Science.gov

Sample records for high temperature proton

  1. High Temperature Protonic Conductors

    NASA Technical Reports Server (NTRS)

    Dynys, Fred; Berger, Marie-Helen; Sayir, Ali

    2007-01-01

    High Temperature Protonic Conductors (HTPC) with the perovskite structure are envisioned for electrochemical membrane applications such as H2 separation, H2 sensors and fuel cells. Successive membrane commercialization is dependent upon addressing issues with H2 permeation rate and environmental stability with CO2 and H2O. HTPC membranes are conventionally fabricated by solid-state sintering. Grain boundaries and the presence of intergranular second phases reduce the proton mobility by orders of magnitude than the bulk crystalline grain. To enhanced protonic mobility, alternative processing routes were evaluated. A laser melt modulation (LMM) process was utilized to fabricate bulk samples, while pulsed laser deposition (PLD) was utilized to fabricate thin film membranes . Sr3Ca(1+x)Nb(2-x)O9 and SrCe(1-x)Y(x)O3 bulk samples were fabricated by LMM. Thin film BaCe(0.85)Y(0.15)O3 membranes were fabricated by PLD on porous substrates. Electron microscopy with chemical mapping was done to characterize the resultant microstructures. High temperature protonic conduction was measured by impedance spectroscopy in wet air or H2 environments. The results demonstrate the advantage of thin film membranes to thick membranes but also reveal the negative impact of defects or nanoscale domains on protonic conductivity.

  2. Protonation enthalpies of metal oxides from high temperature electrophoresis

    SciTech Connect

    Rodriguez-Santiago, V; Fedkin, Mark V.; Lvov, Serguei N.

    2012-01-01

    Surface protonation reactions play an important role in the behavior of mineral and colloidal systems, specifically in hydrothermal aqueous environments. However, studies addressing the reactions at the solid/liquid interface at temperatures above 100 C are scarce. In this study, newly and previously obtained high temperature electrophoresis data (up to 260 C) zeta potentials and isoelectric points for metal oxides, including SiO2, SnO2, ZrO2, TiO2, and Fe3O4, were used in thermodynamic analysis to derive the standard enthalpies of their surface protonation. Two different approaches were used for calculating the protonation enthalpy: one is based on thermodynamic description of the 1-pKa model for surface protonation, and another one on a combination of crystal chemistry and solvation theories which link the relative permittivity of the solid phase and the ratio of the Pauling bond strength and bond length to standard protonation enthalpy. From this analysis, two expressions relating the protonation enthalpy to the relative permittivity of the solid phase were obtained.

  3. Protonation enthalpies of metal oxides from high temperature electrophoresis.

    SciTech Connect

    Rodriguez-Santiago, V; Fedkin, Mark V; Lvov, Serguei N.

    2012-01-01

    Surface protonation reactions play an important role in the behavior of mineral and colloidal systems, specifically in hydrothermal aqueous environments. However, studies addressing the reactions at the solid/liquid interface at temperatures above 100 C are scarce. In this study, newly and previously obtained high temperature electrophoresis data (up to 260 C) - zeta potentials and isoelectric points - for metal oxides, including SiO{sub 2}, SnO{sub 2}, ZrO{sub 2}, TiO{sub 2}, and Fe{sub 3}O{sub 4}, were used in thermodynamic analysis to derive the standard enthalpies of their surface protonation. Two different approaches were used for calculating the protonation enthalpy: one is based on thermodynamic description of the 1-pKa model for surface protonation, and another one - on a combination of crystal chemistry and solvation theories which link the relative permittivity of the solid phase and the ratio of the Pauling bond strength and bond length to standard protonation enthalpy. From this analysis, two expressions relating the protonation enthalpy to the relative permittivity of the solid phase were obtained.

  4. High-Temperature Proton-Conducting Ceramics Developed

    NASA Technical Reports Server (NTRS)

    Sayir, Ali; Dynys, Frederick W.; Berger, M. H.

    2005-01-01

    High-temperature protonic conductors (HTPC) are needed for hydrogen separation, hydrogen sensors, fuel cells, and hydrogen production from fossil fuels. The HTPC materials for hydrogen separation at high temperatures are foreseen to be metal oxides with the perovskite structure A(sup 2+)B(sup 4+)C(sup 2-, sub 3) and with the trivalent cation (M(sup 3+)) substitution at the B(sup 4+)-site to introduce oxygen vacancies. The high affinity for hydrogen ions (H(sup +)) is advantageous for protonic transport, but it increases the reactivity toward water (H2O) and carbon dioxide (CO2), which can lead to premature membrane failure. In addition, there are considerable technological challenges related to the processing of HTPC materials. The high melting point and multi-cation chemistry of HTPC materials creates difficulties in in achieving high-density, single-phase membranes by solid-state sintering. The presence of secondary phases and grain-boundary interfaces are detrimental to the protonic conduction and environmental stability of polycrystalline HTPC materials.

  5. High temperature polymers for proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Einsla, Brian Russel

    Novel proton exchange membranes (PEMs) were investigated that show potential for operating at higher temperatures in both direct methanol (DMFC) and H 2/air PEM fuel cells. The need for thermally stable polymers immediately suggests the possibility of heterocyclic polymers bearing appropriate ion conducting sites. Accordingly, monomers and random disulfonated poly(arylene ether) copolymers containing either naphthalimide, benzoxazole or benzimidazole moieties were synthesized via direct copolymerization. The ion exchange capacity (IEC) was varied by simply changing the ratio of disulfonated monomer to nonsulfonated monomer in the copolymerization step. Water uptake and proton conductivity of cast membranes increased with IEC. The water uptake of these heterocyclic copolymers was lower than that of comparable disulfonated poly(arylene ether) systems, which is a desirable improvement for PEMs. Membrane electrode assemblies were prepared and the initial fuel cell performance of the disulfonated polyimide and polybenzoxazole (PBO) copolymers was very promising at 80°C compared to the state-of-the-art PEM (NafionRTM); nevertheless these membranes became brittle under operating conditions. Several series of poly(arylene ether)s based on disodium-3,3'-disulfonate-4,4 '-dichlorodiphenylsulfone (S-DCDPS) and a benzimidazole-containing bisphenol were synthesized and afforded copolymers with enhanced stability. Selected properties of these membranes were compared to separately prepared miscible blends of disulfonated poly(arylene ether sulfone) copolymers and polybenzimidazole (PBI). Complexation of the sulfonic acid groups with the PBI structure reduced water swelling and proton conductivity. The enhanced proton conductivity of NafionRTM membranes has been proposed to be due to the aggregation of the highly acidic side-chain sulfonic acid sites to form ion channels. A series of side-chain sulfonated poly(arylene ether sulfone) copolymers based on methoxyhydroquinone was

  6. Hydrogen diffusion in high temperature proton conducting ceramics

    NASA Astrophysics Data System (ADS)

    Sorieul, S.; Miro, S.; Taillades-Jacquin, M.; Dailly, J.; Mauvy, F.; Berger, M.-H.; Berger, P.

    2008-04-01

    BaCeO3 or SrCeO3-based perovskites doped with a rare earth are high temperature protonic conductors (HTPC) envisioned as electrolytes for fuel cells working at intermediate temperature (400-600 °C). In these ceramics, the proton conductance is hampered by microstructural defects that act as barriers for hydrogen diffusion. Respective contributions of bulk and grain boundaries to overall conductivity is usually evidenced via impedance measurements but further information on hydrogen transport relevant for improvement of microstructure design can be obtained with nuclear microanalysis, based on the use of MeV light ions microbeam. We report here a contribution of ion beam microanalysis to the study of hydrogen transport in BaCe0.9Y0.1O3. ERDA hydrogen profiling performed on partially hydrated samples at 200 and 500 °C reveals concentration gradients from which diffusion coefficients have been derived with the help of a simple Fickian diffusion model.

  7. Cryo-SEM of hydrated high temperature proton exchange membranes

    SciTech Connect

    Perry, Kelly A; More, Karren Leslie; Walker, Larry R; Benicewicz, Brian

    2009-01-01

    Alternative energy technologies, such as high temperature fuel cells and hydrogen pumps, rely on proton exchange membranes (PEM). A chemically and thermally stable PEM with rapid proton transport is sol-gel phosphoric acid (PA)-doped polybenzimidazole (PBI) membranes. It is believed that the key to the high ionic conductivity of PA-doped PBI membranes is related to the gel morphology. However, the gel structure and general morphology of this PA-doped PBI membrane has not been widely investigated. In an effort to understand the gel morphology, two SEM sample preparation methodologies have been developed for PA-doped PBI membranes. Due to the high vacuum environment of conventional SEM, the beam-sensitivity of these membranes was reduced with a mild 120 C heat treatment to remove excess water without structural rearrangement (as verified from wide angle X-ray scattering). Cryo-SEM has also been implemented for both initial and heated membranes. Cryo-SEM is known to prevent dehydration of the specimen and reduce beam-sensitivity. The SEM cross-section image (Fig. 1A) of the heated samples exhibit 3{micro}m spheroidal features that are elongated in the direction of the casting blade. These features are distorted to 2{micro}m under conventional SEM conditions (Fig. 1B). The fine-scale gel morphology image (Fig. 2) is composed of 65nm diameter domains and 30nm walls, which resembles a cellular structure. In the future, the PA-doped PBI membranes will be cryo-microtomed and cryotransferred for elemental analysis in a TEM.

  8. THE STABILITY AND ELECTRICAL PROPERTIES OF HIGH TEMPERATURE PROTON CONDUCTORS

    SciTech Connect

    Brinkman, K.

    2010-07-06

    The morphological and electrical properties of Ba{sub 1-x}Sr{sub x}Ce{sub 0.8}Y{sub 0.2}O{sub 3-{delta}} with x varying from 0 to 1 prepared by a modified Pechini method were investigated as potential high temperature proton conductors. Dense microstructures were achieved for all the samples upon sintering at 1500 C for 5 h. The phase structure analysis indicated that perovskite phase was formed for 0 {le} x {le} 0.2, while for x larger than 0.5, impurity phases of Sr{sub 2}CeO{sub 4} and Y{sub 2}O{sub 3} appeared. The tolerance to H{sub 2}O for the samples improved with the increase in Sr content when exposed to boiling water, while the electrical conductivity decreased from x = 0 to 1. However, the resistance to CO{sub 2} attack at elevated temperatures was not improved within the whole x range studied.

  9. Proton conductivity of perfluorosulfonate ionomers at high temperature and high relative humidity

    SciTech Connect

    Matos, Bruno R.; Goulart, Cleverson A.; Santiago, Elisabete I.; Muccillo, R.; Fonseca, Fabio C.

    2014-03-03

    The proton transport properties of Nafion membranes were studied in a wide range of temperature by using an air-tight sample holder able to maintain the sample hydrated at high relative humidity. The proton conductivity of hydrated Nafion membranes continuously increased in the temperature range of 40–180 °C with relative humidity kept at RH = 100%. In the temperature range of 40–90 °C, the proton conductivity followed the Arrhenius-like thermal dependence. The calculated apparent activation energy E{sub a} values are in good agreement with proton transport via the structural diffusion in absorbed water. However, at higher measuring temperatures an upturn of the electrical conductivity was observed to be dependent on the thermal history of the sample.

  10. Pulsed Laser Deposition of High Temperature Protonic Films

    NASA Technical Reports Server (NTRS)

    Dynys, Fred W.; Berger, M. H.; Sayir, Ali

    2006-01-01

    Pulsed laser deposition has been used to fabricate nanostructured BaCe(0.85)Y(0.15)O3- sigma) films. Protonic conduction of fabricated BaCe(0.85)Y(0.15)O(3-sigma) films was compared to sintered BaCe(0.85)Y(0.15)O(3-sigma). Sintered samples and laser targets were prepared by sintering BaCe(0.85)Y(0.15)O(3-sigma) powders derived by solid state synthesis. Films 1 to 8 micron thick were deposited by KrF excimer laser on porous Al2O3 substrates. Thin films were fabricated at deposition temperatures of 700 to 950 C at O2 pressures up to 200 mTorr using laser pulse energies of 0.45 - 0.95 J. Fabricated films were characterized by X-ray diffraction, electron microscopy and electrical impedance spectroscopy. Single phase BaCe(0.85)Y(0.15)O(3-sigma) films with a columnar growth morphology are observed with preferred crystal growth along the [100] or [001] direction. Results indicate [100] growth dependence upon laser pulse energy. Electrical conductivity of bulk samples produced by solid state sintering and thin film samples were measured over a temperature range of 100 C to 900 C. Electrical conduction behavior was dependent upon film deposition temperature. Maximum conductivity occurs at deposition temperature of 900 oC; the electrical conductivity exceeds the sintered specimen. All other deposited films exhibit a lower electrical conductivity than the sintered specimen. Activation energy for electrical conduction showed dependence upon deposition temperature, it varied

  11. Proton delocalization under extreme conditions of high pressure and temperature

    SciTech Connect

    Goncharov, Alexander F.; Crowhurst, Jonathan

    2008-10-02

    Knowledge of the behaviour of light hydrogen-containing molecules under extreme conditions of high pressure and temperature is crucial to a comprehensive understanding of the fundamental physics and chemistry that is relevant under such conditions. It is also vital for interpreting the results of planetary observations, in particular those of the gas giants, and also for various materials science applications. On a fundamental level, increasing pressure causes the redistribution of the electronic density, which results in a modification of the interatomic potentials followed by a consequent qualitative change in the character of the associated bonding. Ultimately, at sufficiently high pressure, one may anticipate a transformation to a homogeneously bonded material possessing unusual physical properties (e.g. a quantum fluid). As temperature increases so does the concentration of ionised species leading ultimately to a plasma. Considerable improvements have recently been made in both the corresponding experimental and theoretical investigations. Here we review recent results for hydrogen and water that reveal unexpected routes of transformation to nonmolecular materials. We stress the importance of quantum effects, which remain significant even at high temperatures.

  12. NanoCapillary Network Proton Conducting Membranes for High Temperature Hydrogen/Air Fuel Cells

    SciTech Connect

    Pintauro, Peter

    2012-07-09

    The objective of this proposal is to fabricate and characterize a new class of NanoCapillary Network (NCN) proton conducting membranes for hydrogen/air fuel cells that operate under high temperature, low humidity conditions. The membranes will be intelligently designed, where a high density interconnecting 3-D network of nm-diameter electrospun proton conducting polymer fibers is embedded in an inert (uncharged) water/gas impermeable polymer matrix. The high density of fibers in the resulting mat and the high ion-exchange capacity of the fiber polymer will ensure high proton conductivity. To further enhance water retention, molecular silica will be added to the sulfonated polymer fibers. The uncharged matrix material will control water swelling of the high ion-exchange capacity proton conducting polymer fibers and will impart toughness to the final nanocapillary composite membrane. Thus, unlike other fuel cell membranes, the role of the polymer support matrix will be decoupled from that of the proton-conducting channels. The expected final outcome of this 5-year project is the fabrication of fuel cell membranes with properties that exceed the DOE’s technical targets, in particular a proton conductivity of 0.1 S/cm at a temperature less than or equal to120°C and 25-50% relative humidity.

  13. Redistribution of components in the niobium-silicon system under high-temperature proton irradiation

    SciTech Connect

    Afonin, N. N.; Logacheva, V. A. Khoviv, A. M.

    2011-12-15

    The redistribution of components in the niobium-silicon system during magnetron-assisted sputtering of niobium, vacuum annealing, and high-temperature proton irradiation is studied. It is established that, during magnetron-assisted sputtering followed by vacuum annealing, silicon penetrates through the metal film to the outer boundary of the film. Under high-temperature proton irradiation, the suppression of the diffusion of niobium into silicon is observed. This effect is attributed to the high concentration of radiation vacancies in the region of the Nb/Si interphase boundary.

  14. Laser generated proton beam focusing and high temperature isochoric heating of solid matter

    SciTech Connect

    Snavely, R. A.; Hatchett, S. P.; Key, M. H.; Langdon, A. B.; Lasinski, B. F.; MacKinnon, A. J.; Patel, P.; Town, R.; Wilks, S. C.; Zhang, B.; Akli, K.; Hey, D.; King, J.; Chen, Z.; Izawa, Y.; Kitagawa, Y.; Kodama, R.; Lei, A.; Tampo, M.; Tanaka, K. A.

    2007-09-15

    The results of laser-driven proton beam focusing and heating with a high energy (170 J) short pulse are reported. Thin hemispherical aluminum shells are illuminated with the Gekko petawatt laser using 1 {mu}m light at intensities of {approx}3x10{sup 18} W/cm{sup 2} and measured heating of thin Al slabs. The heating pattern is inferred by imaging visible and extreme-ultraviolet light Planckian emission from the rear surface. When Al slabs 100 {mu}m thick were placed at distances spanning the proton focus beam waist, the highest temperatures were produced at 0.94x the hemisphere radius beyond the equatorial plane. Isochoric heating temperatures reached 81 eV in 15 {mu}m thick foils. The heating with a three-dimensional Monte Carlo model of proton transport with self-consistent heating and proton stopping in hot plasma was modeled.

  15. New High-Temperature Membranes Developed for Proton Exchange Membrane Fuel Cells

    NASA Technical Reports Server (NTRS)

    Kinder, James D.

    2004-01-01

    Fuel cells are receiving a considerable amount of attention for potential use in a variety of areas, including the automotive industry, commercial power generation, and personal electronics. Research at the NASA Glenn Research Center has focused on the development of fuel cells for use in aerospace power systems for aircraft, unmanned air vehicles, and space transportation systems. These applications require fuel cells with higher power densities and better durability than what is required for nonaerospace uses. In addition, membrane cost is a concern for any fuel cell application. The most widely used membrane materials for proton exchange membrane (PEM) fuel cells are based on sulfonated perfluorinated polyethers, typically Nafion 117, Flemion, or Aciplex. However, these polymers are costly and do not function well at temperatures above 80 C. At higher temperatures, conventional membrane materials dry out and lose their ability to conduct protons, essential for the operation of the fuel cell. Increasing the operating temperature of PEM fuel cells from 80 to 120 C would significantly increase their power densities and enhance their durability by reducing the susceptibility of the electrode catalysts to carbon monoxide poisoning. Glenn's Polymers Branch has focused on developing new, low-cost membranes that can operate at these higher temperatures. A new series of organically modified siloxane (ORMOSIL) polymers were synthesized for use as membrane materials in a high-temperature PEM fuel cell. These polymers have an organic portion that can allow protons to transport through the polymer film and a cross-linked silica network that gives the polymers dimensional stability. These flexible xerogel polymer films are thermally stable, with decomposition onset as high as 380 C. Two types of proton-conducting ORMOSIL films have been produced: (1) NASA-A, which can coordinate many highly acid inorganic salts that facilitate proton conduction and (2) NASA-B, which has been

  16. In situ proton irradiation-induced creep at very high temperature

    NASA Astrophysics Data System (ADS)

    Campbell, Anne A.; Was, Gary S.

    2013-02-01

    This objective of this work was to develop an experimental facility that can perform in situ high temperature proton irradiation-induced creep experiments on a range of materials. This was achieved by designing an irradiation chamber and stage that allows for load application and removal, provides a method for controlling and monitoring temperature and proton flux, and a means to make in situ measurement of dimensional change of the samples during the experiment. Initial experiments on POCO Graphite Inc. ZXF-5Q grade ultra-fine grain samples irradiated at 1000 °C at a damage rate of 1.15 × 10-6 dpa/s exhibited a linear dependence of measured creep rate on applied stress over a range of stresses from 10 MPa to 40 MPa.

  17. High-temperature annealing of proton irradiated beryllium - A dilatometry-based study

    NASA Astrophysics Data System (ADS)

    Simos, Nikolaos; Elbakhshwan, Mohamed; Zhong, Zhong; Ghose, Sanjit; Savkliyildiz, Ilyas

    2016-08-01

    Ssbnd 200 F grade beryllium has been irradiated with 160 MeV protons up to 1.2 1020 cm-2 peak fluence and irradiation temperatures in the range of 100-200 °C. To address the effect of proton irradiation on dimensional stability, an important parameter in its consideration in fusion reactor applications, and to simulate high temperature irradiation conditions, multi-stage annealing using high precision dilatometry to temperatures up to 740 °C were conducted in air. X-ray diffraction studies were also performed to compliment the macroscopic thermal study and offer a microscopic view of the irradiation effects on the crystal lattice. The primary objective was to qualify the competing dimensional change processes occurring at elevated temperatures namely manufacturing defect annealing, lattice parameter recovery, transmutation 4He and 3H diffusion and swelling and oxidation kinetics. Further, quantification of the effect of irradiation dose and annealing temperature and duration on dimensional changes is sought. The study revealed the presence of manufacturing porosity in the beryllium grade, the oxidation acceleration effect of irradiation including the discontinuous character of oxidation advancement, the effect of annealing duration on the recovery of lattice parameters recovery and the triggering temperature for transmutation gas diffusion leading to swelling.

  18. Synthesis of proton conducting mesoporous materials and composite membranes for high temperature proton exchange membrane (PEM) fuel cells

    NASA Astrophysics Data System (ADS)

    Feng, Fangxia

    Tungstosilicate mesoporous materials (WMM) were synthesized using the ionic surfactant cetyltrimethylammonium bromide (C16H33N +(CH3)3Br- CTMABr) and non-ionic surfactants, including C12H25(OCH2CH 2)10OH (Brij 22, C12EO10OH), C 16H33(OCH2CH2)10OH (Brij 56, C16EO10OH), and C18H37(OCH 2CH2)10OH (Brij 76, C18EO10OH). The proton conductivities were measured by AC impedance spectroscopy. Using CTMABr, the highest W/Si ratio achieved for the molecular sieve product was 0.03. The conductivity ranged from 0.5 to 2.2 x 10-2 S/cm, where the highest conductivity was observed with the H3PO 4 based preparation. Non-ionic surfactants produced materials with a W/Si ratio as high as 0.05 without any dense WO3 impurities. These samples showed thicker pore walls (39A), higher thermal stability, and higher proton conductivity (4.0 x 10-2 S/cm). The WMMs were also employed to make a composite membrane with linear polyethyleneimine (PEI), 3-glycidoxypropyltrimethoxysilane (GLYMO), bis(trifluoromethanesulfonyl)imide (HTFSI). At 100°C and 100% relative humidity, the composite membrane with 30 wt.% calcined (at 500°C) WMM showed the highest conductivity of 6.1 x 10-2 S/cm. At 130°C and 20% relative humidity, the highest conductivity of 6.4 x 10-3 S/cm was obtained for the composite membrane with 30 wt.% as-synthesized WMM. Transparent free-standing mesoporous silica (MS) films were synthesized from a system of TMOS-Brij-Acid-H2O. The non-ionic surfactants used included Brij 22 (Cl2EO10OH), Brij 56 (C16EO 10OH), and Brij 76 (C18EO10OH). The acids used include HCl, H3PO4, and CF3SO3H. The effect of synthesis parameters on the synthesis and the proton conductivity of mesoporous silica were investigated. The Brij 56/CF3SO 3H based product showed the highest conductivity of 6.5 x 10 -2 S/cm at room temperature. Composite was prepared by combing TMOS, Brij surfactant, acid (HCl, H3PO4, or CF 3SO3H), N-[3-(trimethoxysilyl)propyl]-ethylenediamine (EDATMS), 3-glycidoxypropylmethoxysilane (GLYMO

  19. Improved Electrodes for High Temperature Proton Exchange Membrane Fuel Cells using Carbon Nanospheres.

    PubMed

    Zamora, Héctor; Plaza, Jorge; Cañizares, Pablo; Lobato, Justo; Rodrigo, Manuel A

    2016-05-23

    This work evaluates the use of carbon nanospheres (CNS) in microporous layers (MPL) of high temperature proton exchange membrane fuel cell (HT-PEMFC) electrodes and compares the characteristics and performance with those obtained using conventional MPL based on carbon black. XRD, hydrophobicity, Brunauer-Emmett-Teller theory, and gas permeability of MPL prepared with CNS were the parameters evaluated. In addition, a short life test in a fuel cell was carried out to evaluate performance under accelerated stress conditions. The results demonstrate that CNS is a promising alternative to traditional carbonaceous materials because of its high electrochemical stability and good electrical conductivity, suitable to be used in this technology. PMID:27076055

  20. Durability of symmetrically and asymmetrically porous polybenzimidazole membranes for high temperature proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Jheng, Li-Cheng; Chang, Wesley Jen-Yang; Hsu, Steve Lien-Chung; Cheng, Po-Yang

    2016-08-01

    Two types of porous polybenzimidazole (PBI) membranes with symmetric and asymmetric morphologies were fabricated by the template-leaching method and characterized by scanning electron microscope (SEM). Their physicochemical properties were compared in terms of acid-doping level, proton conductivity, mechanical strength, and oxidative stability. The durability of fuel cell operation is one of the most challenging for the PBI based membrane electrode assembly (MEA) used in high-temperature proton exchange membrane fuel cells (HT-PEMFCs). In the present work, we carried out a long-term steady-state fuel cell test to compare the effect of membrane structure on the cell voltage degradation. It has also been demonstrated that the asymmetrically porous PBI could bring some notable improvements on the durability of fuel cell operation, the fuel crossover problem, and the phosphoric acid leakage.

  1. High-temperature supercapacitor with a proton-conducting metal pyrophosphate electrolyte

    NASA Astrophysics Data System (ADS)

    Hibino, Takashi; Kobayashi, Kazuyo; Nagao, Masahiro; Kawasaki, Shinji

    2015-01-01

    Expanding the range of supercapacitor operation to temperatures above 100°C is important because this would enable capacitors to operate under the severe conditions required for next-generation energy storage devices. In this study, we address this challenge by the fabrication of a solid-state supercapacitor with a proton-conducting Sn0.95Al0.05H0.05P2O7 (SAPO)-polytetrafluoroethylene (PTFE) composite electrolyte and a highly condensed H3PO4 electrode ionomer. At a temperature of 200°C, the SAPO-PTFE electrolyte exhibits a high proton conductivity of 0.02 S cm-1 and a wide withstanding voltage range of +/-2 V. The H3PO4 ionomer also has good wettability with micropore-rich activated carbon, which realizes a capacitance of 210 F g-1 at 200°C. The resulting supercapacitor exhibits an energy density of 32 Wh kg-1 at 3 A g-1 and stable cyclability after 7000 cycles from room temperature to 150°C.

  2. High-temperature supercapacitor with a proton-conducting metal pyrophosphate electrolyte

    PubMed Central

    Hibino, Takashi; Kobayashi, Kazuyo; Nagao, Masahiro; Kawasaki, Shinji

    2015-01-01

    Expanding the range of supercapacitor operation to temperatures above 100°C is important because this would enable capacitors to operate under the severe conditions required for next-generation energy storage devices. In this study, we address this challenge by the fabrication of a solid-state supercapacitor with a proton-conducting Sn0.95Al0.05H0.05P2O7 (SAPO)-polytetrafluoroethylene (PTFE) composite electrolyte and a highly condensed H3PO4 electrode ionomer. At a temperature of 200°C, the SAPO-PTFE electrolyte exhibits a high proton conductivity of 0.02 S cm−1 and a wide withstanding voltage range of ±2 V. The H3PO4 ionomer also has good wettability with micropore-rich activated carbon, which realizes a capacitance of 210 F g−1 at 200°C. The resulting supercapacitor exhibits an energy density of 32 Wh kg−1 at 3 A g−1 and stable cyclability after 7000 cycles from room temperature to 150°C. PMID:25600936

  3. Doubling the critical current density of high temperature superconducting coated conductors through proton irradiation

    SciTech Connect

    Jia, Y.; LeRoux, M.; Miller, D. J.; Wen, J. G.; Kwok, W. K.; Welp, U.; Rupich, M. W.; Li, X.; Sathyamurthy, S.; Fleshler, S.; Malozemoff, A. P.; Kayani, A.; Ayala-Valenzuela, O.; Civale, L.

    2013-09-16

    The in-field critical current of commercial YBa{sub 2}Cu{sub 3}O{sub 7} coated conductors can be substantially enhanced by post-fabrication irradiation with 4 MeV protons. Irradiation to a fluence of 8 × 10{sup 16} p/cm{sup 2} induces a near doubling of the critical current in fields of 6 T || c at a temperature of 27 K, a field and temperature range of interest for applications, such as rotating machinery. A mixed pinning landscape of preexisting precipitates and twin boundaries and small, finely dispersed irradiation induced defects may account for the improved vortex pinning in high magnetic fields. Our data indicate that there is significant head-room for further enhancements.

  4. Nonhumidified High-Temperature Membranes Developed for Proton Exchange Membrane Fuel Cells

    NASA Technical Reports Server (NTRS)

    Kinder, James D.

    2005-01-01

    Fuel cells are being considered for a wide variety of aerospace applications. One of the most versatile types of fuel cells is the proton-exchange-membrane (PEM) fuel cell. PEM fuel cells can be easily scaled to meet the power and space requirements of a specific application. For example, small 100-W PEM fuel cells are being considered for personal power for extravehicular activity suit applications, whereas larger PEM fuel cells are being designed for primary power in airplanes and in uninhabited air vehicles. Typically, PEM fuel cells operate at temperatures up to 80 C. To increase the efficiency and power density of the fuel cell system, researchers are pursuing methods to extend the operating temperature of the PEM fuel cell to 180 C. The most widely used membranes in PEM fuel cells are Nafion 112 and Nafion 117--sulfonated perfluorinated polyethers that were developed by DuPont. In addition to their relatively high cost, the properties of these membranes limit their use in a PEM fuel cell to around 80 C. The proton conductivity of Nafion membranes significantly decreases above 80 C because the membrane dehydrates. The useful operating range of Nafion-based PEM fuel cells can be extended to over 100 C if ancillary equipment, such as compressors and humidifiers, is added to maintain moisture levels within the membrane. However, the addition of these components reduces the power density and increases the complexity of the fuel cell system.

  5. Improvement in high temperature proton exchange membrane fuel cells cathode performance with ammonium carbonate

    NASA Astrophysics Data System (ADS)

    Song, Ying; Wei, Yu; Xu, Hui; Williams, Minkmas; Liu, Yuxiu; Bonville, Leonard J.; Russell Kunz, H.; Fenton, James M.

    Proton exchange membrane (PEM) fuel cells with optimized cathode structures can provide high performance at higher temperature (120 °C). A "pore-forming" material, ammonium carbonate, applied in the unsupported Pt cathode catalyst layer of a high temperature membrane electrode assembly enhanced the catalyst activity and minimized the mass-transport limitations. The ammonium carbonate amount and Nafion ® loading in the cathode were optimized for performance at two conditions: 80 °C cell temperature with 100% anode/75% cathode R.H. and 120 °C cell temperature with 35% anode/35% cathode R.H., both under ambient pressure. A cell with 20 wt.% ammonium carbonate and 20 wt.% Nafion ® operating at 80 °C and 120 °C presented the maximum cell performance. Hydrogen/air cell voltages at a current density of 400 mA cm -2 using the Ionomem/UConn membrane as the electrolyte with a cathode platinum loading of 0.5 mg cm -2 were 0.70 V and 0.57 V at the two conditions, respectively. This was a 19% cell voltage increase over a cathode without the "pore-forming" ammonium carbonate at the 120 °C operating condition.

  6. Oriented MOF-polymer Composite Nanofiber Membranes for High Proton Conductivity at High Temperature and Anhydrous Condition

    PubMed Central

    Wu, Bin; Pan, Jiefeng; Ge, Liang; Wu, Liang; Wang, Huanting; Xu, Tongwen

    2014-01-01

    The novel oriented electrospun nanofiber membrane composed of MOFs and SPPESK has been synthesized for proton exchange membrane fuel cell operating at high temperature and anhydrous conditions. It is clear that the oriented nanofiber membrane displays the higher proton conductivity than that of the disordered nanofiber membrane or the membrane prepared by conventional solvent-casting method (without nanofibers). Nanofibers within the membranes are significantly oriented. The proton conductivity of the oriented nanofiber membrane can reach up to (8.2 ± 0.16) × 10−2 S cm−1 at 160°C under anhydrous condition for the highly orientation of nanofibers. Moreover, the oxidative stability and resistance of methanol permeability of the nanofibers membrane are obviously improved with an increase in orientation of nanofibers. The observed methanol permeability of 0.707 × 10−7 cm2 s−1 is about 6% of Nafion-115. Consequently, orientated nanofibers membrane is proved to be a promising material as the proton exchange membrane for potential application in direct methanol fuel cells. PMID:25082522

  7. Carbon composite bipolar plate for high-temperature proton exchange membrane fuel cells (HT-PEMFCs)

    NASA Astrophysics Data System (ADS)

    Lee, Dongyoung; Lee, Dai Gil

    2016-09-01

    A carbon/epoxy composite bipolar plate is an ideal substitute for the brittle graphite bipolar plate for lightweight proton exchange membrane fuel cells (PEMFCs) because of its high specific strength and stiffness. However, conventional carbon/epoxy composite bipolar plates are not applicable for high-temperature PEMFCs (HT-PEMFCs) because these systems are operated at higher temperatures than the glass transition temperatures of conventional epoxies. Therefore, in this study, a cyanate ester-modified epoxy is adopted for the development of a carbon composite bipolar plate for HT-PEMFCs. The composite bipolar plate with exposed surface carbon fibers is produced without any surface treatments or coatings to increase the productivity and is integrated with a silicone gasket to reduce the assembly cost. The developed carbon composite bipolar plate exhibits not only superior electrical properties but also high thermo-mechanical properties. In addition, a unit cell test is performed, and the results are compared with those of the conventional graphite bipolar plate.

