents for Oxygen

    NASA Technical Reports Server (NTRS)

    Sharma, Pramod K. (Inventor)

    1996-01-01

    A sorbent capable of removing trace amounts of oxygen (ppt) from a gas stream at a high temperature above 200 C is introduced. The sorbent comprises a porous alumina silicate support such as zeolite containing from 1 to 10 percent by weight of ion exchanged transition metal such as copper or cobalt ions and 0.05 to 1.0 percent by weight of an activator selected from a platinum group metal such as platinum. The activation temperature, oxygen sorption and reducibility are all improved by the presence of the platinum activator.

  19. High-Temperature Rocket Engine

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.; Rosenberg, Sanders D.; Chazen, Melvin L.

    1994-01-01

    Two rocket engines that operate at temperature of 2,500 K designed to provide thrust for station-keeping adjustments of geosynchronous satellites, for raising and lowering orbits, and for changing orbital planes. Also useful as final propulsion stages of launch vehicles delivering small satellites to low orbits around Earth. With further development, engines used on planetary exploration missions for orbital maneuvers. High-temperature technology of engines adaptable to gas-turbine combustors, ramjets, scramjets, and hot components of many energy-conversion systems.

  20. High temperature drilling mud composition

    SciTech Connect

    Alexander, W.

    1988-10-18

    This patent describes a composition having improved rheological properties and improved stability at high temperatures and pressure for use in a water-based drilling mud comprising a high-yield bentonite, a low-yield bentonite and leonardite, wherein the weight ratio of the high-yield bentonite to the low-yield bentonites in the range of about 10:1 to about 1:1, and the leonardite is present in the amount of about 0.1% to 1.0% by total dry weight of the composition.

  1. Brayton Cycle for High-Temperature Gas-Cooled Reactors

    SciTech Connect

    Oh, Chang H.; Moore, Richard L.

    2005-03-15

    This paper describes research on improving the Brayton cycle efficiency for a high-temperature gas-cooled reactor (HTGR). In this study, we are investigating the efficiency of an indirect helium Brayton cycle for the power conversion side of an HTGR power plant. A reference case based on a 250-MW(thermal) pebble bed HTGR was developed using helium gas as a working fluid in both the primary and power conversion sides. The commercial computer code HYSYS was used for process optimization. A numerical model using the Visual-Basic (V-B) computer language was also developed to assist in the evaluation of the Brayton cycle efficiency. Results from both the HYSYS simulation and the V-B model were compared with Japanese calculations based on the 300-MW(electric) Gas Turbine High-Temperature Reactor (GTHTR) that was developed by the Japan Atomic Energy Research Institute. After benchmarking our models, parametric investigations were performed to see the effect of important parameters on the cycle efficiency. We also investigated single-shaft versus multiple-shaft arrangements for the turbomachinery. The results from this study are applicable to other reactor concepts such as fast gas-cooled reactors, supercritical water reactors, and others.The ultimate goal of this study is to use other fluids such as supercritical carbon dioxide for the HTGR power conversion loop in order to improve the cycle efficiency over that of the helium Brayton cycle. This study is in progress, and the results will be published in a subsequent paper.

  2. Brayton Cycle for High Temperature Gas-Cooled Reactors

    SciTech Connect

    Chang Oh

    2005-03-01

    This paper describes research on improving the Brayton cycle efficiency for a high-temperature gas-cooled reactor (HTGR). In this study, we are investigating the efficiency of an indirect helium Brayton cycle for the power conversion side of an HTGR power plant. A reference case based on a 250-MW(thermal) pebble bed HTGR was developed using helium gas as a working fluid in both the primary and power conversion sides. The commercial computer code HYSYS was used for process optimization. A numerical model using the Visual-Basic (V-B) computer language was also developed to assist in the evaluation of the Brayton cycle efficiency. Results from both the HYSYS simulation and the V-B model were compared with Japanese calculations based on the 300-MW(electric) Gas Turbine High-Temperature Reactor (GTHTR) that was developed by the Japan Atomic Energy Research Institute. After benchmarking our models, parametric investigations were performed to see the effect of important parameters on the cycle efficiency. We also investigated single-shaft versus multiple-shaft arrangements for the turbomachinery. The results from this study are applicable to other reactor concepts such as fast gas-cooled reactors, supercritical water reactors, and others. The ultimate goal of this study is to use other fluids such as supercritical carbon dioxide for the HTGR power conversion loop in order to improve the cycle efficiency over that of the helium Brayton cycle. This study is in progress, and the results will be published in a subsequent paper.

  3. High Temperature Transfer Molding Resins

    NASA Technical Reports Server (NTRS)

    Connell, John W. (Inventor); Smith, Joseph G., Jr. (Inventor); Hergenrother, Paul M. (Inventor)

    2000-01-01

    High temperature resins containing phenylethynyl groups that are processable by transfer molding have been prepared. These phenylethynyl containing oligomers were prepared from aromatic diamines containing phenylethynyl groups and various ratios of phthalic anhydride and 4-phenylethynlphthalic anhydride in glacial acetic acid to form a mixture of imide compounds in one step. This synthetic approach is advantageous since the products are a mixture of compounds and consequently exhibit a relatively low melting temperature. In addition, these materials exhibit low melt viscosities which are stable for several hours at 210-275 C, and since the thermal reaction of the phenylethynyl group does not occur to any appreciable extent at temperatures below 300 C, these materials have a broad processing window. Upon thermal cure at approximately 300-350 C, the phenylethynyl groups react to provide a crosslinked resin system. These new materials exhibit excellent properties and are potentially useful as adhesives, coatings, films, moldings and composite matrices.

  4. Forming the Solar System from Pebbles

    NASA Astrophysics Data System (ADS)

    Kretke, Katherine A.; Levison, H. F.

