Science.gov

Sample records for high temperature sensor

  1. High temperature sensor

    DOEpatents

    Tokarz, Richard D.

    1982-01-01

    A high temperature sensor includes a pair of electrical conductors separated by a mass of electrical insulating material. The insulating material has a measurable resistivity within the sensor that changes in relation to the temperature of the insulating material within a high temperature range (1,000 to 2,000 K.). When required, the sensor can be encased within a ceramic protective coating.

  2. High-temperature sensor

    DOEpatents

    Not Available

    1981-01-29

    A high temperature sensor is described which includes a pair of electrical conductors separated by a mass of electrical insulating material. The insulating material has a measurable resistivity within the sensor that changes in relation to the temperature of the insulating material within a high temperature range (1000 to 2000/sup 0/K). When required, the sensor can be encased within a ceramic protective coating.

  3. NSTX High Temperature Sensor Systems

    SciTech Connect

    B.McCormack; H.W. Kugel; P. Goranson; R. Kaita; et al

    1999-11-01

    The design of the more than 300 in-vessel sensor systems for the National Spherical Torus Experiment (NSTX) has encountered several challenging fusion reactor diagnostic issues involving high temperatures and space constraints. This has resulted in unique miniature, high temperature in-vessel sensor systems mounted in small spaces behind plasma facing armor tiles, and they are prototypical of possible high power reactor first-wall applications. In the Center Stack, Divertor, Passive Plate, and vessel wall regions, the small magnetic sensors, large magnetic sensors, flux loops, Rogowski Coils, thermocouples, and Langmuir Probes are qualified for 600 degrees C operation. This rating will accommodate both peak rear-face graphite tile temperatures during operations and the 350 degrees C bake-out conditions. Similar sensor systems including flux loops, on other vacuum vessel regions are qualified for 350 degrees C operation. Cabling from the sensors embedded in the graphite tiles follows narrow routes to exit the vessel. The detailed sensor design and installation methods of these diagnostic systems developed for high-powered ST operation are discussed.

  4. High-Temperature Optical Sensor

    NASA Technical Reports Server (NTRS)

    Adamovsky, Grigory; Juergens, Jeffrey R.; Varga, Donald J.; Floyd, Bertram M.

    2010-01-01

    A high-temperature optical sensor (see Figure 1) has been developed that can operate at temperatures up to 1,000 C. The sensor development process consists of two parts: packaging of a fiber Bragg grating into a housing that allows a more sturdy thermally stable device, and a technological process to which the device is subjected to in order to meet environmental requirements of several hundred C. This technology uses a newly discovered phenomenon of the formation of thermally stable secondary Bragg gratings in communication-grade fibers at high temperatures to construct robust, optical, high-temperature sensors. Testing and performance evaluation (see Figure 2) of packaged sensors demonstrated operability of the devices at 1,000 C for several hundred hours, and during numerous thermal cycling from 400 to 800 C with different heating rates. The technology significantly extends applicability of optical sensors to high-temperature environments including ground testing of engines, flight propulsion control, thermal protection monitoring of launch vehicles, etc. It may also find applications in such non-aerospace arenas as monitoring of nuclear reactors, furnaces, chemical processes, and other hightemperature environments where other measurement techniques are either unreliable, dangerous, undesirable, or unavailable.

  5. Advanced high temperature heat flux sensors

    NASA Technical Reports Server (NTRS)

    Atkinson, W.; Hobart, H. F.; Strange, R. R.

    1983-01-01

    To fully characterize advanced high temperature heat flux sensors, calibration and testing is required at full engine temperature. This required the development of unique high temperature heat flux test facilities. These facilities were developed, are in place, and are being used for advanced heat flux sensor development.

  6. Evaluation of high temperature pressure sensors.

    PubMed

    Choi, In-Mook; Woo, Sam-Yong; Kim, Yong-Kyu

    2011-03-01

    It is becoming more important to measure the pressure in high temperature environments in many industrial fields. However, there is no appropriate evaluation system and compensation method for high temperature pressure sensors since most pressure standards have been established at room temperature. In order to evaluate the high temperature pressure sensors used in harsh environments, such as high temperatures above 250 °C, a specialized system has been constructed and evaluated in this study. The pressure standard established at room temperature is connected to a high temperature pressure sensor through a chiller. The sensor can be evaluated in conditions of changing standard pressures at constant temperatures and of changing temperatures at constant pressures. According to the evaluation conditions, two compensation methods are proposed to eliminate deviation due to sensitivity changes and nonlinear behaviors except thermal hysteresis. PMID:21456794

  7. Evaluation of high temperature pressure sensors

    SciTech Connect

    Choi, In-Mook; Woo, Sam-Yong; Kim, Yong-Kyu

    2011-03-15

    It is becoming more important to measure the pressure in high temperature environments in many industrial fields. However, there is no appropriate evaluation system and compensation method for high temperature pressure sensors since most pressure standards have been established at room temperature. In order to evaluate the high temperature pressure sensors used in harsh environments, such as high temperatures above 250 deg. C, a specialized system has been constructed and evaluated in this study. The pressure standard established at room temperature is connected to a high temperature pressure sensor through a chiller. The sensor can be evaluated in conditions of changing standard pressures at constant temperatures and of changing temperatures at constant pressures. According to the evaluation conditions, two compensation methods are proposed to eliminate deviation due to sensitivity changes and nonlinear behaviors except thermal hysteresis.

  8. High Temperature, Wireless Seismometer Sensor for Venus

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Scardelletti, Maximilian C.; Taylor, Brandt; Beard, Steve; Meredith, Roger D.; Beheim, Glenn M.; Hunter Gary W.; Kiefer, Walter S.

    2012-01-01

    Space agency mission plans state the need to measure the seismic activity on Venus. Because of the high temperature on Venus (462? C average surface temperature) and the difficulty in placing and wiring multiple sensors using robots, a high temperature, wireless sensor using a wide bandgap semiconductor is an attractive option. This paper presents the description and proof of concept measurements of a high temperature, wireless seismometer sensor for Venus. A variation in inductance of a coil caused by the movement of an aluminum probe held in the coil and attached to a balanced leaf-spring seismometer causes a variation of 700 Hz in the transmitted signal from the oscillator/sensor system at 426? C. This result indicates that the concept may be used on Venus.

  9. Bimodular high temperature planar oxygen gas sensor.

    PubMed

    Sun, Xiangcheng; Liu, Yixin; Gao, Haiyong; Gao, Pu-Xian; Lei, Yu

    2014-01-01

    A bimodular planar O2 sensor was fabricated using NiO nanoparticles (NPs) thin film coated yttria-stabilized zirconia (YSZ) substrate. The thin film was prepared by radio frequency (r.f.) magnetron sputtering of NiO on YSZ substrate, followed by high temperature sintering. The surface morphology of NiO NPs film was characterized by atomic force microscope (AFM) and scanning electron microscope (SEM). X-ray diffraction (XRD) patterns of NiO NPs thin film before and after high temperature O2 sensing demonstrated that the sensing material possesses a good chemical and structure stability. The oxygen detection experiments were performed at 500, 600, and 800°C using the as-prepared bimodular O2 sensor under both potentiometric and resistance modules. For the potentiometric module, a linear relationship between electromotive force (EMF) output of the sensor and the logarithm of O2 concentration was observed at each operating temperature, following the Nernst law. For the resistance module, the logarithm of electrical conductivity was proportional to the logarithm of oxygen concentration at each operating temperature, in good agreement with literature report. In addition, this bimodular sensor shows sensitive, reproducible and reversible response to oxygen under both sensing modules. Integration of two sensing modules into one sensor could greatly enrich the information output and would open a new venue in the development of high temperature gas sensors. PMID:25191652

  10. Bimodular high temperature planar oxygen gas sensor

    PubMed Central

    Sun, Xiangcheng; Liu, Yixin; Gao, Haiyong; Gao, Pu-Xian; Lei, Yu

    2014-01-01

    A bimodular planar O2 sensor was fabricated using NiO nanoparticles (NPs) thin film coated yttria-stabilized zirconia (YSZ) substrate. The thin film was prepared by radio frequency (r.f.) magnetron sputtering of NiO on YSZ substrate, followed by high temperature sintering. The surface morphology of NiO NPs film was characterized by atomic force microscope (AFM) and scanning electron microscope (SEM). X-ray diffraction (XRD) patterns of NiO NPs thin film before and after high temperature O2 sensing demonstrated that the sensing material possesses a good chemical and structure stability. The oxygen detection experiments were performed at 500, 600, and 800°C using the as-prepared bimodular O2 sensor under both potentiometric and resistance modules. For the potentiometric module, a linear relationship between electromotive force (EMF) output of the sensor and the logarithm of O2 concentration was observed at each operating temperature, following the Nernst law. For the resistance module, the logarithm of electrical conductivity was proportional to the logarithm of oxygen concentration at each operating temperature, in good agreement with literature report. In addition, this bimodular sensor shows sensitive, reproducible and reversible response to oxygen under both sensing modules. Integration of two sensing modules into one sensor could greatly enrich the information output and would open a new venue in the development of high temperature gas sensors. PMID:25191652

  11. High Temperature Langasite SAW Oxygen Sensor

    SciTech Connect

    Zheng, Peng; Chin, Tao-Lun; Greve, David; Oppenheim, Irving; Malone, Vanessa; Cao, Limin

    2011-08-01

    High-temperature langasite SAW oxygen sensors using sputtered ZnO as a resistive gas-sensing layer were fabricated and tested. Sensitivity to oxygen gas was observed between 500°C to 700°C, with a sensitivity peak at about 625°C, consistent with the theoretical predictions of the acoustoelectric effect.

  12. Development of High Temperature Gas Sensor Technology

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Chen, Liang-Yu; Neudeck, Philip G.; Knight, Dak; Liu, Chung-Chiun; Wu, Quing-Hai; Zhou, Huan-Jun

    1997-01-01

    The measurement of engine emissions is important for their monitoring and control. However, the ability to measure these emissions in-situ is limited. We are developing a family of high temperature gas sensors which are intended to operate in harsh environments such as those in an engine. The development of these sensors is based on progress in two types of technology: (1) The development of SiC-based semiconductor technology; and (2) Improvements in micromachining and microfabrication technology. These technologies are being used to develop point-contact sensors to measure gases which are important in emission control especially hydrogen, hydrocarbons, nitrogen oxides, and oxygen. The purpose of this paper is to discuss the development of this point-contact sensor technology. The detection of each type of gas involves its own challenges in the fields of materials science and fabrication technology. Of particular importance is sensor sensitivity, selectivity, and stability in long-term, high temperature operation. An overview is presented of each sensor type with an evaluation of its stage of development. It is concluded that this technology has significant potential for use in engine applications but further development is necessary.

  13. Electrochemical high-temperature gas sensors

    NASA Astrophysics Data System (ADS)

    Saruhan, B.; Stranzenbach, M.; Yüce, A.; Gönüllü, Y.

    2012-06-01

    Combustion produced common air pollutant, NOx associates with greenhouse effects. Its high temperature detection is essential for protection of nature. Component-integration capable high-temperature sensors enable the control of combustion products. The requirements are quantitative detection of total NOx and high selectivity at temperatures above 500°C. This study reports various approaches to detect NO and NO2 selectively under lean and humid conditions at temperatures from 300°C to 800°C. All tested electrochemical sensors were fabricated in planar design to enable componentintegration. We suggest first an impedance-metric gas sensor for total NOx-detection consisting of NiO- or NiCr2O4-SE and PYSZ-electrolyte. The electrolyte-layer is about 200μm thickness and constructed of quasi-single crystalline columns. The sensing-electrode (SE) is magnetron sputtered thin-layers of NiO or NiCr2O4. Sensor sensitivity for detection of total NOx has been measured by applying impedance analysis. The cross-sensitivity to other emission gases such as CO, CO2, CH4 and oxygen (5 vol.%) has been determined under 0-1000ppm NO. Sensor maintains its high sensitivity at temperatures up to 550°C and 600°C, depending on the sensing-electrode. NiO-SE yields better selectivity to NO in the presence of oxygen and have shorter response times comparing to NiCr2O4-SE. For higher temperature NO2-sensing capability, a resistive DC-sensor having Al-doped TiO2-sensing layers has been employed. Sensor-sensitivity towards NO2 and cross-sensitivity to CO has been determined in the presence of H2O at temperatures 600°C and 800°C. NO2 concentrations varying from 25 to 100ppm and CO concentrations from 25 to 75ppm can be detected. By nano-tubular structuring of TiO2, NO2 sensitivity of the sensor was increased.

  14. Silicon carbide high temperature thermoelectric flow sensor

    NASA Astrophysics Data System (ADS)

    Lei, Man I.

    Current high temperature flow measurement devices are bulky, expensive and have slow response time. Therefore, there has been increasing demand for developing a flow sensor that has high temperature capability yet is small in size, fast in response time, and low in cost through mass fabrication. In this thesis, a high temperature flow sensor utilizing micromachining and microfabrication technology has been designed, simulated, fabricated, packaged and tested. This micro flow sensor is developed based on heavily-nitrogen-doped polycrystalline silicon carbide (n-SiC) thin film, a high temperature semiconductor well known for its mechanical robustness and chemical inertness in high temperatures and harsh environments. The small thermal mass and wide operating temperature range provide an excellent platform for a flow sensor operating with the thermal sensing principle. The n-SiC thermoelectric flow sensor prototype developed here is based on the calorimetric sensing mechanism. The sensor has a n-SiC heater for thermal marker creation, an upstream and a downstream n-SiC/p-Si thermopile for flow sensing, and a n-SiC thermistor for ambient temperature monitoring. This device is packaged in a stainless steel enclosure with a bypass channel. The tested flow range is between 0 to 20,000 sccm. The flow sensor has demonstrated high temperature capability and mechanical robustness up to 450 °C on a hotplate at zero flow condition, and up to 300 °C in a heated flow stream. The device has a response time of 8 ms. Maximum power consumption is 96 mW when operated at 8 mA (12 V) and 45 mW when operated at 5 mA (9V), with a sensor warm-up time less than 1 minute. In addition, the thermoelectric properties of n-SiC have been thoroughly studied through the characterization of the electrical resistivity, the Seebeck coefficient and the thermal conductivity of n-SiC thin film. The 0.93 microm-thick, n-SiC thin film utilized in the thermoelectric flow sensor has an electrical

  15. Fiber Bragg Grating Filter High Temperature Sensors

    NASA Technical Reports Server (NTRS)

    Lyons, Donald R.; Brass, Eric D.; Pencil, Eric (Technical Monitor)

    2001-01-01

    We present a scaled-down method for determining high temperatures using fiber-based Bragg gratings. Bragg gratings are distributed along the length of the optical fiber, and have high reflectivities whenever the optical wavelength is twice the grating spacing. These spatially distinct Bragg regions (located in the core of a fiber) are sensitive to local temperature changes. Since these fibers are silica-based they are easily affected by localized changes in temperature, which results in changes to both the grating spacing and the wavelength reflectivity. We exploit the shift in wavelength reflectivity to measure the change in the local temperature. Note that the Bragg region (sensing area) is some distance away from where the temperature is being measured. This is done so that we can measure temperatures that are much higher than the damage threshold of the fiber. We do this by affixing the fiber with the Bragg sensor to a material with a well-known coefficient of thermal expansion, and model the heat gradient from the region of interest to the actual sensor. The research described in this paper will culminate in a working device as well as be the second portion of a publication pending submission to Optics Letters.

  16. Fiber specklegram sensors sensitivities at high temperatures

    NASA Astrophysics Data System (ADS)

    Rodriguez-Cobo, L.; Lomer, M.; Lopez-Higuera, J. M.

    2015-09-01

    In this work, the sensitivity of Fiber Specklegram Sensors to high temperatures (up to 800ºC) have been studied. Two multimode silica fibers have been introduced into a tubular furnace while a HeNe laser source was launched into a fiber edge, projecting speckle patterns to a commercial webcam. A computer generated different heating and cooling sweeps while the specklegram evolution was recorded. The achieved results exhibit a remarkably linearity in FSS's sensitivity for temperatures under 800ºC, following the thermal expansion of fused silica.

  17. High temperature energy harvester for wireless sensors

    NASA Astrophysics Data System (ADS)

    Köhler, J. E.; Heijl, R.; Staaf, L. G. H.; Zenkic, S.; Svenman, E.; Lindblom, A.; Palmqvist, A. E. C.; Enoksson, P.

    2014-09-01

    Implementing energy harvesters and wireless sensors in jet engines will simplify development and decrease costs by reducing the need for cables. Such a device could include a small thermoelectric generator placed in the cooling channels of the jet engine where the temperature is between 500-900 °C. This paper covers the synthesis of suitable thermoelectric materials, design of module and proof of concept tests of a thermoelectric module. The materials and other design variables were chosen based on an analytic model and numerical analysis. The module was optimized for 600-800 °C with the thermoelectric materials n-type Ba8Ga16Ge30 and p-type La-doped Yb14MnSb11, both with among the highest reported figure-of-merit values, zT, for bulk materials in this region. The materials were synthesized and their structures confirmed by x-ray diffraction. Proof of concept modules containing only two thermoelectric legs were built and tested at high temperatures and under high temperature gradients. The modules were designed to survive an ambient temperature gradient of up to 200 °C. The first measurements at low temperature showed that the thermoelectric legs could withstand a temperature gradient of 123 °C and still be functional. The high temperature measurement with 800 °C on the hot side showed that the module remained functional at this temperature.

  18. A batteryless temperature sensor based on high temperature sensitive material

    NASA Astrophysics Data System (ADS)

    Bakkali, Asma; Pelegri-Sebastia, José; Laghmich, Youssef; Lyhyaoui, Abdelouahid

    2016-05-01

    The major challenge in wireless sensor networks is the reduction of energy consumption. Passive wireless sensor network is an attractive solution for measuring physical parameters in harsh environment for large range of applications requiring sensing devices with low cost of fabrication, small size and long term measurement stability. Batteryless temperature sensing techniques are an active research field. The approach developed in our work holds a promising future for temperature sensor applications in order to successfully reduce the energy consumption. The temperature sensor presented in this paper is based on the electromagnetic transduction principle using the integration of the high temperature sensitive material into a passive structure. Variation in temperature makes the dielectric constant of this material changing, and such modification induces variation in the resonant frequencies of high-Q whispering-gallery modes (WGM) in the millimeter-wave frequency range. Following the results achieved, the proposed device shows a linear response to the increasing temperature and these variations can be remotely detected from a radar interrogation. Contribution to the topical issue "Materials for Energy Harvesting, Conversion and Storage (ICOME 2015) - Elected submissions", edited by Jean-Michel Nunzi, Rachid Bennacer and Mohammed El Ganaoui

  19. Optical Sensor Of High Gas Temperatures

    NASA Technical Reports Server (NTRS)

    Hill, Arthur J.

    1988-01-01

    Contact pyrometer resists effects of heat, vibration, and moisture. New sensor consists of shielded sapphire rod with sputtered layer of precious metal on end. Metal layer acts as blackbody. Emits radiation having known dependence of spectral distribution with temperature of metal and temperature of hot gas flowing over metal. Fiber-optic cable carries radiation from sapphire rod to remote photodetector.

  20. Pressure sensor for high-temperature liquids

    DOEpatents

    Forster, George A.

    1978-01-01

    A pressure sensor for use in measuring pressures in liquid at high temperatures, especially such as liquid sodium or liquid potassium, comprises a soft diaphragm in contact with the liquid. The soft diaphragm is coupled mechanically to a stiff diaphragm. Pressure is measured by measuring the displacment of both diaphragms, typically by measuring the capacitance between the stiff diaphragm and a fixed plate when the stiff diaphragm is deflected in response to the measured pressure through mechanical coupling from the soft diaphragm. Absolute calibration is achieved by admitting gas under pressure to the region between diaphragms and to the region between the stiff diaphragm and the fixed plate, breaking the coupling between the soft and stiff diaphragms. The apparatus can be calibrated rapidly and absolutely.

  1. Development of advanced high-temperature heat flux sensors

    NASA Technical Reports Server (NTRS)

    Atkinson, W. H.; Strange, R. R.

    1982-01-01

    Various configurations of high temperature, heat flux sensors were studied to determine their suitability for use in experimental combustor liners of advanced aircraft gas turbine engines. It was determined that embedded thermocouple sensors, laminated sensors, and Gardon gauge sensors, were the most viable candidates. Sensors of all three types were fabricated, calibrated, and endurance tested. All three types of sensors met the fabricability survivability, and accuracy requirements established for their application.

  2. Temperature Sensor

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Weed Instrument Inc. produces a line of thermocouples - temperature sensors - for a variety of industrial and research uses. One of the company's newer products is a thermocouple specially designed for high accuracy at extreme temperatures above 3,000 degrees Fahrenheit. Development of sensor brought substantial increases in Weed Instrument sales and employment.

  3. Fiber optic photoelastic pressure sensor for high temperature gases

    NASA Technical Reports Server (NTRS)

    Wesson, Laurence N.; Redner, Alex S.; Baumbick, Robert J.

    1990-01-01

    A novel fiber optic pressure sensor based on the photoelastic effects has been developed for extremely high temperature gases. At temperatures varying from 25 to 650 C, the sensor experiences no change in the peak pressure of the transfer function and only a 10 percent drop in dynamic range. Refinement of the sensor has resulted in an optoelectronic interface and processor software which can calculate pressure values within 1 percent of full scale at any temperature within the full calibrated temperature range.

  4. Ultra-High Temperature Distributed Wireless Sensors

    SciTech Connect

    May, Russell; Rumpf, Raymond; Coggin, John; Davis, Williams; Yang, Taeyoung; O'Donnell, Alan; Bresnahan, Peter

    2013-03-31

    Research was conducted towards the development of a passive wireless sensor for measurement of temperature in coal gasifiers and coal-fired boiler plants. Approaches investigated included metamaterial sensors based on guided mode resonance filters, and temperature-sensitive antennas that modulate the frequency of incident radio waves as they are re-radiated by the antenna. In the guided mode resonant filter metamaterial approach, temperature is encoded as changes in the sharpness of the filter response, which changes with temperature because the dielectric loss of the guided mode resonance filter is temperature-dependent. In the mechanically modulated antenna approach, the resonant frequency of a vibrating cantilever beam attached to the antenna changes with temperature. The vibration of the beam perturbs the electrical impedance of the antenna, so that incident radio waves are phase modulated at a frequency equal to the resonant frequency of the vibrating beam. Since the beam resonant frequency depends on temperature, a Doppler radar can be used to remotely measure the temperature of the antenna. Laboratory testing of the guided mode resonance filter failed to produce the spectral response predicted by simulations. It was concluded that the spectral response was dominated by spectral reflections of radio waves incident on the filter. Laboratory testing of the mechanically modulated antenna demonstrated that the device frequency shifted incident radio waves, and that the frequency of the re-radiated waves varied linearly with temperature. Radio wave propagation tests in the convection pass of a small research boiler plant identified a spectral window between 10 and 13 GHz for low loss propagation of radio waves in the interior of the boiler.

  5. High-Temperature Gas Sensor Array (Electronic Nose) Demonstrated

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.

    2002-01-01

    The ability to measure emissions from aeronautic engines and in commercial applications such as automotive emission control and chemical process monitoring is a necessary first step if one is going to actively control those emissions. One single sensor will not give all the information necessary to determine the chemical composition of a high-temperature, harsh environment. Rather, an array of gas sensor arrays--in effect, a high-temperature electronic "nose"--is necessary to characterize the chemical constituents of a diverse, high-temperature environment, such as an emissions stream. The signals produced by this nose could be analyzed to determine the constituents of the emission stream. Although commercial electronic noses for near-room temperature applications exist, they often depend significantly on lower temperature materials or only one sensor type. A separate development effort necessary for a high-temperature electronic nose is being undertaken by the NASA Glenn Research Center, Case Western Reserve University, Ohio State University, and Makel Engineering, Inc. The sensors are specially designed for hightemperature environments. A first-generation high-temperature electronic nose has been demonstrated on a modified automotive engine. This nose sensor array was composed of sensors designed for hightemperature environments fabricated using microelectromechanical-systems- (MEMS-) based technology. The array included a tin-oxide-based sensor doped for nitrogen oxide (NOx) sensitivity, a SiC-based hydrocarbon (CxHy) sensor, and an oxygen sensor (O2). These sensors operate on different principles--resistor, diode, and electrochemical cell, respectively--and each sensor has very different responses to the individual gases in the environment. A picture showing the sensor head for the array is shown in the photograph on the left and the sensors installed in the engine are shown in the photograph on the right. Electronics are interfaced with the sensors for

  6. High-temperature fiber optic cubic-zirconia pressure sensor

    NASA Astrophysics Data System (ADS)

    Peng, Wei; Pickrell, Gary R.; Wang, Anbo

    2005-12-01

    There is a critical need for pressure sensors that can operate reliably at high temperatures in many industrial segments such as in the combustion section of gas turbine engines for both transportation and power generation, coal gasifiers, coal fired boilers, etc. Optical-based sensors are particularly attractive for the measurement of a wide variety of physical and chemical parameters in high-temperature and high-pressure industrial environments due to their small size and immunity to electromagnetic interference. A fiber optic pressure sensor utilizing single-crystal cubic zirconia as the sensing element is reported. The pressure response of this sensor has been measured at temperatures up to 1000 °C. Additional experimental results show that cubic zirconia could be used for pressure sensing at temperatures over 1000 °C. This study demonstrates the feasibility of using a novel cubic-zirconia sensor for pressure measurement at high temperatures.

  7. Fiber optic, Fabry-Perot high temperature sensor

    NASA Technical Reports Server (NTRS)

    James, K.; Quick, B.

    1984-01-01

    A digital, fiber optic temperature sensor using a variable Fabry-Perot cavity as the sensor element was analyzed, designed, fabricated, and tested. The fiber transmitted cavity reflection spectra is dispersed then converted from an optical signal to electrical information by a charged coupled device (CCD). A microprocessor-based color demodulation system converts the wavelength information to temperature. This general sensor concept not only utilizes an all-optical means of parameter sensing and transmitting, but also exploits microprocessor technology for automated control, calibration, and enhanced performance. The complete temperature sensor system was evaluated in the laboratory. Results show that the Fabry-Perot temperature sensor has good resolution (0.5% of full seale), high accuracy, and potential high temperature ( 1000 C) applications.

  8. Gallium Oxide Nanostructures for High Temperature Sensors

    SciTech Connect

    Chintalapalle, Ramana V.

    2015-04-30

    Gallium oxide (Ga2O3) thin films were produced by sputter deposition by varying the substrate temperature (Ts) in a wide range (Ts=25-800 °C). The structural characteristics and electronic properties of Ga2O3 films were evaluated using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry (EDS), Rutherford backscattering spectrometry (RBS) and spectrophotometric measurements. The effect of growth temperature is significant on the chemistry, crystal structure and morphology of Ga2O3 films. XRD and SEM analyses indicate that the Ga2O3 films grown at lower temperatures were amorphous while those grown at Ts≥500 oC were nanocrystalline. RBS measurements indicate the well-maintained stoichiometry of Ga2O3 films at Ts=300-800 °C. The electronic structure determination indicated that the nanocrystalline Ga2O3films exhibit a band gap of ~5 eV. Tungsten (W) incorporated Ga2O3 films were produced by co-sputter deposition. W-concentration was varied by the applied sputtering-power. No secondary phase formation was observed in W-incorporated Ga2O3 films. W-induced effects were significant on the structure and electronic properties of Ga2O3 films. The band gap of Ga2O3 films without W-incorporation was ~5 eV. Oxygen sensor characteristics evaluated using optical and electrical methods indicate a faster response in W-doped Ga2O3 films compared to intrinsic Ga2O3 films. The results demonstrate the applicability of both intrinsic and W-doped Ga-oxide films for oxygen sensor application at temperatures ≥700 °C.

  9. SiC device development for high temperature sensor applications

    NASA Technical Reports Server (NTRS)

    Shor, J. S.; Goldstein, David; Kurtz, A. D.; Osgood, R. M.

    1992-01-01

    Progress made in the processing and characterization of 3C-SiC for high temperature sensor applications is reviewed. Piezoresistance properties of silicon carbide and the temperature coefficient of resistivity of n-type beta-SiC are presented. In addition, photoelectrical etching and dopant selective etch-stops in SiC and high temperature Ohmic contacts for n-type beta-SiC sensors are discussed.

  10. SiC device development for high temperature sensor applications

    NASA Astrophysics Data System (ADS)

    Shor, J. S.; Goldstein, David; Kurtz, A. D.; Osgood, R. M.

    1992-09-01

    Progress made in the processing and characterization of 3C-SiC for high temperature sensor applications is reviewed. Piezoresistance properties of silicon carbide and the temperature coefficient of resistivity of n-type beta-SiC are presented. In addition, photoelectrical etching and dopant selective etch-stops in SiC and high temperature Ohmic contacts for n-type beta-SiC sensors are discussed.

  11. Fiber Optic High Temperature Sensors for Re-Entry Vehicles

    NASA Astrophysics Data System (ADS)

    Haddad, E.; Kruzelecky, R.; Zou, J.; Wong, B.; Jamroz, W.; Sayeed, F.; Muylaert, J.-M.; McKenzie, I.

    2009-01-01

    MPB, within an ESA contract, is developing high temperature Fiber sensors (up to 1100°C) for re- ntry experiments, with direct application to the Thermo Protection Surface (TPS) of SHEFEX II. It addresses the challenges of obtaining high reflectivity FBG sensors, and integrating the fiber sensors within the selected TPS host material (C/SiC). Feasibility was demonstrated using free fiber sensors that showed the formation of the Chemical Composition Grating (CCG), with 80 % reflection at temperatures >750°C. The CCG grating was stable at high temperature (1000°C) for more than 50 hours, as well as after cycling between room temperature and 1000°C, with better than 0.5 % temperature accuracy (FBG central wavelength). Small FBG sensor packages were prepared and attached to C/SiC tiles. The calibration of the packaged fibers showed similar response to temperature as the free fiber sensor. The fiber sensor package was designed to maximize contact with the C/SiC surface to provide fast response to transients. Three- imension modeling with Ansys finite element analysis shows a time constant of 15-20 ms to reach 1200°C. A modular design will be implemented where a dedicated fiber line with 3 sensors and its own connector is used for each C/SiC tile. Small coupons of packaged sensors attached to C/SiC tiles will be tested in a re-entry environment at Von Karman Institute (Belgium) In a recently completed project with ESA, MPB developed and ground qualified a fiber sensor network, the "Fiber Sensor Demonstrator", that was successfully integrated as a payload with ESA's Proba-2. The system includes a central interrogation system that can be used to measure multiple parameters including a high temperature sensor for the Proba-2 thruster (up to 500°C).

  12. Development of a fiber optic high temperature strain sensor

    NASA Technical Reports Server (NTRS)

    Rausch, E. O.; Murphy, K. E.; Brookshire, S. P.

    1992-01-01

    From 1 Apr. 1991 to 31 Aug. 1992, the Georgia Tech Research Institute conducted a research program to develop a high temperature fiber optic strain sensor as part of a measurement program for the space shuttle booster rocket motor. The major objectives of this program were divided into four tasks. Under Task 1, the literature on high-temperature fiber optic strain sensors was reviewed. Task 2 addressed the design and fabrication of the strain sensor. Tests and calibration were conducted under Task 3, and Task 4 was to generate recommendations for a follow-on study of a distributed strain sensor. Task 4 was submitted to NASA as a separate proposal.

  13. Design and development of high-temperature sensor using FBG

    NASA Astrophysics Data System (ADS)

    Venkata Reddy, M.; Srimannarayana, K.; V. Apparao, T.; Sai Shankar, M.

    2015-08-01

    A novel sensor for high-temperature measurement using Fiber Bragg grating (FBG) has been designed and simulated. The sensor works based on measurement of the shift in Bragg wavelength that corresponds to the temperature induced strain by making use of a mechanical transducer. The transducing element provides temperature dependent strain on FBG by means of differential linear thermal expansion of two different ceramic materials: Alumina and Silicon Carbide. The designed sensor can measure the temperatures from 20°C to 1500°C.

  14. Cooperative implementation of a high temperature acoustic sensor

    NASA Astrophysics Data System (ADS)

    Baldini, S. E.; Nowakowski, Edward; Smith, Herbert G.; Friebele, E. J.; Putnam, Martin A.; Rogowski, Robert; Melvin, Leland D.; Claus, Richard O.; Tran, Tuan; Holben, Milford S., Jr.

    1991-12-01

    The current status and results of a cooperative program aimed at the implementation of a high-temperature acoustic/strain sensor onto metallic structures are reported. The sensor systems that are to be implemented under this program will measure thermal expansion, maneuver loads, aircraft buffet, sonic fatigue, and acoustic emissions in environments that approach 1800 F. The discussion covers fiber development, fabrication of an extrinsic Fabry-Perot interferometer acoustic sensor, sensor mounting/integration, and results of an evaluation of the sensor capabilities.

  15. High-temperature fiber optic pressure sensor

    NASA Technical Reports Server (NTRS)

    Berthold, J. W.

    1984-01-01

    Attention is given to a program to develop fiber optic methods to measure diaphragm deflection. The end application is intended for pressure transducers capable of operating to 540 C. In this paper are reported the results of a laboratory study to characterize the performance of the fiber-optic microbend sensor. The data presented include sensitivity and spring constant. The advantages and limitations of the microbend sensor for static pressure measurement applications are described. A proposed design is presented for a 540 C pressure transducer using the fiber optic microbend sensor.

  16. Packaging Technologies for High Temperature Electronics and Sensors

    NASA Technical Reports Server (NTRS)

    Chen, Liang-Yu; Hunter, Gary W.; Neudeck, Philip G.; Beheim, Glenn M.; Spry, David J.; Meredith, Roger D.

    2013-01-01

    This paper reviews ceramic substrates and thick-film metallization based packaging technologies in development for 500 C silicon carbide (SiC) electronics and sensors. Prototype high temperature ceramic chip-level packages and printed circuit boards (PCBs) based on ceramic substrates of aluminum oxide (Al2O3) and aluminum nitride (AlN) have been designed and fabricated. These ceramic substrate-based chip-level packages with gold (Au) thick-film metallization have been electrically characterized at temperatures up to 550 C. A 96% alumina based edge connector for a PCB level subsystem interconnection has also been demonstrated recently. The 96% alumina packaging system composed of chip-level packages and PCBs has been tested with high temperature SiC devices at 500 C for over 10,000 hours. In addition to tests in a laboratory environment, a SiC JFET with a packaging system composed of a 96% alumina chip-level package and an alumina printed circuit board mounted on a data acquisition circuit board was launched as a part of the MISSE-7 suite to the International Space Station via a Shuttle mission. This packaged SiC transistor was successfully tested in orbit for eighteen months. A spark-plug type sensor package designed for high temperature SiC capacitive pressure sensors was developed. This sensor package combines the high temperature interconnection system with a commercial high temperature high pressure stainless steel seal gland (electrical feed-through). Test results of a packaged high temperature capacitive pressure sensor at 500 C are also discussed. In addition to the pressure sensor package, efforts for packaging high temperature SiC diode-based gas chemical sensors are in process.

  17. Packaging Technologies for High Temperature Electronics and Sensors

    NASA Technical Reports Server (NTRS)

    Chen, Liangyu; Hunter, Gary W.; Neudeck, Philip G.; Beheim, Glenn M.; Spry, David J.; Meredith, Roger D.

    2013-01-01

    This paper reviews ceramic substrates and thick-film metallization based packaging technologies in development for 500degC silicon carbide (SiC) electronics and sensors. Prototype high temperature ceramic chip-level packages and printed circuit boards (PCBs) based on ceramic substrates of aluminum oxide (Al2O3) and aluminum nitride (AlN) have been designed and fabricated. These ceramic substrate-based chiplevel packages with gold (Au) thick-film metallization have been electrically characterized at temperatures up to 550degC. A 96% alumina based edge connector for a PCB level subsystem interconnection has also been demonstrated recently. The 96% alumina packaging system composed of chip-level packages and PCBs has been tested with high temperature SiC devices at 500degC for over 10,000 hours. In addition to tests in a laboratory environment, a SiC JFET with a packaging system composed of a 96% alumina chip-level package and an alumina printed circuit board mounted on a data acquisition circuit board was launched as a part of the MISSE-7 suite to the International Space Station via a Shuttle mission. This packaged SiC transistor was successfully tested in orbit for eighteen months. A spark-plug type sensor package designed for high temperature SiC capacitive pressure sensors was developed. This sensor package combines the high temperature interconnection system with a commercial high temperature high pressure stainless steel seal gland (electrical feed-through). Test results of a packaged high temperature capacitive pressure sensor at 500degC are also discussed. In addition to the pressure sensor package, efforts for packaging high temperature SiC diode-based gas chemical sensors are in process.

  18. Properties of thin films for high temperature flow sensors

    NASA Technical Reports Server (NTRS)

    Albin, Sacharia

    1991-01-01

    Requirements of material parameters of high temperature flow sensors are identified. Refractory metal silicides offer high temperature sensitivity and high frequency response and are stable up to 1000 C. Intrinsic semiconductors of high band gap are also considered as sensor elements. SiC and diamond are identified. Combined with substrates of low thermal and electrical conductivity, such as quartz or Al2O3, these materials meet several requirements of high sensitivity and frequency response. Film deposition and patterning techniques suitable for these materials are identified.

  19. Optical Fiber High Temperature Sensor Instrumentation for Energy Intensive Industries

    SciTech Connect

    Cooper, Kristie L.; Wang, Anbo; Pickrell, Gary R.

    2006-11-14

    This report summarizes technical progress during the program “Optical Fiber High Temperature Sensor Instrumentation for Energy Intensive Industries”, performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The objective of this program was to use technology recently invented at Virginia Tech to develop and demonstrate the application of self-calibrating optical fiber temperature and pressure sensors to several key energy-intensive industries where conventional, commercially available sensors exhibit greatly abbreviated lifetimes due primarily to environmental degradation. A number of significant technologies were developed under this program, including • a laser bonded silica high temperature fiber sensor with a high temperature capability up to 700°C and a frequency response up to 150 kHz, • the world’s smallest fiber Fabry-Perot high temperature pressure sensor (125 x 20 μm) with 700°C capability, • UV-induced intrinsic Fabry-Perot interferometric sensors for distributed measurement, • a single crystal sapphire fiber-based sensor with a temperature capability up to 1600°C. These technologies have been well demonstrated and laboratory tested. Our work plan included conducting major field tests of these technologies at EPRI, Corning, Pratt & Whitney, and Global Energy; field validation of the technology is critical to ensuring its usefulness to U.S. industries. Unfortunately, due to budget cuts, DOE was unable to follow through with its funding commitment to support Energy Efficiency Science Initiative projects and this final phase was eliminated.

  20. A High Temperature Capacitive Humidity Sensor Based on Mesoporous Silica

    PubMed Central

    Wagner, Thorsten; Krotzky, Sören; Weiß, Alexander; Sauerwald, Tilman; Kohl, Claus-Dieter; Roggenbuck, Jan; Tiemann, Michael

    2011-01-01

    Capacitive sensors are the most commonly used devices for the detection of humidity because they are inexpensive and the detection mechanism is very specific for humidity. However, especially for industrial processes, there is a lack of dielectrics that are stable at high temperature (>200 °C) and under harsh conditions. We present a capacitive sensor based on mesoporous silica as the dielectric in a simple sensor design based on pressed silica pellets. Investigation of the structural stability of the porous silica under simulated operating conditions as well as the influence of the pellet production will be shown. Impedance measurements demonstrate the utility of the sensor at both low (90 °C) and high (up to 210 °C) operating temperatures. PMID:22163790

  1. Advanced high temperature static strain sensor development

    NASA Technical Reports Server (NTRS)

    Hulse, C. O.; Stetson, K. A.; Grant, H. P.; Jameikis, S. M.; Morey, W. W.; Raymondo, P.; Grudkowski, T. W.; Bailey, R. S.

    1986-01-01

    An examination was made into various techniques to be used to measure static strain in gas turbine liners at temperatures up to 1150 K (1600 F). The methods evaluated included thin film and wire resistive devices, optical fibers, surface acoustic waves, the laser speckle technique with a heterodyne readout, optical surface image and reflective approaches and capacitive devices. A preliminary experimental program to develop a thin film capacitive device was dropped because calculations showed that it would be too sensitive to thermal gradients. In a final evaluation program, the laser speckle technique appeared to work well up to 1150 K when it was used through a relatively stagnant air path. The surface guided acoustic wave approach appeared to be interesting but to require too much development effort for the funds available. Efforts to develop a FeCrAl resistive strain gage system were only partially successful and this part of the effort was finally reduced to a characterization study of the properties of the 25 micron diameter FeCrAl (Kanthal A-1) wire. It was concluded that this particular alloy was not suitable for use as the resistive element in a strain gage above about 1000 K.

  2. High temperature thermometric phosphors for use in a temperature sensor

    DOEpatents

    Allison, S.W.; Cates, M.R.; Boatner, L.A.; Gillies, G.T.

    1998-03-24

    A high temperature phosphor consists essentially of a material having the general formula LuPO{sub 4}:Dy{sub (x)},Eu{sub (y)}, wherein: 0.1 wt %{<=}x{<=}20 wt % and 0.1 wt %{<=}y{<=}20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopant. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions. 2 figs.

  3. High temperature thermometric phosphors for use in a temperature sensor

    DOEpatents

    Allison, Stephen W.; Cates, Michael R.; Boatner, Lynn A.; Gillies, George T.

    1998-01-01

    A high temperature phosphor consists essentially of a material having the general formula LuPO.sub.4 :Dy.sub.(x),Eu.sub.(y), wherein: 0.1 wt %.ltoreq.x.ltoreq.20 wt % and 0.1 wt %.ltoreq.y.ltoreq.20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopent. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions.

  4. High Temperature Dynamic Pressure Measurements Using Silicon Carbide Pressure Sensors

    NASA Technical Reports Server (NTRS)

    Okojie, Robert S.; Meredith, Roger D.; Chang, Clarence T.; Savrun, Ender

    2014-01-01

    Un-cooled, MEMS-based silicon carbide (SiC) static pressure sensors were used for the first time to measure pressure perturbations at temperatures as high as 600 C during laboratory characterization, and subsequently evaluated in a combustor rig operated under various engine conditions to extract the frequencies that are associated with thermoacoustic instabilities. One SiC sensor was placed directly in the flow stream of the combustor rig while a benchmark commercial water-cooled piezoceramic dynamic pressure transducer was co-located axially but kept some distance away from the hot flow stream. In the combustor rig test, the SiC sensor detected thermoacoustic instabilities across a range of engine operating conditions, amplitude magnitude as low as 0.5 psi at 585 C, in good agreement with the benchmark piezoceramic sensor. The SiC sensor experienced low signal to noise ratio at higher temperature, primarily due to the fact that it was a static sensor with low sensitivity.

  5. Thin Film Ceramic Strain Sensor Development for High Temperature Environments

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Fralick, Gustave C.; Gonzalez, Jose M.; Laster, Kimala L.

    2008-01-01

    The need for sensors to operate in harsh environments is illustrated by the need for measurements in the turbine engine hot section. The degradation and damage that develops over time in hot section components can lead to catastrophic failure. At present, the degradation processes that occur in the harsh hot section environment are poorly characterized, which hinders development of more durable components, and since it is so difficult to model turbine blade temperatures, strains, etc, actual measurements are needed. The need to consider ceramic sensing elements is brought about by the temperature limits of metal thin film sensors in harsh environments. The effort at the NASA Glenn Research Center (GRC) to develop high temperature thin film ceramic static strain gauges for application in turbine engines is described, first in the fan and compressor modules, and then in the hot section. The near-term goal of this research effort was to identify candidate thin film ceramic sensor materials and provide a list of possible thin film ceramic sensor materials and corresponding properties to test for viability. A thorough literature search was conducted for ceramics that have the potential for application as high temperature thin film strain gauges chemically and physically compatible with the NASA GRCs microfabrication procedures and substrate materials. Test results are given for tantalum, titanium and zirconium-based nitride and oxynitride ceramic films.

  6. A fluorescence high-temperature sensor based on fluorescence lifetime

    NASA Astrophysics Data System (ADS)

    Wu, Jinling; Wang, Yutian; Wang, Xinian

    2006-11-01

    A kind of fluorescence optic-fiber temperature sensor is devised based on the alexandrite crystal. In this system, a new optic- fiber probe fabrication techniques is proposed. This system is particularly adapted to the temperature measurement in the range of room temperature to 650°C. During the cause of experimentation, using the PLD-PMTR (termed the Pulse Modulated Phase-locked detection with Two References) signal processing scheme. This temperature measurement method is proved to be effective and useful for its highly resolution and precision. It ensured the detected fluorescence signal to noise ratio was high enough to be measurable when the temperature is raised to 650°C.

  7. High Temperature Electronics for Intelligent Harsh Environment Sensors

    NASA Technical Reports Server (NTRS)

    Evans, Laura J.

    2008-01-01

    The development of intelligent instrumentation systems is of high interest in both public and private sectors. In order to obtain this ideal in extreme environments (i.e., high temperature, extreme vibration, harsh chemical media, and high radiation), both sensors and electronics must be developed concurrently in order that the entire system will survive for extended periods of time. The semiconductor silicon carbide (SiC) has been studied for electronic and sensing applications in extreme environment that is beyond the capability of conventional semiconductors such as silicon. The advantages of SiC over conventional materials include its near inert chemistry, superior thermomechanical properties in harsh environments, and electronic properties that include high breakdown voltage and wide bandgap. An overview of SiC sensors and electronics work ongoing at NASA Glenn Research Center (NASA GRC) will be presented. The main focus will be two technologies currently being investigated: 1) harsh environment SiC pressure transducers and 2) high temperature SiC electronics. Work highlighted will include the design, fabrication, and application of SiC sensors and electronics, with recent advancements in state-of-the-art discussed as well. These combined technologies are studied for the goal of developing advanced capabilities for measurement and control of aeropropulsion systems, as well as enhancing tools for exploration systems.

  8. High temperature sensor/microphone development for active noise control

    NASA Technical Reports Server (NTRS)

    Shrout, Thomas R.

    1993-01-01

    The industrial and scientific communities have shown genuine interest in electronic systems which can operate at high temperatures, among which are sensors to monitor noise, vibration, and acoustic emissions. Acoustic sensing can be accomplished by a wide variety of commercially available devices, including: simple piezoelectric sensors, accelerometers, strain gauges, proximity sensors, and fiber optics. Of the several sensing mechanisms investigated, piezoelectrics were found to be the most prevalent, because of their simplicity of design and application and, because of their high sensitivity over broad ranges of frequencies and temperature. Numerous piezoelectric materials are used in acoustic sensors today; but maximum use temperatures are imposed by their transition temperatures (T(sub c)) and by their resistivity. Lithium niobate, in single crystal form, has the highest operating temperature of any commercially available material, 650 C; but that is not high enough for future requirements. Only two piezoelectric materials show potential for use at 1000 C; AlN thin film reported to be piezoactive at 1150 C, and perovskite layer structure (PLS) materials, which possess among the highest T(sub c) (greater than 1500 C) reported for ferroelectrics. A ceramic PLS composition was chosen. The solid solution composition, 80% strontium niobate (SN) and 20% strontium tantalate (STa), with a T(sub c) approximately 1160 C, was hot forged, a process which concurrently sinters and renders the plate-like grains into a highly oriented configuration to enhance piezo properties. Poled samples of this composition showed coupling (k33) approximately 6 and piezoelectric strain constant (d33) approximately 3. Piezoactivity was seen at 1125 C, the highest temperature measurement reported for a ferroelectric ceramic. The high temperature piezoelectric responses of this, and similar PLS materials, opens the possibility of their use in electronic devices operating at temperatures up to

  9. Study on high temperature Fabry-Perot fiber acoustic sensor with temperature self-compensation

    NASA Astrophysics Data System (ADS)

    Hu, Pan; Tong, Xinglin; Zhao, Minli; Deng, Chengwei; Guo, Qian; Mao, Yan; Wang, Kun

    2015-09-01

    A Fabry-Perot (F-P) fiber acoustic sensor, which can work under high-temperature harsh environment with temperature self-compensation, is designed and prepared. A condenser was used to maintain the sensor to work in a stable temperature environment. Because of the special structure of the sensor and the function of the condenser, the cavity variation of the sensor caused by changes of external temperature from -10°C to 500°C would not exceed 8 nm. The experimental results show that the sensor has a good frequency response in a range of 1 to 5 kHz and the field experiment results show that it could be used for hydraulic decoking online monitoring by judging the acoustic frequency spectrum.

  10. High temperature, harsh environment sensors for advanced power generation systems

    NASA Astrophysics Data System (ADS)

    Ohodnicki, P. R.; Credle, S.; Buric, M.; Lewis, R.; Seachman, S.

    2015-05-01

    One mission of the Crosscutting Technology Research program at the National Energy Technology Laboratory is to develop a suite of sensors and controls technologies that will ultimately increase efficiencies of existing fossil-fuel fired power plants and enable a new generation of more efficient and lower emission power generation technologies. The program seeks to accomplish this mission through soliciting, managing, and monitoring a broad range of projects both internal and external to the laboratory which span sensor material and device development, energy harvesting and wireless telemetry methodologies, and advanced controls algorithms and approaches. A particular emphasis is placed upon harsh environment sensing for compatibility with high temperature, erosive, corrosive, and highly reducing or oxidizing environments associated with large-scale centralized power generation. An overview of the full sensors and controls portfolio is presented and a selected set of current and recent research successes and on-going projects are highlighted. A more detailed emphasis will be placed on an overview of the current research thrusts and successes of the in-house sensor material and device research efforts that have been established to support the program.

  11. Optical calibration of pressure sensors for high pressures and temperatures

    SciTech Connect

    Goncharov, A F; Gregoryanz, E; Zaug, J M; Crowhurst, J C

    2004-10-04

    We present the results of Raman scattering measurements of diamond ({sup 12}C) and of cubic boron nitride (cBN), and fluorescence measurements of ruby, Sm:YAG, and SrB{sub 4}O{sub 7}:Sm{sup 2+} in the diamond anvil cell (DAC) at high pressures and temperatures. These measurements were accompanied by synchrotron x-ray diffraction measurements on gold. We have extended the room-temperature calibration of Sm:YAG in a quasihydrostatic regime up to 100 GPa. The ruby scale is shown to systematically underestimate pressure at high pressures and temperatures compared with all other sensors. On this basis, we propose a new high-temperature ruby pressure scale that should be valid to at least 100 GPa and 850 K. Historically, the accurate determination of pressure at high temperature and ultrahigh pressure has been extremely difficult. In fact, the lack of a general pressure scale nullifies, to a significant extent, the great innovations that have been made in recent years in DAC experimental techniques [1]. Now, more than ever a scale is required whose accuracy is comparable with that of the experimental data. Since pressure in the DAC is dependent on temperature (due to thermal pressure and also to changes in the properties of the materials that constitute the DAC) such a scale requires quantitative, and separate measurements of pressure and temperature.