  8. Fabrication BaZrO3/PBI-based nanocomposite as a new proton conducting membrane for high temperature proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Hooshyari, Khadijeh; Javanbakht, Mehran; Shabanikia, Akbar; Enhessari, Morteza

    2015-02-01

    Novel PBI (polybenzimidazole)-BaZrO3 (PBZ) nanocomposite membranes have been prepared for the high temperature proton exchange membrane (HT-PEM) fuel cells. The results showed that the water uptake, acid doping level and proton conductivity of the PBZ nanocomposite membranes were higher than that of virgin PBI membrane due to the presence of perovskite structure BaZrO3 nanoparticles, which as protonic conductor can perform as a special pathway for hydrogen transport. The proton conductivity of the PBZ nanocomposite membranes with 13 mol phosphoric acid per PBI repeat unit was obtained 125 mS/cm at 180 °C and 5% relative humidity. It was found that the performance of the fuel cells increases by increasing temperature; this was explained by faster reaction kinetic and higher proton conductivity. The power density and current density at 0.5 V 180 °C with 5% relative humidity were observed 0.56 W/cm2 and 1.12 A/cm2, respectively for PBZ nanocomposite membranes containing 4 wt% of the nanofillers. The results suggested that PBZ nanocomposite membranes are promising electrolytes for HT-PEM fuel cells with improved proton conductivity.

  9. Proton-Conducting Nanocrystalline Ceramics for High-Temperature Hydrogen Sensing

    NASA Astrophysics Data System (ADS)

    Tang, Xiling; Xu, Zhi; Trontz, Adam; Jing, Wenheng; Dong, Junhang

    2014-01-01

    The proton-conductive doped ceramic materials, including SrCe0.95Tb0.05O3-δ (SCTb), SrCe0.8Zr0.1Y0.1O3-δ (SCZY), and SrZr0.95Y0.05O3-δ (SZY), are synthesized in the forms of nanoparticles and nanocrystalline thin films on sapphire wafers and long-period grating (LPG) fibers. The H2 chemisorption and electrical conductivity of the nanocrystalline SCTb, SCZY, and SZY materials are measured at high temperature with and without the presence of CO2 gas. The resonant wavelength shifts ( Updelta λ_{{{{R,H}}_{ 2} }} ) of the SCTb, SCZY, and SZY thin-film coated LPGs in response to H2 concentration changes are studied in gas mixtures relevant to coal gasification syngas to evaluate their potential for high-temperature H2 detection. The results show that, at around 773.15 K (500 °C), SCTb has the highest H2 sensitivity but the most severe interferences from impurities such as CO2 and H2S; SZY has the best chemical resistance to impurities but the lowest H2 sensitivity; and SCZY exhibits high H2 sensitivity with reasonable chemical resistance.

  10. Numerical simulation of proton exchange membrane fuel cells at high operating temperature

    NASA Astrophysics Data System (ADS)

    Peng, Jie; Lee, Seung Jae

    A three-dimensional, single-phase, non-isothermal numerical model for proton exchange membrane (PEM) fuel cell at high operating temperature (T ≥ 393 K) was developed and implemented into a computational fluid dynamic (CFD) code. The model accounts for convective and diffusive transport and allows predicting the concentration of species. The heat generated from electrochemical reactions, entropic heat and ohmic heat arising from the electrolyte ionic resistance were considered. The heat transport model was coupled with the electrochemical and mass transport models. The product water was assumed to be vaporous and treated as ideal gas. Water transportation across the membrane was ignored because of its low water electro-osmosis drag force in the polymer polybenzimidazole (PBI) membrane. The results show that the thermal effects strongly affect the fuel cell performance. The current density increases with the increasing of operating temperature. In addition, numerical prediction reveals that the width and distribution of gas channel and current collector land area are key optimization parameters for the cell performance improvement.

  11. Nuclear Microprobe using Elastic Recoil Detection (ERD) for Hydrogen Profiling in High Temperature Protonic Conductors

    NASA Technical Reports Server (NTRS)

    Berger, Pascal; Sayir, Ali; Berger, Marie-Helene

    2004-01-01

    The interaction between hydrogen and various high temperature protonic conductors (HTPC) has not been clearly understood due to poor densification and unreacted secondary phases. the melt-processing technique is used in producing fully dense simple SrCe(0.9)Y (0.10) O(3-delta) and complex Sr3Ca(1+x)Nb(2+x)O(9-delta) perovskites that can not be achieved by solid-state sintering. the possibilities of ion beam analysis have been investigated to quantify hydrogen distribution in HTPC perovskites subjected to water heat treatment. Nuclear microprobe technique is based on the interactions of a focused ion beam of MeV light ions (H-1, H-2, He-3, He-4,.) with the sample to be analyzed to determine local elemental concentrations at the cubic micrometer scale, the elastic recoil detection analysis technique (ERDA) has been carried out using He-4(+) microbeams and detecting the resulting recoil protons. Mappings of longitudinal sections of water treated SrCeO3 and Sr(Ca(1/3)Nb(2/3))O3 perovskites have been achieved, the water treatment strongly alters the surface of simple SrCe(0.9)Y(0.10)O(3-delta) perovskite. From Rutherford Back Scattering measurements (RBS), both Ce depletion and surface re-deposition is evidenced. the ERDA investigations on water treated Sr3Ca(1+x)Nb(2+x)O(9-delta) perovskite did not exhibit any spatial difference for the hydrogen incorporation from the surface to the centre. the amount of hydrogen incorporation for Sr3Ca(1+x)Nb(2+x)O(9-delta) was low and required further development of two less conventional techniques, ERDA in forward geometry and forward elastic diffusion H-1(p,p) H-1 with coincidence detection.

  12. High anhydrous proton conductivity of imidazole-loaded mesoporous polyimides over a wide range from subzero to moderate temperature.

    PubMed

    Ye, Yingxiang; Zhang, Liuqin; Peng, Qinfang; Wang, Guan-E; Shen, Yangcan; Li, Ziyin; Wang, Lihua; Ma, Xiuling; Chen, Qian-Huo; Zhang, Zhangjing; Xiang, Shengchang

    2015-01-21

    On-board fuel cell technology requires proton conducting materials with high conductivity not only at intermediate temperatures for work but also at room temperature and even at subzero temperature for startup when exposed to the colder climate. To develop such materials is still challenging because many promising candidates for the proton transport on the basis of extended microstructures of water molecules suffer from significant damage by heat at temperatures above 80 °C or by freeze below -5 °C. Here we show imidazole loaded tetrahedral polyimides with mesopores and good stability (Im@Td-PNDI 1 and Im@Td-PPI 2) exhibiting a high anhydrous proton conductivity over a wide temperature range from -40 to 90 °C. Among all anhydrous proton conductors, the conductivity of 2 is the highest at temperatures below 40 °C and comparable with the best materials, His@[Al(OH)(1,4-ndc)]n and [Zn3(H2PO4)6(H2O)3](Hbim), above 40 °C. PMID:25551516

  13. Design and Development of Highly Sulfonated Polymers as Proton Exchange Membranes for High Temperature Fuel Cell Applications

    NASA Astrophysics Data System (ADS)

    Dang, Thuy D.; Bai, Zongwu; Yoonessi, Mitra

    A series of high molecular weight, highly sulfonated poly(arylenethioethersulfone) (SPTES) polymers were synthesized by polycondensation, which allowed controlled sulfonation of up to 100 mol %. The SPTES polymers were prepared via step growth polymerization of sulfonated aromatic difluorosulfone, aromatic difluorosulfone, and 4,4 '-thiobisbenzenthiol in sulfolane solvent at the temperature up to 180 °C. The composition and incorporation of the sulfonated repeat unit into the polymers were confirmed by 1H nuclear magnetic resonance (NMR) and Fourier transform infrared (FTIR) spectroscopy. Solubility tests on the SPTES polymers confirmed that no cross-linking and probably no branching occurred during the polymerizations. The end-capping groups were introduced in the SPTES polymers to control the molecular weight distribution and reduce the water solubility of the polymers. Tough, ductile membranes formed via solvent-casting exhibited increased water absorption with increasing degrees of sulfonation. The polymerizations conducted with the introduction of end-capping groups resulted in a wide variation in polymer proton conductivity, which spanned a range of 100 -300 mS cm-1, measured at 65 °C and 85 % relative humidity. The measured proton conductivities at elevated temperatures and high relative humidities are up to three times higher than that of the state-of-the-art Nafion-H proton exchange membrane under nearly comparable conditions. The thermal and mechanical properties of the SPTES polymers were investigated by TGA, DMA, and tensile measurements. The SPTES polymers show high glass transition temperatures (Tg), ˜220 °C, depending on the degree of sulfonation in polymerization. SPTES-50 polymer shows a Tg of 223 °C, with high tensile modulus, high tensile strengths at break and at yield as well as elongation at break. Wide angle X-ray scattering of the polymers shows two broad scattering features centered at 4.5 Å and 3.3 Å, the latter peak being

  14. Study of proton conduction in thulium-doped barium zirconates at high temperatures

    NASA Astrophysics Data System (ADS)

    Laidoudi, Mouloud; Abu Talib, Ibrahim; Omar, Ramli

    2000-12-01

    The specimens of BaZr1-xTmxO3-α (x = 0.02, 0.05, 0.10 and 0.15, α = x/2) have been prepared and characterized. The formation of the single perovskite phase in the samples was checked by x-ray diffraction. For the verification of the possible charge carriers in the sintered BaZr1-xTmxO3-α samples, three different electrochemical cell measurements were carried out. The measurements of electromotive force (emf) of hydrogen and steam concentration cells showed that the BaZr1-xTmxO3-α ceramic is a protonic conductor and the measurements of emf of the oxygen concentration cell showed that the BaZr0.90Tm0.10O3-α sample exhibited poor oxide ion conduction. Proton transport number tH was calculated and was found to be dependent on the content, x. The BaZr0.90Tm0.10O3-α sample showed the highest value of proton transport number in the temperature range 500≤T≤900 °C.

  15. High temperature proton exchange membranes with enhanced proton conductivities at low humidity and high temperature based on polymer blends and block copolymers of poly(1,3-cyclohexadiene) and poly(ethylene glycol)

    SciTech Connect

    Deng, Shawn; Hassan, Mohammad K.; Nalawade, Amol; Perry, Kelly A.; More, Karren L.; Mauritz, Kenneth A.; McDonnell, Marshall T.; Keffer, David J.; Mays, Jimmy W.

    2015-09-16

    Hot (at 120 °C) and dry (20% relative humidity) operating conditions benefit fuel cell designs based on proton exchange membranes (PEMs) and hydrogen due to simplified system design and increasing tolerance to fuel impurities. In this paper, presented are preparation, partial characterization, and multi-scale modeling of such PEMs based on cross-linked, sulfonated poly(1,3-cyclohexadiene) (xsPCHD) blends and block copolymers with poly(ethylene glycol) (PEG). These low cost materials have proton conductivities 18 times that of current industry standard Nafion at hot, dry operating conditions. Among the membranes studied, the blend xsPCHD-PEG PEM displayed the highest proton conductivity, which exhibits a morphology with higher connectivity of the hydrophilic domain throughout the membrane. Simulation and modeling provide a molecular level understanding of distribution of PEG within this hydrophilic domain and its relation to proton conductivities. Finally, this study demonstrates enhancement of proton conductivity at high temperature and low relative humidity by incorporation of PEG and optimized sulfonation conditions.

  16. High temperature proton exchange membranes with enhanced proton conductivities at low humidity and high temperature based on polymer blends and block copolymers of poly(1,3-cyclohexadiene) and poly(ethylene glycol)

    DOE PAGESBeta

    Deng, Shawn; Hassan, Mohammad K.; Nalawade, Amol; Perry, Kelly A.; More, Karren L.; Mauritz, Kenneth A.; McDonnell, Marshall T.; Keffer, David J.; Mays, Jimmy W.

    2015-09-16

    Hot (at 120 °C) and dry (20% relative humidity) operating conditions benefit fuel cell designs based on proton exchange membranes (PEMs) and hydrogen due to simplified system design and increasing tolerance to fuel impurities. In this paper, presented are preparation, partial characterization, and multi-scale modeling of such PEMs based on cross-linked, sulfonated poly(1,3-cyclohexadiene) (xsPCHD) blends and block copolymers with poly(ethylene glycol) (PEG). These low cost materials have proton conductivities 18 times that of current industry standard Nafion at hot, dry operating conditions. Among the membranes studied, the blend xsPCHD-PEG PEM displayed the highest proton conductivity, which exhibits a morphology withmore » higher connectivity of the hydrophilic domain throughout the membrane. Simulation and modeling provide a molecular level understanding of distribution of PEG within this hydrophilic domain and its relation to proton conductivities. Finally, this study demonstrates enhancement of proton conductivity at high temperature and low relative humidity by incorporation of PEG and optimized sulfonation conditions.« less

  17. Investigation of high temperature operation of proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Adjemian, Kevork Tro

    Proton exchange membrane fuel cells (PEMFCs) have garnered much attention in the media over the past years as they can provide a clean, environmentally friendly alternative to internal combustion engines. PEMFCs also have the flexibility to operate on many different types of fuels, thereby diminishing our reliance on foreign oil. PEMFCs, however, suffer from many drawbacks which need to be overcome before mass production becomes viable. One drawback is the expense of the fuel cell system, costing several times more than existing technologies. Another problem is that if the fuel cell is running on reformed fuels, trace amounts of carbon monoxide (10 ppm) in the hydrogen gas stream will completely poison the anode electrocatalyst, killing the PEMFC. Also, as a lot of waste heat is generated, a very elaborate cooling system needs to be used, making the overall system more expensive and complex. A possible solution to both the carbon monoxide poisoning and thermal management of a PEMFC is to elevate its operating temperature above 100°C. Unfortunately, current state-of-the-art electrolytes used in PEMFCs, i.e. Nafion 115, rely on water for the conduction of protons and by elevating the temperature, water loss occurs due to evaporation resulting in inadequate PEMFC performance. This thesis delves into the modification of Nafion and similar electrolytes to permit PEMFC operation above 100°C. This was accomplished by impregnating the pores of the Nafion with hydrophilic inorganic materials-silicon oxide via sol-gel processing and various inorganic particles. By performing these modifications to the various electrolytes, several composite membranes performed exceptionally well at an operating temperature of 130°C and demonstrated carbon monoxide tolerance of up to 500 ppm. In addition, a theory on how these materials help improve the water management characteristics of Nafion was developed, laying the foundation for the development of a completely novel membrane to

  18. Proton conducting membranes for high temperature fuel cells with solid state water free membranes

    NASA Technical Reports Server (NTRS)

    Narayanan, Sekharipuram R. (Inventor); Yen, Shiao-Pin S. (Inventor)

    2006-01-01

    A water free, proton conducting membrane for use in a fuel cell is fabricated as a highly conducting sheet of converted solid state organic amine salt, such as converted acid salt of triethylenediamine with two quaternized tertiary nitrogen atoms, combined with a nanoparticulate oxide and a stable binder combined with the converted solid state organic amine salt to form a polymeric electrolyte membrane. In one embodiment the membrane is derived from triethylenediamine sulfate, hydrogen phosphate or trifiate, an oxoanion with at least one ionizable hydrogen, organic tertiary amine bisulfate, polymeric quaternized amine bisulfate or phosphate, or polymeric organic compounds with quaternizable nitrogen combined with Nafion to form an intimate network with ionic interactions.

  19. Understanding microstructure-induced limitations of hydrogen transport in high temperature proton conductors: can nuclear microanalysis give an answer?

    NASA Astrophysics Data System (ADS)

    Berger, Pascal

    2007-03-01

    High temperature protonic conductors (HTPC) are envisioned as electrolytes for fuel cells working at intermediate temperature (400 C -- 600 C) to complement Y:ZrO2 electrolytes operating at 800 C -- 1000 C. The most mature HTPC are doped perovskites (ABO3) where tetravalent cation B is partially substituted by a trivalent one. Protons can be introduced in the lattice as point defects corresponding to hydroxyl groups on oxygen ion sites. In the temperature region of interest for technological applications, lattice vibrations allow the diffusion of protons by jumping and reorientation of O-H bonds (hoping mechanism). BaCeO3 or SrCeO3-based perovskites doped with a rare earth are the most widely studied compounds. However the proton conductance of these ceramics and their chemical stability are lower than the calculated values on single crystals and not sufficient to fulfill technological requirements. In most cases, the reasons for these discrepancies lie in uncontrolled microstructures with inter- and intra-granular defects that act as barriers for hydrogen diffusion but are preferential paths for chemical degradation by hydrolysis or carbonatation. Despite this crucial point, very few efforts are devoted to the optimization of microstructure of HTPC. Microstructure induced limitations are usually evidenced via impedance measurements which enable determination of respective contributions of bulk and grain boundaries to overall conductivity. Further information on hydrogen transport relevant for improvement of microstructure design requires local methods for hydrogen concentration measurement. Nuclear microanalysis, based on the use of MeV light ions microbeam, meets this demand. According to the chosen technique, nuclear reaction, elastic recoil or forward coincident scattering, the nuclear microprobe gives 2D-3D quantitative information on hydrogen distribution and diffusion within microstructure and enables to identify barriers and short-circuits.

  20. Nanocomposite membranes based on polybenzimidazole and ZrO2 for high-temperature proton exchange membrane fuel cells.

    PubMed

    Nawn, Graeme; Pace, Giuseppe; Lavina, Sandra; Vezzù, Keti; Negro, Enrico; Bertasi, Federico; Polizzi, Stefano; Di Noto, Vito

    2015-04-24

    Owing to the numerous benefits obtained when operating proton exchange membrane fuel cells at elevated temperature (>100 °C), the development of thermally stable proton exchange membranes that demonstrate conductivity under anhydrous conditions remains a significant goal for fuel cell technology. This paper presents composite membranes consisting of poly[2,2'-(m-phenylene)-5,5'-bibenzimidazole] (PBI4N) impregnated with a ZrO2 nanofiller of varying content (ranging from 0 to 22 wt %). The structure-property relationships of the acid-doped and undoped composite membranes have been studied using thermogravimetric analysis, differential scanning calorimetry, dynamic mechanical analysis, wide-angle X-ray scattering, infrared spectroscopy, and broadband electrical spectroscopy. Results indicate that the level of nanofiller has a significant effect on the membrane properties. From 0 to 8 wt %, the acid uptake as well as the thermal and mechanical properties of the membrane increase. As the nanofiller level is increased from 8 to 22 wt % the opposite effect is observed. At 185 °C, the ionic conductivity of [PBI4N(ZrO2 )0.231 ](H3 PO4 )13 is found to be 1.04×10(-1)  S cm(-1) . This renders membranes of this type promising candidates for use in high-temperature proton exchange membrane fuel cells. PMID:25801848

  1. The high temperature three point bend testing of proton irradiated 316L stainless steel and Mod 9Cr 1Mo

    NASA Astrophysics Data System (ADS)

    Maloy, Stuart A.; Zubelewicz, A.; Romero, T.; James, M. R.; Sommer, W. F.; Dai, Y.

    2005-08-01

    The predicted operating conditions for a lead-bismuth eutectic target to be used in an accelerator driven system for the Advanced Fuel Cycle Initiative span a temperature range of 300-600 °C while being irradiated by a high energy (˜600 MeV) proton beam. Such spallation conditions lead to high displacement rates coupled with high accumulation rates of helium and hydrogen up to 150 appm/dpa. Some candidate materials for these applications include Mod9Cr-1Mo and 316L stainless steel. To investigate the effect of irradiation on these materials, the mechanical properties are being measured through three point bend testing on Mod 9Cr-1Mo and 316L at 25, 250, 350 and 500 °C after irradiation in a high energy proton beam (500-800 MeV) to a dose of 9.8 dpa at temperatures from 200 to 320 °C. By comparing measurements made in bending to tensile measurements measured on identically irradiated materials, a measurement of 0.2% offset yield stress was obtained from 0.05% offset yield stress measured in three point bend testing. Yield stress increased by more than a factor of two after irradiation to 9.8 dpa. Observation of the outer fiber surface of 316L showed very localized deformation when tested after irradiation at 70 °C and deformation on multiple slip systems when tested after irradiation at 250-320 °C.

  2. Large Seebeck coefficients of protonated titanate nanotubes for high-temperature thermoelectric conversion.

    PubMed

    Miao, L; Tanemura, S; Huang, R; Liu, C Y; Huang, C M; Xu, G

    2010-08-01

    Titanate nanotubes Na(2-x)H(x)Ti(3)O(7) produced by alkali hydrothermally treated ground TiO(2) aerogels are investigated as possible materials for high-temperature thermoelectric conversion by measuring their thermoelectric properties. Strikingly, the Seebeck coefficients increased sharply in the temperature range 745 to 1032 K, reaching a maximum of 302 muV/K. The electrical resistivity of the TNNTs ranged from 325 to 525 Omegam, which is lower than that of bulk TiO(2), and thermal conductivities at room temperature were also very low, ranging from 0.55 to 0.75 Wm(-1) K(-1). The hollow structure of the titanate nanotubes, with small, uniform diameters, is thought to be responsible for the ultralow thermal conductivity. The large thermoelectric power and ultralow thermal conductivity suggest that titanate nanotubes represent a new kind of p-type oxide thermoelectric material. PMID:20735107

  3. The high temperature proton conductor BaZr 0.4Ce 0.4In 0.2O 3-α

    NASA Astrophysics Data System (ADS)

    Shimada, T.; Wen, C.; Taniguchi, N.; Otomo, J.; Takahashi, H.

    The oxygen ion conductor yttria-stabilized zirconia (YSZ), which is usually used as the electrolyte of SOFC, operates at high temperatures of about 1000 °C. The recent trend in developing SOFC is to reduce the operating temperature. Proton conducting cerates may allow the intermediate temperature operation for SOFC applications. Rare-earth-doped BaCeO 3 electrolytes with the perovskite structure present good protonic conductivities at moderate temperatures but rather poor chemical stability and endurance for moisture. Barium zirconate, in contrast, is a rather stable material but exhibits low protonic conductivity. We then focused on a practical protonic conductor of BaZr 0.4Ce 0.4In 0.2O 3 (BZCI) that has a relatively high durability against moisture and good protonic conductivity. However, little is known about its stability and electrochemical properties in reducing hydrogen. In this work, the electrochemical properties of BZCI as SOFC electrolytes were investigated in concentration cell and fuel cell operations. From the results of concentration cell measurements, it was revealed that BZCI has good proton conductivities in hydrogen-rich atmospheres and behaves as a protonic and oxide ionic conductor in oxygen-rich atmospheres, with some extent of electronic conductivity, which lowers its ionic transport number. Open circuit voltage (OCV) measurements in Fuel cell operations showed that OCV value of a Pt| BZCI| Pt cell is about 870 mV at 800 °C and 1020 mV at 600 °C.

  4. High Power Proton Facilities

    NASA Astrophysics Data System (ADS)

    Nagaitsev, Sergei

    2015-04-01

    This presentation will provide an overview of the capabilities and challenges of high intensity proton accelerators, such as J-PARC, Fermilab MI, SNS, ISIS, PSI, ESS (in the future) and others. The presentation will focus on lessons learned, new concepts, beam loss mechanisms and methods to mitigate them.

  5. Low platinum loading for high temperature proton exchange membrane fuel cell developed by ultrasonic spray coating technique

    NASA Astrophysics Data System (ADS)

    Su, Huaneng; Jao, Ting-Chu; Barron, Olivia; Pollet, Bruno G.; Pasupathi, Sivakumar

    2014-12-01

    This paper reports use of an ultrasonic-spray for producing low Pt loadings membrane electrode assemblies (MEAs) with the catalyst coated substrate (CCS) fabrication technique. The main MEA sub-components (catalyst, membrane and gas diffusion layer (GDL)) are supplied from commercial manufacturers. In this study, high temperature (HT) MEAs with phosphoric acid (PA)-doped poly(2,5-benzimidazole) (AB-PBI) membrane are fabricated and tested under 160 °C, hydrogen and air feed 100 and 250 cc min-1 and ambient pressure conditions. Four different Pt loadings (from 0.138 to 1.208 mg cm-2) are investigated in this study. The experiment data are determined by in-situ electrochemical methods such as polarization curve, electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The high Pt loading MEA exhibits higher performance at high voltage operating conditions but lower performances at peak power due to the poor mass transfer. The Pt loading 0.350 mg cm-2 GDE performs the peak power density and peak cathode mass power to 0.339 W cm-2 and 0.967 W mgPt-1, respectively. This work presents impressive cathode mass power and high fuel cell performance for high temperature proton exchange membrane fuel cells (HT-PEMFCs) with low Pt loadings.

  6. A Two-Dimensional Inorganic-Organic Hybrid Solid of Manganese(II) Hydrogenophosphate Showing High Proton Conductivity at Room Temperature.

    PubMed

    Zhao, Hai-Rong; Xue, Chen; Li, Cui-Ping; Zhang, Kai-Ming; Luo, Hong-Bin; Liu, Shao-Xian; Ren, Xiao-Ming

    2016-09-01

    The inorganic-organic hybrid metal hydrogenophosphate with a formula of (C2H10N2)[Mn2(HPO4)3](H2O) (1) shows layered crystal structure. The inorganic anion layer is built from Mn3O13 cluster units, and the interlayer spaces are filled by the charge-compensated ethylenediammonium dications together with the lattice water molecules. The thermogravimetry, variable-temperature powder X-ray diffraction, and the proton conductance under anhydrous and moisture environments were investigated for 1, disclosing that 1 shows high thermal stability and high proton transport nature, and the proton conductivity reaches to 1.64 × 10(-3) S·cm(-1) under 99%RH even at 293 K. The high proton conductivity is related to the formation of denser H-bond networks in the lattice. PMID:27509084

  7. Enhanced performance and stability of high temperature proton exchange membrane fuel cell by incorporating zirconium hydrogen phosphate in catalyst layer

    NASA Astrophysics Data System (ADS)

    Barron, Olivia; Su, Huaneng; Linkov, Vladimir; Pollet, Bruno G.; Pasupathi, Sivakumar

    2015-03-01

    Zirconium hydrogen phosphate (ZHP) together with polytetrafluoroethylene (PTFE) polymer binder is incorporated into the catalyst layers (CLs) of ABPBI (poly(2,5-benzimidazole))-based high temperature polymer electrolyte membrane fuel cell (HT-PEMFCs) to improve its performance and durability. The influence of ZHP content (normalised with respect to dry PTFE) on the CL properties are structurally characterised by scanning electron microscopy (SEM) and mercury intrusion porosimetry. Electrochemical analyses of the resultant membrane electrode assemblies (MEAs) are performed by recording polarisation curves and impedance spectra at 160 °C, ambient pressure and humidity. The result show that a 30 wt.% ZHP/PTFE content in the CL is optimum for improving fuel cell performance, the resultant MEA delivers a peak power of 592 mW cm-2 at a cell voltage of 380 mV. Electrochemical impedance spectra (EIS) indicate that 30% ZHP in the CL can increase the proton conductivity compared to the pristine PTFE-gas diffusion electrode (GDE). A short term stability test (∼500 h) on the 30 wt.% ZHP/PTFE-GDE shows a remarkable high durability with a degradation rate as low as ∼19 μV h-1 at 0.2 A cm-2, while 195 μV h-1 was obtained for the pristine GDE.

  8. Preparation of Proton Conductor SrZr1-xYxO3-α for Pure Hydrogen Separation in high temperature range

    NASA Astrophysics Data System (ADS)

    Konishi, Hirokazu; Nishimura, Hiroshi; Usui, Tateo; Iwao, Katayama

    The SrZr1-xYxO3-α of proton conductor was prepared by normal sintering and SPS (spark plasma sintering) methods in order to separate pure hydrogen gas from H2-containing mixed gases in high temperature range. The SrZr1-xYxO3-α has high proton conductivity under H2 gas atmosphere from 973 K to 1273 K. In this hydrogen separation system, hydrogen is oxidized to proton at the anode, and proton is reduced to hydrogen at the cathode using proton conductor by electrochemical method. Proton conductors SrZr0.9Y0.1O3-α obtained by normal sintering at 1580°C for 10 h and SPS at 1500°C for 3 min were found to be single phase of perovskite structure. Furthermore, the crystal structure of SrZr0.9Y0.1O3-α was chemically stable under H2 and CO2 gases atmosphere. Relative densities of SrZr0.9Y0.1O3-α obtained by SPS at 1400 and 1500°C were over 95 %. Furthermore, the relative density increased with sintering temperature and time of SPS. The proton conductivity of SrZr0.9Y0.1O3-α of SPS increased with sintering temperature, and was higher than one of normal sintering under wet 10 % H2 and Ar gases atmosphere. From the measurement of EMF (electromotive force) of hydrogen concentration cell at 800°C, the ionic transport number of SrZr0.9Y0.1O3-α of SPS at 1400°C for 5 min was about 1, and the electron conductivity was considerably low.

  9. Materials, Proton Conductivity and Electrocatalysis in High-Temperature PEM Fuel Cells

    NASA Astrophysics Data System (ADS)

    Daletou, Maria K.; Kallitsis, Joannis; Neophytides, Stylianos G.

    Fuel cells (FCs) are interesting alternatives to existing power conversion systems since they combine high efficiency with the usage of renewable fuels. Fuel cells can generate power from a fraction of a watt to hundreds of kilowatts and can be used in automotive, stationary or portable applications.1,2,3,4,5,6 A FC is an electrochemical device that converts in a continuous manner the free energy of a chemical reaction into electrical energy (via an electrical current). This galvanic cell consists of an electrolyte (liquid or solid) sandwiched between two porous electrodes. In order to reach desirable amounts of energy power, single cell assemblies can be mechanically compressed across electrically conductive separators to fabricate stacks.

  10. A novel phosphoric acid doped poly(ethersulphone)-poly(vinyl pyrrolidone) blend membrane for high-temperature proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Xu, Xin; Wang, Haining; Lu, Shanfu; Guo, Zhibin; Rao, Siyuan; Xiu, Ruijie; Xiang, Yan

    2015-07-01

    A high-temperature proton exchange membrane, poly(ethersulphone)-poly(vinyl pyrrolidone) (PES-PVP) blend membrane is successfully prepared by scalable polymer blending method. The physical properties of blend membrane are characterized by DSC, TG and tensile strength test. The DSC and TG results indicate PES-PVP blend membranes possess excellent thermal stability. After phosphoric acid (PA) doping treatment, the blend membrane shows enhanced proton conductivity. PA doping level and volume swelling ratio of the blend membrane are found to be positively related to the PVP content. A high proton conductivity of 0.21 S/cm is achieved at 180 °C for PA doped PES-PVP 80% with a PA doping level of 9.1. PEM fuel cell based on PA doped PES-PVP 80% membrane shows a high power density of 850 mW/cm2 and outstanding stability at 180 °C without extra humidification.

  11. Effect of Ca Doping on the Electrical Conductivity of the High-Temperature Proton Conductor LaNbO4

    SciTech Connect

    Bi, Zhonghe; Pena-Martinez, Juan; Kim, Jung-Hyun; Bridges, Craig A; Huq, Ashfia; Hodges, Jason P; Paranthaman, Mariappan Parans

    2012-01-01

    The sintering properties, crystal structure and electrical conductivity of La1-xCaxNbO4- (x=0, 0.005, 0.01, 0.015, 0.02 and 0.025), prepared by a conventional solid-state method, have been investigated using powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS). In 2.5% Ca doped samples, a small amount of impurities Ca2Nb2O7 were observed from the XRD patterns. Impedance spectra show that the grain boundary resistance increases with increasing Ca content, while the bulk resistance remains essentially constant below 550 C. Despite the higher degree of grain growth was observed for higher Ca-doping levels, the total conductivity of the La1-xCaxNbO4- series decreases with increasing Ca content from 0.5 to 2.0 mol%. The activation energy for the total conductivity decreases with increasing Ca content from 0.71 eV (x=0) to 0.54 eV (x=0.01) for the high temperature tetragonal phase, then it increases to 0.60 eV for x=0.02. For the monoclinic phase, La0.995Ca0.005NbO4- shows the lowest activation energy of 1.26 eV. These results imply that the solubility of CaO in LaNbO4 is in the range from 0.5 to 1.0 mol%. By increasing the sintering temperature from 1500 C to 1550 C, the proton conductivity of the Ca-doped LaNbO4 was improved with enlarged grain size due to a reduction in the resistive grain boundary contribution.