    2015-12-01

    In recent years, theories surrounding the formation of small-bodies and planets have been undergoing a radical shift. Particles with stopping times comparable to their orbital times, often called "pebbles" (although they range from sub-centimeter to meter sizes), interact with gaseous protoplanetary disks in very special ways. This allows them to be not only be concentrated, allowing them to gravitationally collapse and directly produce the planetesimal building blocks of planetary systems, but also later be efficiently accreted on to these planetesimals, rapidly producing larger planets. Here we present simulations using the planet formation code LIPAD, which can follow the dynamical evolution of planetary system all the way from pebbles and planetesimals to mature planetary systems. We show how pebble accretion can explain the observed structure of our Solar System, by forming a system of giant planets, ice giants, and a system of terrestrial planets; even providing an explanation the for the low mass of Mars and of the Asteroid Belt.

  5. NSTX High Temperature Sensor Systems

    SciTech Connect

    B.McCormack; H.W. Kugel; P. Goranson; R. Kaita; et al

    1999-11-01

    The design of the more than 300 in-vessel sensor systems for the National Spherical Torus Experiment (NSTX) has encountered several challenging fusion reactor diagnostic issues involving high temperatures and space constraints. This has resulted in unique miniature, high temperature in-vessel sensor systems mounted in small spaces behind plasma facing armor tiles, and they are prototypical of possible high power reactor first-wall applications. In the Center Stack, Divertor, Passive Plate, and vessel wall regions, the small magnetic sensors, large magnetic sensors, flux loops, Rogowski Coils, thermocouples, and Langmuir Probes are qualified for 600 degrees C operation. This rating will accommodate both peak rear-face graphite tile temperatures during operations and the 350 degrees C bake-out conditions. Similar sensor systems including flux loops, on other vacuum vessel regions are qualified for 350 degrees C operation. Cabling from the sensors embedded in the graphite tiles follows narrow routes to exit the vessel. The detailed sensor design and installation methods of these diagnostic systems developed for high-powered ST operation are discussed.

  6. High temperature two component explosive

    DOEpatents

    Mars, James E.; Poole, Donald R.; Schmidt, Eckart W.; Wang, Charles

    1981-01-01

    A two component, high temperature, thermally stable explosive composition comprises a liquid or low melting oxidizer and a liquid or low melting organic fuel. The oxidizer and fuel in admixture are incapable of substantial spontaneous exothermic reaction at temperatures on the order of 475.degree. K. At temperatures on the order of 475.degree. K., the oxidizer and fuel in admixture have an activation energy of at least about 40 kcal/mol. As a result of the high activation energy, the preferred explosive compositions are nondetonable as solids at ambient temperature, and become detonable only when heated beyond the melting point. Preferable oxidizers are selected from alkali or alkaline earth metal nitrates, nitrites, perchlorates, and/or mixtures thereof. Preferred fuels are organic compounds having polar hydrophilic groups. The most preferred fuels are guanidinium nitrate, acetamide and mixtures of the two. Most preferred oxidizers are eutectic mixtures of lithium nitrate, potassium nitrate and sodium nitrate, of sodium nitrite, sodium nitrate and potassium nitrate, and of potassium nitrate, calcium nitrate and sodium nitrate.

  7. Motor for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Roopnarine (Inventor)

    2013-01-01

    A high temperature motor has a stator with poles formed by wire windings, and a rotor with magnetic poles on a rotor shaft positioned coaxially within the stator. The stator and rotor are built up from stacks of magnetic-alloy laminations. The stator windings are made of high temperature magnet wire insulated with a vitreous enamel film, and the wire windings are bonded together with ceramic binder. A thin-walled cylinder is positioned coaxially between the rotor and the stator to prevent debris from the stator windings from reaching the rotor. The stator windings are wound on wire spools made of ceramic, thereby avoiding need for mica insulation and epoxy/adhesive. The stator and rotor are encased in a stator housing with rear and front end caps, and rear and front bearings for the rotor shaft are mounted on external sides of the end caps to keep debris from the motor migrating into the bearings' races.

  8. High Temperature Heat Exchanger Project

    SciTech Connect

    Anthony E. Hechanova, Ph.D.

    2008-09-30

    The UNLV Research Foundation assembled a research consortium for high temperature heat exchanger design and materials compatibility and performance comprised of university and private industry partners under the auspices of the US DOE-NE Nuclear Hydrogen Initiative in October 2003. The objectives of the consortium were to conduct investigations of candidate materials for high temperature heat exchanger componets in hydrogen production processes and design and perform prototypical testing of heat exchangers. The initial research of the consortium focused on the intermediate heat exchanger (located between the nuclear reactor and hydrogen production plan) and the components for the hydrogen iodine decomposition process and sulfuric acid decomposition process. These heat exchanger components were deemed the most challenging from a materials performance and compatibility perspective

  9. High pressure and high temperature apparatus

    DOEpatents

    Voronov, Oleg A.

    2005-09-13

    A design for high pressure/high temperature apparatus and reaction cell to achieve .about.30 GPa pressure in .about.1 cm volume and .about.100 GPa pressure in .about.1 mm volumes and 20-5000.degree. C. temperatures in a static regime. The device includes profiled anvils (28) action on a reaction cell (14, 16) containing the material (26) to be processed. The reaction cell includes a heater (18) surrounded by insulating layers and screens. Surrounding the anvils are cylindrical inserts and supporting rings (30-48) whose hardness increases towards the reaction cell. These volumes may be increased considerably if applications require it, making use of presses that have larger loading force capability, larger frames and using larger anvils.

  10. High temperature solar thermal receiver

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A design concept for a high temperature solar thermal receiver to operate at 3 atmospheres pressure and 2500 F outlet was developed. The performance and complexity of windowed matrix, tube-header, and extended surface receivers were evaluated. The windowed matrix receiver proved to offer substantial cost and performance benefits. An efficient and cost effective hardware design was evaluated for a receiver which can be readily interfaced to fuel and chemical processes or to heat engines for power generation.

  11. High-temperature structural ceramics.

    PubMed

    Katz, R N

    1980-05-23

    The unique properties of ceramics based on silicon carbide and silicon nitride make them prime candidates for use in advanced energy conversion systems. These compounds are the bases for broad families of engineering materials, whose properties are reviewed. The relationships between processing, microstructure, and properties are discussed. A review and assessment of recent progress in the use of these materials in high-temperature engineering systems, and vehicular engines in particular, is presented. PMID:17772807

  12. High-temperature geothermal cableheads

    SciTech Connect

    Coquat, J.A.; Eifert, R.W.