  12. A new generation of high temperature oxygen sensors

    NASA Astrophysics Data System (ADS)

    Spirig, John V.

    Potentiometric internal reference oxygen sensors were created by embedding a metal/metal oxide mixture within an yttria-stabilized zirconia oxygen-conducting ceramic superstructure. A static internal reference oxygen pressure was produced inside the reference chamber of the sensor at the target application temperature. The metal/metal oxide-containing reference chamber was sealed within the stabilized zirconia ceramic superstructure by a high pressure (3-6 MPa) and high temperature (1200-1300°C) bonding method that initiated grain boundary sliding between the ceramic components. The bonding method created ceramic joints that were pore-free and indistinguishable from the bulk ceramic. The oxygen sensor presented in this study is capable of long-term operation and is resistant to the strains of thermal cycling. The temperature ceiling of this device was limited to 800°C by the glass used to seal the sensor package where the lead wire breached the inner-to-outer environment. Were it possible to create a gas-tight joint between an electron carrier and stabilized zirconia, additional sealing agents would not be necessary during sensor construction. In order to enable this enhancement it is necessary to make a gas-tight joint between two dissimilar materials: a ceramic electrolyte and an efficient ceramic electron carrier. Aluminum-doped lanthanum strontium manganese oxide, La0.77Sr 0.20Al0.9Mn0.1O3, was joined to stabilized tetragonal zirconia polymorph YTZP (ZrO2)0.97(Y 2O3)0.03 by a uniaxial stress (3-6 MPa) and high-temperature (1250-1350°C) bonding method that initiated grain-boundary sliding between the ceramic components. An analysis of reactivity between different Al-dopings of LaxSr1-xAlyMn1-yO3 indicated that the Al:Mn ratio must be high to diminish the reaction between LaxSr1-xAlyMn1-yO3 and stabilized zirconia. While the resulting compound, La0.77Sr 0.20Al0.9Mn0.1O3, was an inefficient electron carrier, the successful bond between an aluminum

  13. Novel Gas Sensors for High-Temperature Fossil Fuel Applications

    SciTech Connect

    Palitha Jayaweera; Francis Tanzella

    2005-03-01

    SRI International (SRI) is developing ceramic-based microsensors to detect exhaust gases such as NO, NO{sub 2}, and CO in advanced combustion and gasification systems under this DOE NETL-sponsored research project. The sensors detect the electrochemical activity of the exhaust gas species on catalytic electrodes attached to a solid state electrolyte and are designed to operate at the high temperatures, elevated pressures, and corrosive environments typical of large power generation exhausts. The sensors can be easily integrated into online monitoring systems for active emission control. The ultimate objective is to develop sensors for multiple gas detection in a single package, along with data acquisition and control software and hardware, so that the information can be used for closed-loop control in novel advanced power generation systems. This report details the Phase I Proof-of-Concept, research activities performed from October 2003 to March 2005. SRI's research work includes synthesis of catalytic materials, sensor design and fabrication, software development, and demonstration of pulse voltammetric analysis of NO, NO{sub 2}, and CO gases on catalytic electrodes.

  14. Passive Resistor Temperature Compensation for a High-Temperature Piezoresistive Pressure Sensor

    PubMed Central

    Yao, Zong; Liang, Ting; Jia, Pinggang; Hong, Yingping; Qi, Lei; Lei, Cheng; Zhang, Bin; Li, Wangwang; Zhang, Diya; Xiong, Jijun

    2016-01-01

    The main limitation of high-temperature piezoresistive pressure sensors is the variation of output voltage with operating temperature, which seriously reduces their measurement accuracy. This paper presents a passive resistor temperature compensation technique whose parameters are calculated using differential equations. Unlike traditional experiential arithmetic, the differential equations are independent of the parameter deviation among the piezoresistors of the microelectromechanical pressure sensor and the residual stress caused by the fabrication process or a mismatch in the thermal expansion coefficients. The differential equations are solved using calibration data from uncompensated high-temperature piezoresistive pressure sensors. Tests conducted on the calibrated equipment at various temperatures and pressures show that the passive resistor temperature compensation produces a remarkable effect. Additionally, a high-temperature signal-conditioning circuit is used to improve the output sensitivity of the sensor, which can be reduced by the temperature compensation. Compared to traditional experiential arithmetic, the proposed passive resistor temperature compensation technique exhibits less temperature drift and is expected to be highly applicable for pressure measurements in harsh environments with large temperature variations. PMID:27455271

  15. Passive Resistor Temperature Compensation for a High-Temperature Piezoresistive Pressure Sensor.

    PubMed

    Yao, Zong; Liang, Ting; Jia, Pinggang; Hong, Yingping; Qi, Lei; Lei, Cheng; Zhang, Bin; Li, Wangwang; Zhang, Diya; Xiong, Jijun

    2016-01-01

    The main limitation of high-temperature piezoresistive pressure sensors is the variation of output voltage with operating temperature, which seriously reduces their measurement accuracy. This paper presents a passive resistor temperature compensation technique whose parameters are calculated using differential equations. Unlike traditional experiential arithmetic, the differential equations are independent of the parameter deviation among the piezoresistors of the microelectromechanical pressure sensor and the residual stress caused by the fabrication process or a mismatch in the thermal expansion coefficients. The differential equations are solved using calibration data from uncompensated high-temperature piezoresistive pressure sensors. Tests conducted on the calibrated equipment at various temperatures and pressures show that the passive resistor temperature compensation produces a remarkable effect. Additionally, a high-temperature signal-conditioning circuit is used to improve the output sensitivity of the sensor, which can be reduced by the temperature compensation. Compared to traditional experiential arithmetic, the proposed passive resistor temperature compensation technique exhibits less temperature drift and is expected to be highly applicable for pressure measurements in harsh environments with large temperature variations. PMID:27455271

  16. Optical high temperature sensor based on fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Zhang, Bowei

    The aim of this thesis is to fabricate a fiber Bragg grating (FBG) temperature sensor that is capable to measure temperatures in excess of 1100°C. For this purpose, two topics have been studied and investigated during this project. One of them is the development of a high temperature resistant molecular-water induced FBGs; and the other is to investigate the effect of microwave-irradiation on the hydrogen-loaded FBG. The molecular-water induced FBGs are different from the other types of FBG. In these devices the refractive index is modulated by the periodic changes of molecular-water concentration within the grating. The device was developed using thermal annealing technology based on hydrogen-load FBG. Thermal stability of these devices was studied by measuring the grating reflectivity from room temperature to 1000°C. The stability of the device was tested by examining the FBG reflectivity for a period of time at certain temperatures. The results show that these devices are extremely stable at temperatures in excess of 1000°C. The hydroxyl concentration in the grating has been also investigated during this thesis. Based on the knowledge of hydroxyl groups inside FBG, a microwave treatment was designed to increase the hydroxyl concentration in the FBG area. The results show that the molecular-water induced grating, which was fabricated using microwave radiated hydrogen-loaded FBI, are stable at temperatures above 1100°C.

  17. High-Temperature SAW Wireless Strain Sensor with Langasite

    PubMed Central

    Shu, Lin; Peng, Bin; Yang, Zhengbing; Wang, Rui; Deng, Senyang; Liu, Xingzhao

    2015-01-01

    Two Surface acoustic wave (SAW) resonators were fabricated on langasite substrates with Euler angle of (0°, 138.5°, 117°) and (0°, 138.5°, 27°). A dipole antenna was bonded to the prepared SAW resonator to form a wireless sensor. The characteristics of the SAW sensors were measured by wireless frequency domain interrogation methods from 20 °C to 600 °C. Different temperature behaviors of the sensors were observed. Strain sensing was achieved using a cantilever configuration. The sensors were measured under applied strain from 20 °C to 500 °C. The shift of the resonance frequency contributed merely by strain is extracted from the combined effects of temperature and strain. Both the strain factors of the two SAW sensors increase with rising ambient temperature, and the SAW sensor deposited on (0°, 138.5°, 117°) cut is more sensitive to applied strain. The measurement errors of the two sensors are also discussed. The relative errors of the two sensors are between 0.63% and 2.09%. Even at 500 °C, the hysteresis errors of the two sensors are less than 5%. PMID:26569255

  18. High-Temperature SAW Wireless Strain Sensor with Langasite.

    PubMed

    Shu, Lin; Peng, Bin; Yang, Zhengbing; Wang, Rui; Deng, Senyang; Liu, Xingzhao

    2015-01-01

    Two Surface acoustic wave (SAW) resonators were fabricated on langasite substrates with Euler angle of (0°, 138.5°, 117°) and (0°, 138.5°, 27°). A dipole antenna was bonded to the prepared SAW resonator to form a wireless sensor. The characteristics of the SAW sensors were measured by wireless frequency domain interrogation methods from 20 °C to 600 °C. Different temperature behaviors of the sensors were observed. Strain sensing was achieved using a cantilever configuration. The sensors were measured under applied strain from 20 °C to 500 °C. The shift of the resonance frequency contributed merely by strain is extracted from the combined effects of temperature and strain. Both the strain factors of the two SAW sensors increase with rising ambient temperature, and the SAW sensor deposited on (0°, 138.5°, 117°) cut is more sensitive to applied strain. The measurement errors of the two sensors are also discussed. The relative errors of the two sensors are between 0.63% and 2.09%. Even at 500 °C, the hysteresis errors of the two sensors are less than 5%. PMID:26569255

  19. High-performance gas sensors with temperature measurement

    PubMed Central

    Zhang, Yong; Li, Shengtao; Zhang, Jingyuan; Pan, Zhigang; Min, Daomin; Li, Xin; Song, Xiaoping; Liu, Junhua

    2013-01-01

    There are a number of gas ionization sensors using carbon nanotubes as cathode or anode. Unfortunately, their applications are greatly limited by their multi-valued sensitivity, one output value corresponding to several measured concentration values. Here we describe a triple-electrode structure featuring two electric fields with opposite directions, which enable us to overcome the multi-valued sensitivity problem at 1 atm in a wide range of gas concentrations. We used a carbon nanotube array as the first electrode, and the two electric fields between the upper and the lower interelectrode gaps were designed to extract positive ions generated in the upper gap, hence significantly reduced positive ion bombardment on the nanotube electrode, which allowed us to maintain a high electric field near the nanotube tips, leading to a single-valued sensitivity and a long nanotube life. We have demonstrated detection of various gases and simultaneously monitoring temperature, and a potential for applications. PMID:23405281

  20. High-temperature sapphire optical sensor fiber coatings

    NASA Astrophysics Data System (ADS)

    Desu, Seshu B.; Claus, Richard O.; Raheem, Ruby; Murphy, Kent A.

    1990-10-01

    the filter. These modes may be attributed to a number of material degradation mechanisms, such as thermal shock, oxidation corrosion of the material, mechanical loads, or phase changes in the filter material. Development of high temperature optical fiber (sapphire) sensors embedded in the CXF filters would be very valuable for both monitoring the integrity of the filter during its use and understanding the mechanisms of degradation such that durable filter development will be facilitated. Since the filter operating environment is very harsh, the high temperature sapphire optical fibers need to be protected and for some sensing techniques the fiber must also be coated with low refractive index film (cladding). The objective of the present study is to identify materials and develop process technologies for the application of claddings and protective coatings that are stable and compatible with sapphire fibers at both high temperatures and pressures.

  1. Temperature measurement in a turbine stator assembly using an integratable high-temperature ultrasonic sensor network

    NASA Astrophysics Data System (ADS)

    Wu, Kuo-Ting; Sun, Zhigang; Kobayashi, Makiko; Galeote, Brian; Mrad, Nezih

    2011-04-01

    Implementation of an integratable ultrasonic sensor network with associated cable connection for high temperature monitoring applications is demonstrated through application of a three-element ultrasonic sensor network for temperature measurement in a turbine stator assembly. The sensor network is composed of a piezoelectric composite film deposited on a titanium substrate with a sol-gel technique and three top electrodes deposited on the piezoelectric film. The sensor network is glued onto a selected area of the stator assembly in such a way that three subareas with different wall thicknesses are probed individually by each of the sensing elements. The ultrasonically instrumented stator assembly is first heated in a furnace to different temperatures. At each temperature and for each probed location the transit time of ultrasonic waves through assembly wall thickness is measured. Then a relationship between transit time and wall temperature is established. In a subsequent experiment, the stator assembly is heated up to 200 °C and then let cool down while the transit time in the assembly wall is being measured continuously. By using the transit time versus temperature relationship obtained earlier, the heating and cooling rates at the three probed locations are determined and then compared.

  2. Alumina ceramic based high-temperature performance of wireless passive pressure sensor

    NASA Astrophysics Data System (ADS)

    Wang, Bo; Wu, Guozhu; Guo, Tao; Tan, Qiulin

    2016-07-01

    A wireless passive pressure sensor equivalent to inductive-capacitive (LC) resonance circuit and based on alumina ceramic is fabricated by using high temperature sintering ceramic and post-fire metallization processes. Cylindrical copper spiral reader antenna and insulation layer are designed to realize the wireless measurement for the sensor in high temperature environment. The high temperature performance of the sensor is analyzed and discussed by studying the phase-frequency and amplitude-frequency characteristics of reader antenna. The average frequency change of sensor is 0.68 kHz/°C when the temperature changes from 27°C to 700°C and the relative change of twice measurements is 2.12%, with high characteristic of repeatability. The study of temperature-drift characteristic of pressure sensor in high temperature environment lays a good basis for the temperature compensation methods and insures the pressure signal readout accurately.

  3. Development and Performance Verification of Fiber Optic Temperature Sensors in High Temperature Engine Environments

    NASA Technical Reports Server (NTRS)

    Adamovsky, Grigory; Mackey, Jeffrey R.; Kren, Lawrence A.; Floyd, Bertram M.; Elam, Kristie A.; Martinez, Martel

    2014-01-01

    A High Temperature Fiber Optic Sensor (HTFOS) has been developed at NASA Glenn Research Center for aircraft engine applications. After fabrication and preliminary in-house performance evaluation, the HTFOS was tested in an engine environment at NASA Armstrong Flight Research Center. The engine tests enabled the performance of the HTFOS in real engine environments to be evaluated along with the ability of the sensor to respond to changes in the engine's operating condition. Data were collected prior, during, and after each test in order to observe the change in temperature from ambient to each of the various test point levels. An adequate amount of data was collected and analyzed to satisfy the research team that HTFOS operates properly while the engine was running. Temperature measurements made by HTFOS while the engine was running agreed with those anticipated.

  4. Ultra-High Temperature Sensors Based on Optical Property

    SciTech Connect

    Nabeel Riza

    2008-09-30

    In this program, Nuonics, Inc. has studied the fundamentals of a new Silicon Carbide (SiC) materials-based optical sensor technology suited for extreme environments of coal-fired engines in power production. The program explored how SiC could be used for sensing temperature, pressure, and potential gas species in a gas turbine environment. The program successfully demonstrated the optical designs, signal processing and experimental data for enabling both temperature and pressure sensing using SiC materials. The program via its sub-contractors also explored gas species sensing using SiC, in this case, no clear commercially deployable method was proven. Extensive temperature and pressure measurement data using the proposed SiC sensors was acquired to 1000 deg-C and 40 atms, respectively. Importantly, a first time packaged all-SiC probe design was successfully operated in a Siemens industrial turbine rig facility with the probe surviving the harsh chemical, pressure, and temperature environment during 28 days of test operations. The probe also survived a 1600 deg-C thermal shock test using an industrial flame.

  5. High-temperature oxygen sensors for glass-forming melts.

    PubMed

    Baucke, F G

    1996-09-01

    Electrochemical sensors are reported for the on-line measurement of oxygen partial pressures of oxidic glass-forming melts on a laboratory and technical scale. Based on the principle of solid electrolyte cells without transference, they are principally simple units. The extreme chemical and temperature conditions of their applications, however, demanded extensive fundamental investigations and resulted in specific forms of reference and measuring electrodes, a thermo-dynamic procedure of verifying the correct functioning of such cells, and a method of measuring thermoelectric voltages of non-isothermal glass melts. PMID:15048355

  6. Application of High-Temperature Extrinsic Fabry-Perot Interferometer Strain Sensor

    NASA Technical Reports Server (NTRS)

    Piazza, Anthony

    2008-01-01

    In this presentation to the NASA Aeronautics Sensor Working Group the application of a strain sensor is outlined. The high-temperature extrinsic Fabry-Perot interferometer (EFPI) strain sensor was developed due to a need for robust strain sensors that operate accurately and reliably beyond 1800 F. Specifically, the new strain sensor would provide data for validating finite element models and thermal-structural analyses. Sensor attachment techniques were also developed to improve methods of handling and protecting the fragile sensors during the harsh installation process. It was determined that thermal sprayed attachments are preferable even though cements are simpler to apply as cements are more prone to bond failure and are often corrosive. Previous thermal/mechanical cantilever beam testing of EFPI yielded very little change to 1200 F, with excellent correlation with SG to 550 F. Current combined thermal/mechanical loading for sensitivity testing is accomplished by a furnace/cantilever beam loading system. Dilatometer testing has can also be used in sensor characterization to evaluate bond integrity, evaluate sensitivity and accuracy and to evaluate sensor-to-sensor scatter, repeatability, hysteresis and drift. Future fiber optic testing will examine single-mode silica EFPIs in a combined thermal/mechanical load fixture on C-C and C-SiC substrates, develop a multi-mode Sapphire strain-sensor, test and evaluate high-temperature fiber Bragg Gratings for use as strain and temperature sensors and attach and evaluate a high-temperature heat flux gauge.

  7. Wide-Range Temperature Sensors with High-Level Pulse Train Output

    NASA Technical Reports Server (NTRS)

    Hammoud, Ahmad; Patterson, Richard L.

    2009-01-01

    Two types of temperature sensors have been developed for wide-range temperature applications. The two sensors measure temperature in the range of -190 to +200 C and utilize a thin-film platinum RTD (resistance temperature detector) as the temperature-sensing element. Other parts used in the fabrication of these sensors include NPO (negative-positive- zero) type ceramic capacitors for timing, thermally-stable film or wirewound resistors, and high-temperature circuit boards and solder. The first type of temperature sensor is a relaxation oscillator circuit using an SOI (silicon-on-insulator) operational amplifier as a comparator. The output is a pulse train with a period that is roughly proportional to the temperature being measured. The voltage level of the pulse train is high-level, for example 10 V. The high-level output makes the sensor less sensitive to noise or electromagnetic interference. The output can be read by a frequency or period meter and then converted into a temperature reading. The second type of temperature sensor is made up of various types of multivibrator circuits using an SOI type 555 timer and the passive components mentioned above. Three configurations have been developed that were based on the technique of charging and discharging a capacitor through a resistive element to create a train of pulses governed by the capacitor-resistor time constant. Both types of sensors, which operated successfully over the wide temperature range, have potential use in extreme temperature environments including jet engines and space exploration missions.

  8. Development of High Temperature/High Sensitivity Novel Chemical Resistive Sensor

    SciTech Connect

    Chen, Chonglin; Nash, Patrick; Ma, Chunrui; Enriquez, Erik; Wang, Haibing; Xu, Xing; Bao, Shangyong; Collins, Gregory

    2013-08-13

    The research has been focused to design, fabricate, and develop high temperature/high sensitivity novel multifunctional chemical sensors for the selective detection of fossil energy gases used in power and fuel systems. By systematically studying the physical properties of the LnBaCo{sub 2}O{sub 5+d} (LBCO) [Ln=Pr or La] thin-films, a new concept chemical sensor based high temperature chemical resistant change has been developed for the application for the next generation highly efficient and near zero emission power generation technologies. We also discovered that the superfast chemical dynamic behavior and an ultrafast surface exchange kinetics in the highly epitaxial LBCO thin films. Furthermore, our research indicates that hydrogen can superfast diffuse in the ordered oxygen vacancy structures in the highly epitaxial LBCO thin films, which suggest that the LBCO thin film not only can be an excellent candidate for the fabrication of high temperature ultra sensitive chemical sensors and control systems for power and fuel monitoring systems, but also can be an excellent candidate for the low temperature solid oxide fuel cell anode and cathode materials.

  9. Thin Film Sensors for Minimally-Intrusive Measurements in Harsh High Temperature Environment

    NASA Technical Reports Server (NTRS)

    Lei, Jih-Fen; Will, Herbert A.; Martin, Lisa C.

    1998-01-01

    Advanced thin film sensors are being developed to provide accurate surface temperature, heat flux and strain measurements for components used in hostile propulsion environments. These sensors are sputter deposited and microfabricated directly onto the test articles with no additional bonding agent. The thickness of the sensors is only a few micrometers which creates minimal disturbance of the gas flow over the test surface. Thus thin film sensors have the advantage over conventional wire- based sensors by providing minimally intrusive measurement and having a faster response. These thin film sensors are being developed for characterization of advanced materials and structures in hostile, high-temperature environments, and for validation of design codes. This paper presents the advances of three high temperature thin film sensor technologies developed at NASA Lewis Research Center: thermocouples, heat-flux gages and strain gages. The fabrication techniques of these thin film sensors which include physical vapor deposition, photolithography patterning and lead Wire attachment are described. Sensors demonstrations on a variety of engine materials, including superalloys, ceramics and advanced ceramic matrix composites, in several hostile, high-temperature test environments are presented. The advantages and limitations of thin film sensor technology are also discussed.

  10. High-sensitivity in situ QCLAS-based ammonia concentration sensor for high-temperature applications

    NASA Astrophysics Data System (ADS)

    Peng, W. Y.; Sur, R.; Strand, C. L.; Spearrin, R. M.; Jeffries, J. B.; Hanson, R. K.

    2016-07-01

    A novel quantum cascade laser (QCL) absorption sensor is presented for high-sensitivity in situ measurements of ammonia (hbox {NH}_3) in high-temperature environments, using scanned wavelength modulation spectroscopy (WMS) with first-harmonic-normalized second-harmonic detection (scanned WMS-2 f/1 f) to neutralize the effect of non-absorption losses in the harsh environment. The sensor utilized the sQ(9,9) transition of the fundamental symmetric stretch band of hbox {NH}_3 at 10.39 {\\upmu }hbox {m} and was sinusoidally modulated at 10 kHz and scanned across the peak of the absorption feature at 50 Hz, leading to a detection bandwidth of 100 Hz. A novel technique was used to select an optimal WMS modulation depth parameter that reduced the sensor's sensitivity to spectral interference from hbox {H}_2hbox {O} and hbox {CO}_2 without significantly sacrificing signal-to-noise ratio. The sensor performance was validated by measuring known concentrations of hbox {NH}_3 in a flowing gas cell. The sensor was then demonstrated in a laboratory-scale methane-air burner seeded with hbox {NH}_3, achieving a demonstrated detection limit of 2.8 ± 0.26 ppm hbox {NH}_3 by mole at a path length of 179 cm, equivalence ratio of 0.6, pressure of 1 atm, and temperatures of up to 600 K.

  11. Applications of Silicon Carbide for High Temperature Electronics and Sensors

    NASA Technical Reports Server (NTRS)

    Shields, Virgil B.

    1995-01-01

    Silicon carbide (SiC) is a wide bandgap material that shows great promise in high-power and high temperature electronics applications because of its high thermal conductivity and high breakdown electrical field. The excellent physical and electronic properties of SiC allows the fabrication of devices that can operate at higher temperatures and power levels than devices produced from either silicon or GaAs. Although modern electronics depends primarily upon silicon based devices, this material is not capable of handling may special requirements. Devices which operate at high speeds, at high power levels and are to be used in extreme environments at high temperatures and high radiation levels need other materials with wider bandgaps than that of silicon. Many space and terrestrial applications also have a requirement for wide bandgap materials. SiC also has great potential for high power and frequency operation due to a high saturated drift velocity. The wide bandgap allows for unique optoelectronic applications, that include blue light emitting diodes and ultraviolet photodetectors. New areas involving gas sensing and telecommunications offer significant promise. Overall, the properties of SiC make it one of the best prospects for extending the capabilities and operational regimes of the current semiconductor device technology.

  12. An Overview of the Development of High Temperature Wireless Smart Sensor Technology

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.

    2014-01-01

    The harsh environment inherent in propulsion systems is especially challenging for Smart Sensor Systems; this paper addresses technology development for such applications. A basic sensing system for high temperature wireless pressure monitoring composed of a sensor, electronics, and wireless communication with scavenged power developed for health monitoring of aircraft engines and other high temperature applications has been demonstrated at 475 C. Other efforts will be discussed including a brief overview of the status of high temperature electronics and sensors, as well as their use and applications.

  13. absorption sensor for sensitive temperature and species measurements in high-temperature gases

    NASA Astrophysics Data System (ADS)

    Spearrin, R. M.; Ren, W.; Jeffries, J. B.; Hanson, R. K.

    2014-09-01

    A continuous-wave laser absorption diagnostic, based on the infrared CO2 bands near 4.2 and 2.7 μm, was developed for sensitive temperature and concentration measurements in high-temperature gas systems using fixed-wavelength methods. Transitions in the respective R-branches of both the fundamental υ 3 band (~2,350 cm-1) and combination υ 1 + υ 3 band (~3,610 cm-1) were chosen based on absorption line-strength, spectral isolation, and temperature sensitivity. The R(76) line near 2,390.52 cm-1 was selected for sensitive CO2 concentration measurements, and a detection limit of <5 ppm was achieved in shock tube kinetics experiments (~1,300 K). A cross-band, two-line thermometry technique was also established utilizing the R(96) line near 2,395.14 cm-1, paired with the R(28) line near 3,633.08 cm-1. This combination yields high temperature sensitivity (ΔE" = 3,305 cm-1) and expanded range compared with previous intra-band CO2 sensors. Thermometry performance was validated in a shock tube over a range of temperatures (600-1,800 K) important for combustion. Measured temperature accuracy was demonstrated to be better than 1 % over the entire range of conditions, with a standard error of ~0.5 % and µs temporal resolution.

  14. Development of a high temperature static strain sensor

    NASA Astrophysics Data System (ADS)

    Hulse, Charles O.; Bailey, Richard S.; Grant, Howard P.

    1986-10-01

    The goal of this program is to develop an electrical resistance strain gage system which will accurately measure the static strains of superalloy blades and vanes in gas turbine engines running on a test stand. Accurate knowledge of these strains is essential to reaching the goals of the HOST program in the selection and experimental verification of the various theoretical models developed to understand and improve the performance of these engines. The specific objective is to develop a complete system capable of making strain measurements of up to + or - 10 percent of full scale during a 50 hour period at temperatures as high as 1250 K. In addition to survival and stability, attaining a low temperature coefficient of resistance, of the order of 20 ppm/K or less, was a major goal. This requirement arises from the presently unavoidable uncertainties in measurement of the exact temperatures inside gas turbines for use in making corrections for apparent strain due to temperature.

  15. Development of a high temperature static strain sensor

    NASA Technical Reports Server (NTRS)

    Hulse, Charles O.; Bailey, Richard S.; Grant, Howard P.

    1986-01-01

    The goal of this program is to develop an electrical resistance strain gage system which will accurately measure the static strains of superalloy blades and vanes in gas turbine engines running on a test stand. Accurate knowledge of these strains is essential to reaching the goals of the HOST program in the selection and experimental verification of the various theoretical models developed to understand and improve the performance of these engines. The specific objective is to develop a complete system capable of making strain measurements of up to + or - 10 percent of full scale during a 50 hour period at temperatures as high as 1250 K. In addition to survival and stability, attaining a low temperature coefficient of resistance, of the order of 20 ppm/K or less, was a major goal. This requirement arises from the presently unavoidable uncertainties in measurement of the exact temperatures inside gas turbines for use in making corrections for apparent strain due to temperature.

  16. Noncontact measurement of high temperature using optical fiber sensors

    NASA Technical Reports Server (NTRS)

    Claus, R. O.

    1990-01-01

    The primary goal of this research program was the investigation and application of noncontact temperature measurement techniques using optical techniques and optical fiber methods. In particular, a pyrometer utilizing an infrared optical light pipe and a multiwavelength filtering approach was designed, revised, and tested. This work was motivated by the need to measure the temperatures of small metallic pellets (approximately 3 mm diameter) in free fall at the Microgravity Materials Processing Drop Tube at NASA Marshall Space Flight Center. In addition, research under this program investigated the adaptation of holography technology to optical fiber sensors, and also examined the use of rare-earth dopants in optical fibers for use in measuring temperature. The pyrometer development effort involved both theoretical analysis and experimental tests. For the analysis, a mathematical model based on radiative transfer principles was derived. Key parameter values representative of the drop tube system, such as particle size, tube diameter and length, and particle temperature, were used to determine an estimate of the radiant flux that will be incident on the face of an optical fiber or light pipe used to collect radiation from the incandescent falling particle. An extension of this work examined the advantage of inclining or tilting the collecting fiber to increase the time that the falling particle remains in the fiber field-of-view. Those results indicate that increases in total power collected of about 15 percent may be realized by tilting the fiber. In order to determine the suitability of alternative light pipes and optical fibers, and experimental set-up for measuring the transmittance and insertion loss of infrared fibers considered for use in the pyrometer was assembled. A zirconium fluoride optical fiber and several bundles of hollow core fiber of varying diameters were tested. A prototype two-color pyrometer was assembled and tested at Virginia Tech, and then

  17. Silicon Carbide-Based Hydrogen Gas Sensors for High-Temperature Applications

    PubMed Central

    Kim, Seongjeen; Choi, Jehoon; Jung, Minsoo; Joo, Sungjae; Kim, Sangchoel

    2013-01-01

    We investigated SiC-based hydrogen gas sensors with metal-insulator-semiconductor (MIS) structure for high temperature process monitoring and leak detection applications in fields such as the automotive, chemical and petroleum industries. In this work, a thin tantalum oxide (Ta2O5) layer was exploited with the purpose of sensitivity improvement, because tantalum oxide has good stability at high temperature with high permeability for hydrogen gas. Silicon carbide (SiC) was used as a substrate for high-temperature applications. We fabricated Pd/Ta2O5/SiC-based hydrogen gas sensors, and the dependence of their I-V characteristics and capacitance response properties on hydrogen concentrations were analyzed in the temperature range from room temperature to 500 °C. According to the results, our sensor shows promising performance for hydrogen gas detection at high temperatures. PMID:24113685

  18. Silicon carbide-based hydrogen gas sensors for high-temperature applications.

    PubMed

    Kim, Seongjeen; Choi, Jehoon; Jung, Minsoo; Joo, Sungjae; Kim, Sangchoel

    2013-01-01

    We investigated SiC-based hydrogen gas sensors with metal-insulator-semiconductor (MIS) structure for high temperature process monitoring and leak detection applications in fields such as the automotive, chemical and petroleum industries. In this work, a thin tantalum oxide (Ta2O5) layer was exploited with the purpose of sensitivity improvement, because tantalum oxide has good stability at high temperature with high permeability for hydrogen gas. Silicon carbide (SiC) was used as a substrate for high-temperature applications. We fabricated Pd/Ta2O5/SiC-based hydrogen gas sensors, and the dependence of their I-V characteristics and capacitance response properties on hydrogen concentrations were analyzed in the temperature range from room temperature to 500 °C. According to the results, our sensor shows promising performance for hydrogen gas detection at high temperatures. PMID:24113685

  19. Fiber Sagnac interferometer temperature sensor

    SciTech Connect

    Starodumov, A.N.; Zenteno, L.A.; Monzon, D.; De La Rosa, E.

    1997-01-01

    A modified Sagnac interferometer-based fiber temperature sensor is proposed. Polarization independent operation and high temperature sensitivity of this class of sensors make them cost effective instruments for temperature measurements. A comparison of the proposed sensor with Bragg grating and long-period grating fiber sensors is derived. A temperature-induced spectral displacement of 0.99 nm/K is demonstrated for an internal stress birefringent fiber-based Sagnac interferometer. {copyright} {ital 1997 American Institute of Physics.}

  20. Advanced Packaging Technology Used in Fabricating a High-Temperature Silicon Carbide Pressure Sensor

    NASA Technical Reports Server (NTRS)

    Beheim, Glenn M.

    2003-01-01

    The development of new aircraft engines requires the measurement of pressures in hot areas such as the combustor and the final stages of the compressor. The needs of the aircraft engine industry are not fully met by commercially available high-temperature pressure sensors, which are fabricated using silicon. Kulite Semiconductor Products and the NASA Glenn Research Center have been working together to develop silicon carbide (SiC) pressure sensors for use at high temperatures. At temperatures above 850 F, silicon begins to lose its nearly ideal elastic properties, so the output of a silicon pressure sensor will drift. SiC, however, maintains its nearly ideal mechanical properties to extremely high temperatures. Given a suitable sensor material, a key to the development of a practical high-temperature pressure sensor is the package. A SiC pressure sensor capable of operating at 930 F was fabricated using a newly developed package. The durability of this sensor was demonstrated in an on-engine test. The SiC pressure sensor uses a SiC diaphragm, which is fabricated using deep reactive ion etching. SiC strain gauges on the surface of the diaphragm sense the pressure difference across the diaphragm. Conventionally, the SiC chip is mounted to the package with the strain gauges outward, which exposes the sensitive metal contacts on the chip to the hostile measurement environment. In the new Kulite leadless package, the SiC chip is flipped over so that the metal contacts are protected from oxidation by a hermetic seal around the perimeter of the chip. In the leadless package, a conductive glass provides the electrical connection between the pins of the package and the chip, which eliminates the fragile gold wires used previously. The durability of the leadless SiC pressure sensor was demonstrated when two 930 F sensors were tested in the combustor of a Pratt & Whitney PW4000 series engine. Since the gas temperatures in these locations reach 1200 to 1300 F, the sensors were

  1. Embedded infrared fiber-optic sensor for thermometry in a high temperature/pressure environment

    NASA Astrophysics Data System (ADS)

    Yoo, Wook Jae; Jang, Kyoung Won; Moon, Jinsoo; Han, Ki-Tek; Jeon, Dayeong; Lee, Bongsoo; Park, Byung Gi

    2012-11-01

    In this study, we developed an embedded infrared fiber-optic temperature sensor for thermometry in high temperature/pressure and water-chemistry environments by using two identical silver-halide optical fibers. The performance of the fabricated temperature sensor was assessed in an autoclave filled with an aqueous coolant solution containing boric acid and lithium hydroxide. We carried out real-time monitoring of the infrared radiation emitted from the signal and reference probes for various temperatures over a temperature range from 95 to 225 °C. In order to decide the temperature of the synthetic coolant solution, we measured the difference between the infrared radiation emitted from the two temperature-sensing probes. Thermometry with the proposed sensor is immune to any changes in the physical conditions and the emissivity of the heat source. From the experimental results, the embedded infrared fiber-optic temperature sensor can withstand, and normally operate in a high temperature/pressure test loop system corresponding to the coolant system used for nuclear power plant simulation. We expect that the proposed sensor can be developed to accurately monitor temperatures in harsh environments.

  2. YCa{sub 4}O(BO{sub 3}){sub 3} (YCOB) high temperature vibration sensor

    SciTech Connect

    Kim, Kyungrim; Huang Wenbin; Jiang Xiaoning; Zhang Shujun; Yu Fapeng

    2011-06-15

    A shear-mode piezoelectric accelerometer using YCa{sub 4}O(BO{sub 3}){sub 3} (YCOB) single crystal was designed, fabricated and successfully tested for high temperature vibration sensing applications. The prototyped sensor was tested at temperatures ranging from room temperature to 1000 deg. C and at frequencies ranging from 80 Hz to 1 kHz. The sensitivity of the sensor was found to be 5.7 pC/g throughout the tested frequency and temperature range. In addition, YCOB piezoelectric accelerometers remained the same sensitivity at 1000 deg. C for a dwell time of four hours, exhibiting high stability and reliability.

  3. A high-temperature shape memory alloy sensor for combustion monitoring and control

    NASA Astrophysics Data System (ADS)

    Shaw, Greg S.; Snyder, Joseph T.; Prince, Troy S.; Willett, Michael C.

    2005-05-01

    Innovations in the use of thin film SMA materials have enabled the development of a harsh environment pressure sensor useful for combustion monitoring and control. Development of such active combustion control has been driven by rising fuel costs and environmental pressures. Active combustion control, whether in diesel, spark ignited or turbine engines requires feedback to the engine control system in order to adjust the quantity, timing, and placement of fuel charges. To be fully effective, sensors must be integrated into each engine in a manner that will allow continuous combustion monitoring (turbine engines) or monitoring of each discrete combustion event (diesel and SI engines). To date, the sensors available for detection of combustion events and processes have suffered from one or more of three problems: 1) Low sensitivity: The sensors are unable to provide and adequate signal-to-noise ratio in the high temperature and electrically noisy environment of the engine compartment. Attempts to overcome this difficulty have focused on heat removal and/or temperature compensation or more challenging high temperature electronics. 2) Low reliability: Sensors and/or sensor packages have been unable to withstand the engine environment for extended periods of time. Issues have included gross degradation and more subtle issues such as migration of dopants in semiconductor sensor materials. 3) High cost: The materials that have been used, the package concepts employed, and the required support electronics have all contributed to the high cost of the few sensor systems available. Prices have remained high due to the limited demand associated with the poor reliability and the high price itself. Ternary titanium nickel alloys, with platinum group metal substitution for the nickel, are deposited as thin films on MEMS-based diaphragms and patterned to form strain gages of a standard metal film configuration. The strain induced phase transformation of the SMA is used as a

  4. Low-Temperature Photochemically Activated Amorphous Indium-Gallium-Zinc Oxide for Highly Stable Room-Temperature Gas Sensors.

    PubMed

    Jaisutti, Rawat; Kim, Jaeyoung; Park, Sung Kyu; Kim, Yong-Hoon

    2016-08-10

    We report on highly stable amorphous indium-gallium-zinc oxide (IGZO) gas sensors for ultraviolet (UV)-activated room-temperature detection of volatile organic compounds (VOCs). The IGZO sensors fabricated by a low-temperature photochemical activation process and exhibiting two orders higher photocurrent compared to conventional zinc oxide sensors, allowed high gas sensitivity against various VOCs even at room temperature. From a systematic analysis, it was found that by increasing the UV intensity, the gas sensitivity, response time, and recovery behavior of an IGZO sensor were strongly enhanced. In particular, under an UV intensity of 30 mW cm(-2), the IGZO sensor exhibited gas sensitivity, response time and recovery time of 37%, 37 and 53 s, respectively, against 750 ppm concentration of acetone gas. Moreover, the IGZO gas sensor had an excellent long-term stability showing around 6% variation in gas sensitivity over 70 days. These results strongly support a conclusion that a low-temperature solution-processed amorphous IGZO film can serve as a good candidate for room-temperature VOCs sensors for emerging wearable electronics. PMID:27430635

  5. A High-Temperature Piezoresistive Pressure Sensor with an Integrated Signal-Conditioning Circuit.

    PubMed

    Yao, Zong; Liang, Ting; Jia, Pinggang; Hong, Yingping; Qi, Lei; Lei, Cheng; Zhang, Bin; Xiong, Jijun

    2016-01-01

    This paper focuses on the design and fabrication of a high-temperature piezoresistive pressure sensor with an integrated signal-conditioning circuit, which consists of an encapsulated pressure-sensitive chip, a temperature compensation circuit and a signal-conditioning circuit. A silicon on insulation (SOI) material and a standard MEMS process are used in the pressure-sensitive chip fabrication, and high-temperature electronic components are adopted in the temperature-compensation and signal-conditioning circuits. The entire pressure sensor achieves a hermetic seal and can be operated long-term in the range of -50 °C to 220 °C. Unlike traditional pressure sensor output voltage ranges (in the dozens to hundreds of millivolts), the output voltage of this sensor is from 0 V to 5 V, which can significantly improve the signal-to-noise ratio and measurement accuracy in practical applications of long-term transmission based on experimental verification. Furthermore, because this flexible sensor's output voltage is adjustable, general follow-up pressure transmitter devices for voltage converters need not be used, which greatly reduces the cost of the test system. Thus, the proposed high-temperature piezoresistive pressure sensor with an integrated signal-conditioning circuit is expected to be highly applicable to pressure measurements in harsh environments. PMID:27322288

  6. Development and application of high-temperature sensors and electronics for propulsion applications

    NASA Astrophysics Data System (ADS)

    Hunter, Gary W.; Wrbanek, John D.; Okojie, Robert S.; Neudeck, Philip G.; Fralick, Gustave C.; Chen, Liangyu; Xu, Jennifer; Beheim, Glenn M.

    2006-05-01

    High temperature sensors and electronics are necessary for a number of aerospace propulsion applications. The Sensors and Electronics Branch at NASA Glenn Research Center (NASA GRC) has been involved in the design, fabrication, and application of a range of sensors and electronics that have use in high temperature, harsh environment propulsion environments. The emphasis is on developing advanced capabilities for measurement and control of aeropropulsion systems as well as monitoring the safety of those systems using Micro/Nano technologies. Specific areas of work include SiC based electronic devices and sensors; thin film thermocouples, strain gauges, and heat flux gauges; chemical sensors; as well as integrated and multifunctional sensor systems. Each sensor type has its own technical challenges related to integration and reliability in a given application. These activities have a common goal of improving the awareness of the state of the propulsion system and moving towards the realization of intelligent engines. This paper will give an overview of the broad range of sensor-related development activities on-going in the NASA GRC Sensors and Electronics Branch as well as their current and potential use in propulsion systems.

  7. Ultrasonic High-Temperature Sensors: Past Experiments and Prospects for Future Use

    SciTech Connect

    M. Laurie; D. Magallon; J.Rempe; C.Wilkins; C. Marquié; S. Eymery; R. Morice

    2010-08-01

    Ultrasonic thermometry sensors (UTS) have been intensively studied in the past to measure temperatures from 2080 to 3380 K. This sensor, which uses the temperature dependence of acoustic velocity in materials, was developed for experiments in extreme environments. Its major advantages, which are (a) recording capability of a temperature profile deduced from the notches on the sensor rod and (b) measurement near the sensor material melting point, can be of great interest when dealing with on-line monitoring of high temperature safety tests. Ultrasonic techniques were successfully applied in several severe accident related experiments. If new developments are conducted with other materials, this sensor type may be used in a wide-range of experimental areas where robustness and compactness are required. Long-term irradiation experiments of nuclear fuel to extremely high burn-ups could benefit from this previous experience. After an overview of UTS technology, this paper summarizes experimental work performed to improve the reliability of these sensors. The various designs, advantages and drawbacks are outlined and future prospects for long term high temperature irradiation experiments are discussed.

  8. High-sensitivity temperature sensor based on a droplet-like fiber circle.

    PubMed

    Xie, Jianglei; Xu, Ben; Li, Yi; Kang, Juan; Shen, Changyu; Wang, Jianfeng; Jin, Yongxing; Liu, Honglin; Ni, Kai; Dong, Xinyong; Zhao, Chunliu; Jin, Shangzhong

    2014-06-20

    A low-cost yet high-sensitivity temperature fiber sensor is proposed and demonstrated in this paper. A single-mode fiber with coating is simply bent in a droplet-like circle with a radius of several millimeters. The strong bending induces mode interferences between the silica core mode and the excited modes propagating in the polymer coating. Many resonant dips were observed in the transmission spectra and are found to shift to a shorter wavelength with the increase of environmental temperature. Our linear fitting result of the experimental data shows that the proposed sensor presents high temperature sensitivity up to -3.102  nm/°C, which is even comparable with sensors based on selective liquid-filled photonic crystal fibers. Such high temperature sensitivity results from the large thermo-optical coefficient difference between the silica core and the polymer coating. The influence of a circle radius to the sensitivities is also discussed. PMID:24979444

  9. High-temperature fiber-optic Fabry-Perot interferometric sensors

    SciTech Connect

    Ding, Wenhui; Jiang, Yi; Gao, Ran; Liu, Yuewu

    2015-05-15

    A photonic crystal fiber (PCF) based high-temperature fiber-optic sensor is proposed and experimentally demonstrated. The sensor head is a Fabry-Perot cavity manufactured with a short section of endless single-mode photonic crystal fiber (ESM PCF). The interferometric spectrum of the Fabry-Perot interferometer is collected by a charge coupled device linear array based micro spectrometer. A high-resolution demodulation algorithm is used to interrogate the peak wavelengths. Experimental results show that the temperature range of 1200 °C and the temperature resolution of 1 °C are achieved.

  10. High-temperature fiber-optic Fabry-Perot interferometric sensors.

    PubMed

    Ding, Wenhui; Jiang, Yi; Gao, Ran; Liu, Yuewu

    2015-05-01

    A photonic crystal fiber (PCF) based high-temperature fiber-optic sensor is proposed and experimentally demonstrated. The sensor head is a Fabry-Perot cavity manufactured with a short section of endless single-mode photonic crystal fiber (ESM PCF). The interferometric spectrum of the Fabry-Perot interferometer is collected by a charge coupled device linear array based micro spectrometer. A high-resolution demodulation algorithm is used to interrogate the peak wavelengths. Experimental results show that the temperature range of 1200 °C and the temperature resolution of 1 °C are achieved. PMID:26026548

  11. Optical Bragg grating sensor fibers for ultra-high temperature applications

    NASA Astrophysics Data System (ADS)

    Bartelt, Hartmut; Elsmann, Tino; Habisreuther, Tobias; Schuster, Kay; Rothhardt, Manfred

    2015-07-01

    Sapphire based optical fibers provide an attractive basis for ultra-high temperature stable optical sensor elements. Fiber Bragg gratings can be inscribed in such fibers by means of femtosecond-laser pulses with a wavelength of 400 nm in combination with a two-beam phase mask interferometer. We have investigated crystalline optical fibers as well as structured sapphire-derived all glass optical fibers with aluminum content in the core of up to 50 mol%. The reflection properties, the index modulation and the attenuation effects will be discussed. Results concerning the temperature and strain sensitivity for use as sensor elements at high temperatures will be presented.

  12. New technique for fabrication of low loss high temperature stable high reflectivity FBG sensor arrays

    NASA Astrophysics Data System (ADS)

    Mihailov, Stephen J.; Grobnic, Dan; Walker, Robert B.; Hnatovsky, Cyril A.; Ding, Huimin; Coulas, David; Lu, Ping

    2016-05-01

    Fiber Bragg gratings (FBG) arrays in silica based optical fibers are increasingly used in applications involving system monitoring in extreme high temperature environments. Where operational temperatures are < 600 °C, traditional UVlaser inscribed FBGs are not appropriate since the induced Type I index change is erased. Instead two competing FBG technologies exist: 1) regenerative FBGs resulting from high temperature annealing of a UV-laser written grating in a hydrogen loaded fiber and 2) FBGs written with femtosecond infrared pulse duration radiation (fs-IR), either using the point-by-point method or using the phase mask approach. Regenerative gratings possess low reflectivity and are cumbersome to produce, requiring high temperature processing in an oxygen free environment. Multiple pulse Type II femtosecond IR laser induced gratings made with a phase mask, while having very good thermal stability, also tend to have high insertion loss (~ 1dB/grating) limiting the number of gratings that can be concatenated in a sensor array. Recently it has been shown that during multiple pulse type II thermally stable fs-IR FBG production, two competing process occur: an initial induced fs-IR type I FBG followed by a thermally stable high insertion loss type II FBG. In this paper, we show that if only a type I FBG is written using type II intensity conditions but limited numbers of pulses and then annealed above 600 °C, the process results in a type II grating that is stable up to 1000 °C with very low insertion loss ideal for an FBG sensor array.

  13. High-temperature potentiometric oxygen sensor with internal reference

    DOEpatents

    Routbort, Jules L.; Singh, Dileep; Dutta, Prabir K.; Ramasamy, Ramamoorthy; Spirig, John V.; Akbar, Sheikh

    2011-11-15

    A compact oxygen sensor is provided, comprising a mixture of metal and metal oxide an enclosure containing said mixture, said enclosure capable of isolating said mixture from an environment external of said enclosure, and a first wire having a first end residing within the enclosure and having a second end exposed to the environment. Also provided is a method for the fabrication of an oxygen sensor, the method comprising confining a metal-metal oxide solid mixture to a container which consists of a single material permeable to oxygen ions, supplying an electrical conductor having a first end and a second end, whereby the first end resides inside the container as a reference (PO.sub.2).sup.ref, and the second end resides outside the container in the atmosphere where oxygen partial pressure (PO.sub.2).sup.ext is to be measured, and sealing the container with additional single material such that grain boundary sliding occurs between grains of the single material and grains of the additional single material.

  14. A High-Temperature Piezoresistive Pressure Sensor with an Integrated Signal-Conditioning Circuit

    PubMed Central

    Yao, Zong; Liang, Ting; Jia, Pinggang; Hong, Yingping; Qi, Lei; Lei, Cheng; Zhang, Bin; Xiong, Jijun

    2016-01-01

    This paper focuses on the design and fabrication of a high-temperature piezoresistive pressure sensor with an integrated signal-conditioning circuit, which consists of an encapsulated pressure-sensitive chip, a temperature compensation circuit and a signal-conditioning circuit. A silicon on insulation (SOI) material and a standard MEMS process are used in the pressure-sensitive chip fabrication, and high-temperature electronic components are adopted in the temperature-compensation and signal-conditioning circuits. The entire pressure sensor achieves a hermetic seal and can be operated long-term in the range of −50 °C to 220 °C. Unlike traditional pressure sensor output voltage ranges (in the dozens to hundreds of millivolts), the output voltage of this sensor is from 0 V to 5 V, which can significantly improve the signal-to-noise ratio and measurement accuracy in practical applications of long-term transmission based on experimental verification. Furthermore, because this flexible sensor’s output voltage is adjustable, general follow-up pressure transmitter devices for voltage converters need not be used, which greatly reduces the cost of the test system. Thus, the proposed high-temperature piezoresistive pressure sensor with an integrated signal-conditioning circuit is expected to be highly applicable to pressure measurements in harsh environments. PMID:27322288

  15. INTELLIGENT MONITORING SYSTEM WITH HIGH TEMPERATURE DISTRIBUTED FIBEROPTIC SENSOR FOR POWER PLANT COMBUSTION PROCESSES

    SciTech Connect

    Kwang Y. Lee; Stuart S. Yin; Andre Boheman

    2004-12-26

    The objective of the proposed work is to develop an intelligent distributed fiber optical sensor system for real-time monitoring of high temperature in a boiler furnace in power plants. Of particular interest is the estimation of spatial and temporal distributions of high temperatures within a boiler furnace, which will be essential in assessing and controlling the mechanisms that form and remove pollutants at the source, such as NOx. The basic approach in developing the proposed sensor system is three fold: (1) development of high temperature distributed fiber optical sensor capable of measuring temperatures greater than 2000 C degree with spatial resolution of less than 1 cm; (2) development of distributed parameter system (DPS) models to map the three-dimensional (3D) temperature distribution for the furnace; and (3) development of an intelligent monitoring system for real-time monitoring of the 3D boiler temperature distribution. Under Task 1, improvement was made on the performance of in-fiber grating fabricated in single crystal sapphire fibers, test was performed on the grating performance of single crystal sapphire fiber with new fabrication methods, and the fabricated grating was applied to high temperature sensor. Under Task 2, models obtained from 3-D modeling of the Demonstration Boiler were used to study relationships between temperature and NOx, as the multi-dimensionality of such systems are most comparable with real-life boiler systems. Studies show that in boiler systems with no swirl, the distributed temperature sensor may provide information sufficient to predict trends of NOx at the boiler exit. Under Task 3, we investigate a mathematical approach to extrapolation of the temperature distribution within a power plant boiler facility, using a combination of a modified neural network architecture and semigroup theory. The 3D temperature data is furnished by the Penn State Energy Institute using FLUENT. Given a set of empirical data with no analytic

  16. Note: High temperature pressure sensor for petroleum well based on silicon over insulator

    NASA Astrophysics Data System (ADS)

    Tian, Bian; Liu, Hanyue; Yang, Ning; Zhao, Yulong

    2015-12-01

    In order to meet the requirements in petroleum well, a novel structure of high temperature pressure sensor based on the silicon over insulator (SOI) technology is proposed in this paper. The SOI sensor chip is bonded with a glass ring by electrostatic bonding. By controlling the inner diameter of the glass ring, the size of the circle membrane is obtained precisely. And the detailed parameters of the structure are established through analysis. Then, the sensor is fabricated. The test results show that this type sensor has high sensitivity and accuracy. It is able to measure at the temperature up to 180 °C and the measuring range is 60 MPa. Moreover, the results we got are closer to the actual situation.