  12. Temperature dependence of proton permeation through a voltage-gated proton channel

    PubMed Central

    Kuno, Miyuki; Ando, Hiroyuki; Morihata, Hirokazu; Sakai, Hiromu; Mori, Hiroyuki; Sawada, Makoto

    2009-01-01

    Voltage-gated proton channels are found in many different types of cells, where they facilitate proton movement through the membrane. The mechanism of proton permeation through the channel is an issue of long-term interest, but it remains an open question. To address this issue, we examined the temperature dependence of proton permeation. Under whole cell recordings, rapid temperature changes within a few milliseconds were imposed. This method allowed for the measurement of current amplitudes immediately before and after a temperature jump, from which the ratios of these currents (Iratio) were determined. The use of Iratio for evaluating the temperature dependence minimized the contributions of factors other than permeation. Temperature jumps of various degrees (ΔT, −15 to 15°C) were applied over a wide temperature range (4–49°C), and the Q10s for the proton currents were evaluated from the Iratios. Q10 exhibited a high temperature dependence, varying from 2.2 at 10°C to 1.3 at 40°C. This implies that processes with different temperature dependencies underlie the observed Q10. A novel resistivity pulse method revealed that the access resistance with its low temperature dependence predominated in high temperature ranges. The measured temperature dependence of Q10 was decomposed into Q10 of the channel and of the access resistances. Finally, the Q10 for proton permeation through the voltage-gated proton channel itself was calculated and found to vary from 2.8 at 5°C to 2.2 at 45°C, as expected for an activation enthalpy of 64 kJ/mol. The thermodynamic features for proton permeation through proton-selective channels were discussed for the underlying mechanism. PMID:19720960

  13. High intensity proton synchrotrons

    NASA Astrophysics Data System (ADS)

    Craddock, M. K.

    1986-10-01

    Strong initiatives are being pursued in a number of countries for the construction of ``kaon factory'' synchrotrons capable of producing 100 times more intense proton beams than those available now from machines such as the Brookhaven AGS and CERN PS. Such machines would yield equivalent increases in the fluxes of secondary particles (kaons, pions, muons, antiprotons, hyperons and neutrinos of all varieties)—or cleaner beams for a smaller increase in flux—opening new avenues to various fundamental questions in both particle and nuclear physics. Major areas of investigation would be rare decay modes, CP violation, meson and hadron spectroscopy, antinucleon interactions, neutrino scattering and oscillations, and hypernuclear properties. Experience with the pion factories has already shown how high beam intensities make it possible to explore the ``precision frontier'' with results complementary to those achievable at the ``energy frontier''. This paper will describe proposals for upgrading and AGS and for building kaon factories in Canada, Europe, Japan and the United States, emphasizing the novel aspects of accelerator design required to achieve the desired performance (typically 100 μA at 30 GeV).

  14. Structures of protonated methanol clusters and temperature effects.

    PubMed

    Fifen, Jean Jules; Nsangou, Mama; Dhaouadi, Zoubeida; Motapon, Ousmanou; Jaidane, Nejm-Eddine

    2013-05-14

    The accurate evaluation of pKa's, or solvation energies of the proton in methanol at a given temperature is subject to the determination of the most favored structures of various isomers of protonated (H(+)(MeOH)n) and neutral ((MeOH)n) methanol clusters in the gas phase and in methanol at that temperature. Solvation energies of the proton in a given medium, at a given temperature may help in the determination of proton affinities and proton dissociation energies related to the deprotonation process in that medium and at that temperature. pKa's are related to numerous properties of drugs. In this work, we were interested in the determination of the most favored structures of various isomers of protonated methanol clusters in the gas phase and in methanol, at a given temperature. For this aim, the M062X/6-31++G(d,p) and B3LYP/6-31++G(d,p) levels of theory were used to perform geometries optimizations and frequency calculations on various isomers of (H(+)(MeOH)n) in both phases. Thermal effects were retrieved using our homemade FORTRAN code. Thus, we accessed the relative populations of various isomers of protonated methanol clusters, in both phases for temperatures ranging from 0 to 400 K. As results, in the gas phase, linear structures are entropically more favorable at high temperatures, while more compact ones are energetically more favorable at lower temperatures. The trend is somewhat different when bulk effects are taken into account. At high temperatures, the linear structure only dominates the population for n ≤ 6, while it is dominated by the cyclic structure for larger cluster sizes. At lower temperatures, compact structures still dominate the population, but with an order different from the one established in the gas phase. Hence, temperature effects dominate solvent effects in small cluster sizes (n ≤ 6), while the reverse trend is noted for larger cluster sizes. PMID:23676038

  15. 1,2,3-Triazole-Functionalized Polysulfone Synthesis through Microwave-Assisted Copper-Catalyzed Click Chemistry: A Highly Proton Conducting High Temperature Membrane.

    PubMed

    Sood, Rakhi; Donnadio, Anna; Giancola, Stefano; Kreisz, Aurélien; Jones, Deborah J; Cavaliere, Sara

    2016-07-01

    Microwave heating holds all the aces regarding development of effective and environmentally friendly methods to perform chemical transformations. Coupling the benefits of microwave-enhanced chemistry with highly reliable copper-catalyzed azide-alkyne cycloaddition (CuAAC) click chemistry paves the way for a rapid and efficient synthesis procedure to afford high performance thermoplastic materials. We describe herein fast and high yielding synthesis of 1,2,3-triazole-functionalized polysulfone through microwave-assisted CuAAC as well as explore their potential as phosphoric acid doped polymer electrolyte membranes (PEM) for high temperature PEM fuel cells. Polymers with various degrees of substitution of the side-chain functionality of 1,4-substituted 1,2,3-triazole with alkyl and aryl pendant structures are prepared by sequential chloromethylation, azidation, and microwave-assisted CuAAC using a range of alkynes (1-pentyne, 1-nonyne, and phenylacetylene). The completeness of reaction at each step and the purity of the clicked polymers were confirmed by (1)H-(13)C NMR, DOSY-NMR and FTIR-ATR spectroscopies. The thermal and thermochemical properties of the modified polymers were characterized by differential scanning calorimetry and thermogravimetric analysis coupled with mass spectroscopy (TG-MS), respectively. TG-MS analysis demonstrated that the commencement of the thermal degradation takes place with the decomposition of the triazole ring while its substituents have critical influence on the initiation temperature. Polysulfone functionalized with 4-phenyl-1,2,3-triazole demonstrates significantly higher Tg, Td, and elastic modulus than the ones bearing 4-propyl-1,2,3-triazole and 4-heptyl-1,2,3-triazole groups. After doping with phosphoric acid, the functionalized polymers with acid doping level of 5 show promising performance with high proton conductivity in anhydrous conditions (in the range of 27-35 mS/cm) and satisfactorily high elastic modulus (in the range

  16. Hydrogen incorporation into high temperature protonic conductors: Nuclear microprobe microanalysis by means of 1H(p, p) 1H scattering

    NASA Astrophysics Data System (ADS)

    Berger, P.; Gallien, J.-P.; Khodja, H.; Daudin, L.; Berger, M.-H.; Sayir, A.

    2006-08-01

    Protonic conductivity of some solid state materials at an intermediate temperature range (400-600 °C), referred as high temperature protonic conductor (HTPC), suggests their application as electrolytes in electrochemical cells, batteries, sensors, etc. Among them, some perovskites can be protonic and electronic conductors. Several obstacles remain to achieve the full potential of these ceramic membranes, among them the lack of measurement techniques and of an unambiguous model for conductivity. A precise understanding of the transport mechanisms requires local profiling of hydrogen concentrations within the microstructure of the ceramic. We have used the nuclear microprobe of the Laboratoire Pierre SÜE to investigate quantitatively the spatial distribution of hydrogen after water heat treatment of textured perovskites, SrCe0.9Y0.1O3-δ and Sr3Ca1+xNb2-xO9-δ, x = 0.18, synthesized according to a melt-process developed at NASA GRC. A not very common method has been developed for hydrogen measurements in thin samples, 1H(p, p)1H elastic recoil coincidence spectrometry (ERCS). Early experiments have evidenced hydrogen concentration enhancement within grain boundaries.

  17. Proton interactions with high multiplicity

    SciTech Connect

    Kokoulina, E. S. Nikitin, V. A.; Petukhov, Y. P.; Kutov, A. Ya.

    2012-06-15

    Project Thermalization is aimed to study the proton-proton interaction with high multiplicity of secondary particles. The region of high multiplicity is especially actual at present. We expect the manifestation of the secondary particle collective behavior at this region. The experimentally measured topological cross section was corrected for apparatus acceptance and detection efficiency. These data are in good agreement with gluon dominance model. The comparison with other models is also done and shows no essential deviations. There is evidence that Bose-Einstein condensation can formed at high total multiplicity region.

  18. Phase Stability and Electrical Conductivity of Ca-doped LaNb1-xTaxO4- high temperature proton conductors

    SciTech Connect

    Bi, Zhonghe; Kim, Jung-Hyun; Bridges, Craig A; Huq, Ashfia; Paranthaman, Mariappan Parans

    2011-01-01

    The electrical conductivity, phase structure and stability of La0.99Ca0.01Nb1-xTaxO4- (x=0, 0.1, 0.2, 0.3, 0.4 and 0.5, =0.005) a potential candidate for proton conductor for Solid Oxide Fuel Cells (SOFCs) have been investigated using AC impedance technique and in-situ X-ray powder diffraction. Partially substituting Nb with Ta elevates the phase transition temperature (from monoclinic to a tetragonal structure at high temperature) from ~520 C for x=0 to near 800 C for x=0.4. AC conductivity of the La0.99Ca0.01Nb1-xTaxO4- both in dry and wet air decreased slightly with increase of Ta content above 750 C, while below 500 C, it decreased one order of magnitude. It was also found that the activation energy for the total conductivity increases with increasing Ta content from 0.50 eV (x=0) to 0.58 eV (x=0.3) for the tetragonal phase, however, it decreases with increasing Ta content from 1.18 eV (x=0) to 1.08 eV (x=0.4) for the monoclinic phase. By removing the detrimental high temperature phase transition out of intermediate temperature range, partial substitution of Nb with Ta brings this class of material closer to its application in intermediate-temperature SOFCs.

  19. Thermal coupling of protons and neutral hydrogen with anisotropic temperatures in the fast solar wind

    NASA Astrophysics Data System (ADS)

    Allen, Lorraine A.; Habbal, Shadia R.; Li, Xing

    2000-10-01

    The thermal coupling between the neutral hydrogen and protons in the inner corona is explored by extending the study of Allenet al. [1998] to include anisotropic proton temperature to determine what the neutral hydrogen Ly α spectral line measurements reveal about the proton temperature, temperature anisotropy, and outflow velocity in the fast solar wind. The anisotropic proton temperature is produced by ion cyclotron resonant interaction of protons with high-frequency waves, produced by a nonlinear cascade at the Kolmogorov dissipation rate from dominant lower-frequency Alfvén waves. As a result of the coupling between the respective parallel and perpendicular components of the neutral hydrogen and proton temperatures, a greater temperature anisotropy in the neutral hydrogen develops as compared to the case when the proton temperature is isotropic. The neutral hydrogen and proton effective temperatures (Teff), incorporating both random and wave motions of the particles, and outflow velocities, are comparable below ~3Rs. Neutral hydrogen anisotropy ratios, TH(eff)/T∥, ~4 below 3Rs are readily attained, in agreement with observations. Below ~3Rs, these reflect the proton anisotropy ratio. For plasma conditions typical of the fast solar wind, these results imply that the measured Ly α spectral line profiles, from which the neutral hydrogen temperature, anisotropy ratio, and outflow velocity are inferred, are equivalent to measurements of protons below ~3Rs. Beyond this distance the width of the measured Ly α spectral lines provides a lower limit to the proton effective temperature and temperature anisotropy in the inner corona.

  20. High-Intensity Proton Accelerator

    SciTech Connect

    Jay L. Hirshfield

    2011-12-27

    Analysis is presented for an eight-cavity proton cyclotron accelerator that could have advantages as compared with other accelerators because of its potentially high acceleration gradient. The high gradient is possible since protons orbit in a sequence of TE111 rotating mode cavities of equally diminishing frequencies with path lengths during acceleration that greatly exceed the cavity lengths. As the cavities operate at sequential harmonics of a basic repetition frequency, phase synchronism can be maintained over a relatively wide injection phase window without undue beam emittance growth. It is shown that use of radial vanes can allow cavity designs with significantly smaller radii, as compared with simple cylindrical cavities. Preliminary beam transport studies show that acceptable extraction and focusing of a proton beam after cyclic motion in this accelerator should be possible. Progress is also reported on design and tests of a four-cavity electron counterpart accelerator for experiments to study effects on beam quality arising from variations injection phase window width. This device is powered by four 500-MW pulsed amplifiers at 1500, 1800, 2100, and 2400 MHz that provide phase synchronous outputs, since they are driven from a with harmonics derived from a phase-locked 300 MHz source.

  1. Preparation and Characterization of Solid Electrolyte Ceramic of SrCe1-xZrxO3 Doped Y2O3 as Protonic Conductor at High Temperature

    NASA Astrophysics Data System (ADS)

    Elvaswer; Abu Talib, Ibrahim

    2002-12-01

    These ceramics with formula Sr(Ce1-xZrx)0.9Y0.1O2.95 (x = 0, 0.25, 0.5, 0.75 and 1) prepared by solid-state reaction. Powder X-ray diffraction analysis of the samples showed single phase with orthorhombic perovskite type structure except the sample with x = 0.75. The samples exhibited the highest relative density of the sintered pellets were 97.88% measured by the geometry method. The electric conductivity of samples was then investigated by impedance spectroscopy using high frequency response analyzer (HFRA). The impedance spectra were recorded for frequencies in the range of 1 Hz to 10 Mhz in the temperature range of 400°C to 900°C in wet and dry nitrogen. The oxides showed the highest conductivities with a value 7.14 × 10-3 Scm-1 in wet nitrogen and 8.01 × 10-3 Scm-1 in dry nitrogen both at 900°C. Emf measurements were carried out using the samples as a solid electrolyte in hydrogen concentration cell. The emf of hydrogen concentration cell exhibited the highest protonic conduction in the sample with proton transport numbers with a value 0.78 at 800°C and 900°C.

  2. Membrane electrode assembly with enhanced platinum utilization for high temperature proton exchange membrane fuel cell prepared by catalyst coating membrane method

    NASA Astrophysics Data System (ADS)

    Liang, Huagen; Su, Huaneng; Pollet, Bruno G.; Linkov, Vladimir; Pasupathi, Sivakumar

    2014-11-01

    In this work, membrane electrode assemblies (MEAs) prepared by catalyst coating membrane (CCM) method are investigated for reduced platinum (Pt) loading and improved Pt utilization of high temperature proton exchange membrane fuel cell (PEMFC) based on phosphoric acid (PA)-doped poly(2,5-benzimidazole) (AB-PBI) membrane. The results show that CCM method exhibits significantly higher cell performance and Pt-specific power density than that of MEAs prepared with conventional gas diffusion electrode (GDE) under a low Pt loading level. In-suit cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) show that the MEAs prepared by the CCM method have a higher electrochemical surface area (ECSA), low cell ohmic resistance and low charge transfer resistance as compared to those prepared with GDEs at the same Pt loading.

  3. Development of membrane electrode assembly for high temperature proton exchange membrane fuel cell by catalyst coating membrane method

    NASA Astrophysics Data System (ADS)

    Liang, Huagen; Su, Huaneng; Pollet, Bruno G.; Pasupathi, Sivakumar

    2015-08-01

    Membrane electrode assembly (MEA), which contains cathode and anode catalytic layer, gas diffusion layers (GDL) and electrolyte membrane, is the key unit of a PEMFC. An attempt to develop MEA for ABPBI membrane based high temperature (HT) PEMFC is conducted in this work by catalyst coating membrane (CCM) method. The structure and performance of the MEA are examined by scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and I-V curve. Effects of the CCM preparation method, Pt loading and binder type are investigated for the optimization of the single cell performance. Under 160 °C and atmospheric pressure, the peak power density of the MEA, with Pt loading of 0.5 mg cm-2 and 0.3 mg cm-2 for the cathode and the anode, can reach 277 mW cm-2, while a current density of 620 A cm-2 is delivered at the working voltage of 0.4 V. The MEA prepared by CCM method shows good stability operating in a short term durability test: the cell voltage maintained at ∼0.45 V without obvious drop when operated at a constant current density of 300 mA cm-2 and 160 °C under ambient pressure for 140 h.

  4. Effects of electron temperature anisotropy on proton mirror instability evolution

    NASA Astrophysics Data System (ADS)

    Ahmadi, Narges; Germaschewski, Kai; Raeder, Joachim

    2016-06-01

    Proton mirror modes are large amplitude nonpropagating structures frequently observed in the magnetosheath. It has been suggested that electron temperature anisotropy can enhance the proton mirror instability growth rate while leaving the proton cyclotron instability largely unaffected, therefore causing the proton mirror instability to dominate the proton cyclotron instability in Earth's magnetosheath. Here we use particle-in-cell simulations to investigate the electron temperature anisotropy effects on proton mirror instability evolution. Contrary to the hypothesis, electron temperature anisotropy leads to excitement of the electron whistler instability. Our results show that the electron whistler instability grows much faster than the proton mirror instability and quickly consumes the electron-free energy so that there is no electron temperature anisotropy left to significantly impact the evolution of the proton mirror instability.

  5. Applications of High Intensity Proton Accelerators

    NASA Astrophysics Data System (ADS)

    Raja, Rajendran; Mishra, Shekhar

    2010-06-01

    collider and neutrino factory - summary of working group 2 / J. Galambos, R. Garoby and S. Geer -- Prospects for a very high power CW SRF linac / R. A. Rimmer -- Indian accelerator program for ADS applications / V. C. Sahni and P. Singh -- Ion accelerator activities at VECC (particularly, operating at low temperature) / R. K. Bhandari -- Chinese efforts in high intensity proton accelerators / S. Fu, J. Wang and S. Fang -- ADSR activity in the UK / R. J. Barlow -- ADS development in Japan / K. Kikuchi -- Project-X, SRF, and very large power stations / C. M. Ankenbrandt, R. P. Johnson and M. Popovic -- Power production and ADS / R. Raja -- Experimental neutron source facility based on accelerator driven system / Y. Gohar -- Transmutation mission / W. S. Yang -- Safety performance and issues / J. E. Cahalan -- Spallation target design for accelerator-driven systems / Y. Gohar -- Design considerations for accelerator transmutation of waste system / W. S. Yang -- Japan ADS program / T. Sasa -- Overview of members states' and IAEA activities in the field of Accelerator Driven Systems (ADS) / A. Stanculescu -- Linac for ADS applications - accelerator technologies / R. W. Garnett and R. L. Sheffield -- SRF linacs and accelerator driven sub-critical systems - summary working groups 3 & 4 / J. Delayen -- Production of Actinium-225 via high energy proton induced spallation of Thorium-232 / J. Harvey ... [et al.] -- Search for the electric dipole moment of Radium-225 / R. J. Holt, Z.-T. Lu and R. Mueller -- SRF linac and material science and medicine - summary of working group 5 / J. Nolen, E. Pitcher and H. Kirk.

  6. Performance degradation studies on an poly 2,5-benzimidazole high-temperature proton exchange membrane fuel cell using an accelerated degradation technique

    NASA Astrophysics Data System (ADS)

    Jung, Guo-Bin; Chen, Hsin-Hung; Yan, Wei-Mon

    2014-02-01

    In this work, the performance degradation of a poly 2,5-benzimidazole (ABPBI) based high-temperature proton exchange membrane fuel cell (HT-PEMFC) was examined using an accelerated degradation technique (ADT). Experiments using an ADT with 30 min intervals were performed by applying 1.5 V to a membrane electrode assembly (MEA) with hydrogen and nitrogen feeding to the anode and cathode, respectively, to simulate the high voltage generated during fuel cell shutdown and restart. The characterization of the MEAs was performed using in-situ and ex-situ electrochemical methods, such as polarization curves, AC impedance, and cyclic voltammetry (CV), and TEM imaging before and after the ADT experiments. The measured results demonstrated that the ADT testing could be used to dramatically reduce the duration of the degradation. The current output at 0.4 V decreased by 48% after performing ADT testing for 30 min. From the AC impedance, CV and RTGA measurements, the decline in cell performance was found to be primarily due to corrosion and thinning of the catalyst layer (or carbon support) during the first 30 min, leading to the dissolution and agglomeration of the platinum catalyst.

  7. Magnets for high intensity proton synchrotrons

    SciTech Connect

    Jean-Francois Ostiguy, Vladimir Kashikhine and Alexander Makarov

    2002-09-19

    Recently, there has been considerable interest at Fermilab for the Proton Driver, a future high intensity proton machine. Various scenarios are under consideration, including a superconducting linac. Each scenario present some special challenges. We describe here the magnets proposed in a recent study, the Proton Driver Study II, which assumes a conventional warm synchrotron, roughly of the size of the existing FNAL booster, but capable of delivering 380 kW at 8 GeV.

  8. High intensity protons in RHIC

    SciTech Connect

    Montag, C.; Ahrens, L.; Blaskiewicz, M.; Brennan, J. M.; Drees, K. A.; Fischer, W.; Huang, H.; Minty, M.; Robert-Demolaize, G.; Thieberger, P.; Yip, K.

    2012-01-05

    During the 2012 summer shutdown a pair of electron lenses will be installed in RHIC, allowing the beam-beam parameter to be increased by roughly 50 percent. To realize the corresponding luminosity increase bunch intensities have to be increased by 50 percent, to 2.5 {center_dot} 10{sup 11} protons per bunch. We list the various RHIC subsystems that are most affected by this increase, and propose beam studies to ensure their readiness. The proton luminosity in RHIC is presently limited by the beam-beam effect. To overcome this limitation, electron lenses will be installed in IR10. With the help of these devices, the headon beam-beam kick experienced during proton-proton collisions will be partially compensated, allowing for a larger beam-beam tuneshift at these collision points, and therefore increasing the luminosity. This will be accomplished by increasing the proton bunch intensity from the presently achieved 1.65 {center_dot} 10{sup 11} protons per bunch in 109 bunches per beam to 2.5 {center_dot} 10{sup 11}, thus roughly doubling the luminosity. In a further upgrade we aim for bunch intensities up to 3 {center_dot} 10{sup 11} protons per bunch. With RHIC originally being designed for a bunch intensity of 1 {center_dot} 10{sup 11} protons per bunch in 56 bunches, this six-fold increase in the total beam intensity by far exceeds the design parameters of the machine, and therefore potentially of its subsystems. In this note, we present a list of major subsystems that are of potential concern regarding this intensity upgrade, show their demonstrated performance at present intensities, and propose measures and beam experiments to study their readiness for the projected future intensities.

  9. Effect of temperature and pressure on the protonation of glycine

    PubMed Central

    Izatt, R. M.; Oscarson, J. L.; Gillespie, S. E.; Grimsrud, H.; Renuncio, J. A. R.; Pando, C.

    1992-01-01

    Flow calorimetry has been used to study the interaction of glycine with protons in water at temperatures of 298.15, 323.15, and 348.15 K and pressures up to 12.50 MPa. By combining the measured heat for glycine solutions titrated with NaOH with the heat of ionization for water, the enthalpy of protonation of glycine is obtained. The reaction is exothermic at all temperatures and pressures studied. The effect of pressure on the enthalpy of reaction is very small. The experimental heat data are analyzed to yield equilibrium constant (K), enthalpy change (ΔH), and entropy change (ΔS) values for the protonation reaction as a function of temperature. These values are compared with those reported previously at 298.15 K. The ΔH and ΔS values increase (become more positive), whereas log K values decrease, as temperature increases. The trends for ΔH and ΔS with temperature are opposite to those reported previously for the protonation of several alkanolamines. However, log K values for proton interaction with both glycine and the alkanolamines decrease with increasing temperature. The effect of the nitrogen atom substituent on log K for protonation of glycine and alkanolamines is discussed in terms of changes in long-range and short-range solvent effects. These effects are used to explain the difference in ΔH and ΔS trends between glycine protonation and those found earlier for alkanolamine protonation. PMID:19431832

  10. Heterogeneous Electrocatalyst of Palladium-Cobalt-Phosphorus on Carbon Support for Oxygen Reduction Reaction in High Temperature Proton Exchange Membrane Fuel Cells.

    PubMed

    You, Dae Jong; Pak, Chanho; Jin, Seon-Ah; Lee, Kang Hee; Kwon, Kyungjung; Choi, Kyoung Hwan; Heo, Pil Won; Jang, Hongchul; Kim, Jun Young; Kim, Ji Man

    2016-05-01

    Palladium-cobalt-phosphorus (PdCoP) catalysts supported on carbon (Ketjen Black) were investigated as a cathode catalyst for oxygen reduction reaction (ORR) in high temperature proton exchange membrane fuel cells (HT-PEMFCs). The PdCoP catalyst was synthesized via a modified polyol process in teflon-sealed reactor by microwave-heating. From X-ray diffraction and transmission electron microscopic analysis, the PdCoP catalyst exhibits a face-centered cubic structure, similar to palladium (Pd), which is attributed to form a good solid solution of Co atoms and P atoms in the Pd lattice. The PdCoP nanoparticles with average diameter of 2.3 nm were uniformly distributed on the carbon support. The electrochemical surface area (ECSA) and ORR activity of PdP, PdCo and PdCoP catalysts were measured using a rotating disk electrode technique with cyclic voltammetry and the linear sweep method. The PdCoP catalysts showed the highest performances for ECSA and ORR, which might be attributed both to formation of small nanoparticle by phosphorus atom and to change in lattice constant of Pd by cobalt atom. Furthermore, The HT-PEMFCs single cell performance employing PdCoP catalyst exhibited an enhanced cell performance compared to a single cell using the PdP and PdCo catalysts. This result indicates the importance of electric and geometric control of Pd alloy nanoparticles that can improve the catalytic activity. This synergistic combination of Co and P with Pd could provide the direction of development of non-Pt catalyst for fuel cell system. PMID:27483757

  11. Hot proton anisotropies and cool proton temperatures in the outer magnetosphere

    SciTech Connect

    Gary, S.P.; Moldwin, M.B.; Thomsen, M.F.; Winske, D.; McComas, D.J.

    1994-11-01

    The plasma sheet and ring current ions of the outer magnetosphere typically exhibit an anisotropy such that the perpendicular temperature is greater than the parallel temperature. If such an anisotropy is sufficiently large, the electromagnetic proton cyclotron instability will be excited. This instability is studied using linear Vlasov theory and one-dimensional hybrid simulations for a homogeneous plasma model representative of conditions in the outer magnetosphere. The model includes a hot anisotropic proton component and a cool, initially isotropic proton component. Theory and simulations both predict that there is a threshold hot proton anisotropy for this instability which depends inversely on the parallel {beta} of the hot component. The simulations are also used to examine the nonlinear response of the cool protons to the proton cyclotron instability; the late-time temperature of the cool protons is found to increase as the relative hot proton density increases. Analysis of plasma observations obtained by the Los Alamos magnetospheric plasma analyzer in geosynchronous orbit finds that the hot ion anisotropy is indeed bounded by the predicted {beta}-independent threshold.

  12. Two-dimensional hybrid simulations of kinetic plasma turbulence: Current and vorticity vs proton temperature

    NASA Astrophysics Data System (ADS)

    Franci, Luca; Hellinger, Petr; Matteini, Lorenzo; Verdini, Andrea; Landi, Simone

    2016-03-01

    Proton temperature anisotropies between the directions parallel and perpendicular to the mean magnetic field are usually observed in the solar wind plasma. Here, we employ a high-resolution hybrid particle-in-cell simulation in order to investigate the relation between spatial properties of the proton temperature and the peaks in the current density and in the flow vorticity. Our results indicate that, although regions where the proton temperature is enhanced and temperature anisotropies are larger correspond approximately to regions where many thin current sheets form, no firm quantitative evidence supports the idea of a direct causality between the two phenomena. On the other hand, quite a clear correlation between the behavior of the proton temperature and the out-of-plane vorticity is obtained.

  13. Investigation of carbon supported PtW catalysts as CO tolerant anodes at high temperature in proton exchange membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Hassan, Ayaz; Paganin, Valdecir A.; Ticianelli, Edson A.

    2016-09-01

    The CO tolerance mechanism and the stability of carbon supported PtW electrocatalysts are evaluated in the anode of a proton exchange membrane fuel cell (PEMFC) at two different temperatures. The electrocatalysts are characterized by energy dispersive spectroscopy, X-ray diffraction, and transmission electron spectroscopy. Employed electrochemical techniques include cyclic voltammetry, CO stripping, fuel cell polarization, and online mass spectrometry. At a cell temperature of 85 °C, the PtW/C catalyst shows higher CO tolerance compared to Pt/C due an electronic effect of WOx in the Pt 5d band, which reduces the CO adsorption. An increase in hydrogen oxidation activity in the presence of CO is observed for both the catalysts at a higher temperature, due to the decrease of the Pt-CO coverage. A reduction in the current densities occurs for the PtW/C catalyst in both polarization curves and cyclic voltammograms after 5000 cycles of the anode in the range of 0.1-0.7 V vs. RHE at 50 mVs-1. This decrease in performance is assigned to the dissolution of W, with a consequent increase in the membrane resistivity. However, the observed decline of performance is small either in the presence of pure H2 or in the presence of H2/CO.

  14. A New High-Current Proton Accelerator

    SciTech Connect

    Cleland, M. R.; Galloway, R. A.; DeSanto, L.; Jongen, Y.

    2009-03-10

    A high-current (>20 mA) dc proton accelerator is being developed for applications such as boron neutron capture therapy (BNCT) and the detection of explosive materials by nuclear resonance absorption (NRA) of gamma radiation. The high-voltage dc accelerator (adjustable between 1.4 and 2.8 MeV) will be a single-ended industrial Dynamitron registered system equipped with a compact high-current, microwave-driven proton source. A magnetic mass analyzer inserted between the ion source and the acceleration tube will select the protons and reject heavier ions. A sorption pump near the ion source will minimize the flow of neutral hydrogen gas into the acceleration tube. For BNCT, a lithium target for generating epithermal neutrons is being developed that will be capable of dissipating the high power (>40 kW) of the proton beam. For NRA, special targets will be used to generate gamma rays with suitable energies for exciting nuclides typically present in explosive materials. Proton accelerators with such high-current and high-power capabilities in this energy range have not been developed previously.

  15. A New High-Current Proton Accelerator

    NASA Astrophysics Data System (ADS)

    Cleland, M. R.; Galloway, R. A.; DeSanto, L.; Jongen, Y.

    2009-03-01

    A high-current (>20 mA) dc proton accelerator is being developed for applications such as boron neutron capture therapy (BNCT) and the detection of explosive materials by nuclear resonance absorption (NRA) of gamma radiation. The high-voltage dc accelerator (adjustable between 1.4 and 2.8 MeV) will be a single-ended industrial Dynamitron® system equipped with a compact high-current, microwave-driven proton source. A magnetic mass analyzer inserted between the ion source and the acceleration tube will select the protons and reject heavier ions. A sorption pump near the ion source will minimize the flow of neutral hydrogen gas into the acceleration tube. For BNCT, a lithium target for generating epithermal neutrons is being developed that will be capable of dissipating the high power (>40 kW) of the proton beam. For NRA, special targets will be used to generate gamma rays with suitable energies for exciting nuclides typically present in explosive materials. Proton accelerators with such high-current and high-power capabilities in this energy range have not been developed previously.

  16. Hot proton anisotropies and cool proton temperatures in the outer magnetosphere

    NASA Technical Reports Server (NTRS)

    Gary, S. Peter; Moldwin, Mark B.; Thomsen, Michelle F.; Winske, Dan; Mccomas, David J.