    1981-11-01

    Two high-temperature, corrosion-resistant logging cableheads which use metal seals and a stable fluid to achieve proper electrical terminations and cable-sonde interfacings are described. A tensile bar provides a calibrated yield point, and a cone assembly anchors the cable armor to the head. Electrical problems of the sort generally ascribable to the cable-sonde interface were absent during demonstration hostile-environment loggings in which these cableheads were used.

  13. High-Temperature Polyimide Resin

    NASA Technical Reports Server (NTRS)

    Vanucci, Raymond D.; Malarik, Diane C.

    1990-01-01

    Improved polyimide resin used at continuous temperatures up to 700 degrees F (371 degrees C). PMR-II-50, serves as matrix for fiber-reinforced composites. Material combines thermo-oxidative stability with autoclave processability. Used in such turbine engine components as air-bypass ducts, vanes, bearings, and nozzle flaps. Other potential applications include wing and fuselage skins on high-mach-number aircraft and automotive engine blocks and pistons.

  14. HIGH TEMPERATURE MICROSCOPE AND FURNACE

    DOEpatents

    Olson, D.M.

    1961-01-31

    A high-temperature microscope is offered. It has a reflecting optic situated above a molten specimen in a furnace and reflecting the image of the same downward through an inert optic member in the floor of the furnace, a plurality of spaced reflecting plane mirrors defining a reflecting path around the furnace, a standard microscope supported in the path of and forming the end terminus of the light path.

  15. High temperature turbine engine structure

    DOEpatents

    Carruthers, William D.; Boyd, Gary L.

    1993-01-01

    A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.

  16. High temperature turbine engine structure

    DOEpatents

    Carruthers, William D.; Boyd, Gary L.

    1992-01-01

    A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.

  17. High temperature turbine engine structure

    DOEpatents

    Carruthers, William D.; Boyd, Gary L.

    1994-01-01

    A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.

  18. Pebble Jammed in Rock Abrasion Tool

    NASA Technical Reports Server (NTRS)

    2004-01-01

    After the rock abrasion tool on NASA's Mars Exploration Rover Opportunity stopped working on sol 199 (Aug. 15, 2004), rover operators used the panoramic camera to take this image the next day for help in diagnosing the problem. The tool was closer than the camera could focus on sharply, but the image does show a dark spot just left of center, which engineers have determined is likely to be a pebble jammed between the cutting-blade rotor and the wire-brush rotor. If that diagnosis is confirmed by further analysis, the tool will likely be commanded to turn the rotors in reverse to release the pebble.

  19. South Africa slashes pebble-bed cash

    NASA Astrophysics Data System (ADS)

    Cartlidge, Edwin

    2010-04-01

    A novel modular technology that promised to make nuclear power cheaper and safer has suffered a serious blow following withdrawal of support from the South African government. It decided not to renew funding for the pebble-bed modular reactor beyond 31 March this year following a lack of interest from other investors and no customers for its product. The company developing the reactor concept - Pebble Bed Modular Reactor Ltd (PBMR) - is to axe three-quarters of its roughly 800 staff and its chief executive has resigned.

  20. In-pile test of Li 2TiO 3 pebble bed with neutron pulse operation

    NASA Astrophysics Data System (ADS)

    Tsuchiya, K.; Nakamichi, M.; Kikukawa, A.; Nagao, Y.; Enoeda, M.; Osaki, T.; Ioki, K.; Kawamura, H.

    2002-12-01

    Lithium titanate (Li 2TiO 3) is one of the candidate materials as tritium breeder in the breeding blanket of fusion reactors, and it is necessary to show the tritium release behavior of Li 2TiO 3 pebble beds. Therefore, a blanket in-pile mockup was developed and in situ tritium release experiments with the Li 2TiO 3 pebble bed were carried out in the Japan Materials Testing Reactor. In this study, the relationship between tritium release behavior from Li 2TiO 3 pebble beds and effects of various parameters were evaluated. The ( R/ G) ratio of tritium release ( R) and tritium generation ( G) was saturated when the temperature at the outside edge of the Li 2TiO 3 pebble bed became 300 °C. The tritium release amount increased cycle by cycle and saturated after about 20 pulse operations.

  1. Penn State geoPebble system: Design,Implementation, and Initial Results

    NASA Astrophysics Data System (ADS)

    Urbina, J. V.; Anandakrishnan, S.; Bilen, S. G.; Fleishman, A.; Burkett, P.

    2014-12-01

    The Penn State geoPebble system is a new network of wirelessly interconnected seismic and GPS sensor nodes with flexible architecture. This network will be used for studies of ice sheets in Antarctica and Greenland, as well as to investigate mountain glaciers. The network will consist of ˜150 geoPebbles that can be deployed in a user-defined spatial geometry. We present our design methodology, which has enabled us to develop these state-of- the art sensors using commercial-off-the-shelf hardware combined with custom-designed hardware and software. Each geoPebble is a self- contained, wirelessly connected sensor for collecting seismic measurements and position information. Key elements of each node encompasses a three-component seismic recorder, which includes an amplifier, filter, and 24- bit analog-to-digital converter that can sample up to 10 kHz. Each unit also includes a microphone channel to record the ground-coupled airwave. The timing for each node is available from GPS measurements and a local precision oscillator that is conditioned by the GPS timing pulses. In addition, we record the carrier-phase measurement of the L1 GPS signal in order to determine location at sub-decimeter accuracy (relative to other geoPebbles within a few kilometers radius). Each geoPebble includes 16 GB of solid-state storage, wireless communications capability to a central supervisory unit, and auxiliary measurements capability (including tilt from accelerometers, absolute orientation from magnetometers and temperature). A novel aspect of the geoPebble is a wireless charging system for the internal battery (using inductive coupling techniques). The geoPebbles include all the sensors (geophones, GPS, microphone), communications (WiFi), and power (battery and charging) internally, so the geoPebble system can operate without any cabling connections (though we do provide an external connector so that different geophones can be used). We report initial field-deployment results and

  2. HITCAN: High temperature composite analyzer

    NASA Technical Reports Server (NTRS)

    Singhal, Surendra N.; Lackney, Joseph J.; Chamis, Christos C.; Murthy, Pappu L. N.