  17. CMOS-compatible ruggedized high-temperature Lamb wave pressure sensor

    NASA Astrophysics Data System (ADS)

    Kropelnicki, P.; Muckensturm, K.-M.; Mu, X. J.; Randles, A. B.; Cai, H.; Ang, W. C.; Tsai, J. M.; Vogt, H.

    2013-08-01

    This paper describes the development of a novel ruggedized high-temperature pressure sensor operating in lateral field exited (LFE) Lamb wave mode. The comb-like structure electrodes on top of aluminum nitride (AlN) were used to generate the wave. A membrane was fabricated on SOI wafer with a 10 µm thick device layer. The sensor chip was mounted on a pressure test package and pressure was applied to the backside of the membrane, with a range of 20-100 psi. The temperature coefficient of frequency (TCF) was experimentally measured in the temperature range of -50 °C to 300 °C. By using the modified Butterworth-van Dyke model, coupling coefficients and quality factor were extracted. Temperature-dependent Young's modulus of composite structure was determined using resonance frequency and sensor interdigital transducer (IDT) wavelength which is mainly dominated by an AlN layer. Absolute sensor phase noise was measured at resonance to estimate the sensor pressure and temperature sensitivity. This paper demonstrates an AlN-based pressure sensor which can operate in harsh environment such as oil and gas exploration, automobile and aeronautic applications.

  18. Towards Fully Integrated High Temperature Wireless Sensors Using GaN-based HEMT Devices

    SciTech Connect

    Kuruganti, Phani Teja; Islam, Syed K; Huque, Mohammad A

    2008-01-01

    Wireless sensors which are capable of working at extreme environments can significantly improve the efficiency and performance of industrial processes by facilitating better control systems. GaN, a widely researched wide bandgap material, has the potential to be used both as a sensing material and to fabricate control electronics, making it a prime candidate for high temperature integrated wireless sensor fabrication. In this paper we are presenting an experimental study on AlGaN/GaN HEMT's performance at higher temperature (up to 300 C). From test results, DC and microwave parameters at different temperatures were extracted.

  19. Ultrasonic High-Temperature Sensors: Past Experiments and Prospects for Future Use

    NASA Astrophysics Data System (ADS)

    Laurie, M.; Magallon, D.; Rempe, J.; Wilkins, C.; Pierre, J.; Marquié, C.; Eymery, S.; Morice, R.

    2010-09-01

    Ultrasonic thermometry sensors (UTS) have been intensively studied in the past to measure temperatures from 2080 K to 3380 K. This sensor, which uses the temperature dependence of the acoustic velocity in materials, was developed for experiments in extreme environments. Its major advantages, which are (a) capability of measuring a temperature profile from multiple sensors on a single probe and (b) measurement near the sensor material melting point, can be of great interest when dealing with on-line monitoring of high-temperature safety tests. Ultrasonic techniques were successfully applied in several severe accident related experiments. With new developments of alternative materials, this instrument may be used in a wide range of experimental areas where robustness and compactness are required. Long-term irradiation experiments of nuclear fuel to extremely high burn-ups could benefit from this previous experience. After an overview of UTS technology, this article summarizes experimental work performed to improve the reliability of these sensors. The various designs, advantages, and drawbacks are outlined and future prospects for long-term high-temperature irradiation experiments are discussed.

  20. Development of High Temperature SiC Based Hydrogen/Hydrocarbon Sensors with Bond Pads for Packaging

    NASA Technical Reports Server (NTRS)

    Xu, Jennifer C.; Hunter, Gary W.; Chen, Liangyu; Biagi-Labiosa, Azlin M.; Ward, Benjamin J.; Lukco, Dorothy; Gonzalez, Jose M., III; Lampard, Peter S.; Artale, Michael A.; Hampton, Christopher L.

    2011-01-01

    This paper describes efforts towards the transition of existing high temperature hydrogen and hydrocarbon Schottky diode sensor elements to packaged sensor structures that can be integrated into a testing system. Sensor modifications and the technical challenges involved are discussed. Testing of the sensors at 500 C or above is also presented along with plans for future development.

  1. A Wireless Passive LC Resonant Sensor Based on LTCC under High-Temperature/Pressure Environments

    PubMed Central

    Qin, Li; Shen, Dandan; Wei, Tanyong; Tan, Qiulin; Luo, Tao; Zhou, Zhaoying; Xiong, Jijun

    2015-01-01

    In this work, a wireless passive LC resonant sensor based on DuPont 951 ceramic is proposed and tested in a developed high-temperature/pressure complex environment. The test results show that the measured resonant frequency varies approximately linearly with the applied pressure; simultaneously, high temperature causes pressure signal drift and changes the response sensitivity. Through the theoretical analysis of the sensor structure model, it is found that the increase in the dielectric constant and the decrease in the Young’s modulus of DuPont 951 ceramic are the main causes that affect the pressure signal in high-temperature measurement. Through calculations, the Young’s modulus of DuPont 951 ceramic is found to decrease rapidly from 120 GPa to 65 GPa within 400 °C. Therefore, the LC resonant pressure sensor needs a temperature compensation structure to eliminate the impact of temperature on pressure measurement. Finally, a temperature compensation structure is proposed and fabricated, and the pressure response after temperature compensation illustrates that temperature drift is significantly reduced compared with that without the temperature compensation structure, which verifies the feasibility the proposed temperature compensation structure. PMID:26184207

  2. Design and fabrication of a high performance resonant MEMS temperature sensor

    NASA Astrophysics Data System (ADS)

    Kose, Talha; Azgin, Kivanc; Akin, Tayfun

    2016-04-01

    This paper presents a high performance MEMS temperature sensor comprised of a double-ended-tuning-fork (DETF) resonator and strain-amplifying beam structure. The temperature detection is based on the ‘thermal strain induced frequency variations’ of the DETF resonator. The major source of thermal strain leading to the frequency shifts is the difference in thermal expansion coefficients of the substrate and the device layers of the fabricated structures. By selecting the substrate as glass and the device layers as single crystal silicon, i.e. materials with different thermal expansion coefficients, the tines of the resonators are exposed to axial load with the changing temperature, which causes a change in the resonance frequency of the resonators. This resonance frequency shift can be related with the changing temperature by taking the thermal strain relations into consideration, which enables utilization of the resonator as a highly sensitive temperature sensor. The resonators used in this study have been fabricated by utilizing the advanced MEMS process that incorporates the simple silicon-on-glass process with the wafer level vacuum packaging Torunbalci et al (2015 J. Microelectromech. Syst. 24 556-64). The fabricated resonators have been tested in a temperature-controlled oven between  -20 °C and 60 °C, and the results of two distinct designs are compared to be able to observe the effectiveness of the strain amplifying beam. Measurement results show that the design with the strain amplifying beam increases the temperature coefficient of frequency of the resonators by 33 times when compared to the one-end free DETF resonators. Minimum detectable temperature variations observed by the resonators used in this study is 0.0011 °C. This kind of very high resolution temperature sensing can be achieved by integrating this MEMS temperature sensor with any type of physical MEMS sensor where its fabrication process includes different materials for the substrate

  3. High-temperature Strain Sensor and Mounting Development

    NASA Technical Reports Server (NTRS)

    Williams, W. Dan; Lei, Jih-Fen; Reardon, Lawrence F.; Krake, Keith; Lemcoe, M. M.; Holmes, Harlan K.; Moore, Thomas C., Sr.

    1996-01-01

    This report describes Government Work Package Task 29 (GWP29), whose purpose was to develop advanced strain gage technology in support of the National Aerospace Plane (NASP) Program. The focus was on advanced resistance strain gages with a temperature range from room temperature to 2000 F (1095 C) and on methods for reliably attaching these gages to the various materials anticipated for use in the NASP program. Because the NASP program required first-cycle data, the installed gages were not prestabilized or heat treated on the test coupons before first-cycle data were recorded. NASA Lewis Research Center, the lead center for GWP29, continued its development of the palladium-chromium gage; NASA Langley Research Center investigated a new concept gage using Kanthal A1; and the NASA Dryden Flight Research Center chose the well-known BCL-3 iron-chromium-aluminum gage. Each center then tested all three gages. The parameters investigated were apparent strain, drift strain, and gage factor as a function of temperature, plus gage size and survival rate over the test period. Although a significant effort was made to minimize the differences in test equipment between the three test sites (e.g., the same hardware and software were used for final data processing), the center employed different data acquisition systems and furnace configurations so that some inherent differences may be evident in the final results.

  4. FIBER BRAGG GRATING SENSORS FOR LOCALIZED STRAIN MEASUREMENTS AT LOW TEMPERATURE AND IN HIGH MAGNETIC FIELD

    SciTech Connect

    Ramalingam, Rajinikumar

    2010-04-09

    Study of magnetostrictive effects in the bulk superconductors is very essential and can give more knowledge about the effects like namely, flux pinning induced strain, pincushion distortions in the magnets and so on. Currently used electro mechanical sensors are magnetic field dependent and can only give the global stress/strain information but not the local stress/strains. But the information like radius position dependent strain and characterisation of shape distortion in non cylindrical magnets are interesting. Wavelength encoded multiplexed fiber Bragg Grating sensors inscribed in one fiber gives the possibility to measure magentostrictive effects spatially resolved in low temperature and high magnetic field. This paper specifies the design and technology requirements to adapt FBG sensors for such an application. Also reports the experiments demonstrate the properties of glass FBG at low temperature (4.2 K) and the results of strain measurement at 4.2 K/8 T. The sensor exhibits a linear wavelength change for the strain change.

  5. Smart temperature sensors

    NASA Astrophysics Data System (ADS)

    Shahinpoor, Mohsen; Martinez, David R.

    1999-07-01

    This paper discusses the conceptual design of a family of specially-designed temperature surety sensors made with shape-memory alloys (SMA). These sensors are capable of detecting a one time temperature excursion or variance form a predetermined temperature range. The propose designs can also be used to detect a one-time temperature rise and persistence above a certain pre-selected critical temperature. In that respect, these sensors relate to a family of one-time thaw sensors detecting whether or not frozen food items or other frozen products or objects experience a thawing-refreezing process in their journey from point A to point B. The proposed sensor can also detect a one time temperature excursion into non-allowable temperatures for non-frozen food, as well as pharmaceutical or other medical products. The essential design of these smart sensor is a lever arm attached to an SMA wire whose temperature is initially below Austenite start temperature or well into the Martensite region. As a given product experiences an undesirable temperature range which pushes the SMA material into the Austenite region the wire contracts and moves the lever arm outside a display window area and exposes either a red working indicator or a graduated scale calibrated to the range of temperature excursion experienced by the product. The sensor is designed such that if the temperature returns to normal the excursion indication will not disappear, but will permanently shown the amount of excursion above the temperature surety region for that product. Several possible design variations are presented and discussed. The proposed embodiments include a rupture type thaw sensor made with short SMA springs or bellows, SMA foil roll-up type sensors, SMA wire-loaded shutter type thaw sensors, SMA torsion strut-loaded shutter type thaw sensors, multiple shutter SMA wire-loaded thaw sensors, multiple shutter, SMA torsion-rod-loaded thaw sensors, and rupture-Type SMA spring-loaded thaw sensors.

  6. Rare Earth Optical Temperature Sensor

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L. (Inventor); Jenkins, Phillip (Inventor)

    2004-01-01

    A rare earth optical temperature sensor is disclosed for measuring high temperatures. Optical temperature sensors exist that channel emissions from a sensor to a detector using a light pipe. The invention uses a rare earth emitter to transform the sensed thermal energy into a narrow band width optical signal that travels to a detector using a light pipe. An optical bandpass filter at the detector removes any noise signal outside of the band width of the signal from the emitter.

  7. Intelligent Monitoring System With High Temperature Distributed Fiberoptic Sensor For Power Plant Combustion Processes

    SciTech Connect

    Kwang Y. Lee; Stuart S. Yin; Andre Boheman

    2005-12-26

    The objective of the proposed work is to develop an intelligent distributed fiber optical sensor system for real-time monitoring of high temperature in a boiler furnace in power plants. Of particular interest is the estimation of spatial and temporal distributions of high temperatures within a boiler furnace, which will be essential in assessing and controlling the mechanisms that form and remove pollutants at the source, such as NOx. The basic approach in developing the proposed sensor system is three fold: (1) development of high temperature distributed fiber optical sensor capable of measuring temperatures greater than 2000 C degree with spatial resolution of less than 1 cm; (2) development of distributed parameter system (DPS) models to map the three-dimensional (3D) temperature distribution for the furnace; and (3) development of an intelligent monitoring system for real-time monitoring of the 3D boiler temperature distribution. Under Task 1, we set up a dedicated high power, ultrafast laser system for fabricating in-fiber gratings in harsh environment optical fibers, successfully fabricated gratings in single crystal sapphire fibers by the high power laser system, and developed highly sensitive long period gratings (lpg) by electric arc. Under Task 2, relevant mathematical modeling studies of NOx formation in practical combustors. Studies show that in boiler systems with no swirl, the distributed temperature sensor may provide information sufficient to predict trends of NOx at the boiler exit. Under Task 3, we investigate a mathematical approach to extrapolation of the temperature distribution within a power plant boiler facility, using a combination of a modified neural network architecture and semigroup theory. The 3D temperature data is furnished by the Penn State Energy Institute using FLUENT. Given a set of empirical data with no analytic expression, we first develop an analytic description and then extend that model along a single axis. Extrapolation

  8. ULTRA-HIGH TEMPERATURE SENSORS BASED ON OPTICAL PROPERTY MODULATION AND VIBRATION-TOLERANT INTERFEROMETRY

    SciTech Connect

    Nabeel A. Riza

    2005-07-22

    The goals of the first six months of this project were to begin laying the foundations for both the SiC front-end optical chip fabrication techniques for high pressure gas species sensing as well as the design, assembly, and test of a portable high pressure high temperature calibration test cell chamber for introducing gas species. This calibration cell will be used in the remaining months for proposed first stage high pressure high temperature gas species sensor experimentation and data processing. All these goals have been achieved and are described in detail in the report. Both design process and diagrams for the mechanical elements as well as the optical systems are provided. Photographs of the fabricated calibration test chamber cell, the optical sensor setup with the calibration cell, the SiC sample chip holder, and relevant signal processing mathematics are provided. Initial experimental data from both the optical sensor and fabricated test gas species SiC chips is provided. The design and experimentation results are summarized to give positive conclusions on the proposed novel high temperature high pressure gas species detection optical sensor technology.

  9. Intelligent Monitoring System with High Temperature Distributed Fiberoptic Sensor for Power Plant Combustion Processes

    SciTech Connect

    Kwang Y. Lee; Stuart S. Yin; Andre Boehman

    2006-09-26

    The objective of the proposed work is to develop an intelligent distributed fiber optical sensor system for real-time monitoring of high temperature in a boiler furnace in power plants. Of particular interest is the estimation of spatial and temporal distributions of high temperatures within a boiler furnace, which will be essential in assessing and controlling the mechanisms that form and remove pollutants at the source, such as NOx. The basic approach in developing the proposed sensor system is three fold: (1) development of high temperature distributed fiber optical sensor capable of measuring temperatures greater than 2000 C degree with spatial resolution of less than 1 cm; (2) development of distributed parameter system (DPS) models to map the three-dimensional (3D) temperature distribution for the furnace; and (3) development of an intelligent monitoring system for real-time monitoring of the 3D boiler temperature distribution. Under Task 1, we have set up a dedicated high power, ultrafast laser system for fabricating in-fiber gratings in harsh environment optical fibers, successfully fabricated gratings in single crystal sapphire fibers by the high power laser system, and developed highly sensitive long period gratings (lpg) by electric arc. Under Task 2, relevant mathematical modeling studies of NOx formation in practical combustors have been completed. Studies show that in boiler systems with no swirl, the distributed temperature sensor may provide information sufficient to predict trends of NOx at the boiler exit. Under Task 3, we have investigated a mathematical approach to extrapolation of the temperature distribution within a power plant boiler facility, using a combination of a modified neural network architecture and semigroup theory. Given a set of empirical data with no analytic expression, we first developed an analytic description and then extended that model along a single axis.

  10. Development of a FBG vortex flow sensor for high-temperature applications

    NASA Astrophysics Data System (ADS)

    Cheng, L. K.; Schiferli, W.; Nieuwland, R. A.; Franzen, A.; den Boer, J. J.; Jansen, T. H.

    2011-05-01

    A robust fibre optic flow sensor has been developed to measure liquid or gas flows at ambient temperatures up to 300 ºC and pressures up to 100 bar. While such environmental conditions are typical in pressurized steam systems in the oil and gas industry (downhole and surface), wider applications are envisaged. The flow sensor uses a specially-designed bluff body to generate vortex-induced pressure fluctuations as a function of flow. The pressure fluctuations result in mechanical strain fluctuations in the sensor plate which is attached to the bluff-body. This is detected by means of a Fibre Bragg Grating (FBG). The frequency of the pressure fluctuations is proportional to the flow velocity and is measured by analyzing the spectrum of the FBG sensor signal. Flow velocity measurements ranging from ~1 m/s to ~25 m/s have been demonstrated. Special mechanical design, gluing and packaging processes have been developed to enable applications at high temperatures and high pressures (HPHT). Although the working principle is the same as for conventional vortex flow meters, this flow sensor does not require electronics, which is a great advantage at high temperatures.

  11. Room temperature NO2 sensor based on highly ordered porphyrin nanotubes.

    PubMed

    Song, Feifei; Ma, Pan; Chen, Changlong; Jia, Jingna; Wang, Yucheng; Zhu, Peihua

    2016-07-15

    Highly ordered nanotubes of 5, 10, 15, 20-tetrakis(4-aminophenyl)porphyrin zinc (ZnTAP) are fabricated by using nanoporous anodized aluminum oxide (AAO) membrane as the template. Electronic absorption spectra, fluorescence spectra, transmission electron microscope (TEM), scanning electronic microscopy (SEM), low-angle X-ray diffraction (XRD) techniques are adopted to characterize these nanotubes. The highly ordered nanotubes of ZnTAP show good conductivity and present an efficient gas sensor platform for the ultrasensitive detection of NO2 under room temperature. The proposed sensor shows high sensitivity, reproducibility and fast response/recovery behavior, and provides a promising avenue for improving the sensing performance. PMID:27100904

  12. Packaging Technology Developed for High-Temperature SiC Sensors and Electronics

    NASA Technical Reports Server (NTRS)

    Chen, Liang-Yu; Hunter, Gary W.; Neudeck, Philip G.; Lei, Jih-Fen

    2000-01-01

    A ceramic- and thick-film-materials-based prototype electronic package designed for silicon carbide (SiC) high-temperature sensors and electronics has been successfully tested at 500 C in an oxygen-containing air environment for 500 hours. This package was designed, fabricated, assembled, and electronically evaluated at the NASA Glenn Research Center at Lewis Field with an in-house-fabricated SiC semiconductor test chip. High-temperature electronics and sensors are necessary for harsh-environment space and aeronautical applications, such as space missions to the inner solar system or the emission control electronics and sensors in aeronautical engines. Single-crystal SiC has such excellent physical and chemical material properties that SiC-based semiconductor electronics can operate at temperatures over 600 C, which is significantly higher than the limit for Si-based semiconductor devices. SiC semiconductor chips were recently demonstrated to be operable at temperatures as high as 600 C, but only in the probe station environment because suitable packaging technology for sensors and electronics at temperatures of 500 C and beyond did not exist. Thus, packaging technology for SiC-based sensors and electronics is immediately needed for both application and commercialization of high-temperature SiC sensors and electronics. In response to this need, researchers at Glenn designed, fabricated, and assembled a prototype electronic package for high-temperature electronics, sensors, and microelectromechanical systems (MEMS) using aluminum nitride (AlN) substrate and gold (Au) thick-film materials. This prototype package successfully survived a soak test at 500 C in air for 500 hours. Packaging components tested included thick-film high-temperature metallization, internal wire bonds, external lead bonds, and a SiC diode chip die-attachment. Each test loop, which was composed of thick-film printed wire, wire bond, and lead bond was subjected to a 50-mA direct current for 250

  13. Birefringence-balanced polarimetric optical fiber sensor for high-temperature measurements

    NASA Technical Reports Server (NTRS)

    Wang, Anbo; Wang, George Z.; Murphy, Kent A.; Claus, Richard O.

    1992-01-01

    A birefringence-balanced polarimetric multimode fiber temperature sensor is proposed and demonstrated. Two single-crystal sapphire rods are incorporated into the sensor head. They are connected end to end in such a way that the slow axis of the first rod is aligned with the fast axis of the second rod, referred to as the referencing rod. Since the lengths of the two rods are chosen to be almost the same, the original birefringence of the first rod is balanced by that of the second rod. A light-emitting diode serves as the light source. This sensor has been experimentally demonstrated for high-temperature measurements as high as 1500 C. A sensitivity of 5 C has been obtained.

  14. A Novel High-Sensitivity, Low-Power, Liquid Crystal Temperature Sensor

    PubMed Central

    Algorri, José Francisco; Urruchi, Virginia; Bennis, Noureddine; Sánchez-Pena, José Manuel

    2014-01-01

    A novel temperature sensor based on nematic liquid crystal permittivity as a sensing magnitude, is presented. This sensor consists of a specific micrometric structure that gives considerable advantages from other previous related liquid crystal (LC) sensors. The analytical study reveals that permittivity change with temperature is introduced in a hyperbolic cosine function, increasing the sensitivity term considerably. The experimental data has been obtained for ranges from −6 °C to 100 °C. Despite this, following the LC datasheet, theoretical ranges from −40 °C to 109 °C could be achieved. These results have revealed maximum sensitivities of 33 mVrms/°C for certain temperature ranges; three times more than of most silicon temperature sensors. As it was predicted by the analytical study, the micrometric size of the proposed structure produces a high output voltage. Moreover the voltage's sensitivity to temperature response can be controlled by the applied voltage. This response allows temperature measurements to be carried out without any amplification or conditioning circuitry, with very low power consumption. PMID:24721771

  15. A High Temperature Capacitive Pressure Sensor Based on Alumina Ceramic for in Situ Measurement at 600 °C

    PubMed Central

    Tan, Qiulin; Li, Chen; Xiong, Jijun; Jia, Pinggang; Zhang, Wendong; Liu, Jun; Xue, Chenyang; Hong, Yingping; Ren, Zhong; Luo, Tao

    2014-01-01

    In response to the growing demand for in situ measurement of pressure in high-temperature environments, a high temperature capacitive pressure sensor is presented in this paper. A high-temperature ceramic material-alumina is used for the fabrication of the sensor, and the prototype sensor consists of an inductance, a variable capacitance, and a sealed cavity integrated in the alumina ceramic substrate using a thick-film integrated technology. The experimental results show that the proposed sensor has stability at 850 °C for more than 20 min. The characterization in high-temperature and pressure environments successfully demonstrated sensing capabilities for pressure from 1 to 5 bar up to 600 °C, limited by the sensor test setup. At 600 °C, the sensor achieves a linear characteristic response, and the repeatability error, hysteresis error and zero-point drift of the sensor are 8.3%, 5.05% and 1%, respectively. PMID:24487624

  16. Tunable Diode Laser Sensors to Monitor Temperature and Gas Composition in High-Temperature Coal Gasifiers

    SciTech Connect

    Hanson, Ronald; Whitty, Kevin

    2014-12-01

    The integrated gasification combined cycle (IGCC) when combined with carbon capture and storage can be one of the cleanest methods of extracting energy from coal. Control of coal and biomass gasification processes to accommodate the changing character of input-fuel streams is required for practical implementation of integrated gasification combined-cycle (IGCC) technologies. Therefore a fast time-response sensor is needed for real-time monitoring of the composition and ideally the heating value of the synthesis gas (here called syngas) as it exits the gasifier. The goal of this project was the design, construction, and demonstration an in situ laserabsorption sensor to monitor multiple species in the syngas output from practical-scale coal gasifiers. This project investigated the hypothesis of using laser absorption sensing in particulateladen syngas. Absorption transitions were selected with design rules to optimize signal strength while minimizing interference from other species. Successful in situ measurements in the dusty, high-pressure syngas flow were enabled by Stanford’s normalized and scanned wavelength modulation strategy. A prototype sensor for CO, CH4, CO2, and H2O was refined with experiments conducted in the laboratory at Stanford University, a pilot-scale at the University of Utah, and an engineering-scale gasifier at DoE’s National Center for Carbon Capture with the demonstration of a prototype sensor with technical readiness level 6 in the 2014 measurement campaign.

  17. Fast response temperature and humidity sensors for measurements in high Reynolds number flows

    NASA Astrophysics Data System (ADS)

    Fan, Yuyang; Arwatz, Gilad; Vallikivi, Margit; Hultmark, Marcus

    2013-11-01

    Conventional hot/cold wires have been widely used in measuring velocity and temperature in turbulent flows due to their fine resolutions and fast response. However, for very high Reynolds number flows, limitations on the resolution appear. A very high Reynolds number flow is the atmospheric boundary layer. In order to accurately predict the energy balance at the Earth's surface, one needs information about the different turbulent scalar fields, mainly temperature and humidity, which together with velocity, contribute to the turbulent fluxes away from the surface. The nano-scaled thermal anemometry probe (NSTAP) was previously developed at Princeton and has proven to have much higher spatial and temporal resolution than the regular hot wires. Here we introduce new fast-response temperature and humidity sensors that have been developed and tested. These sensors are made in-house using standard MEMS manufacturing techniques, leaving high flexibility in the process for optimization to different conditions. The small dimensions of these novel sensors enable very high spatial resolution while the small thermal mass allows significant improvements in the frequency response. These sensors have shown promising results in acquiring un-biased data of turbulent scalar and vector fields. Supported under ONR Grants N00014-12-1-0875 and N00014-12-1-0962 (program manager Ki-Han Kim).

  18. Polymer/ceramic wireless MEMS pressure sensors for harsh environments: High temperature and biomedical applications

    NASA Astrophysics Data System (ADS)

    Fonseca, Michael A.

    2007-12-01

    This dissertation presents an investigation of miniaturized sensors, designed to wirelessly measure pressure in harsh environments such as high temperature and biomedical applications. Current wireless microelectromechanical systems (MEMS) pressure sensors are silicon-based and have limited high temperature operation, require internal power sources, or have limited packaging technology that restricts their use in harsh environments. Sensor designs in this work are based on passive LC resonant circuits to achieve wireless telemetry without the need for active circuitry or internal power sources. A cavity, which is embedded into the substrate, is bound by two pressure-deformable plates that include a parallel-plate capacitor. Deflection of the plates from applied pressure changes the capacitance, thus, the resonance frequency varies and is a function of the applied pressure. The LC resonant circuit and pressure-deformable plates are fabricated into a monolithic housing that servers as the final device package (i.e. intrinsically packaged). This co-integration of device and package offers increased robustness and the ability to operate wirelessly in harsh environments. To intrinsically packaged devices, the fabrication approach relies on techniques developed for MEMS and leverage established lamination-based manufacturing processes, such as ceramic and flexible-circuit-board (flex-circuit) packaging technologies. The sensor concept is further developed by deriving the electromechanical model describing the sensor behavior. The model is initially divided into the electromagnetic model, used to develop the passive wireless telemetry, and the mechanical model, used to develop the pressure dependence of the sensor, which are then combined to estimate the sensor resonance frequency dependence as a function of applied pressure. The derived analytical model allows parametric optimization of sensor designs. The sensor concept is demonstrated in two applications: high

  19. A High-Performance LC Wireless Passive Pressure Sensor Fabricated Using Low-Temperature Co-Fired Ceramic (LTCC) Technology

    PubMed Central

    Li, Chen; Tan, Qiulin; Xue, Chenyang; Zhang, Wendong; Li, Yunzhi; Xiong, Jijun

    2014-01-01

    An LC resonant pressure sensor with improved performance is presented in this paper. The sensor is designed with a buried structure, which protects the electrical components from contact with harsh environments and reduces the resonant-frequency drift of the sensor in high-temperature environments. The pressure-sensitive membrane of the sensor is optimized according to small-deflection-plate theory, which allows the sensor to operate in high-pressure environments. The sensor is fabricated using low-temperature co-fired ceramic (LTCC) technology, and a fugitive film is used to create a completed sealed embedded cavity without an evacuation channel. The experimental results show that the frequency drift of the sensor versus the temperature is approximately 0.75 kHz/°C, and the responsivity of the sensor can be up to 31 kHz/bar within the pressure range from atmospheric pressure to 60 bar. PMID:25490593

  20. A method for achieving monotonic frequency-temperature response for langasite surface-acoustic-wave high-temperature sensor

    NASA Astrophysics Data System (ADS)

    Shaoming, Bao; Yabing, Ke; Yanqing, Zheng; Lina, Cheng; Honglang, Li

    2016-02-01

    To achieve the monotonic frequency-temperature response for a high-temperature langasite (LGS) surface-acoustic-wave (SAW) sensor in a wide temperature range, a method utilizing two substrate cuts with different propagation angles on the same substrate plane was proposed. In this method, the theory of effective permittivity is adopted to calculate the temperature coefficients of frequency (TCF), electromechanical coupling coefficients (k2), and power flow angle (PFA) for different propagation angles on the same substrate plane, and then the two substrate cuts were chosen to have large k2 and small PFA, as well as the difference in their TCFs (ΔTCF) to always have the same sign of their values. The Z-cut LGS substrate plane was taken as an example, and the two suitable substrate cuts with propagation angles of 74 and 80° were chosen to derive a monotonic frequency-temperature response for LGS SAW sensors at -50 to 540 °C. Experiments on a LGS SAW sensor using the above two substrate cuts were designed, and its measured frequency-temperature response at -50 to 540 °C agreed well with the theory, demonstrating the high accuracy of the proposed method.

  1. A miniature fiber-optic sensor for high-resolution and high-speed temperature sensing in ocean environment

    NASA Astrophysics Data System (ADS)

    Liu, Guigen; Han, Ming; Hou, Weilin; Matt, Silvia; Goode, Wesley

    2015-05-01

    Temperature measurement is one of the key quantifies in ocean research. Temperature variations on small and large scales are key to air-sea interactions and climate change, and also regulate circulation patterns, and heat exchange. The influence from rapid temperature changes within microstructures are can have strong impacts to optical and acoustical sensor performance. In this paper, we present an optical fiber sensor for the high-resolution and high-speed temperature profiling. The developed sensor consists of a thin piece of silicon wafer which forms a Fabry-Pérot interferometer (FPI) on the end of fiber. Due to the unique properties of silicon, such as large thermal diffusivity, notable thermo-optic effects and thermal expansion coefficients of silicon, the proposed sensor exhibits excellent sensitivity and fast response to temperature variation. The small mass of the tiny probe also contributes to a fast response due to the large surface-tovolume ratio. The high reflective index at infrared wavelength range and surface flatness of silicon endow the FPI a spectrum with high visibilities, leading to a superior temperature resolution along with a new data processing method developed by us. Experimental results indicate that the fiber-optic temperature sensor can achieve a temperature resolution better than 0.001°C with a sampling frequency as high as 2 kHz. In addition, the miniature footprint of the senor provide high spatial resolutions. Using this high performance thermometer, excellent characterization of the realtime temperature profile within the flow of water turbulence has been realized.

  2. Energy-Based Tetrahedron Sensor for High-Temperature, High-Pressure Environments

    NASA Technical Reports Server (NTRS)

    Gee, Kent L.; Sommerfeldt, Scott D.; Blotter, Jonathan D.

    2012-01-01

    An acoustic energy-based probe has been developed that incorporates multiple acoustic sensing elements in order to obtain the acoustic pressure and three-dimensional acoustic particle velocity. With these quantities, the user can obtain various energy-based quantities, including acoustic energy density, acoustic intensity, and acoustic impedance. In this specific development, the probe has been designed to operate in an environment characterized by high temperatures and high pressures as is found in the close vicinity of rocket plumes. Given these capabilities, the probe is designed to be used to investigate the acoustic conditions within the plume of a rocket engine or jet engine to facilitate greater understanding of the noise generation mechanisms in those plumes. The probe features sensors mounted inside a solid sphere. The associated electronics for the probe are contained within the sphere and the associated handle for the probe. More importantly, the design of the probe has desirable properties that reduce the bias errors associated with determining the acoustic pressure and velocity using finite sum and difference techniques. The diameter of the probe dictates the lower and upper operating frequencies for the probe, where accurate measurements can be acquired. The current probe design implements a sphere diameter of 1 in. (2.5 cm), which limits the upper operating frequency to about 4.5 kHz. The sensors are operational up to much higher frequencies, and could be used to acquire pressure data at higher frequencies, but the energy-based measurements are limited to that upper frequency. Larger or smaller spherical probes could be designed to go to lower or higher frequency range

  3. Ultra-High Temperature Sensors Based on Optical Property Modulation and Vibration-Tolerant Interferometry

    SciTech Connect

    Nabeel A. Riza

    2006-01-26

    The goals of the second six months of the Phase 2 of this project were to conduct first time experimental studies using optical designs and some initial hardware developed in the first 6 months of Phase 2. One focus is to modify the SiC chip optical properties to enable gas species sensing with a specific gas species under high temperature and pressure. The goal was to acquire sensing test data using two example inert and safe gases and show gas discrimination abilities. A high pressure gas mixing chamber was to be designed and assembled to achieve the mentioned gas sensing needs. Another goal was to initiate high temperature probe design by developing and testing a probe design that leads to accurately measuring the thickness of the deployed SiC sensor chip to enable accurate overall sensor system design. The third goal of this phase of the project was to test the SiC chip under high pressure conditions using the earlier designed calibration cell to enable it to act as a pressure sensor when doing gas detection. In this case, experiments using a controlled pressure system were to deliver repeatable pressure measurement data. All these goals have been achieved and are described in detail in the report. Both design process and diagrams for the mechanical elements as well as the optical systems are provided. Photographs or schematics of the fabricated hardware are provided. Experimental data from the three optical sensor systems (i.e., Thickness, pressure, and gas species) is provided. The design and experimentation results are summarized to give positive conclusions on the proposed novel high temperature high pressure gas species detection optical sensor technology.

  4. Phase Interrogation Used for a Wireless Passive Pressure Sensor in an 800 °C High-Temperature Environment

    PubMed Central

    Zhang, Huixin; Hong, Yingping; Liang, Ting; Zhang, Hairui; Tan, Qiulin; Xue, Chenyang; Liu, Jun; Zhang, Wendong; Xiong, Jijun

    2015-01-01

    A wireless passive pressure measurement system for an 800 °C high-temperature environment is proposed and the impedance variation caused by the mutual coupling between a read antenna and a LC resonant sensor is analyzed. The system consists of a ceramic-based LC resonant sensor, a readout device for impedance phase interrogation, heat insulating material, and a composite temperature-pressure test platform. Performances of the pressure sensor are measured by the measurement system sufficiently, including pressure sensitivity at room temperature, zero drift from room temperature to 800 °C, and the pressure sensitivity under the 800 °C high temperature environment. The results show that the linearity of sensor is 0.93%, the repeatability is 6.6%, the hysteretic error is 1.67%, and the sensor sensitivity is 374 KHz/bar. The proposed measurement system, with high engineering value, demonstrates good pressure sensing performance in a high temperature environment. PMID:25690546

  5. A selective ultrahigh responding high temperature ethanol sensor using TiO2 nanoparticles.

    PubMed

    Arafat, M M; Haseeb, A S M A; Akbar, Sheikh A

    2014-01-01

    In this research work, the sensitivity of TiO2 nanoparticles towards C2H5OH, H2 and CH4 gases was investigated. The morphology and phase content of the particles was preserved during sensing tests by prior heat treatment of the samples at temperatures as high as 750 °C and 1000 °C. Field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD) analysis were employed to characterize the size, morphology and phase content of the particles. For sensor fabrication, a film of TiO2 was printed on a Au interdigitated alumina substrate. The sensing temperature was varied from 450 °C to 650 °C with varying concentrations of target gases. Results show that the sensor has ultrahigh response towards ethanol (C2H5OH) compared to hydrogen (H2) and methane (CH4). The optimum sensing temperature was found to be 600 °C. The response and recovery times of the sensor are 3 min and 15 min, respectively, for 20 ppm C2H5OH at the optimum operating temperature of 600 °C. It is proposed that the catalytic action of TiO2 with C2H5OH is the reason for the ultrahigh response of the sensor. PMID:25072346

  6. A Selective Ultrahigh Responding High Temperature Ethanol Sensor Using TiO2 Nanoparticles

    PubMed Central

    Arafat, M. M.; Haseeb, A. S. M. A.; Akbar, Sheikh A.

    2014-01-01

    In this research work, the sensitivity of TiO2 nanoparticles towards C2H5OH, H2 and CH4 gases was investigated. The morphology and phase content of the particles was preserved during sensing tests by prior heat treatment of the samples at temperatures as high as 750 °C and 1000 °C. Field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD) analysis were employed to characterize the size, morphology and phase content of the particles. For sensor fabrication, a film of TiO2 was printed on a Au interdigitated alumina substrate. The sensing temperature was varied from 450 °C to 650 °C with varying concentrations of target gases. Results show that the sensor has ultrahigh response towards ethanol (C2H5OH) compared to hydrogen (H2) and methane (CH4). The optimum sensing temperature was found to be 600 °C. The response and recovery times of the sensor are 3 min and 15 min, respectively, for 20 ppm C2H5OH at the optimum operating temperature of 600 °C. It is proposed that the catalytic action of TiO2 with C2H5OH is the reason for the ultrahigh response of the sensor. PMID:25072346

  7. Fabry-Perot cavity based on sapphire-derived fiber for high temperature sensor

    NASA Astrophysics Data System (ADS)

    Chen, Pengfei; Pang, Fufei; Zhao, Ziwen; Hong, Lin; Chen, Na; Chen, Zhenyi; Wang, Tingyun

    2015-09-01

    An optical fiber high temperature sensor is demonstrated by using a special sapphire-derived fiber. An air cavity is easily created through splicing the sapphire-derived fiber with standard single mode fiber (SMF). Utilizing the air cavity as one reflecting face, a Fabry-Perot (F-P) interferometer is fabricated in the special fiber. Attributed to the high ratio alumina component, the F-P interferometer exhibits high sensitivity response to temperature variation within the range up to 1000 °C. The sensitivity is 15.7 pm/°C.

  8. INTELLIGENT MONITORING SYSTEM WITH HIGH TEMPERATURE DISTRIBUTED FIBEROPTIC SENSOR FOR POWER PLANT COMBUSTION PROCESSES

    SciTech Connect

    Kwang Y. Lee; Stuart S. Yin; Andre Boheman

    2003-12-26

    The objective of the proposed work is to develop an intelligent distributed fiber optical sensor system for real-time monitoring of high temperature in a boiler furnace in power plants. Of particular interest is the estimation of spatial and temporal distributions of high temperatures within a boiler furnace, which will be essential in assessing and controlling the mechanisms that form and remove pollutants at the source, such as NOx. The basic approach in developing the proposed sensor system is three fold: (1) development of high temperature distributed fiber optical sensor capable of measuring temperatures greater than 2000 C degree with spatial resolution of less than 1 cm; (2) development of distributed parameter system (DPS) models to map the three-dimensional (3D) temperature distribution for the furnace; and (3) development of an intelligent monitoring system for real-time monitoring of the 3D boiler temperature distribution. Under Task 1, the efforts focused on developing an innovative high temperature distributed fiber optic sensor by fabricating in-fiber gratings in single crystal sapphire fibers. So far, our major accomplishments include: Successfully grown alumina cladding layers on single crystal sapphire fibers, successfully fabricated in-fiber gratings in single crystal sapphire fibers, and successfully developed a high temperature distributed fiber optic sensor. Under Task 2, the emphasis has been on putting into place a computational capability for simulation of combustors. A PC workstation was acquired with dual Xeon processors and sufficient memory to support 3-D calculations. An existing license for Fluent software was expanded to include two PC processes, where the existing license was for a Unix workstation. Under Task 3, intelligent state estimation theory is being developed which will map the set of 1D (located judiciously within a 3D environment) measurement data into a 3D temperature profile. This theory presents a semigroup

  9. Development and Performance Evaluation of Optical Sensors for High Temperature Engine Applications

    NASA Technical Reports Server (NTRS)

    Adamovsky, G.; Varga, D.; Floyd, B.

    2011-01-01

    This paper discusses fiber optic sensors designed and constructed to withstand extreme temperatures of aircraft engine. The paper describes development and performance evaluation of fiber optic Bragg grating based sensors. It also describes the design and presents test results of packaged sensors subjected to temperatures up to 1000 C for prolonged periods of time.

  10. Development of an aluminum nitride-silicon carbide material set for high-temperature sensor applications

    NASA Astrophysics Data System (ADS)

    Griffin, Benjamin A.; Habermehl, Scott D.; Clews, Peggy J.

    2014-06-01

    A number of important energy and defense-related applications would benefit from sensors capable of withstanding extreme temperatures (>300°C). Examples include sensors for automobile engines, gas turbines, nuclear and coal power plants, and petroleum and geothermal well drilling. Military applications, such as hypersonic flight research, would also benefit from sensors capable of 1000°C. Silicon carbide (SiC) has long been recognized as a promising material for harsh environment sensors and electronics because it has the highest mechanical strength of semiconductors with the exception of diamond and its upper temperature limit exceeds 2500°C, where it sublimates rather than melts. Yet today, many advanced SiC MEMS are limited to lower temperatures because they are made from SiC films deposited on silicon wafers. Other limitations arise from sensor transduction by measuring changes in capacitance or resistance, which require biasing or modulation schemes that can with- stand elevated temperatures. We are circumventing these issues by developing sensing structures directly on SiC wafers using SiC and piezoelectric aluminum nitride (AlN) thin films. SiC and AlN are a promising material combination due to their high thermal, electrical, and mechanical strength and closely matched coefficients of thermal expansion. AlN is also a non-ferroelectric piezoelectric material, enabling piezoelectric transduction at temperatures exceeding 1000°C. In this paper, the challenges of incorporating these two materials into a compatible MEMS fabrication process are presented. The current progress and initial measurements of the fabrication process are shown. The future direction and the need for further investigation of the material set are addressed.

  11. Rare Earth Optical Temperature Sensor

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.; Wolford, David S.

    2000-01-01

    A new optical temperature sensor suitable for high temperatures (greater than 1700 K) and harsh environments is introduced. The key component of the sensor is the rare earth material contained at the end of a sensor that is in contact with the sample being measured. The measured narrow wavelength band emission from the rare earth is used to deduce the sample temperature. A simplified relation between the temperature and measured radiation was verified experimentally. The upper temperature limit of the sensor is determined by material limits to be approximately 2000 C. The lower limit, determined by the minimum detectable radiation, is found to be approximately 700 K. At high temperatures 1 K resolution is predicted. Also, millisecond response times are calculated.

  12. Wireless Capacitive Pressure Sensor With Directional RF Chip Antenna for High Temperature Environments

    NASA Technical Reports Server (NTRS)

    Scardelletti, M. C.; Jordan, J. L.; Ponchak, G. E.; Zorman, C. A.

    2015-01-01

    This paper presents the design, fabrication and characterization of a wireless capacitive pressure sensor with directional RF chip antenna that is envisioned for the health monitoring of aircraft engines operating in harsh environments. The sensing system is characterized from room temperature (25 C) to 300 C for a pressure range from 0 to 100 psi. The wireless pressure system consists of a Clapp-type oscillator design with a capacitive MEMS pressure sensor located in the LC-tank circuit of the oscillator. Therefore, as the pressure of the aircraft engine changes, so does the output resonant frequency of the sensing system. A chip antenna is integrated to transmit the system output to a receive antenna 10 m away.The design frequency of the wireless pressure sensor is 127 MHz and a 2 increase in resonant frequency over the temperature range of 25 to 300 C from 0 to 100 psi is observed. The phase noise is less than minus 30 dBcHz at the 1 kHz offset and decreases to less than minus 80 dBcHz at 10 kHz over the entire temperature range. The RF radiation patterns for two cuts of the wireless system have been measured and show that the system is highly directional and the MEMS pressure sensor is extremely linear from 0 to 100 psi.

  13. Sensitive strain sensor based on regenerated microfiber Bragg grating for high temperature environment

    NASA Astrophysics Data System (ADS)

    Ran, Yang; Gao, Shuai; Jin, Long; Sun, Li-Peng; Huang, Yun-Yun; Li, Jie; Guan, Baiou

    2015-07-01

    In this paper, an abnormal grating evolution was recorded during microfiber Bragg grating (mFBG) inscription under 193nm excimer laser. Within 20 minutes exposing, a Type IIa FBG could be obtained with above 20dB strength in 8.5 μm microfiber. This regenerated mFBG had good survival ability against high temperature up to 800 °C. Moreover, the strain response of the regenerated grating was enlarged by the microfiber structure. Thus, highly sensitive strain sensor with considerable temperature resistance could be obtained, which had potential applications in gas/oil and aerospace territory.

  14. Fiber optic temperature sensor

    NASA Technical Reports Server (NTRS)

    Sawatari, Takeo (Inventor); Gaubis, Philip A. (Inventor); Mattes, Brenton L. (Inventor); Charnetski, Clark J. (Inventor)

    1999-01-01

    A fiber optic temperature sensor uses a light source which transmits light through an optical fiber to a sensor head at the opposite end of the optical fiber from the light source. The sensor head has a housing coupled to the end of the optical fiber. A metallic reflective surface is coupled to the housing adjacent the end of the optical fiber to form a gap having a predetermined length between the reflective surface and the optical fiber. A detection system is also coupled to the optical fiber which determines the temperature at the sensor head from an interference pattern of light which is reflected from the reflective surface.

  15. Fiber optic temperature sensor

    NASA Technical Reports Server (NTRS)

    Sawatari, Takeo (Inventor); Gaubis, Philip A. (Inventor)

    2000-01-01

    A fiber optic temperature sensor uses a light source which transmits light through an optical fiber to a sensor head at the opposite end of the optical fiber from the light source. The sensor head has a housing coupled to the end of the optical fiber. A metallic reflective surface is coupled to the housing adjacent the end of the optical fiber to form a gap having a predetermined length between the reflective surface and the optical fiber. A detection system is also coupled to the optical fiber which determines the temperature at the sensor head from an interference pattern of light which is reflected from the reflective surface.

  16. ULTRA-HIGH TEMPERATURE SENSORS BASED ON OPTICAL PROPERTY MODULATION AND VIBRATION-TOLERANT INTERFEROMETRY

    SciTech Connect

    Nabeel A. Riza

    2004-11-10

    The goals of the first six months of this project were to lay the foundations for both the SiC front-end optical chip fabrication as well as the free-space laser beam interferometer designs and preliminary tests. In addition, a Phase I goal was to design and experimentally build the high temperature and pressure infrastructure and test systems that will be used in the next 6 months for proposed sensor experimentation and data processing. All these goals have been achieved and are described in detail in the report. Both design process and diagrams for the mechanical elements as well as the optical systems are provided. In addition, photographs of the fabricated SiC optical chips, the high temperature & pressure test chamber instrument, the optical interferometer, the SiC sample chip holder, and signal processing data are provided. The design and experimentation results are summarized to give positive conclusions on the proposed novel high temperature optical sensor technology. The goals of the second six months of this project were to conduct high temperature sensing tests using the test chamber and optical sensing instrument designs developed in the first part of the project. In addition, a Phase I goal was to develop the basic processing theory and physics for the proposed first sensor experimentation and data processing. All these goals have been achieved and are described in detail. Both optical experimental design process and sensed temperature are provided. In addition, photographs of the fabricated SiC optical chips after deployment in the high temperature test chamber are shown from a material study point-of-view.