    1994-01-01

    The hot protons of the outer magnetosphere typically exhibit a temperature anistropy such that T(sub perp)/T(sub parallel) greater than 1, where perpendicular and parallel symbols denote directions relative to the background magnetic field. If this anisotrpy is sufficiently large, the electomagneitc proton cyclotron anistropy instability may be excited. This instability is studied using linear Vlasov theory and one-dimensional hybrid simulations for a homogeneous plasma model representative of conditions in the outer magnetosphere with a hot anisotropic proton component (denoted by subscript h) and a cool, initially isotropic proton component (subscript c). Linear theory yields an instability threshold condition on the hot proton temperature anistropy where as the simulations imply an upper bound on T(sub perp h)/T(sub parallel h); both the threshold and the upper bound have similar scaling with the maximum growth rate gamma (sub m), the parallel beta of the hot component, beta(sub parallel h), and the relative density of the hot component n(sub h)/n(sub e). An anlysis of plasma observations from the Los Alamos magnetospheric plasma analyzer (MPA) in geosynchronous orbits finds that the maximum value of the hot proton temperature anisotropy approximately satisfies the predicted scaling with beta(sub parallel h) and nu(sub h)/n(sub e) and yields the proportionality factor that quantifies this upper bound. The simulations are also used to examine the heating of the cool proton cyclotron instability. The simulations yield a scaling for the dimensionless late-time cool proton average temperature T(sub c)/T(sub parallel h) as (n(sub h)/n(sub e))/beta(sub parallel h exp 0.5). Analysis of MPA data shows that the observed values of T(sub c)/T(sub parallel h) have similar scaling and again yield the proportionality factor which quantifies this relationship.

  17. High Temperature, Low Relative Humidity, Polymer-type Membranes Based on Disulfonated Poly(arylene ether) Block and Random Copolymers Optionally Incorporating Protonic Conducting Layered Water insoluble Zirconium Fillers

    SciTech Connect

    McGrath, James E.; Baird, Donald G.

    2010-06-03

    hydrophobic segments. If, like in Nafion, connectivity is established between the hydrophilic domains in these multiblock copolymers, they will not need as much water, and hence will show much better protonic conductivity than the random copolymers (with similar degree of sulfonation, or IEC) at partially hydrated conditions. The goal of this research is to develop a material suitable for use as a polymer electrolyte membrane which by the year 2010 will meet all the performance requirements associated with fuel cell operation at high temperatures and low relative humidity, and will out-perform the present standard Nafion{reg_sign}. In particular, it is our objective to extend our previous research based on the use of thermally, oxidatively, and hydrolytically, ductile, high Tg ion containing polymers based on poly(arylene ethers) to the production of polymer electrolyte membranes which will meet all the performance requirements in addition to having an areal resistance of < 0.05 ohm-cm{sup 2} at a temperature of up to 120 C, relative humidity of 25 to 50%, and up to 2.5 atm total pressure. In many instances, our materials already out performs Nafion{reg_sign}, and it is expected that with some modification by either combining with conductive inorganic fillers and/or synthesizing as a block copolymer it will meet the performance criteria at high temperatures and low relative humidity. A key component in improving the performance of the membranes (and in particular proton conductivity) and meeting the cost requirements of $40/m{sup 2} is our development of a film casting process, which shows promise for generation of void free thin films of uniform thickness with controlled polymer alignment and configuration.

  18. Protons in High Density Neutron Matter

    NASA Astrophysics Data System (ADS)

    Sargsian, Misak M.

    2014-03-01

    We discuss the possible implication of the recent predictions of two new properties of high momentum distribution of nucleons in asymmetric nuclei for neutron star dynamics. The first property is about the approximate scaling relation between proton and neutron high momentum distributions weighted by their relative fractions (xp and xn) in the nucleus. The second is the existence of inverse proportionality of the high momentum distribution strength of protons and neutrons to xp/n. Based on these predictions we model the high momentum distribution functions for asymmetric nuclei and demonstrate that it describes reasonably well the high momentum characteristics of light nuclei. We also extrapolate our results to heavy nuclei as well as infinite nuclear matter and calculate the relative fractions of protons and neutrons with momenta above kF. Our results indicate that for neutron stars starting at three nuclear saturation densities the protons with xp = 1/9 will populate mostly the high momentum tail of the momentum distribution while only 2% of the neutrons will do so. Such a situation may have many implications for different observations of neutron stars which we discuss.

  19. Predicted impacts of proton temperature anisotropy on solar wind turbulence

    SciTech Connect

    Klein, K. G.; Howes, G. G.

    2015-03-15

    Particle velocity distributions measured in the weakly collisional solar wind are frequently found to be non-Maxwellian, but how these non-Maxwellian distributions impact the physics of plasma turbulence in the solar wind remains unanswered. Using numerical solutions of the linear dispersion relation for a collisionless plasma with a bi-Maxwellian proton velocity distribution, we present a unified framework for the four proton temperature anisotropy instabilities, identifying the associated stable eigenmodes, highlighting the unstable region of wavevector space and presenting the properties of the growing eigenfunctions. Based on physical intuition gained from this framework, we address how the proton temperature anisotropy impacts the nonlinear dynamics of the Alfvénic fluctuations underlying the dominant cascade of energy from large to small scales and how the fluctuations driven by proton temperature anisotropy instabilities interact nonlinearly with each other and with the fluctuations of the large-scale cascade. We find that the nonlinear dynamics of the large-scale cascade is insensitive to the proton temperature anisotropy and that the instability-driven fluctuations are unlikely to cause significant nonlinear evolution of either the instability-driven fluctuations or the turbulent fluctuations of the large-scale cascade.

  20. Multistate empirical valence bond study of temperature and confinement effects on proton transfer in water inside hydrophobic nanochannels.

    PubMed

    Tahat, Amani; Martí, Jordi

    2016-07-01

    Microscopic characteristics of an aqueous excess proton in a wide range of thermodynamic states, from low density amorphous ices (down to 100 K) to high temperature liquids under the critical point (up to 600 K), placed inside hydrophobic graphene slabs at the nanometric scale (with interplate distances between 3.1 and 0.7 nm wide) have been analyzed by means of molecular dynamics simulations. Water-proton and carbon-proton forces were modeled with a multistate empirical valence bond method. Densities between 0.07 and 0.02 Å(-3) have been considered. As a general trend, we observed a competition between effects of confinement and temperature on structure and dynamical properties of the lone proton. Confinement has strong influence on the local structure of the proton, whereas the main effect of temperature on proton properties is observed on its dynamics, with significant variation of proton transfer rates, proton diffusion coefficients, and characteristic frequencies of vibrational motions. Proton transfer is an activated process with energy barriers between 1 and 10 kJ/mol for both proton transfer and diffusion, depending of the temperature range considered and also on the interplate distance. Arrhenius-like behavior of the transfer rates and of proton diffusion are clearly observed for states above 100 K. Spectral densities of proton species indicated that in all states Zundel-like and Eigen-like complexes survive at some extent. © 2016 Wiley Periodicals, Inc. PMID:27189810

  1. CHALLENGES FACING HIGH POWER PROTON ACCELERATORS

    SciTech Connect

    Plum, Michael A

    2013-01-01

    This presentation will provide an overview of the challenges of high power proton accelerators such as SNS, J-PARC, etc., and what we have learned from recent experiences. Beam loss mechanisms and methods to mitigate beam loss will also be discussed.

  2. High momentum protons in superdense neutron matter

    NASA Astrophysics Data System (ADS)

    Sargsian, Misak M.

    2013-10-01

    Recent observations of strong dominance of pn as compared to pp and nn short range correlations (SRCs) in nuclei indicate on possibility of unique new condition for asymmetric high density nuclear matter, in which the pp and nn interactions are suppressed while the pn interactions are enhanced due to tensor interaction. We demonstrate that, due to this enhancement, in high density neutron matter containing small portion of proton component the momentum distribution of protons is strongly deformed towards the high momentum states. This result is obtained by extracting the probabilities of two-nucleon (2N) SRCs from the analysis of the experimental data on high momentum transfer A(e,'e)X reactions and fitting them as a function of nuclear density and asymmetry. Using this fit we estimated that starting at three nuclear saturation densities the protons with fractional densities xp = 1/9 will populate mostly the high momentum tail of the momentum distribution while only few% of the neutrons will do so. We discuss the possible implications of this result for neutron stars.

  3. Proton-proton and proton-antiproton elastic scattering at high energies: Theory, phenomenology, and experiment

    SciTech Connect

    Wu, Tai Tsun.

    1990-01-01

    This is a brief review of the progress in the understanding, during the past twenty years, of hadronic elastic scattering near the forward direction at high energies. On the basis of quantum gauge field theories, the Pomeron is found to be a branch cut above 1. Using the physical picture that this result implies, phenomenology for proton-proton and antiproton-proton elastic scattering is constructed. Two noteworthy features are that, at high energies, both the total cross section and the ratio of the integrated elastic cross section to the total cross section to the total cross section are increasing functions of the center-of-mass energy. Detailed predictions are given for the elastic differential cross sections, Coulomb interference and the ratios of the real to imaginary parts of the forward amplitudes. These predictions have been extensively and accurately confirmed by experiments, and have also been given both for future experiments on existing accelerators and for experiments on future accelerators. 14 refs., 2 figs.

  4. Proton-proton and proton-antiproton elastic scattering at high energies: Theory, phenomenology, and experiment

    SciTech Connect

    Wu, Tai Tsun

    1990-12-31

    This is a brief review of the progress in the understanding, during the past twenty years, of hadronic elastic scattering near the forward direction at high energies. On the basis of quantum gauge field theories, the Pomeron is found to be a branch cut above 1. Using the physical picture that this result implies, phenomenology for proton-proton and antiproton-proton elastic scattering is constructed. Two noteworthy features are that, at high energies, both the total cross section and the ratio of the integrated elastic cross section to the total cross section to the total cross section are increasing functions of the center-of-mass energy. Detailed predictions are given for the elastic differential cross sections, Coulomb interference and the ratios of the real to imaginary parts of the forward amplitudes. These predictions have been extensively and accurately confirmed by experiments, and have also been given both for future experiments on existing accelerators and for experiments on future accelerators. 14 refs., 2 figs.

  5. High temperature furnace

    DOEpatents

    Borkowski, Casimer J.

    1976-08-03

    A high temperature furnace for use above 2000.degree.C is provided that features fast initial heating and low power consumption at the operating temperature. The cathode is initially heated by joule heating followed by electron emission heating at the operating temperature. The cathode is designed for routine large temperature excursions without being subjected to high thermal stresses. A further characteristic of the device is the elimination of any ceramic components from the high temperature zone of the furnace.

  6. Proton resonant firehose instability: Temperature anisotropy and fluctuating field constraints

    NASA Astrophysics Data System (ADS)

    Gary, S. Peter; Li, Hui; O'Rourke, Sean; Winske, Dan

    1998-07-01

    The electromagnetic proton firehose instability may grow in a plasma if the proton velocity distribution is approximately bi-Maxwellian and T∥p>T⊥p, where the directional subscripts denote directions relative to the background magnetic field. Linear Vlasov dispersion theory in a homogeneous electron-proton plasma implies an instability threshold condition at constant maximum growth rate 1-T⊥p/T∥p=Sp/β∥pαp over 1<β∥p<=10 where β∥p≡8πnpT∥p/B02 and B0 is the background magnetic field. Here Sp and αp are fitting parameters and αp~=0.7. One- and two-dimensional initial value hybrid simulations of this growing mode are carried out under proton cyclotron resonant conditions in a homogeneous plasma on the initial domain 2<~β∥p<=100. The two-dimensional simulations show that enhanced fluctuations from this instability impose a bound on the proton temperature anisotropy of the form of the above equation with the fluid theory result αp~=1.0. On this domain both one- and two-dimensional simulations yield a new form for the upper bound on the fluctuating field energy density from the proton resonant firehose instability |δB|2/B02=SB+αBln(β∥p) where SB and αB are empirical parameters which are functions of the initial growth rate. This logarithmic behavior is qualitatively different from a fluid theory prediction and, like the anisotropy bound, should be subject to observational verification in any sufficiently homogeneous plasma in which the proton velocity distribution is approximately bi-Maxwellian.

  7. Platinum-cobalt catalysts for the oxygen reduction reaction in high temperature proton exchange membrane fuel cells - Long term behavior under ex-situ and in-situ conditions

    NASA Astrophysics Data System (ADS)

    Schenk, Alexander; Grimmer, Christoph; Perchthaler, Markus; Weinberger, Stephan; Pichler, Birgit; Heinzl, Christoph; Scheu, Christina; Mautner, Franz-Andreas; Bitschnau, Brigitte; Hacker, Viktor

    2014-11-01

    Platinum cobalt catalysts (Pt-Co) have attracted much interest as cathode catalysts for proton exchange membrane fuel cells (PEMFCs) due to their high activity toward oxygen reduction reaction (ORR). Many of the reported catalysts show outstanding performance in ex-situ experiments. However, the laborious synthesis protocols of these Pt-Co catalysts disable an efficient and economic production of membrane electrode assemblies (MEAs). We present an economic, flexible and continuous Pt-M/C catalyst preparation method as part of a large scale membrane electrode assembly manufacturing. In comparison, the as-prepared Pt-Co/C based high temperature (HT)-PEM MEA showed an equal performance to a commercially available HT-PEM MEA during 600 h of operation under constant load, although the commercial one had a significantly higher Pt loading at the cathode.

  8. Solar wind proton temperature anisotropy versus beta inverse correlation

    NASA Astrophysics Data System (ADS)

    Yoon, Peter H.; Seough, Jungjoon

    2013-06-01

    The present paper theoretically constructs the proton temperature anisotropy versus beta distribution by means of quasi-linear theory. It is shown that the simulated solar wind data distribution is constrained by the apparent mirror and oblique fire-hose marginal instability curves, which is consistent with observation. To achieve this closure, it is note that the actual magnetic field intensity near 1 AU is characterized intermediate-scale temporal variations. Making use of this fact, the present paper carries out the quasi-linear analysis of the temperature anisotropy-driven instabilities with adiabatically time-varying B field. This prescription successfully leads to the superficial mirror and oblique marginal instability constraints for the proton anisotropy, thus providing a possible explanation for the observation.

  9. Effects of electrons on the solar wind proton temperature anisotropy

    SciTech Connect

    Michno, M. J.; Lazar, M.; Schlickeiser, R.; Yoon, P. H. E-mail: mlazar@tp4.rub.de E-mail: yoonp@umd.edu

    2014-01-20

    Among the kinetic microinstabilities, the firehose instability is one of the most efficient mechanisms to restrict the unlimited increase of temperature anisotropy in the direction of an ambient magnetic field as predicted by adiabatic expansion of collision-poor solar wind. Indeed, the solar wind proton temperature anisotropy detected near 1 AU shows that it is constrained by the marginal firehose condition. Of the two types of firehose instabilities, namely, parallel and oblique, the literature suggests that the solar wind data conform more closely to the marginal oblique firehose condition. In the present work, however, it is shown that the parallel firehose instability threshold is markedly influenced by the presence of anisotropic electrons, such that under some circumstances, the cumulative effects of both electron and proton anisotropies could describe the observation without considering the oblique firehose mode.

  10. High temperature sensor

    DOEpatents

    Tokarz, Richard D.

    1982-01-01

    A high temperature sensor includes a pair of electrical conductors separated by a mass of electrical insulating material. The insulating material has a measurable resistivity within the sensor that changes in relation to the temperature of the insulating material within a high temperature range (1,000 to 2,000 K.). When required, the sensor can be encased within a ceramic protective coating.

  11. High-temperature dehydration behavior and protonic conductivity of RbH{sub 2}PO{sub 4} in humid atmosphere

    SciTech Connect

    Li, Zikun; Tang, Tongbor

    2010-12-15

    The high-temperature (HT) properties of RbH{sub 2}PO{sub 4} have been investigated here by several methods. Two anomalies at T{sub p} ({approx}109 {sup o}C) and T{sup '}{sub p} ({approx}276 {sup o}C) in differential scanning calorimetry (DSC) measurement are due to structural transition from tetragonal (phase III) to monoclinic (phase II) and monoclinic to an unidentified phase I, respectively. The initial dehydration event in RbH{sub 2}PO{sub 4} occurs at {approx}250 {sup o}C, leading to the formation of dimer crust (Rb{sub 2}H{sub 2}P{sub 2}O{sub 7}) on the external surface of crystal particles which decelerates the further dehydration process. The conductivity measurement was performed under a highly humidified N{sub 2} condition P{sub H{sub 2O}}{approx}0.56atm to suppress its dehydration. It revealed two reversible superprotonic phase transition at T{sub p} and T{sup '}{sub p}. For the one at T{sup '}{sub p}, the conductivity increases sharply by {approx}2 orders of magnitude and the high-conductivity phase I was stable till melting. However, the other one at T{sub p} shows a relatively small jump in conductivity.

  12. PRaVDA: High Energy Physics towards proton Computed Tomography

    NASA Astrophysics Data System (ADS)

    Price, T.

    2016-07-01

    Proton radiotherapy is an increasingly popular modality for treating cancers of the head and neck, and in paediatrics. To maximise the potential of proton radiotherapy it is essential to know the distribution, and more importantly the proton stopping powers, of the body tissues between the proton beam and the tumour. A stopping power map could be measured directly, and uncertainties in the treatment vastly reduce, if the patient was imaged with protons instead of conventional x-rays. Here we outline the application of technologies developed for High Energy Physics to provide clinical-quality proton Computed Tomography, in so reducing range uncertainties and enhancing the treatment of cancer.

  13. A HIGH-LEVEL CALCULATION OF THE PROTON AFFINITY OF DIBORANE

    EPA Science Inventory

    The experimental proton affinity of diborane (B2H6) is based on an unstable species, B2H,+, 4 which has been observed only at low temperatures. The present work calculates the proton 5 affinity of diborane using the Gaussian-3 method and other high-level compound ab initio 6 met...

  14. Use of d-{sup 3}He proton spectroscopy as a diagnostic of shell {rho}r in capsule implosion experiments with {approx}0.2 NIF scale high temperature Hohlraums at Omega

    SciTech Connect

    Delamater, N. D.; Wilson, D. C.; Kyrala, G. A.; Seifter, A.; Hoffman, N. M.; Dodd, E.; Singleton, R.; Glebov, V.; Stoeckl, C.; Li, C. K.; Petrasso, R.; Frenje, J.

    2008-10-15

    We present the calculations and preliminary results from experiments on the Omega laser facility using d-{sup 3}He filled plastic capsule implosions in gold Hohlraums. These experiments aim to develop a technique to measure shell {rho}r and capsule unablated mass with proton spectroscopy and will be applied to future National Ignition Facility (NIF) experiments with ignition scale capsules. The Omega Hohlraums are 1900 {mu}m lengthx1200 {mu}m diameter and have a 70% laser entrance hole. This is approximately a 0.2 NIF scale ignition Hohlraum and reaches temperatures of 265-275 eV similar to those during the peak of the NIF drive. These capsules can be used as a diagnostic of shell {rho}r, since the d-{sup 3}He gas fill produces 14.7 MeV protons in the implosion, which escape through the shell and produce a proton spectrum that depends on the integrated {rho}r of the remaining shell mass. The neutron yield, proton yield, and spectra change with capsule shell thickness as the unablated mass or remaining capsule {rho}r changes. Proton stopping models are used to infer shell unablated mass and shell {rho}r from the proton spectra measured with different filter thicknesses. The experiment is well modeled with respect to Hohlraum energetics, neutron yields, and x-ray imploded core image size, but there are discrepancies between the observed and simulated proton spectra.

  15. Development and design of experiments optimization of a high temperature proton exchange membrane fuel cell auxiliary power unit with onboard fuel processor

    NASA Astrophysics Data System (ADS)

    Karstedt, Jörg; Ogrzewalla, Jürgen; Severin, Christopher; Pischinger, Stefan

    In this work, the concept development, system layout, component simulation and the overall DOE system optimization of a HT-PEM fuel cell APU with a net electric power output of 4.5 kW and an onboard methane fuel processor are presented. A highly integrated system layout has been developed that enables fast startup within 7.5 min, a closed system water balance and high fuel processor efficiencies of up to 85% due to the recuperation of the anode offgas burner heat. The integration of the system battery into the load management enhances the transient electric performance and the maximum electric power output of the APU system. Simulation models of the carbon monoxide influence on HT-PEM cell voltage, the concentration and temperature profiles within the autothermal reformer (ATR) and the CO conversion rates within the watergas shift stages (WGSs) have been developed. They enable the optimization of the CO concentration in the anode gas of the fuel cell in order to achieve maximum system efficiencies and an optimized dimensioning of the ATR and WGS reactors. Furthermore a DOE optimization of the global system parameters cathode stoichiometry, anode stoichiometry, air/fuel ratio and steam/carbon ratio of the fuel processing system has been performed in order to achieve maximum system efficiencies for all system operating points under given boundary conditions.

  16. High-Temperature Superconductivity

    NASA Astrophysics Data System (ADS)

    Tanaka, Shoji

    2006-12-01

    A general review on high-temperature superconductivity was made. After prehistoric view and the process of discovery were stated, the special features of high-temperature superconductors were explained from the materials side and the physical properties side. The present status on applications of high-temperature superconductors were explained on superconducting tapes, electric power cables, magnets for maglev trains, electric motors, superconducting quantum interference device (SQUID) and single flux quantum (SFQ) devices and circuits.

  17. High temperature refrigerator

    DOEpatents

    Steyert, Jr., William A.

    1978-01-01

    A high temperature magnetic refrigerator which uses a Stirling-like cycle in which rotating magnetic working material is heated in zero field and adiabatically magnetized, cooled in high field, then adiabatically demagnetized. During this cycle said working material is in heat exchange with a pumped fluid which absorbs heat from a low temperature heat source and deposits heat in a high temperature reservoir. The magnetic refrigeration cycle operates at an efficiency 70% of Carnot.

  18. Mechanoassisted Synthesis of Sulfonated Covalent Organic Frameworks with High Intrinsic Proton Conductivity.

    PubMed

    Peng, Yongwu; Xu, Guodong; Hu, Zhigang; Cheng, Youdong; Chi, Chenglong; Yuan, Daqiang; Cheng, Hansong; Zhao, Dan

    2016-07-20

    It is challenging to introduce pendent sulfonic acid groups into modularly built crystalline porous frameworks for intrinsic proton conduction. Herein, we report the mechanoassisted synthesis of two sulfonated covalent organic frameworks (COFs) possessing one-dimensional nanoporous channels decorated with pendent sulfonic acid groups. These COFs exhibit high intrinsic proton conductivity as high as 3.96 × 10(-2) S cm(-1) with long-term stability at ambient temperature and 97% relative humidity (RH). In addition, they were blended with nonconductive polyvinylidene fluoride (PVDF) affording a series of mixed-matrix membranes (MMMs) with proton conductivity up to 1.58 × 10(-2) S cm(-1) and low activation energy of 0.21 eV suggesting the Grotthuss mechanism for proton conduction. Our study has demonstrated the high intrinsic proton conductivity of COFs shedding lights on their wide applications in proton exchange membranes. PMID:27385672

  19. High temperature measuring device

    DOEpatents

    Tokarz, Richard D.

    1983-01-01

    A temperature measuring device for very high design temperatures (to 2,000.degree. C.). The device comprises a homogenous base structure preferably in the form of a sphere or cylinder. The base structure contains a large number of individual walled cells. The base structure has a decreasing coefficient of elasticity within the temperature range being monitored. A predetermined quantity of inert gas is confined within each cell. The cells are dimensionally stable at the normal working temperature of the device. Increases in gaseous pressure within the cells will permanently deform the cell walls at temperatures within the high temperature range to be measured. Such deformation can be correlated to temperature by calibrating similarly constructed devices under known time and temperature conditions.

  20. A comparative study of Pt/C cathodes in Sn 0.9In 0.1P 2O 7 and H 3PO 4 ionomers for high-temperature proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Jin, Y. C.; Okada, M.; Hibino, T.

    New Pt/C cathodes with many reaction sites for the oxygen reduction reaction as well as high tolerance to Pt corrosion have been designed for high-temperature proton exchange membrane fuel cells (PEMFCs), wherein a composite mixture of Sn 0.9In 0.1P 2O 7 (SIPO) and sulfonated polystyrene-b-poly(ethylene/butylene)-b-polystyrene (sSEBS) functioned as an ionomer. The microstructure of the Pt-SIPO-sSEBS/C cathode was characterized by homogeneous distribution of the ionomer over the catalyst layer and close contact between the ionomer and the Pt/C powder. As a result, the activation and concentration overpotentials of the Pt-SIPO-sSEBS/C cathode between 100 and 200 °C were lower than those of an H 3PO 4-impregnated Pt/C cathode, which suggests that the present ionomer can avoid poisoning of Pt by phosphate anions and the limitation of gas diffusion through the catalyst layer. Moreover, agglomeration of Pt in the Pt-SIPO-sSEBS/C cathode was not observed during a durability test at 150 °C for 6 days, although it was significant in the Pt-H 3PO 4/C cathode. Therefore, it is concluded that the Pt-SIPO-sSEBS/C electrode is a very promising cathode candidate for high-temperature PEMFCs.

  1. High-temperature sensor

    DOEpatents

    Not Available

    1981-01-29

    A high temperature sensor is described which includes a pair of electrical conductors separated by a mass of electrical insulating material. The insulating material has a measurable resistivity within the sensor that changes in relation to the temperature of the insulating material within a high temperature range (1000 to 2000/sup 0/K). When required, the sensor can be encased within a ceramic protective coating.

  2. High-energy proton imaging for biomedical applications

    PubMed Central

    Prall, M.; Durante, M.; Berger, T.; Przybyla, B.; Graeff, C.; Lang, P. M.; LaTessa, C.; Shestov, L.; Simoniello, P.; Danly, C.; Mariam, F.; Merrill, F.; Nedrow, P.; Wilde, C.; Varentsov, D.

    2016-01-01

    The charged particle community is looking for techniques exploiting proton interactions instead of X-ray absorption for creating images of human tissue. Due to multiple Coulomb scattering inside the measured object it has shown to be highly non-trivial to achieve sufficient spatial resolution. We present imaging of biological tissue with a proton microscope. This device relies on magnetic optics, distinguishing it from most published proton imaging methods. For these methods reducing the data acquisition time to a clinically acceptable level has turned out to be challenging. In a proton microscope, data acquisition and processing are much simpler. This device even allows imaging in real time. The primary medical application will be image guidance in proton radiosurgery. Proton images demonstrating the potential for this application are presented. Tomographic reconstructions are included to raise awareness of the possibility of high-resolution proton tomography using magneto-optics. PMID:27282667

  3. High-energy proton imaging for biomedical applications

    DOE PAGESBeta

    Prall, Matthias; Durante, Marco; Berger, Thomas; Przybyla, B.; Graeff, C.; Lang, Phillipp M.; LaTessa, Ciara; Shestov, Less; Simoniello, P.; Danly, Christopher R.; et al

    2016-06-10

    The charged particle community is looking for techniques exploiting proton interactions instead of X-ray absorption for creating images of human tissue. Due to multiple Coulomb scattering inside the measured object it has shown to be highly non-trivial to achieve sufficient spatial resolution. We present imaging of biological tissue with a proton microscope. This device relies on magnetic optics, distinguishing it from most published proton imaging methods. For these methods reducing the data acquisition time to a clinically acceptable level has turned out to be challenging. In a proton microscope, data acquisition and processing are much simpler. This device even allowsmore » imaging in real time. The primary medical application will be image guidance in proton radiosurgery. Proton images demonstrating the potential for this application are presented. As a result, tomographic reconstructions are included to raise awareness of the possibility of high-resolution proton tomography using magneto-optics.« less

  4. High-energy proton imaging for biomedical applications

    NASA Astrophysics Data System (ADS)

    Prall, M.; Durante, M.; Berger, T.; Przybyla, B.; Graeff, C.; Lang, P. M.; Latessa, C.; Shestov, L.; Simoniello, P.; Danly, C.; Mariam, F.; Merrill, F.; Nedrow, P.; Wilde, C.; Varentsov, D.

    2016-06-01

    The charged particle community is looking for techniques exploiting proton interactions instead of X-ray absorption for creating images of human tissue. Due to multiple Coulomb scattering inside the measured object it has shown to be highly non-trivial to achieve sufficient spatial resolution. We present imaging of biological tissue with a proton microscope. This device relies on magnetic optics, distinguishing it from most published proton imaging methods. For these methods reducing the data acquisition time to a clinically acceptable level has turned out to be challenging. In a proton microscope, data acquisition and processing are much simpler. This device even allows imaging in real time. The primary medical application will be image guidance in proton radiosurgery. Proton images demonstrating the potential for this application are presented. Tomographic reconstructions are included to raise awareness of the possibility of high-resolution proton tomography using magneto-optics.

  5. High-energy proton imaging for biomedical applications.

    PubMed

    Prall, M; Durante, M; Berger, T; Przybyla, B; Graeff, C; Lang, P M; LaTessa, C; Shestov, L; Simoniello, P; Danly, C; Mariam, F; Merrill, F; Nedrow, P; Wilde, C; Varentsov, D

    2016-01-01

    The charged particle community is looking for techniques exploiting proton interactions instead of X-ray absorption for creating images of human tissue. Due to multiple Coulomb scattering inside the measured object it has shown to be highly non-trivial to achieve sufficient spatial resolution. We present imaging of biological tissue with a proton microscope. This device relies on magnetic optics, distinguishing it from most published proton imaging methods. For these methods reducing the data acquisition time to a clinically acceptable level has turned out to be challenging. In a proton microscope, data acquisition and processing are much simpler. This device even allows imaging in real time. The primary medical application will be image guidance in proton radiosurgery. Proton images demonstrating the potential for this application are presented. Tomographic reconstructions are included to raise awareness of the possibility of high-resolution proton tomography using magneto-optics. PMID:27282667

  6. High-Temperature Superconductivity

    SciTech Connect

    Peter Johnson

    2008-11-05

    Like astronomers tweaking images to gain a more detailed glimpse of distant stars, physicists at Brookhaven National Laboratory have found ways to sharpen images of the energy spectra in high-temperature superconductors — materials that carry electrical c

  7. High-Temperature Superconductivity

    ScienceCinema

    Peter Johnson

    2010-01-08

    Like astronomers tweaking images to gain a more detailed glimpse of distant stars, physicists at Brookhaven National Laboratory have found ways to sharpen images of the energy spectra in high-temperature superconductors ? materials that carry electrical c

  8. High Temperature Capacitor Development

    SciTech Connect

    John Kosek

    2009-06-30

    The absence of high-temperature electronics is an obstacle to the development of untapped energy resources (deep oil, gas and geothermal). US natural gas consumption is projected to grow from 22 trillion cubic feet per year (tcf) in 1999 to 34 tcf in 2020. Cumulatively this is 607 tcf of consumption by 2020, while recoverable reserves using current technology are 177 tcf. A significant portion of this shortfall may be met by tapping deep gas reservoirs. Tapping these reservoirs represents a significant technical challenge. At these depths, temperatures and pressures are very high and may require penetrating very hard rock. Logistics of supporting 6.1 km (20,000 ft) drill strings and the drilling processes are complex and expensive. At these depths up to 50% of the total drilling cost may be in the last 10% of the well depth. Thus, as wells go deeper it is increasingly important that drillers are able to monitor conditions down-hole such as temperature, pressure, heading, etc. Commercial off-the-shelf electronics are not specified to meet these operating conditions. This is due to problems associated with all aspects of the electronics including the resistors and capacitors. With respect to capacitors, increasing temperature often significantly changes capacitance because of the strong temperature dependence of the dielectric constant. Higher temperatures also affect the equivalent series resistance (ESR). High-temperature capacitors usually have low capacitance values because of these dielectric effects and because packages are kept small to prevent mechanical breakage caused by thermal stresses. Electrolytic capacitors do not operate at temperatures above 150oC due to dielectric breakdown. The development of high-temperature capacitors to be used in a high-pressure high-temperature (HPHT) drilling environment was investigated. These capacitors were based on a previously developed high-voltage hybridized capacitor developed at Giner, Inc. in conjunction with a

  9. High-temperature electronics

    NASA Technical Reports Server (NTRS)

    Matus, Lawrence G.; Seng, Gary T.

    1990-01-01

    To meet the needs of the aerospace propulsion and space power communities, the high temperature electronics program at the Lewis Research Center is developing silicon carbide (SiC) as a high temperature semiconductor material. This program supports a major element of the Center's mission - to perform basic and developmental research aimed at improving aerospace propulsion systems. Research is focused on developing the crystal growth, characterization, and device fabrication technologies necessary to produce a family of SiC devices.

  10. High temperature pressure gauge

    DOEpatents

    Echtler, J. Paul; Scandrol, Roy O.