    1990-01-01

    A computer code, HITCAN (High Temperature Composite Analyzer) was developed to analyze/design metal matrix composite structures. HITCAN is based on composite mechanics theories and computer codes developed at NASA LeRC over the last two decades. HITCAN is a general purpose code for predicting the global structural and local stress-strain response of multilayered (arbitrarily oriented) metal matrix structures both at the constituent (fiber, matrix, and interphase) and the structure level and including the fabrication process effects. The thermomechanical properties of the constituents are considered to be nonlinearly dependent on several parameters including temperature, stress, and stress rate. The computational procedure employs an incremental iterative nonlinear approach utilizing a multifactor-interaction material behavior model. HITCAN features and analysis capabilities (static, load stepping, modal, and buckling) are demonstrated through typical example problems.

  3. Compensated High Temperature Strain Gage

    NASA Technical Reports Server (NTRS)

    1994-01-01

    A device for measuring strain in substrates at high temperatures in which the thermally induced apparent strain is nulled is described. Two gages are used, one active gage and one compensating gage. Both gages are placed on the substrate to be gaged; the active gage is attached such that it responds to mechanical and thermally induced apparent strain while the compensating gage is attached such that it does not respond to mechanical strain and and measures only thermally induced apparent strain. A thermal blanket is placed over the two gages to maintain the gages at the same temperature. The two gages are wired as adjacent arms of a wheatstone bridge which nulls the thermally induced apparent strain giving a true reading of the mechanical strain in the substrate.

  4. High temperature size selective membranes

    SciTech Connect

    Yates, S.F.; Swamikannu, A.X.

    1993-09-01

    The high temperature membrane, capable of operation above 550{degree}C, is designed to be a composite membrane composed of a thin layer of a size selective membrane supported by a microporous ceramic support. The kinetic diameters of H{sub 2} and CO{sub 2} are 2.96 {Angstrom} and 4.00 {Angstrom}. The thin layer will be made from CMS whose pore size will be controlled to be less than 4 {Angstrom}. The membrane will be truly size selective and be impermeable to carbon dioxide. The membrane will have higher selectivity than membranes which operate on Knudsen diffusion mechanism. The ceramic support will be fabricated from Allied Signal`s proprietary Blackglas{trademark} resin. The ceramic material, noted for its high thermal and oxidative resistance, has a coefficient of thermal expansion which matches closely that of CMS. The close match will insure mechanical integrity when the membrane is subjected to thermal cycles. The CMS layer will be produced by controlled pyrolysis of polymeric precursors. Pore size will be suitably modified by post-treatments to the carbon. The composite membrane will be tested for its permeation properties at 550{degree}C or higher. Thermal, mechanical and chemical stability of the membrane will be assessed. We have produced several samples of CMS from polymeric precursors. We have initiated work also on the preparation of microporous supports from Blackglas{trademark} resin. We have completed the design of the high temperature membrane pilot plant. The membrane cell was fabricated out of two kinds of stainless steel. The inner parts are made of SS 316 and the outer ring made of SS 420. The greater thermal expansion of the SS 316 will help obtain a leak free seal at the operating temperatures.

  5. "Smart pebble" designs for sediment transport monitoring

    NASA Astrophysics Data System (ADS)

    Valyrakis, Manousos; Alexakis, Athanasios; Pavlovskis, Edgars

    2015-04-01

    Sediment transport, due to primarily the action of water, wind and ice, is one of the most significant geomorphic processes responsible for shaping Earth's surface. It involves entrainment of sediment grains in rivers and estuaries due to the violently fluctuating hydrodynamic forces near the bed. Here an instrumented particle, namely a "smart pebble", is developed to investigate the exact flow conditions under which individual grains may be entrained from the surface of a gravel bed. This could lead in developing a better understanding of the processes involved, focusing on the response of the particle during a variety of flow entrainment events. The "smart pebble" is a particle instrumented with MEMS sensors appropriate for capturing the hydrodynamic forces a coarse particle might experience during its entrainment from the river bed. A 3-axial gyroscope and accelerometer registers data to a memory card via a microcontroller, embedded in a 3D-printed waterproof hollow spherical particle. The instrumented board is appropriately fit and centred into the shell of the pebble, so as to achieve a nearly uniform distribution of the mass which could otherwise bias its motion. The "smart pebble" is powered by an independent power to ensure autonomy and sufficiently long periods of operation appropriate for deployment in the field. Post-processing and analysis of the acquired data is currently performed offline, using scientific programming software. The performance of the instrumented particle is validated, conducting a series of calibration experiments under well-controlled laboratory conditions.

  6. High temperature sealed electrochemical cell

    SciTech Connect

    Valentin Chung, Brice Hoani; Burke, Paul J.; Sadoway, Donald R.

    2015-10-06

    A cell for high temperature electrochemical reactions is provided. The cell includes a container, at least a portion of the container acting as a first electrode. An extension tube has a first end and a second end, the extension tube coupled to the container at the second end forming a conduit from the container to said first end. A second electrode is positioned in the container and extends out of the container via the conduit. A seal is positioned proximate the first end of the extension tube, for sealing the cell.

  7. High temperature drilling MUD stabilizer

    SciTech Connect

    Block, J.

    1985-10-15

    Aqueous drilling fluids containing a hydroxy containing alumina component such as AlO(OH) and a polyvinyl alcohol (PVA) reaction product such as an aldehyde reacted PVA are stabilized for use at temperatures as high as 350/sup 0/ F. (177/sup 0/ C.) by adding stabilizer anions such as sulfate, tartrate and citrate to the resulting drilling fluid. The anions can be added as an acid or in the salt form with sodium and potassium salts being preferred. The salts are preferably added in 0.2 to 10% by weight of the drilling fluid. These stabilized drilling fluids can also be used in seawater.