  17. Development of Metal Oxide Nanostructure-based Optical Sensors for Fossil Fuel Derived Gases Measurement at High Temperature

    SciTech Connect

    Chen, Kevin

    2014-08-31

    This final technical report details research works performed supported by a Department of Energy grant (DE-FE0003859), which was awarded under the University Coal Research Program administrated by National Energy Technology Laboratory. This research program studied high temperature fiber sensor for harsh environment applications. It developed two fiber optical sensor platform technology including regenerative fiber Bragg grating sensors and distributed fiber optical sensing based on Rayleigh backscattering optical frequency domain reflectometry. Through the studies of chemical and thermal regenerative techniques for fiber Bragg grating (FBG) fabrication, high-temperature stable FBG sensors were successfully developed and fabricated in air-hole microstructured fibers, high-attenuation fibers, rare-earth doped fibers, and standard telecommunication fibers. By optimizing the laser processing and thermal annealing procedures, fiber grating sensors with stable performance up to 1100oC have been developed. Using these temperature-stable FBG gratings as sensor platform, fiber optical flow, temperature, pressure, and chemical sensors have been developed to operate at high temperatures up to 800oC. Through the integration of on-fiber functional coating, the use of application-specific air-hole microstructural fiber, and application of active fiber sensing scheme, distributed fiber sensor for temperature, pressure, flow, liquid level, and chemical sensing have been demonstrated with high spatial resolution (1-cm or better) with wide temperature ranges. These include the demonstration of 1) liquid level sensing from 77K to the room temperature, pressure/temperature sensing from the room temperature to 800C and from the 15psi to 2000 psi, and hydrogen concentration measurement from 0.2% to 10% with temperature ranges from the room temperature to 700C. Optical sensors developed by this program has broken several technical records including flow sensors with the highest

  18. A Smart High Accuracy Silicon Piezoresistive Pressure Sensor Temperature Compensation System

    PubMed Central

    Zhou, Guanwu; Zhao, Yulong; Guo, Fangfang; Xu, Wenju

    2014-01-01

    Theoretical analysis in this paper indicates that the accuracy of a silicon piezoresistive pressure sensor is mainly affected by thermal drift, and varies nonlinearly with the temperature. Here, a smart temperature compensation system to reduce its effect on accuracy is proposed. Firstly, an effective conditioning circuit for signal processing and data acquisition is designed. The hardware to implement the system is fabricated. Then, a program is developed on LabVIEW which incorporates an extreme learning machine (ELM) as the calibration algorithm for the pressure drift. The implementation of the algorithm was ported to a micro-control unit (MCU) after calibration in the computer. Practical pressure measurement experiments are carried out to verify the system's performance. The temperature compensation is solved in the interval from −40 to 85 °C. The compensated sensor is aimed at providing pressure measurement in oil-gas pipelines. Compared with other algorithms, ELM acquires higher accuracy and is more suitable for batch compensation because of its higher generalization and faster learning speed. The accuracy, linearity, zero temperature coefficient and sensitivity temperature coefficient of the tested sensor are 2.57% FS, 2.49% FS, 8.1 × 10−5/°C and 29.5 × 10−5/°C before compensation, and are improved to 0.13%FS, 0.15%FS, 1.17 × 10−5/°C and 2.1 × 10−5/°C respectively, after compensation. The experimental results demonstrate that the proposed system is valid for the temperature compensation and high accuracy requirement of the sensor. PMID:25006998

  19. Room temperature infrared imaging sensors based on highly purified semiconducting carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Wei, Nan; Zhao, Qingliang; Zhang, Dehui; Wang, Sheng; Peng, Lian-Mao

    2015-04-01

    High performance infrared (IR) imaging systems usually require expensive cooling systems, which are highly undesirable. Here we report the fabrication and performance characteristics of room temperature carbon nanotube (CNT) IR imaging sensors. The CNT IR imaging sensor is based on aligned semiconducting CNT films with 99% purity, and each pixel or device of the imaging sensor consists of aligned strips of CNT asymmetrically contacted by Sc and Pd. We found that the performance of the device is dependent on the CNT channel length. While short channel devices provide a large photocurrent and a rapid response of about 110 μs, long channel length devices exhibit a low dark current and a high signal-to-noise ratio which are critical for obtaining high detectivity. In total, 36 CNT IR imagers are constructed on a single chip, each consists of 3 × 3 pixel arrays. The demonstrated advantages of constructing a high performance IR system using purified semiconducting CNT aligned films include, among other things, fast response, excellent stability and uniformity, ideal linear photocurrent response, high imaging polarization sensitivity and low power consumption.High performance infrared (IR) imaging systems usually require expensive cooling systems, which are highly undesirable. Here we report the fabrication and performance characteristics of room temperature carbon nanotube (CNT) IR imaging sensors. The CNT IR imaging sensor is based on aligned semiconducting CNT films with 99% purity, and each pixel or device of the imaging sensor consists of aligned strips of CNT asymmetrically contacted by Sc and Pd. We found that the performance of the device is dependent on the CNT channel length. While short channel devices provide a large photocurrent and a rapid response of about 110 μs, long channel length devices exhibit a low dark current and a high signal-to-noise ratio which are critical for obtaining high detectivity. In total, 36 CNT IR imagers are constructed on a

  20. SS316 structure fabricated by selective laser melting and integrated with strain isolated optical fiber high temperature sensor

    NASA Astrophysics Data System (ADS)

    Mathew, Jinesh; Havermann, Dirk; Polyzos, Dimitrios; MacPherson, William N.; Hand, Duncan P.; Maier, Robert R. J.

    2015-09-01

    Smart metal having integrated high temperature sensing capability is reported. The SS316 structure is made by additive layer manufacturing via selective laser melting (SLM). Sensor component is embedded in to the structure during the SLM build process. The strain isolated in-fiber Fabry-Perot cavity sensor measures temperature up to 1100 °C inside the metal.

  1. Niphargus: a silicon band-gap sensor temperature logger for high-precision environmental monitoring

    NASA Astrophysics Data System (ADS)

    Burlet, Christian; Vanbrabant, Yves; Piessens, Kris; Welkenhuysen, Kris; Verheyden, Sophie

    2014-05-01

    A temperature logger, called 'Niphargus', was developed at the Geological Survey of Belgium to monitor temperature of local natural processes with sensitivity of the order of a few hundredths of degrees to monitor temperature variability in open air, caves, soils and rivers. The newly developed instrument uses a state-of-the-art band-gap silicon temperature sensor with digital output. This sensor reduces the risk of drift associated with thermistor-based sensing devices, especially in humid environments. The Niphargus is designed to be highly reliable, low-cost and powered by a single lithium cell with up to several years autonomy depending on the sampling rate and environmental conditions. The Niphargus was evaluated in an ice point bath experiment in terms of temperature accuracy and thermal inertia. The small size and low power consumption of the logger allow its use in difficult accessible environments, e.g. caves and space-constrained applications, inside a rock in a water stream. In both cases, the loggers have proven to be reliable and accurate devices. For example, spectral analysis of the temperature signal in the Han caves (Belgium) allowed detection and isolation of a 0.005° C amplitude day-night periodic signal in the temperature curve. PIC Figure 1: a Niphargus logger in its standard size. SMD components side. Photo credit: W. Miseur

  2. Highly Sensitive Liquid Core Temperature Sensor Based on Multimode Interference Effects.

    PubMed

    Fuentes-Fuentes, Miguel A; May-Arrioja, Daniel A; Guzman-Sepulveda, José R; Torres-Cisneros, Miguel; Sánchez-Mondragón, José J

    2015-01-01

    A novel fiber optic temperature sensor based on a liquid-core multimode interference device is demonstrated. The advantage of such structure is that the thermo-optic coefficient (TOC) of the liquid is at least one order of magnitude larger than that of silica and this, combined with the fact that the TOC of silica and the liquid have opposite signs, provides a liquid-core multimode fiber (MMF) highly sensitive to temperature. Since the refractive index of the liquid can be easily modified, this allows us to control the modal properties of the liquid-core MMF at will and the sensor sensitivity can be easily tuned by selecting the refractive index of the liquid in the core of the device. The maximum sensitivity measured in our experiments is 20 nm/°C in the low-temperature regime up to 60 °C. To the best of our knowledge, to date, this is the largest sensitivity reported for fiber-based MMI temperature sensors. PMID:26512664

  3. Highly Sensitive Liquid Core Temperature Sensor Based on Multimode Interference Effects

    PubMed Central

    Fuentes-Fuentes, Miguel A.; May-Arrioja, Daniel A.; Guzman-Sepulveda, José R.; Torres-Cisneros, Miguel; Sánchez-Mondragón, José J.

    2015-01-01

    A novel fiber optic temperature sensor based on a liquid-core multimode interference device is demonstrated. The advantage of such structure is that the thermo-optic coefficient (TOC) of the liquid is at least one order of magnitude larger than that of silica and this, combined with the fact that the TOC of silica and the liquid have opposite signs, provides a liquid-core multimode fiber (MMF) highly sensitive to temperature. Since the refractive index of the liquid can be easily modified, this allows us to control the modal properties of the liquid-core MMF at will and the sensor sensitivity can be easily tuned by selecting the refractive index of the liquid in the core of the device. The maximum sensitivity measured in our experiments is 20 nm/°C in the low-temperature regime up to 60 °C. To the best of our knowledge, to date, this is the largest sensitivity reported for fiber-based MMI temperature sensors. PMID:26512664

  4. Preparation and Analysis of Platinum Thin Films for High Temperature Sensor Applications

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Laster, Kimala L. H.

    2005-01-01

    A study has been made of platinum thin films for application as high temperature resistive sensors. To support NASA Glenn Research Center s high temperature thin film sensor effort, a magnetron sputtering system was installed recently in the GRC Microsystems Fabrication Clean Room Facility. Several samples of platinum films were prepared using various system parameters to establish run conditions. These films were characterized with the intended application of being used as resistive sensing elements, either for temperature or strain measurement. The resistances of several patterned sensors were monitored to document the effect of changes in parameters of deposition and annealing. The parameters were optimized for uniformity and intrinsic strain. The evaporation of platinum via oxidation during annealing over 900 C was documented, and a model for the process developed. The film adhesion was explored on films annealed to 1000 C with various bondcoats on fused quartz and alumina. From this compiled data, a list of optimal parameters and characteristics determined for patterned platinum thin films is given.

  5. High temperature strain sensor based on a fiber Bragg grating and rhombus metal structure.

    PubMed

    Zhang, Liang; Liu, Yueming; Gao, Xiaoliang; Xia, Zhongcheng

    2015-10-01

    In this paper, a novel high temperature strain sensor based on a polyimide-coated fiber Bragg grating (FBG) and a rhombus metal structure is presented and experimentally demonstrated. By heating low softening point glass via a micro torch, the polyimide-coated FBG could be fixed into the rhombus metal structure. Consequently, when the rhombus structure is stretched and compressed, respectively, then the FBG will be subjected to a reverse state. Moreover, the strain sensitivity is controllable and enhanced by adjusting the dimension of the rhombus metal structure appropriately. The experiment was then carried out by using an equi-intensity cantilever beam and high temperature chamber, and the result showed that the proposed high temperature strain sensor could be used at the high temperature of 300°C. A resolution of ∼10  με has been experimentally achieved. The average wavelength strain sensitivity at 300°C is 1.821 and 1.814 pm/με, for the compressed and stretched states, respectively. PMID:26479639

  6. Ultra-High Temperature Sensors Based on Optical Property Modulation and Vibration-Tolerant Interferometry

    SciTech Connect

    Nabeel A. Riza

    2006-09-30

    The goals of the Year 2006 Continuation Phase 2 three months period (April 1 to Sept. 30) of this project were to (a) conduct a probe elements industrial environment feasibility study and (b) fabricate embedded optical phase or microstructured SiC chips for individual gas species sensing. Specifically, SiC chips for temperature and pressure probe industrial applications were batch fabricated. Next, these chips were subject to a quality test for use in the probe sensor. A batch of the best chips for probe design were selected and subject to further tests that included sensor performance based on corrosive chemical exposure, power plant soot exposure, light polarization variations, and extreme temperature soaking. Experimental data were investigated in detail to analyze these mentioned industrial parameters relevant to a power plant. Probe design was provided to overcome mechanical vibrations. All these goals have been achieved and are described in detail in the report. The other main focus of the reported work is to modify the SiC chip by fabricating an embedded optical phase or microstructures within the chip to enable gas species sensing under high temperature and pressure. This has been done in the Kar UCF Lab. using a laser-based system whose design and operation is explained. Experimental data from the embedded optical phase-based chip for changing temperatures is provided and shown to be isolated from gas pressure and species. These design and experimentation results are summarized to give positive conclusions on the proposed high temperature high pressure gas species detection optical sensor technology.

  7. Field Test of High Temperature Corrosion Sensors in a Waste to Energy Plant

    SciTech Connect

    Matthes, S.A.; Covino, B.S., Jr.; Bullard, S.J.; Williamson, K.M.

    2008-03-16

    A field trial of electrochemical corrosion rate sensors was conducted over a five month period to monitor fireside corrosion in a waste to energy (WTE) plant. The unique 3-electrode air-cooled corrosion sensors, each including a thermocouple to monitor sensor temperature, were installed in four different ports at approximately the same level of the WTE boiler. A total of twelve sensors were tested, six with electrodes using the carbon steel boiler tube material, and six using the nickel-chromium weld overlay alloy for the electrodes. Corrosion rates and temperatures of the sensors were monitored continuously through the trial. Measurements of sensor thickness loss were used to calibrate the electrochemical corrosion rates. Air cooling of the sensors was found to be necessary in order to bring the sensors to the temperature of the boiler tubes, to better match the corrosion rate of the tubes, and to increase survivability of the sensors and thermocouples. Varying the temperature of the sensors simulated corrosion rates of boiler tubes with steam temperatures above and below that in the actual WTE plant. Temperatures of two of the sensors were successfully held at various controlled temperatures close to the steam temperature for a three hour test period. Corrosion rates of the two materials tested were similar although of different magnitude. An expression relating the corrosion rate of the boiler tube material to the corrosion rate of weld overlay was determined for a 7 day period in the middle of the field trial. Results from the field trial suggest that corrosion rate sensors controlled to the outer waterwall temperature can successfully monitor fireside corrosion in WTE plants and be used as a process control variable by plant operators.

  8. Room temperature infrared imaging sensors based on highly purified semiconducting carbon nanotubes.

    PubMed

    Liu, Yang; Wei, Nan; Zhao, Qingliang; Zhang, Dehui; Wang, Sheng; Peng, Lian-Mao

    2015-04-21

    High performance infrared (IR) imaging systems usually require expensive cooling systems, which are highly undesirable. Here we report the fabrication and performance characteristics of room temperature carbon nanotube (CNT) IR imaging sensors. The CNT IR imaging sensor is based on aligned semiconducting CNT films with 99% purity, and each pixel or device of the imaging sensor consists of aligned strips of CNT asymmetrically contacted by Sc and Pd. We found that the performance of the device is dependent on the CNT channel length. While short channel devices provide a large photocurrent and a rapid response of about 110 μs, long channel length devices exhibit a low dark current and a high signal-to-noise ratio which are critical for obtaining high detectivity. In total, 36 CNT IR imagers are constructed on a single chip, each consists of 3 × 3 pixel arrays. The demonstrated advantages of constructing a high performance IR system using purified semiconducting CNT aligned films include, among other things, fast response, excellent stability and uniformity, ideal linear photocurrent response, high imaging polarization sensitivity and low power consumption. PMID:25807291

  9. Flexible Temperature Sensors on Fibers

    PubMed Central

    Sibinski, Maciej; Jakubowska, Malgorzata; Sloma, Marcin

    2010-01-01

    The aim of this paper is to present research dedicated to the elaboration of novel, miniaturized flexible temperature sensors for textronic applications. Examined sensors were manufactured on a single yarn, which ensures their high flexibility and good compatibility with textiles. Stable and linear characteristics were obtained by special technological process and applied temperature profiles. As a thermo-sensitive materials the innovative polymer compositions filled with multiwalled carbon nanotubes were used. Elaborated material was adapted to printing and dip-coating techniques to produce NTC composites. Nanotube sensors were free from tensometric effect typical for other carbon-polymer sensor, and demonstrated TCR of 0.13%/K. Obtained temperature sensors, compatible with textile structure, can be applied in rapidly developing smart textiles and be used for health and protections purposes. PMID:22163634

  10. Enhancing thermal reliability of fiber-optic sensors for bio-inspired applications at ultra-high temperatures

    NASA Astrophysics Data System (ADS)

    Kang, Donghoon; Kim, Heon-Young; Kim, Dae-Hyun

    2014-07-01

    The rapid growth of bio-(inspired) sensors has led to an improvement in modern healthcare and human-robot systems in recent years. Higher levels of reliability and better flexibility, essential features of these sensors, are very much required in many application fields (e.g. applications at ultra-high temperatures). Fiber-optic sensors, and fiber Bragg grating (FBG) sensors in particular, are being widely studied as suitable sensors for improved structural health monitoring (SHM) due to their many merits. To enhance the thermal reliability of FBG sensors, thermal sensitivity, generally expressed as αf + ξf and considered a constant, should be investigated more precisely. For this purpose, the governing equation of FBG sensors is modified using differential derivatives between the wavelength shift and the temperature change in this study. Through a thermal test ranging from RT to 900 °C, the thermal sensitivity of FBG sensors is successfully examined and this guarantees thermal reliability of FBG sensors at ultra-high temperatures. In detail, αf + ξf has a non-linear dependence on temperature and varies from 6.0 × 10-6 °C-1 (20 °C) to 10.6 × 10-6 °C-1 (650 °C). Also, FBGs should be carefully used for applications at ultra-high temperatures due to signal disappearance near 900 °C.

  11. Modulated fiber ring laser and its application in high-sensitivity temperature sensors

    NASA Astrophysics Data System (ADS)

    Perez-Herrera, R. A.; Tainta, S.; Erro, M. J.; Lopez-Amo, M.

    2016-05-01

    This work presents an experimental demonstration of a scheme based on an internally modulated fiber ring laser for high-sensitivity temperature sensing. The attained temperature resolution has been as low as +/- 2pm even when a commercial FBG with a sensitivity of 10 pm/°C was used. Thus, a fivefold improvement in the temperature sensor resolution can be achieved when compared to a simple FBG interrogation scheme. In addition to this, the measuring range could be selected only by changing the frequency modulation of the fiber ring laser. This technology also allows to triple the photodiode bandwidth unambiguously when temperature or strain measurements are carried out, which is a remarkable achievement in term of cost reduction.

  12. Cryogenic High Pressure Sensor Module

    NASA Technical Reports Server (NTRS)

    Chapman, John J. (Inventor); Shams, Qamar A. (Inventor); Powers, William T. (Inventor)

    1999-01-01

    A pressure sensor is provided for cryogenic, high pressure applications. A highly doped silicon piezoresistive pressure sensor is bonded to a silicon substrate in an absolute pressure sensing configuration. The absolute pressure sensor is bonded to an aluminum nitride substrate. Aluminum nitride has appropriate coefficient of thermal expansion for use with highly doped silicon at cryogenic temperatures. A group of sensors, either two sensors on two substrates or four sensors on a single substrate are packaged in a pressure vessel.

  13. Highly sensitive temperature sensor based on cascaded polymer-microbubble cavities by employing a subtraction between reciprocal thermal responses.

    PubMed

    Cao, Kunjian; Liu, Yi; Qu, Shiliang

    2016-09-01

    A miniature, robust, and highly sensitive optical fiber temperature sensor based on cascaded polymer-microbubble cavities was fabricated by polymer-filling and subsequent heat-curing process. The expansion of polymer cavity results in the compression of microbubble cavity when the sensor is heated. We demodulated the interference spectrum by means of the fast-Fourier transform (FFT) and signal filtering. Since the thermal response of the polymer cavity is positive and that of the microbubble cavity is negative, a high sensitivity of the temperature sensor is achieved by a subtraction between the two reciprocal thermal responses. Experimental results show that the sensitivity of the temperature sensor is as high as 5.013 nm/°C in the measurement range between 20 °C and 55 °C. Meanwhile, such a sensor has potential for mass production, owing to the simple, nontoxic, and cost-effective process of fabrication. PMID:27607669

  14. SSTAC/ARTS review of the draft Integrated Technology Plan (ITP). Volume 8: Aerothermodynamics Automation and Robotics (A/R) systems sensors, high-temperature superconductivity

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Viewgraphs of briefings presented at the SSTAC/ARTS review of the draft Integrated Technology Plan (ITP) on aerothermodynamics, automation and robotics systems, sensors, and high-temperature superconductivity are included. Topics covered include: aerothermodynamics; aerobraking; aeroassist flight experiment; entry technology for probes and penetrators; automation and robotics; artificial intelligence; NASA telerobotics program; planetary rover program; science sensor technology; direct detector; submillimeter sensors; laser sensors; passive microwave sensing; active microwave sensing; sensor electronics; sensor optics; coolers and cryogenics; and high temperature superconductivity.

  15. Development of a sapphire optical pressure sensor for high-temperature applications

    NASA Astrophysics Data System (ADS)

    Mills, David A.; Alexander, Dylan; Subhash, Ghatu; Sheplak, Mark

    2014-06-01

    This paper presents the fabrication, packaging, and characterization of a sapphire optical pressure sensor for hightemperature applications. Currently available instrumentation poses significant limitations on the ability to achieve realtime, continuous measurements in high-temperature environments such as those encountered in industrial gas turbines and high-speed aircraft. The fiber-optic lever design utilizes the deflection of a circular platinum-coated sapphire diaphragm to modulate the light reflected back to a single send/receive sapphire optical fiber. The 7 mm diameter, 50 μm thick diaphragm is attached using a novel thermocompression bonding process based on spark plasma sintering technology. Bonds using platinum as an intermediate layer are achieved at a temperature of 1200°C with a hold time of 5 min. Initial characterization of the bond interface using a simple tensile test indicates a bond strength in excess of 12 MPa. Analysis of the buckled diaphragm after bonding is also presented. The packaged sensor enables continuous operation up to 900°C. Room-temperature characterization reveals a first resonance of 18.2 kHz, a flat-band sensitivity of -130 dB re 1 V/Pa (0.32 μV/Pa) from 4-20 kHz, a minimum detectable pressure of 3.8 Pa, and a linear response up to 169 dB at 1.9 kHz.

  16. Development of high speed fiber grating sensor solutions for measuring velocity, position, pressure and temperature

    NASA Astrophysics Data System (ADS)

    Udd, Eric; Benterou, Jerry

    2013-05-01

    A novel very high speed fiber grating sensor system has been used to support velocity, position, temperature and pressure measurements during burn, deflagration and detonation of energetic materials in Russian DDT tests. For the first time the system has been demonstrated in card gap testing and has allowed real time measurements of the position of the blast front into the card gap and monitoring of pressure at key locations in the card gap test. This paper provides an overview of this technology and examples of its application.

  17. Fluorescent temperature sensor

    SciTech Connect

    Baker, Gary A; Baker, Sheila N; McCleskey, T Mark

    2009-03-03

    The present invention is a fluorescent temperature sensor or optical thermometer. The sensor includes a solution of 1,3-bis(1-pyrenyl)propane within a 1-butyl-1-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquid solvent. The 1,3-bis(1-pyrenyl)propane remains unassociated when in the ground state while in solution. When subjected to UV light, an excited state is produced that exists in equilibrium with an excimer. The position of the equilibrium between the two excited states is temperature dependent.

  18. Fiber optic temperature sensor

    NASA Technical Reports Server (NTRS)

    Morey, W. W.; Glenn, W. H.; Snitzer, E.

    1983-01-01

    A temperature sensor has been developed that utilizes the temperature dependent absorption of a rare earth doped optical fiber. The temperature measurement is localized at a remote position by splicing a short section of the rare earth fiber into a loop of commercial data communication fiber that sends and returns an optical probe signal to the temperature sensitive section of fiber. The optical probe signal is generated from two different wavelength filtered LED sources. A four port fiber optic coupler combines the two separate wavelength signals into the fiber sensing loop. Time multiplexing is used so that each signal wavelength is present at a different time. A reference signal level measurement is also made from the LED sources and a ratio taken with the sensor signal to produce a transmission measurement of the fiber loop. The transmission is affected differently at each wavelength by the rare earth temperature sensitive fiber. The temperature is determined from a ratio of the two transmission measurements. This method eliminates any ambiguity with respect to changes in signal level in the fiber loop such as mating and unmating optical connectors. The temperature range of the sensor is limited to about 800 C by the temperature limit fo the feed fibers.

  19. A Room Temperature H2 Sensor Fabricated Using High Performance Pt-Loaded SnO2 Nanoparticles

    PubMed Central

    Wang, Sheng-Chang; Shaikh, Muhammad Omar

    2015-01-01

    Highly sensitive H2 gas sensors were prepared using pure and Pt-loaded SnO2 nanoparticles. Thick film sensors (~35 μm) were fabricated that showed a highly porous interconnected structure made of high density small grained nanoparticles. Using Pt as catalyst improved sensor response and reduced the operating temperature for achieving high sensitivity because of the negative temperature coefficient observed in Pt-loaded SnO2. The highest sensor response to 1000 ppm H2 was 10,500 at room temperature with a response time of 20 s. The morphology of the SnO2 nanoparticles, the surface loading concentration and dispersion of the Pt catalyst and the microstructure of the sensing layer all play a key role in the development of an effective gas sensing device. PMID:26091394

  20. Recent developments with high temperature stabilized-zirconia pH sensors

    SciTech Connect

    Danielson, M.J.; Koski, O.H.; Meyers, J.

    1985-02-01

    The pH response of 8 weight percent yttria-stabilized zirconia sensors is examined over a temperature range of 373-573 K. Good pH response was found throughout the temperature range. The internal half-cell was discovered to be poised by oxygen, which permits some simplification in the calibration of the sensor. Activation energy measurements imply that the primary conduction process involves the oxide ion. An improved electrical/mechanica seal is also discussed.

  1. High temperature stability testing of Ge-doped and F-doped Fabry-Perot fibre optical sensors

    NASA Astrophysics Data System (ADS)

    Polyzos, Dimitrios; Mathew, Jinesh; MacPherson, William N.; Maier, Robert R...

    2016-05-01

    We present high temperature (~1100°C) stability tests of, Ge-doped and F-doped, optical fibre sensors. Our analysis includes the variation in their behaviours within high temperature environments and how the dopant diffusion affects their long term stability.

  2. High-temperature high-bandwidth fiber optic MEMS pressure-sensor technology for turbine engine component testing

    NASA Astrophysics Data System (ADS)

    Pulliam, Wade J.; Russler, Patrick M.; Fielder, Robert S.

    2002-02-01

    Acquiring accurate, transient measurements in harsh environments has always pushed the limits of available measurement technology. Until recently, the technology to directly measure certain properties in extremely high temperature environments has not existed. Advancements in optical measurement technology have led to the development of measurement techniques for pressure, temperature, acceleration, skin friction, etc. using extrinsic Fabry-Perot interferometry (EFPI). The basic operating principle behind EFPI enables the development of sensors that can operate in the harsh conditions associated with turbine engines, high-speed combustors, and other aerospace propulsion applications where the flow environment is dominated by high frequency pressure and temperature variations caused by combustion instabilities, blade-row interactions, and unsteady aerodynamic phenomena. Using micromachining technology, these sensors are quite small and therefore ideal for applications where restricted space or minimal measurement interference is a consideration. In order to help demonstrate the general functionality of this measurement technology, sensors and signal processing electronics currently under development by Luna Innovations were used to acquire point measurements during testing of a transonic fan in the Compressor Research Facility (CRF) at the Turbine Engine Research Center (TERC), WPAFB. Acquiring pressure measurements at the surface of the casing wall provides data that are useful in understanding the effects of pressure fluctuations on the operation and lifetime wear of a fan. This measurement technique is useful in both test rig applications and in operating engines where lifetime wear characterization is important. The measurements acquired during this test also assisted in the continuing development of this technology for higher temperature environments by providing proof-of-concept data for sensors based on advanced microfabrication and optical techniques.

  3. Using Bayesian Inference Framework towards Identifying Gas Species and Concentration from High Temperature Resistive Sensor Array Data

    DOE PAGESBeta

    Liu, Yixin; Zhou, Kai; Lei, Yu

    2015-01-01

    High temperature gas sensors have been highly demanded for combustion process optimization and toxic emissions control, which usually suffer from poor selectivity. In order to solve this selectivity issue and identify unknown reducing gas species (CO, CH 4 , and CH 8 ) and concentrations, a high temperature resistive sensor array data set was built in this study based on 5 reported sensors. As each sensor showed specific responses towards different types of reducing gas with certain concentrations, based on which calibration curves were fitted, providing benchmark sensor array response database, then Bayesian inference framework was utilized to processmore » the sensor array data and build a sample selection program to simultaneously identify gas species and concentration, by formulating proper likelihood between input measured sensor array response pattern of an unknown gas and each sampled sensor array response pattern in benchmark database. This algorithm shows good robustness which can accurately identify gas species and predict gas concentration with a small error of less than 10% based on limited amount of experiment data. These features indicate that Bayesian probabilistic approach is a simple and efficient way to process sensor array data, which can significantly reduce the required computational overhead and training data.« less

  4. Development of advanced high-temperature heat flux sensors. Phase 2: Verification testing

    NASA Technical Reports Server (NTRS)

    Atkinson, W. H.; Cyr, M. A.; Strange, R. R.

    1985-01-01

    A two-phase program is conducted to develop heat flux sensors capable of making heat flux measurements throughout the hot section of gas turbine engines. In Phase 1, three types of heat flux sensors are selected; embedded thermocouple, laminated, and Gardon gauge sensors. A demonstration of the ability of these sensors to operate in an actual engine environment is reported. A segmented liner of each of two combustors being used in the Broad Specification Fuels Combustor program is instrumented with the three types of heat flux sensors then tested in a high pressure combustor rig. Radiometer probes are also used to measure the radiant heat loads to more fully characterize the combustor environment. Test results show the heat flux sensors to be in good agreement with radiometer probes and the predicted data trends. In general, heat flux sensors have strong potential for use in combustor development programs.

  5. Comparison of the high temperature heat flux sensor to traditional heat flux gages under high heat flux conditions.

    SciTech Connect

    Blanchat, Thomas K.; Hanks, Charles R.

    2013-04-01

    Four types of heat flux gages (Gardon, Schmidt-Boelter, Directional Flame Temperature, and High Temperature Heat Flux Sensor) were assessed and compared under flux conditions ranging between 100-1000 kW/m2, such as those seen in hydrocarbon fire or propellant fire conditions. Short duration step and pulse boundary conditions were imposed using a six-panel cylindrical array of high-temperature tungsten lamps. Overall, agreement between all gages was acceptable for the pulse tests and also for the step tests. However, repeated tests with the HTHFS with relatively long durations at temperatures approaching 1000%C2%B0C showed a substantial decrease (10-25%) in heat flux subsequent to the initial test, likely due to the mounting technique. New HTHFS gages have been ordered to allow additional tests to determine the cause of the flux reduction.

  6. Ultra-High Temperature Sensors Based on Optical Property Modulation and Vibration-Tolerant Interferometry

    SciTech Connect

    Nabeel A. Riza

    2007-03-31

    The goals of the this part of the Continuation Phase 2 period (Oct. 1, 06 to March 31, 07) of this project were to (a) fabricate laser-doped SiC wafers and start testing the SiC chips for individual gas species sensing under high temperature and pressure conditions and (b) demonstrate the designs and workings of a temperature probe suited for industrial power generation turbine environment. A focus of the reported work done via Kar UCF LAMP lab. is to fabricate the embedded optical phase or doped microstructures based SiC chips, namely, Chromium (C), Boron (B) and Aluminum (Al) doped 4H-SiC, and to eventually deploy such laser-doped chips to enable gas species sensing under high temperature and pressure. Experimental data is provided from SiC chip optical response for various gas species such as pure N2 and mixtures of N2 and H{sub 2}, N{sub 2} and CO, N{sub 2} and CO{sub 2}, and N{sub 2} and CH{sub 4}. Another main focus of the reported work was a temperature sensor probe assembly design and initial testing. The probe transmit-receive fiber optics were designed and tested for electrically controlled alignment. This probe design was provided to overcome mechanical vibrations in typical industrial scenarios. All these goals have been achieved and are described in detail in the report.

  7. Novel Modified Optical Fibers for High Temperature In-Situ Miniaturized Gas Sensors in Advanced Fossil Energy Systems

    SciTech Connect

    Pickrell, Gary; Scott, Brian

    2014-06-30

    This report covers the technical progress on the program “Novel Modified Optical Fibers for High Temperature In-Situ Miniaturized Gas Sensors in Advanced Fossil Energy Systems”, funded by the National Energy Technology Laboratory of the U.S. Department of Energy, and performed by the Materials Science & Engineering and Electrical & Computer Engineering Departments at Virginia Tech, and summarizes technical progress from July 1st, 2005 –June 30th, 2014. The objective of this program was to develop novel fiber materials for high temperature gas sensors based on evanescent wave absorption in optical fibers. This project focused on two primary areas: the study of a sapphire photonic crystal fiber (SPCF) for operation at high temperature and long wavelengths, and a porous glass based fiber optic sensor for gas detection. The sapphire component of the project focused on the development of a sapphire photonic crystal fiber, modeling of the new structures, fabrication of the optimal structure, development of a long wavelength interrogation system, testing of the optical properties, and gas and temperature testing of the final sensor. The fabrication of the 6 rod SPCF gap bundle (diameter of 70μm) with a hollow core was successfully constructed with lead-in and lead-out 50μm diameter fiber along with transmission and gas detection testing. Testing of the sapphire photonic crystal fiber sensor capabilities with the developed long wavelength optical system showed the ability to detect CO2 at or below 1000ppm at temperatures up to 1000°C. Work on the porous glass sensor focused on the development of a porous clad solid core optical fiber, a hollow core waveguide, gas detection capabilities at room and high temperature, simultaneous gas species detection, suitable joining technologies for the lead-in and lead-out fibers and the porous sensor, sensor system sensitivity improvement, signal processing improvement, relationship between pore structure and fiber

  8. Thin film temperature sensor

    NASA Technical Reports Server (NTRS)

    Grant, H. P.; Przybyszewski, J. S.

    1980-01-01

    Thin film surface temperature sensors were developed. The sensors were made of platinum-platinum/10 percent rhodium thermocouples with associated thin film-to-lead wire connections and sputtered on aluminum oxide coated simulated turbine blades for testing. Tests included exposure to vibration, low velocity hydrocarbon hot gas flow to 1250 K, and furnace calibrations. Thermal electromotive force was typically two percent below standard type S thermocouples. Mean time to failure was 42 hours at a hot gas flow temperature of 1250 K and an average of 15 cycles to room temperature. Failures were mainly due to separation of the platinum thin film from the aluminum oxide surface. Several techniques to improve the adhesion of the platinum are discussed.

  9. [Research on high sensitivity temperature sensor based on Mach-Zehnder interferometer with waist-enlarged fiber bitapers].

    PubMed

    Zhano, Na; Fu, Hai-wei; Shao, Min; Li, Hui-dong; Liu, Ying-gang; Qiao, Xue-guang

    2014-06-01

    Optical fiber sensing technology is one of the very promising techniques in sensing fields. A high sensitivity high temperature sensor based on inline optical fiber Mach-Zehnder(M-Z) interferometer by using standard single mode fiber with two waist-enlarged bitapers is proposed in the present paper. The waist-enlarged bitapers are considered as couplers, the distance between the two bitapers is the sensing arm. The light in the lead-in fiber core couples into the sensing arms' fiber core and cladding by the first bitaper, and then propagate in them. The phase difference between core mode and cladding mode is produced when the light reaches the second bitaper. Then the second bitaper couples the light into the lead-out single-mode fiber to get the interference spectrum. The sensors with different length were fabricated. The relationship between the sensor length and interference period, and the temperature response of the.sensor were studied by experiments. The results show that the 35 mm long sensor has a high sensitivity of 0.115 nm x degrees C(-1) in the range of 30-400 degrees C. The transmission spectrum of the sensor was also analyzed by the fast Fourier transform. It shows that only LP01 mode and LP08 mode propagate in the sensor. Thesensor has advantages of small size, high precision, and immunity to electromagnetic inteference. In addition, it is of easy fabrication, high signal-to-noise ratio, light weight, and high sensitivity, and could be operated under high temperature. This kind of sensor is a good candidate for high temperature measurement of hot gas, oil and gas well logging and other areas. PMID:25358196

  10. High Temperature Capacitive Pressure Sensor Employing a SiC Based Ring Oscillator

    NASA Technical Reports Server (NTRS)

    Meredith, Roger D.; Neudeck, Philip G.; Ponchak, George E.; Beheim, Glenn M.; Scardelletti, Maximilian; Jordan, Jennifer L.; Chen, Liang-Yu; Spry, David J.; Krawowski, Michael J.; Hunter, Gary W.

    2011-01-01

    In an effort to develop harsh environment electronic and sensor technologies for aircraft engine safety and monitoring, we have used capacitive-based pressure sensors to shift the frequency of a SiC-electronics-based oscillator to produce a pressure-indicating signal that can be readily transmitted, e.g. wirelessly, to a receiver located in a more benign environment. Our efforts target 500 C, a temperature well above normal operating conditions of commercial circuits but within areas of interest in aerospace engines, deep mining applications and for future missions to the Venus atmosphere. This paper reports for the first time a ring oscillator circuit integrated with a capacitive pressure sensor, both operating at 500 C. This demonstration represents a significant step towards a wireless pressure sensor that can operate at 500 C and confirms the viability of 500 C electronic sensor systems.

  11. Synthesis and characterization of novel piezoelectric nitrile copolyimide films for high temperature sensor applications

    NASA Astrophysics Data System (ADS)

    Maceiras, A.; Martins, P.; San Sebastián, M.; Lasheras, A.; Silva, M.; Laza, J. M.; Vilas, J. L.; Gutierrez, J.; Lanceros-Mendez, S.; Barandiarán, J. M.; León, L. M.

    2014-10-01

    A series of amorphous polyimides and copolyimides that contained nitrile were obtained by a two-step procedure. The first step consisted of a polycondensation reaction of 4,4’-oxydiphtalic anhydride (ODPA) with one or two aromatic diamines, namely 1,3-Bis-2-cyano-3-(3-aminophenoxy)phenoxybenzene (diamine 2CN) and 1,3-Bis(3-aminophenoxy)benzene (diamine 0CN). In the second step, a thermal cyclodehydration converted each poly(amic acid) or copoly(amic acid) into their corresponding polyimide films. The piezoelectric response was improved after corona poling of the films. A maximum d33 modulus value of 16 pC N-1 was obtained for the polymide with two cyano groups (poly 2CN). The polarization also showed time and thermal stability up to 160 °C. Additionally, the thermal stability of the amorphous polyimides, (β-CN)APB/ODPA, was studied by determining the glass transition temperature (T g ) and thermal decomposition through differential scanning calorimetry (DSC) and thermogravimetric analysis (TG), respectively. The high piezoelectric response (1-16 pC N-1), T g (160-180 °C) and degradation temperature (315-450 °C) make such polyamides excellent candidates for use as high temperature sensors.

  12. Ultrahigh Temperature Capacitive Pressure Sensor

    NASA Technical Reports Server (NTRS)

    Harsh, Kevin

    2014-01-01

    Robust, miniaturized sensing systems are needed to improve performance, increase efficiency, and track system health status and failure modes of advanced propulsion systems. Because microsensors must operate in extremely harsh environments, there are many technical challenges involved in developing reliable systems. In addition to high temperatures and pressures, sensing systems are exposed to oxidation, corrosion, thermal shock, fatigue, fouling, and abrasive wear. In these harsh conditions, sensors must be able to withstand high flow rates, vibration, jet fuel, and exhaust. In order for existing and future aeropropulsion turbine engines to improve safety and reduce cost and emissions while controlling engine instabilities, more accurate and complete sensor information is necessary. High-temperature (300 to 1,350 C) capacitive pressure sensors are of particular interest due to their high measurement bandwidth and inherent suitability for wireless readout schemes. The objective of this project is to develop a capacitive pressure sensor based on silicon carbon nitride (SiCN), a new class of high-temperature ceramic materials, which possesses excellent mechanical and electric properties at temperatures up to 1,600 C.

  13. High density Schottky barrier IRCCD sensors for SWIR applications at intermediate temperature

    NASA Technical Reports Server (NTRS)

    Elabd, H.; Villani, T. S.; Tower, J. R.

    1982-01-01

    Monolithic 32 x 64 and 64 x 1:128 palladium silicide (Pd2Si) interline transfer infrared charge coupled devices (IRCCDs) sensitive in the 1 to 3.5 micron spectral band were developed. This silicon imager exhibits a low response nonuniformity of typically 0.2 to 1.6% rms, and was operated in the temperature range between 40 to 140 K. Spectral response measurements of test Pd2Si p-type Si devices yield quantum efficiencies of 7.9% at 1.25 microns, 5.6% at 1.65 microns 2.2% at 2.22 microns. Improvement in quantum efficiency is expected by optimizing the different structural parameters of the Pd2Si detectors. The spectral response of the Pd2Si detectors fit a modified Fowler emission model. The measured photo-electric barrier height for the Pd2Si detectors is 0.34 eV and the measured quantum efficiency coefficient, C1, is 19%/eV. The dark current level of Pd2Si Schottky barrier focal plane arrays (FPAs) is sufficiently low to enable operation at intermediate temperatures at TV frame rates. Typical dark current level measured at 120 K on the FPA is 2 nA/sq cm. The operating temperature of the Pd2Si FPA is compatible with passive cooler performance. In addition, high density Pd2Si Schottky barrier FPAs are manufactured with high yield and therefore represent an economical approach to short wavelength IR imaging. A Pd2Si Schottky barrier image sensor for push-broom multispectral imaging in the 1.25, 1.65, and 2.22 micron bands is being studied. The sensor will have two line arrays (dual band capability) of 512 detectors each, with 30 micron center-to-center detector spacing. The device will be suitable for chip-to-chip abutment, thus providing the capability to produce large, multiple chip focal planes with contiguous, in-line sensors.

  14. Direct measurement high resolution wide range extreme temperature optical sensor using an all-silicon carbide probe.

    PubMed

    Sheikh, Mumtaz; Riza, Nabeel A

    2009-05-01

    We propose and demonstrate a temperature sensing method using an all-silicon carbide probe that combines wavelength-tuned signal processing for coarse measurements and classical Fabry-Perot etalon peak shift for fine measurements. This method gives direct unambiguous temperature measurements with a high temperature resolution over a wide temperature range. Specifically, temperature measurements from room temperature to 1000 degrees C are experimentally demonstrated with an estimated resolution varying from 0.66 degrees C at room temperature to 0.12 degrees C at 1000 degrees C. The proposed sensor has applications in next-generation greener gas turbines for power production. PMID:19412286

  15. Multiple Waveband Temperature Sensor (MWTS)

    NASA Technical Reports Server (NTRS)

    Bandara, Sumith V.; Gunapala, Sarath; Wilson, Daniel; Stirbl, Robert; Blea, Anthony; Harding, Gilbert

    2006-01-01

    This slide presentation reviews the development of Multiple Waveband Temperature Sensor (MWTS). The MWTS project will result in a highly stable, monolithically integrated, high resolution infrared detector array sensor that records registered thermal imagery in four infrared wavebands to infer dynamic temperature profiles on a laser-irradiated ground target. An accurate surface temperature measurement of a target in extreme environments in a non-intrusive manner is required. The development challenge is to: determine optimum wavebands (suitable for target temperatures, nature of the targets and environments) to measure accurate target surface temperature independent of the emissivity, integrate simultaneously readable multiband Quantum Well Infrared Photodetectors (QWIPs) in a single monolithic focal plane array (FPA) sensor and to integrate the hardware/software and system calibration for remote temperature measurements. The charge was therefore to develop and demonstrate a multiband infrared imaging camera with the detectors simultaneously sensitive to multiple distinct color bands for front surface temperature measurements Wavelength ( m) measurements. Amongst the requirements are: that the measurement system will not affect target dynamics or response to the laser irradiation and that the simplest criterion for spectral band selection is to choose those practically feasible spectral bands that create the most contrast between the objects or scenes of interest in the expected environmental conditions. There is in the presentation a review of the modeling and simulation of multi-wave infrared temperature measurement and also a review of the detector development and QWIP capacities.

  16. Split Stirling linear cryogenic cooler for high-temperature infrared sensors

    NASA Astrophysics Data System (ADS)

    Veprik, A.; Zehter, S.; Vilenchik, H.; Pundak, N.

    2009-05-01

    Infrared imagers play a vital role in the modern tactics of carrying out surveillance, reconnaissance, targeting and navigation operations. The cooled systems are known to be superior to their uncooled competitors in terms of working ranges, resolution and ability to distinguish/track fast moving objects in dynamic infrared scenes. These advantages are primarily due to maintaining the infrared focal plane arrays at cryogenic temperatures using mechanical closed cycle Stirling cryogenic coolers. Recent technological advances in industrial application of high-temperature (up to 200K) infrared detectors has spurred the development of linearly driven microminiature split Stirling cryogenic coolers having inherently longer life spans, lower vibration export and better aural stealth as compared to their rotary driven rivals. Moreover, recent progress in designing highly efficient "moving magnet" resonant linear actuators and dedicated smart electronics have enabled further improvements to the cooler size, weight, power consumption, cooldown time and ownership costs. The authors report on the development and project status of a novel microminiature split Stirling linear cryogenic cooler having a shortened to 19mm cold finger and a high driving frequency (90Hz). The cooler has been specifically designed for cooling 130K infrared sensors of future portable infrared imagers, where compactness, low steady-state power consumption and fast cool-down time are of primary concern.

  17. Wireless contactless pressure measurement of an LC passive pressure sensor with a novel antenna for high-temperature applications

    NASA Astrophysics Data System (ADS)

    Li, Chen; Tan, Qiu-Lin; Xue, Chen-Yang; Zhang, Wen-Dong; Li, Yun-Zhi; Xiong, Ji-Jun

    2015-04-01

    In this paper, a novel antenna is proposed for high-temperature testing, which can make the high-temperature pressure characteristics of a wireless passive ceramic pressure sensor demonstrated at up to a temperature of 600 °C. The design parameters of the antenna are similar to those of the sensor, which will increase the coupling strength between the sensor and testing antenna. The antenna is fabricated in thick film integrated technology, and the properties of the alumina ceramic and silver ensure the feasibility of the antenna in high-temperature environments. The sensor, coupled with the ceramic antenna, is investigated using a high-temperature pressure testing platform. The experimental measurement results show that the pressure signal in a harsh environment can be detected by the frequency diversity of the sensor. Project supported by the National Natural Science Foundation for Distinguished Young Scholars, China (Grant No. 51425505), the National Natural Science Foundation of China (Grant No. 61471324), the Program for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi Province, China (Grant No. 2013-077), and the Graduate Students Outstanding Innovation Project of Shanxi Province, China (Grant No. 20143020).

  18. Temperature-programmed technique accompanied with high-throughput methodology for rapidly searching the optimal operating temperature of MOX gas sensors.

    PubMed

    Zhang, Guozhu; Xie, Changsheng; Zhang, Shunping; Zhao, Jianwei; Lei, Tao; Zeng, Dawen

    2014-09-01

    A combinatorial high-throughput temperature-programmed method to obtain the optimal operating temperature (OOT) of gas sensor materials is demonstrated here for the first time. A material library consisting of SnO2, ZnO, WO3, and In2O3 sensor films was fabricated by screen printing. Temperature-dependent conductivity curves were obtained by scanning this gas sensor library from 300 to 700 K in different atmospheres (dry air, formaldehyde, carbon monoxide, nitrogen dioxide, toluene and ammonia), giving the OOT of each sensor formulation as a function of the carrier and analyte gases. A comparative study of the temperature-programmed method and a conventional method showed good agreement in measured OOT. PMID:25090138

  19. High temperature probe sensor with high sensitivity based on Michelson interferometer

    NASA Astrophysics Data System (ADS)

    Zhao, Na; Fu, Haiwei; Shao, Min; Yan, Xu; Li, Huidong; Liu, Qinpeng; Gao, Hong; Liu, Yinggang; Qiao, Xueguang

    2015-05-01

    A novel Michelson interferometer based on a bi-taper is achieved. Such a device is fabricated by splicing a section of thin core fiber (TCF) at one end of single-mode fiber (SMF). Due to the fiber bi-taper at the splicing point of SMF and TCF, the light is coupled into the fiber core and cladding from lead in fiber core. The light will be reflected at the end of the fiber and then will be recoupled back into the lead out fiber core by the fiber bi-taper. While the light returns back to the lead out fiber, the intermodal interference will occur for the optical path difference between core mode and cladding mode. A high temperature sensitivity of 0.140 nm/°C is achieved from 30 to 800 °C, and the linearity is 99.9%. The configuration features the advantages of easy fabrication, a compact size, high sensitivity, wide sensing range and high mechanical strength, making it a good candidate for distant temperature sensing and oil prospecting.

  20. An Insertable Passive LC Pressure Sensor Based on an Alumina Ceramic for In Situ Pressure Sensing in High-Temperature Environments.

    PubMed

    Xiong, Jijun; Li, Chen; Jia, Pinggang; Chen, Xiaoyong; Zhang, Wendong; Liu, Jun; Xue, Chenyang; Tan, Qiulin

    2015-01-01

    Pressure measurements in high-temperature applications, including compressors, turbines, and others, have become increasingly critical. This paper proposes an implantable passive LC pressure sensor based on an alumina ceramic material for in situ pressure sensing in high-temperature environments. The inductance and capacitance elements of the sensor were designed independently and separated by a thermally insulating material, which is conducive to reducing the influence of the temperature on the inductance element and improving the quality factor of the sensor. In addition, the sensor was fabricated using thick film integrated technology from high-temperature materials that ensure stable operation of the sensor in high-temperature environments. Experimental results showed that the sensor accurately monitored pressures from 0 bar to 2 bar at temperatures up to 800 °C. The sensitivity, linearity, repeatability error, and hysteretic error of the sensor were 0.225 MHz/bar, 95.3%, 5.5%, and 6.2%, respectively. PMID:26334279

  1. An Insertable Passive LC Pressure Sensor Based on an Alumina Ceramic for In Situ Pressure Sensing in High-Temperature Environments

    PubMed Central

    Xiong, Jijun; Li, Chen; Jia, Pinggang; Chen, Xiaoyong; Zhang, Wendong; Liu, Jun; Xue, Chenyang; Tan, Qiulin

    2015-01-01

    Pressure measurements in high-temperature applications, including compressors, turbines, and others, have become increasingly critical. This paper proposes an implantable passive LC pressure sensor based on an alumina ceramic material for in situ pressure sensing in high-temperature environments. The inductance and capacitance elements of the sensor were designed independently and separated by a thermally insulating material, which is conducive to reducing the influence of the temperature on the inductance element and improving the quality factor of the sensor. In addition, the sensor was fabricated using thick film integrated technology from high-temperature materials that ensure stable operation of the sensor in high-temperature environments. Experimental results showed that the sensor accurately monitored pressures from 0 bar to 2 bar at temperatures up to 800 °C. The sensitivity, linearity, repeatability error, and hysteretic error of the sensor were 0.225 MHz/bar, 95.3%, 5.5%, and 6.2%, respectively. PMID:26334279

  2. Electromagnetic Modelling of Fiber Sensors for Low-Cost and High Sensitivity Temperature Monitoring.

    PubMed

    Scarcia, William; Palma, Giuseppe; Falconi, Mario Christian; de Leonardis, Francesco; Passaro, Vittorio M N; Prudenzano, Francesco

    2015-01-01

    An accurate design of an innovative fiber optic temperature sensor is developed. The sensor is based on a cascade of three microstructured optical fibers (MOFs). In the first one a suitable cascade of long period gratings is designed into the core. A single mode intermediate and a rare-earth activated Fabry-Perot optical cavity are the other two sensor MOF sections. An exhaustive theoretic feasibility investigation is performed employing computer code. The complete set-up for temperature monitoring can be obtained by utilizing only a low cost pump diode laser at 980 nm wavelength and a commercial optical power detector. The simulated sensitivity S = 315.1 μW/°C and the operation range ΔT = 100 °C is good enough for actual applications. PMID:26633397

  3. Electromagnetic Modelling of Fiber Sensors for Low-Cost and High Sensitivity Temperature Monitoring

    PubMed Central

    Scarcia, William; Palma, Giuseppe; Falconi, Mario Christian; de Leonardis, Francesco; Passaro, Vittorio M. N.; Prudenzano, Francesco

    2015-01-01

    An accurate design of an innovative fiber optic temperature sensor is developed. The sensor is based on a cascade of three microstructured optical fibers (MOFs). In the first one a suitable cascade of long period gratings is designed into the core. A single mode intermediate and a rare-earth activated Fabry-Perot optical cavity are the other two sensor MOF sections. An exhaustive theoretic feasibility investigation is performed employing computer code. The complete set-up for temperature monitoring can be obtained by utilizing only a low cost pump diode laser at 980 nm wavelength and a commercial optical power detector. The simulated sensitivity S = 315.1 μW/°C and the operation range ΔT = 100 °C is good enough for actual applications. PMID:26633397

  4. High dynamic range temperature-compensated fibre Bragg gratings sensor for structural monitoring of buildings

    NASA Astrophysics Data System (ADS)

    Smeu, E.; Gnewuch, H.; Jackson, D. A.; Podoleanu, A.