    1981-01-01

    A high temperature pressure gauge comprising a pressure gauge positioned in fluid communication with one end of a conduit which has a diaphragm mounted in its other end. The conduit is filled with a low melting metal alloy above the diaphragm for a portion of its length with a high temperature fluid being positioned in the remaining length of the conduit and in the pressure gauge.

  11. High-temperature electronics

    NASA Astrophysics Data System (ADS)

    Matus, Lawrence G.; Seng, Gary T.

    1990-02-01

    To meet the needs of the aerospace propulsion and space power communities, the high temperature electronics program at the Lewis Research Center is developing silicon carbide (SiC) as a high temperature semiconductor material. This program supports a major element of the Center's mission - to perform basic and developmental research aimed at improving aerospace propulsion systems. Research is focused on developing the crystal growth, characterization, and device fabrication technologies necessary to produce a family of SiC devices.

  12. High temperature electronics

    NASA Astrophysics Data System (ADS)

    Seng, Gary T.

    1991-03-01

    In recent years, the aerospace propulsion and space power communities have acknowledged a growing need for electronic devices that are capable of sustained high-temperature operation. Aeropropulsion applications for high-temperature electronic devices include engine ground test instrumentation such as multiplexers, analog-to-digital converters, and telemetry systems capable of withstanding hot section engine temperatures in excess of 600 C. Uncooled operation of control and condition monitoring systems in advanced supersonic aircraft would subject the electronics to temperatures in excess of 300 C. Similarly, engine-mounted integrated electronic sensors could reach temperatures which exceed 500 C. In addition to aeronautics, there are many other areas that could benefit from the existence of high-temperature electronic devices. Space applications include power electronic devices for space platforms and satellites. Since power electronics require radiators to shed waste heat, electronic devices that operate at higher temperatures would allow a reduction in radiator size. Terrestrial applications include deep-well drilling instrumentation, high power electronics, and nuclear reactor instrumentation and control. To meet the needs of the applications mentioned previously, the high-temperature electronics (HTE) program at the Lewis Research Center is developing silicon carbide (SiC) as a high-temperature semiconductor material. Research is focused on developing the crystal growth, growth modeling, characterization, and device fabrication technologies necessary to produce a family of SiC devices. Interest in SiC has grown dramatically in recent years due to solid advances in the technology. Much research remains to be performed, but SiC appears ready to emerge as a useful semiconductor material.

  13. The second generation Singapore high resolution proton beam writing facilitya)

    NASA Astrophysics Data System (ADS)

    van Kan, J. A.; Malar, P.; Baysic de Vera, Armin

    2012-02-01

    A new proton beam focusing facility, designed for proton beam writing (PBW) applications has been tested. PBW allows for proximity free structuring of high aspect ratio, high-density 3D nanostructures. The new facility is designed around OM52 compact quadrupole lenses capable of operating in a variety of high demagnification configurations. Performance tests show that proton beams can be focused down to 19.0 × 29.9 nm2 and single line scans show a beam width of 12.6 nm. The ultimate goal of sub 10 nm structuring with MeV protons will be discussed.

  14. High temperature probe

    DOEpatents

    Swan, Raymond A.

    1994-01-01

    A high temperature probe for sampling, for example, smokestack fumes, and is able to withstand temperatures of 3000.degree. F. The probe is constructed so as to prevent leakage via the seal by placing the seal inside the water jacket whereby the seal is not exposed to high temperature, which destroys the seal. The sample inlet of the probe is also provided with cooling fins about the area of the seal to provide additional cooling to prevent the seal from being destroyed. Also, a heated jacket is provided for maintaining the temperature of the gas being tested as it passes through the probe. The probe includes pressure sensing means for determining the flow velocity of an efficient being sampled. In addition, thermocouples are located in various places on the probe to monitor the temperature of the gas passing there through.

  15. High temperature structural silicides

    SciTech Connect

    Petrovic, J.J.

    1997-03-01

    Structural silicides have important high temperature applications in oxidizing and aggressive environments. Most prominent are MoSi{sub 2}-based materials, which are borderline ceramic-intermetallic compounds. MoSi{sub 2} single crystals exhibit macroscopic compressive ductility at temperatures below room temperature in some orientations. Polycrystalline MoSi{sub 2} possesses elevated temperature creep behavior which is highly sensitive to grain size. MoSi{sub 2}-Si{sub 3}N{sub 4} composites show an important combination of oxidation resistance, creep resistance, and low temperature fracture toughness. Current potential applications of MoSi{sub 2}-based materials include furnace heating elements, molten metal lances, industrial gas burners, aerospace turbine engine components, diesel engine glow plugs, and materials for glass processing.

  16. High Temperature ESP Monitoring

    SciTech Connect

    Jack Booker; Brindesh Dhruva

    2011-06-20

    The objective of the High Temperature ESP Monitoring project was to develop a downhole monitoring system to be used in wells with bottom hole well temperatures up to 300°C for measuring motor temperature, formation pressure, and formation temperature. These measurements are used to monitor the health of the ESP motor, to track the downhole operating conditions, and to optimize the pump operation. A 220 ºC based High Temperature ESP Monitoring system was commercially released for sale with Schlumberger ESP motors April of 2011 and a 250 ºC system with will be commercially released at the end of Q2 2011. The measurement system is now fully qualified, except for the sensor, at 300 °C.

  17. High temperature electronics technology

    NASA Astrophysics Data System (ADS)

    Dening, J. C.; Hurtle, D. E.

    1984-03-01

    This report summarizes the barrier metallization developments accomplished in a program intended to develop 300 C electronic controls capability for potential on-engine aircraft engine application. In addition, this report documents preliminary life test results at 300 C and above and discusses improved design practices required for high temperature integrated injection logic semiconductors. Previous Phase 1 activities focused on determining the viability of operating silicon semiconductor devices over the -55 C to +300 C temperature range. This feasibility was substantiated but the need for additional design work and process development was indicated. Phase 2 emphasized the development of a high temperature metallization system as the primary development need for high temperature silicon semiconductor applications.

  18. High Temperature Piezoelectric Drill

    NASA Technical Reports Server (NTRS)

    Bao, Xiaoqi; Scott, James; Boudreau, Kate; Bar-Cohen, Yoseph; Sherrit, Stewart; Badescu, Mircea; Shrout, Tom; Zhang, Shujun

    2009-01-01

    The current NASA Decadal mission planning effort has identified Venus as a significant scientific target for a surface in-situ sampling/analyzing mission. The Venus environment represents several extremes including high temperature (460 deg C), high pressure (9 MPa), and potentially corrosive (condensed sulfuric acid droplets that adhere to surfaces during entry) environments. This technology challenge requires new rock sampling tools for these extreme conditions. Piezoelectric materials can potentially operate over a wide temperature range. Single crystals, like LiNbO3, have a Curie temperature that is higher than 1000 deg C and the piezoelectric ceramics Bismuth Titanate higher than 600 deg C. A study of the feasibility of producing piezoelectric drills that can operate in the temperature range up to 500 deg C was conducted. The study includes the high temperature properties investigations of engineering materials and piezoelectric ceramics with different formulas and doping. The drilling performances of a prototype Ultrasonic/Sonic Drill/Corer (USDC) using high temperate piezoelectric ceramics and single crystal were tested at temperature up to 500 deg C. The detailed results of our study and a discussion of the future work on performance improvements are presented in this paper.

  19. High-Temperature Lubricants

    NASA Technical Reports Server (NTRS)

    1984-01-01

    In the early 1980's, Lewis Research Center began a program to develop high-temperature lubricants for use on future aircraft flying at three or more times the speed of sound, which can result in vehicle skin temperatures as high as 1,600 degrees Fahrenheit. A material that emerged from this research is a plasma-sprayed, self-lubricating metal- glass-fluoride coating able to reduce oxidation at very high temperatures. Technology is now in commercial use under the trade name Surf-Kote C-800, marketed by Hohman Plating and Manufacturing Inc. and manufactured under a patent license from NASA. Among its uses are lubrication for sliding contact bearings, shaft seals for turbopumps, piston rings for high performance compressors and hot glass processing machinery; it is also widely used in missile and space applications.

  20. High temperature hydraulic seals

    NASA Astrophysics Data System (ADS)

    Williams, K. R.

    1993-05-01

    This program investigated and evaluated high temperature hydraulic sealing technology, including seals, fluids, and actuator materials. Test limits for fluid pressure and temperature were 8000 psi and 700 F respectively. The original plan to investigate CTFE fluid at 350 F as well as other fluids at higher temperatures was reduced in scope to include only the higher temperature investigation. Seals were obtained from 11 manufacturers. Design requirements including materials, dimensions, clearances, and tolerances were established and test modules were constructed from the detail designs which were produced. Nine piston seals and one rod seal were tested at temperatures ranging from -65 to +600 F and pressures to 6000 psi. Fluid performance under these conditions was evaluated. Details of this activity and results of the effort are summarized in this report.

  1. Periods of High Intensity Solar Proton Flux

    NASA Technical Reports Server (NTRS)

    Xapsos, Michael A.; Stauffer, Craig A.; Jordan, Thomas M.; Adams, James H.; Dietrich, William F.

    2012-01-01

    Analysis is presented for times during a space mission that specified solar proton flux levels are exceeded. This includes both total time and continuous time periods during missions. Results for the solar maximum and solar minimum phases of the solar cycle are presented and compared for a broad range of proton energies and shielding levels. This type of approach is more amenable to reliability analysis for spacecraft systems and instrumentation than standard statistical models.

  2. Effect of temperature on excited-state proton tunneling in wt-green fluorescent protein.

    PubMed

    Leiderman, P; Gepshtein, R; Tsimberov, I; Huppert, Dan

    2008-01-31

    Steady-state emission and time-correlated single-photon counting (TCSPC) are used to measure the temperature dependence of the proton-transfer rate of wt-GFP in H2O and D2O. As the temperature decreases, the proton-transfer rate from the protonated form slows down. At about 80 K, the rate is about 10-fold slower than the rate at room temperature. At lower temperatures of 70 K down to 13 K (the lowest temperature studied), the rate of proton transfer is almost temperature independent. We explain the temperature dependence of the proton-transfer rate by an intermolecular vibration assisted tunneling mechanism. We attribute the specific intermolecular vibration to the oscillation of two oxygen atoms: the chromophore's phenol ring and the nearby water molecule. The kinetic isotope effect is about 5 and is almost temperature independent. PMID:18181609

  3. Composite electrolyte with proton conductivity for low-temperature solid oxide fuel cell

    SciTech Connect

    Raza, Rizwan; Ahmed, Akhlaq; Akram, Nadeem; Saleem, Muhammad; Niaz Akhtar, Majid; Ajmal Khan, M.; Abbas, Ghazanfar; Alvi, Farah; Yasir Rafique, M.; Sherazi, Tauqir A.; Shakir, Imran; Mohsin, Munazza; Javed, Muhammad Sufyan; Zhu, Bin E-mail: zhubin@hubu.edu.cn

    2015-11-02

    In the present work, cost-effective nanocomposite electrolyte (Ba-SDC) oxide is developed for efficient low-temperature solid oxide fuel cells (LTSOFCs). Analysis has shown that dual phase conduction of O{sup −2} (oxygen ions) and H{sup +} (protons) plays a significant role in the development of advanced LTSOFCs. Comparatively high proton ion conductivity (0.19 s/cm) for LTSOFCs was achieved at low temperature (460 °C). In this article, the ionic conduction behaviour of LTSOFCs is explained by carrying out electrochemical impedance spectroscopy measurements. Further, the phase and structure analysis are investigated by X-ray diffraction and scanning electron microscopy techniques. Finally, we achieved an ionic transport number of the composite electrolyte for LTSOFCs as high as 0.95 and energy and power density of 90% and 550 mW/cm{sup 2}, respectively, after sintering the composite electrolyte at 800 °C for 4 h, which is promising. Our current effort toward the development of an efficient, green, low-temperature solid oxide fuel cell with the incorporation of high proton conductivity composite electrolyte may open frontiers in the fields of energy and fuel cell technology.

  4. High Temperature Structural Foam

    NASA Technical Reports Server (NTRS)

    Weiser, Erik S.; Baillif, Faye F.; Grimsley, Brian W.; Marchello, Joseph M.

    1997-01-01

    The Aerospace Industry is experiencing growing demand for high performance polymer foam. The X-33 program needs structural foam insulation capable of retaining its strength over a wide range of environmental conditions. The High Speed Research Program has a need for low density core splice and potting materials. This paper reviews the state of the art in foam materials and describes experimental work to fabricate low density, high shear strength foam which can withstand temperatures from -220 C to 220 C. Commercially available polymer foams exhibit a wide range of physical properties. Some with densities as low as 0.066 g/cc are capable of co-curing at temperatures as high as 182 C. Rohacell foams can be resin transfer molded at temperatures up to 180 C. They have moduli of elasticity of 0.19 MPa, tensile strengths of 3.7 Mpa and compressive strengths of 3.6 MPa. The Rohacell foams cannot withstand liquid hydrogen temperatures, however Imi-Tech markets Solimide (trademark) foams which withstand temperatures from -250 C to 200 C, but they do not have the required structural integrity. The research activity at NASA Langley Research Center focuses on using chemical blowing agents to produce polyimide thermoplastic foams capable of meeting the above performance requirements. The combination of blowing agents that decompose at the minimum melt viscosity temperature together with plasticizers to lower the viscosity has been used to produce foams by both extrusion and oven heating. The foams produced exhibit good environmental stability while maintaining structural properties.

  5. The relationship between proton temperature and momentum flux density in the solar wind

    NASA Technical Reports Server (NTRS)

    Lopez, R. E.; Freeman, J. W.; Roelof, E. C.

    1986-01-01

    The relationship between proton temperature and momentum flux density/unit mass at 1 AU is examined using Helios 1 solar wind data from 1974 to 1980. In high-speed plasma (V greater than 500 km/s) T(p) increases with increasing n(0) V-squared, where n(0) and T(p) are the density and proton temperature at 1 AU and V is the flow speed. In lowspeed plasma (V less than 500 km/s), T(p) does not increase with increasing n(0) V-squared, and perhaps tends to decrease slightly. These basic relationships between T(p) and n(0) V-squared are not significantly affected by stream interactions. A qualitative explanation of these results is offered in the context of a solar wind model that includes deposition of momentum and energy extending well outward into the interplanetary medium.

  6. HIGH TEMPERATURE THERMOCOUPLE

    DOEpatents

    Eshayu, A.M.

    1963-02-12

    This invention contemplates a high temperature thermocouple for use in an inert or a reducing atmosphere. The thermocouple limbs are made of rhenium and graphite and these limbs are connected at their hot ends in compressed removable contact. The rhenium and graphite are of high purity and are substantially stable and free from diffusion into each other even without shielding. Also, the graphite may be thick enough to support the thermocouple in a gas stream. (AEC)

  7. Proton shock acceleration using a high contrast high intensity laser

    NASA Astrophysics Data System (ADS)

    Gauthier, Maxence; Roedel, Christian; Kim, Jongjin; Aurand, Bastian; Curry, Chandra; Goede, Sebastian; Propp, Adrienne; Goyon, Clement; Pak, Art; Kerr, Shaun; Ramakrishna, Bhuvanesh; Ruby, John; William, Jackson; Glenzer, Siegfried

    2015-11-01

    Laser-driven proton acceleration is a field of intense research due to the interesting characteristics of this novel particle source including high brightness, high maximum energy, high laminarity, and short duration. Although the ion beam characteristics are promising for many future applications, such as in the medical field or hybrid accelerators, the ion beam generated using TNSA, the acceleration mechanism commonly achieved, still need to be significantly improved. Several new alternative mechanisms have been proposed such as collisionless shock acceleration (CSA) in order to produce a mono-energetic ion beam favorable for those applications. We report the first results of an experiment performed with the TITAN laser system (JLF, LLNL) dedicated to the study of CSA using a high intensity (5x1019W/cm2) high contrast ps laser pulse focused on 55 μm thick CH and CD targets. We show that the proton spectrum generated during the interaction exhibits high-energy mono-energetic features along the laser axis, characteristic of a shock mechanism.

  8. High temperature thermometric phosphors

    DOEpatents

    Allison, Stephen W.; Cates, Michael R.; Boatner, Lynn A.; Gillies, George T.

    1999-03-23

    A high temperature phosphor consists essentially of a material having the general formula LuPO.sub.4 :Dy.sub.(x),Eu.sub.y) wherein: 0.1 wt %.ltoreq.x.ltoreq.20 wt % and 0.1 wt %.ltoreq.y.ltoreq.20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopent. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions.

  9. High temperature thermometric phosphors

    DOEpatents

    Allison, S.W.; Cates, M.R.; Boatner, L.A.; Gillies, G.T.

    1999-03-23

    A high temperature phosphor consists essentially of a material having the general formula LuPO{sub 4}:Dy{sub x},Eu{sub y} wherein: 0.1 wt % {<=} x {<=} 20 wt % and 0.1 wt % {<=} y {<=} 20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopant. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions. 2 figs.

  10. High-temperature electronics

    NASA Astrophysics Data System (ADS)

    Seng, Gary T.

    1987-11-01

    In recent years, there was a growing need for electronics capable of sustained high-temperature operation for aerospace propulsion system instrumentation, control and condition monitoring, and integrated sensors. The desired operating temperature in some applications exceeds 600 C, which is well beyond the capability of currently available semiconductor devices. Silicon carbide displays a number of properties which make it very attractive as a semiconductor material, one of which is the ability to retain its electronic integrity at temperatures well above 600 C. An IR-100 award was presented to NASA Lewis in 1983 for developing a chemical vapor deposition process to grow single crystals of this material on standard silicon wafers. Silicon carbide devices were demonstrated above 400 C, but much work remains in the areas of crystal growth, characterization, and device fabrication before the full potential of silicon carbide can be realized. The presentation will conclude with current and future high-temperature electronics program plans. Although the development of silicon carbide falls into the category of high-risk research, the future looks promising, and the potential payoffs are tremendous.

  11. An H3PO4-doped polybenzimidazole/Sn0.95Al0.05P2O7 composite membrane for high-temperature proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Jin, Y. C.; Nishida, M.; Kanematsu, W.; Hibino, T.

    2011-08-01

    A polybenzimidazole (PBI)/Sn0.95Al0.05P2O7 (SAPO) composite membrane was synthesized by an in situ reaction of SnO2 and Al(OH)3-mixed powders with an H3PO4 solution in a PBI membrane. The formation of a single phase of SAPO in the PBI membrane was completed at a temperature of 250 °C. Thermogravimetric analysis showed that the PBI membrane was not subject to a serious damage by the presence of SAPO until 500 °C. Scanning electron microscopy revealed that SAPO particles with a diameter of approximately 300 nm were homogeneously dispersed and separated from each other in the PBI matrix. Proton magic angle spinning nuclear magnetic resonance spectra confirmed the presence of new protons originating from the SAPO particles in the composite membrane. As a consequence of the interaction of protons in the SAPO with those in the free H3PO4, the H3PO4-doped PBI/SAPO composite membrane exhibited conductivities several times higher than those of an H3PO4-doped PBI membrane at room temperature to 300 °C, which could contribute to the improved performance of H2/O2 fuel cells.

  12. High temperature adsorption measurements

    SciTech Connect

    Bertani, R.; Parisi, L.; Perini, R.; Tarquini, B.

    1996-01-24

    Adsorption phenomena are a rich and rather new field of study in geothermal research, in particular at very high temperature. ENEL is interested in the exploitation of geothermal regions with superheated steam, and it is important to understand the behavior of water-rock interaction. We have analyzed in the 170-200 °C temperature range four samples of Monteverdi cuttings; the next experimental effort will be at 220 °C and over in 1996. The first results of the 1995 runs are collected in this paper. We can highlight four main items: 1. At relative pressures over 0.6 the capillarity forces are very important. 2. There is no significant temperature effect. 3. Adsorbed water can be present, and it is able to multiply by a factor of 15 the estimated reserve of super-heated steam only. 4. Pores smaller than 15 Å do not contribute to the adsorbed mass.

  13. High temperature adsorption measurements

    SciTech Connect

    Bertani, R.; Parisi, L.; Perini, R.; Tarquini, B.

    1996-12-31

    Adsorption phenomena are a rich and rather new field of study in geothermal research, in particular at very high temperature. ENEL is interested in the exploitation of geothermal regions with super-heated steam, and it is important to understand the behavior of water-rock interaction. We have analyzed in the 170-200{degrees}C temperature range four samples of Monteverdi cuttings; the next experimental effort will be at 220{degrees}C and over in 1996. The first results of the 1995 runs are collected in this paper. We can highlight four main items: (1) At relative pressures over 0.6 the capillarity forces are very important. (2) There is no significant temperature effect. (3) Adsorbed water can be present, and it is able to multiply by a factor of 15 the estimated reserve of super-heated steam only. (4) Pores smaller than 15 {Angstrom} do not contribute to the adsorbed mass.

  14. Hardness assurance for proton direct ionization-induced SEEs using a high-energy proton beam

    SciTech Connect

    Dodds, Nathaniel Anson; Schwank, James R.; Shaneyfelt, Marty R.; Dodd, Paul E.; Doyle, Barney Lee; Trinczek, M.; Blackmore, E. W.; Rodbell, K. P.; Reed, R. A.; Pellish, J. A.; LaBel, K. A.; Marshall, P. W.; Swanson, Scot E.; Vizkelethy, Gyorgy; Van Deusen, Stuart B.; Sexton, Frederick W.; Martinez, Marino J.; Gordon, M. S.

    2014-11-06

    The low-energy proton energy spectra of all shielded space environments have the same shape. This shape is easily reproduced in the laboratory by degrading a high-energy proton beam, producing a high-fidelity test environment. We use this test environment to dramatically simplify rate prediction for proton direct ionization effects, allowing the work to be done at high-energy proton facilities, on encapsulated parts, without knowledge of the IC design, and with little or no computer simulations required. Proton direct ionization (PDI) is predicted to significantly contribute to the total error rate under the conditions investigated. Scaling effects are discussed using data from 65-nm, 45-nm, and 32-nm SOI SRAMs. These data also show that grazing-angle protons will dominate the PDI-induced error rate due to their higher effective LET, so PDI hardness assurance methods must account for angular effects to be conservative. As a result, we show that this angular dependence can be exploited to quickly assess whether an IC is susceptible to PDI.

  15. Hardness assurance for proton direct ionization-induced SEEs using a high-energy proton beam

    DOE PAGESBeta

    Dodds, Nathaniel Anson; Schwank, James R.; Shaneyfelt, Marty R.; Dodd, Paul E.; Doyle, Barney Lee; Trinczek, M.; Blackmore, E. W.; Rodbell, K. P.; Reed, R. A.; Pellish, J. A.; et al

    2014-11-06

    The low-energy proton energy spectra of all shielded space environments have the same shape. This shape is easily reproduced in the laboratory by degrading a high-energy proton beam, producing a high-fidelity test environment. We use this test environment to dramatically simplify rate prediction for proton direct ionization effects, allowing the work to be done at high-energy proton facilities, on encapsulated parts, without knowledge of the IC design, and with little or no computer simulations required. Proton direct ionization (PDI) is predicted to significantly contribute to the total error rate under the conditions investigated. Scaling effects are discussed using data frommore » 65-nm, 45-nm, and 32-nm SOI SRAMs. These data also show that grazing-angle protons will dominate the PDI-induced error rate due to their higher effective LET, so PDI hardness assurance methods must account for angular effects to be conservative. As a result, we show that this angular dependence can be exploited to quickly assess whether an IC is susceptible to PDI.« less

  16. ELECTRON CLOUD EFFECTS IN HIGH INTENSITY PROTON ACCELERATORS.

    SciTech Connect

    WEI,J.; MACEK,R.J.

    2002-04-14

    One of the primary concerns in the design and operation of high-intensity proton synchrotrons and accumulators is the electron cloud and associated beam loss and instabilities. Electron-cloud effects are observed at high-intensity proton machines like the Los Alamos National Laboratory's PSR and CERN's SPS, and investigated experimentally and theoretically. In the design of next-generation high-intensity proton accelerators like the Spallation Neutron Source ring, emphasis is made in minimizing electron production and in enhancing Landau damping. This paper reviews the present understanding of the electron-cloud effects and presents mitigation measures.

  17. High Temperature Metallic Seal Development

    NASA Astrophysics Data System (ADS)

    Datta, Amit; More, D. Greg

    2002-10-01

    A high temperature static seal capable of long term operation at temperature ranging from 1400 F to 1800 F is presented. The contents include: 1) Development approach; 2) Stress relaxation curves; 3) High temperature seal test rig; 4) High temperature seal design; and 5) High temperature seal testing. This paper is in viewgraph form.

  18. Heavy ion linac as a high current proton beam injector

    NASA Astrophysics Data System (ADS)

    Barth, Winfried; Adonin, Aleksey; Appel, Sabrina; Gerhard, Peter; Heilmann, Manuel; Heymach, Frank; Hollinger, Ralph; Vinzenz, Wolfgang; Vormann, Hartmut; Yaramyshev, Stepan

    2015-05-01

    A significant part of the experimental program at Facility for Antiproton and Ion Research (FAIR) is dedicated to pbar physics requiring a high number of cooled pbars per hour. The primary proton beam has to be provided by a 70 MeV proton linac followed by two synchrotrons. The new FAIR proton linac will deliver a pulsed proton beam of up to 35 mA of 36 μ s duration at a repetition rate of 4 Hz (maximum). The GSI heavy ion linac (UNILAC) is able to deliver world record uranium beam intensities for injection into the synchrotrons, but it is not suitable for FAIR relevant proton beam operation. In an advanced machine investigation program it could be shown that the UNILAC is able to provide for sufficient high intensities of CH3 beam, cracked (and stripped) in a supersonic nitrogen gas jet into protons and carbon ions. This advanced operational approach will result in up to 3 mA of proton intensity at a maximum beam energy of 20 MeV, 1 0 0 μ s pulse duration and a repetition rate of up to 2.7 Hz delivered to the synchrotron SIS18. Recent linac beam measurements will be presented, showing that the UNILAC is able to serve as a proton FAIR injector for the first time, while the performance is limited to 25% of the FAIR requirements.

  19. High temperature future

    SciTech Connect

    Sheinkopf, K.

    1994-09-01

    During the past few years, there have been dramatic accomplishments and success of high temperature solar thermal systems and significant development of these systems. High temperature technologies, about 500 F and higher, such as dish engines, troughs, central receiver power towers and solar process heat systems, have been tested, demonstrated and used in an array of applications, including many cost-effective utility bulk power production and demand side supply projects in the United States. Large systems provide power and hot water to prisons, schools, nursing homes and other institutions. Joint ventures with industry, utility projects, laboratory design assistance and other activities are building a solid industry of US solar thermal systems ready for use today.

  20. High Temperature Thermosets

    NASA Technical Reports Server (NTRS)

    Hergenrother, Paul M.

    1999-01-01

    A thermoset or network polymer is an organic material where the molecules are tied together through chemical bonds (crosslinks) and therefore they cannot move past one another. As a result, these materials exhibit a certain degree of dimensional stability. The chemical composition and the degree of crosslink density of the thermoset have a pronounced effect upon the properties. High temperature thermosets offer a favorable combination of properties that makes them attractive for many applications. Their most important features are the excellent processability particularly of the low molecular weight precusor forms, the chemical and solvent resistance and the dimensional stability. The market for high temperature thermosets will increase as new uses for them are uncovered and new thermosets with better combinations of properties are developed.

  1. High-temperature superconductivity

    NASA Astrophysics Data System (ADS)

    Chin, Ken C.

    1990-01-01

    The current status of high-temperature superconductivity (HTSC) and near-term prospects are briefly reviewed with particular reference to Lockheed's experience. Emphasis is placed on an integrated approach to systems applications of HTSC thin films, which hold the greatest near-term promise. These new materials are applied in the production of smaller, more sensitive, and more efficient electronic components to meet the ever-increasing demands for higher-performance signal acquisition and processing systems, communications systems, and computers.

  2. High temperature adhesives

    NASA Technical Reports Server (NTRS)

    St.clair, Terry L.

    1991-01-01

    The aerospace and electronics industries have an ever increasing need for higher performance materials. In recent years, linear aromatic polyimides have been proven to be a superior class of materials for various applications in these industries. The use of this class of polymers as adhesives is continuing to increase. Several NASA Langley developed polyimides show considerable promise as adhesives because of their high glass transition temperatures, thermal stability, resistance to solvents/water, and their potential for cost effective manufacture.

  3. Proton Resonance Frequency Chemical Shift Thermometry: Experimental Design and Validation Towards High-Resolution Non-Invasive Temperature Monitoring, and in vivo Experience in a Non-human Primate Model of Acute Ischemic Stroke

    PubMed Central

    Mao, Hui; Howell, Leonard; Zhang, Xiaodong; Pate, K S; Magrath, P R; Tong, Frank; Wei, L; Qiu, D; Fleischer, C; Oshinski, J N

    2016-01-01

    BACKGROUND AND PURPOSE Applications for non-invasive biological temperature monitoring are widespread in biomedicine, and of particular interest in the context of brain temperature regulation, where traditionally costly and invasive monitoring schemes limit their applicability in many settings. Brain thermal regulation therefore remains controversial, motivating the development of non-invasive approaches such as temperature-sensitive NMR phenomena. The purpose of this work was to compare the utility of competing approaches to MR thermometry (MRT) employing proton resonance frequency chemical shift. Three methodologies were tested, hypothesizing the feasibility of a fast and accurate approach to chemical shift thermometry, in a phantom study at 3.0 Tesla. MATERIALS AND METHODS A conventional, paired approach (DIFF-1), an accelerated single-scan approach (DIFF-2), and a new, further accelerated strategy (DIFF-3) were tested. Phantom temperatures were modulated during real-time fiber optic temperature monitoring, with MRT derived simultaneously from temperature-sensitive changes in the water proton chemical shift (~0.01 ppm/°C). MRT was subsequently performed in a series of in vivo non-human primate experiments under physiologic and ischemic conditions testing its reproducibility and overall performance. RESULTS Chemical shift thermometry demonstrated excellent agreement with phantom temperatures for all three approaches (DIFF-1 linear regression R2=0.994, p<0.001, acquisition time 4 min 40 s; DIFF-2 R2=0.996, p<0.001, acquisition time 4 min; DIFF-3 R2=0.998, p<0.001, acquisition time 40 s). CONCLUSION These findings confirm the comparability in performance of three competing approaches MRT, and present in vivo applications under physiologic and ischemic conditions in a primate stroke model. PMID:25655874

  4. Unravelling the Proton Conduction Mechanism from Room Temperature to 553 K in a 3D Inorganic Coordination Framework.

    PubMed

    Wang, Yaxing; Tao, Zetian; Yin, Xuemiao; Shu, Jie; Chen, Lanhua; Sheng, Daopeng; Chai, Zhifang; Albrecht-Schmitt, Thomas E; Wang, Shuao

    2015-10-19

    The preparation of proton-conducting materials that are functional and stable at intermediate temperatures (393-573 K) is a focal point of fuel cell development. The purely inorganic material, HNd(IO3)4, which possesses a dense 3D framework structure, can reach a maximum of 4.6 × 10(-4) S·cm(-1) at 353 K and 95% relative humidity and exhibit a high conductivity of 8.0 × 10(-5) S·cm(-1) from 373 to 553 K under the flow of wet N2. HNd(IO3)4 exhibits a variety of improvements including high thermal stability, low solubility in water, and resistance to reducing atmosphere. The proton conductivity in such a wide temperature range originates from the intrinsic liberated protons in the structure and the resulting 1D hydrogen-bonding network confirmed by bond valence sum calculation and solid-state NMR analysis. Moreover, two different activation energies are observed in different temperature regions (0.23 eV below 373 K and 0.026 eV from 373 to 553 K), indicating that two types of proton motion are responsible for proton diffusion, as further domenstrated by temperature-dependent open-circuit voltage hysteresis in a tested fuel cell assembly as well as variable-temperature and double quantum filtered solid-state NMR measurements. PMID:26444097

  5. High energy protons generation by two sequential laser pulses

    SciTech Connect

    Wang, Xiaofeng; Shen, Baifei E-mail: zhxm@siom.ac.cn; Zhang, Xiaomei E-mail: zhxm@siom.ac.cn; Wang, Wenpeng; Xu, Jiancai; Yi, Longqing; Shi, Yin

    2015-04-15

    The sequential proton acceleration by two laser pulses of relativistic intensity is proposed to produce high energy protons. In the scheme, a relativistic super-Gaussian (SG) laser pulse followed by a Laguerre-Gaussian (LG) pulse irradiates dense plasma attached by underdense plasma. A proton beam is produced from the target and accelerated in the radiation pressure regime by the short SG pulse and then trapped and re-accelerated in a special bubble driven by the LG pulse in the underdense plasma. The advantages of radiation pressure acceleration and LG transverse structure are combined to achieve the effective trapping and acceleration of protons. In a two-dimensional particle-in-cell simulation, protons of 6.7 GeV are obtained from a 2 × 10{sup 22 }W/cm{sup 2} SG laser pulse and a LG pulse at a lower peak intensity.