  8. Passivation of high temperature superconductors

    NASA Technical Reports Server (NTRS)

    Vasquez, Richard P. (Inventor)

    1991-01-01

    The surface of high temperature superconductors such as YBa2Cu3O(7-x) are passivated by reacting the native Y, Ba and Cu metal ions with an anion such as sulfate or oxalate to form a surface film that is impervious to water and has a solubility in water of no more than 10(exp -3) M. The passivating treatment is preferably conducted by immersing the surface in dilute aqueous acid solution since more soluble species dissolve into the solution. The treatment does not degrade the superconducting properties of the bulk material.

  9. CONFINEMENT OF HIGH TEMPERATURE PLASMA

    DOEpatents

    Koenig, H.R.

    1963-05-01

    The confinement of a high temperature plasma in a stellarator in which the magnetic confinement has tended to shift the plasma from the center of the curved, U-shaped end loops is described. Magnetic means are provided for counteracting this tendency of the plasma to be shifted away from the center of the end loops, and in one embodiment this magnetic means is a longitudinally extending magnetic field such as is provided by two sets of parallel conductors bent to follow the U-shaped curvature of the end loops and energized oppositely on the inside and outside of this curvature. (AEC)

  10. High Temperature Acoustic Liner Technology

    NASA Technical Reports Server (NTRS)

    Parrott, Tony L.; Jones, Michael G.; Posey, Joe W.

    1999-01-01

    This paper describes work currently in progress at Langley on liner concepts that employ structures that may be suitable for broadband exhaust noise attenuation in high speed flow environments and at elevated temperatures characteristic of HSCT applications. Because such liners will need to provide about 10 dB suppression over a 2 to 3 octave frequency range, conventional single-degree-of-freedom resonant structures will not suffice. Bulk absorbers have the needed broadband absorption characteristic; however, at lower frequencies they tend to be inefficient.

  11. Advanced high-temperature batteries

    NASA Technical Reports Server (NTRS)

    Nelson, Paul A.

    1989-01-01

    The promise of very high specific energy and power was not yet achieved for practical battery systems. Some recent approaches are discussed for new approaches to achieving high performance for lithium/DeS2 cells and sodium/metal chloride cells. The main problems for the development of successful LiAl/FeS2 cells were the instability of the FeS2 electrode, which has resulted in rapidly declining capacity, the lack of an internal mechanism for accommodating overcharge of a cell, thus requiring the use of external charge control on each individual cell, and the lack of a suitable current collector for the positive electrode other than expensive molybdenum sheet material. Much progress was made in solving the first two problems. Reduction of the operating temperatures to 400 C by a change in electrolyte composition has increased the expected life to 1000 cycles. Also, a lithium shuttle mechanism was demonstrated for selected electrode compositions that permits sufficient overcharge tolerance to adjust for the normally expected cell-to-cell deviation in coulombic efficiency. Sodium/sulfur batteries and sodium/metal chloride batteries have demonstrated good reliability and long cycle life. For applications where very high power is desired, new electrolyte coinfigurations would be required. Design work was carried out for the sodium/metal chloride battery that demonstrates the feasibility of achieving high specific energy and high power for large battery cells having thin-walled high-surface area electrolytes.

  12. Characterization of the thermal conductivity for ceramic pebble beds

    NASA Astrophysics Data System (ADS)

    Lo Frano, R.; Aquaro, D.; Scaletti, L.; Olivi, N.

    2015-11-01

    The evaluation of the thermal conductivity of breeder materials is one of the main goals to find the best candidate material for the fusion reactor technology. The aim of this paper is to evaluate experimentally the thermal conductivity of a ceramic material by applying the hot wire method at different temperatures, ranging from 50 to about 800°C. The updated experimental facility, available at the Department of Civil and Industrial Engineering (DICI) of the University of Pisa, used to determine the thermal conductivity of a ceramic material (alumina), will be described along with the measurement acquisition system. Moreover it will be also provided an overview of the current state of art of the ceramic pebble bed breeder thermos-mechanics R&D (e.g. Lithium Orthosilicate (Li4SiO4) and Lithium Metatitanate (Li2TiO3)) focusing on the up-to-date analysis. The methodological approach adopted is articulated in two phase: the first one aimed at the experimental evaluation of thermal conductivity of a ceramic material by means of hot wire method, to be subsequently used in the second phase that is based on the test rig method, through which is measured the thermal conductivity of pebble bed material. In this framework, the experimental procedure and the measured results obtained varying the temperature, are presented and discussed.

  13. "Smart pebble" design for environmental monitoring applications

    NASA Astrophysics Data System (ADS)

    Valyrakis, Manousos; Pavlovskis, Edgars

    2014-05-01

    Sediment transport, due to primarily the action of water, wind and ice, is one of the most significant geomorphic processes responsible for shaping Earth's surface. It involves entrainment of sediment grains in rivers and estuaries due to the violently fluctuating hydrodynamic forces near the bed. Here an instrumented particle, namely a "smart pebble", is developed to investigate the exact flow conditions under which individual grains may be entrained from the surface of a gravel bed. This could lead in developing a better understanding of the processes involved, while focusing on the response of the particle during a variety of flow entrainment events. The "smart pebble" is a particle instrumented with MEMS sensors appropriate for capturing the hydrodynamic forces a coarse particle might experience during its entrainment from the river bed. A 3-axial gyroscope and accelerometer registers data to a memory card via a microcontroller, embedded in a 3D-printed waterproof hollow spherical particle. The instrumented board is appropriately fit and centred into the shell of the pebble, so as to achieve a nearly uniform distribution of the mass which could otherwise bias its motion. The "smart pebble" is powered by an independent power to ensure autonomy and sufficiently long periods of operation appropriate for deployment in the field. Post-processing and analysis of the acquired data is currently performed offline, using scientific programming software. The performance of the instrumented particle is validated, conducting a series of calibration experiments under well-controlled laboratory conditions. "Smart pebble" allows for a wider range of environmental sensors (e.g. for environmental/pollutant monitoring) to be incorporated so as to extend the range of its application, enabling accurate environmental monitoring which is required to ensure infrastructure resilience and preservation of ecological health.