    2006-06-01

    The distance changes between structural elements inside a building (e.g. walls, pillars, stairs, etc.) ought to be monitored, especially in seismic-prone areas, in order to assess its stability. Fibre Bragg grating (FBG) sensors are now the most interesting choice for this purpose, since several gratings can be included in the fibre, resulting in a quasi-distributed sensor, which can be illuminated using a single light source and interrogated simply by a single optical spectrum analyzer (OSA), using wavelength multiplexing. The paper deals with such a sensor, which was installed for monitoring the distance changes in a construction joint between two building blocks inside the University "Politehnica" of Bucharest. Since this city is placed in a seismic-prone area, we use a fast scanning OSA, so that the dynamic behavior of the monitored construction joint is expected to be captured during future earthquakes. Slow drifts of the construction joint width will be also monitored. The paper describes the sensor structure and working principle, the experimental tests and main parameters evaluation. The reported sensor is temperature compensated. It has an estimated distance resolution better or equal to 10 μm, and a linearity of +0.2%...-0.35% for displacements up to 0.55 mm. Simulated dynamic tests are also reported.

  5. Optical fiber evanescent wave adsorption sensors for high-temperature gas sensing in advanced coal-fired power plants

    SciTech Connect

    Buric, M.; Ohodnicky, P.; Duy, J.

    2012-01-01

    Modern advanced energy systems such as coal-fired power plants, gasifiers, or similar infrastructure present some of the most challenging harsh environments for sensors. The power industry would benefit from new, ultra-high temperature devices capable of surviving in hot and corrosive environments for embedded sensing at the highest value locations. For these applications, we are currently exploring optical fiber evanescent wave absorption spectroscopy (EWAS) based sensors consisting of high temperature core materials integrated with novel high temperature gas sensitive cladding materials. Mathematical simulations can be used to assist in sensor development efforts, and we describe a simulation code that assumes a single thick cladding layer with gas sensitive optical constants. Recent work has demonstrated that Au nanoparticle-incorporated metal oxides show a potentially useful response for high temperature optical gas sensing applications through the sensitivity of the localized surface plasmon resonance absorption peak to ambient atmospheric conditions. Hence, the simulation code has been applied to understand how such a response can be exploited in an optical fiber based EWAS sensor configuration. We demonstrate that interrogation can be used to optimize the sensing response in such materials.

  6. Palladium-silver-activated ZnO surface: highly selective methane sensor at reasonably low operating temperature.

    PubMed

    Ghosh, Sugato; Roychaudhuri, Chirasree; Bhattacharya, Raghunath; Saha, Hiranmay; Mukherjee, Nillohit

    2014-03-26

    Metal oxide semiconductors (MOS) are well known as reducing gas sensors. However, their selectivity and operating temperature have major limitations. Most of them show cross sensitivity and the operating temperatures are also relatively higher than the value reported here. To resolve these problems, here, we report the use of palladium-silver (70-30%) activated ZnO thin films as a highly selective methane sensor at low operating temperature (∼100 °C). Porous ZnO thin films were deposited on fluorine-doped tin oxide (FTO)-coated glass substrates by galvanic technique. X-ray diffraction showed polycrystalline nature of the films, whereas the morphological analyses (field emission scanning electron microscopy) showed flake like growth of the grains mainly on xy plane with high surface roughness (107 nm). Pd-Ag (70-30%) alloy was deposited on such ZnO films by e-beam evaporation technique with three different patterns, namely, random dots, ultrathin (∼1 nm) layer and thin (∼5 nm) layer as the activation layer. ZnO films with Pd-Ag dotted pattern were found show high selectivity towards methane (with respect to H2S and CO) and sensitivity (∼80%) at a comparatively low operating temperature of about 100°C. This type of sensor was found to have higher methane selectivity in comparison to other commercially available reducing gas sensor. PMID:24564703

  7. Transfer Calibration Validation Tests on a Heat Flux Sensor in the 51 mm High-Temperature Blackbody

    PubMed Central

    Murthy, A. V.; Tsai, B. K.; Saunders, R. D.

    2001-01-01

    Facilities and techniques to characterize heat flux sensors are under development at the National Institute of Standards and Technology. As a part of this effort, a large aperture high-temperature blackbody was commissioned recently. The graphite tube blackbody, heated electrically, has a cavity diameter of 51 mm and can operate up to a maximum temperature of 2773 K. A closed-loop cooling system using a water-to-water heat exchanger cools electrodes and the outer reflecting shield. This paper describes the newly developed blackbody facility and the validation tests conducted using a reference standard Schmidt-Boelter heat flux sensor. The transfer calibration results obtained on the Schmidt-Boelter sensor agreed with the previous data within the experimental uncertainty limits.

  8. Calcium aluminate silicate Ca2Al2SiO7 single crystal applicable to piezoelectric sensors at high temperature

    NASA Astrophysics Data System (ADS)

    Takeda, Hiroaki; Hagiwara, Manabu; Noguchi, Hiroaki; Hoshina, Takuya; Takahashi, Tomoko; Kodama, Nobuhiro; Tsurumi, Takaaki

    2013-06-01

    Ca2Al2SiO7 (CAS) bulk single crystals were grown by the Czochralski method. Material constants of the crystal were determined over the driving temperature range of a typical combustion pressure sensor. The electrical resistivity at 800 °C was found to be of the order of 108 Ωcm. We constructed a measurement system for the direct piezoelectric effect at high temperature, and characterized the crystals in a simulated engine cylinder combustion environment. Output charge signal against applied stress was detected at 700 °C. These observations suggest that CAS crystals are superior candidate materials for high temperature for stress sensing.

  9. A diamond-based scanning probe spin sensor operating at low temperature in ultra-high vacuum

    NASA Astrophysics Data System (ADS)

    Schaefer-Nolte, E.; Reinhard, F.; Ternes, M.; Wrachtrup, J.; Kern, K.

    2014-01-01

    We present the design and performance of an ultra-high vacuum (UHV) low temperature scanning probe microscope employing the nitrogen-vacancy color center in diamond as an ultrasensitive magnetic field sensor. Using this center as an atomic-size scanning probe has enabled imaging of nanoscale magnetic fields and single spins under ambient conditions. In this article we describe an experimental setup to operate this sensor in a cryogenic UHV environment. This will extend the applicability to a variety of molecular systems due to the enhanced target spin lifetimes at low temperature and the controlled sample preparation under UHV conditions. The instrument combines a tuning-fork based atomic force microscope (AFM) with a high numeric aperture confocal microscope and the facilities for application of radio-frequency (RF) fields for spin manipulation. We verify a sample temperature of <50 K even for strong laser and RF excitation and demonstrate magnetic resonance imaging with a magnetic AFM tip.

  10. A diamond-based scanning probe spin sensor operating at low temperature in ultra-high vacuum

    SciTech Connect

    Schaefer-Nolte, E.; Wrachtrup, J.; 3rd Institute of Physics and Research Center SCoPE, University Stuttgart, 70569 Stuttgart ; Reinhard, F.; Ternes, M.; Kern, K.; Institut de Physique de la Matière Condenseé, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne

    2014-01-15

    We present the design and performance of an ultra-high vacuum (UHV) low temperature scanning probe microscope employing the nitrogen-vacancy color center in diamond as an ultrasensitive magnetic field sensor. Using this center as an atomic-size scanning probe has enabled imaging of nanoscale magnetic fields and single spins under ambient conditions. In this article we describe an experimental setup to operate this sensor in a cryogenic UHV environment. This will extend the applicability to a variety of molecular systems due to the enhanced target spin lifetimes at low temperature and the controlled sample preparation under UHV conditions. The instrument combines a tuning-fork based atomic force microscope (AFM) with a high numeric aperture confocal microscope and the facilities for application of radio-frequency (RF) fields for spin manipulation. We verify a sample temperature of <50 K even for strong laser and RF excitation and demonstrate magnetic resonance imaging with a magnetic AFM tip.

  11. Optical temperature sensor using thermochromic semiconductors

    DOEpatents

    Kronberg, J.W.

    1998-06-30

    An optical temperature measuring device utilizes thermochromic semiconductors which vary in color in response to changes in temperature. The thermochromic material is sealed in a glass matrix which allows the temperature sensor to detect high temperatures without breakdown. Cuprous oxide and cadmium sulfide are among the semiconductor materials which provide the best results. The changes in color may be detected visually using a sensor chip and an accompanying color card. 8 figs.

  12. Optical temperature sensor using thermochromic semiconductors

    DOEpatents

    Kronberg, James W.

    1998-01-01

    An optical temperature measuring device utilizes thermochromic semiconductors which vary in color in response to changes in temperature. The thermochromic material is sealed in a glass matrix which allows the temperature sensor to detect high temperatures without breakdown. Cuprous oxide and cadmium sulfide are among the semiconductor materials which provide the best results. The changes in color may be detected visually using a sensor chip and an accompanying color card.

  13. Development of metal-ceramic coaxial cable Fabry-Pérot interferometric sensors for high temperature monitoring

    SciTech Connect

    Trontz, Adam; Cheng, Baokai; Zeng, Shixuan; Xiao, Hai; Dong, Junhang

    2015-09-25

    Metal-ceramic coaxial cable Fabry-Pérot interferometric (MCCC-FPI) sensors have been developed using a stainless steel tube and a stainless steel wire as the outer and inner conductors, respectively; a tubular α-alumina insulator; and a pair of air gaps created in the insulator along the cable to serve as weak reflectors for the transmitting microwave (MW) signal. The MCCC-FPI sensors have been demonstrated for high temperature measurements using MW signals in a frequency range of 2–8 GHz. The temperature measurement is achieved by monitoring the frequency shift (Δƒ) of the MW interferogram reflected from the pair of weak reflectors. The MW sensor exhibited excellent linear dependence of Δƒ on temperature; small measurement deviations (±2.7%); and fast response in a tested range of 200–500 °C. The MCCC has the potential for further developing multipoint FPI sensors in a single-cable to achieve in situ and continuous measurement of spatially distributed temperature in harsh environments.

  14. Development of Metal-Ceramic Coaxial Cable Fabry-Pérot Interferometric Sensors for High Temperature Monitoring

    PubMed Central

    Trontz, Adam; Cheng, Baokai; Zeng, Shixuan; Xiao, Hai; Dong, Junhang

    2015-01-01

    Metal-ceramic coaxial cable Fabry-Pérot interferometric (MCCC-FPI) sensors have been developed using a stainless steel tube and a stainless steel wire as the outer and inner conductors, respectively; a tubular α-alumina insulator; and a pair of air gaps created in the insulator along the cable to serve as weak reflectors for the transmitting microwave (MW) signal. The MCCC-FPI sensors have been demonstrated for high temperature measurements using MW signals in a frequency range of 2–8 GHz. The temperature measurement is achieved by monitoring the frequency shift (Δƒ) of the MW interferogram reflected from the pair of weak reflectors. The MW sensor exhibited excellent linear dependence of Δƒ on temperature; small measurement deviations (±2.7%); and fast response in a tested range of 200–500 °C. The MCCC has the potential for further developing multipoint FPI sensors in a single-cable to achieve in situ and continuous measurement of spatially distributed temperature in harsh environments. PMID:26404280

  15. Temperature insensitive hysteresis free highly sensitive polymer optical fiber Bragg grating humidity sensor.

    PubMed

    Woyessa, Getinet; Nielsen, Kristian; Stefani, Alessio; Markos, Christos; Bang, Ole

    2016-01-25

    The effect of humidity on annealing of poly (methyl methacrylate) (PMMA) based microstructured polymer optical fiber Bragg gratings (mPOFBGs) and the resulting humidity responsivity are investigated. Typically annealing of PMMA POFs is done in an oven without humidity control around 80°C and therefore at low humidity. We demonstrate that annealing at high humidity and high temperature improves the performances of mPOFBGs in terms of stability and sensitivity to humidity. PMMA POFBGs that are not annealed or annealed at low humidity level will have a low and highly temperature dependent sensitivity and a high hysteresis in the humidity response, in particular when operated at high temperature. PMMA mPOFBGs annealed at high humidity show higher and more linear humidity sensitivity with negligible hysteresis. We also report how annealing at high humidity can blue-shift the FBG wavelength more than 230 nm without loss in the grating strength. PMID:26832503

  16. Fiber-Optic Temperature Sensor

    NASA Technical Reports Server (NTRS)

    Maram, Jonathan M.

    1987-01-01

    Proposed sensor measures temperatures over wide range, from cryogenic liquids to burning gases. Made in part of optical fibers, sensor lighter in weight than thermocouple and immune to electromagnetic interference. Device does not respond to temperatures elsewhere than at sensing tip. Thermal expansion and contraction of distance between fiber end and mirror alters interference between light reflected from those two surfaces, thereby giving interferometric indication of temperatures.

  17. A High Temperature-Tolerant and Radiation-Resistant In-Core Neutron Sensor for Advanced Reactors. Final report

    SciTech Connect

    Cao, Lei; Miller, Don

    2015-01-23

    The objectives of this project are to develop a small and reliable gallium nitride (GaN) neutron sensor that is capable of withstanding high neutron fluence and high temperature, isolating gamma background, and operating in a wide dynamic range. The first objective will be the understanding of the fundamental materials properties and electronic response of a GaN semiconductor materials and device in an environment of high temperature and intense neutron field. To achieve such goal, an in-situ study of electronic properties of GaN device such as I-V, leakage current, and charge collection efficiency (CCE) in high temperature using an external neutron beam will be designed and implemented. We will also perform in-core irradiation of GaN up to the highest yet fast neutron fluence and an off-line performance evaluation.

  18. Development of metal-ceramic coaxial cable Fabry-Pérot interferometric sensors for high temperature monitoring

    DOE PAGESBeta

    Trontz, Adam; Cheng, Baokai; Zeng, Shixuan; Xiao, Hai; Dong, Junhang

    2015-09-25

    Metal-ceramic coaxial cable Fabry-Pérot interferometric (MCCC-FPI) sensors have been developed using a stainless steel tube and a stainless steel wire as the outer and inner conductors, respectively; a tubular α-alumina insulator; and a pair of air gaps created in the insulator along the cable to serve as weak reflectors for the transmitting microwave (MW) signal. The MCCC-FPI sensors have been demonstrated for high temperature measurements using MW signals in a frequency range of 2–8 GHz. The temperature measurement is achieved by monitoring the frequency shift (Δƒ) of the MW interferogram reflected from the pair of weak reflectors. The MW sensormore » exhibited excellent linear dependence of Δƒ on temperature; small measurement deviations (±2.7%); and fast response in a tested range of 200–500 °C. The MCCC has the potential for further developing multipoint FPI sensors in a single-cable to achieve in situ and continuous measurement of spatially distributed temperature in harsh environments.« less

  19. Robust high temperature composite and CO sensor made from such composite

    DOEpatents

    Dutta, Prabir K.; Ramasamy, Ramamoorthy; Li, Xiaogan; Akbar, Sheikh A.

    2010-04-13

    Described herein is a composite exhibiting a change in electrical resistance proportional to the concentration of a reducing gas present in a gas mixture, detector and sensor devices comprising the composite, a method for making the composite and for making devices comprising the composite, and a process for detecting and measuring a reducing gas in an atmosphere. In particular, the reducing gas may be carbon monoxide and the composite may comprise rutile-phase TiO2 particles and platinum nanoclusters. The composite, upon exposure to a gas mixture containing CO in concentrations of up to 10,000 ppm, exhibits an electrical resistance proportional to the concentration of the CO present. The composite is useful for making sensitive, low drift, fast recovering detectors and sensors, and for measuring CO concentrations in a gas mixture present at levels from sub-ppm up to 10,000 ppm. The composites, and devices made from the composites, are stable and operable in a temperature range of from about 450.degree. C. to about 700.degree. C., such as may be found in a combustion chamber.

  20. Effect of electrode material and design on sensitivity and selectivity for high temperature impedancemetric NOx sensors

    SciTech Connect

    Woo, L Y; Glass, R S; Novak, R F; Visser, J H

    2009-09-23

    Solid-state electrochemical sensors using two different sensing electrode compositions, gold and strontium-doped lanthanum manganite (LSM), were evaluated for gas phase sensing of NO{sub x} (NO and NO{sub 2}) using an impedance-metric technique. An asymmetric cell design utilizing porous YSZ electrolyte exposed both electrodes to the test gas (i.e., no reference gas). Sensitivity to less than 5 ppm NO and response/recovery times (10-90%) less than 10 s were demonstrated. Using an LSM sensing electrode, virtual identical sensitivity towards NO and NO{sub 2} was obtained, indicating that the equilibrium gas concentration was measured by the sensing electrode. In contrast, for cells employing a gold sensing electrode the NO{sub x} sensitivity varied depending on the cell design: increasing the amount of porous YSZ electrolyte on the sensor surface produced higher NO{sub 2} sensitivity compared to NO. In order to achieve comparable sensitivity for both NO and NO{sub 2}, the cell with the LSM sensing electrode required operation at a lower temperature (575 C) than the cell with the gold sensing electrode (650 C). The role of surface reactions are proposed to explain the differences in NO and NO{sub 2} selectivity using the two different electrode materials.

  1. Improved Reliability of SiC Pressure Sensors for Long Term High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Okojie, R. S.; Nguyen, V.; Savrun, E.; Lukco, D.

    2011-01-01

    We report advancement in the reliability of silicon carbide pressure sensors operating at 600 C for extended periods. The large temporal drifts in zero pressure offset voltage at 600 C observed previously were significantly suppressed to allow improved reliable operation. This improvement was the result of further enhancement of the electrical and mechanical integrity of the bondpad/contact metallization, and the introduction of studded bump bonding on the pad. The stud bump contact promoted strong adhesion between the Au bond pad and the Au die-attach. The changes in the zero offset voltage and bridge resistance over time at temperature were explained by the microstructure and phase changes within the contact metallization, that were analyzed with Auger electron spectroscopy (AES) and field emission scanning electron microscopy (FE-SEM).

  2. High Resolution Non-contact Fluorescence Based Temperature Sensor for Neonatal Care

    PubMed Central

    Lam, HT; Kostov, Y; Tolosa, L; Falk, S; Rao, G

    2012-01-01

    To date, thermistors are used to continuously monitor the body temperature of newborn babies in the neonatal intensive care unit. The thermistor probe is attached to the body with a strong adhesive tape to ensure that the probe stays in place. However, these strong adhesives are shown to increase microbial growth and cause serious skin injuries via epidermal stripping. The latter compromises the skin’s ability to serve as a protective barrier leading to increase in water loss and further microbial infections. In this article a new approach is introduced that eliminates the need for an adhesive. Instead, two kinds of fluorophores are entrapped in a skin friendly chitosan gel that can be easily wiped on and off of the skin, and has antimicrobial properties as well. A CCD camera is used to detect the temperature dependent fluorescence of the fluorophore, tris(1,10-phenthroline)ruthenium(II) while 8-aminopyrene-1,3,6-trisulfonic acid serves as the reference. This temperature sensor was found to have a resolution of at least 0.13°C. PMID:22923882

  3. A high-resolution non-contact fluorescence-based temperature sensor for neonatal care

    NASA Astrophysics Data System (ADS)

    Lam, H. T.; Kostov, Y.; Tolosa, L.; Falk, S.; Rao, G.

    2012-03-01

    To date, thermistors are used to continuously monitor the body temperature of newborn babies in the neonatal intensive care unit. The thermistor probe is attached to the body with a strong adhesive tape to ensure that the probe stays in place. However, these strong adhesives are shown to increase microbial growth and cause serious skin injuries via epidermal stripping. The latter compromises the skin's ability to serve as a protective barrier leading to increase in water loss and further microbial infections. In this paper, a new approach is introduced that eliminates the need for an adhesive. Instead, two kinds of fluorophores are entrapped in a skin-friendly chitosan gel that can be easily wiped on and off of the skin, and has antimicrobial properties as well. A CCD camera is used to detect the temperature-dependent fluorescence of the fluorophore, tris(1,10-phenthroline)ruthenium(II) while 8-aminopyrene-1,3,6-trisulfonic acid serves as the reference. This temperature sensor was found to have a resolution of at least 0.13 °C.

  4. High-resolution and fast-response fiber-optic temperature sensor using silicon Fabry-Pérot cavity.

    PubMed

    Liu, Guigen; Han, Ming; Hou, Weilin

    2015-03-23

    We report a fiber-optic sensor based on a silicon Fabry-Pérot cavity, fabricated by attaching a silicon pillar on the tip of a single-mode fiber, for high-resolution and high-speed temperature measurement. The large thermo-optic coefficient and thermal expansion coefficient of the silicon material give rise to an experimental sensitivity of 84.6 pm/°C. The excellent transparency and large refractive index of silicon over the infrared wavelength range result in a visibility of 33 dB for the reflection spectrum. A novel average wavelength tracking method has been proposed and demonstrated for sensor demodulation with improved signal-to-noise ratio, which leads to a temperature resolution of 6 × 10⁻⁴ °C. Due to the high thermal diffusivity of silicon, a response time as short as 0.51 ms for a sensor with an 80-µm-diameter and 200-µm-long silicon pillar has been experimentally achieved, suggesting a maximum frequency of ~2 kHz can be reached, to address the needs for highly dynamic environmental variations such as those found in the ocean. PMID:25837068

  5. Local magnetometry at high fields and low temperatures using InAs Hall sensors

    NASA Astrophysics Data System (ADS)

    Pugel, E.; Shung, E.; Rosenbaum, T. F.; Watkins, S. P.

    1997-10-01

    We characterize the temperature (0.3⩽T⩽300 K), magnetic field (0⩽H⩽80 kOe), and thickness (0.1, 0.5, and 2.5 μm) dependence of the Hall response of high purity InAs epilayers grown using metalorganic chemical vapor deposition. The high sensitivity, linearity, and temperature independence of the response make them attractive for local Hall probe magnetometry, and uniquely qualified for high field applications below liquid helium temperatures. As a stringent test of performance, we use a six element micron-sized array to monitor the internal field gradient during vortex avalanches at milliKelvin temperatures in a single crystal of YBa2Cu3O7-δ.

  6. Thermogravimetric study of oxidation of a PdCr alloy used for high-temperature sensors

    NASA Technical Reports Server (NTRS)

    Boyd, Darwin L.; Zeller, Mary V.

    1994-01-01

    In this study, the oxidation of Pd-13 weight percent Cr, a candidate alloy for high-temperature strain gages, was investigated by thermogravimetry. Although the bulk alloy exhibits linear electrical resistivity versus temperature and stable resistivity at elevated temperatures, problems attributed to oxidation occur when this material is fabricated into strain gages. In this work, isothermal thermogravimetry (TG) was used to study the oxidation kinetics. Results indicate that the oxidation of Pd-13 weight percent Cr was approximately parabolic in time at 600 C but exhibited greater passivation from 700 to 900 C. At 1100 C, the oxidation rate again increased.

  7. Isolating Gas Sensor From Pressure And Temperature Effects

    NASA Technical Reports Server (NTRS)

    Sprinkle, Danny R.; Chen, Tony T. D.; Chaturvedi, Sushi K.

    1994-01-01

    Two-stage flow system enables oxygen sensor in system to measure oxygen content of low-pressure, possibly-high-temperature atmosphere in test environment while protecting sensor against possibly high temperature and fluctuations in pressure of atmosphere. Sensor for which flow system designed is zirconium oxide oxygen sensor sampling atmospheres in high-temperature wind tunnels. Also adapted to other gas-analysis instruments that must be isolated from pressure and temperature effects of test environments.

  8. Battery system with temperature sensors

    DOEpatents

    Wood, Steven J.; Trester, Dale B.

    2012-11-13

    A battery system to monitor temperature includes at least one cell with a temperature sensing device proximate the at least one cell. The battery system also includes a flexible member that holds the temperature sensor proximate to the at least one cell.

  9. Novel ultrahigh resolution optical fibre temperature sensor

    NASA Astrophysics Data System (ADS)

    Poeggel, Sven; Duraibabu, Dineshbabu; Dooly, Gerard; Lewis, Elfed; Leen, Gabriel

    2016-05-01

    In this paper a novel patent pending high resolution optical fibre temperature sensor, based on an optical fibre pressure and temperature sensor (OFTPS), which is surrounded by an oil filled chamber, is presented. The OFPTS is based on a Fabry Perot interferometer (FPI) which has an embedded fibre Bragg grating (FBG). The high ratio between the volume of the oil filled outer cavity and the FPIs air filled cavity, results in a highly sensitive temperature sensor. The FBG element of the device can be used for wide range temperature measurements, and combining this capability with the high resolution capability of the FPI/oil cavity results in a wide range and high resolution temperature sensing device. The outer diameter of the sensor is less than 1mm in diameter and can be designed to be even smaller. The sensors temperature response was measured in a range of ΔT = 7K and resulted in a shift in the optical spectrum of ΔλF = 61.42nm. Therefore the Q-point of the reflected optical FPI spectrum is shifting with a sensitivity of sot = 8.77 nm/K . The sensitivity can easily be further increased by changing the oil/air volumetric ratio and therefore adapt the sensor to a wide variety of applications.

  10. High sensitivity high temperature sensor based on SMS structure with large-core all-solid bandgap fiber as the multimode section

    NASA Astrophysics Data System (ADS)

    Franco, Marcos A. R.; Cruz, Alice L. S.; Serrão, Valdir A.; Barbosa, Carmem L.

    2014-05-01

    A fiber optic interferometric device based on a singlemode-multimode-singlemode (SMS) structure is proposed as a high sensitive high temperature sensor. The multimode section (MMF) consists of a large-core all-solid photonic bandgap fiber (AS-PBF) with silica as the background material and germanium-doped silica at the high index regions. The numerical analyses were carried out by beam propagation method. The numerical results indicate a constant high temperature sensitivity of ~-35 pm/°C over a large temperature range from 20oC to 930°C.

  11. Temperature Modulation of a Catalytic Gas Sensor

    PubMed Central

    Brauns, Eike; Morsbach, Eva; Kunz, Sebastian; Baeumer, Marcus; Lang, Walter

    2014-01-01

    The use of catalytic gas sensors usually offers low selectivity, only based on their different sensitivities for various gases due to their different heats of reaction. Furthermore, the identification of the gas present is not possible, which leads to possible misinterpretation of the sensor signals. The use of micro-machined catalytic gas sensors offers great advantages regarding the response time, which allows advanced analysis of the sensor response. By using temperature modulation, additional information about the gas characteristics can be measured and drift effects caused by material shifting or environmental temperature changes can be avoided. In this work a miniaturized catalytic gas sensor which offers a very short response time (<150 ms) was developed. Operation with modulated temperature allows analysis of the signal spectrum with advanced information content, based on the Arrhenius approach. Therefore, a high-precise electronic device was developed, since theory shows that harmonics induced by the electronics must be avoided to generate a comprehensible signal. PMID:25356643

  12. High-bandwidth scanned-wavelength-modulation spectroscopy sensors for temperature and H2O in a rotating detonation engine

    NASA Astrophysics Data System (ADS)

    Goldenstein, Christopher S.; Almodóvar, Christopher A.; Jeffries, Jay B.; Hanson, Ronald K.; Brophy, Christopher M.

    2014-10-01

    The design and use of two-color tunable diode laser (TDL) absorption sensors for measurements of temperature and H2O in a rotating detonation engine (RDE) are presented. Both sensors used first-harmonic-normalized scanned-wavelength-modulation spectroscopy with second-harmonic detection (scanned-WMS-2f/1f) to account for non-absorbing transmission losses and emission encountered in the harsh combustion environment. One sensor used two near-infrared (NIR) TDLs near 1391.7 nm and 1469.3 nm that were modulated at 225 kHz and 285 kHz, respectively, and sinusoidally scanned across the peak of their respective H2O absorption transitions to provide a measurement rate of 50 kHz and a detection limit in the RDE of 0.2% H2O by mole. The other sensor used two mid-infrared (MIR) TDLs near 2551 nm and 2482 nm that were modulated at 90 kHz and 112 kHz, respectively, and sinusoidally scanned across the peak of their respective H2O transitions to provide a measurement rate of 10 kHz and a detection limit in the RDE of 0.02% H2O by mole. Four H2O absorption transitions with different lower-state energies were used to assess the homogeneity of temperature in the measurement plane. Experimentally derived spectroscopic parameters that enable temperature and H2O sensing to within 1.5-3.5% of known values are reported. The sensor design enabling the high-bandwidth scanned-WMS-2f/1f measurements is presented. The two sensors were deployed across two orthogonal and coplanar lines-of-sight (LOS) located in the throat of a converging-diverging nozzle at the RDE combustor exit. Measurements in the non-premixed H2-fueled RDE indicate that the temperature and H2O oscillate at the detonation frequency (≈3.25 kHz) and that production of H2O is a weak function of global equivalence ratio.

  13. High- and Mid-temperature Superconducting Sensors for Far IR/Sub-mm Applications in Space

    NASA Technical Reports Server (NTRS)

    Lakew, Brook; Brasunas, J. C.

    2004-01-01

    In this review paper an overview of the potential applications of high Tc (approx. 90 K) superconductors (HTS) and mid-Tc (approx. 39 K) superconductors (MTS) thin films in far IR/Sub-mm thermal detectors is presented. HTSs (YBCO, GdBCO etc.) were discovered in the late 80s while superconductivity in MgB2, an MTS, was discovered in 2001. The sharp transition in transport properties of HTS has allowed the fabrication of composite infrared thermal detectors (bolometers) with better figures of merit than thermopile detectors - thermopiles are currently on board the CIRS instrument on the Cassini mission to Saturn. The potential for developing even more sensitive sensors for IR/Sub-mm applications using MgB2 thin films is assessed. Current MgB2 thin film deposition techniques and film quality are reviewed.

  14. Effects of AlN Coating Layer on High Temperature Characteristics of Langasite SAW Sensors.

    PubMed

    Shu, Lin; Peng, Bin; Cui, Yilin; Gong, Dongdong; Yang, Zhengbing; Liu, Xingzhao; Zhang, Wanli

    2016-01-01

    High temperature characteristics of langasite surface acoustic wave (SAW) devices coated with an AlN thin film have been investigated in this work. The AlN films were deposited on the prepared SAW devices by mid-frequency magnetron sputtering. The SAW devices coated with AlN films were measured from room temperature to 600 °C. The results show that the SAW devices can work up to 600 °C. The AlN coating layer can protect and improve the performance of the SAW devices at high temperature. The SAW velocity increases with increasing AlN coating layer thickness. The temperature coefficients of frequency (TCF) of the prepared SAW devices decrease with increasing thickness of AlN coating layers, while the electromechanical coupling coefficient (K²) of the SAW devices increases with increasing AlN film thickness. The K² of the SAW devices increases by about 20% from room temperature to 600 °C. The results suggest that AlN coating layer can not only protect the SAW devices from environmental contamination, but also improve the K² of the SAW devices. PMID:27608027

  15. Intelligent process monitoring of multilayer ceramic actuators using high temperature optical fiber displacement sensors

    SciTech Connect

    Gunther, M.F.; Claus, R.O.; Ritter, A.; Tran, T.A.; Greene, J.A.

    1994-12-31

    The Fiber and Electro-Optics Research Center (FEORC) has developed a sensing technique for the intelligent processing of a multilayer ceramic actuator (MCA) elements manufactured by the AVX Corporation in Conway, SC. Presented are the results of the fiber optic strain sensor used to monitor the burnout of organic binders from a green actuator sample. The results establish the operation of the short gage length, low finesse Fabry-Perot interferometric strain sensor as a tool for intelligent processing of such ceramic actuator elements. Also presented is the method of sensor operation, and post processing results using the same sensor for tracking actuator performance and hysteresis.

  16. Strain-independent high-temperature sensor with a suspended-core fiber based Mach-Zehnder interferometer

    NASA Astrophysics Data System (ADS)

    Zhang, Yufeng; Yu, Yongqin; Du, Chenlin; Ruan, Shuangchen; Chen, Xue; Huang, Quandong; Zhou, Wen

    2016-05-01

    A simple Mach-Zehnder interferometer (MZI) was presented for high temperature measurement. The device was composed of a short segment of suspended-core fiber (SCF) sandwiched between two standard single mode fibers (SMFs) with a misaligned splicing joint. Lower temperature measurements were firstly carried out from room temperature to 190 °C, and the obtained sensitivity at the wavelength of 1465 nm was 25.82 pm/°C. However, a nonlinear response was further achieved for high-temperature sensing up to 1000 °C. Between 20 and 200 °C, the sensitivity was just 24.24 pm/°C at the wavelength of 1457 nm, whereas a higher sensitivity of 53.87 pm/°C was acquired in the range of 200-1000 °C. In addition, the strain cross-sensitivity was extremely low. As a result, the device can be developed as a strain-independent temperature sensor and become an excellent candidate for high temperature measurement.

  17. High-Resolution Mapping of Thermal History in Polymer Nanocomposites: Gold Nanorods as Microscale Temperature Sensors.

    PubMed

    Kennedy, W Joshua; Slinker, Keith A; Volk, Brent L; Koerner, Hilmar; Godar, Trenton J; Ehlert, Gregory J; Baur, Jeffery W

    2015-12-23

    A technique is reported for measuring and mapping the maximum internal temperature of a structural epoxy resin with high spatial resolution via the optically detected shape transformation of embedded gold nanorods (AuNRs). Spatially resolved absorption spectra of the nanocomposites are used to determine the frequencies of surface plasmon resonances. From these frequencies the AuNR aspect ratio is calculated using a new analytical approximation for the Mie-Gans scattering theory, which takes into account coincident changes in the local dielectric. Despite changes in the chemical environment, the calculated aspect ratio of the embedded nanorods is found to decrease over time to a steady-state value that depends linearly on the temperature over the range of 100-200 °C. Thus, the optical absorption can be used to determine the maximum temperature experienced at a particular location when exposure times exceed the temperature-dependent relaxation time. The usefulness of this approach is demonstrated by mapping the temperature of an internally heated structural epoxy resin with 10 μm lateral spatial resolution. PMID:26618850

  18. Investigation of Ca3TaGa3Si2O14 piezoelectric crystals for high temperature sensors

    NASA Astrophysics Data System (ADS)

    Yu, Fapeng; Zhang, Shujun; Zhao, Xian; Yuan, Duorong; Qin, Lifeng; Wang, Qing-ming; Shrout, Thomas R.

    2011-06-01

    The dielectric and electromechanical properties of fully ordered Ca3TaGa3Si2O14 (CTGS) crystals were investigated over the temperature range of -60˜700 °C. The highest electromechanical coupling factor, k26 (18.9%) and piezoelectric coefficient, d26 (-11.5 pC/N) were obtained for (YXl)-25° cuts. The temperature dependent behavior of resonance frequency (fr) was investigated in single-rotated thickness shear mode (TSM) (YXl)θ cuts (θ = -35°˜10°). The turnover temperatures of resonance frequency were found to increase from 20 °C to 330 °C, as the rotation angle θ varied from -22.5° to -35°. Bulk acoustic wave (BAW) resonators based on Y(-30°) monolithic disks with a fundamental frequency ˜2.87 MHz were fabricated, where the in air mechanical quality factor Q was found to be on the order of 24000 and 10000 at 20 °C and 700 °C, respectively. The high coupling k26, high mechanical Q, and high electrical resistivity (16 MΩ.cm) at 700 °C, together with the near zero TCF characteristics at elevated temperatures, demonstrate the potential of CTGS crystals for high temperature sensor applications.

  19. A High-Temperature Fiber Sensor Using a Low Cost Interrogation Scheme

    PubMed Central

    Barrera, David; Sales, Salvador

    2013-01-01

    Regenerated Fibre Bragg Gratings have the potential for high-temperature monitoring. In this paper, the inscription of Fibre Bragg Gratings (FBGs) and the later regeneration process to obtain Regenerated Fiber Bragg Gratings (RFBGs) in high-birefringence optical fiber is reported. The obtained RFBGs show two Bragg resonances corresponding to the slow and fast axis that are characterized in temperature terms. As the temperature increases the separation between the two Bragg resonances is reduced, which can be used for low cost interrogation. The proposed interrogation setup is based in the use of optical filters in order to convert the wavelength shift of each of the Bragg resonances into optical power changes. The design of the optical filters is also studied in this article. In first place, the ideal filter is calculated using a recursive method and defining the boundary conditions. This ideal filter linearizes the output of the interrogation setup but is limited by the large wavelength shift of the RFBG with temperature and the maximum attenuation. The response of modal interferometers as optical filters is also analyzed. They can be easily tuned shifting the optical spectrum. The output of the proposed interrogation scheme is simulated in these conditions improving the sensitivity. PMID:24008282

  20. Embedded Temperature-Change Sensors

    NASA Technical Reports Server (NTRS)

    Thakoor, Sarita; Thakoor, Anil; Karmon, Dan

    1995-01-01

    Transducers sensitive to rates of change of temperature embedded in integrated circuits and discrete electronic components damaged by overheating, according to proposal. Used to detect onset of rapid heating and to trigger shutoffs of power or other corrective actions before temperatures rise beyond safe limits. Sensors respond fast and reliably to incipient overheating because they are in direct thermal contact with vulnerable circuit elements.

  1. Highly Sensitive Temperature Sensors Based on Fiber-Optic PWM and Capacitance Variation Using Thermochromic Sensing Membrane.

    PubMed

    Khan, Md Rajibur Rahaman; Kang, Shin-Won

    2016-01-01

    In this paper, we propose a temperature/thermal sensor that contains a Rhodamine-B sensing membrane. We applied two different sensing methods, namely, fiber-optic pulse width modulation (PWM) and an interdigitated capacitor (IDC)-based temperature sensor to measure the temperature from 5 °C to 100 °C. To the best of our knowledge, the fiber-optic PWM-based temperature sensor is reported for the first time in this study. The proposed fiber-optic PWM temperature sensor has good sensing ability; its sensitivity is ~3.733 mV/°C. The designed temperature-sensing system offers stable sensing responses over a wide dynamic range, good reproducibility properties with a relative standard deviation (RSD) of ~0.021, and the capacity for a linear sensing response with a correlation coefficient of R² ≈ 0.992 over a wide sensing range. In our study, we also developed an IDC temperature sensor that is based on the capacitance variation principle as the IDC sensing element is heated. We compared the performance of the proposed temperature-sensing systems with different fiber-optic temperature sensors (which are based on the fiber-optic wavelength shift method, the long grating fiber-optic Sagnac loop, and probe type fiber-optics) in terms of sensitivity, dynamic range, and linearity. We observed that the proposed sensing systems have better sensing performance than the above-mentioned sensing system. PMID:27409620

  2. Highly Sensitive Temperature Sensors Based on Fiber-Optic PWM and Capacitance Variation Using Thermochromic Sensing Membrane

    PubMed Central

    Khan, Md. Rajibur Rahaman; Kang, Shin-Won

    2016-01-01

    In this paper, we propose a temperature/thermal sensor that contains a Rhodamine-B sensing membrane. We applied two different sensing methods, namely, fiber-optic pulse width modulation (PWM) and an interdigitated capacitor (IDC)-based temperature sensor to measure the temperature from 5 °C to 100 °C. To the best of our knowledge, the fiber-optic PWM-based temperature sensor is reported for the first time in this study. The proposed fiber-optic PWM temperature sensor has good sensing ability; its sensitivity is ~3.733 mV/°C. The designed temperature-sensing system offers stable sensing responses over a wide dynamic range, good reproducibility properties with a relative standard deviation (RSD) of ~0.021, and the capacity for a linear sensing response with a correlation coefficient of R2 ≈ 0.992 over a wide sensing range. In our study, we also developed an IDC temperature sensor that is based on the capacitance variation principle as the IDC sensing element is heated. We compared the performance of the proposed temperature-sensing systems with different fiber-optic temperature sensors (which are based on the fiber-optic wavelength shift method, the long grating fiber-optic Sagnac loop, and probe type fiber-optics) in terms of sensitivity, dynamic range, and linearity. We observed that the proposed sensing systems have better sensing performance than the above-mentioned sensing system. PMID:27409620

  3. Development of self-powered wireless high temperature electrochemical sensor for in situ corrosion monitoring of coal-fired power plant.

    PubMed

    Aung, Naing Naing; Crowe, Edward; Liu, Xingbo

    2015-03-01

    Reliable wireless high temperature electrochemical sensor technology is needed to provide in situ corrosion information for optimal predictive maintenance to ensure a high level of operational effectiveness under the harsh conditions present in coal-fired power generation systems. This research highlights the effectiveness of our novel high temperature electrochemical sensor for in situ coal ash hot corrosion monitoring in combination with the application of wireless communication and an energy harvesting thermoelectric generator (TEG). This self-powered sensor demonstrates the successful wireless transmission of both corrosion potential and corrosion current signals to a simulated control room environment. PMID:25284768

  4. Thermal properties of a fiber-optic radiation sensor for measuring gamma-rays in high-temperature conditions

    NASA Astrophysics Data System (ADS)

    Jeon, Dayeong; Yoo, Wook Jae; Shin, Sang Hun; Hong, Seunghan; Sim, Hyeok In; Kim, Seon Geun; Jang, Jae Seok; Jang, Kyoung Won; Lee, Bongsoo; Park, Byung Gi; Moon, Joo Hyun

    2015-01-01

    A fiber-optic radiation sensor (FORS) was fabricated using a cerium-doped silicate-yttriumlutetium (LYSO:Ce) scintillator crystal and a silica optical fiber (SOF) to measure gamma-rays accurately in elevated temperature conditions. Throughout this study, a LYSO:Ce crystal was employed as a sensing material of the FORS due to its high light yield (32,000 photons/MeV), fast decay time (≤ 47 ns) and high detection efficiency. Although the LYSO:Ce crystal has many desirable qualities, the thermoluminescence (TL) should be eliminated by using a heat annealing process because the light yield of the LYSO:Ce crystal varies with its TL. In this study, therefore, we obtained the TL curve of the LYSO:Ce crystal by increasing the temperature up to 280 ℃, and we demonstrated that almost all of the TL of the LYSO:Ce crystal was eliminated by the heat annealing process.

  5. Battery system with temperature sensors

    SciTech Connect

    Wood, Steven J; Trester, Dale B

    2014-02-04

    A battery system includes a platform having an aperture formed therethrough, a flexible member having a generally planar configuration and extending across the aperture, wherein a portion of the flexible member is coextensive with the aperture, a cell provided adjacent the platform, and a sensor coupled to the flexible member and positioned proximate the cell. The sensor is configured to detect a temperature of the cell.

  6. High-Temperature Piezoelectric Sensing

    PubMed Central

    Jiang, Xiaoning; Kim, Kyungrim; Zhang, Shujun; Johnson, Joseph; Salazar, Giovanni

    2014-01-01

    Piezoelectric sensing is of increasing interest for high-temperature applications in aerospace, automotive, power plants and material processing due to its low cost, compact sensor size and simple signal conditioning, in comparison with other high-temperature sensing techniques. This paper presented an overview of high-temperature piezoelectric sensing techniques. Firstly, different types of high-temperature piezoelectric single crystals, electrode materials, and their pros and cons are discussed. Secondly, recent work on high-temperature piezoelectric sensors including accelerometer, surface acoustic wave sensor, ultrasound transducer, acoustic emission sensor, gas sensor, and pressure sensor for temperatures up to 1,250 °C were reviewed. Finally, discussions of existing challenges and future work for high-temperature piezoelectric sensing are presented. PMID:24361928

  7. Transpiration-purged optical probe: a novel sensor for high temperature harsh environments

    SciTech Connect

    VanOsdol, J.G.; Woodruff, S.D.; Straub, D.L.

    2007-10-05

    Typical control systems that are found in modern power plants must control the many physical aspects of the complex processes that occur inside the various components of the power plant. As detection and monitoring of pollutants becomes increasingly important to plant operation, these control systems will become increasingly complex, and will depend upon accurate monitoring of the concentration levels of the various chemical species that are found in the gas streams. In many cases this monitoring can be done optically. Optical access can also be used to measure thermal emissions and the particulate loading levels in the fluid streams. Some typical environments were optical access is needed are combustion chambers, reactor vessels, the gas and solid flows in fluidized beds, hot gas filters and heat exchangers. These applications all have harsh environments that are at high temperatures and pressures. They are often laden with products of combustion and other fine particulate matter which is destructive to any optical window that could be used to monitor the processes in these environments in order to apply some control scheme over the process. The dust and char that normally collects on the optical surfaces reduces the optical quality and thus impairs the ability of the optical surface to transmit data. Once this has occurred, there is generally no way to clean the optical surface during operation. The probe must be dismounted from the vessel, disassembled and cleaned or replaced, then remounted. This would require the shutdown of the particular component of the plant where optical monitoring is required. This renders the probe ineffective to be used as the monitoring part of any control system application. The components of optical monitoring equipment are usually built in supporting structures that require precise alignment. This is almost always accomplished using fine scale adjustments to specialized mounting hardware that is attached to the reactor vessel. When

  8. Optical temperature sensor using thermochromic semiconductors

    DOEpatents

    Kronberg, J.W.

    1996-08-20

    An optical temperature measuring device utilizes thermochromic semiconductors which vary in color in response to changes in temperature. The thermochromic material is sealed in a glass matrix which allows the temperature sensor to detect high temperatures without breakdown. Cuprous oxide and cadmium sulfide are among the semiconductor materials which provide the best results. The changes in color may be detected visually or by utilizing an optical fiber and an electrical sensing circuit. 7 figs.

  9. Optical temperature sensor using thermochromic semiconductors

    DOEpatents

    Kronberg, James W.

    1996-01-01

    An optical temperature measuring device utilizes thermochromic semiconductors which vary in color in response to changes in temperature. The thermochromic material is sealed in a glass matrix which allows the temperature sensor to detect high temperatures without breakdown. Cuprous oxide and cadmium sulfide are among the semiconductor materials which provide the best results. The changes in color may be detected visually or by utilizing an optical fiber and an electrical sensing circuit.

  10. Fracture Evaluation of In-Situ Sensors for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Forth, Scott C.; Staroselsky, Alexander

    2003-01-01

    The feasibility of fabricating an in-situ crack sensor for real-time detection of surface cracks propagating in engine components was evaluated using a computational fracture mechanics model. The in-situ sensor system would be required to: (1) Be capable of sustaining normal function in a severe environment; (2) Transmit a signal if a detected crack in the component was above a predetermined length, but below a critical length that would lead to failure; (3) Act neutrally upon the overall performance of the engine system and not interfere with the engine maintenance operations. In this work, fracture mechanics methodologies are used to identify the requirements for an in-situ sensor system that could withstand the engine operating environment, foreign object damage, and minimally degrade engine performance. A computational fracture mechanics model was developed to evaluate the feasibility of fabricating an in-situ crack sensor for real-time damage propagation detection in engine components.

  11. Thermally Stable Ohmic Contacts on Silicon Carbide Developed for High- Temperature Sensors and Electronics

    NASA Technical Reports Server (NTRS)

    Okojie, Robert S.

    2001-01-01

    The NASA aerospace program, in particular, requires breakthrough instrumentation inside the combustion chambers of engines for the purpose of, among other things, improving computational fluid dynamics code validation and active engine behavioral control (combustion, flow, stall, and noise). This environment can be as high as 600 degrees Celsius, which is beyond the capability of silicon and gallium arsenide devices. Silicon-carbide- (SiC-) based devices appear to be the most technologically mature among wide-bandgap semiconductors with the proven capability to function at temperatures above 500 degrees Celsius. However, the contact metalization of SiC degrades severely beyond this temperature because of factors such as the interdiffusion between layers, oxidation of the contact, and compositional and microstructural changes at the metal/semiconductor interface. These mechanisms have been proven to be device killers. Very costly and weight-adding packaging schemes that include vacuum sealing are sometimes adopted as a solution.

  12. Pristine carbon nanotubes based resistive temperature sensor

    NASA Astrophysics Data System (ADS)

    Alam, Md Bayazeed; Saini, Sudhir Kumar; Sharma, Daya Shankar; Agarwal, Pankaj B.

    2016-04-01

    A good sensor must be highly sensitive, faster in response, of low cost cum easily producible, and highly reliable. Incorporation of nano-dimensional particles/ wires makes conventional sensors more effective in terms of fulfilling the above requirements. For example, Carbon Nanotubes (CNTs) are promising sensing element because of its large aspect ratio, unique electronic and thermal properties. In addition to their use for widely reported chemical sensing, it has also been explored for temperature sensing. This paper presents the fabrication of CNTs based temperature sensor, prepared on silicon substrate using low cost spray coating method, which is reliable and reproducible method to prepare uniform CNTs thin films on any substrate. Besides this, simple and inexpensive method of preparation of dispersion of single walled CNTs (SWNTs) in 1,2 dichlorobenzene by using probe type ultrasonicator for debundling the CNTs for improving sensor response were used. The electrical contacts over the dispersed SWNTs were taken using silver paste electrodes. Fabricated sensors clearly show immediate change in resistance as a response to change in temperature of SWNTs. The measured sensitivity (change in resistance with temperature) of the sensor was found ˜ 0.29%/°C in the 25°C to 60°C temperature range.

  13. Fiber-optic temperature sensor

    SciTech Connect

    O`Rourke, P.E.; Livingston, R.R.; Jantzen, C.M.; Ramsey, W.G.; Hopkins, C.D.

    1993-10-01

    Researchers at the Savannah River Technology Center (SRTC) have developed a class of fiber-optic temperature sensors based upon temperature induced changes in the absorption spectrum of selected materials. For example, a neodymium (Nd) doped glass sensor can be used over a very broad temperature range ({minus}196 to 500{degree}C) and provide good precision and accuracy ({plus_minus}1{degree}C). This type temperature probe is constructed so that light from a fiber optic cable shines through the Nd glass and is reflected onto a second fiber optic cable. Light from this second fiber optic is measured by a diode array spectrophotometer, and the absorption spectrum of the Nd glass used to compute temperature.