  6. Encapsulating Mobile Proton Carriers into Structural Defects in Coordination Polymer Crystals: High Anhydrous Proton Conduction and Fuel Cell Application.

    PubMed

    Inukai, Munehiro; Horike, Satoshi; Itakura, Tomoya; Shinozaki, Ryota; Ogiwara, Naoki; Umeyama, Daiki; Nagarkar, Sanjog; Nishiyama, Yusuke; Malon, Michal; Hayashi, Akari; Ohhara, Takashi; Kiyanagi, Ryoji; Kitagawa, Susumu

    2016-07-13

    We describe the encapsulation of mobile proton carriers into defect sites in nonporous coordination polymers (CPs). The proton carriers were encapsulated with high mobility and provided high proton conductivity at 150 °C under anhydrous conditions. The high proton conductivity and nonporous nature of the CP allowed its application as an electrolyte in a fuel cell. The defects and mobile proton carriers were investigated using solid-state NMR, XAFS, XRD, and ICP-AES/EA. On the basis of these analyses, we concluded that the defect sites provide space for mobile uncoordinated H3PO4, H2PO4(-), and H2O. These mobile carriers play a key role in expanding the proton-hopping path and promoting the mobility of protons in the coordination framework, leading to high proton conductivity and fuel cell power generation. PMID:27324658

  7. High temperature strain gages

    NASA Technical Reports Server (NTRS)

    Gregory, Otto J. (Inventor); You, Tao (Inventor)

    2011-01-01

    A ceramic strain gage based on reactively sputtered indium-tin-oxide (ITO) thin films is used to monitor the structural integrity of components employed in aerospace propulsion systems operating at temperatures in excess of 1500.degree. C. A scanning electron microscopy (SEM) of the thick ITO sensors reveals a partially sintered microstructure comprising a contiguous network of submicron ITO particles with well defined necks and isolated nanoporosity. Densification of the ITO particles was retarded during high temperature exposure with nitrogen thus stabilizing the nanoporosity. ITO strain sensors were prepared by reactive sputtering in various nitrogen/oxygen/argon partial pressures to incorporate more nitrogen into the films. Under these conditions, sintering and densification of the ITO particles containing these nitrogen rich grain boundaries was retarded and a contiguous network of nano-sized ITO particles was established.

  8. High Temperature Piezoelectric Drill

    NASA Technical Reports Server (NTRS)

    Bao, Xiaoqi; Bar-Cohen, Yoseph; Sherrit, Stewart; Badescu, Mircea; Shrout, Tom

    2012-01-01

    Venus is one of the planets in the solar systems that are considered for potential future exploration missions. It has extreme environment where the average temperature is 460 deg C and its ambient pressure is about 90 atm. Since the existing actuation technology cannot maintain functionality under the harsh conditions of Venus, it is a challenge to perform sampling and other tasks that require the use of moving parts. Specifically, the currently available electromagnetic actuators are limited in their ability to produce sufficiently high stroke, torque, or force. In contrast, advances in developing electro-mechanical materials (such as piezoelectric and electrostrictive) have enabled potential actuation capabilities that can be used to support such missions. Taking advantage of these materials, we developed a piezoelectric actuated drill that operates at the temperature range up to 500 deg C and the mechanism is based on the Ultrasonic/Sonic Drill/Corer (USDC) configuration. The detailed results of our study are presented in this paper

  9. Development of new proton conducting chalcogenide based materials for use in intermediate temperature fuel cells

    NASA Astrophysics Data System (ADS)

    Martindale, Chad Andrew

    As the world endures higher oil and gas prices, more people in the scientific and industrial communities have turned to fuel cells as a possible alternative. The intermediate temperature fuel cell operating between 100°C and 400°C offers the ability to lower costs through higher efficiencies, cheaper catalysts, and reduced need for expensive scrubbing equipment to remove CO and S impurities. However, there are currently very few known solid-state proton conductors with high conductivities over this temperature range. This work covers the development of two new groups of chalcogenide materials sought to have high proton conductivity over the intermediate temperature range. Anhydrous protonated thioborates based on meta-thioboric acid (HBS 2)3 was the first group of materials explored. Various materials were added to increase the glass forming ability (GeS2, B 2S3) and conductivity (SnI2, GeI2, GeI4). The systems were studied using IR, Raman, NMR, and impedance spectroscopy. A 47% GeI2, + HBS2 sample achieved the highest conductivity of ˜10-6 (O CM)-1. The second group of materials was created from the reaction of an alkali metal hydrosulfide (MSH) and metal oxide powder (GeO2, SiO 2, TiO2) in deionized water. The reaction produced a hydrated amorphous material of the general formula MxRSx(OH) 4-x·yH2O. These materials were found to have a conductivity of 10-3 to 10-2 (O cm)-1 over a 100 to 270°C temperature range. The conducting species, mechanism, reaction, and thermal stability were studied by SEM, 1H and 133Cs NMR, and deuterium exchange. The alkali thio-metallates are promising candidates for use in intermediate fuel cells due to their high conductivity and good thermal stability.

  10. High temperature detonator

    DOEpatents

    Johnson, James O.; Dinegar, Robert H.

    1988-01-01

    A detonator assembly is provided which is usable at high temperatures about 300.degree. C. A detonator body is provided with an internal volume defining an anvil surface. A first acceptor explosive is disposed on the anvil surface. A donor assembly having an ignition element, an explosive material, and a flying plate, are placed in the body effective to accelerate the flying plate to impact the first acceptor explosive on the anvil for detonating the first acceptor explosive. A second acceptor explosive is eccentrically located in detonation relationship with the first acceptor explosive to thereafter effect detonation of a main charge.

  11. High temperature drilling fluids

    SciTech Connect

    Stong, R.E.; Walinsky, S.W.

    1986-01-28

    This patent describes an aqueous drilling fluid suitable for high-temperature use. This fluid is composed of a water base. Clay is suspended in the base and from about 0.01-25 pounds per barrel total composition of a hydrolyzed terpolymer of maleic anhydride, styrene and a third monomer selected from acrylamide, methacrylamide, acrylic acid and metacrylic acid. The molar ratio of maleic anhydride to styrene to the third monomer is from about 30:10:60 to 50:40:10, and the alkali metal, ammonium and lower aliphatic amine salts thereof, the weight-average molecular weight of the hydrolyzed terpolymer is from about 500-10,000.

  12. Results on damage induced by high-energy protons in LYSO calorimeter crystals

    NASA Astrophysics Data System (ADS)

    Dissertori, G.; Luckey, D.; Nessi-Tedaldi, F.; Pauss, F.; Quittnat, M.; Wallny, R.; Glaser, M.

    2014-05-01

    Lutetium-Yttrium Orthosilicate doped with Cerium (LYSO), as a bright scintillating crystal, is a candidate for calorimetry applications in strong ionising-radiation fields and large high-energy hadron fluences are expected at the CERN Large Hadron Collider after the planned High-Luminosity upgrade. There, proton-proton collisions will produce fast hadron fluences up to ~ 5 ×1014cm-2 in the large-rapidity regions of the calorimeters. The performance of LYSO has been investigated, after exposure to different fluences of 24 GeV c-1 protons. Measured changes in optical transmission as a function of proton fluence are presented, and the evolution over time due to spontaneous recovery at room temperature is studied. The activation of materials will also be an issue in the described environment. Studies of the ambient dose induced by LYSO and its evolution with time, in comparison with other scintillating crystals, have also been performed through measurements and FLUKA simulations.

  13. High temperature filter materials

    SciTech Connect

    Alvin, M.A.; Lippert, T.E.; Bachovchin, D.M.; Tressler, R.E.

    1992-12-01

    Objectives of this program are to identify the potential long-term thermal/chemical effects that advanced coal-based power generating system environments have on the stability of porous ceramic filter materials, as well as to assess the influence of these effects on filter operating performance and life. We have principally focused our efforts on developing an understanding of the stability of the alumina/mullite filter material at high temperature (i.e., 870, 980, and 1100{degrees}C) under oxidizing conditions which contain gas phase alkali species. Testing has typically been performed in two continuous flow-through, high temperature test facilities at the Westinghouse Science and Technology Center, using 7 cm diameter {times} 6.4 mm thick discs. (Alvin, 1992) Each disc of ceramic filter material is exposed for periods of 100 to 3,000 hours in duration. Additional efforts have been performed at Westinghouse to broaden our understanding of the stability of cordierite, cordierite-silicon nitride, reaction and sintered silicon nitride, and clay bonded silicon carbide under similar simulated advanced coal fired process conditions. The results of these efforts are presented in this paper.

  14. High temperature filter materials

    SciTech Connect

    Alvin, M.A.; Lippert, T.E.; Bachovchin, D.M. . Science and Technology Center); Tressler, R.E. )

    1992-01-01

    Objectives of this program are to identify the potential long-term thermal/chemical effects that advanced coal-based power generating system environments have on the stability of porous ceramic filter materials, as well as to assess the influence of these effects on filter operating performance and life. We have principally focused our efforts on developing an understanding of the stability of the alumina/mullite filter material at high temperature (i.e., 870, 980, and 1100[degrees]C) under oxidizing conditions which contain gas phase alkali species. Testing has typically been performed in two continuous flow-through, high temperature test facilities at the Westinghouse Science and Technology Center, using 7 cm diameter [times] 6.4 mm thick discs. (Alvin, 1992) Each disc of ceramic filter material is exposed for periods of 100 to 3,000 hours in duration. Additional efforts have been performed at Westinghouse to broaden our understanding of the stability of cordierite, cordierite-silicon nitride, reaction and sintered silicon nitride, and clay bonded silicon carbide under similar simulated advanced coal fired process conditions. The results of these efforts are presented in this paper.

  15. ON THE RELATIVE SPEED AND TEMPERATURE RATIO OF SOLAR WIND ALPHA PARTICLES AND PROTONS: COLLISIONS VERSUS WAVE EFFECTS

    SciTech Connect

    Bourouaine, Sofiane; Marsch, Eckart; Neubauer, Fritz M.

    2011-02-10

    We study the relative flow speed and the temperature ratio of alpha particles and protons and their connections to the helium ion abundance, the collisional age, and the power of transverse fluctuations within the inertial range. It is found that the alpha-to-proton temperature ratio, T{sub {alpha}}/T{sub p} , anti-correlates with the helium ion abundance. Despite a relatively high collisional age and small wave power, the ratio T{sub {alpha}}/T{sub p} can reach comparatively high values (even above 2) whenever the helium ion abundance is below about 0.02. In contrast, the differential speed of alpha particles with respect to protons is correlated with the total wave power and anti-correlated with the collisional age. Ultimately, the individual heating of each ion species is positively correlated with the total wave power. Our findings suggest that a high-friction collision could be efficient in reducing the differential speed between alpha particles and protons, but appears not to be sufficient to equalize the alpha and proton temperatures, i.e., to make T{sub {alpha}} {approx_equal} T{sub p} . This is a hint that the local wave heating process is acting on a timescale shorter than the collision time.

  16. High Temperature Aquifer Storage

    NASA Astrophysics Data System (ADS)

    Ueckert, Martina; Niessner, Reinhard; Baumann, Thomas

    2015-04-01

    Combined heat and power generation (CHP) is highly efficient because excess heat is used for heating and/or process energy. However, the demand of heat energy varies considerably throughout the year while the demand for electrical energy is rather constant. It seems economically and ecologically highly beneficial for municipalities and large power consumers such as manufacturing plants to store excess heat in groundwater aquifers and to recuperate this energy at times of higher demand. Apart from the hydrogeological conditions, high transmissivity and favorable pressure gradients, the hydrochemical conditions are crucial for long-term operation. Within the project High Temperature Aquifer Storage, scientists investigate storage and recuperation of excess heat energy into the bavarian Malm aquifer. After one year of planning, construction, and the successful drilling of a research well to 495 m b.s.l. the first large scale heat storage test in the Malm aquifer was finished just before Christmas 2014. An enormous technical challenge was the disruption of the carbonate equilibrium - modeling results indicated a carbonate precipitation of 10-50 kg/d in the heat exchangers. The test included five injection pulses of hot water (60 °C up to 110 °C) and four tracer pulses, each consisting of a reactive and a conservative fluorescent dye. Injection and production rates were 15 L/s. About 4 TJ of heat energy were necessary to achieve the desired water temperatures. Electrical conductivity, pH and temperature were recorded at a bypass where also samples were taken. A laboratory container at the drilling site was equipped for the analysis of the concentration of the tracers and the cation concentrations at sampling intervals of down to 15 minutes. Additional water samples were taken and analyzed for major ions and trace elements in the laboratory. The disassembled heat exchanger proved that precipitation was successfully prevented by adding CO2 to the water before heating

  17. High Temperature Inspection System

    SciTech Connect

    Robinson, C.W.

    1999-01-26

    The Remote and Specialty Equipment Section (RSES) of the Savannah River Technology Center has developed a High Temperature Inspection System (HTIS) for remotely viewing the interior of the Defense Waste Processing Facility (DWPF) melter pour spout. The DWPF is a vitrification facility at the Savannah River Site where radioactive waste is processed, mixed and melted with glass frit in an electrically heated melter, and poured into canisters for long-term storage. The glass mixture is transferred from the melter to the canisters via the pour spout, a vertical interface between the melter and the canisters. During initial operation of the melter, problems were experienced with wicking of the glass stream to the sides of the pour spout resulting in pluggage of the pour spout. A removable insert was developed to eliminate the wicking problem. Routine cleaning of the pour spout and replacement of the insert requires that the pour spout interior be inspected on a regular basis. The HTIS was developed to perform the inspection. The HTIS provides two video images: one view for aligning the HTIS with the pour spout and the other for inspecting the pour spout wall condition and other surfaces. The HTIS is carried into the melter cell using an overhead crane and is remotely connected to the cell's telerobotic manipulator (TRM). An operator uses the TRM to insert the HTIS into the 2-inch (5.08 cm) diameter pour spout, rotate it 360 degrees, and then remove it. This application created many challenges for the inspection device, especially regarding size and temperature. The HTIS design allows the video cameras to stay below a safe operating temperature during use in the 1100 degrees C environment. Many devices are designed to penetrate a wall and extend into a heated chamber only a few inches, but the HTIS is inserted into the heated chamber 22 inches (55.88 cm). Other devices can handle the insertion length and small diameter, but they are not designed to handle the high

  18. High Temperature Aquifer Storage

    NASA Astrophysics Data System (ADS)

    Ueckert, Martina; Niessner, Reinhard; Baumann, Thomas

    2016-04-01

    Combined heat and power generation (CHP) is highly efficient because excess heat is used for heating and/or process energy. However, the demand of heat energy varies considerably throughout the year while the demand for electrical energy is rather constant. It seems economically and ecologically highly beneficial for municipalities and large power consumers such as manufacturing plants to store excess heat in groundwater aquifers and to recuperate this energy at times of higher demand. Within the project High Temperature Aquifer Storage, scientists investigate storage and recuperation of excess heat energy into the bavarian Malm aquifer. Apart from high transmissivity and favorable pressure gradients, the hydrochemical conditions are crucial for long-term operation. An enormous technical challenge is the disruption of the carbonate equilibrium - modeling results indicated a carbonate precipitation of 10 - 50 kg/d in the heat exchangers. The test included five injection pulses of hot water (60 °C up to 110 °C) and four tracer pulses, each consisting of a reactive and a conservative fluorescent dye, into a depth of about 300 m b.s.l. resp. 470 m b.s.l. Injection and production rates were 15 L/s. To achieve the desired water temperatures, about 4 TJ of heat energy were necessary. Electrical conductivity, pH and temperature were recorded at a bypass where also samples were taken. A laboratory container at the drilling site was equipped for analysing the concentration of the dyes and the major cations at sampling intervals of down to 15 minutes. Additional water samples were taken and analysed in the laboratory. The disassembled heat exchanger prooved that precipitation was successfully prevented by adding CO2 to the water before heating. Nevertheless, hydrochemical data proved both, dissolution and precipitation processes in the aquifer. This was also suggested by the hydrochemical modelling with PhreeqC and is traced back to mixture dissolution and changing

  19. Fission foil detector calibrations with high energy protons

    NASA Technical Reports Server (NTRS)

    Benton, E. V.; Frank, A. L.

    1995-01-01

    Fission foil detectors (FFD's) are passive devices composed of heavy metal foils in contact with muscovite mica films. The heavy metal nuclei have significant cross sections for fission when irradiated with neutrons and protons. Each isotope is characterized by threshold energies for the fission reactions and particular energy-dependent cross sections. In the FFD's, fission fragments produced by the reactions are emitted from the foils and create latent particle tracks in the adjacent mica films. When the films are processed surface tracks are formed which can be optically counted. The track densities are indications of the fluences and spectra of neutrons and/or protons. In the past, detection efficiencies have been calculated using the low energy neutron calibrated dosimeters and published fission cross sections for neutrons and protons. The problem is that the addition of a large kinetic energy to the (n,nucleus) or (p,nucleus) reaction could increase the energies and ranges of emitted fission fragments and increase the detector sensitivity as compared with lower energy neutron calibrations. High energy calibrations are the only method of resolving the uncertainties in detector efficiencies. At high energies, either proton or neutron calibrations are sufficient since the cross section data show that the proton and neutron fission cross sections are approximately equal. High energy proton beams have been utilized (1.8 and 4.9 GeV, 80 and 140 MeV) for measuring the tracks of fission fragments emitted backward and forward.

  20. High temperature interfacial superconductivity

    SciTech Connect

    Bozovic, Ivan; Logvenov, Gennady; Gozar, Adrian Mihai

    2012-06-19

    High-temperature superconductivity confined to nanometer-scale interfaces has been a long standing goal because of potential applications in electronic devices. The spontaneous formation of a superconducting interface in bilayers consisting of an insulator (La.sub.2CuO.sub.4) and a metal (La.sub.1-xSr.sub.xCuO.sub.4), neither of which is superconducting per se, is described. Depending upon the layering sequence of the bilayers, T.sub.c may be either .about.15 K or .about.30 K. This highly robust phenomenon is confined to within 2-3 nm around the interface. After exposing the bilayer to ozone, T.sub.c exceeds 50 K and this enhanced superconductivity is also shown to originate from a 1 to 2 unit cell thick interfacial layer. The results demonstrate that engineering artificial heterostructures provides a novel, unconventional way to fabricate stable, quasi two-dimensional high T.sub.c phases and to significantly enhance superconducting properties in other superconductors. The superconducting interface may be implemented, for example, in SIS tunnel junctions or a SuFET.

  1. High-temperature resins

    NASA Technical Reports Server (NTRS)

    Serafini, T. T.

    1982-01-01

    The basic chemistry, cure processes, properties, and applications of high temperature resins known as polyimides are surveyed. Condensation aromatic polymides are prepared by reacting aromatic diamines with aromatic dianhydrides, aromatic tetracarboxylic acids, or with dialkyl esters of aromatic tetracarboxylic acids, depending on the intended end use. The first is for coatings or films while the latter two are more suitable for polyimide matrix resins. Prepreg solutions are made by dissolving reactants in an aprotic solvent, and advances in the addition of a diamine on the double bond and radical polymerization of the double bond are noted to have yielded a final cure product with void-free characteristics. Attention is given to properties of the Skybond, Pyralin, and NR-150B polyimide prepreg materials and characteristics of aging in the NP-150 polyimides. Finally, features of the NASA-developed PMR polyimides are reviewed.

  2. Proton-Proton On Shell Optical Potential at High Energies and the Hollowness Effect

    NASA Astrophysics Data System (ADS)

    Arriola, Enrique Ruiz; Broniowski, Wojciech

    2016-04-01

    We analyze the usefulness of the optical potential as suggested by the double spectral Mandelstam representation at very high energies, such as in the proton-proton scattering at ISR and the LHC. Its particular meaning regarding the interpretation of the scattering data up to the maximum available measured energies is discussed. Our analysis reconstructs 3D dynamics from the effective transverse 2D impact parameter representation and suggests that besides the onset of gray nucleons at the LHC there appears an inelasticity depletion (hollowness) which precludes convolution models at the attometer scale.

  3. Proton-Proton On Shell Optical Potential at High Energies and the Hollowness Effect

    NASA Astrophysics Data System (ADS)

    Arriola, Enrique Ruiz; Broniowski, Wojciech

    2016-07-01

    We analyze the usefulness of the optical potential as suggested by the double spectral Mandelstam representation at very high energies, such as in the proton-proton scattering at ISR and the LHC. Its particular meaning regarding the interpretation of the scattering data up to the maximum available measured energies is discussed. Our analysis reconstructs 3D dynamics from the effective transverse 2D impact parameter representation and suggests that besides the onset of gray nucleons at the LHC there appears an inelasticity depletion (hollowness) which precludes convolution models at the attometer scale.

  4. Carbon, Helium, and Proton Kinetic Temperatures in a Cygnus Loop Shock Wave

    NASA Astrophysics Data System (ADS)

    Raymond, John C.; Edgar, Richard J.; Ghavamian, Parviz; Blair, William P.

    2015-06-01

    Observations of SN 1006 have shown that ions and electrons in the plasma behind fast supernova remnant shock waves are far from equilibrium, with the electron temperature much lower than the proton temperature and ion temperatures approximately proportional to ion mass. In the ˜360 km s-1shock waves of the Cygnus Loop, on the other hand, electron and ion temperatures are roughly equal, and there is evidence that the oxygen kinetic temperature is not far from the proton temperature. In this paper, we report observations of the He ii λ1640 line and the C iv λ1550 doublet in a 360 km s-1shock in the Cygnus Loop. While the best-fit kinetic temperatures are somewhat higher than the proton temperature, the temperatures of He and C are consistent with the proton temperature and the upper limits are 0.5 and 0.3 times the mass-proportional temperatures, implying efficient thermal equilibration in this collisionless shock. The equilibration of helium and hydrogen affects the conversion between proton temperatures determined from Hα line profiles and shock speeds, and the efficient equilibration found here reduces the shock speed estimates and the distance estimate to the Cygnus Loop of Medina et al. to about 800 pc.

  5. Quarkonium production in high energyproton-proton and proton-nucleus collisions

    SciTech Connect

    del Valle, Z C; Corcella, G; Fleuret, F; Ferreiro, E G; Kartvelishvili, V; Kopeliovich, B; Lansberg, J P; Lourenco, C; Martinez, G; Papadimitriou, V; Satz, H; Scomparin, E; Ullrich, T; Teryaev, O; Vogt, R; Wang, J X

    2011-03-14

    We present a brief overview of the most relevant current issues related to quarkonium production in high energy proton-proton and proton-nucleus collisions along with some perspectives. After reviewing recent experimental and theoretical results on quarkonium production in pp and pA collisions, we discuss the emerging field of polarization studies. Afterwards, we report on issues related to heavy-quark production, both in pp and pA collisions, complemented by AA collisions. To put the work in broader perpectives, we emphasize the need for new observables to investigate the quarkonium production mechanisms and reiterate the qualities that make quarkonia a unique tool for many investigations in particle and nuclear physics.

  6. Effect of Temperature on the Protonation of the TALSPEAK Ligands: Lactic and Diethylenetrinitropentaacetic Acids

    SciTech Connect

    Tian, Guoxin; Rao, Linfeng

    2009-10-20

    The protonation reactions of two ligands that play important roles in the TALSPEAK process for the separation of trivalent actinides from lanthanides, lactic acid and diethylenetrinitropentaacetic acid (DTPA), have been studied at variable temperatures. The protonation constants at 10-70 C were determined by titration potentiometry and the protonation enthalpies were determined at 25 C by titration microcalorimetry. The protonation constants remain essentially unchanged (25-70 C) within the experimental uncertainties, indicating that the effect of temperature on the protonation of lactate is insignificant. In contrast, the protonation constants of DTPA (log {beta}H's) generally decrease as the temperature is increased. Results from this study indicate that the effect of temperature on the protonation of DTPA could alter the speciation of metal ions (actinides and lanthanides) in the TALSPEAK system, since lower values of log{beta}H at higher temperatures suggest that the hydrogen ions would compete less strongly with the metal ions for the complexation of DTPA at higher temperatures.

  7. High Temperature Hybrid Elastomers

    NASA Astrophysics Data System (ADS)

    Drake, Kerry Anthony

    Conventional high temperature elastomers are produced by chain polymerization of olefinic or fluorinated olefinic monomers. Ultimate thermal stabilities are limited by backbone bond strengths, lower thermal stability of cross-link sites relative to backbone bonds, and depolymerization or "unzipping" at high temperatures. In order to develop elastomers with enhanced thermal stability, hybrid thermally cross-linkable polymers that consisted only of organic-inorganic and aromatic bonds were synthesized and evaluated. The addition of phenylethynyl or phenylacetylinic functional groups to these polymers resulted in conversion of the polymers into high temperature elastomers when cross-linked by thermal curing. Polyphenyoxydiphenylsilanes were synthesized via several different condensation reactions. Results of these synthetic reactions, which utilized both hydroquinone and biphenol as monomers, were systematically evaluated to determine the optimal synthetic conditions for subsequent endcapping reactions. It was determined that dichlorodiphenylsilane condensations with biphenol in toluene or THF were best suited for this work. Use of excess dichlorodiphenylsilane yielded polymers of appropriate molecular weights with terminal reactive chlorosilane groups that could be utilized for coupling with phenylethynyl reagents in a subsequent reaction. Two new synthetic routes were developed to endcap biphenoxysilanes with ethynyl containing substituents, to yield polymers with cross-linkable end groups. Endcapping by lithiumphenylacetylide and 4[(4-fluorophenylethynyl))phenol yielded two new polymers that could be thermally cross-linked on heating above 300 °C. Successful endcapping was verified chemically by 13C NMR, FTIR and Raman analysis. Exothermic peaks consistent with ethynyl curing reactions were observed in endcapped polymers by DSC. A new diacetylinic polymer was prepared through reaction of 4,4'-buta-1,3-diyne-1,4-diyldiphenol and dichlorodiphenylsilane. This

  8. Gloeobacter Rhodopsin, Limitation of Proton Pumping at High Electrochemical Load

    PubMed Central

    Vogt, Arend; Wietek, Jonas; Hegemann, Peter

    2013-01-01

    We studied the photocurrents of a cyanobacterial rhodopsin Gloeobacter violaceus (GR) in Xenopus laevis oocytes and HEK-293 cells. This protein is a light-driven proton pump with striking similarities to marine proteorhodopsins, including the D121-H87 cluster of the retinal Schiff base counterion and a glutamate at position 132 that acts as a proton donor for chromophore reprotonation during the photocycle. Interestingly, at low extracellular pHo and negative voltage, the proton flux inverted and directed inward. Using electrophysiological measurements of wild-type and mutant GR, we demonstrate that the electrochemical gradient limits outward-directed proton pumping and converts it into a purely passive proton influx. This conclusion contradicts the contemporary paradigm that at low pH, proteorhodopsins actively transport H+ into cells. We identified E132 and S77 as key residues that allow inward directed diffusion. Substitution of E132 with aspartate or S77 with either alanine or cysteine abolished the inward-directed current almost completely. The proton influx is likely caused by the pKa of E132 in GR, which is lower than that of other microbial ion pumping rhodopsins. The advantage of such a low pKa is an acceleration of the photocycle and high pump turnover at high light intensities. PMID:24209850

  9. Solar Wind Proton Temperature Anisotropy: Linear Theory and WIND/SWE Observations

    NASA Technical Reports Server (NTRS)

    Hellinger, P.; Travnicek, P.; Kasper, J. C.; Lazarus, A. J.

    2006-01-01

    We present a comparison between WIND/SWE observations (Kasper et al., 2006) of beta parallel to p and T perpendicular to p/T parallel to p (where beta parallel to p is the proton parallel beta and T perpendicular to p and T parallel to p are the perpendicular and parallel proton are the perpendicular and parallel proton temperatures, respectively; here parallel and perpendicular indicate directions with respect to the ambient magnetic field) and predictions of the Vlasov linear theory. In the slow solar wind, the observed proton temperature anisotropy seems to be constrained by oblique instabilities, by the mirror one and the oblique fire hose, contrary to the results of the linear theory which predicts a dominance of the proton cyclotron instability and the parallel fire hose. The fast solar wind core protons exhibit an anticorrelation between beta parallel to c and T perpendicular to c/T parallel to c (where beta parallel to c is the core proton parallel beta and T perpendicular to c and T parallel to c are the perpendicular and parallel core proton temperatures, respectively) similar to that observed in the HELIOS data (Marsch et al., 2004).

  10. Star tracker operation in a high density proton field

    NASA Technical Reports Server (NTRS)

    Miklus, Kenneth J.; Kissh, Frank; Flynn, David J.

    1993-01-01

    Algorithms that reject transient signals due to proton effects on charge coupled device (CCD) sensors have been implemented in the HDOS ASTRA-l Star Trackers to be flown on the TOPEX mission scheduled for launch in July 1992. A unique technique for simulating a proton-rich environment to test trackers is described, as well as the test results obtained. Solar flares or an orbit that passes through the South Atlantic Anomaly can subject the vehicle to very high proton flux levels. There are three ways in which spurious proton generated signals can impact tracker performance: the many false signals can prevent or extend the time to acquire a star; a proton-generated signal can compromise the accuracy of the star's reported magnitude and position; and the tracked star can be lost, requiring reacquisition. Tests simulating a proton-rich environment were performed on two ASTRA-1 Star Trackers utilizing these new algorithms. There were no false acquisitions, no lost stars, and a significant reduction in reported position errors due to these improvements.

  11. Heavy quark energy loss in high multiplicity proton-proton collisions at the LHC.

    PubMed

    Vogel, Sascha; Gossiaux, Pol Bernard; Werner, Klaus; Aichelin, Jörg

    2011-07-15

    One of the most promising probes to study deconfined matter created in high energy nuclear collisions is the energy loss of (heavy) quarks. It has been shown in experiments at the Relativistic Heavy Ion Collider that even charm and bottom quarks, despite their high mass, experience a remarkable medium suppression in the quark gluon plasma. In this exploratory investigation we study the energy loss of heavy quarks in high multiplicity proton-proton collisions at LHC energies. Although the colliding systems are smaller than compared to those at the Relativistic Heavy Ion Collider (p+p vs Au+Au), the higher energy might lead to multiplicities comparable to Cu+Cu collisions at the Relativistic Heavy Ion Collider. The interaction of charm quarks with this environment gives rise to a non-negligible suppression of high momentum heavy quarks in elementary collisions. PMID:21838351

  12. Small-Scale Mechanical Testing on Proton Beam-Irradiated 304 SS from Room Temperature to Reactor Operation Temperature

    NASA Astrophysics Data System (ADS)

    Vo, H.; Reichardt, A.; Howard, C.; Abad, M. D.; Kaoumi, D.; Chou, P.; Hosemann, P.

    2015-12-01

    Austenitic stainless steels are common structural components in light water reactors. Because reactor components are subjected to harsh conditions such as high operating temperatures and neutron radiation, they can undergo irradiation-induced embrittlement and related failure, which compromises reliable operation. Small-scale mechanical testing has seen widespread use as a testing method for both ion- and reactor-irradiated materials because it allows access to the mechanical properties of the ion beam-irradiated region, and for safe handling of a small amount of activated material. In this study, nanoindentation and microcompression testing were performed on unirradiated and 10 dpa proton-irradiated 304 SS, from 25°C to 300°C. Increases in yield stress (YS), critical resolved shear stress (CRSS) and hardness ( H) were seen in the irradiated region relative to the unirradiated region. Relationships between H, YS, and CRSS of irradiated and unirradiated materials are discussed over this temperature range.

  13. High Temperature Superconducting Materials Database

    National Institute of Standards and Technology Data Gateway

    SRD 149 NIST High Temperature Superconducting Materials Database (Web, free access)   The NIST High Temperature Superconducting Materials Database (WebHTS) provides evaluated thermal, mechanical, and superconducting property data for oxides and other nonconventional superconductors.

  14. Optimal conditions for high current proton irradiations at the university of Wisconsin's ion beam laboratory

    SciTech Connect

    Wetteland, C. J.; Field, K. G.; Gerczak, T. J.; Eiden, T. J.; Maier, B. R.; Albakri, O.; Sridharan, K.; Allen, T. R.