  14. Parametric Investigation of Brayton Cycle for High Temperature Gas-Cooled Reactor

    SciTech Connect

    Chang Oh

    2004-07-01

    The Idaho National Engineering and Environmental Laboratory (INEEL) is investigating a Brayton cycle efficiency improvement on a high temperature gas-cooled reactor (HTGR) as part of Generation-IV nuclear engineering research initiative. In this project, we are investigating helium Brayton cycles for the secondary side of an indirect energy conversion system. Ultimately we will investigate the improvement of the Brayton cycle using other fluids, such as supercritical carbon dioxide. Prior to the cycle improvement study, we established a number of baseline cases for the helium indirect Brayton cycle. These cases look at both single-shaft and multiple-shaft turbomachinary. The baseline cases are based on a 250 MW thermal pebble bed HTGR. The results from this study are applicable to other reactor concepts such as a very high temperature gas-cooled reactor (VHTR), fast gas-cooled reactor (FGR), supercritical water reactor (SWR), and others. In this study, we are using the HYSYS computer code for optimization of the helium Brayton cycle. Besides the HYSYS process optimization, we performed parametric study to see the effect of important parameters on the cycle efficiency. For these parametric calculations, we use a cycle efficiency model that was developed based on the Visual Basic computer language. As a part of this study we are currently investigated single-shaft vs. multiple shaft arrangement for cycle efficiency and comparison, which will be published in the next paper.The ultimate goal of this study is to use supercritical carbon dioxide for the HTGR power conversion loop in order to improve the cycle efficiency to values great than that of the helium Brayton cycle. This paper includes preliminary calculations of the steady state overall Brayton cycle efficiency based on the pebble bed reactor reference design (helium used as the working fluid) and compares those results with an initial calculation of a CO2 Brayton cycle.

  15. High modulus high temperature glass fibers

    NASA Technical Reports Server (NTRS)

    Bacon, J. F.

    1973-01-01

    The search for a new high-modulus, high-temperature glass fiber involved the preparation of 500 glass compositions lying in 12 glass fields. These systems consisted primarily of low atomic number oxides and rare-earth oxides. Direct optical measurements of the kinetics of crystallization of the cordierite-rare earth system, for example, showed that the addition of rare-earth oxides decreased the rate of formation of cordierite crystals. Glass samples prepared from these systems proved that the rare-earth oxides made large specific contributions to the Young's modulus of the glasses. The best glasses have moduli greater than 21 million psi, the best glass fibers have moduli greater than 18 million psi, and the best glass fiber-epoxy resin composites have tensile strengths of 298,000 psi, compressive strengths of at least 220,000 psi, flexural strengths of 290,000 psi, and short-beam shear strengths of almost 17,000 psi.

  16. Fabrication and characterization of Li2TiO3 core-shell pebbles with enhanced lithium density

    NASA Astrophysics Data System (ADS)

    Hong, Ming; Zhang, Yingchun; Mi, Yingying; Xiang, Maoqiao; Zhang, Yun

    2014-02-01

    In order to increase the lithium density and control the lithium mass loss at elevated temperature, development of Li2TiO3 pebbles with excess Li is needed. In this paper, Li2TiO3 core-shell pebbles with different Li/Ti molar ratios were fabricated by a gel-casting method using Li2TiO3 and Li2CO3 as starting materials. Differential thermal analysis appending a thermogravimetric analyzer (DTA-TG) and X-ray diffraction (XRD) were employed to understand the solid-state reactions. And then the calcining and sintering processes were optimized. Microstructure, element distribution, crush load and density of the pebbles were also investigated. The experimental results showed that the pebble had a Li2TiO3-Li4TiO4 complex phase core and a tunable thickness Li2TiO3 shell, and the lithium density of the pebbles significantly increased with the increasing of the Li/Ti ratio. The optimum Li/Ti ratio was 2.7, and the pebbles displayed a good crush load (about 32 N) when sintered at 950 °C for 2 h in N2 atmosphere.

  17. Multifunctional, High-Temperature Nanocomposites

    NASA Technical Reports Server (NTRS)

    Connell, John W.; Smith, Joseph G.; Siochi, Emilie J.; Working, Dennis C.; Criss, Jim M.; Watson, Kent A.; Delozier, Donavon M.; Ghose, Sayata

    2007-01-01

    In experiments conducted as part of a continuing effort to incorporate multifunctionality into advanced composite materials, blends of multi-walled carbon nanotubes and a resin denoted gPETI-330 h (wherein gPETI h is an abbreviation for gphenylethynyl-terminated imide h) were prepared, characterized, and fabricated into moldings. PETI-330 was selected as the matrix resin in these experiments because of its low melt viscosity (<10 poise at a temperature of 280 C), excellent melt stability (lifetime >2 hours at 280 C), and high temperature performance (>1,000 hours at 288 C). The multi-walled carbon nanotubes (MWCNTs), obtained from the University of Kentucky, were selected because of their electrical and thermal conductivity and their small diameters. The purpose of these experiments was to determine the combination of thermal, electrical, and mechanical properties achievable while still maintaining melt processability. The PETI-330/MWCNT mixtures were prepared at concentrations ranging from 3 to 25 weight-percent of MWCNTs by dry mixing of the constituents in a ball mill using zirconia beads. The resulting powders were characterized for degree of mixing and thermal and rheological properties. The neat resin was found to have melt viscosity between 5 and 10 poise. At 280 C and a fixed strain rate, the viscosity was found to increase with time. At this temperature, the phenylethynyl groups do not readily react and so no significant curing of the resin occurred. For MWCNT-filled samples, melt viscosity was reasonably steady at 280 C and was greater in samples containing greater proportions of MWCNTs. The melt viscosity for 20 weightpercent of MWCNTs was found to be .28,000 poise, which is lower than the initial estimated allowable maximum value of 60,000 poise for injection molding. Hence, MWCNT loadings of as much as 20 percent were deemed to be suitable compositions for scale-up. High-resolution scanning electron microscopy (HRSEM) showed the MWCNTs to be well

  18. Sialons as high temperature insulators

    NASA Technical Reports Server (NTRS)

    Phillips, W. M.; Kuo, Y. S.