  14. High Energy Laser Diagnostic Sensors

    NASA Astrophysics Data System (ADS)

    Luke, James R.; Goddard, Douglas N.; Lewis, Jay; Thomas, David

    2010-10-01

    Recent advancements in high energy laser (HEL) sources have outpaced diagnostic tools capable of accurately quantifying system performance. Diagnostic tools are needed that allow system developers to measure the parameters that define HEL effectiveness. The two critical parameters for quantifying HEL effectiveness are the irradiance on target and resultant rise in target temperature. Off-board sensing has its limitations, including unpredictable changes in the reflectivity of the target, smoke and outgassing, and atmospheric distortion. On-board sensors overcome the limitations of off-board techniques but must survive high irradiance levels and extreme temperatures. We have developed sensors for on-target diagnostics of high energy laser beams and for the measurement of the thermal response of the target. The conformal sensors consist of an array of quantum dot photodetectors and resistive temperature detectors. The sensor arrays are lithographically fabricated on flexible substrates and can be attached to a variety of laser targets. We have developed a nanoparticle adhesive process that provides good thermal contact with the target and that ensures the sensor remains attached to the target for as long as the target survives. We have calibrated the temperature and irradiance sensors and demonstrated them in a HEL environment.

  15. Low drift and high resolution miniature optical fiber combined pressure- and temperature sensor for cardio-vascular and urodynamic applications

    NASA Astrophysics Data System (ADS)

    Poeggel, Sven; Tosi, Daniele; Duraibabu, Dineshbabu; Sannino, Simone; Lupoli, Laura; Ippolito, Juliet; Fusco, Fernando; Mirone, Vincenzo; Leen, Gabriel; Lewis, Elfed

    2014-05-01

    The all-glass optical fibre pressure and temperature sensor (OFPTS), present here is a combination of an extrinsic Fabry Perot Interferometer (EFPI) and an fiber Bragg gratings (FBG), which allows a simultaneously measurement of both pressure and temperature. Thermal effects experienced by the EFPI can be compensated by using the FBG. The sensor achieved a pressure measurement resolution of 0.1mmHg with a frame-rate of 100Hz and a low drift rate of < 1 mmHg/hour drift. The sensor has been evaluated using a cardiovascular simulator and additionally has been evaluated in-vivo in a urodynamics application under medical supervision.

  16. Active thermal isolation for temperature responsive sensors

    NASA Technical Reports Server (NTRS)

    Martinson, Scott D. (Inventor); Gray, David L. (Inventor); Carraway, Debra L. (Inventor); Reda, Daniel C. (Inventor)

    1994-01-01

    A temperature responsive sensor is located in the airflow over the specified surface of a body and is maintained at a constant temperature. An active thermal isolator is located between this temperature responsive sensor and the specified surface of the body. The temperature of this isolator is controlled to reduce conductive heat flow from the temperature responsive sensor to the body. This temperature control includes: (1) operating the isolator at the same temperature as the constant temperature of the sensor and (2) establishing a fixed boundary temperature which is either less than or equal to or slightly greater than the sensor constant temperature.

  17. Drexel University Temperature Sensors

    SciTech Connect

    K. L. Davis; D. L. Knudson; J. L. Rempe; B. M. Chase

    2014-09-01

    This document summarizes background information and presents results related to temperature measurements in the Advanced Test Reactor (ATR) National Scientific User Facility (NSUF) Drexel University Project 31091 irradiation. The objective of this test was to assess the radiation performance of new ceramic materials for advanced reactor applications. Accordingly, irradiations of transition metal carbides and nitrides were performed using the Hydraulic Shuttle Irradiation System (HSIS) in the B-7 position and in static capsules inserted into the A-3 and East Flux Trap Position 5 locations of the ATR.

  18. Fiber Grating Sensor System to Measure Velocity, Position, Pressure, and Temperature during Burn, Deflagration and Detonation of Highly Energetic Events

    NASA Astrophysics Data System (ADS)

    Udd, Eric

    2013-06-01

    A novel very high speed fiber grating sensor system has been used to support velocity, position, temperature and pressure measurements during burn, deflagration and detonation of energetic materials including explosives and rocket propellant in Russian DDT tests. For the first time the system has been demonstrated in card gap testing and has allowed real time measurements of the position of the blast front into the card gap and monitoring of pressure at key locations in the card gap test. Fiber grating sensors are capable of providing a continuous measurement of the position, velocity, local pressure and temperature of energetic materials during the early stages of detonation and the transition to full detonation represents a significant advance in diagnostic capabilities. These measurements provide insight into this dynamic regime detonation physics. Continuous velocity and burn back position measurements are significantly more accurate in determining this run-up in velocity relative to single point measurements which yield only the average velocity measurement between the individual pin placement points. This work describes the first demonstration of this technology to card gap testing.

  19. Resonant Soft X-ray Scattering studies of charge orders in high-temperature cuperates with Transition Edge Sensors

    NASA Astrophysics Data System (ADS)

    Fang, Yizhi; Abbamonte, Peter; Rodolakis, Fanny; McChesney, Jessica; Tatsuno, Hideyuki; Joe, Young Il; Fowler, Joe; Morgan, Kelsey; Doriese, William; Swetz, Daniel; Ullom, Joel

    Resonant Soft X-ray studies of high Tc cuperates have implied a complex yet unresolved relationship between charge orders, anitferromagnetism and superconductivity. Unfortunately, at resonance the inelastic florescence background makes it hard to distinguish weak charge orders. To eliminate this issue, we have developed an energy-resolving detector comprised of 240-pixels superconducting Transition-Edge Sensor microcalorimeters. These superconducting sensors obtain exquisite resolution by exploiting the superconducting-to-normal transition to transduce photon energy to temperature and by operating at cryogenic temperatures (~ 100 mK) where thermal noise is minimal. Initial commissioning was accomplished at Advanced Photon Source Sector 29 in August 2015 and have demonstrated 1.0 eV resolution below 1 keV with efficiency (solid angle × quantum efficiency) ~ 50 times than that of grating spectrometers. An experiment to study charge orders in LBCO, LESCO and YBCO as a function of doping will take place in November 2015. This work was supported by the U.S. Department of Energy under Grant No. DE-FG02-06ER46285.

  20. Development of a coolant channel helium and nitrogen gas ratio sensor for a high temperature gas reactor

    SciTech Connect

    Cadell, S. R.; Woods, B. G.

    2012-07-01

    To measure the changing gas composition of the coolant during a postulated High Temperature Gas Reactor (HTGR) accident, an instrument is needed. This instrument must be compact enough to measure the ratio of the coolant versus the break gas in an individual coolant channel. This instrument must minimally impact the fluid flow and provide for non-direct signal routing to allow minimal disturbance to adjacent channels. The instrument must have a flexible geometry to allow for the measurement of larger volumes such as in the upper or lower plenum of a HTGR. The instrument must be capable of accurately functioning through the full operating temperature and pressure of a HTGR. This instrument is not commercially available, but a literature survey has shown that building off of the present work on Capacitance Sensors and Cross-Capacitors will provide a basis for the development of the desired instrument. One difficulty in developing and instrument to operate at HTGR temperatures is acquiring an electrical conductor that will not melt at 1600 deg. C. This requirement limits the material selection to high temperature ceramics, graphite, and exotic metals. An additional concern for the instrument is properly accounting for the thermal expansion of both the sensing components and the gas being measured. This work covers the basic instrument overview with a thorough discussion of the associated uncertainty in making these measurements. (authors)

  1. High temperature fiber optic laser-induced breakdown spectroscopy sensor for analysis of molten alloy constituents

    NASA Astrophysics Data System (ADS)

    Rai, Awadhesh K.; Yueh, Fang Y.; Singh, Jagdish P.; Zhang, Hansheng

    2002-10-01

    A fiber optic (FO) laser-induced breakdown spectroscopy (LIBS) sensor that measures the on-line, in situ elemental composition of a molten alloy inside the melt in a furnace is described. This sensor has applications as a process monitor and control tool for glass, aluminum, and steel melters. The sensor is based on the transmission of laser energy through a multimode optical fiber. The laser radiation from the fiber is collimated and finally focused inside the aluminum melt in the furnace by a specially designed stainless steel holder that holds the collimating and focusing lens. Atomic emission from sparks from the laser plasma is collected by the same stainless steel lens holder and transmitted back through the optical fiber and finally fed into the entrance slit of the spectrograph. The present design of the stainless steel holder is useful for obtaining a collimated LIBS signal over a long distance (the distance between the focusing and collimated lenses is more than 200 cm). Parametric studies such as sample-to-lens distance and the effect of the angle of incidence of the laser beam on the sample surface were performed. Calibration curves for minor elements were obtained for solid Al alloys as well as for a molten Al alloy in the laboratory furnace by inserting the FO LIBS probe inside the molten material. The performance of the probe was also tested by inserting the stainless steel holder into the melt at a 45° angle, which is necessary for collecting LIBS data in an industrial furnace. LIBS spectra in different spectral regions were recorded in the pilot furnace during different tests where known amounts of minor elements were added to the melt. The results obtained from this sensor for different Al alloys demonstrate the usefulness of this sensor to monitor the concentration of different constituents of the molten Al alloy in an industrial furnace.

  2. Temperature signature of high latitude Atlantic boundary currents revealed by marine mammal-borne sensor and Argo data

    NASA Astrophysics Data System (ADS)

    Grist, Jeremy P.; Josey, Simon A.; Boehme, Lars; Meredith, Michael P.; Davidson, Fraser J. M.; Stenson, Garry B.; Hammill, Mike O.

    2011-08-01

    Results from the development and analysis of a novel temperature dataset for the high latitude North-West Atlantic are presented. The new 1° gridded dataset (“ATLAS”) has been produced from about 13,000 Argo and 48,000 marine mammal (hooded seal, harp seal, grey seal and beluga) profiles spanning 2004-8. These data sources are highly complementary as marine mammals greatly enhance shelf region coverage where Argo floats are absent. ATLAS reveals distinctive boundary current related temperature minima in the Labrador Sea (-1.1°C) and at the east Greenland coast (1.8°C), largely absent in the widely-used Levitus'09 and EN3v2a datasets. The ATLAS 0-500 m average temperature is lower than Levitus'09 and EN3v2a by up to 3°C locally. Differences are strongest from 0-300 m and persist at reduced amplitude from 300-500 m. Our results clearly reveal the value of marine mammal-borne sensors for a reliable description of the North-West Atlantic at a time of rapid change.

  3. Modulated-splitting-ratio fiber-optic temperature sensor

    NASA Technical Reports Server (NTRS)

    Beheim, Glenn; Anthan, Donald J.; Rys, John R.; Fritsch, Klaus; Ruppe, Walter A.

    1988-01-01

    A fiber-optic temperature sensor is described, which uses a small silicon beamsplitter whose splitting ratio varies as a function of temperature. A four-beam technique is used to measure the sensor's temperature-indicating splitting ratio. This referencing method provides a measurement that is largely independent of the transmission properties of the sensor's optical fiber link. A significant advantage of this sensor, relative to other fiber-optic sensors, is its high stability, which permits the fiber-optic components to be readily substituted, thereby simplifying the sensor's installation and maintenance.

  4. High-sensitivity cryogenic temperature sensors using pressurized fiber Bragg gratings

    NASA Technical Reports Server (NTRS)

    Wu, Meng-Chou; DeHaven, Stanton L.

    2006-01-01

    Cryogenic temperature sensing was studied using a pressurized fiber Bragg grating (PFBG). The PFBG was obtained by simply applying a small diametric load to a regular fiber Bragg grating (FBG), which was coated with polyimide of a thickness of 11 micrometers. The Bragg wavelength of the PFBG was measured at temperatures from 295 to 4.2 K. A pressure-induced transition occurred at 200 K during the cooling cycle. As a result the temperature sensitivity of the PFBG was found to be nonlinear but reach 24 pm/K below 200 K, more than three times the regular FBG. For the temperature change from 80 K to 10 K, the PFBG has a total Bragg wavelength shift of about 470 pm, 10 times more than the regular FBG. From room temperature to liquid helium temperature the PFBG gives a total wavelength shift of 3.78 nm, compared to the FBG of 1.51 nm. The effect of the coating thickness on the temperature sensitivity of the gratings is also discussed.

  5. High-sensitivity Cryogenic Temperature Sensors using Pressurized Fiber Bragg Gratings

    NASA Technical Reports Server (NTRS)

    Wu, Meng-Chou; DeHaven, Stanton L.

    2006-01-01

    Cryogenic temperature sensing was studied using a pressurized fiber Bragg grating (PFBG). The PFBG was obtained by simply applying a small diametric load to a regular fiber Bragg grating (FBG), which was coated with polyimide of a thickness of 11 micrometers. The Bragg wavelength of the PFBG was measured at temperatures from 295 to 4.2 K. A pressure-induced transition occurred at 200 K during the cooling cycle. As a result the temperature sensitivity of the PFBG was found to be nonlinear but reach 24 pm/K below 200 K, more than three times the regular FBG. For the temperature change from 80 K to 10 K, the PFBG has a total Bragg wavelength shift of about 470 pm, 10 times more than the regular FBG. From room temperature to liquid helium temperature the PFBG gives a total wavelength shift of 3.78 nm, compared to the FBG of 1.51 nm. The effect of the coating thickness on the temperature sensitivity of the gratings is also discussed.

  6. 1700 deg C optical temperature sensor

    NASA Technical Reports Server (NTRS)

    Mossey, P. W.; Shaffernocker, W. M.; Mulukutla, A. R.

    1986-01-01

    A new gas temperature sensor was developed that shows promise of sufficient ruggedness to be useful as a gas turbine temperature sensor. The sensor is in the form of a single-crystal aluminum oxide ceramic, ground to a cone shape and given an emissive coating. A lens and an optical fiber conduct the thermally emitted light to a remote and near-infrared photodetector assembly. Being optically coupled and passive, the sensor is highly immune to all types of electrical interference. Candidate sensors were analyzed for optical sensor performance, heat transfer characteristics, stress from gas loading. This led to the selection of the conical shape as the most promising for the gas turbine environment. One uncoated and two coated sensing elements were prepared for testing. Testing was conducted to an indicated 1750 C in a propane-air flame. Comparison with the referee optical pyrometer shows an accuracy of + or - 25 C at 1700 C for this initial development. One hundred cycles from room temperature to 1700 C left the sapphire cone intact, but some loss of the platinum, 6% rhodium coating was observed. Several areas for improving the overall performance and durability are identified.

  7. Highly distributed multi-point, temperature and pressure compensated, fiber optic oxygen sensors (FOxSense) for aircraft fuel tank environment and safety monitoring

    NASA Astrophysics Data System (ADS)

    Mendoza, Edgar A.; Kempen, Cornelia; Sun, Sunjian; Esterkin, Yan

    2014-09-01

    This paper describes recent progress towards the development and qualification of a highly distributed, multi-point, all optical pressure and temperature compensated, fiber optic oxygen sensor (FOxSense™) system for closed-loop monitoring and safety of the oxygen ullage environment inside fuel tanks of military and commercial aircraft. The alloptical FOxSense™ system uses a passive, multi-parameter (O2/T&P) fiber optic sensor probe with no electrical connections leading to the sensors install within the fuel tanks of an aircraft. The all optical sensor consists of an integrated multi-parameter fiber optic sensor probe that integrates a fuel insensitive fluorescence based optical oxygen optrode with built-in temperature and pressure optical optrodes for compensation of temperature and pressure variants induced in the fluorescence response of the oxygen optrode. The distributed (O2/T&P) fiber optic sensors installed in the fuel tanks of the aircraft are connected to the FOxSense optoelectronic system via a fiber optic cable conduit reaching to each fuel tank in the aircraft. A multichannel frequency-domain fiber optic sensor read-out (FOxSense™) system is used to interrogate the optical signal of all three sensors in real-time and to display the fuel tank oxygen environment suitable for aircraft status and alarm applications. Preliminary testing of the all optical fiber optic oxygen sensor have demonstrated the ability to monitor the oxygen environment inside a simulated fuel tank in the range of 0% O2 to 40% O2 concentrations, temperatures from (-) 40°C to (+) 60°C, and altitudes from 0-ft to 40,000-ft.

  8. Embedded fiber Bragg grating sensors for true temperature monitoring in Nb3Sn superconducting magnets for high energy physics

    NASA Astrophysics Data System (ADS)

    Chiuchiolo, A.; Bajas, H.; Bajko, M.; Consales, M.; Giordano, M.; Perez, J. C.; Cusano, A.

    2016-05-01

    The luminosity upgrade of the Large Hadron Collider (HL-LHC) planned at the European Organization for Nuclear Research (CERN) requires the development of a new generation of superconducting magnets based on Nb3Sn technology. The instrumentation required for the racetrack coils needs the development of reliable sensing systems able to monitor the magnet thermo-mechanical behavior during its service life, from the coil fabrication to the magnet operation. With this purpose, Fiber Bragg Grating (FBG) sensors have been embedded in the coils of the Short Model Coil (SMC) magnet fabricated at CERN. The FBG sensitivity to both temperature and strain required the development of a solution able to separate mechanical and temperature effects. This work presents for the first time a feasibility study devoted to the implementation of an embedded FBG sensor for the measurement of the "true" temperature in the impregnated Nb3Sn coil during the fabrication process.

  9. AOI [3] High-Temperature Nano-Derived Micro-H2 and - H2S Sensors

    SciTech Connect

    Sabolsky, Edward M.

    2014-08-01

    The emissions from coal-fired power plants remain a significant concern for air quality. This environmental challenge must be overcome by controlling the emission of sulfur dioxide (SO2) and hydrogen sulfide (H2S) throughout the entire coal combustion process. One of the processes which could specifically benefit from robust, low cost, and high temperature compatible gas sensors is the coal gasification process which converts coal and/or biomass into syngas. Hydrogen (H2), carbon monoxide (CO) and sulfur compounds make up 33%, 43% and 2% of syngas, respectively. Therefore, development of a high temperature (>500°C) chemical sensor for in-situ monitoring of H2, H2S and SO22 levels during coal gasification is strongly desired. The selective detection of SO2/H2S in the presence of H2, is a formidable task for a sensor designer. In order to ensure effective operation of these chemical sensors, the sensor system must inexpensively function within harsh temperature and chemical environment. Currently available sensing approaches, which are based on gas chromatography, electrochemistry, and IR-spectroscopy, do not satisfy the required cost and performance targets. This work focused on the development microsensors that can be applied to this application. In order to develop the high- temperature compatible microsensor, this work addressed various issues related to sensor stability, selectivity, and miniaturization. In the research project entitled “High-Temperature Nano-Derived Micro-H2 and -H2S Sensors”, the team worked to develop micro-scale, chemical sensors and sensor arrays composed of nano-derived, metal-oxide composite materials to detect gases like H2, SO2, and H2S within high-temperature environments (>500°C). The research was completed in collaboration with NexTech Materials, Ltd. (Lewis Center, Ohio). Nex

  10. Active thermal isolation for temperature responsive sensors

    NASA Technical Reports Server (NTRS)

    Martinson, Scott D. (Inventor); Gray, David L. (Inventor); Carraway, Debra L. (Inventor); Reda, Daniel C. (Inventor)

    1994-01-01

    The detection of flow transition between laminar and turbulent flow and of shear stress or skin friction of airfoils is important in basic research for validation of airfoil theory and design. These values are conventionally measured using hot film nickel sensors deposited on a polyimide substrate. The substrate electrically insulates the sensor and underlying airfoil but is prevented from thermally isolating the sensor by thickness constraints necessary to avoid flow contamination. Proposed heating of the model surface is difficult to control, requires significant energy expenditures, and may alter the basic flow state of the airfoil. A temperature responsive sensor is located in the airflow over the specified surface of a body and is maintained at a constant temperature. An active thermal isolator is located between this temperature responsive sensor and the specific surface of the body. The total thickness of the isolator and sensor avoid any contamination of the flow. The temperature of this isolator is controlled to reduce conductive heat flow from the temperature responsive sensor to the body. This temperature control includes (1) operating the isolator at the same temperature as the constant temperature of the sensor; and (2) establishing a fixed boundary temperature which is either less than or equal to, or slightly greater than the sensor constant temperature. The present invention accordingly thermally isolates a temperature responsive sensor in an energy efficient, controllable manner while avoiding any contamination of the flow.

  11. PLASMA SPRAYED FUNCTIONALLY GRADED AND LAYERED MoSi2-A1203 COMPOSITES FOR HIGH TEMPERATURE SENSOR SHEATH APPLICATION

    SciTech Connect

    R. VAIDYA; ET AL

    2001-01-01

    Protective sensor sheaths are required in the glass industry for sensors that are used to measure various properties of the melt. Molten glass presents an extremely corrosive elevated temperature environment, in which only a few types of materials can survive. Molybdenum disilicide (MoSi{sub 2}) has been shown to possess excellent corrosion resistance in molten glass, and is thus a candidate material for advanced sensor sheath applications. Plasma spray-forming techniques were developed to fabricate molybdenum dilicide-alumina (Al{sub 2}O{sub 3}) laminate and functionally graded composite tubes with mechanical properties suitable for sensor sheath applications. These functionally graded materials (FGMs) were achieved by manipulating the powder hoppers and plasma torch translation via in-house created computer software. Molybdenum disilicide and alumina are thermodynamically stable elevated temperature materials with closely matching thermal expansion coefficients. Proper tailoring of the microstructure of these MoSi{sub 2}-Al{sub 2}O{sub 3} composites can result in improved strength, toughness, and thermal shock resistance. This study focuses on the mechanical performance of these composite microstructures.

  12. Development of Meandering Winding Magnetometer (MWM (Register Trademark)) Eddy Current Sensors for the Health Monitoring, Modeling and Damage Detection of High Temperature Composite Materials

    NASA Technical Reports Server (NTRS)

    Russell, Richard; Washabaugh, Andy; Sheiretov, Yanko; Martin, Christopher; Goldfine, Neil

    2011-01-01

    The increased use of high-temperature composite materials in modern and next generation aircraft and spacecraft have led to the need for improved nondestructive evaluation and health monitoring techniques. Such technologies are desirable to improve quality control, damage detection, stress evaluation and temperature measurement capabilities. Novel eddy current sensors and sensor arrays, such as Meandering Winding Magnetometers (MWMs) have provided alternate or complimentary techniques to ultrasound and thermography for both nondestructive evaluation (NDE) and structural health monitoring (SHM). This includes imaging of composite material quality, damage detection and .the monitoring of fiber temperatures and multidirectional stresses. Historically, implementation of MWM technology for the inspection of the Space Shuttle Orbiter Reinforced Carbon-Carbon Composite (RCC) leading edge panels was developed by JENTEK Sensors and was subsequently transitioned by NASA as an operational pre and post flight in-situ inspection at the Kennedy Space Center. A manual scanner, which conformed'automatically to the curvature of the RCC panels was developed and used as a secondary technique if a defect was found during an infrared thermography screening, During a recent proof of concept study on composite overwrapped pressure vessels (COPV's), three different MWM sensors were tested at three orientations to demonstrate the ability of the technology to measure stresses at various fiber orientations and depths. These results showed excellent correlation with actual surface strain gage measurements. Recent advancements of this technology have been made applying MWM sensor technology for scanning COPVs for mechanical damage. This presentation will outline the recent advance in the MWM.technology and the development of MWM techniques for NDE and SHM of carbon wraped composite overwrapped pressure vessels (COPVs) including the measurement of internal stresses via a surface mounted sensor

  13. Carbon nanotube temperature and pressure sensors

    DOEpatents

    Ivanov, Ilia N; Geohegan, David Bruce

    2013-10-29

    The present invention, in one embodiment, provides a method of measuring pressure or temperature using a sensor including a sensor element composed of a plurality of carbon nanotubes. In one example, the resistance of the plurality of carbon nanotubes is measured in response to the application of temperature or pressure. The changes in resistance are then recorded and correlated to temperature or pressure. In one embodiment, the present invention provides for independent measurement of pressure or temperature using the sensors disclosed herein.

  14. High-performance, mechanically flexible, and vertically integrated 3D carbon nanotube and InGaZnO complementary circuits with a temperature sensor.

    PubMed

    Honda, Wataru; Harada, Shingo; Ishida, Shohei; Arie, Takayuki; Akita, Seiji; Takei, Kuniharu

    2015-08-26

    A vertically integrated inorganic-based flexible complementary metal-oxide-semiconductor (CMOS) inverter with a temperature sensor with a high inverter gain of ≈50 and a low power consumption of <7 nW mm(-1) is demonstrated using a layer-by-layer assembly process. In addition, the negligible influence of the mechanical flexibility on the performance of the CMOS inverter and the temperature dependence of the CMOS inverter characteristics are discussed. PMID:26177598

  15. Silicon-etalon fiber-optic temperature sensor

    NASA Technical Reports Server (NTRS)

    Beheim, Glenn; Fritsch, Klaus; Flatico, Joseph M.; Azar, Massood Tabib

    1989-01-01

    A temperature sensor is described which consists of a silicon etalon that is sputtered directly onto the end of an optical fiber. A two-layer protective cap structure is used to improve the sensor's long-term stability. The sensor's output is wavelength encoded to provide a high degree of immunity from cable and connector effects. This sensor is extremely compact and potentially inexpensive.

  16. Development of Nano-crystalline Doped-Ceramic Enabled Fiber Sensors for High Temperature In-Situ Monitoring of Fossil Fuel Gases

    SciTech Connect

    Xiao, Hai; Dong, Junhang; Lin, Jerry; Romero, Van

    2012-03-01

    This is a final technical report for the first project year from July 1, 2005 to Jan 31, 2012 for DoE/NETL funded project DE-FC26-05NT42439: Development of Nanocrystalline Doped-Ceramic Enabled Fiber Sensors for High Temperature In-Situ Monitoring of Fossil Fuel Gases. This report summarizes the technical progresses and achievements towards the development of novel nanocrystalline doped ceramic material-enabled optical fiber sensors for in situ and real time monitoring the gas composition of flue or hot gas streams involved in fossil-fuel based power generation and hydrogen production.

  17. A standardized diode cryogenic temperature sensor for aerospace applications

    NASA Astrophysics Data System (ADS)

    Courts, Samuel Scott

    2016-03-01

    The model DT-670-SD cryogenic diode temperature sensor, manufactured by Lake Shore Cryotronics, Inc. has been used on numerous aerospace space missions since its introduction nearly 15 years ago. While the sensing element is a diode, it is operated in a non-standard manner when used as a temperature sensor over the 1.4-500 K temperature range. For this reason, the NASA and MIL-type test and performance standards designed to ensure high reliability of diode aerospace parts don't properly define the inspection and test protocol for the DT-670-SD temperature sensor as written. This requires each aerospace application to develop unique test and inspection protocols for the project, typically for a small number of sensors, resulting in expensive sensors with a long lead time. With over 30 years of experience in supplying cryogenic temperature sensors for aerospace applications, Lake Shore has developed screening and qualification inspection and test protocols to provide "commercial off-the-shelf (COTS)" DT-670-SD temperature sensors that should meet the requirements of most high-reliability applications including aerospace. Parts from acceptance and qualified lots will be available at a base sensor level with the ability to specify an interchangeability tolerance, calibration range, mounting adaptor, and/or lead extension for final configuration. This work presents details of this acceptance and qualification inspection and test protocol as well as performance characteristics of the DT-670-SD cryogenic temperature sensors when inspected and tested to this protocol.

  18. Development of metamaterial based low cost passive wireless temperature sensor

    NASA Astrophysics Data System (ADS)

    Karim, Hasanul; Shuvo, Mohammad Arif Ishtiaq; Delfin, Diego; Lin, Yirong; Choudhuri, Ahsan; Rumpf, R. C.

    2014-03-01

    Wireless passive temperature sensors are gaining increasing attention due to the ever-growing need of precise monitoring of temperature in high temperature energy conversion systems such as gas turbines and coal-based power plants. Unfortunately, the harsh environment such as high temperature and corrosive atmosphere present in these systems limits current solutions. In order to alleviate these issues, this paper presents the design, simulation, and manufacturing process of a low cost, passive, and wireless temperature sensor that can withstand high temperature and harsh environment. The temperature sensor was designed following the principle of metamaterials by utilizing Closed Ring Resonators (CRR) embedded in a dielectric matrix. The proposed wireless, passive temperature sensor behaves like an LC circuit that has a resonance frequency that depends on temperature. A full wave electromagnetic solver Ansys Ansoft HFSS was used to perform simulations to determine the optimum dimensions and geometry of the sensor unit. The sensor unit was prepared by conventional powder-binder compression method. Commercially available metal washers were used as CRR structures and Barium Titanate (BTO) was used as the dielectric materials. Response of the fabricated sensor at room temperature was analyzed using a pair of horn antenna connected with a network analyzer.

  19. High Temperature ESP Monitoring

    SciTech Connect

    Jack Booker; Brindesh Dhruva

    2011-06-20

    The objective of the High Temperature ESP Monitoring project was to develop a downhole monitoring system to be used in wells with bottom hole well temperatures up to 300°C for measuring motor temperature, formation pressure, and formation temperature. These measurements are used to monitor the health of the ESP motor, to track the downhole operating conditions, and to optimize the pump operation. A 220 ºC based High Temperature ESP Monitoring system was commercially released for sale with Schlumberger ESP motors April of 2011 and a 250 ºC system with will be commercially released at the end of Q2 2011. The measurement system is now fully qualified, except for the sensor, at 300 °C.

  20. Alumina decorated TiO2 nanotubes with ordered mesoporous walls as high sensitivity NOx gas sensors at room temperature

    NASA Astrophysics Data System (ADS)

    Lü, Renjiang; Zhou, Wei; Shi, Keying; Yang, Ying; Wang, Lei; Pan, Kai; Tian, Chungui; Ren, Zhiyu; Fu, Honggang

    2013-08-01

    Alumina (Al2O3) decorated anatase TiO2 nanotubes with ordered mesoporous pore walls (Al2O3/meso-TiO2 nanotubes) are successfully synthesized through vacuum pressure induction technology, and then combined with the thermal decomposition of a mesoporous TiO2 sol precursor, inside the cylindrical nanochannels of an anodic aluminium oxide (AAO) template. The decorated Al2O3 was formed by in situ deposition via direct reaction of the strong acid sol precursor and the nanochannel wall of the AAO template. The resultant Al2O3/meso-TiO2 nanotubes are characterized in detail by transmission electron microscopy, scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Raman spectroscopy, and N2 adsorption-desorption. The experimental results reveal that the Al2O3/meso-TiO2 nanotubes have a tubular structure with an average diameter of ~200 nm and highly ordered mesopores in the tubular walls. The Al2O3 is distributed evenly on the anatase TiO2 nanotubes. Moreover, the Al2O3/meso-TiO2 nanotubes possess a large specific surface area (136 m2 g-1) and narrow mesopore size distribution (~10 nm). By using NOx as a probe molecule, the Al2O3/meso-TiO2 nanotube films exhibit better sensing performance than that of mesoporous TiO2 nanotubes, in terms of their high sensitivity, fast response-recovery time, and good stability in air at room temperature. The outstanding performance in the gas sensing ability of Al2O3/meso-TiO2 nanotubes is a result of their one-dimensional tubular and mesoporous nanostructures, advantageous for the adsorption and diffusion of NOx gas. In addition, the sensing response is greatly improved by virtue of the decorated Al2O3 on the surfaces of the TiO2 nanotubes, which acts as an energy barrier to suppress charge recombination. The structural properties of the Al2O3/meso-TiO2 nanotubes makes them a viable novel gas sensor material at room temperature.Alumina (Al2O3) decorated anatase TiO2 nanotubes with ordered mesoporous pore walls

  1. Cryogenic-temperature profiling of high-power superconducting lines using local and distributed optical-fiber sensors.

    PubMed

    Chiuchiolo, Antonella; Palmieri, Luca; Consales, Marco; Giordano, Michele; Borriello, Anna; Bajas, Hugues; Galtarossa, Andrea; Bajko, Marta; Cusano, Andrea

    2015-10-01

    This contribution presents distributed and multipoint fiber-optic monitoring of cryogenic temperatures along a superconducting power transmission line down to 30 K and over 20 m distance. Multipoint measurements were conducted using fiber Bragg gratings sensors coated with two different functional overlays (epoxy and poly methyl methacrylate (PMMA)) demonstrating cryogenic operation in the range 300-4.2 K. Distributed measurements exploited optical frequency-domain reflectometry to analyze the Rayleigh scattering along two concatenated fibers with different coatings (acrylate and polyimide). The integrated system has been placed along the 20 m long cryostat of a superconducting power transmission line, which is currently being tested at the European Organization for Nuclear Research (CERN). Cool-down events from 300-30 K have been successfully measured in space and time, confirming the viability of these approaches to the monitoring of cryogenic temperatures along a superconducting transmission line. PMID:26421547

  2. Optical Temperature Sensor Has Digital Output

    NASA Technical Reports Server (NTRS)

    James, K.; Quick, W.; Strahan, V. H.

    1983-01-01

    New instrument measures temperature reliabily and accurately. Device uses Fabry-Perot multiple-beam sensor. Both temperature sensor and optical lines are free of all electrical and electromagnetic effects and interference. Variation in spacer is made sensitive to other physical quantities, such as pressure. Sensing element itself is quite small, enhancing use in confined areas.

  3. Growth and Characterization of Ca2Al2SiO7 Piezoelectric Single Crystals for High-Temperature Sensor Applications

    NASA Astrophysics Data System (ADS)

    Hagiwara, Manabu; Noguchi, Hiroaki; Hoshina, Takuya; Takeda, Hiroaki; Fujihara, Shinobu; Kodama, Nobuhiro; Tsurumi, Takaaki

    2013-09-01

    The electrical properties of a piezoelectric single crystal of calcium aluminate silicate Ca2Al2SiO7 (CAS) were studied at elevated temperatures and its applicability to high-temperature pressure sensors was investigated. The CAS bulk single crystal was grown by the Czochralski method. The piezoelectric d14 and d36 constants were respectively evaluated as 6.04 and 4.04 pC/N by the resonance and antiresonance method. The temperature dependence of the piezoelectric constant was investigated at temperatures up to 500 °C. The electrical resistivity at 800 °C was on the order of 108 Ω.cm along both the crystallographic a- and c-axes. The measurement of direct piezoelectric response at 700 °C demonstrated that the CAS crystal could detect a pseudo-combustion pressure change of an automobile engine. Our observations suggest that CAS crystals are superior candidates for sensing pressure at high temperatures.

  4. Electrospun La0.8Sr0.2MnO3 nanofibers for a high-temperature electrochemical carbon monoxide sensor

    NASA Astrophysics Data System (ADS)

    Zhi, Mingjia; Koneru, Anveeksh; Yang, Feng; Manivannan, Ayyakkannu; Li, Jing; Wu, Nianqiang

    2012-08-01

    Lanthanum strontium manganite (La0.8Sr0.2MnO3, LSM) nanofibers have been synthesized by the electrospinning method. The electrospun nanofibers are intact without morphological and structural changes after annealing at 1050 °C. The LSM nanofibers are employed as the sensing electrode of an electrochemical sensor with yttria-stabilized zirconia (YSZ) electrolyte for carbon monoxide detection at high temperatures over 500 °C. The electrospun nanofibers form a porous network electrode, which provides a continuous pathway for charge transport. In addition, the nanofibers possess a higher specific surface area than conventional micron-sized powders. As a result, the nanofiber electrode exhibits a higher electromotive force and better electro-catalytic activity toward CO oxidation. Therefore, the sensor with the nanofiber electrode shows a higher sensitivity, lower limit of detection and faster response to CO than a sensor with a powder electrode.

  5. High temperature strain gages

    NASA Technical Reports Server (NTRS)

    Gregory, Otto J. (Inventor); You, Tao (Inventor)

    2011-01-01

    A ceramic strain gage based on reactively sputtered indium-tin-oxide (ITO) thin films is used to monitor the structural integrity of components employed in aerospace propulsion systems operating at temperatures in excess of 1500.degree. C. A scanning electron microscopy (SEM) of the thick ITO sensors reveals a partially sintered microstructure comprising a contiguous network of submicron ITO particles with well defined necks and isolated nanoporosity. Densification of the ITO particles was retarded during high temperature exposure with nitrogen thus stabilizing the nanoporosity. ITO strain sensors were prepared by reactive sputtering in various nitrogen/oxygen/argon partial pressures to incorporate more nitrogen into the films. Under these conditions, sintering and densification of the ITO particles containing these nitrogen rich grain boundaries was retarded and a contiguous network of nano-sized ITO particles was established.

  6. Comparing robust and physics-based sea surface temperature retrievals for high resolution, multi-spectral thermal sensors using one or multiple looks

    SciTech Connect

    Borel, C.C.; Clodius, W.B.; Szymanski, J.J.; Theiler, J.P.

    1999-04-04

    With the advent of multi-spectral thermal imagers such as EOS's ASTER high spatial resolution thermal imagery of the Earth's surface will soon be a reality. Previous high resolution sensors such as Landsat 5 had only one spectral channel in the thermal infrared and its utility to determine absolute sea surface temperatures was limited to 6-8 K for water warmer than 25 deg C. This inaccuracy resulted from insufficient knowledge of the atmospheric temperature and water vapor, inaccurate sensor calibration, and cooling effects of thin high cirrus clouds. The authors will present two studies of algorithms and compare their performance. The first algorithm they call robust since it retrieves sea surface temperatures accurately over a fairly wide range of atmospheric conditions using linear combinations of nadir and off-nadir brightness temperatures. The second they call physics-based because it relies on physics-based models of the atmosphere. It attempts to come up with a unique sea surface temperature which fits one set of atmospheric parameters.

  7. Optical Fiber Chemical Sensor with Sol-Gel Derived Refractive Material as Transducer for High Temperature Gas Sensing in Clean Coal Technology

    SciTech Connect

    Shiquan Tao

    2006-12-31

    The chemistry of sol-gel derived silica and refractive metal oxide has been systematically studied. Sol-gel processes have been developed for preparing porous silica and semiconductor metal oxide materials. Micelle/reversed micelle techniques have been developed for preparing nanometer sized semiconductor metal oxides and noble metal particles. Techniques for doping metal ions, metal oxides and nanosized metal particles into porous sol-gel material have also been developed. Optical properties of sol-gel derived materials in ambient and high temperature gases have been studied by using fiber optic spectroscopic techniques, such as fiber optic ultraviolet/visible absorption spectrometry, fiber optic near infrared absorption spectrometry and fiber optic fluorescence spectrometry. Fiber optic spectrometric techniques have been developed for investigating the optical properties of these sol-gel derived materials prepared as porous optical fibers or as coatings on the surface of silica optical fibers. Optical and electron microscopic techniques have been used to observe the microstructure, such as pore size, pore shape, sensing agent distribution, of sol-gel derived material, as well as the size and morphology of nanometer metal particle doped in sol-gel derived porous silica, the nature of coating of sol-gel derived materials on silica optical fiber surface. In addition, the chemical reactions of metal ion, nanostructured semiconductor metal oxides and nanometer sized metal particles with gas components at room temperature and high temperatures have also been investigated with fiber optic spectrometric methods. Three classes of fiber optic sensors have been developed based on the thorough investigation of sol-gel chemistry and sol-gel derived materials. The first group of fiber optic sensors uses porous silica optical fibers doped with metal ions or metal oxide as transducers for sensing trace NH{sub 3} and H{sub 2}S in high temperature gas samples. The second group of

  8. Multifunction medical endoscope system with optical fiber temperature sensor

    NASA Astrophysics Data System (ADS)

    He, Zhengquan; Zhou, Libin; Luo, Baoke; Hu, Baowen; Du, Xinchao; Li, Yulin

    2014-09-01

    Thermal therapy (or hyperthermia) is one of the effective operations for tumor treating and curing. As tumor tissues are more susceptible to heat than normal tissues, in thermal therapy operations, temperature on operation area is a crucial parameter for optimal treating. When the temperature is too low, the tumor tissues cannot be killed; otherwise, the temperature is too high, the operation may damage normal tissues around the tumor. During thermal therapy operation, the heating power is normally supplied by high-frequency EM field, so traditional temperature sensors, such as thermal couples, thermistors, cannot work stably due to EM interference. We present a multi-function endoscope optical fiber temperature sensor system. With this sensor setup based on principle of fluorescence life time, the temperature on operation point is detected in real time. Furthermore, a build-in endoscope centers in the fiber sensor, thus the operation area can be viewed or imaged directly during the operation. This design can navigate the operation, particularly for in vivo operations. The temperature range of the sensor system is 30°C-150°C, the accuracy can achieve to 0.2°C. The imaging fiber buddle is constituted of more than 50k fibers. As the sensor probe is very thin (around 4 mm in diameter), it can also be assembled inside the radiofrequency operation knife. With the presented sensor system in clinic operation physicians can check the temperature in the operation point and view the operation area at the same time.

  9. Wireless sensor for temperature and humidity measurement

    NASA Astrophysics Data System (ADS)

    Drumea, Andrei; Svasta, Paul

    2010-11-01

    Temperature and humidity sensors have a broad range of applications, from heating and ventilation of houses to controlled drying of fruits, vegetables or meat in food industry. Modern sensors are integrated devices, usually MEMS, factory-calibrated and with digital output of measured parameters. They can have power down modes for reduced energy consumption. Such an integrated device allows the implementation of a battery powered wireless sensor when coupled with a low power microcontroller and a radio subsystem. A radio sensor can work independently or together with others in a radio network. Presented paper focuses mainly on measurement and construction aspects of sensors for temperature and humidity designed and implemented by authors; network aspects (communication between two or more sensors) are not analyzed.

  10. Low-Temperature Solution Processable Electrodes for Piezoelectric Sensors Applications

    NASA Astrophysics Data System (ADS)

    Tuukkanen, Sampo; Julin, Tuomas; Rantanen, Ville; Zakrzewski, Mari; Moilanen, Pasi; Lupo, Donald

    2013-05-01

    Piezoelectric thin-film sensors are suitable for a wide range of applications from physiological measurements to industrial monitoring systems. The use of flexible materials in combination with high-throughput printing technologies enables cost-effective manufacturing of custom-designed, highly integratable piezoelectric sensors. This type of sensor can, for instance, improve industrial process control or enable the embedding of ubiquitous sensors in our living environment to improve quality of life. Here, we discuss the benefits, challenges and potential applications of piezoelectric thin-film sensors. The piezoelectric sensor elements are fabricated by printing electrodes on both sides of unmetallized poly(vinylidene fluoride) film. We show that materials which are solution processable in low temperatures, biocompatible and environmental friendly are suitable for use as electrode materials in piezoelectric sensors.

  11. Dynamic temperature measurements with embedded optical sensors.

    SciTech Connect

    Dolan, Daniel H.,; Seagle, Christopher T; Ao, Tommy

    2013-10-01

    This report summarizes LDRD project number 151365, %5CDynamic Temperature Measurements with Embedded Optical Sensors%22. The purpose of this project was to develop an optical sensor capable of detecting modest temperature states (<1000 K) with nanosecond time resolution, a recurring diagnostic need in dynamic compression experiments at the Sandia Z machine. Gold sensors were selected because the visible re ectance spectrum of gold varies strongly with temperature. A variety of static and dynamic measurements were performed to assess re ectance changes at di erent temperatures and pressures. Using a minimal optical model for gold, a plausible connection between static calibrations and dynamic measurements was found. With re nements to the model and diagnostic upgrades, embedded gold sensors seem capable of detecting minor (<50 K) temperature changes under dynamic compression.

  12. Thermoelectric Control Of Temperatures Of Pressure Sensors

    NASA Technical Reports Server (NTRS)

    Burkett, Cecil G., Jr.; West, James W.; Hutchinson, Mark A.; Lawrence, Robert M.; Crum, James R.

    1995-01-01

    Prototype controlled-temperature enclosure containing thermoelectric devices developed to house electronically scanned array of pressure sensors. Enclosure needed because (1) temperatures of transducers in sensors must be maintained at specified set point to ensure proper operation and calibration and (2) sensors sometimes used to measure pressure in hostile environments (wind tunnels in original application) that are hotter or colder than set point. Thus, depending on temperature of pressure-measurement environment, thermoelectric devices in enclosure used to heat or cool transducers to keep them at set point.

  13. Wirelessly Interrogated Wear or Temperature Sensors

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E.; Taylor, Bryant D.

    2010-01-01

    Sensors for monitoring surface wear and/or temperature without need for wire connections have been developed. Excitation and interrogation of these sensors are accomplished by means of a magnetic-field-response recorder. In a sensor of the present type as in the previously reported ones, the capacitance and, thus, the resonance frequency, varies as a known function of the quantity of interest that one seeks to determine. Hence, the resonance frequency is measured and used to calculate the quantity of interest.

  14. Dynamically Self-Validating Contact Temperature Sensors

    NASA Astrophysics Data System (ADS)

    Barberree, Daniel A.

    2003-09-01

    Thermocouple and RTD technology is the workhorse of the temperature measurement industry. It has been refined and extended to cover a broad range of temperature measurement needs. However, it is well documented, though not widely advertised, that these measurement devices experience "drift" or de-calibration while in service. For various reasons the sensor output can "drift" away from representing the true temperature. The magnitude of the drift depends on sensor type, construction, installation and process conditions. The real problem is that there has been no way to tell when drift begins or to determine its magnitude, or even its direction. Now, Dynamically Self-Validating Sensors have been invented that eliminate unreliable readings and warn in advance of the onset of drift. In this paper, the technology of Self-Validating Sensors is explained and data is provided showing the performance of a Self-Validating sensor.

  15. A dynamic response model for pressure sensors in continuum and high Knudsen number flows with large temperature gradients

    NASA Technical Reports Server (NTRS)

    Whitmore, Stephen A.; Petersen, Brian J.; Scott, David D.

    1996-01-01

    This paper develops a dynamic model for pressure sensors in continuum and rarefied flows with longitudinal temperature gradients. The model was developed from the unsteady Navier-Stokes momentum, energy, and continuity equations and was linearized using small perturbations. The energy equation was decoupled from momentum and continuity assuming a polytropic flow process. Rarefied flow conditions were accounted for using a slip flow boundary condition at the tubing wall. The equations were radially averaged and solved assuming gas properties remain constant along a small tubing element. This fundamental solution was used as a building block for arbitrary geometries where fluid properties may also vary longitudinally in the tube. The problem was solved recursively starting at the transducer and working upstream in the tube. Dynamic frequency response tests were performed for continuum flow conditions in the presence of temperature gradients. These tests validated the recursive formulation of the model. Model steady-state behavior was analyzed using the final value theorem. Tests were performed for rarefied flow conditions and compared to the model steady-state response to evaluate the regime of applicability. Model comparisons were excellent for Knudsen numbers up to 0.6. Beyond this point, molecular affects caused model analyses to become inaccurate.

  16. High temperature electronics

    NASA Astrophysics Data System (ADS)

    Seng, Gary T.

    1991-03-01

    In recent years, the aerospace propulsion and space power communities have acknowledged a growing need for electronic devices that are capable of sustained high-temperature operation. Aeropropulsion applications for high-temperature electronic devices include engine ground test instrumentation such as multiplexers, analog-to-digital converters, and telemetry systems capable of withstanding hot section engine temperatures in excess of 600 C. Uncooled operation of control and condition monitoring systems in advanced supersonic aircraft would subject the electronics to temperatures in excess of 300 C. Similarly, engine-mounted integrated electronic sensors could reach temperatures which exceed 500 C. In addition to aeronautics, there are many other areas that could benefit from the existence of high-temperature electronic devices. Space applications include power electronic devices for space platforms and satellites. Since power electronics require radiators to shed waste heat, electronic devices that operate at higher temperatures would allow a reduction in radiator size. Terrestrial applications include deep-well drilling instrumentation, high power electronics, and nuclear reactor instrumentation and control. To meet the needs of the applications mentioned previously, the high-temperature electronics (HTE) program at the Lewis Research Center is developing silicon carbide (SiC) as a high-temperature semiconductor material. Research is focused on developing the crystal growth, growth modeling, characterization, and device fabrication technologies necessary to produce a family of SiC devices. Interest in SiC has grown dramatically in recent years due to solid advances in the technology. Much research remains to be performed, but SiC appears ready to emerge as a useful semiconductor material.

  17. Optical Temperature Sensor For Gas Turbines

    NASA Technical Reports Server (NTRS)

    Mossey, P. W.

    1987-01-01

    New design promises accuracy even in presence of contamination. Improved sensor developed to measure gas temperatures up to 1,700 degree C in gas-turbine engines. Sensor has conical shape for mechanical strengths and optical configuration insensitive to deposits of foreign matter on sides of cone.

  18. Sonic Temperature Sensor for Food Processing

    SciTech Connect

    Akers, D. W.; Porter, A. M.; Tow, D. M.

    1997-09-01

    The lack of adequate temperature measurement is the major barrier to the development of more efficient and better quality food processing methods. The objective of the sonic temperature sensor for food processing project is to develop a prototype sensor system to noninvasively measure the interior temperature of particulate foods during processing. The development of the prototype sensor is a collaborative project with the National Food Processors Association. The project is based on the property of materials that involves a change in the temperature of a material having a corresponding change in the speed of sound. The approach for the sonic sensor system is to determine the speed of sound through particulate foods using a tomographic reconstruction process.

  19. Nanostructured Materials for Room-Temperature Gas Sensors.

    PubMed

    Zhang, Jun; Liu, Xianghong; Neri, Giovanni; Pinna, Nicola

    2016-02-01

    Sensor technology has an important effect on many aspects in our society, and has gained much progress, propelled by the development of nanoscience and nanotechnology. Current research efforts are directed toward developing high-performance gas sensors with low operating temperature at low fabrication costs. A gas sensor working at room temperature is very appealing as it provides very low power consumption and does not require a heater for high-temperature operation, and hence simplifies the fabrication of sensor devices and reduces the operating cost. Nanostructured materials are at the core of the development of any room-temperature sensing platform. The most important advances with regard to fundamental research, sensing mechanisms, and application of nanostructured materials for room-temperature conductometric sensor devices are reviewed here. Particular emphasis is given to the relation between the nanostructure and sensor properties in an attempt to address structure-property correlations. Finally, some future research perspectives and new challenges that the field of room-temperature sensors will have to address are also discussed. PMID:26662346

  20. High temperature sensitivity fiber sensor based on M-Z interferometer fabricated by suspended dual-core hollow fiber

    NASA Astrophysics Data System (ADS)

    Zeng, Hongyi; Geng, Tao; Yang, Wenlei; An, Maowei; Yang, Fan

    2015-10-01

    We successfully fabricate and demonstrate a type of in-line M-Z interferometer by using single mode fiber and suspended dual-core hollow fiber. We fuse one section of dual-core hollow fiber (about 5-10cm length used as interferometer arms) with two part of single mode fiber by arc discharging on their cross sections. After this new M-Z interferometer's fabrication and related experiments, we improved it by absorbing drops of alcohol in its dual-core hollow body which can do much of contributions to its sensitivity. With bunches of temperature experiments conducted, we find this new interferometer has a good temperature sensitivity highly as 1.751nm/°C (from 20 to 100 °C) and interferometer with alcohol inside has a better temperature sensitivity highly as 3.015nm/ °C (from 20 to 60 °C) respectively.