    2013-04-19

    The National Electrostatics Corporation's (NEC) Toroidal Volume Ion Source (TORVIS) source is known for exceptionally high proton currents with minimal service downtime as compared to traditional sputter sources. It has been possible to obtain over 150{mu}A of proton current from the source, with over 70{mu}A on the target stage. However, beam fluxes above {approx}1 Multiplication-Sign 10{sup 17}/m2-s may have many undesirable effects, especially for insulators. This may include high temperature gradients at the surface, sputtering, surface discharge, cracking or even disintegration of the sample. A series of experiments were conducted to examine the role of high current fluxes in a suite of ceramics and insulating materials. Results will show the optimal proton irradiation conditions and target mounting strategies needed to minimize unwanted macro-scale damage, while developing a procedure for conducting preliminary radiation experiments.

  15. Novel collective phenomena in high-energy proton-proton and proton-nucleus collisions

    NASA Astrophysics Data System (ADS)

    Dusling, Kevin; Li, Wei; Schenke, Björn

    2016-01-01

    The observation of long-range rapidity correlations among particles in high-multiplicity p-p and p-Pb collisions has created new opportunities for investigating novel high-density QCD phenomena in small colliding systems. We review experimental results related to the study of collective phenomena in small systems at RHIC and the LHC along with the related developments in theory and phenomenology. Perspectives on possible future directions for research are discussed with the aim of exploring emergent QCD phenomena.

  16. Impact of Solar Proton Events on High Latitude Ionospheric Conditions

    NASA Astrophysics Data System (ADS)

    Aslam, A. M.; Gwal, Ashok Kumar; Mansoori, Azad Ahmad

    2016-07-01

    We investigate the ionospheric response to the solar protons which are accelerated to different energies (MeV-GeV) and thought to be originated at the solar atmosphere during the various energetic phenomena knows as solar transients viz. Solar Flares, Coronal Mass Ejections (CMEs). These transients are believed to be a manifestation of same energy release processes from a highly complex condition in the magnetic field configuration on the solar surface. We have taken six solar proton events (SPE) of solar cycle 23rd for analysis in the various energy bands of the protons. In order to find the ionospheric responses to these incoming solar protons ionospheric total electron content (TEC) is taken as the characteristic parameter. We have taken the data observed by GOES satellites which provides the data for different energy channels (0.8-4 MeV, 4-9 MeV, 9-15 MeV, 15-40 MeV, 40-80 MeV, 80-165 MeV, and 165-500 MeV). The enhancement in peak TEC (∆TEC) was then obtained for the high latitude station Davis (Lat-68.35, Lon 77.58). To find the association of this enhancement with proton flux characteristics we derived the correspondence between spectral indices and ∆TEC. We obtained a strong correlation (0.84) to exist between the spectral indices and ∆TEC.

  17. CGC/saturation approach for high energy soft interactions: v2 in proton-proton collisions

    NASA Astrophysics Data System (ADS)

    Gotsman, E.; Levin, E.; Maor, U.; Tapia, S.

    2016-04-01

    In this paper we continue our program to construct a model for high energy soft interactions, based on the CGC/saturation approach. We demonstrate that in our model, which describes diffractive physics as well as multiparticle production at high energy, the density variation mechanism leads to the value of v2 , which is about 60%-70% of the measured v2 . Bearing in mind that in the CGC/saturation approach there are two other mechanisms present, Bose enhancement in the wave function and local anisotropy, we believe that the azimuthal long range rapidity correlations in proton-proton collisions stem from the CGC/saturation physics, and not from quark-gluon plasma production.

  18. Energy dependence of the ridge in high multiplicity proton-proton collisions

    DOE PAGESBeta

    Dusling, Kevin; Tribedy, Prithwish; Venugopalan, Raju

    2016-01-27

    In this study, we demonstrate that the recent measurement of azimuthally collimated, long-range rapidity (“ridge”) correlations in √s=13 TeV proton-proton (p+p) collisions by the ATLAS Collaboration at the LHC are in agreement with expectations from the color glass condensate effective theory of high-energy QCD. The observation that the integrated near-side yield as a function of multiplicity is independent of collision energy is a natural consequence of the fact that multiparticle production is driven by a single semihard saturation scale in the color glass condensate framework. We argue further that the azimuthal structure of these recent ATLAS ridge measurements strongly constrainsmore » hydrodynamic interpretations of such correlations in high-multiplicity p+p collisions.« less

  19. High temperature lubricating process

    DOEpatents

    Taylor, R.W.; Shell, T.E.

    1979-10-04

    It has been difficult to provide adequate lubrication for load bearing, engine components when such engines are operating in excess of about 475/sup 0/C. The present invention is a process for providing a solid lubricant on a load bearing, solid surface, such as in an engine being operated at temperatures in excess of about 475/sup 0/C. The process comprises contacting and maintaining the following steps: a gas phase is provided which includes at least one component reactable in a temperature dependent reaction to form a solid lubricant; the gas phase is contacted with the load bearing surface; the load bearing surface is maintained at a temperature which causes reaction of the gas phase component and the formation of the solid lubricant; and the solid lubricant is formed directly on the load bearing surface. The method is particularly suitable for use with ceramic engines.

  20. High-Temperature Piezoelectric Sensing

    PubMed Central

    Jiang, Xiaoning; Kim, Kyungrim; Zhang, Shujun; Johnson, Joseph; Salazar, Giovanni

    2014-01-01

    Piezoelectric sensing is of increasing interest for high-temperature applications in aerospace, automotive, power plants and material processing due to its low cost, compact sensor size and simple signal conditioning, in comparison with other high-temperature sensing techniques. This paper presented an overview of high-temperature piezoelectric sensing techniques. Firstly, different types of high-temperature piezoelectric single crystals, electrode materials, and their pros and cons are discussed. Secondly, recent work on high-temperature piezoelectric sensors including accelerometer, surface acoustic wave sensor, ultrasound transducer, acoustic emission sensor, gas sensor, and pressure sensor for temperatures up to 1,250 °C were reviewed. Finally, discussions of existing challenges and future work for high-temperature piezoelectric sensing are presented. PMID:24361928

  1. About multiple scattering of high energy protons in crystal deflectors

    NASA Astrophysics Data System (ADS)

    Taratin, A. M.; Scandale, W.

    2015-07-01

    The process of multiple scattering of high energy protons in a silicon crystal at its amorphous orientation was studied by simulation of proton trajectories in the model of binary collisions and by a straight simulation of the sequences of proton collisions with atoms when their impact parameters are randomly and uniformly distributed on the symmetry cell for a given crystallography direction. The value of the RMS deflection of multiple scattering obtained by the simulation is in a good agreement with the experiment and more than 15% larger than it follows from the Moliere theory. The obtained RMS deflection used in the Gaussian approach of multiple scattering well describes dechanneling of protons in the frame of the planar potential model. Different number of proton collisions with atoms occurs along the same crystal length for different crystal orientations. However, the change of the collision number is compensated by the corresponding change of the mean square deflection in a single collision. Therefore, multiple scattering is the same for different crystal orientations. The generator of multiple scattering for amorphous crystal orientations was proposed.

  2. Resistively enhanced proton acceleration via high-intensity laser interactions with cold foil targets

    SciTech Connect

    Gibbon, Paul

    2005-08-01

    The acceleration of MeV protons by high-intensity laser interaction with foil targets is studied using a recently developed plasma simulation technique. Based on a hierarchical N-body tree algorithm, this method provides a natural means of treating three-dimensional, collisional transport effects hitherto neglected in conventional explicit particle-in-cell simulations. For targets with finite resistivity, hot electron transport is strongly inhibited, even at temperatures in the MeV range. This leads to suppression of ion acceleration from the rear of the target and an enhancement in energies and numbers of protons originating from the front.

  3. Proton radiation damage in high-resistivity n-type silicon CCDs

    SciTech Connect

    Bebek, C.J.; Groom, D.E.; Holland, S.E.; Karcher, A.; Kolbe, W.F.; Lee, J.; Levi, M.E.; Palaio, N.P.; Turko, B.T.; Uslenghi, M.C.; Wagner, M.T.; Wang, G.

    2001-12-20

    A new type of p-channel CCD constructed on high-resistivity n-type silicon was exposed to 12 MeV protons at doses up to 1x1011 protons/cm2. The charge transfer efficiency was measured as a function of radiation dose and temperature. We previously reported that these CCDs are significantly more tolerant to radiation damage than conventional n-channel devices. In the work reported here, we used pocket pumping techniques and charge transfer efficiency measurements to determine the identity and concentrations of radiation induced traps present in the damaged devices.

  4. Polarisation Transfer in Proton Compton Scattering at High Momentum Transfer

    SciTech Connect

    Hamilton, David

    2004-12-31

    The Jefferson Lab Hall A experiment E99-114 comprised a series of measurements to explore proton Compton scattering at high momentum transfer. For the first time, the polarisation transfer observables in the p (~ 0 ~ p) reaction were measured in the GeV energy range, where it is believed that quark-gluon degrees of freedom begin to dominate. The experiment utilised a circularly polarised photon beam incident on a liquid hydrogen target, with the scattered photon and recoil proton detected in a lead-glass calorimeter and a magnetic spectrometer, respectively.

  5. Investigation of high-energy-proton effects in aluminum

    SciTech Connect

    Czajkowski, C.J.; Snead, C.L. Jr.; Todosow, M.

    1997-12-01

    Specimens of 1100 aluminum were exposed to several fluences of 23.5-GeV protons at the Brookhaven Alternating Gradient Synchrotron. Although this energy is above those currently being proposed for spallation-neutron applications, the results can be viewed as indicative of trends and other microstructural evolution with fluence that take place with high-energy proton exposures such as those associated with an increasing ratio of gas generation to dpa. TEM investigation showed significantly larger bubble size and lower density of bubbles compared with lower-energy proton results. Additional testing showed that the tensile strength increased with fluence as expected, but the microhardness decreased, a result for which an intepretation is still under investigation.

  6. Klystron based high power rf system for proton accelerator

    SciTech Connect

    Pande, Manjiri; Shrotriya, Sandip; Sharma, Sonal; Patel, Niranjan; Handu, Verander E-mail: manjiri08@gmail.com

    2011-07-01

    As a part of ADS program a proton accelerator (20 MeV, 30 mA) and its high power RF systems (HPRF) are being developed in BARC. This paper explains design details of this klystron based HPRF system. (author)

  7. Critical design issues of high intensity proton linacs

    SciTech Connect

    Lawrence, G.P.

    1994-08-01

    Medium-energy proton linear accelerators are being studied as drivers for spallation applications requiring large amounts of beam powder. Important design factors for such high-intensity linacs are reviewed, and issues and concerns specific to this unprecedented power regime are discussed.

  8. High-temperature bearing lubricants

    NASA Technical Reports Server (NTRS)

    Anderson, W. J.; Parker, R. J.; Zaretsky, E. V.

    1968-01-01

    Synthetic paraffinic oil lubricates ball bearings at temperatures in the 600 degrees F range. The lubricant contains antiwear and antifoam additives, is thermally stable in the high temperature range, but requires protection from oxygen.

  9. High temperature LSI

    NASA Technical Reports Server (NTRS)

    Dening, D. C.; Ragonese, L. J.; Lee, C. Y.

    1982-01-01

    Integrated injection logic (1,2) technology for reliable operation under a -55 C to +300 C, temperature range is discussed. Experimental measurements indicate that an 80 mv signal swing is available at 300 C with 100 micro A injection current per gate. In addition, modeling results predict how large gate fan-ins can decrease the maximum thermal operational limits. These operational limits and the longterm reliability factors associated with device metallization are evaluated via specialized test mask.

  10. CW high intensity non-scaling FFAG proton drivers

    SciTech Connect

    Johnstone, C.; Berz, M.; Makino, K.; Snopok, P.; /IIT, Chicago

    2011-04-01

    Accelerators are playing increasingly important roles in basic science, technology, and medicine including nuclear power, industrial irradiation, material science, and neutrino production. Proton and light-ion accelerators in particular have many research, energy and medical applications, providing one of the most effective treatments for many types of cancer. Ultra high-intensity and high-energy (GeV) proton drivers are a critical technology for accelerator-driven sub-critical reactors (ADS) and many HEP programs (Muon Collider). These high-intensity GeV-range proton drivers are particularly challenging, encountering duty cycle and space-charge limits in the synchrotron and machine size concerns in the weaker-focusing cyclotrons; a 10-20 MW proton driver is not presently considered technically achievable with conventional re-circulating accelerators. One, as-yet, unexplored re-circulating accelerator, the Fixed-field Alternating Gradient, or FFAG, is an attractive alternative to the cyclotron. Its strong focusing optics are expected to mitigate space charge effects, and a recent innovation in design has coupled stable tunes with isochronous orbits, making the FFAG capable of fixed-frequency, CW acceleration, as in the classical cyclotron. This paper reports on these new advances in FFAG accelerator technology and references advanced modeling tools for fixed-field accelerators developed for and unique to the code COSY INFINITY.

  11. Proton Structure in High-Energy High-Multiplicity p-p Collisions

    NASA Astrophysics Data System (ADS)

    Głazek, Stanisław D.; Kubiczek, Patryk

    2016-06-01

    A few-body proton image, expected to be derivable from QCD in the renormalization group procedure for effective particles, is used within the Monte Carlo Glauber model to calculate the anisotropy coefficients in the initial collision-state of matter in high-energy high-multiplicity proton-proton interaction events. We estimate the ridge-like correlations in the final hadronic state by assuming their proportionality to the initial collision-state anisotropy. In our estimates, some distinct few-body proton structures appear capable of accounting for the magnitude of p-p ridge effect, with potentially discernible differences in dependence on multiplicity.

  12. Proton Therapy

    MedlinePlus

    ... nucleus is surrounded by electrons. In proton therapy, beams of fast-moving protons are used to destroy ... atoms to release proton, neutron, and helium ion beams. In this highly specialized form of radiosurgery , proton ...

  13. Production of high-brightness CW proton beams with very high proton fractions

    SciTech Connect

    Spence, D.; McMichael, G.; Lykke, K.R.; Schneider, J.D.; Sherman, J.; Stevens, R. Jr.; Hodgkins, D.

    1995-12-01

    This paper demonstrates a new technique to significantly enhance the proton fraction of an ion beam extracted from a plasma ion source. We employ a magnetically confined microwave driven source, though the technique is not source-specific and can probably be applied equally effectively to other plasma sources such as Penning and multicusp types. Specifically, we dope the plasma with about 1% H{sub 2}O, which increases the proton fraction of a 45 keV 45 mA beam from 75 to 90% with 375W 2.45 GHz power to the source and from 84% to 92% for 500W when the source is operated under nonresonant conditions. Much of the remaining fraction of the beam comprises a heavy mass ion we believe to be N{sup +} impurity ions resulting from the conditions under which the experiments were performed. If so, this impurity can be easily removed and much higher proton fractions could be expected. Preliminary measurements show the additive has no adverse effect on the emittance of the extracted beam, and source stability is greatly improved.

  14. High-temperature-measuring device

    DOEpatents

    Not Available

    1981-01-27

    A temperature measuring device for very high design temperatures (to 2000/sup 0/C) is described. The device comprises a homogenous base structure preferably in the form of a sphere or cylinder. The base structure contains a large number of individual walled cells. The base structure has a decreasing coefficient of elasticity within the temperature range being monitored. A predetermined quantity of inert gas is confined within each cell. The cells are dimensonally stable at the normal working temperature of the device. Increases in gaseous pressure within the cells will permanently deform the cell walls at temperatures within the high temperature range to be measured. Such deformation can be correlated to temperature by calibrating similarly constructed devices under known time and temperature conditions.

  15. High temperature interface superconductivity

    NASA Astrophysics Data System (ADS)

    Gozar, A.; Bozovic, I.

    2016-02-01

    High-Tc superconductivity at interfaces has a history of more than a couple of decades. In this review we focus our attention on copper-oxide based heterostructures and multi-layers. We first discuss the technique, atomic layer-by-layer molecular beam epitaxy (ALL-MBE) engineering, that enabled High-Tc Interface Superconductivity (HT-IS), and the challenges associated with the realization of high quality interfaces. Then we turn our attention to the experiments which shed light on the structure and properties of interfacial layers, allowing comparison to those of single-phase films and bulk crystals. Both 'passive' hetero-structures as well as surface-induced effects by external gating are discussed. We conclude by comparing HT-IS in cuprates and in other classes of materials, especially Fe-based superconductors, and by examining the grand challenges currently laying ahead for the field.

  16. High temperature interface superconductivity

    DOE PAGESBeta

    Gozar, A.; Bozovic, I.

    2016-01-20

    High-Tc superconductivity at interfaces has a history of more than a couple of decades. In this review we focus our attention on copper-oxide based heterostructures and multi-layers. We first discuss the technique, atomic layer-by-layer molecular beam epitaxy (ALL-MBE) engineering, that enabled High-Tc Interface Superconductivity (HT-IS), and the challenges associated with the realization of high quality interfaces. Then we turn our attention to the experiments which shed light on the structure and properties of interfacial layers, allowing comparison to those of single-phase films and bulk crystals. Both ‘passive’ hetero-structures as well as surface-induced effects by external gating are discussed. Here, wemore » conclude by comparing HT-IS in cuprates and in other classes of materials, especially Fe-based superconductors, and by examining the grand challenges currently laying ahead for the field.« less

  17. High-temperature ceramic receivers

    SciTech Connect

    Jarvinen, P. O.

    1980-01-01

    An advanced ceramic dome cavity receiver is discussed which heats pressurized gas to temperatures above 1800/sup 0/F (1000/sup 0/C) for use in solar Brayton power systems of the dispersed receiver/dish or central receiver type. Optical, heat transfer, structural, and ceramic material design aspects of the receiver are reported and the development and experimental demonstration of a high-temperature seal between the pressurized gas and the high-temperature silicon carbide dome material is described.

  18. STOCHASTIC HEATING, DIFFERENTIAL FLOW, AND THE ALPHA-TO-PROTON TEMPERATURE RATIO IN THE SOLAR WIND

    SciTech Connect

    Chandran, B. D. G.; Verscharen, D.; Isenberg, P. A.; Bourouaine, S.; Quataert, E.; Kasper, J. C. E-mail: s.bourouaine@unh.edu E-mail: daniel.verscharen@unh.edu E-mail: jkasper@cfa.harvard.edu

    2013-10-10

    We extend previous theories of stochastic ion heating to account for the motion of ions along the magnetic field B . We derive an analytic expression for the temperature ratio T{sub i}/T{sub p} in the solar wind assuming that stochastic heating is the dominant ion heating mechanism, where T{sub i} is the perpendicular temperature of species i and T{sub p} is the perpendicular proton temperature. This expression describes how T{sub i}/T{sub p} depends upon U{sub i} and β{sub ∥p}, where U{sub i} is the average velocity along B of species i in the proton frame and β{sub ∥p} is the ratio of the parallel proton pressure to the magnetic pressure, which we take to be ∼< 1. We compare our model with previously published measurements of alpha particles and protons from the Wind spacecraft. We find that stochastic heating offers a promising explanation for the dependence of T{sub α}/T{sub p} on U{sub α} and β{sub ∥p} when the fractional cross helicity and Alfvén ratio at the proton-gyroradius scale have values that are broadly consistent with solar-wind measurements. We also predict how the temperatures of other ion species depend on their drift speeds.

  19. Commissioning plan for a high-current proton linac

    SciTech Connect

    Chan, K.C.D.; Barber, R.L.; Garnett, R.W.

    1997-09-01

    High-power proton linacs (E>500 MeV) are potentially useful for transmutation applications, such as the production of tritium. In production applications, high availability is essential. Achieving high availability requires an accelerator design that simplifies maintenance and accommodates commissioning procedures designed to minimize tune-up time. These are worthwhile goals for any accelerator, but the very high beam powers (170 MW) and heavy beam loading of the Accelerator Production of Tritium (APT) linac introduce significant new challenges. This paper will describe the commissioning plan, as developed to date.

  20. Low-temperature nanodoping of protonated LiNbO3 crystals by univalent ions

    NASA Astrophysics Data System (ADS)

    Borodin, Yu. V.

    2015-01-01

    In the nanocomposite model developed here, crystals are treated as subordinate aggregate of pro- ton-selected structural elements, their blocks, and proton-containing quantum sublattices with preferred transport effects separating them. The formation of stratified reversible hexagonal structures is accompanied with protonation and formation of a dense network of H-bonds ensuring the nanocomposite properties. Nanodoping with H+ ions occurs during processing of crystals and glasses in melts as well as in aqueous solutions of Ag, Tl, Rb, and Cs salts. The isotope exchange H+ ↔ D+ and ion exchange H+ ↔ M+ lead to nanodoping of protonated materials with D+ and M+ ions. This is manifested especially clearly in Li-depleted nonequilibrium LiNbO3 and LiTaO3 crystals. Low-temperature proton-ion nanodoping over superlattices is a basically new approach to analysis of the structure and properties of extremely nonequilibrium materials.

  1. PULSED POWER APPLICATIONS IN HIGH INTENSITY PROTON RINGS.

    SciTech Connect

    ZHANG, S.Y.; SANDBERG, J.; ET AL.

    2005-05-16

    Pulsed power technology has been applied in particle accelerators and storage rings for over four decades. It is most commonly used in injection, extraction, beam manipulation, source, and focusing systems. These systems belong to the class of repetitive pulsed power. In this presentation, we review and discuss the history, present status, and future challenge of pulsed power applications in high intensity proton accelerators and storage rings.

  2. Study of proton conductivity of a 2D flexible MOF and a 1D coordination polymer at higher temperature.

    PubMed

    Sanda, Suresh; Biswas, Soumava; Konar, Sanjit

    2015-02-16

    We report the proton conduction properties of a 2D flexible MOF and a 1D coordination polymer having the molecular formulas {[Zn(C10H2O8)0.5(C10S2N2H8)]·5H2O]}n (1) and {[Zn(C10H2O8)0.5(C10S2N2H8)]·2H2O]}n (2), respectively. Compounds 1 and 2 show high conductivity values of 2.55 × 10(-7) and 4.39 × 10(-4) S cm(-1) at 80 °C and 95% RH. The conductivity value of compound 1 is in the range of those for previously reported flexible MOFs, and compound 2 shows the highest proton conductivity among the carboxylate-based 1D CPs. The dimensionality and the internal hydrogen bonding connectivity play a vital role in the resultant conductivity. Variable-temperature experiments of both compounds at high humidity reveal that the conductivity values increase with increasing temperature, whereas the variable humidity studies signify the influence of relative humidity on high-temperature proton conductivity. The time-dependent measurements for both compounds demonstrate their ability to retain conductivity up to 10 h. PMID:25594401

  3. High Temperature Solar Cell Development

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Raffaelle, Ryne P.; Merritt, Danielle

    2004-01-01

    The majority of satellites and near-earth probes developed to date have used photovoltaic arrays for power generation. If future mission to probe environments close to the sun will be able to use photovoltaic power, solar cells that can function at high temperatures, under high light intensity, and high radiation conditions must be developed. In this paper, we derive the optimum bandgap as a function of the operating temperature.

  4. Theoretical and computational studies of renewable energy materials: Room temperature ionic liquids and proton exchange membranes

    NASA Astrophysics Data System (ADS)

    Feng, Shulu

    2011-12-01

    Two kinds of renewable energy materials, room temperature ionic liquids (RTILs) and proton exchange membranes (PEMs), especially Nafion, are studied by computational and theoretical approaches. The ultimate purpose of the present research is to design novel materials to meet the future energy demands. To elucidate the effect of alkyl side chain length and anion on the structure and dynamics of the mixtures, molecular dynamics (MD) simulations of three RTILs/water mixtures at various water mole fractions: 1-butyl-3-methylimidazolium (BMIM+)/BF4-, 1-octyl-3-methylimidazolium (OMIM+)/BF4-, and OMIM +/Cl- are performed. Replacing the BMIM + cation with OMIM+ results in stronger aggregation of the cations as well as a slower diffusion of the anions, and replacing the BF4- anion with Cl- alters the water distribution at low water mole fractions and slows diffusion of the mixtures. Potential experimental manifestations of these behaviors in both cases are provided. Proton solvation properties and transport mechanisms are studied in hydrated Nafion, by using the self-consistent multistate empirical valence bond (SCI-MS-EVB) method. It is found that by stabilizing a more Zundel-like (H5O 2+) structure in the first solvation shells, the solvation of excess protons, as well as the proton hydration structure are both influenced by the sulfonate groups. Hydrate proton-related hydrogen bond networks are observed to be more stable than those with water alone. In order to characterize the nature of the proton transport (PT), diffusive motion, Arrhenius activation energies, and transport pathways are calculated and analyzed. Analysis of diffusive motion suggests that (1) a proton-hopping mechanism dominates the proton transport for the studied water loading levels and (2) there is an obvious degree of anti-correlation between the proton hopping and the vehicular transport. The activation energy drops rapidly with an increasing water content when the water loading level is smaller

  5. Advanced High Temperature Structural Seals

    NASA Technical Reports Server (NTRS)

    Newquist, Charles W.; Verzemnieks, Juris; Keller, Peter C.; Rorabaugh, Michael; Shorey, Mark

    2002-01-01

    This program addresses the development of high temperature structural seals for control surfaces for a new generation of small reusable launch vehicles. Successful development will contribute significantly to the mission goal of reducing launch cost for small, 200 to 300 pound payloads. Development of high temperature seals is mission enabling. For instance, ineffective control surface seals can result in high temperature (3100 F) flows in the elevon area exceeding structural material limits. Longer sealing life will allow use for many missions before replacement, contributing to the reduction of hardware, operation and launch costs.

  6. Development of high strength, high temperature ceramics

    NASA Technical Reports Server (NTRS)

    Hall, W. B.

    1982-01-01

    Improvement in the high-pressure turbopumps, both fuel and oxidizer, in the Space Shuttle main engine were considered. The operation of these pumps is limited by temperature restrictions of the metallic components used in these pumps. Ceramic materials that retain strength at high temperatures and appear to be promising candidates for use as turbine blades and impellers are discussed. These high strength materials are sensitive to many related processing parameters such as impurities, sintering aids, reaction aids, particle size, processing temperature, and post thermal treatment. The specific objectives of the study were to: (1) identify and define the processing parameters that affect the properties of Si3N4 ceramic materials, (2) design and assembly equipment required for processing high strength ceramics, (3) design and assemble test apparatus for evaluating the high temperature properties of Si3N4, and (4) conduct a research program of manufacturing and evaluating Si3N4 materials as applicable to rocket engine applications.

  7. High Rate Proton Irradiation of 15mm Muon Drifttubes

    NASA Astrophysics Data System (ADS)

    Zibell, A.; Biebel, O.; Hertenberger, R.; Ruschke, A.; Schmitt, Ch.; Kroha, H.; Bittner, B.; Schwegler, P.; Dubbert, J.; Ott, S.

    2012-08-01

    Future LHC luminosity upgrades will significantly increase the amount of background hits from photons, neutrons 11.11d protons in the detectors of the ATLAS muon spectrometer. At the proposed LHC peak luminosity of 5\\cdot 1034(1)/(cm2s), background hit rates of more than 10(kHz)/(cm2) are expected in the innermost forward region, leading to a loss of performance of the current tracking chambers. Based on the ATLAS Monitored Drift Tube chambers, a new high rate capable drift tube detecor using tubes with a reduced diameter of 15mm was developed. To test the response to highly ionizing particles, a prototype chamber of 46 15mm drift tubes was irradiated with a 20 MeV proton beam at the tandem accelerator at the Maier-Leibnitz Laboratory, Munich. Three tubes in a planar layer were irradiated while all other tubes were used for reconstruction of cosmic muon tracks through irradiated and nonirradiated parts of the chamber. To determine the rate capability of the 15mm drifttubes we investigated the effect of the proton hit rate on pulse height, efficiency and spatial resolution of the cosmic muon signals.

  8. High temperature turbine engine structure

    DOEpatents

    Boyd, Gary L.

    1990-01-01

    A high temperature turbine engine includes a hybrid ceramic/metallic rotor member having ceramic/metal joint structure. The disclosed joint is able to endure higher temperatures than previously possible, and aids in controlling heat transfer in the rotor member.

  9. Proton conducting, composite sulfonated polymer membrane for medium temperature and low relative humidity fuel cells

    NASA Astrophysics Data System (ADS)

    Shin, Dong Won; Kang, Na Rae; Lee, Kang Hyuck; Cho, Doo Hee; Kim, Ji Hoon; Lee, Won Hyo; Lee, Young Moo

    2014-09-01

    Inorganic-organic composite membranes are fabricated using zirconium acetylacetonate nanoparticles and biphenol-based sulfonated poly(arylene ether sulfone) as an inorganic, proton conducting nanomaterial and a polymer matrix, respectively. An amphiphilic surfactant (Pluronic®) induces distribution of the inorganic nanoparticles over the entire polymer membrane. The composite membranes are thermally stable up to 200 °C. Zirconium acetylacetonate improves inter-chain interactions and the robustness of polymer membranes resulting in excellent membrane mechanical properties. In addition, composite membranes show outstanding proton conductivity compared to that of the pristine membrane at medium temperatures (80-120 °C) and low relative humidity (<50%) conditions. This improvement is due to the presence of acetylacetonate anions, which bind water molecules and act as an additional proton conducting site and/or medium. Therefore, the composite membranes significantly outperform the pristine membrane in fuel cell performance tests at medium temperatures and low relative humidity.

  10. Ion Desorption Stability in Superconducting High Energy Physics Proton Colliders

    SciTech Connect

    Turner, W.C.

    1995-05-29

    In this paper we extend our previous analysis of cold beam tube vacuum in a superconducting proton collider to include ion desorption in addition to thermal desorption and synchrotron radiation induced photodesorption. The new ion desorption terms introduce the possibility of vacuum instability. This is similar to the classical room temperature case but now modified by the inclusion of ion desorption coefficients for cryosorbed (physisorbed) molecules which can greatly exceed the coefficients for tightly bound molecules. The sojourn time concept for physisorbed H{sub 2} is generalized to include photodesorption and ion desorption as well as the usually considered thermal desorption. The ion desorption rate is density dependent and divergent so at the onset of instability the sojourn time goes to zero. Experimental data are used to evaluate the H{sub 2} sojourn time for the conditions of the Large Hadron Collider (LHC) and the situation is found to be stable. The sojourn time is dominated by photodesorption for surface density s(H{sub 2}) less than a monolayer and by thermal deposition for s(H{sub 2}) greater than a monolayer. For a few percent of a monolayer, characteristic of a beam screen, the photodesorption rate exceeds ion desorption rate by more than two orders of magnitude. The photodesorption rate corresponds to a sojourn time of approximately 100 sec. The paper next turns to the evaluation of stability margins and inclusion of gases heavier than H{sub 2} (CO, CO{sub 2} and CH{sub 4}), where ion desorption introduces coupling between molecular species. Stability conditions are worked out for a simple cold beam tube, a cold beam tube pumped from the ends and a cold beam tube with a co-axial perforated beam screen. In each case a simple inequality for stability of a single component is replaced by a determinant that must be greater than zero for a gas mixture. The connection with the general theory of feedback stability is made and it is shown that the gains

  11. High temperature structural insulating material

    DOEpatents

    Chen, W.Y.

    1984-07-27

    A high temperature structural insulating material useful as a liner for cylinders of high temperature engines through the favorable combination of high service temperature (above about 800/sup 0/C), low thermal conductivity (below about 0.2 W/m/sup 0/C), and high compressive strength (above about 250 psi). The insulating material is produced by selecting hollow ceramic beads with a softening temperature above about 800/sup 0/C, a diameter within the range of 20-200 ..mu..m, and a wall thickness in the range of about 2 to 4 ..mu..m; compacting the beads and a compatible silicate binder composition under pressure and sintering conditions to provide the desired structural form with the structure having a closed-cell, compact array of bonded beads.

  12. High temperature structural insulating material

    DOEpatents

    Chen, Wayne Y.

    1987-01-06

    A high temperature structural insulating material useful as a liner for cylinders of high temperature engines through the favorable combination of high service temperature (above about 800.degree. C.), low thermal conductivity (below about 0.2 W/m.degree. C.), and high compressive strength (above about 250 psi). The insulating material is produced by selecting hollow ceramic beads with a softening temperature above about 800.degree. C., a diameter within the range of 20-200 .mu.m, and a wall thickness in the range of about 2-4 .mu.m; compacting the beads and a compatible silicate binder composition under pressure and sintering conditions to provide the desired structural form with the structure having a closed-cell, compact array of bonded beads.

  13. High temperature structural insulating material

    DOEpatents

    Chen, Wayne Y.