    1978-01-01

    Sialons were evaluated for application as high temperature electrical insulators in contact with molybdenum and tungsten components in hard vacuum applications. Both D.C. and variable frequency A.C. resistivity data indicate the sialons to have electrical resistivity similar to common oxide in the 1000 C or higher range. Metallographic evaluations indicate good bonding of the type 15R ALN polytype to molybdenum and tungsten. The beta prime or modified silicon nitride phase was unacceptable in terms of vacuum stability. Additives effect on electrical resistivity. Similar resistivity decreases were produced by additions of molybdenum or tungsten to form cermets. The use of hot pressing at 1800 C with ALN, Al2 O3 and Si3N4 starting powders produced a better product than did a combination of SiO2 and AIN staring powders. It was indicated that sialons will be suitable insulators in the 1600K range in contact with molybdenum or tungsten if they are produced as a pure ceramic and subsequently bonded to the metal components at temperatures in the 1600K range.

  19. High Temperature Capacitive Strain Gage

    NASA Technical Reports Server (NTRS)

    Wnuk, Stephen P., Jr.; Wnuk, Stephen P., III; Wnuk, V. P.

    1990-01-01

    Capacitive strain gages designed for measurements in wind tunnels to 2000 F were built and evaluated. Two design approaches were followed. One approach was based on fixed capacitor plates with a movable ground plane inserted between the plates to effect differential capacitive output with strain. The second approach was based on movable capacitor plates suspended between sapphire bearings, housed in a rugged body, and arranged to operate as a differential capacitor. A sapphire bearing gage (1/4 in. diameter x 1 in. in size) was built with a range of 50,000 and a resolution of 200 microstrain. Apparent strain on Rene' 41 was less than + or - 1000 microstrain from room temperature to 2000 F. Three gage models were built from the Ground Plane Differential concept. The first was 1/4 in. square by 1/32 in. high and useable to 700 F. The second was 1/2 in. square by 1/16 in. high and useable to 1440 F. The third, also 1/2 in. square by 1/16 in. high was expected to operate in the 1600 to 2000 F range, but was not tested because time and funding ended.

  20. Faraday imaging at high temperatures

    DOEpatents

    Hackel, L.A.; Reichert, P.

    1997-03-18

    A Faraday filter rejects background light from self-luminous thermal objects, but transmits laser light at the passband wavelength, thus providing an ultra-narrow optical bandpass filter. The filter preserves images so a camera looking through a Faraday filter at a hot target illuminated by a laser will not see the thermal radiation but will see the laser radiation. Faraday filters are useful for monitoring or inspecting the uranium separator chamber in an atomic vapor laser isotope separation process. Other uses include viewing welds, furnaces, plasma jets, combustion chambers, and other high temperature objects. These filters are can be produced at many discrete wavelengths. A Faraday filter consists of a pair of crossed polarizers on either side of a heated vapor cell mounted inside a solenoid. 3 figs.

  1. Faraday imaging at high temperatures

    DOEpatents

    Hackel, Lloyd A.; Reichert, Patrick

    1997-01-01

    A Faraday filter rejects background light from self-luminous thermal objects, but transmits laser light at the passband wavelength, thus providing an ultra-narrow optical bandpass filter. The filter preserves images so a camera looking through a Faraday filter at a hot target illuminated by a laser will not see the thermal radiation but will see the laser radiation. Faraday filters are useful for monitoring or inspecting the uranium separator chamber in an atomic vapor laser isotope separation process. Other uses include viewing welds, furnaces, plasma jets, combustion chambers, and other high temperature objects. These filters are can be produced at many discrete wavelengths. A Faraday filter consists of a pair of crossed polarizers on either side of a heated vapor cell mounted inside a solenoid.

  2. High temperature control rod assembly

    DOEpatents

    Vollman, Russell E.

    1991-01-01

    A high temperature nuclear control rod assembly comprises a plurality of substantially cylindrical segments flexibly joined together in succession by ball joints. The segments are made of a high temperature graphite or carbon-carbon composite. The segment includes a hollow cylindrical sleeve which has an opening for receiving neutron-absorbing material in the form of pellets or compacted rings. The sleeve has a threaded sleeve bore and outer threaded surface. A cylindrical support post has a threaded shaft at one end which is threadably engaged with the sleeve bore to rigidly couple the support post to the sleeve. The other end of the post is formed with a ball portion. A hollow cylindrical collar has an inner threaded surface engageable with the outer threaded surface of the sleeve to rigidly couple the collar to the sleeve. the collar also has a socket portion which cooperates with the ball portion to flexibly connect segments together to form a ball and socket-type joint. In another embodiment, the segment comprises a support member which has a threaded shaft portion and a ball surface portion. The threaded shaft portion is engageable with an inner threaded surface of a ring for rigidly coupling the support member to the ring. The ring in turn has an outer surface at one end which is threadably engageably with a hollow cylindrical sleeve. The other end of the sleeve is formed with a socket portion for engagement with a ball portion of the support member. In yet another embodiment, a secondary rod is slidably inserted in a hollow channel through the center of the segment to provide additional strength. A method for controlling a nuclear reactor utilizing the control rod assembly is also included.