  1. A standardized Cernox™ cryogenic temperature sensor for aerospace applications

    NASA Astrophysics Data System (ADS)

    Courts, Samuel Scott

    2014-11-01

    The success of any aerospace mission depends upon the reliability of the discrete components comprising the instrument. To this end, many test standards have been developed to define test protocols and methods for the parts used in these missions. To date, no recognized MIL-type standard exists for cryogenic temperature sensors that are used from room temperature to 20 K or below. The aerospace applications utilizing these sensors require the procuring entity to develop a specification which the sensor manufacturer uses to screen and qualify a single build lot for flight use. The individual applications often require only a small number of sensors with the end result being a relatively high cost and long delivery time. Over the past two decades, Lake Shore Cryotronics, Inc. has worked with many aerospace companies to supply Cernox™ cryogenic temperature sensors for numerous missions. The experience gained from this work has led to the development of a manufacturing and test protocol resulting in 'off-the-shelf' cryogenic temperature sensors that should meet the requirements for many aerospace applications. Sensors will be available at the base part level with the ability to configure the delivered part with regard to lead wire material, package adapter, lead wire extensions, and calibration as appropriate or necessary for the application. This work presents details of this manufacturing, inspection, and test protocol as well as performance characteristics of Cernox™ temperature sensors when inspected and tested to this protocol.

  2. Sonic temperature sensor for food processing

    SciTech Connect

    Akers, D.W.; Porter, A.M.; Tow, D.M.

    1997-09-01

    The lack of adequate temperature measurement is the major barrier to the development of more efficient and better quality food processing methods. The objective of the sonic temperature sensor for food processing project is to develop a prototype sensor to noninvasively measure the interior temperature of particulate foods during processing. This, a joint project with the National Food Processors Association, utilizes the property of materials that when the temperature of a material changes, there is a corresponding change in the speed of sound. The approach taken for the sonic sensor system is to determine the speed of sound inside particulate foods using a tomographic reconstruction process. This work has shown that the speed of sound can be accurately determined to an accuracy of {+-}0.4%, corresponding to a temperature uncertainty of {+-}2{degree}C using tomographic reconstruction methods.

  3. NEW OPTICAL SENSOR SUITE FOR ULTRAHIGH TEMPERATURE FOSSIL FUEL APPLICATIONS

    SciTech Connect

    Russell G. May; Tony Peng; Tom Flynn

    2004-12-01

    Accomplishments during the Phase I of a program to develop and demonstrate technology for the instrumentation of advanced powerplants are described. Engineers from Prime Research, LC and Babcock and Wilcox Research Center collaborated to generate a list of potential applications for robust photonic sensors in existing and future boiler plants. From that list, three applications were identified as primary candidates for initial development and demonstration of high-temperature sensors in an ultrasupercritical power plant. A matrix of potential fiber optic sensor approaches was derived, and a data set of specifications for high-temperature optical fiber was produced. Several fiber optic sensor configurations, including interferometric (extrinsic and intrinsic Fabry-Perot interferometer), gratings (fiber Bragg gratings and long period gratings), and microbend sensors, were evaluated in the laboratory. In addition, progress was made in the development of materials and methods to apply high-temperature optical claddings to sapphire fibers, in order to improve their optical waveguiding properties so that they can be used in the design and fabrication of high-temperature sensors. Through refinements in the processing steps, the quality of the interface between core and cladding of the fibers was improved, which is expected to reduce scattering and attenuation in the fibers. Numerical aperture measurements of both clad and unclad sapphire fibers were obtained and used to estimate the reduction in mode volume afforded by the cladding. High-temperature sensors based on sapphire fibers were also investigated. The fabrication of an intrinsic Fabry-Perot cavity within sapphire fibers was attempted by the bulk diffusion of magnesium oxide into short localized segments of longer sapphire fibers. Fourier analysis of the fringes that resulted when the treated fiber was interrogated by a swept laser spectrometer suggested that an intrinsic cavity had been formed in the fiber. Also

  4. Single mode step-index polymer optical fiber for humidity insensitive high temperature fiber Bragg grating sensors.

    PubMed

    Woyessa, Getinet; Fasano, Andrea; Stefani, Alessio; Markos, Christos; Nielsen, Kristian; Rasmussen, Henrik K; Bang, Ole

    2016-01-25

    We have fabricated the first single-mode step-index and humidity insensitive polymer optical fiber operating in the 850 nm wavelength ranges. The step-index preform is fabricated using injection molding, which is an efficient method for cost effective, flexible and fast preparation of the fiber preform. The fabricated single-mode step-index (SI) polymer optical fiber (POF) has a 4.8µm core made from TOPAS grade 5013S-04 with a glass transition temperature of 134°C and a 150 µm cladding made from ZEONEX grade 480R with a glass transition temperature of 138°C. The key advantages of the proposed SIPOF are low water absorption, high operating temperature and chemical inertness to acids and bases and many polar solvents as compared to the conventional poly-methyl-methacrylate (PMMA) and polystyrene based POFs. In addition, the fiber Bragg grating writing time is short compared to microstructured POFs. PMID:26832507

  5. Auger electron spectroscopy study of oxidation of a PdCr alloy used for high-temperature sensors

    NASA Technical Reports Server (NTRS)

    Boyd, Darwin L.; Zeller, Mary V.; Vargas-Aburto, Carlos

    1993-01-01

    A Pd-13 wt. percent Cr solid solution is a promising high-temperature strain gage alloy. In bulk form it has a number of properties that are desirable in a resistance strain gage material, such as a linear electrical resistance versus temperature curve to 1000 C and stable electrical resistance in air at 1000 C. However, unprotected fine wire gages fabricated from this alloy perform well only to 600 C. At higher temperatures severe oxidation degrades their electrical performance. In this work Auger electron spectroscopy was used to study the oxidation chemistry of the alloy wires and ribbons. Results indicate that the oxidation is caused by a complex mechanism that is not yet fully understood. As expected, during oxidation, a layer of chromium oxide is formed. This layer, however, forms beneath a layer of metallic palladium. The results of this study have increased the understanding of the oxidation mechanism of Pd-13 wt. percent Cr.

  6. Highly Sensitive and Multifunctional Tactile Sensor Using Free-standing ZnO/PVDF Thin Film with Graphene Electrodes for Pressure and Temperature Monitoring

    PubMed Central

    Lee, James S.; Shin, Keun-Young; Cheong, Oug Jae; Kim, Jae Hyun; Jang, Jyongsik

    2015-01-01

    We demonstrate an 80-μm-thick film (which is around 15% of the thickness of the human epidermis), which is a highly sensitive hybrid functional gauge sensor, and was fabricated from poly(vinylidene fluoride) (PVDF) and ZnO nanostructures with graphene electrodes. Using this film, we were able to simultaneously measure pressure and temperature in real time. The pressure was monitored from the change in the electrical resistance via the piezoresistance of the material, and the temperature was inferred based on the recovery time of the signal. Our thin film system enabled us to detect changes in pressure as small as 10 Pa which is pressure detection limit was 103-fold lower than the minimum level required for artificial skin, and to detect temperatures in the range 20–120°C. PMID:25601479

  7. Estimation of surface energy balance from radiant surface temperature and NOAA AVHRR sensor reflectances over agricultural and native vegetation. [AVHRR (advanced very high resolution radiometer)

    SciTech Connect

    Huang Xinmei; Lyons, T.J. ); Smith, R.C.G. ); Hacker, J.M.; Schwerdtfeger, P. )

    1993-08-01

    A model is developed to evaluate surface heat flux densities using the radiant surface temperature and red and near-infrared reflectances from the NOAA Advanced Very High Resolution Radiometer sensor. Net radiation is calculated from an empirical formulation and albedo estimated from satellite observations. Infrared surface temperature is corrected to aerodynamic surface temperature in estimating the sensible heat flux and the latent flux is evaluated as the residual of the surface energy balance. When applied to relatively homogeneous agricultural and native vegetation, the model yields realistic estimates of sensible and latent heat flux density in the surface layer for cases where either the sensible or latent flux dominates. 29 refs., 10 figs., 3 tabs.

  8. Highly sensitive and multifunctional tactile sensor using free-standing ZnO/PVDF thin film with graphene electrodes for pressure and temperature monitoring.

    PubMed

    Lee, James S; Shin, Keun-Young; Cheong, Oug Jae; Kim, Jae Hyun; Jang, Jyongsik

    2015-01-01

    We demonstrate an 80-μm-thick film (which is around 15% of the thickness of the human epidermis), which is a highly sensitive hybrid functional gauge sensor, and was fabricated from poly(vinylidene fluoride) (PVDF) and ZnO nanostructures with graphene electrodes. Using this film, we were able to simultaneously measure pressure and temperature in real time. The pressure was monitored from the change in the electrical resistance via the piezoresistance of the material, and the temperature was inferred based on the recovery time of the signal. Our thin film system enabled us to detect changes in pressure as small as 10 Pa which is pressure detection limit was 10(3)-fold lower than the minimum level required for artificial skin, and to detect temperatures in the range 20-120 °C. PMID:25601479

  9. Fibre Optic Temperature Sensors Using Fluorescent Phenomena.

    NASA Astrophysics Data System (ADS)

    Selli, Raman Kumar

    Available from UMI in association with The British Library. A number of fibre optic sensors based on fluorescent phenomena using low cost electronic and optical filtering techniques, for temperature sensing applications are described and discussed. The initial device developed uses the absorption edge change of an optical glass to monitor changes in temperature with a second wavelength reference channel being generated from a fluorescent material, neodymium doped in glass. This device demonstrates the working of the self-referencing principle in a practical device tested over the temperature range of -60^circ C to 200^circC. This initial device was improved by incorporating a microprocessor and by modifying the processing electronic circuitry. An alternative probe was constructed which used a second fibre placed along-side the addressing fibre in contrast to the original device where the fibre is placed at the opposite end of the addressing fibre. A device based on the same principle but with different absorption glasses and a different fluorescent medium, crystalline ruby, was also examined. This device operated at a lower wavelength region compared to the infra -red working region of the first device. This work illustrated the need to make an appropriate choice of sensor absorption glass so that the cheaper indicator type LEDs, which operated at lower wavelengths, may be used. Ruby is a fluorescent material which is characterized by each emission wavelength having its own temperature characteristics. The integrated energy output over the complete emission spectrum is independent of temperature. This provided a means of generating a reference from the complete spectrum while a small frequency band gave a temperature dependent output. This characteristic of ruby was used to develop a temperature measuring device. A final system which utilises the temperature dependent decay-time emission properties of crystalline ruby was developed. In this case the ruby was

  10. Rapid synthesis and characterization of hybrid ZnO@Au core-shell nanorods for high performance, low temperature NO2 gas sensor applications

    NASA Astrophysics Data System (ADS)

    Ponnuvelu, Dinesh Veeran; Pullithadathil, Biji; Prasad, Arun K.; Dhara, Sandip; Ashok, Anuradha; Mohamed, Kamruddin; Tyagi, Ashok Kumar; Raj, Baldev

    2015-11-01

    A rapid synthesis route for hybrid ZnO@Au core-shell nanorods has been realized for ultrasensitive, trace-level NO2 gas sensor applications. ZnO nanorods and hybrid ZnO@Au core-shell nanorods are structurally analyzed using X-ray diffraction (XRD), high resolution transmission electron microscopy (HR-TEM) and X-ray photoelectron spectroscopy (XPS). Optical characterization using UV-visible (UV-vis), photoluminescence (PL) and Raman spectroscopies elucidate alteration in the percentage of defect and charge transport properties of ZnO@Au core-shell nanorods. The study reveals the accumulation of electrons at metal-semiconductor junctions leading to upward band bending for ZnO and thus favors direct electron transfer from ZnO to Au nanoclusters, which mitigates charge carrier recombination process. The operating temperature of ZnO@Au core-shell nanorods based sensor significantly decreased to 150 °C compared to alternate NO2 sensors (300 °C). Moreover, a linear sensor response in the range of 0.5-5 ppm of NO2 concentration was observed with a lowest detection limit of 500 ppb using conventional electrodes. The defects with deep level, observed in ZnO nanorods and hybrid ZnO@Au core-shell nanorods influences local electron density, which in-turn indirectly influence the gas sensing properties. The ZnO@Au core-shell nanorods based sensor exhibited good selectivity toward NO2 and was found to be very stable.

  11. Sensors for low temperature application

    DOEpatents

    Henderson, Timothy M.; Wuttke, Gilbert H.

    1977-01-01

    A method and apparatus for low temperature sensing which uses gas filled micro-size hollow glass spheres that are exposed in a confined observation area to a low temperature range (Kelvin) and observed microscopically to determine change of state, i.e., change from gaseous state of the contained gas to condensed state. By suitable indicia and classification of the spheres in the observation area, the temperature can be determined very accurately.

  12. Temperature sensor based on dielectric optical microresonator

    NASA Astrophysics Data System (ADS)

    Rahman, Anisur

    2011-12-01

    An optical temperature sensor has been presented based on Whispering Gallery Mode (WGM) dielectric microresonator. The effect of Transverse Electric (TE) wave propagation in dielectric micro-spheres presented has been for optical resonances based on WGM. TE waves are characterized both theoretically and experimentally for large size parameter of the micro-spheres. A theoretical model has been developed based on asymptotic approach. The theoretical development is mathematically robust and significantly less complicated than existing approaches presented in the literature. The quality factor of experimental resonance spectra observed in the laboratory is calculated approximately in the order of 10 4 which is sensitive enough to detect micro or nano level temperature changes in the surrounding medium. The sensitivity of the Morphology Dependent Resonance (MDR) temperature sensor is wavelength change of 10 -9 m for one degree centigrade change in temperature. This sensor could potentially be used for nano technology, Micro-Electro-Mechanical Systems (MEMS) devices, and biomedical applications.

  13. Precision bridge circuit using a temperature sensor

    NASA Technical Reports Server (NTRS)

    Mount, Bruce E. (Inventor)

    1992-01-01

    A precision bridge measurement circuit connected to a current source providing a linear output voltage versus resistance change of a variable resistance (resistance temperature transducer) including a voltage follower in one branch of the bridge so that the zero setting of the transducer resistance does not depend upon the current source or upon an excitation voltage. The zero setting depends only on the precision and stability of the three resistances. By connecting the output of an instrumentation amplifier to a feedback resistor and then to the output of the voltage follower, minor nonlinearities in the resistance-vs-temperature output of a resistance-temperature transducer, such as a platinum temperature sensor, may be corrected. Sensors which have nonlinearity opposite in polarity to platinum, such as nickel-iron sensors, may be linearized by inserting an inverting amplifier into the feedback loop.

  14. A high accuracy sun sensor

    NASA Astrophysics Data System (ADS)

    Bokhove, H.

    The High Accuracy Sun Sensor (HASS) is described, concentrating on measurement principle, the CCD detector used, the construction of the sensorhead and the operation of the sensor electronics. Tests on a development model show that the main aim of a 0.01-arcsec rms stability over a 10-minute period is closely approached. Remaining problem areas are associated with the sensor sensitivity to illumination level variations, the shielding of the detector, and the test and calibration equipment.

  15. Temperature-independent polymer optical fiber evanescent wave sensor

    PubMed Central

    Zhong, Nianbing; Liao, Qiang; Zhu, Xun; Zhao, Mingfu; Huang, Yun; Chen, Rong

    2015-01-01

    Although the numerous advantages of polymer optical fibers have been exploited in the fields of sensors and telecommunications, such fibers still experience a critical problem: the temperature dependency. Therefore, we explored the temperature-independent operation of a polymer fiber-optic evanescent wave sensor immersed in distilled water. We investigated variations in the surface morphology, deformation trajectory, refractive index, and weight of the fiber-sensing region with varying water temperature. We also examined the spectral transmission and transmitted light intensity of fibers subjected to a heating-cooling treatment. We observed that the light-transmission modes and sensitivity of the sensor were affected by changes in the surface morphology, diameter, and refractive index of the sensing region caused by changes in temperature. The transmitted light intensity of the sensor was maintained at a constant level after five cycles of the heating-cooling treatment, after which the fibers exhibited a smooth surface, low refractive index, and large fiber diameter. Consequently, we utilized the heating-cooling-treated fiber to realize a temperature-independent, U-shaped polymer fiber-optic evanescent wave sensor. The temperature independence was evaluated using glucose solutions in the range of 10 to 70 °C. The fabricated sensor showed significant temperature independence and high degree of consistency in measuring solutions. PMID:26112908

  16. A temperature sensor based on a whispering gallery mode resonator

    NASA Astrophysics Data System (ADS)

    Yu, L.; Fernicola, V.

    2013-09-01

    This paper deals with a microwave temperature sensor based on a whispering gallery mode (WGM) resonator whose dielectric medium is a cylindrical sapphire crystal. The performance as temperature sensor were investigated a three WGMs resonant frequencies over the temperature range from -40 °C to 85 °C. It was found that the quality factor for these WGMs can be in excess of 1.7ṡ105, potentially enabling high-resolution measurements. The temperature repeatability, stability, hysteresis, frequency-vs-temperature sensitivity of the WGM temperature sensor are reported. Moreover, two sapphires, which have the same nominal characteristics, were investigated in order to assess the system reproducibility and the results reported.

  17. High-temperature electronics

    NASA Astrophysics Data System (ADS)

    Seng, Gary T.

    1987-11-01

    In recent years, there was a growing need for electronics capable of sustained high-temperature operation for aerospace propulsion system instrumentation, control and condition monitoring, and integrated sensors. The desired operating temperature in some applications exceeds 600 C, which is well beyond the capability of currently available semiconductor devices. Silicon carbide displays a number of properties which make it very attractive as a semiconductor material, one of which is the ability to retain its electronic integrity at temperatures well above 600 C. An IR-100 award was presented to NASA Lewis in 1983 for developing a chemical vapor deposition process to grow single crystals of this material on standard silicon wafers. Silicon carbide devices were demonstrated above 400 C, but much work remains in the areas of crystal growth, characterization, and device fabrication before the full potential of silicon carbide can be realized. The presentation will conclude with current and future high-temperature electronics program plans. Although the development of silicon carbide falls into the category of high-risk research, the future looks promising, and the potential payoffs are tremendous.

  18. Analysis and preliminary design of optical sensors for propulsion control. [temperature sensors

    NASA Technical Reports Server (NTRS)

    James, K. A.; Quick, W. H.; Strahan, V. H.

    1979-01-01

    A fiber-optic sensor concept screening study was performed. Twenty sensor subsystems were identified and evaluated. Two concepts selected for further study were the Fabry-Perot fiber-optic temperature sensor and the pulse-width-modulated phosphorescent temperature sensor. Various designs suitable for a Fabry-Perot temperature sensor to be used as a remote fiber-optic transducer were investigated. As a result, a particular design was selected and constructed. Tests on this device show that spectral peaks are produced from visible white light, and the change in wavelength of the spectral peaks produced by a change in temperature is consistent with theory and is 36 nm/C for the first order peak. A literature search to determine a suitable phosphor for implementing the pulse-width-modulated fiber optic temperature sensor was conducted. This search indicated that such a device could be made to function for temperatures up to approximately 200 C. Materials like ZnCdS and ZnSe activated with copper will be particularly applicable to temperature sensing in the cryogenic to room temperature region. While this sensing concept is probably not applicable to jet engines, the simplicity and potential reliability make the concept highly desirable for other applications.

  19. Fiber optic temperature sensors for medical applications

    NASA Astrophysics Data System (ADS)

    Schaafsma, David T.; Palmer, Gail; Bechtel, James H.

    2003-07-01

    Recent developments in fiber-optic sensor technology have demonstrated the utility of fiber-optic sensors for both medical and industrial applications. Fiber sensors based on fluorescent decay of rare earth doped materials allow rapid and accurate temperature measurement in challenging environments. Here we review the principles of operation of these sensors with a rare earth doped probe material and demonstrate why this material is an excellent choice for these types of sensors. The decay time technique allows accurate temperature determination from two measurements of the fluorescence intensity at a well-defined time interval. With this method, all instrumental and extraneous environmental effect will cancel, thus providing an accurate temperature measurement. Stability data will be presented for the fiber-optic probes. For medical applications, new breakthroughs in RF ablation technology and electro-surgical procedures are being introduced as alternative, less invasive treatment for removal of small tumors and for removal of plaque within arteries as a preventive treatment that avoids open heart surgery. The availability of small diameter temperature probes (230 microns or 450 microns in diameter) offers a whole new scope to temperature measurement. Accurate and reliable temperature monitoring during any laser treatment procedure or RF ablation at the surgical site is critical. Precise, NIST traceable reliable results are needed to prevent overheating or underheating during treatment. In addition, how interventional catheters are used in hyperthermia studies and the advantages to having flexible cables and multiple sensors are discussed. Preliminary data is given from an animal study where temperature was monitored in a pig during an RF study.

  20. Temperature sensors for OTEC applications

    NASA Astrophysics Data System (ADS)

    Seren, L.; Panchal, C. B.; Rote, D. M.

    1984-05-01

    Ocean thermal energy conversion (OTEC) applications require accurate measurement of temperatures in the 0 to 30 C range. Commercially available quartz-crystal thermometers and thermistors were examined. Three fixed-point baths were used for temperature measurements: the distilled-water/distilled-ice-water slurry, the triple-point-of-water cell, and the gallium melting-point cell. The temperature of carefully prepared ice-water slurries was verified routinely as 0.001 + or - 0.003 C. Quartz-crystal probes proved accurate to about 1 to 2 mK, with drift errors of the same order over a few days. Bead and disk-type thermistor probes were found to be about equally stable with time in the 0 to 30 C range. The overall probable error of using thermistors was found to be + or -4 mK. A solid-block temperature bath suitable for on-site calibrations in OTEC work was used in the temperature-sweeping mode. Various polynomial fits were examined for thermistor calibration; fits of order two and higher yielded about equally accurate calculated temperatures.

  1. Room-Temperature High-Performance H2S Sensor Based on Porous CuO Nanosheets Prepared by Hydrothermal Method.

    PubMed

    Li, Zhijie; Wang, Ningning; Lin, Zhijie; Wang, Junqiang; Liu, Wei; Sun, Kai; Fu, Yong Qing; Wang, Zhiguo

    2016-08-17

    Porous CuO nanosheets were prepared on alumina tubes using a facile hydrothermal method, and their morphology, microstructure, and gas-sensing properties were investigated. The monoclinic CuO nanosheets had an average thickness of 62.5 nm and were embedded with numerous holes with diameters ranging from 5 to 17 nm. The porous CuO nanosheets were used to fabricate gas sensors to detect hydrogen sulfide (H2S) operating at room temperature. The sensor showed a good response sensitivity of 1.25 with respond/recovery times of 234 and 76 s, respectively, when tested with the H2S concentrations as low as 10 ppb. It also showed a remarkably high selectivity to the H2S, but only minor responses to other gases such as SO2, NO, NO2, H2, CO, and C2H5OH. The working principle of the porous CuO nanosheet based sensor to detect the H2S was identified to be the phase transition from semiconducting CuO to a metallic conducting CuS. PMID:27447694

  2. Fiber Bragg Grating Temperature Sensor for Defence and Industrial Applications

    NASA Astrophysics Data System (ADS)

    Gebru, Haftay Abadi; Padhy, B. B.

    2011-10-01

    This paper presents the design and development of fiber Bragg grating (FBG) temperature sensor suitable for naval applications like temperature monitoring of onboard ships. The Bragg gratings used here have a reflection Bragg wavelength of 1550 nm and are inscribed by phase mask technique using ultraviolet (UV) laser beam at 255.3 nm. The high-resolution temperature sensor has been designed and developed based on the principle of converting the strain to temperature. This is achieved by using bimetallic configuration. Here lead and tungsten metals are used. The expansion of lead is concentrated on the Bragg grating, thus imparting strain on it. The wavelength shift with change of temperature is recorded with optical spectrum analyzer. The minimum temperature that could be measured accurately by the sensor with repeatability is of the order of 10-2. We have achieved thermal sensitivity of 46 pm/°C and 72 pm/°C for sensor lengths (length of the metallic strips) of 60 mm and 100 mm respectively. The thermal sensitivity achieved is approximately 3.5 times and 5.5 times that of bare FBG with thermal sensitivity of 13 pm/°C for the respective sensor lengths. This type of sensor can play vital role in defence and industrial applications like monitoring fresh water/lubricating oil temperatures of machinery in onboard ships, temperature monitoring of airframe of the aircraft, aircraft engine control system sensors, temperature measurement of hot gases from propellant combustion to protect the rocket motor casing, monitoring and control of temperature of copper bars of the power generators etc.

  3. Temperature Grid Sensor for the Measurement of Spatial Temperature Distributions at Object Surfaces

    PubMed Central

    Schäfer, Thomas; Schubert, Markus; Hampel, Uwe

    2013-01-01

    This paper presents results of the development and application of a new temperature grid sensor based on the wire-mesh sensor principle. The grid sensor consists of a matrix of 256 Pt1000 platinum chip resistors and an associated electronics that measures the grid resistances with a multiplexing scheme at high speed. The individual sensor elements can be spatially distributed on an object surface and measure transient temperature distributions in real time. The advantage compared with other temperature field measurement approaches such as infrared cameras is that the object under investigation can be thermally insulated and the radiation properties of the surface do not affect the measurement accuracy. The sensor principle is therefore suited for various industrial monitoring applications. Its applicability for surface temperature monitoring has been demonstrated through heating and mixing experiments in a vessel. PMID:23353141

  4. Temperature Sensors Based on WGM Optical Resonators

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy; Yu, Nan; Maleki, Lute; Itchenko, Vladimir; Matsko, Andrey; Strekalov, Dmitry

    2008-01-01

    A proposed technique for measuring temperature would exploit differences between the temperature dependences of the frequencies of two different electromagnetic modes of a whispering gallery-mode (WGM) optical resonator. An apparatus based on this technique was originally intended to be part of a control system for stabilizing a laser frequency in the face of temperature fluctuations. When suitably calibrated, apparatuses based on this technique could also serve as precise temperature sensors for purposes other than stabilization of lasers. A sensor according to the proposal would include (1) a transparent WGM dielectric resonator having at least two different sets of modes characterized by different thermo-optical constants and (2) optoelectronic instrumentation for measuring the difference between the temperature-dependent shifts of the resonance frequencies of the two sets of modes.

  5. Very high temperature silicon on silicon pressure transducers

    NASA Technical Reports Server (NTRS)

    Kurtz, Anthony D.; Nunn, Timothy A.; Briggs, Stephen A.; Ned, Alexander

    1992-01-01

    A silicon on silicon pressure sensor has been developed for use at very high temperatures (1000 F). The design principles used to fabricate the pressure sensor are outlined and results are presented of its high temperature performance.

  6. New Optical Sensor Suite for Ultrahigh Temperature Fossil Fuel Applications

    SciTech Connect

    Russell G. May; Tony Peng; Gary Pickrell

    2005-10-31

    Development of practical, high-temperature optical claddings for improved waveguiding in sapphire fibers continued during the reporting period. A set of designed experiments using the Taguchi method was undertaken to efficiently determine the optimal set of processing variables to yield clad fibers with good optical and mechanical properties. Eighteen samples of sapphire fibers were prepared with spinel claddings, each with a unique set of variables. Statistical analyses of the results were then used to predict the set of factors that would result in a spinel cladding with the optimal geometrical, mechanical, and optical properties. To confirm the predictions of the Taguchi analysis, sapphire fibers were clad with the magnesium aluminate spinel coating using the predicted optimal set of factors. In general, the clad fibers demonstrated high quality, exceeding the best results obtained during the Phase I effort. Tests of the high-temperature stability of the clad fibers were also conducted. The results indicated that the clad fibers were stable at temperatures up to 1300 C for the duration of the three day test. At the higher temperatures, some changes in the geometry of the fibers were observed. The design, fabrication, and testing of a sapphire sensor for measurement of temperature was undertaken. The specific sensor configuration uses a polished sapphire wafer as the temperature-sensitive element. The wafer is attached to a sapphire fiber (clad or unclad), and interrogated as a Fabry-Perot sensor. Methods for assembling the sensor were investigated. A prototype sensor was fabricated and tested at room temperature and elevated temperatures. Results were difficult to interpret, due to the presence of modal noise which was found to result from the use of a spectrometer that was not designed for use with multimode fibers. A spectrometer optimized for use of multimode fiber has been obtained, and further evaluation of the sapphire temperature sensor is continuing.

  7. Corrosion of MgO-PSZ in a HF solution and its effect on synthesis of an auxiliary electrode for high-temperature sulfur sensors

    NASA Astrophysics Data System (ADS)

    Liu, Tao; Li, Lin; Yu, Jingkun

    2012-08-01

    An auxiliary electrode for high-temperature sulfur sensors was synthesized with H2S at the surface of zirconia partially stabilized by magnesia (MgO-PSZ). MgO-PSZ was first corroded in a 40% HF solution under ultrasonic conditions at room temperature for different times. A sulfur sensor, Mo|Mo, Mo2S3|ZrS2 + MgS|ZrO2(MgO)|ZrS2 + MgS|[S]Fe|Mo, was developed and tested in carbon-saturated liquid iron. The results show that a phase transformation from tetragonal to monoclinic takes place on the surface of ZrO2 after MgO-PSZ is exposed to a HF solution. HF treatment of MgO-PSZ can promote formation of the auxiliary electrode. The variations of electromotive force versus [wt% S] can be obtained as follows: E = -53.247 ln [wt%S] + 142.86  (r = 0.97).

  8. Breathable and Stretchable Temperature Sensors Inspired by Skin.

    PubMed

    Chen, Ying; Lu, Bingwei; Chen, Yihao; Feng, Xue

    2015-01-01

    Flexible electronics attached to skin for healthcare, such as epidermal electronics, has to struggle with biocompatibility and adapt to specified environment of skin with respect to breath and perspiration. Here, we report a strategy for biocompatible flexible temperature sensors, inspired by skin, possessing the excellent permeability of air and high quality of water-proof by using semipermeable film with porous structures as substrate. We attach such temperature sensors to underarm and forearm to measure the axillary temperature and body surface temperature respectively. The volunteer wears such sensors for 24 hours with two times of shower and the in vitro test shows no sign of maceration or stimulation to the skin. Especially, precise temperature changes on skin surface caused by flowing air and water dropping are also measured to validate the accuracy and dynamical response. The results show that the biocompatible temperature sensor is soft and breathable on the human skin and has the excellent accuracy compared to mercury thermometer. This demonstrates the possibility and feasibility of fully using the sensors in long term body temperature sensing for medical use as well as sensing function of artificial skin for robots or prosthesis. PMID:26095941

  9. Breathable and Stretchable Temperature Sensors Inspired by Skin

    PubMed Central

    Chen, Ying; Lu, Bingwei; Chen, Yihao; Feng, Xue

    2015-01-01

    Flexible electronics attached to skin for healthcare, such as epidermal electronics, has to struggle with biocompatibility and adapt to specified environment of skin with respect to breath and perspiration. Here, we report a strategy for biocompatible flexible temperature sensors, inspired by skin, possessing the excellent permeability of air and high quality of water-proof by using semipermeable film with porous structures as substrate. We attach such temperature sensors to underarm and forearm to measure the axillary temperature and body surface temperature respectively. The volunteer wears such sensors for 24 hours with two times of shower and the in vitro test shows no sign of maceration or stimulation to the skin. Especially, precise temperature changes on skin surface caused by flowing air and water dropping are also measured to validate the accuracy and dynamical response. The results show that the biocompatible temperature sensor is soft and breathable on the human skin and has the excellent accuracy compared to mercury thermometer. This demonstrates the possibility and feasibility of fully using the sensors in long term body temperature sensing for medical use as well as sensing function of artificial skin for robots or prosthesis. PMID:26095941

  10. Breathable and Stretchable Temperature Sensors Inspired by Skin

    NASA Astrophysics Data System (ADS)

    Chen, Ying; Lu, Bingwei; Chen, Yihao; Feng, Xue

    2015-06-01

    Flexible electronics attached to skin for healthcare, such as epidermal electronics, has to struggle with biocompatibility and adapt to specified environment of skin with respect to breath and perspiration. Here, we report a strategy for biocompatible flexible temperature sensors, inspired by skin, possessing the excellent permeability of air and high quality of water-proof by using semipermeable film with porous structures as substrate. We attach such temperature sensors to underarm and forearm to measure the axillary temperature and body surface temperature respectively. The volunteer wears such sensors for 24 hours with two times of shower and the in vitro test shows no sign of maceration or stimulation to the skin. Especially, precise temperature changes on skin surface caused by flowing air and water dropping are also measured to validate the accuracy and dynamical response. The results show that the biocompatible temperature sensor is soft and breathable on the human skin and has the excellent accuracy compared to mercury thermometer. This demonstrates the possibility and feasibility of fully using the sensors in long term body temperature sensing for medical use as well as sensing function of artificial skin for robots or prosthesis.

  11. NEW OPTICAL SENSOR SUITE FOR ULTRAHIGH TEMPERATURE FOSSIL FUEL APPLICATIONS

    SciTech Connect

    Russell G. May; Tony Peng; Tom Flynn

    2004-04-01

    Accomplishments during the first six months of a program to develop and demonstrate technology for the instrumentation of advanced powerplants are described. Engineers from Prime Research, LC and Babcock and Wilcox Research Center collaborated to generate a list of potential applications for robust photonic sensors in existing and future boiler plants. From that list, three applications were identified as primary candidates for initial development and demonstration of high-temperature sensors in an ultrasupercritical power plant. In addition, progress was made in the development of materials and methods to apply high-temperature optical claddings to sapphire fibers, in order to improve their optical waveguiding properties so that they can be used in the design and fabrication of high-temperature sensors. Through refinements in the processing steps, the quality of the interface between core and cladding of the fibers was improved, which is expected to reduce scattering and attenuation in the fibers.

  12. University of Illinois Temperature Sensors

    SciTech Connect

    K. L. Davis; D. L. Knudson; J. L. Rempe; B. M. Chase

    2014-09-01

    This document summarizes background information and presents results related to temperature measurements in the Advanced Test Reactor (ATR) National Scientific User Facility (NSUF) University of Illinois Project 29609 irradiation. The objective of this test was to assess the radiation performance of ferritic alloys for advanced reactor applications. The FeCr-based alloy system is considered the lead alloy system for a variety of advanced reactor components and applications. Irradiations of FeCr alloy samples were performed using the Hydraulic Shuttle Irradiation System (HSIS) in the B-7 position and in a static capsule in the A-11 position of the ATR.

  13. Passive absolute age and temperature history sensor

    SciTech Connect

    Robinson, Alex; Vianco, Paul T.

    2015-11-10

    A passive sensor for historic age and temperature sensing, including a first member formed of a first material, the first material being either a metal or a semiconductor material and a second member formed of a second material, the second material being either a metal or a semiconductor material. A surface of the second member is in contact with a surface of the first member such that, over time, the second material of the second member diffuses into the first material of the first member. The rate of diffusion for the second material to diffuse into the first material depends on a temperature of the passive sensor. One of the electrical conductance, the electrical capacitance, the electrical inductance, the optical transmission, the optical reflectance, or the crystalline structure of the passive sensor depends on the amount of the second material that has diffused into the first member.

  14. Integrated Shear Stress/Temperature Micromachined Sensors

    NASA Technical Reports Server (NTRS)

    Sheplak, Mark; Cattafesta, Louis N., III; Nishida, Toshikazu

    2002-01-01

    During this project we were able to design and initiate the fabrication of an integrated Micro ElectroMechanical Systems (MEMS)-based shear stress/temperature sensor for flow control applications. A brief summary of the completed activities during this project is presented.

  15. Extreme Temperature Pulse Injection Position Sensor for Venus Environment

    NASA Astrophysics Data System (ADS)

    Ji, Jerri; Kumar, Nishant; Singh, Sase; Narine, Roop

    After developed two types of extreme temperature motors (Switched Reluctance Motor and Blushless DC Motor), Honeybee Robotics has successfully developed an Extreme Temperature Pulse Injection Position Sensor that can be used to commutate motors and provide positional information. This paper presents an insight into the challenges of designing extreme tempera-ture electro-mechanical system and provides results of the experiment performed in the Venus environment. The operational temperature range for existing commutation devices, include Hall Sensors, Resolvers and Encoders is limited to temperatures less than 180C. The Extreme Temperature Pulse Injection Position Sensor is capable of working continuously at 460C and at 92 atm. The design of this device involves a unique rotor design and an innovative phase pulsing algorithm implemented through a high speed DSP. The shape of the rotor provides a unique flow-path to the lines-of-flux through the poles of the stator. The pulsing algorithm makes it possible to nullify the effects of parametric changes (wire resistance, permeability, air gap, etc.) due to increase in temperature. The algorithm relies on the relative flux density between two stator poles rather than the absolute measurement of the flux density in each pole. Extreme temperature position sensor, along with scalable extreme temperature motor and gearhead allow for creation of robot arms and even mobility systems for future Venus missions to achieve their goals and objectives.

  16. New Optimal Sensor Suite for Ultrahigh Temperature Fossil Fuel Applications

    SciTech Connect

    John Coggin; Jonas Ivasauskas; Russell G. May; Michael B. Miller; Rena Wilson

    2006-09-30

    Accomplishments during Phase II of a program to develop and demonstrate photonic sensor technology for the instrumentation of advanced powerplants are described. The goal of this project is the research and development of advanced, robust photonic sensors based on improved sapphire optical waveguides, and the identification and demonstration of applications of the new sensors in advanced fossil fuel power plants, where the new technology will contribute to improvements in process control and monitoring. During this program work period, major progress has been experienced in the development of the sensor hardware, and the planning of the system installation and operation. The major focus of the next work period will be the installation of sensors in the Hamilton, Ohio power plant, and demonstration of high-temperature strain gages during mechanical testing of SOFC components.

  17. Multifunctional potentiometric gas sensor array with an integrated temperature control and temperature sensors

    DOEpatents

    Blackburn, Bryan M; Wachsman, Eric D

    2015-05-12

    Embodiments of the subject invention relate to a gas sensor and method for sensing one or more gases. An embodiment incorporates an array of sensing electrodes maintained at similar or different temperatures, such that the sensitivity and species selectivity of the device can be fine tuned between different pairs of sensing electrodes. A specific embodiment pertains to a gas sensor array for monitoring combustion exhausts and/or chemical reaction byproducts. An embodiment of the subject device related to this invention operates at high temperatures and can withstand harsh chemical environments. Embodiments of the device are made on a single substrate. The devices can also be made on individual substrates and monitored individually as if they were part of an array on a single substrate. The device can incorporate sensing electrodes in the same environment, which allows the electrodes to be coplanar and, thus, keep manufacturing costs low. Embodiments of the device can provide improvements to sensitivity, selectivity, and signal interference via surface temperature control.

  18. Low-temperature capacitive sensor based on perovskite oxides

    SciTech Connect

    Zaza, F. Serra, E.; Caprioli, F.; Orio, G.; Pasquali, M.

    2015-06-23

    Energy, environmental and social issues drive towards the green political economy and the development of advanced technologies, promoting renewable energy sources, improving energy conversion efficiency and reducing exhaust gas emissions. The development of sustainable technologies requires strategic research in the area of gas sensors for monitoring air quality, controlling gas emissions and optimizing combustion processes. Solid state sensors are the most attractive one because of their simplicity in function, small size and low cost. The aim of this work is to synthetize and characterize strontium titanate and test its sensing performance. The prepared sensor device shows significant sensitivity and response rate at room-temperature. However, because of the low recovery rate, the regeneration of the sensor has to be made at high temperature for promoting the decomposition of the carbonates formed on the perovkite surface.

  19. Low-temperature capacitive sensor based on perovskite oxides

    NASA Astrophysics Data System (ADS)

    Zaza, F.; Orio, G.; Serra, E.; Caprioli, F.; Pasquali, M.

    2015-06-01

    Energy, environmental and social issues drive towards the green political economy and the development of advanced technologies, promoting renewable energy sources, improving energy conversion efficiency and reducing exhaust gas emissions. The development of sustainable technologies requires strategic research in the area of gas sensors for monitoring air quality, controlling gas emissions and optimizing combustion processes. Solid state sensors are the most attractive one because of their simplicity in function, small size and low cost. The aim of this work is to synthetize and characterize strontium titanate and test its sensing performance. The prepared sensor device shows significant sensitivity and response rate at room-temperature. However, because of the low recovery rate, the regeneration of the sensor has to be made at high temperature for promoting the decomposition of the carbonates formed on the perovkite surface.

  20. Ultraflexible, large-area, physiological temperature sensors for multipoint measurements

    PubMed Central

    Yokota, Tomoyuki; Inoue, Yusuke; Terakawa, Yuki; Reeder, Jonathan; Kaltenbrunner, Martin; Ware, Taylor; Yang, Kejia; Mabuchi, Kunihiko; Murakawa, Tomohiro; Sekino, Masaki; Voit, Walter; Sekitani, Tsuyoshi; Someya, Takao

    2015-01-01

    We report a fabrication method for flexible and printable thermal sensors based on composites of semicrystalline acrylate polymers and graphite with a high sensitivity of 20 mK and a high-speed response time of less than 100 ms. These devices exhibit large resistance changes near body temperature under physiological conditions with high repeatability (1,800 times). Device performance is largely unaffected by bending to radii below 700 µm, which allows for conformal application to the surface of living tissue. The sensing temperature can be tuned between 25 °C and 50 °C, which covers all relevant physiological temperatures. Furthermore, we demonstrate flexible active-matrix thermal sensors which can resolve spatial temperature gradients over a large area. With this flexible ultrasensitive temperature sensor we succeeded in the in vivo measurement of cyclic temperatures changes of 0.1 °C in a rat lung during breathing, without interference from constant tissue motion. This result conclusively shows that the lung of a warm-blooded animal maintains surprising temperature stability despite the large difference between core temperature and inhaled air temperature. PMID:26554008

  1. Research of temperature field measurement using a flexible temperature sensor array for robot sensing skin

    NASA Astrophysics Data System (ADS)

    Huang, Ying; Wu, Siyu; Li, Ruiqi; Yang, Qinghua; Zhang, Yugang; Liu, Caixia

    2013-10-01

    This paper presents a novel temperature sensor array by dispensing conductive composites on a flexible printed circuit board which is able to acquire the ambient temperature. The flexible temperature sensor array was fabricated by using carbon fiber-filled silicon rubber based composites on a flexible polyimide circuit board, which can both ensure their high flexibility. It found that CF with 12 wt% could be served as the best conductive filler for higher temperature sensitivity and better stability comparing with some other proportion for dynamic range from 30&° to 90°. The preparation of the temperature sensitive material has also been described in detail. Connecting the flexible sensor array with a data acquisition card and a personal computer (PC), some heat sources with different shapes were loaded on the sensor array; the detected results were shown in the interface by LabVIEW software. The measured temperature contours are in good agreement with the shapes and amplitudes of different heat sources. Furthermore, in consideration of the heat dissipation in the air, the relationship between the resistance and the distance of heat sources with sensor array was also detected to verify the accuracy of the sensor array, which is also a preparation for our future work. Experimental results demonstrate the effectiveness and accuracy of the developed flexible sensor array, and it can be used as humanoid artificial skin for sensation system of robots.

  2. Optical temperature sensor utilizing birefringent crystals

    NASA Technical Reports Server (NTRS)

    Quick, William H. (Inventor); James, Kenneth A. (Inventor); Strahan, Virgil H. (Inventor)

    1980-01-01

    A temperature sensor comprising an optical transducer member having an array of birefringent crystals. The length and, accordingly, the sensitivity to temperature change of successive birefringent crystals varies according to a particular relationship. The transducer is interconnected with a fiber optic transmission and detecting system. Respective optical output signals that are transmitted from the birefringent crystals via the fiber optic transmission system are detected and decoded so as to correspond to digits of a numbering system, whereby an accurate digital representation of temperature can ultimately be provided.

  3. High Temperature Protonic Conductors

    NASA Technical Reports Server (NTRS)

    Dynys, Fred; Berger, Marie-Helen; Sayir, Ali

    2007-01-01

    High Temperature Protonic Conductors (HTPC) with the perovskite structure are envisioned for electrochemical membrane applications such as H2 separation, H2 sensors and fuel cells. Successive membrane commercialization is dependent upon addressing issues with H2 permeation rate and environmental stability with CO2 and H2O. HTPC membranes are conventionally fabricated by solid-state sintering. Grain boundaries and the presence of intergranular second phases reduce the proton mobility by orders of magnitude than the bulk crystalline grain. To enhanced protonic mobility, alternative processing routes were evaluated. A laser melt modulation (LMM) process was utilized to fabricate bulk samples, while pulsed laser deposition (PLD) was utilized to fabricate thin film membranes . Sr3Ca(1+x)Nb(2-x)O9 and SrCe(1-x)Y(x)O3 bulk samples were fabricated by LMM. Thin film BaCe(0.85)Y(0.15)O3 membranes were fabricated by PLD on porous substrates. Electron microscopy with chemical mapping was done to characterize the resultant microstructures. High temperature protonic conduction was measured by impedance spectroscopy in wet air or H2 environments. The results demonstrate the advantage of thin film membranes to thick membranes but also reveal the negative impact of defects or nanoscale domains on protonic conductivity.

  4. Multifunctional Nanowire/film Composites based Bi-modular Sensors for In-situ and Real-time High Temperature Gas Detection

    SciTech Connect

    Gao, Pu-Xian; Lei, Yu

    2013-06-01

    This final report to the Department of Energy/National Energy Technology Laboratory for DE-FE0000870 covers the period from 2009 to June, 2013 and summarizes the main research accomplishments, which can be divided in sensing materials innovation, bimodular sensor demonstration, and new understanding and discoveries. As a matter of fact, we have successfully completed all the project tasks in June 1, 2013, and presented the final project review presentation on the 9th of July, 2013. Specifically, the major accomplishments achieved in this project include: 1) Successful development of a new class of high temperature stable gas sensor nanomaterials based on composite nano-array strategy in a 3D or 2D fashion using metal oxides and perovskite nanostructures. 2) Successful demonstration of bimodular nanosensors using 2D nanofibrous film and 3D composite nanowire arrays using electrical resistance mode and electrochemical electromotive force mode. 3) Series of new discoveries and understandings based on the new composite nanostructure platform toward enhancing nanosensor performance in terms of stability, selectivity, sensitivity and mass flux sensing. In this report, we highlight some results toward these accomplishments.

  5. Fiber optic strain and temperature sensor for power plant applications

    NASA Astrophysics Data System (ADS)

    Narendran, Nadarajah; Weiss, Joseph M.

    1996-01-01

    The applicability of fiber-optic strain and temperature sensors to monitor power plant structures was evaluated on a super-heated steam pipe operating at 1000 degree(s)F at the Tennessee Valley Authority power plant in Kingston, Tennessee. The potential applications of these fiber-optic sensors include health monitoring of high-temperature structures such as boilers, tube headers, and steam pipes, as well as many other power plant structures exposed to less severe environments. The sensor selected for this application is based on a white-light interferometric technique. The key features of this sensor include its ability for absolute measurements that are not affected by light loss along the fiber cable due to, for example, microbending effects and coupler loss, its compatibility with off-the-shelf fiber-optic components, and its low cost. The glass fiber-optic strain sensors were packaged in a rugged metal housing and were spot welded to the high-temperature steam pipe. Another set of gages was placed inside a thermowell for steam temperature measurement. Data collected during a routine start-up is very encouraging and the details are presented in this manuscript.

  6. Strain sensors for high field pulse magnets

    SciTech Connect

    Martinez, Christian; Zheng, Yan; Easton, Daniel; Farinholt, Kevin M; Park, Gyuhae

    2009-01-01

    In this paper we present an investigation into several strain sensing technologies that are being considered to monitor mechanical deformation within the steel reinforcement shells used in high field pulsed magnets. Such systems generally operate at cryogenic temperatures to mitigate heating issues that are inherent in the coils of nondestructive, high field pulsed magnets. The objective of this preliminary study is to characterize the performance of various strain sensing technologies at liquid nitrogen temperatures (-196 C). Four sensor types are considered in this investigation: fiber Bragg gratings (FBG), resistive foil strain gauges (RFSG), piezoelectric polymers (PVDF), and piezoceramics (PZT). Three operational conditions are considered for each sensor: bond integrity, sensitivity as a function of temperature, and thermal cycling effects. Several experiments were conducted as part of this study, investigating adhesion with various substrate materials (stainless steel, aluminum, and carbon fiber), sensitivity to static (FBG and RFSG) and dynamic (RFSG, PVDF and PZT) load conditions, and sensor diagnostics using PZT sensors. This work has been conducted in collaboration with the National High Magnetic Field Laboratory (NHMFL), and the results of this study will be used to identify the set of sensing technologies that would be best suited for integration within high field pulsed magnets at the NHMFL facility.

  7. A Harsh Environment-Oriented Wireless Passive Temperature Sensor Realized by LTCC Technology

    PubMed Central

    Tan, Qiulin; Luo, Tao; Xiong, Jijun; Kang, Hao; Ji, Xiaxia; Zhang, Yang; Yang, Mingliang; Wang, Xiaolong; Xue, Chenyang; Liu, Jun; Zhang, Wendong

    2014-01-01

    To meet measurement needs in harsh environments, such as high temperature and rotating applications, a wireless passive Low Temperature Co-fired Ceramics (LTCC) temperature sensor based on ferroelectric dielectric material is presented in this paper. As a LC circuit which consists of electrically connected temperature sensitive capacitor and invariable planar spiral inductor, the sensor has its resonant frequency shift with the variation in temperature. Within near-filed coupling distance, the variation in resonant frequency of the sensor can be detected contactlessly by extracting the impedance parameters of an external antenna. Ferroelectric ceramic, which has temperature sensitive permittivity, is used as the dielectric. The fabrication process of the sensor, which differs from conventional LTCC technology, is described in detail. The sensor is tested three times from room temperature to 700 °C, and considerable repeatability and sensitivity are shown, thus the feasibility of high performance wireless passive temperature sensor realized by LTCC technology is demonstrated. PMID:24594610

  8. Polymer substrate temperature sensor array for brain interfaces.

    PubMed

    Kim, Insoo; Fok, Ho Him R; Li, Yuanyuan; Jackson, Thomas N; Gluckman, Bruce J

    2011-01-01

    We developed an implantable thin film transistor temperature sensor (TFT-TS) to measure temperature changes in the brain. These changes are assumed to be associated with cerebral metabolism and neuronal activity. Two prototype TFT-TSs were designed and tested in-vitro: one with 8 diode-connected single-ended sensors, and the other with 4 pairs of differential-ended sensors in an array configuration. The sensor elements are 25 ~ 100 pm in width and 5 μm in length. The TFT-TSs were fabricated based on high-speed ZnO TFT process technology on flexible polyimide substrates (50 μm thick, 500 μm width, 20 mm length). In order to interface external signal electronics, they were directly bonded to a prototype printed circuit board using anisotropic conductive films The prototypes were characterized between 23 ~ 38 °C using a commercial temperature sensor and custom-designed temperature controlled oven. The maximum sensitivity of 40 mV/°C was obtained from the TFT-TS. PMID:22255041

  9. Dual neutron flux/temperature measurement sensor

    DOEpatents

    Mihalczo, John T.; Simpson, Marc L.; McElhaney, Stephanie A.