    1987-01-01

    A high temperature structural insulating material useful as a liner for cylinders of high temperature engines through the favorable combination of high service temperature (above about 800.degree. C.), low thermal conductivity (below about 0.2 W/m.degree. C.), and high compressive strength (above about 250 psi). The insulating material is produced by selecting hollow ceramic beads with a softening temperature above about 800.degree. C., a diameter within the range of 20-200 .mu.m, and a wall thickness in the range of about 2-4 .mu.m; compacting the beads and a compatible silicate binder composition under pressure and sintering conditions to provide the desired structural form with the structure having a closed-cell, compact array of bonded beads.

  14. Containerless high temperature calorimeter apparatus

    NASA Technical Reports Server (NTRS)

    Lacy, L. L.; Nisen, D. B. (Inventor)

    1981-01-01

    A calorimeter apparatus for measuring high temperature thermophysical properties of materials is disclosed which includes a containerless heating apparatus in which the specimen is suspended and heated by electron bombardment.

  15. Advanced High Temperature Structural Seals

    NASA Technical Reports Server (NTRS)

    Newquist, Charles W.; Verzemnieks, Juris; Keller, Peter C.; Shorey, Mark W.; Steinetz, Bruce (Technical Monitor)

    2000-01-01

    This program addresses the development of high temperature structural seals for control surfaces for a new generation of small reusable launch vehicles. Successful development will contribute significantly to the mission goal of reducing launch cost for small, 200 to 300 lb payloads. Development of high temperature seals is mission enabling. For instance, ineffective control surface seals can result in high temperature (3100 F) flows in the elevon area exceeding structural material limits. Longer sealing life will allow use for many missions before replacement, contributing to the reduction of hardware, operation and launch costs. During the first phase of this program the existing launch vehicle control surface sealing concepts were reviewed, the aerothermal environment for a high temperature seal design was analyzed and a mock up of an arc-jet test fixture for evaluating seal concepts was fabricated.

  16. High temperature current mirror amplifier

    DOEpatents

    Patterson, III, Raymond B.

    1984-05-22

    A high temperature current mirror amplifier having biasing means in the transdiode connection of the input transistor for producing a voltage to maintain the base-collector junction reversed-biased and a current means for maintaining a current through the biasing means at high temperatures so that the base-collector junction of the input transistor remained reversed-biased. For accuracy, a second current mirror is provided with a biasing means and current means on the input leg.

  17. Proton transfer at helium temperatures during dioxygen activation by heme monooxygenases.

    PubMed

    Davydov, Roman; Chemerisov, Sergey; Werst, David E; Rajh, Tijana; Matsui, Toshitaka; Ikeda-Saito, Masao; Hoffman, Brian M

    2004-12-15

    In the first measurement of enzymatic proton transfer at liquid helium temperatures, we examine protonation of the peroxo-ferriheme state of heme oxygenase (HO) produced by in situ radiolytic cryoreduction of oxy-HO in H2O and D2O solvents at ca. 4 K and above, and compare these findings with analogous measurements for oxy-P450cam and for oxy-Mb. Proton transfer in HO occurs at helium temperatures in both solvents; it occurs in P450cam at approximately 50 K and higher; in Mb it does not occur until T > 170 K. For Mb, this transfer at 180 K is biphasic, and the majority phase shows a solvent kinetic isotope effect of 3.8. We discuss these results in the context of the picture of environmentally coupled tunneling, which links proton transfer to two classes of protein motions: environmental reorganization (lambda in Marcus-like equations) and protein fluctuations ("active dynamics"; gating) which modulate the distance of proton transfer. PMID:15584719

  18. Electrical detection of proton-spin motion in a polymer device at room temperature

    NASA Astrophysics Data System (ADS)

    Boehme, Christoph

    With the emergence of spintronics concepts based on organic semiconductors there has been renewed interest in the role of both, electron as well as nuclear spin states for the magneto-optoelectronic properties of these materials. In spite of decades of research on these molecular systems, there is still much need for an understanding of some of the fundamental properties of spin-controlled charge carrier transport and recombination processes. This presentation focuses on mechanisms that allow proton spin states to influence electronic transition rates in organic semiconductors. Remarkably, even at low-magnetic field conditions and room temperature, nuclear spin states with energy splittings orders of magnitude below thermal energies are able to influence observables like magnetoresistance and fluorescence. While proton spins couple to charge carrier spins via hyperfine interaction, there has been considerable debate about the nature of the electronic processes that are highly susceptible to these weak hyperfine fields. Here, experiments are presented which show how the magnetic resonant manipulation of electron and nuclear spin states in a π-conjugated polymer device causes changes of the device current. The experiments confirm the extraordinary sensitivity of electronic transitions to very weak magnetic field changes and underscore the potential significance of spin-selection rules for highly sensitive absolute magnetic fields sensor concepts. However, the relevance of these magnetic-field sensitive spin-dependent electron transitions is not just limited to semiconductor materials but also radical pair chemistry and even avian magnetoreceptors This work was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award #DE-SC0000909. The Utah NSF - MRSEC program #DMR 1121252 is acknowledged for instrumentation support.

  19. High-resolution Hybrid Simulations of Kinetic Plasma Turbulence at Proton Scales

    NASA Astrophysics Data System (ADS)

    Franci, Luca; Landi, Simone; Matteini, Lorenzo; Verdini, Andrea; Hellinger, Petr

    2015-10-01

    We investigate properties of plasma turbulence from magnetohydrodynamic (MHD) to sub-ion scales by means of two-dimensional, high-resolution hybrid particle-in-cell simulations. We impose an initial ambient magnetic field perpendicular to the simulation box, and we add a spectrum of large-scale magnetic and kinetic fluctuations with energy equipartition and vanishing correlation. Once the turbulence is fully developed, we observe an MHD inertial range, where the spectra of the perpendicular magnetic field and the perpendicular proton bulk velocity fluctuations exhibit power-law scaling with spectral indices of -5/3 and -3/2, respectively. This behavior is extended over a full decade in wavevectors and is very stable in time. A transition is observed around proton scales. At sub-ion scales, both spectra steepen, with the former still following a power law with a spectral index of ∼ -3. A -2.8 slope is observed in the density and parallel magnetic fluctuations, highlighting the presence of compressive effects at kinetic scales. The spectrum of the perpendicular electric fluctuations follows that of the proton bulk velocity at MHD scales, and flattens at small scales. All these features, which we carefully tested against variations of many parameters, are in good agreement with solar wind observations. The turbulent cascade leads to on overall proton energization with similar heating rates in the parallel and perpendicular directions. While the parallel proton heating is found to be independent on the resistivity, the number of particles per cell, and the resolution employed, the perpendicular proton temperature strongly depends on these parameters.

  20. Impact of high energy high intensity proton beams on targets: Case studies for Super Proton Synchrotron and Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Tahir, N. A.; Sancho, J. Blanco; Shutov, A.; Schmidt, R.; Piriz, A. R.

    2012-05-01

    The Large Hadron Collider (LHC) is designed to collide two proton beams with unprecedented particle energy of 7 TeV. Each beam comprises 2808 bunches and the separation between two neighboring bunches is 25 ns. The energy stored in each beam is 362 MJ, sufficient to melt 500 kg copper. Safety of operation is very important when working with such powerful beams. An accidental release of even a very small fraction of the beam energy can result in severe damage to the equipment. The machine protection system is essential to handle all types of possible accidental hazards; however, it is important to know about possible consequences of failures. One of the critical failure scenarios is when the entire beam is lost at a single point. In this paper we present detailed numerical simulations of the full impact of one LHC beam on a cylindrical solid carbon target. First, the energy deposition by the protons is calculated with the FLUKA code and this energy deposition is used in the BIG2 code to study the corresponding thermodynamic and the hydrodynamic response of the target that leads to a reduction in the density. The modified density distribution is used in FLUKA to calculate new energy loss distribution and the two codes are thus run iteratively. A suitable iteration step is considered to be the time interval during which the target density along the axis decreases by 15%-20%. Our simulations suggest that the full LHC proton beam penetrates up to 25 m in solid carbon whereas the range of the shower from a single proton in solid carbon is just about 3 m (hydrodynamic tunneling effect). It is planned to perform experiments at the experimental facility HiRadMat (High Radiation Materials) at CERN using the proton beam from the Super Proton Synchrotron (SPS), to compare experimental results with the theoretical predictions. Therefore simulations of the response of a solid copper cylindrical target hit by the SPS beam were performed. The particle energy in the SPS beam is 440

  1. High latitude proton precipitation and light-ion density profiles during the magnetic storm initial phase

    NASA Technical Reports Server (NTRS)

    Burch, J. L.

    1973-01-01

    Measurements of precipitating protons and light ion densities by experiments on OGO-4 indicate that widespread proton precipitation occurs in predawn hours during the magnetic storm initial phase from the latitude of the high-latitude ion trough, or plasmapause , up to Lambda 75 deg. A softening of the proton spectrum is apparent as the plasmapause is approached. The separation of the low-latitude precipitation boundaries for 7.3 kev and 23.8 kev protons is approximately 1 deg, compared with a 3.6 deg separation which has been computed using the formulas of Gendrin and Eather and Carovillano. Consideration of probable proton drift morphology leads to the conclusion that protons ase injected in predawn hours, with widespread precipitation occurring in the region outside the plasmapause. Protons less energetic than approximately 7 kev drift eastward, while the more energetic protons drift westward, producing the observed dawn-dusk asymmetry for the lower-energy protons.

  2. In-growth of an electrically active defect in high-purity silicon after proton irradiation

    SciTech Connect

    Nylandsted Larsen, A.; Juul Pedersen, H.; Christian Petersen, M.; Privitera, V.; Gurimskaya, Y.; Mesli, A.

    2013-12-14

    Defect-related energy levels in the lower half of the band gap of silicon have been studied with transient-capacitance techniques in high-purity, carbon and oxygen lean, plasma-enhanced chemical-vapor deposition grown, n-and p-type silicon layers after 2-MeV proton irradiations at temperatures at or just below room temperature. The in-growth of a distinct line in deep-level transient spectroscopy spectra, corresponding to a level in the band gap at E{sub V} + 0.357 eV where E{sub V} is the energy of the valence band edge, takes place for anneal temperatures at around room temperature with an activation energy of 0.95 ± 0.08 eV. The line disappears at an anneal temperature of around 450 K. The corresponding defect is demonstrated not to contain boron, carbon, oxygen, or phosphorus. Possible defect candidates are discussed.

  3. High temperature lightweight foamed cements

    DOEpatents

    Sugama, Toshifumi.

    1989-10-03

    Cement slurries are disclosed which are suitable for use in geothermal wells since they can withstand high temperatures and high pressures. The formulation consists of cement, silica flour, water, a retarder, a foaming agent, a foam stabilizer, and a reinforcing agent. A process for producing these cements is also disclosed. 3 figs.

  4. High temperature lightweight foamed cements

    DOEpatents

    Sugama, Toshifumi

    1989-01-01

    Cement slurries are disclosed which are suitable for use in geothermal wells since they can withstand high temperatures and high pressures. The formulation consists of cement, silica flour, water, a retarder, a foaming agent, a foam stabilizer, and a reinforcing agent. A process for producing these cements is also disclosed.

  5. Temperature controlled high voltage regulator

    DOEpatents

    Chiaro, Jr., Peter J.; Schulze, Gerald K.

    2004-04-20

    A temperature controlled high voltage regulator for automatically adjusting the high voltage applied to a radiation detector is described. The regulator is a solid state device that is independent of the attached radiation detector, enabling the regulator to be used by various models of radiation detectors, such as gas flow proportional radiation detectors.

  6. High temperature electronic gain device

    DOEpatents

    McCormick, J. Byron; Depp, Steven W.; Hamilton, Douglas J.; Kerwin, William J.

    1979-01-01

    An integrated thermionic device suitable for use in high temperature, high radiation environments. Cathode and control electrodes are deposited on a first substrate facing an anode on a second substrate. The substrates are sealed to a refractory wall and evacuated to form an integrated triode vacuum tube.

  7. Gallium phosphide high temperature diodes

    SciTech Connect

    Chaffin, R.J.; Dawson, L.R.

    1981-01-01

    The purpose of this work is to develop high temperature (> 300/sup 0/C) diodes for geothermal and other energy applications. A comparison of reverse leakage currents of Si, GaAs and GaP is made. Diodes made from GaP should be usable to > 500/sup 0/C. An LPE process for producing high quality, grown junction GaP diodes is described. This process uses low vapor pressure Mg as a dopant which allows multiple boat growth in the same LPE run. These LPE wafers have been cut into die and metallized to make the diodes. These diodes produce leakage currents below 10/sup -3/ A/cm/sup 2/ at 400/sup 0/C while exhibiting good high temperature rectification characteristics. High temperature life test data is presented which shows exceptional stability of the V-I characteristics.

  8. High temperature Seebeck coefficient metrology

    SciTech Connect

    Martin, J.; Tritt, T.; Uher, C.

    2010-12-15

    We present an overview of the challenges and practices of thermoelectric metrology on bulk materials at high temperature (300 to 1300 K). The Seebeck coefficient, when combined with thermal and electrical conductivity, is an essential property measurement for evaluating the potential performance of novel thermoelectric materials. However, there is some question as to which measurement technique(s) provides the most accurate determination of the Seebeck coefficient at high temperature. This has led to the implementation of nonideal practices that have further complicated the confirmation of reported high ZT materials. To ensure meaningful interlaboratory comparison of data, thermoelectric measurements must be reliable, accurate, and consistent. This article will summarize and compare the relevant measurement techniques and apparatus designs required to effectively manage uncertainty, while also providing a reference resource of previous advances in high temperature thermoelectric metrology.

  9. Inorganic-based proton conductive composite membranes for elevated temperature and reduced relative humidity PEM fuel cells

    NASA Astrophysics Data System (ADS)

    Wang, Chunmei

    Proton exchange membrane (PEM) fuel cells are regarded as highly promising energy conversion systems for future transportation and stationary power generation and have been under intensive investigations for the last decade. Unfortunately, cutting edge PEM fuel cell design and components still do not allow economically commercial implementation of this technology. The main obstacles are high cost of proton conductive membranes, low-proton conductivity at low relative humidity (RH), and dehydration and degradation of polymer membranes at high temperatures. The objective of this study was to develop a systematic approach to design a high proton conductive composite membrane that can provide a conductivity of approximately 100 mS cm-1 under hot and dry conditions (120°C and 50% RH). The approach was based on fundamental and experimental studies of the proton conductivity of inorganic additives and composite membranes. We synthesized and investigated a variety of organic-inorganic Nafion-based composite membranes. In particular, we analyzed their fundamental properties, which included thermal stability, morphology, the interaction between inorganic network and Nafion clusters, and the effect of inorganic phase on the membrane conductivity. A wide range of inorganic materials was studied in advance in order to select the proton conductive inorganic additives for composite membranes. We developed a conductivity measurement method, with which the proton conductivity characteristics of solid acid materials, zirconium phosphates, sulfated zirconia (S-ZrO2), phosphosilicate gels, and Santa Barbara Amorphous silica (SBA-15) were discussed in detail. Composite membranes containing Nafion and different amounts of functionalized inorganic additives (sulfated inorganics such as S-ZrO2, SBA-15, Mobil Composition of Matter MCM-41, and S-SiO2, and phosphonated inorganic P-SiO2) were synthesized with different methods. We incorporated inorganic particles within Nafion clusters

  10. Temperature optimization of high con

    NASA Astrophysics Data System (ADS)

    Sabry, M.

    2016-06-01

    Active cooling is essential for solar cells operating under high optical concentration ratios. A system comprises four solar cells that are in thermal contact on top of a copper tube is proposed. Water is flowing inside the tube in order to reduce solar cells temperature for increasing their performance. Computational Fluid Dynamics (CFD) simulation of such system has been performed in order to investigate the effect of water flow rate, tube internal diameter, and convective heat transfer coefficient on the temperature of the solar cells. It is found that increasing convective heat transfer coefficient has a significant effect on reducing solar cells temperatures operating at low flow rates and high optical concentration ratios. Also, a further increase of water flow rate has no effect on reducing cells temperatures.

  11. Containerless high-temperature calorimeter

    NASA Technical Reports Server (NTRS)

    Lacy, L. L.; Nisen, D. B.; Robinson, M. B.

    1979-01-01

    Samples are heated by electron bombardment in high-temperature calorimeter that operates from 1,000 to 3,600 C yet consumes less that 100 watts at temperatures less than 2,500 C. Contamination of samples is kept to minimum by suspending them from wire in vacuum chamber. Various sample slopes such as wires, dishs, spheres, rods, or irregular bodies can be accommodated and only about 100 nq of samples are needed for accurate measurements.

  12. High power solid state rf amplifier for proton accelerator

    SciTech Connect

    Jain, Akhilesh; Sharma, Deepak Kumar; Gupta, Alok Kumar; Hannurkar, P. R.

    2008-01-15

    A 1.5 kW solid state rf amplifier at 352 MHz has been developed and tested at RRCAT. This rf source for cw operation will be used as a part of rf system of 100 MeV proton linear accelerator. A rf power of 1.5 kW has been achieved by combining output power from eight 220 W rf amplifier modules. Amplifier modules, eight-way power combiner and divider, and directional coupler were designed indigenously for this development. High efficiency, ease of fabrication, and low cost are the main features of this design.

  13. Beam-halo measurements in high-current proton beams

    SciTech Connect

    Allen, C.K.; Chan, K.C.D.; Colestock, P.L.; Crandall, K.R.; Garnett, R.W.; Gilpatrick, J.D.; Lysenko, W.; Qiang, J.; Schneider, J.D.; Schulze, M.E.; Sheffield, R.L.; Smith, H.V.; Wangler, T.P.

    2002-01-11

    We present results from an experimental study of the beam halo in a high-current 6.7-MeV proton beam propagating through a 52-quadrupole periodic-focusing channel. The gradients of the first four quadrupoles were independently adjusted to match or mismatch the injected beam. Emittances and beamwidths were obtained from measured profiles for comparisons with maximum emittance-growth predictions of a free-energy model and maximum halo-amplitude predictions of a particle-core model. The experimental results support both models and the present theoretical picture of halo formation.

  14. HIgh Temperature Photocatalysis over Semiconductors

    NASA Astrophysics Data System (ADS)

    Westrich, Thomas A.

    Due in large part to in prevalence of solar energy, increasing demand of energy production (from all sources), and the uncertain future of petroleum energy feedstocks, solar energy harvesting and other photochemical systems will play a major role in the developing energy market. This dissertation focuses on a novel photochemical reaction process: high temperature photocatalysis (i.e., photocatalysis conducted above ambient temperatures, T ≥ 100°C). The overarching hypothesis of this process is that photo-generated charge carriers are able to constructively participate in thermo-catalytic chemical reactions, thereby increasing catalytic rates at one temperature, or maintaining catalytic rates at lower temperatures. The photocatalytic oxidation of carbon deposits in an operational hydrocarbon reformer is one envisioned application of high temperature photocatalysis. Carbon build-up during hydrocarbon reforming results in catalyst deactivation, in the worst cases, this was shown to happen in a period of minutes with a liquid hydrocarbon. In the presence of steam, oxygen, and above-ambient temperatures, carbonaceous deposits were photocatalytically oxidized over very long periods (t ≥ 24 hours). This initial experiment exemplified the necessity of a fundamental assessment of high temperature photocatalytic activity. Fundamental understanding of the mechanisms that affect photocatalytic activity as a function of temperatures was achieved using an ethylene photocatalytic oxidation probe reaction. Maximum ethylene photocatalytic oxidation rates were observed between 100 °C and 200 °C; the maximum photocatalytic rates were approximately a factor of 2 larger than photocatalytic rates at ambient temperatures. The loss of photocatalytic activity at temperatures above 200 °C is due to a non-radiative multi-phonon recombination mechanism. Further, it was shown that the fundamental rate of recombination (as a function of temperature) can be effectively modeled as a

  15. Energy Loss of High Intensity Focused Proton Beams Penetrating Metal Foils

    NASA Astrophysics Data System (ADS)

    McGuffey, C.; Qiao, B.; Kim, J.; Beg, F. N.; Wei, M. S.; Evans, M.; Fitzsimmons, P.; Stephens, R. B.; Chen, S. N.; Fuchs, J.; Nilson, P. M.; Canning, D.; Mastrosimone, D.; Foord, M. E.

    2014-10-01

    Shortpulse-laser-driven intense ion beams are appealing for applications in probing and creating high energy density plasmas. Such a beam isochorically heats and rapidly ionizes any target it enters into warm dense matter with uncertain transport and stopping properties. Here we present experimental measurements taken with the 1.25 kJ, 10 ps OMEGA EP BL shortpulse laser of the proton and carbon spectra after passing through metal foils. The laser irradiated spherically curved C targets with intensity 4×1018 W/cm2, producing proton beams with 3 MeV slope temperature and a sharp low energy cutoff at 5 MeV which has not been observed on lower energy, shorter pulse intense lasers. The beam either diverged freely or was focused to estimated 1016 p +/cm2 ps by a surrounding structure before entering the metal foils (Al or Ag and a Cu tracer layer). The proton and ion spectra were altered by the foil depending on material and whether or not the beam was focused. Transverse proton radiography probed the target with ps temporal and 10 micron spatial resolution, indicating an electrostatic field on the foil may also have affected the beam. We present complementary particle-in-cell simulations of the beam generation and transport to the foils. This work was supported by the DOE/NNSA National Laser User Facility program, Contract DE-SC0001265.

  16. A brief history of high power RF proton linear accelerators

    SciTech Connect

    Browne, J.C.

    1996-12-31

    The first mention of linear acceleration was in a paper by G. Ising in 1924 in which he postulated the acceleration of positive ions induced by spark discharges which produced electric fields in gaps between a series of {open_quotes}drift tubes{close_quotes}. Ising apparently was not able to demonstrate his concept, most likely due to the limited state of electronic devices. Ising`s work was followed by a seminal paper by R. Wideroe in 1928 in which he demonstrated the first linear accelerator. Wideroe was able to accelerate sodium or potassium ions to 50 keV of energy using drift tubes connected alternately to high frequency waves and to ground. Nuclear physics during this period was interested in accelerating protons, deuterons, electrons and alpha particles and not heavy ions like sodium or potassium. To accelerate the light ions required much higher frequencies than available at that time. So linear accelerators were not pursued heavily at that time. Research continued during the 1930s but the development of high frequency RF tubes for radar applications in World War 2 opened the potential for RF linear accelerators after the war. The Berkeley laboratory of E. 0. Lawrence under the leadership of Luis Alvarez developed a new linear proton accelerator concept that utilized drift tubes that required a full RF period to pass through as compared to the earlier concepts. This development resulted in the historic Berkeley 32 MeV proton linear accelerator which incorporated the {open_quotes}Alvarez drift tube{close_quotes} as the basic acceleration scheme using surplus 200 MHz radar components.

  17. High-Temperature Optical Sensor

    NASA Technical Reports Server (NTRS)

    Adamovsky, Grigory; Juergens, Jeffrey R.; Varga, Donald J.; Floyd, Bertram M.

    2010-01-01

    A high-temperature optical sensor (see Figure 1) has been developed that can operate at temperatures up to 1,000 C. The sensor development process consists of two parts: packaging of a fiber Bragg grating into a housing that allows a more sturdy thermally stable device, and a technological process to which the device is subjected to in order to meet environmental requirements of several hundred C. This technology uses a newly discovered phenomenon of the formation of thermally stable secondary Bragg gratings in communication-grade fibers at high temperatures to construct robust, optical, high-temperature sensors. Testing and performance evaluation (see Figure 2) of packaged sensors demonstrated operability of the devices at 1,000 C for several hundred hours, and during numerous thermal cycling from 400 to 800 C with different heating rates. The technology significantly extends applicability of optical sensors to high-temperature environments including ground testing of engines, flight propulsion control, thermal protection monitoring of launch vehicles, etc. It may also find applications in such non-aerospace arenas as monitoring of nuclear reactors, furnaces, chemical processes, and other hightemperature environments where other measurement techniques are either unreliable, dangerous, undesirable, or unavailable.

  18. High Temperature Transparent Furnace Development

    NASA Technical Reports Server (NTRS)

    Bates, Stephen C.

    1997-01-01

    This report describes the use of novel techniques for heat containment that could be used to build a high temperature transparent furnace. The primary objective of the work was to experimentally demonstrate transparent furnace operation at 1200 C. Secondary objectives were to understand furnace operation and furnace component specification to enable the design and construction of a low power prototype furnace for delivery to NASA in a follow-up project. The basic approach of the research was to couple high temperature component design with simple concept demonstration experiments that modify a commercially available transparent furnace rated at lower temperature. A detailed energy balance of the operating transparent furnace was performed, calculating heat losses through the furnace components as a result of conduction, radiation, and convection. The transparent furnace shells and furnace components were redesigned to permit furnace operation at at least 1200 C. Techniques were developed that are expected to lead to significantly improved heat containment compared with current transparent furnaces. The design of a thermal profile in a multizone high temperature transparent furnace design was also addressed. Experiments were performed to verify the energy balance analysis, to demonstrate some of the major furnace improvement techniques developed, and to demonstrate the overall feasibility of a high temperature transparent furnace. The important objective of the research was achieved: to demonstrate the feasibility of operating a transparent furnace at 1200 C.

  19. High temperature fuel cell membranes based on poly(arylene ether)s containing benzimidazole groups

    SciTech Connect

    Kim, Dae Sik; Kim, Yu Seung; Lee, Kwan - Soo; Boncella, James M; Kuiper, David; Guiver, Michael D

    2009-01-01

    Development of new high-performance polymer membranes that retain their proton conductivity under low humidity conditions is one of the most critical requirements to commercialize PEMFC systems. Current sulfonated proton exchange membranes acquire proton conductivity by water that solvates ion and carries proton. Consequently, a loss of water under low RH conditions immediately results in a loss of proton conductivity. One approach to maintain proton conductivity under low RH conditions is to replace water with a less volatile proton solvent. Kreuer has pointed out the possibility to develop fully polymeric proton-conducting membranes based on nitrogen-containing heterocycles such as imidazole, benzimidazole, and pyrazole. We have attempted to blend those less volatile proton solvent with sulfonated copolymers such as polystyrene sulfonic acid, Nafion, poly(arylene ether sulfone, BPSH-xx). [Ref. DOE review meeting 2007 and 2008] However, we observed that imidazole was slowly sublimated out as temperature and humidity increases which could cause poisoning of electro-catalyst, corrosion and losing conductivity. In this presentation, we report the synthesis of novel poly(arylene ether sulfone)s containing benzimidazole groups These benzimidazole containing polymer was blended with sulfonated poly(arylene ether sulfone). In the blend system, benzimidazole group attached to the polysulfone acts as a medium through the basic nitrogen for transfer of protons between the sulfonic acid groups. Proton conductivity of the blend membranes was investigated as a function of water content at 80 C and compared the performance with water based proton conduction system.

  20. High temperature superconductor current leads

    DOEpatents

    Hull, J.R.; Poeppel, R.B.

    1995-06-20

    An electrical lead is disclosed having one end for connection to an apparatus in a cryogenic environment and the other end for connection to an apparatus outside the cryogenic environment. The electrical lead includes a high temperature superconductor wire and an electrically conductive material distributed therein, where the conductive material is present at the one end of the lead at a concentration in the range of from 0 to about 3% by volume, and at the other end of the lead at a concentration of less than about 20% by volume. Various embodiments are shown for groups of high temperature superconductor wires and sheaths. 9 figs.

  1. High temperature superconductor current leads

    DOEpatents

    Hull, John R.; Poeppel, Roger B.

    1995-01-01

    An electrical lead having one end for connection to an apparatus in a cryogenic environment and the other end for connection to an apparatus outside the cryogenic environment. The electrical lead includes a high temperature superconductor wire and an electrically conductive material distributed therein, where the conductive material is present at the one end of the lead at a concentration in the range of from 0 to about 3% by volume, and at the other end of the lead at a concentration of less than about 20% by volume. Various embodiments are shown for groups of high temperature superconductor wires and sheaths.

  2. High Temperature Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    1985-01-01

    These are the proceedings of the High Temperature Polymer Matrix Composites Conference held at the NASA Lewis Research Center on March 16 to 18, 1983. The purpose of the conference is to provide scientists and engineers working in the field of high temperature polymer matrix composites an opportunity to review, exchange, and assess the latest developments in this rapidly expanding area of materials technology. Technical papers are presented in the following areas: (1) matrix development; (2) adhesive development; (3) characterization; (4) environmental effects; and (5) applications.

  3. High temperature current mirror amplifier

    DOEpatents

    Patterson, R.B. III.

    1984-05-22

    Disclosed is a high temperature current mirror amplifier having biasing means in the transdiode connection of the input transistor for producing a voltage to maintain the base-collector junction reversed-biased and a current means for maintaining a current through the biasing means at high temperatures so that the base-collector junction of the input transistor remained reversed-biased. For accuracy, a second current mirror is provided with a biasing means and current means on the input leg. 2 figs.

  4. High temperature solar thermal technology

    NASA Technical Reports Server (NTRS)

    Leibowitz, L. P.; Hanseth, E. J.; Peelgren, M. L.

    1980-01-01

    Some advanced technology concepts under development for high-temperature solar thermal energy systems to achieve significant energy cost reductions and performance gains and thus promote the application of solar thermal power technology are presented. Consideration is given to the objectives, current efforts and recent test and analysis results in the development of high-temperature (950-1650 C) ceramic receivers, thermal storage module checker stoves, and the use of reversible chemical reactions to transport collected solar energy. It is pointed out that the analysis and testing of such components will accelerate the commercial deployment of solar energy.

  5. "Green" High-Temperature Polymers

    NASA Technical Reports Server (NTRS)

    Meador, Michael A.

    1998-01-01

    PMR-15 is a processable, high-temperature polymer developed at the NASA Lewis Research Center in the 1970's principally for aeropropulsion applications. Use of fiber-reinforced polymer matrix composites in these applications can lead to substantial weight savings, thereby leading to improved fuel economy, increased passenger and payload capacity, and better maneuverability. PMR-15 is used fairly extensively in military and commercial aircraft engines components seeing service temperatures as high as 500 F (260 C), such as the outer bypass duct for the F-404 engine. The current world-wide market for PMR-15 materials (resins, adhesives, and composites) is on the order of $6 to 10 million annually.

  6. Hole-boring radiation pressure proton acceleration at high intensity in near-critical density targets

    NASA Astrophysics Data System (ADS)

    Yu, Jinqing; Dover, N. P.; Jin, Xiaolin; Li, Bin; Dangor, A. E.; Najmudin, Z.

    2014-10-01

    We will present high quality proton beams accelerated from hole-boring radiation pressure proton acceleration (HB-RPA) using three-dimension Particle-in-Cell simulation results. Scaling works on proton cut off energy with laser parameters such as laser intensity and laser pulse duration have been studied in detail by two-dimension Particle-in-Cell simulations. Optimal conditions for generating proton beam of narrow energy spread will be discussed.

  7. High-temperature plasma physics

    SciTech Connect

    Furth, H.P.

    1988-03-01

    Both magnetic and inertial confinement research are entering the plasma parameter range of fusion reactor interest. This paper reviews the individual and common technical problems of these two approaches to the generation of thermonuclear plasmas, and describes some related applications of high-temperature plasma physics.

  8. High-Temperature Electrostatic Levitator

    NASA Technical Reports Server (NTRS)

    Rhim, Won-Kyu; Chung, Sang K.

    1994-01-01

    High-temperature electrostatic levitator provides independent control of levitation and heating of sample in vacuum. Does not cause electromagnetic stirring in molten sample (such stirring causes early nucleation in undercooling). Maintenance of levitating force entails control of electrostatic field and electrical charge on sample.

  9. High-Temperature Vibration Damper

    NASA Technical Reports Server (NTRS)

    Clarke, Alan; Litwin, Joel; Krauss, Harold

    1987-01-01

    Device for damping vibrations functions at temperatures up to 400 degrees F. Dampens vibrational torque loads as high as 1,000 lb-in. but compact enough to be part of helicopter rotor hub. Rotary damper absorbs energy from vibrating rod, dissipating it in turbulent motion of viscous hydraulic fluid forced by moving vanes through small orifices.

  10. A solar high temperature kiln

    NASA Astrophysics Data System (ADS)

    Huettenhoelscher, N.; Bergmann, K.

    1981-11-01

    The feasibility of using solar energy in developing countries for baking ceramic construction materials was investigated. The solar high temperature kiln is described. It uses two parabolic concentrators which direct available radiation into the baking chamber. The Sun tracker has only one axis. Preliminary test results with the prototype kiln were satisfactory.