  3. 3D inversion of SPECTREM and ZTEM airborne electromagnetic data from the Pebble Cu-Au-Mo porphyry deposit, Alaska

    NASA Astrophysics Data System (ADS)

    Pare, Pascal; Gribenko, Alexander V.; Cox, Leif H.; Čuma, Martin; Wilson, Glenn A.; Zhdanov, Michael S.; Legault, Jean; Smit, Jaco; Polome, Louis

    2012-04-01

    Geological, geochemical, and geophysical surveys have been conducted in the area of the Pebble Cu-Au-Mo porphyry deposit in south-west Alaska since 1985. This case study compares three-dimensional (3D) inversion results from Anglo American's proprietary SPECTREM 2000 fixed-wing time-domain airborne electromagnetic (AEM) and Geotech's ZTEM airborne audio-frequency magnetics (AFMAG) systems flown over the Pebble deposit. Within the commonality of their physics, 3D inversions of both SPECTREM and ZTEM recover conductivity models consistent with each other and the known geology. Both 3D inversions recover conductors coincident with alteration associated with both Pebble East and Pebble West. The high grade CuEqn 0.6% ore shell is not consistently following the high conductive trend, suggesting that the SPECTREM and ZTEM responses correspond in part to the sulphide distribution, but not directly with the ore mineralization. As in any exploration project, interpretation of both surveys has yielded an improved understanding of the geology, alteration and mineralization of the Pebble system and this will serve well for on-going exploration activities. There are distinct practical advantages to the use of both SPECTREM and ZTEM, so we draw no recommendation for either system. We can conclude however, that 3D inversion of both AEM and ZTEM surveys is now a practical consideration and that it has added value to exploration at Pebble.

  4. High-temperature gas filtration

    SciTech Connect

    Schiffer, H.P.; Laux, S.; Renz, U. . Lehrstuhl fuer Waermeuebertragung und Klimatechnik)

    1992-10-01

    High-temperature, high-pressure filtration is important to the development of fluidized-bed combustion (FBC) technology. This volume describes the commissioning and testing of a pilot-scale filter module rated at 1 to 4 bar pressure and up to 900[degrees]C. The module consists of an array of six porous sintered silicon carbide filter elements, designed to be cleaned on-line by jet pulses of compressed air. More than 2000 hours of exposure were achieved with FBC combustion gas with inlet dust concentrations of 500 to 40,000 ppM[sub w] at 200 to 650[degrees]C. Another 3500 hours of operation were achieved with simulated gas and injected dust. The filter elements were subjected to 60,000 cleaning cycles. No dust penetration through the filter modules was detected. After an initial stabilizing period, pressure drop remained moderate at less that 50 mbar (0.7 psi). The energy expended in pulse cleaning was negligible. No crusty deposits of dust were found on the filter elements during inspections, and no irreversible blinding occurred.

  5. High temperature autoclave vacuum seals

    NASA Technical Reports Server (NTRS)

    Hoffman, J. R.; Simpson, W. G.; Walker, H. M.

    1971-01-01

    Aluminum sheet forms effective sealing film at temperatures up to 728 K. Soft aluminum wire rings provide positive seal between foil and platen. For applications at temperatures above aluminum's service temperature, stainless steel is used as film material and copper wire as sealant.

  6. High Temperature Solid Lubricant Coating for High Temperature Wear Applications

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher (Inventor); Edmonds, Brian J (Inventor)

    2014-01-01

    A self-lubricating, friction and wear reducing composite useful over a wide temperature range is described herein. The composite includes metal bonded chromium oxide dispersed in a metal binder having a substantial amount of nickel. The composite contains a fluoride of at least one Group I, Group II, or rare earth metal, and optionally a low temperature lubricant metal.

  7. Thermal disconnect for high-temperature batteries

    DOEpatents

    Jungst, Rudolph George; Armijo, James Rudolph; Frear, Darrel Richard

    2000-01-01

    A new type of high temperature thermal disconnect has been developed to protect electrical and mechanical equipment from damage caused by operation at extreme temperatures. These thermal disconnects allow continuous operation at temperatures ranging from 250.degree. C. to 450.degree. C., while rapidly terminating operation at temperatures 50.degree. C. to 150.degree. C. higher than the continuous operating temperature.

  8. High-Temperature Resistance Strain Gauges

    NASA Technical Reports Server (NTRS)

    Lei, Jih-Fen

    1994-01-01

    Resistance strain gauges developed for use at high temperatures in demanding applications like testing aircraft engines and structures. Measures static strains at temperatures up to 800 degrees C. Small and highly reproducible. Readings corrected for temperature within small tolerances, provided temperatures measured simultaneously by thermocouples or other suitable devices. Connected in wheatstone bridge.

  9. High Temperature Polyimide Materials in Extreme Temperature Environments

    NASA Technical Reports Server (NTRS)

    Johnson, Theodore F.; Gates, Thomas S.

    2001-01-01

    At the end of the NASA High Speed Research (HSR) Program, NASA Langley Research Center (LaRC) began a program to screen the high-temperature Polymeric Composite Materials (PMCs) characterized by the HSR Durability Program for possible use in Reusable Launch Vehicles (RLVs) operating under extreme temperature conditions. The HSR Program focused on developing material-related technologies to enable a High Speed Civil Transport (HSCT) capable of operating temperatures ranging from 54 C (-65 F) to 177 C (350 F). A high-temperature polymeric resin, PETI-5 was used in the HSR Program to satisfy the requirements for performance and durability for a PMC. For RLVs, it was anticipated that this high temperature material would contribute to reducing the overall weight of a vehicle by eliminating or reducing the thermal protection required to protect the internal structural elements of the vehicle and increasing the structural strain limits. The tests were performed to determine temperature-dependent mechanical and physical proper-ties of IM7/PETI-5 composite over a temperature range from cryogenic temperature -253 C (-423F) to the material's maximum use temperature of 230 C (450 F). This paper presents results from the test program for the temperature-dependent mechanical and physical properties of IM7/PETI-5 composite in the temperature range from -253 C (-423 F) to 27 C (80 F).

  10. High-temperature thermocouples and related methods

    DOEpatents

    Rempe, Joy L.; Knudson, Darrell L.; Condie, Keith G.; Wilkins, S. Curt

    2011-01-18

    A high-temperature thermocouple and methods for fabricating a thermocouple capable of long-term operation in high-temperature, hostile environments without significant signal degradation or shortened thermocouple lifetime due to heat induced brittleness.