    1994-01-01

    Simultaneous measurement of neutron flux and temperature is provided by a single sensor which includes a phosphor mixture having two principal constituents. The first constituent is a neutron sensitive 6LiF and the second is a rare-earth activated Y203 thermophosphor. The mixture is coated on the end of a fiber optic, while the opposite end of the fiber optic is coupled to a light detector. The detected light scintillations are quantified for neutron flux determination, and the decay is measured for temperature determination.

  10. Developing Multilayer Thin Film Strain Sensors With High Thermal Stability

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Fralick, Gustave C.; Gonzalez, Jose M., III

    2006-01-01

    A multilayer thin film strain sensor for large temperature range use is under development using a reactively-sputtered process. The sensor is capable of being fabricated in fine line widths utilizing the sacrificial-layer lift-off process that is used for micro-fabricated noble-metal sensors. Tantalum nitride films were optimized using reactive sputtering with an unbalanced magnetron source. A first approximation model of multilayer resistance and temperature coefficient of resistance was used to set the film thicknesses in the multilayer film sensor. Two multifunctional sensors were fabricated using multilayered films of tantalum nitride and palladium chromium, and tested for low temperature resistivity, TCR and strain response. The low temperature coefficient of resistance of the films will result in improved stability in thin film sensors for low to high temperature use.

  11. Differential temperature sensor system and method

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy A. (Inventor); Yu, Nan (Inventor); Maleki, Lute (Inventor); Iltchenko, Vladimir S. (Inventor); Matsko, Andrey B. (Inventor); Strekalov, Dmitry V. (Inventor)

    2010-01-01

    A differential temperature sensor system and method of determining a temperature shift of an optical resonator and its surroundings are provided. The differential temperature sensor system includes a light generating device capable of generating a beam having a carrier frequency, a modulator capable of modulating the beam with a sideband frequency, and an optical resonator capable of supporting an ordinary mode and an extraordinary mode. The system includes an ordinary mode-lock setup capable of locking the carrier frequency of the beam to the ordinary mode of the optical resonator and an extraordinary mode-lock setup capable of locking the sideband frequency of the beam to the extraordinary mode of the optical resonator by providing a specific radio frequency to the modulator substantially corresponding to a frequency shift between the ordinary mode and the extraordinary mode of the optical resonator resulting from a temperature change of the optical resonator. A processor precisely calculates the differential temperature based upon the frequency shift between the ordinary mode and extraordinary mode of the optical resonator.

  12. 46 CFR 153.565 - Special requirement for temperature sensors.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Special requirement for temperature sensors. 153.565... Equipment Special Requirements § 153.565 Special requirement for temperature sensors. If a cargo listed in table 1 of this part refers to this section, temperature sensors must be used to monitor the cargo...

  13. 46 CFR 153.565 - Special requirement for temperature sensors.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Special requirement for temperature sensors. 153.565... Equipment Special Requirements § 153.565 Special requirement for temperature sensors. If a cargo listed in table 1 of this part refers to this section, temperature sensors must be used to monitor the cargo...

  14. 46 CFR 153.565 - Special requirement for temperature sensors.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Special requirement for temperature sensors. 153.565... Equipment Special Requirements § 153.565 Special requirement for temperature sensors. If a cargo listed in table 1 of this part refers to this section, temperature sensors must be used to monitor the cargo...

  15. 46 CFR 153.565 - Special requirement for temperature sensors.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Special requirement for temperature sensors. 153.565... Equipment Special Requirements § 153.565 Special requirement for temperature sensors. If a cargo listed in table 1 of this part refers to this section, temperature sensors must be used to monitor the cargo...

  16. 46 CFR 153.565 - Special requirement for temperature sensors.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Special requirement for temperature sensors. 153.565... Equipment Special Requirements § 153.565 Special requirement for temperature sensors. If a cargo listed in table 1 of this part refers to this section, temperature sensors must be used to monitor the cargo...

  17. A highly sensitive room temperature H2S gas sensor based on SnO2 multi-tube arrays bio-templated from insect bristles.

    PubMed

    Tian, Junlong; Pan, Feng; Xue, Ruiyang; Zhang, Wang; Fang, Xiaotian; Liu, Qinglei; Wang, Yuhua; Zhang, Zhijian; Zhang, Di

    2015-05-01

    A tin oxide multi-tube array (SMTA) with a parallel effect was fabricated through a simple and promising method combining chemosynthesis and biomimetic techniques; a biomimetic template was derived from the bristles on the wings of the Alpine Black Swallowtail butterfly (Papilio maackii). SnO2 tubes are hollow and porous structures with micro-pores regularly distributed on the wall. The morphology, the delicate microstructure and the crystal structure of this SMTA were characterized by super resolution digital microscopy, scanning electron microscopy, transmission electron microscopy and X-ray diffraction. The SMTA exhibits a high sensitivity to H2S gas at room temperature. It also exhibits a short response/recovery time, with an average value of 14/30 s at 5 ppm. In particular, heating is not required for the SMTA in the gas sensitivity measurement process. On the basis of these results, SMTA is proposed as a suitable new material for the design and fabrication of room-temperature H2S gas sensors. PMID:25823527

  18. High temperature furnace

    DOEpatents

    Borkowski, Casimer J.

    1976-08-03

    A high temperature furnace for use above 2000.degree.C is provided that features fast initial heating and low power consumption at the operating temperature. The cathode is initially heated by joule heating followed by electron emission heating at the operating temperature. The cathode is designed for routine large temperature excursions without being subjected to high thermal stresses. A further characteristic of the device is the elimination of any ceramic components from the high temperature zone of the furnace.

  19. Small CO2 Sensors Operate at Lower Temperature

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Xu, Jennifer C.

    2009-01-01

    Solid-electrolyte-based amperometric sensors for measuring concentrations of CO2 in air are being developed for use in detection of fires, environmental monitoring, and other applications where liquid-based electrochemical cells are problematic. These sensors are small (sizes of the order of a millimeter), are robust, are amenable to batch fabrication at relatively low cost, and exhibit short response times (seconds) and wide detection ranges. A sensor of this type at a previous stage of development included a solid electrolyte of Na3Zr2Si2PO12 deposited mainly between interdigitated Pt electrodes on an alumina substrate, all overcoated with an auxiliary solid electrolyte of (Na2CO3:BaCO3 in a molar ratio of 1:1.7). It was necessary to heat this device to a temperature as high as 600 C to obtain the desired sensitivity and rapid response. Heating sensors increases the power consumption of the sensor system and complicates the use of the sensor in some applications. Thus, decreasing a sensor s power consumption while maintaining its performance is a technical goal of ongoing development.

  20. Measurement error of surface-mounted fiber Bragg grating temperature sensor.

    PubMed

    Yi, Liu; Zude, Zhou; Erlong, Zhang; Jun, Zhang; Yuegang, Tan; Mingyao, Liu

    2014-06-01

    Fiber Bragg grating (FBG) sensors are extensively used to measure surface temperatures. However, the temperature gradient effect of a surface-mounted FBG sensor is often overlooked. A surface-type temperature standard setup was prepared in this study to investigate the measurement errors of FBG temperature sensors. Experimental results show that the measurement error of a bare fiber sensor has an obvious linear relationship with surface temperature, with the largest error achieved at 8.1 °C. Sensors packaged with heat conduction grease generate smaller measurement errors than do bare FBG sensors and commercial thermal resistors. Thus, high-quality packaged methods and proper modes of fixation can effectively improve the accuracy of FBG sensors in measuring surface temperatures. PMID:24985840

  1. Lamb Waves Propagation along 3C-SiC/AlN Membranes for Application in Temperature-Compensated, High-Sensitivity Gravimetric Sensors

    PubMed Central

    Caliendo, Cinzia; D'Amico, Arnaldo; Castro, Fabio Lo

    2013-01-01

    The propagation of the fundamental quasi-symmetric Lamb mode S0 travelling along 3C-SiC/c-AlN composite plates is theoretically studied with respect to the AlN and SiC film thickness, the acoustic wave propagation direction and the electrical boundary conditions. The temperature effects on the phase velocity have been considered for four AlN/SiC-based electroacoustic coupling configurations, specifically addressing the design of temperature-compensated, enhanced-coupling, GHz-range electroacoustic devices. The gravimetric sensitivity and resolution of the four temperature-stable SiC/AlN composite structures are theoretically investigated with respect to both the AlN and SiC sensing surface. The SiC/AlN-based sensor performances are compared to those of surface acoustic waves and Lamb S0 mode mass sensors implemented on bulk conventional piezoelectric materials and on thin suspended membranes. PMID:23282585

  2. ZnO nanorod/porous silicon nanowire hybrid structures as highly-sensitive NO2 gas sensors at room temperature.

    PubMed

    Liao, Jiecui; Li, Zhengcao; Wang, Guojing; Chen, Chienhua; Lv, Shasha; Li, Mingyang

    2016-02-01

    ZnO nanorod/porous silicon nanowire (ZnO/PSiNW) hybrids with three different structures as highly sensitive NO2 gas sensors were obtained. PSiNWs were first synthesized by metal-assisted chemical etching, and then seeded in three different ways. After that ZnO nanorods were grown on the seeded surface of PSiNWs using a hydrothermal procedure. ZnO/PSiNW hybrids showed excellent gas sensing performance for various NO2 concentrations (5-50 ppm) at room temperature, and the electrical resistance change rate reached as high as 35.1% when responding to 50 ppm NO2. The distinct enhancement was mainly attributed to the faster carrier transportation after combination, the increase in gas sensing areas and the oxygen vacancy (VO) concentration. Moreover, the p-type gas sensing behavior was explained by the gas sensing mechanism and the effect of VO concentration on gas sensing properties was also discussed concerning the photoluminescence (PL) spectra performance. PMID:26804157

  3. Multiplexed Sensor for Synthesis Gas Compsition and Temperature

    SciTech Connect

    Steven Buckley; Reza Gharavi; Marco Leon

    2007-10-01

    The overall goal of this project has been to develop a highly sensitive, multiplexed TDL-based sensor for CO{sub 2}, CO, H{sub 2}O (and temperature), CH{sub 4}, H{sub 2}S, and NH{sub 3}. Such a sensor was designed with so-called 'plug-and-play' characteristics to accommodate additional sensors, and provided in situ path-integrated measurements indicative of average concentrations at speeds suitable for direct gasifier control. The project developed the sensor and culminated in a real-world test of the underlying technology behind the sensor. During the project, new underlying measurements of spectroscopic constants for all of the gases of interest performed, in custom cells built for the project. The envisioned instrument was built from scratch from component lasers, fiber optics, amplifier blocks, detectors, etc. The sensor was tested for nearly a week in an operational power plant. The products of this research are expected to have a direct impact on gasifier technology and the production of high-quality syngas, with substantial broader application to coal and other energy systems. This report is the final technical report on project DE-FG26-04NT42172. During the project we completed all of the milestones planned in the project, with a modification of milestone (7) required due to lack of funding and personnel.

  4. Microbend fiber-optic temperature sensor

    DOEpatents

    Weiss, Jonathan D.

    1995-01-01

    A temperature sensor is made of optical fiber into which quasi-sinusoidal microbends have been permanently introduced. In particular, the present invention includes a graded-index optical fiber directing steady light through a section of the optical fiber containing a plurality of permanent microbends. The microbend section of the optical fiber is contained in a thermally expansive sheath, attached to a thermally expansive structure, or attached to a bimetallic element undergoing temperature changes and being monitored. The microbend section is secured to the thermally expansive sheath which allows the amplitude of the microbends to decrease with temperature. The resultant increase in the optical fiber's transmission thus allows temperature to be measured. The plural microbend section of the optical fiber is secured to the thermally expansive structure only at its ends and the microbends themselves are completely unconstrained laterally by any bonding agent to obtain maximum longitudinal temperature sensitivity. Although the permanent microbends reduce the transmission capabilities of fiber optics, the present invention utilizes this phenomenon as a transduction mechanism which is optimized to measure temperature.

  5. Microbend fiber-optic temperature sensor

    DOEpatents

    Weiss, J.D.

    1995-05-30

    A temperature sensor is made of optical fiber into which quasi-sinusoidal microbends have been permanently introduced. In particular, the present invention includes a graded-index optical fiber directing steady light through a section of the optical fiber containing a plurality of permanent microbends. The microbend section of the optical fiber is contained in a thermally expansive sheath, attached to a thermally expansive structure, or attached to a bimetallic element undergoing temperature changes and being monitored. The microbend section is secured to the thermally expansive sheath which allows the amplitude of the microbends to decrease with temperature. The resultant increase in the optical fiber`s transmission thus allows temperature to be measured. The plural microbend section of the optical fiber is secured to the thermally expansive structure only at its ends and the microbends themselves are completely unconstrained laterally by any bonding agent to obtain maximum longitudinal temperature sensitivity. Although the permanent microbends reduce the transmission capabilities of fiber optics, the present invention utilizes this phenomenon as a transduction mechanism which is optimized to measure temperature. 5 figs.

  6. Advances in materials for room temperature hydrogen sensors.

    PubMed

    Arya, Sunil K; Krishnan, Subramanian; Silva, Hayde; Jean, Sheila; Bhansali, Shekhar

    2012-06-21

    Hydrogen (H(2)), as a source of energy, continues to be a compelling choice in applications ranging from fuel cells and propulsion systems to feedstock for chemical, metallurgical and other industrial processes. H(2), being a clean, reliable, and affordable source, is finding ever increasing use in distributed electric power generation and H(2) fuelled cars. Although still under 0.1%, the distributed use of H(2) is the fastest growing area. In distributed H(2) storage, distribution, and consumption, safety continues to be a critical aspect. Affordable safety systems for distributed H(2) applications are critical for the H(2) economy to take hold. Advances in H(2) sensors are driven by specificity, reliability, repeatability, stability, cost, size, response time, recovery time, operating temperature, humidity range, and power consumption. Ambient temperature sensors for H(2) detection are increasingly being explored as they offer specificity, stability and robustness of high temperature sensors with lower operational costs and significantly longer operational lifetimes. This review summarizes and highlights recent developments in room temperature H(2) sensors. PMID:22582176

  7. Low-background temperature sensors fabricated on parylene substrates

    NASA Astrophysics Data System (ADS)

    Dhar, A.; Loach, J. C.; Barton, P. J.; Larsen, J. T.; Poon, A. W. P.

    2015-12-01

    Temperature sensors fabricated from ultra-low radioactivity materials have been developed for low-background experiments searching for neutrinoless double-beta decay and the interactions of WIMP dark matter. The sensors consist of electrical traces photolithographically-patterned onto substrates of vapor-deposited parylene. They are demonstrated to function as expected, to do so reliably and robustly, and to be highly radio-pure. This work is a proof-of-concept study of a technology that can be applied to broad class of electronic circuits used in low-background experiments.

  8. Temperature compensated and self-calibrated current sensor

    DOEpatents

    Yakymyshyn, Christopher Paul; Brubaker, Michael Allen; Yakymyshyn, Pamela Jane

    2007-09-25

    A method is described to provide temperature compensation and reduction of drift due to aging for a current sensor based on a plurality of magnetic field sensors positioned around a current carrying conductor. The offset voltage signal generated by each magnetic field sensor is used to correct variations in the output signal due to temperature variations and aging.

  9. 40 CFR 1065.215 - Pressure transducers, temperature sensors, and dewpoint sensors.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... sensors, and dewpoint sensors. 1065.215 Section 1065.215 Protection of Environment ENVIRONMENTAL... Measurement of Engine Parameters and Ambient Conditions § 1065.215 Pressure transducers, temperature sensors, and dewpoint sensors. (a) Application. Use instruments as specified in this section to...

  10. High temperature liquid level sensor

    DOEpatents

    Tokarz, Richard D.

    1983-01-01

    A length of metal sheathed metal oxide cable is perforated to permit liquid access to the insulation about a pair of conductors spaced close to one another. Changes in resistance across the conductors will be a function of liquid level, since the wetted insulation will have greater electrical conductivity than that of the dry insulation above the liquid elevation.

  11. Temperature compensated current sensor using reference magnetic field

    DOEpatents

    Yakymyshyn, Christopher Paul; Brubaker, Michael Allen; Yakymyshyn, Pamela Jane

    2007-10-09

    A method is described to provide temperature compensation and self-calibration of a current sensor based on a plurality of magnetic field sensors positioned around a current carrying conductor. A reference magnetic field generated within the current sensor housing is detected by a separate but identical magnetic field sensor and is used to correct variations in the output signal due to temperature variations and aging.

  12. Encapsulation for smart textile electronics - humidity and temperature sensor.

    PubMed

    Larsson, Andreas; Tran, Thanh-Nam; Aasmundtveit, Knut E; Seeberg, Trine M

    2015-01-01

    A combined humidity and temperature sensor was packaged by vacuum casting onto three different types of textiles; cotton, nylon and a waterproof fabric. This was done in order to integrate the sensor in a jacket in a soft and reliable way without changing the sensor performance. A membrane was custom made and integrated into the device to protect the sensor from the environment. The packaged sensors performance was characterized in a climate chamber were the relative humidity and temperature ranged from 25 % to 95 % and -10 °C to 75 °C respectively. The packaged sensors showed insignificant to limited performance degradation. PMID:25980871

  13. Development of Self-Powered Wireless-Ready High Temperature Electrochemical Sensors for In-Situ Corrosion Monitoring for Boiler Tubes in Next Generation Coal-based Power Systems

    SciTech Connect

    Liu, Xingbo

    2015-06-30

    The key innovation of this project is the synergy of the high temperature sensor technology based on the science of electrochemical measurement and state-of-the-art wireless communication technology. A novel self-powered wireless high temperature electrochemical sensor system has been developed for coal-fired boilers used for power generation. An initial prototype of the in-situ sensor demonstrated the capability of the wireless communication system in the laboratory and in a pilot plant (Industrial USC Boiler Setting) environment to acquire electrochemical potential and current signals during the corrosion process. Uniform and localized under-coal ash deposit corrosion behavior of Inconel 740 superalloy has been studied at different simulated coal ash hot corrosion environments using the developed sensor. Two typical potential noise patterns were found to correlate with the oxidation and sulfidation stages in the hot coal ash corrosion process. Two characteristic current noise patterns indicate the extent of the corrosion. There was a good correlation between the responses of electrochemical test data and the results from corroded surface analysis. Wireless electrochemical potential and current noise signals from a simulated coal ash hot corrosion process were concurrently transmitted and recorded. The results from the performance evaluation of the sensor confirm a high accuracy in the thermodynamic and kinetic response represented by the electrochemical noise and impedance test data.

  14. Polymer Substrate Temperature Sensor Array for Brain Interfaces

    PubMed Central

    Kim, Insoo; Fok, Ho Him R.; Li, Yuanyuan; Jackson, Thomas N.; Gluckman, Bruce J.

    2012-01-01

    We developed an implantable thin film transistor temperature sensor (TFT-TS) to measure temperature changes in the brain. These changes are assumed to be associated with cerebral metabolism and neuronal activity. Two prototype TFT-TSs were designed and tested in-vitro: one with 8 diode-connected single-ended sensors, and the other with 4 pairs of differential-ended sensors in an array configuration. The sensor elements are 25~100 μm in width and 5 μm in length. The TFT-TSs were fabricated based on high-speed ZnO TFT process technology on flexible polyimide substrates (50 μm thick, 500 μm width, 20 mm length). In order to interface external signal electronics, they were directly bonded to a prototype printed circuit board using anisotropic conductive films The prototypes were characterized between 20~40 °C using a surface mounted thermocouple and custom-designed temperature controlled oven. The maximum sensitivity of 40 mV/°C was obtained from the TFT-TS. PMID:22255041

  15. High temperature refrigerator

    DOEpatents

    Steyert, Jr., William A.

    1978-01-01

    A high temperature magnetic refrigerator which uses a Stirling-like cycle in which rotating magnetic working material is heated in zero field and adiabatically magnetized, cooled in high field, then adiabatically demagnetized. During this cycle said working material is in heat exchange with a pumped fluid which absorbs heat from a low temperature heat source and deposits heat in a high temperature reservoir. The magnetic refrigeration cycle operates at an efficiency 70% of Carnot.

  16. High-Temperature Superconductivity

    NASA Astrophysics Data System (ADS)

    Tanaka, Shoji

    2006-12-01

    A general review on high-temperature superconductivity was made. After prehistoric view and the process of discovery were stated, the special features of high-temperature superconductors were explained from the materials side and the physical properties side. The present status on applications of high-temperature superconductors were explained on superconducting tapes, electric power cables, magnets for maglev trains, electric motors, superconducting quantum interference device (SQUID) and single flux quantum (SFQ) devices and circuits.

  17. High temperature measuring device

    DOEpatents

    Tokarz, Richard D.

    1983-01-01

    A temperature measuring device for very high design temperatures (to 2,000.degree. C.). The device comprises a homogenous base structure preferably in the form of a sphere or cylinder. The base structure contains a large number of individual walled cells. The base structure has a decreasing coefficient of elasticity within the temperature range being monitored. A predetermined quantity of inert gas is confined within each cell. The cells are dimensionally stable at the normal working temperature of the device. Increases in gaseous pressure within the cells will permanently deform the cell walls at temperatures within the high temperature range to be measured. Such deformation can be correlated to temperature by calibrating similarly constructed devices under known time and temperature conditions.

  18. Near Room Temperature, Fast-Response, and Highly Sensitive Triethylamine Sensor Assembled with Au-Loaded ZnO/SnO₂ Core-Shell Nanorods on Flat Alumina Substrates.

    PubMed

    Ju, Dian-Xing; Xu, Hong-Yan; Qiu, Zhi-Wen; Zhang, Zi-Chao; Xu, Qi; Zhang, Jun; Wang, Jie-Qiang; Cao, Bing-Qiang

    2015-09-01

    Chemiresistive gas sensors with low power consumption, fast response, and reliable fabrication process for a specific target gas have been now created for many applications. They require both sensitive nanomaterials and an efficient substrate chip for heating and electrical addressing. Herein, a near room working temperature and fast response triethylamine (TEA) gas sensor has been fabricated successfully by designing gold (Au)-loaded ZnO/SnO2 core-shell nanorods. ZnO nanorods grew directly on Al2O3 flat electrodes with a cost-effective hydrothermal process. By employing pulsed laser deposition (PLD) and DC-sputtering methods, the construction of Au nanoparticle-loaded ZnO/SnO2 core/shell nanorod heterostructure is highly controllable and reproducible. In comparison with pristine ZnO, SnO2, and Au-loaded ZnO, SnO2 sensors, Au-ZnO/SnO2 nanorod sensors exhibit a remarkably high and fast response to TEA gas at working temperatures as low as 40 °C. The enhanced sensing property of the Au-ZnO/SnO2 sensor is also discussed with the semiconductor depletion layer model introduced by Au-SnO2 Schottky contact and ZnO/SnO2 N-N heterojunction. PMID:26280916

  19. 46 CFR 153.440 - Cargo temperature sensors.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Cargo temperature sensors. 153.440 Section 153.440 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS... Temperature Control Systems § 153.440 Cargo temperature sensors. (a) Except as prescribed in paragraph (c)...

  20. 46 CFR 153.440 - Cargo temperature sensors.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Cargo temperature sensors. 153.440 Section 153.440 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS... Temperature Control Systems § 153.440 Cargo temperature sensors. (a) Except as prescribed in paragraph (c)...

  1. Water level sensor and temperature profile detector

    DOEpatents

    Tokarz, Richard D.

    1983-01-01

    A temperature profile detector comprising a surrounding length of metal tubing and an interior electrical conductor both constructed of high temperature high electrical resistance materials. A plurality of gas-filled expandable bellows made of electrically conductive material is electrically connected to the interior electrical conductor and positioned within the length of metal tubing. The bellows are sealed and contain a predetermined volume of a gas designed to effect movement of the bellows from an open circuit condition to a closed circuit condition in response to monitored temperature changes sensed by each bellows.

  2. Modeling of temperature sensor built on GaN nanostructures

    NASA Astrophysics Data System (ADS)

    Asgari, A.; Taheri, S.

    2011-03-01

    A GaN nanostructure based temperature sensor has been modeled using the minority-carrier exclusion theory. The model takes into account the effects of temperature, carrier concentrations and electric field on carrier mobilities. The model also consists of different carrier scattering mechanisms such as phonon and natural ionized scattering. The calculation results show that the resistance of modeled GaN nanostructure based temperature sensor is strongly dependent on the sensor structural parameters such as doping density and device size.

  3. Alumina decorated TiO2 nanotubes with ordered mesoporous walls as high sensitivity NO(x) gas sensors at room temperature.

    PubMed

    Lü, Renjiang; Zhou, Wei; Shi, Keying; Yang, Ying; Wang, Lei; Pan, Kai; Tian, Chungui; Ren, Zhiyu; Fu, Honggang

    2013-09-21

    Alumina (Al2O3) decorated anatase TiO2 nanotubes with ordered mesoporous pore walls (Al2O3/meso-TiO2 nanotubes) are successfully synthesized through vacuum pressure induction technology, and then combined with the thermal decomposition of a mesoporous TiO2 sol precursor, inside the cylindrical nanochannels of an anodic aluminium oxide (AAO) template. The decorated Al2O3 was formed by in situ deposition via direct reaction of the strong acid sol precursor and the nanochannel wall of the AAO template. The resultant Al2O3/meso-TiO2 nanotubes are characterized in detail by transmission electron microscopy, scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Raman spectroscopy, and N2 adsorption-desorption. The experimental results reveal that the Al2O3/meso-TiO2 nanotubes have a tubular structure with an average diameter of ∼200 nm and highly ordered mesopores in the tubular walls. The Al2O3 is distributed evenly on the anatase TiO2 nanotubes. Moreover, the Al2O3/meso-TiO2 nanotubes possess a large specific surface area (136 m(2) g(-1)) and narrow mesopore size distribution (∼10 nm). By using NO(x) as a probe molecule, the Al2O3/meso-TiO2 nanotube films exhibit better sensing performance than that of mesoporous TiO2 nanotubes, in terms of their high sensitivity, fast response-recovery time, and good stability in air at room temperature. The outstanding performance in the gas sensing ability of Al2O3/meso-TiO2 nanotubes is a result of their one-dimensional tubular and mesoporous nanostructures, advantageous for the adsorption and diffusion of NO(x) gas. In addition, the sensing response is greatly improved by virtue of the decorated Al2O3 on the surfaces of the TiO2 nanotubes, which acts as an energy barrier to suppress charge recombination. The structural properties of the Al2O3/meso-TiO2 nanotubes makes them a viable novel gas sensor material at room temperature. PMID:23892951

  4. Electro-optic high voltage sensor

    DOEpatents

    Davidson, James R.; Seifert, Gary D.

    2003-09-16

    A small sized electro-optic voltage sensor capable of accurate measurement of high voltages without contact with a conductor or voltage source is provided. When placed in the presence of an electric field, the sensor receives an input beam of electromagnetic radiation. A polarization beam displacer separates the input beam into two beams with orthogonal linear polarizations and causes one linearly polarized beam to impinge a crystal at a desired angle independent of temperature. The Pockels effect elliptically polarizes the beam as it travels through the crystal. A reflector redirects the beam back through the crystal and the beam displacer. On the return path, the polarization beam displacer separates the elliptically polarized beam into two output beams of orthogonal linear polarization. The system may include a detector for converting the output beams into electrical signals and a signal processor for determining the voltage based on an analysis of the output beams.

  5. Ocean Temperature and Humidity Sensor Design Based on SHT75 Module

    NASA Astrophysics Data System (ADS)

    Zhao, Jie; Yang, Li; Gai, Zhigang; Yang, Junxian; Yang, Ying

    SHT75 is a temperature and humidity module with high precision, low power consumption, two line output. An intelligent output temperature and humidity sensor is developed based on this module. The hardware and software design are introduced in detail in this paper. In addition, temperature and humidity correction parameters can be calculated by polynomial curve fitting. Experimental results show that the polynomial curve fitting after correction for temperature and humidity sensor can reach to more accurate measurement accuracy.

  6. High temperature superconductor materials and applications

    NASA Technical Reports Server (NTRS)

    Doane, George B., III.; Banks, Curtis; Golben, John

    1990-01-01

    Research on processing methods leading to a significant enhancement in the critical current densities (Jc) and the critical temperature (Tc) of high temperature superconducting in thin bulk and thin film forms. The fabrication of important devices for NASA unique applications (sensors) is investigated.

  7. ULTRASENSITIVE HIGH-TEMPERATURE SELECTIVE GAS DETECTION USING PIEZOELECTRIC MICROCANTILEVERS

    SciTech Connect

    Wan Y. Shih; Tejas Patil; Qiang Zhao; Yi-Shi Chiu; Wei-Heng Shih

    2004-03-05

    We have obtained very promising results in the Phase I study. Specifically, for temperature effects, we have established that piezoelectric cantilever sensors could retain their resonance peak strength at high temperatures, i.e., the Q values of the resonance peaks remained above 10 even when the temperature was very close to the Curie temperature. This confirms that a piezoelectric cantilever sensor can be used as a sensor up to its Curie temperature. Furthermore, we have shown that the mass detection sensitivity remained unchanged at different temperatures. For selective gas detection, we have demonstrated selective NH{sub 3} detection using piezoelectric cantilever sensors coated with mesoporous SiO{sub 2}. For high-temperature sensor materials development, we have achieved highly oriented Sr-doped lead titanate thin films that possessed superior dielectric and ferroelectric properties. Such highly oriented films can be microfabricated into high-performance piezoelectric microcantilever sensors that can be used up to 490 C. We have accomplished the goal of Phase I study in exploring the various aspects of a high-temperature gas sensor. We propose to continue the study in Phase II to develop a sensor that is suitable for high-temperature applications using piezoelectrics with a high Curie temperature and by controlling the effects of temperature. The lead titanate based thin film developed in Phase I is good for applications up to 490 C. In phase II, we will develop lithium niobate thin film based cantilevers for applications up to 1000 C.

  8. Turbine Blade Temperature Measurements Using Thin Film Temperature Sensors

    NASA Technical Reports Server (NTRS)

    Grant, H. P.; Przybyszewski, J. S.; Claing, R. G.

    1981-01-01

    The development of thin film temperature sensors is discussed. The technology for sputtering 2 micron thin film platinum versus platinum 10 percent rhodium thermocouples on alumina forming coatings was improved and extended to applications on actual turbine blades. Good adherence was found to depend upon achieving a proper morphology of the alumina surface. Problems of adapting fabrication procedures to turbine blades were uncovered, and improvements were recommended. Testing at 1250 K at one atmosphere pressure was then extended to a higher Mach No. (0.5) in combustor flow for 60 hours and 71 thermal cycles. The mean time to failure was 47 hours accumulated during 1 hour exposures in the combustor. Calibration drift was about 0.1 percent per hour, attributable to oxidation of the rhodium in the thin films. An increase in film thickness and application of a protective overcoat are recommended to reduce drift in actual engine testing.

  9. Performance evaluation of ZnO–CuO hetero junction solid state room temperature ethanol sensor

    SciTech Connect

    Yu, Ming-Ru; Suyambrakasam, Gobalakrishnan; Wu, Ren-Jang; Chavali, Murthy

    2012-07-15

    Graphical abstract: Sensor response (resistance) curves of time were changed from 150 ppm to 250 ppm alcohol concentration of ZnO–CuO 1:1. The response and recovery times were measured to be 62 and 83 s, respectively. The sensing material ZnO–CuO is a high potential alcohol sensor which provides a simple, rapid and highly sensitive alcohol gas sensor operating at room temperature. Highlights: ► The main advantages of the ethanol sensor are as followings. ► Novel materials ZnO–CuO ethanol sensor. ► The optimized ZnO–CuO hetero contact system. ► A good sensor response and room working temperature (save energy). -- Abstract: A semiconductor ethanol sensor was developed using ZnO–CuO and its performance was evaluated at room temperature. Hetero-junction sensor was made of ZnO–CuO nanoparticles for sensing alcohol at room temperature. Nanoparticles were prepared by hydrothermal method and optimized with different weight ratios. Sensor characteristics were linear for the concentration range of 150–250 ppm. Composite materials of ZnO–CuO were characterized using X-ray diffraction (XRD), temperature-programmed reduction (TPR) and high-resolution transmission electron microscopy (HR-TEM). ZnO–CuO (1:1) material showed maximum sensor response (S = R{sub air}/R{sub alcohol}) of 3.32 ± 0.1 toward 200 ppm of alcohol vapor at room temperature. The response and recovery times were measured to be 62 and 83 s, respectively. The linearity R{sup 2} of the sensor response was 0.9026. The sensing materials ZnO–CuO (1:1) provide a simple, rapid and highly sensitive alcohol gas sensor operating at room temperature.

  10. Microwave sensor design for noncontact process monitoring at elevated temperature

    NASA Astrophysics Data System (ADS)

    Yadam, Yugandhara Rao; Arunachalam, Kavitha

    2016-02-01

    In this work we present a microwave sensor for noncontact monitoring of liquid level at high temperatures. The sensor is a high gain, directional conical lensed horn antenna with narrow beam width (BW) designed for operation over 10 GHz - 15 GHz. Sensor design and optimization was carried out using 3D finite element method based electromagnetic (EM) simulation software HFSS®. A rectangular to circular waveguide feed was designed to convert TE10 to TE11 mode for wave propagation in the conical horn. Swept frequency simulations were carried out to optimize antenna flare angle and length to achieve better than -10 dB return loss (S11), standing wave ratio (SWR) less than 2.0, 20° half power BW (HPBW) and 15 dB gain over 10 GHz - 15 GHz. The sensor was fabricated using Aluminum and was characterized in an anechoic test box using a vector network analyzer (E5071C, Agilent Technologies, USA). Experimental results of noncontact level detection are presented for boiling water in a metal canister.

  11. A novel wireless and temperature-compensated SAW vibration sensor.

    PubMed

    Wang, Wen; Xue, Xufeng; Huang, Yangqing; Liu, Xinlu

    2014-01-01

    A novel wireless and passive surface acoustic wave (SAW) based temperature-compensated vibration sensor utilizing a flexible Y-cut quartz cantilever beam with a relatively substantial proof mass and two one-port resonators is developed. One resonator acts as the sensing device adjacent to the clamped end for maximum strain sensitivity, and the other one is used as the reference located on clamped end for temperature compensation for vibration sensor through the differential approach. Vibration directed to the proof mass flex the cantilever, inducing relative changes in the acoustic propagation characteristics of the SAW travelling along the sensing device, and generated output signal varies in frequency as a function of vibration.  A theoretical mode using the Rayleigh method was established to determine the optimal dimensions of the cantilever beam. Coupling of Modes (COM) model was used to extract the optimal design parameters of the SAW devices prior to fabrication. The performance of the developed SAW sensor attached to an antenna towards applied vibration was evaluated wirelessly by using the precise vibration table, programmable incubator chamber, and reader unit.  High vibration sensitivity of ~10.4 kHz/g, good temperature stability, and excellent linearity were observed in the wireless measurements. PMID:25372617

  12. A Novel Wireless and Temperature-Compensated SAW Vibration Sensor

    PubMed Central

    Wang, Wen; Xue, Xufeng; Huang, Yangqing; Liu, Xinlu

    2014-01-01

    A novel wireless and passive surface acoustic wave (SAW) based temperature-compensated vibration sensor utilizing a flexible Y-cut quartz cantilever beam with a relatively substantial proof mass and two one-port resonators is developed. One resonator acts as the sensing device adjacent to the clamped end for maximum strain sensitivity, and the other one is used as the reference located on clamped end for temperature compensation for vibration sensor through the differential approach. Vibration directed to the proof mass flex the cantilever, inducing relative changes in the acoustic propagation characteristics of the SAW travelling along the sensing device, and generated output signal varies in frequency as a function of vibration. A theoretical mode using the Rayleigh method was established to determine the optimal dimensions of the cantilever beam. Coupling of Modes (COM) model was used to extract the optimal design parameters of the SAW devices prior to fabrication. The performance of the developed SAW sensor attached to an antenna towards applied vibration was evaluated wirelessly by using the precise vibration table, programmable incubator chamber, and reader unit. High vibration sensitivity of ∼10.4 kHz/g, good temperature stability, and excellent linearity were observed in the wireless measurements. PMID:25372617

  13. Evaluation on Rain-Defense Performance of Temperature Sensors

    NASA Astrophysics Data System (ADS)

    Zhao, Jian; Wang, Yi; Wang, Peng; Wu, Jian-Hong

    2010-09-01

    Rain-defense performance of temperature sensors is of concern in many important fields, while there has been no suitable method to evaluate their performance before. To solve this problem, an experiment is described in this paper. The experimental device used is a conventional temperature calibration wind tunnel. To simulate the practical environment as rainfall of 8 mm per hour, a water tank is set above the open experimental section of the wind tunnel, at the bottom of which many small holes are drilled so that rain can run down. Three new-type temperature sensors and an old-type temperature sensor are calibrated in the wind tunnel. The calibration method is similar to the recovery characteristic and dynamic characteristic calibration except that the environment here is a mixture of spray and air. As the authentic total temperature is unable to be obtained, an equivalent recovery factor is defined, which uses the total temperature outside the calibrated sensor to participate in the calculation instead of the authentic local total temperature. And through dynamic characteristic calibration, the time constant of the sensor is also obtained. During the calibration experiment, the gas Mach number, water temperature, and attack angle of the temperature sensors are varied. The result shows that the equivalent recovery factor of the new sensor design is lower than that of the old sensor design, which proved that the rain-defense performance of the new sensor design is better than the old sensor design, and some other comparisons can also demonstrate this point. Associating the design structure of the temperature sensor with the experimental result, the evaluation method is shown to be reasonable and feasible.

  14. High-Temperature Superconductivity

    SciTech Connect

    Peter Johnson

    2008-11-05

    Like astronomers tweaking images to gain a more detailed glimpse of distant stars, physicists at Brookhaven National Laboratory have found ways to sharpen images of the energy spectra in high-temperature superconductors — materials that carry electrical c

  15. High-Temperature Superconductivity

    ScienceCinema

    Peter Johnson

    2010-01-08

    Like astronomers tweaking images to gain a more detailed glimpse of distant stars, physicists at Brookhaven National Laboratory have found ways to sharpen images of the energy spectra in high-temperature superconductors ? materials that carry electrical c

  16. High Temperature Capacitor Development

    SciTech Connect

    John Kosek

    2009-06-30

    The absence of high-temperature electronics is an obstacle to the development of untapped energy resources (deep oil, gas and geothermal). US natural gas consumption is projected to grow from 22 trillion cubic feet per year (tcf) in 1999 to 34 tcf in 2020. Cumulatively this is 607 tcf of consumption by 2020, while recoverable reserves using current technology are 177 tcf. A significant portion of this shortfall may be met by tapping deep gas reservoirs. Tapping these reservoirs represents a significant technical challenge. At these depths, temperatures and pressures are very high and may require penetrating very hard rock. Logistics of supporting 6.1 km (20,000 ft) drill strings and the drilling processes are complex and expensive. At these depths up to 50% of the total drilling cost may be in the last 10% of the well depth. Thus, as wells go deeper it is increasingly important that drillers are able to monitor conditions down-hole such as temperature, pressure, heading, etc. Commercial off-the-shelf electronics are not specified to meet these operating conditions. This is due to problems associated with all aspects of the electronics including the resistors and capacitors. With respect to capacitors, increasing temperature often significantly changes capacitance because of the strong temperature dependence of the dielectric constant. Higher temperatures also affect the equivalent series resistance (ESR). High-temperature capacitors usually have low capacitance values because of these dielectric effects and because packages are kept small to prevent mechanical breakage caused by thermal stresses. Electrolytic capacitors do not operate at temperatures above 150oC due to dielectric breakdown. The development of high-temperature capacitors to be used in a high-pressure high-temperature (HPHT) drilling environment was investigated. These capacitors were based on a previously developed high-voltage hybridized capacitor developed at Giner, Inc. in conjunction with a

  17. High temperature pressure gauge

    DOEpatents

    Echtler, J. Paul; Scandrol, Roy O.

    1981-01-01

    A high temperature pressure gauge comprising a pressure gauge positioned in fluid communication with one end of a conduit which has a diaphragm mounted in its other end. The conduit is filled with a low melting metal alloy above the diaphragm for a portion of its length with a high temperature fluid being positioned in the remaining length of the conduit and in the pressure gauge.

  18. High-temperature electronics

    NASA Technical Reports Server (NTRS)

    Matus, Lawrence G.; Seng, Gary T.

    1990-01-01

    To meet the needs of the aerospace propulsion and space power communities, the high temperature electronics program at the Lewis Research Center is developing silicon carbide (SiC) as a high temperature semiconductor material. This program supports a major element of the Center's mission - to perform basic and developmental research aimed at improving aerospace propulsion systems. Research is focused on developing the crystal growth, characterization, and device fabrication technologies necessary to produce a family of SiC devices.

  19. High-temperature electronics

    NASA Astrophysics Data System (ADS)

    Matus, Lawrence G.; Seng, Gary T.

    1990-02-01

    To meet the needs of the aerospace propulsion and space power communities, the high temperature electronics program at the Lewis Research Center is developing silicon carbide (SiC) as a high temperature semiconductor material. This program supports a major element of the Center's mission - to perform basic and developmental research aimed at improving aerospace propulsion systems. Research is focused on developing the crystal growth, characterization, and device fabrication technologies necessary to produce a family of SiC devices.

  20. High temperature structural silicides

    SciTech Connect

    Petrovic, J.J.

    1997-03-01

    Structural silicides have important high temperature applications in oxidizing and aggressive environments. Most prominent are MoSi{sub 2}-based materials, which are borderline ceramic-intermetallic compounds. MoSi{sub 2} single crystals exhibit macroscopic compressive ductility at temperatures below room temperature in some orientations. Polycrystalline MoSi{sub 2} possesses elevated temperature creep behavior which is highly sensitive to grain size. MoSi{sub 2}-Si{sub 3}N{sub 4} composites show an important combination of oxidation resistance, creep resistance, and low temperature fracture toughness. Current potential applications of MoSi{sub 2}-based materials include furnace heating elements, molten metal lances, industrial gas burners, aerospace turbine engine components, diesel engine glow plugs, and materials for glass processing.

  1. High temperature probe

    DOEpatents

    Swan, Raymond A.

    1994-01-01

    A high temperature probe for sampling, for example, smokestack fumes, and is able to withstand temperatures of 3000.degree. F. The probe is constructed so as to prevent leakage via the seal by placing the seal inside the water jacket whereby the seal is not exposed to high temperature, which destroys the seal. The sample inlet of the probe is also provided with cooling fins about the area of the seal to provide additional cooling to prevent the seal from being destroyed. Also, a heated jacket is provided for maintaining the temperature of the gas being tested as it passes through the probe. The probe includes pressure sensing means for determining the flow velocity of an efficient being sampled. In addition, thermocouples are located in various places on the probe to monitor the temperature of the gas passing there through.

  2. Optical fiber voltage sensors for broad temperature ranges

    NASA Technical Reports Server (NTRS)

    Rose, A. H.; Day, G. W.

    1992-01-01

    We describe the development of an optical fiber ac voltage sensor for aircraft and spacecraft applications. Among the most difficult specifications to meet for this application is a temperature stability of +/- 1 percent from -65 C to +125 C. This stability requires a careful selection of materials, components, and optical configuration with further compensation using an optical-fiber temperature sensor located near the sensing element. The sensor is a polarimetric design, based on the linear electro-optic effect in bulk Bi4Ge3O12. The temperature sensor is also polarimetric, based on the temperature dependence of the birefringence of bulk SiO2. The temperature sensor output is used to automatically adjust the calibration of the instrument.

  3. Optical fiber voltage sensors for broad temperature ranges

    NASA Astrophysics Data System (ADS)

    Rose, A. H.; Day, G. W.

    1992-12-01

    We describe the development of an optical fiber ac voltage sensor for aircraft and spacecraft applications. Among the most difficult specifications to meet for this application is a temperature stability of +/- 1 percent from -65 C to +125 C. This stability requires a careful selection of materials, components, and optical configuration with further compensation using an optical-fiber temperature sensor located near the sensing element. The sensor is a polarimetric design, based on the linear electro-optic effect in bulk Bi4Ge3O12. The temperature sensor is also polarimetric, based on the temperature dependence of the birefringence of bulk SiO2. The temperature sensor output is used to automatically adjust the calibration of the instrument.

  4. High temperature electronics technology

    NASA Astrophysics Data System (ADS)

    Dening, J. C.; Hurtle, D. E.

    1984-03-01

    This report summarizes the barrier metallization developments accomplished in a program intended to develop 300 C electronic controls capability for potential on-engine aircraft engine application. In addition, this report documents preliminary life test results at 300 C and above and discusses improved design practices required for high temperature integrated injection logic semiconductors. Previous Phase 1 activities focused on determining the viability of operating silicon semiconductor devices over the -55 C to +300 C temperature range. This feasibility was substantiated but the need for additional design work and process development was indicated. Phase 2 emphasized the development of a high temperature metallization system as the primary development need for high temperature silicon semiconductor applications.

  5. Flight Tests on a Fiber Optic Temperature Sensor

    NASA Technical Reports Server (NTRS)

    Tuma, Margaret L.; Sawatari, Takeo; Lin, Yuping; Elam, Kristie A.

    1998-01-01

    For aircraft engine control, one key parameter to detect on an airplane is the exhaust gas temperature (EGT). Presently, thermocouples are used to perform this measurement. These electrical sensors perform adequately; however, fully utilizing the benefits of optical sensors requires replacing electrical architectures with optical architectures. Part of this requires replacing electrical sensors with optical sensors, such as the EGT sensor chosen for these tests. The objective of the development and testing of this prototype sensor system was to determine the feasibility of operating an optical sensor in a hostile aircraft environment. The fiber optic sensor system was developed to measure temperatures from 20C to 600C in an aircraft environment and was utilized to monitor the EGT of an OV-10D aircraft engine. The sensor has successfully flown over 50 hours and proven to be immune to surface deterioration of the optical element (located inside the sensor head) and able to withstand and operate in normal and sustained severe flight conditions where forces on the airplane exceeded 4 g's. Potential commercial uses for this sensor include monitoring temperature for aeropropulsion system control, military vehicle and naval engine control, conventional and nuclear power plant monitoring and industrial plan monitoring where EMI issues are critical.

  6. Thin-film fiber optic hydrogen and temperature sensor system

    DOEpatents

    Nave, Stanley E.

    1998-01-01

    The invention discloses a sensor probe device for monitoring of hydrogen gas concentrations and temperatures by the same sensor probe. The sensor probe is constructed using thin-film deposition methods for the placement of a multitude of layers of materials sensitive to hydrogen concentrations and temperature on the end of a light transparent lens located within the sensor probe. The end of the lens within the sensor probe contains a lens containing a layer of hydrogen permeable material which excludes other reactive gases, a layer of reflective metal material that forms a metal hydride upon absorbing hydrogen, and a layer of semi-conducting solid that is transparent above a temperature dependent minimum wavelength for temperature detection. The three layers of materials are located at the distal end of the lens located within the sensor probe. The lens focuses light generated by broad-band light generator and connected by fiber-optics to the sensor probe, onto a reflective metal material layer, which passes through the semi-conducting solid layer, onto two optical fibers located at the base of the sensor probe. The reflected light is transmitted over fiberoptic cables to a spectrometer and system controller. The absence of electrical signals and electrical wires in the sensor probe provides for an elimination of the potential for spark sources when monitoring in hydrogen rich environments, and provides a sensor free from electrical interferences.

  7. Thin-film fiber optic hydrogen and temperature sensor system

    DOEpatents

    Nave, S.E.

    1998-07-21

    The invention discloses a sensor probe device for monitoring of hydrogen gas concentrations and temperatures by the same sensor probe. The sensor probe is constructed using thin-film deposition methods for the placement of a multitude of layers of materials sensitive to hydrogen concentrations and temperature on the end of a light transparent lens located within the sensor probe. The end of the lens within the sensor probe contains a lens containing a layer of hydrogen permeable material which excludes other reactive gases, a layer of reflective metal material that forms a metal hydride upon absorbing hydrogen, and a layer of semi-conducting solid that is transparent above a temperature dependent minimum wavelength for temperature detection. The three layers of materials are located at the distal end of the lens located within the sensor probe. The lens focuses light generated by broad-band light generator and connected by fiber-optics to the sensor probe, onto a reflective metal material layer, which passes through the semi-conducting solid layer, onto two optical fibers located at the base of the sensor probe. The reflected light is transmitted over fiber optic cables to a spectrometer and system controller. The absence of electrical signals and electrical wires in the sensor probe provides for an elimination of the potential for spark sources when monitoring in hydrogen rich environments, and provides a sensor free from electrical interferences. 3 figs.

  8. High Temperature Piezoelectric Drill

    NASA Technical Reports Server (NTRS)

    Bao, Xiaoqi; Scott, James; Boudreau, Kate; Bar-Cohen, Yoseph; Sherrit, Stewart; Badescu, Mircea; Shrout, Tom; Zhang, Shujun

    2009-01-01

    The current NASA Decadal mission planning effort has identified Venus as a significant scientific target for a surface in-situ sampling/analyzing mission. The Venus environment represents several extremes including high temperature (460 deg C), high pressure (9 MPa), and potentially corrosive (condensed sulfuric acid droplets that adhere to surfaces during entry) environments. This technology challenge requires new rock sampling tools for these extreme conditions. Piezoelectric materials can potentially operate over a wide temperature range. Single crystals, like LiNbO3, have a Curie temperature that is higher than 1000 deg C and the piezoelectric ceramics Bismuth Titanate higher than 600 deg C. A study of the feasibility of producing piezoelectric drills that can operate in the temperature range up to 500 deg C was conducted. The study includes the high temperature properties investigations of engineering materials and piezoelectric ceramics with different formulas and doping. The drilling performances of a prototype Ultrasonic/Sonic Drill/Corer (USDC) using high temperate piezoelectric ceramics and single crystal were tested at temperature up to 500 deg C. The detailed results of our study and a discussion of the future work on performance improvements are presented in this paper.

  9. A fiber optic temperature sensor for aerospace applications

    NASA Astrophysics Data System (ADS)

    Jensen, Stephen C.; Tilstra, Shelle D.; Barnabo, Geoffrey A.; Thomas, David C.; Phillips, Richard W.

    1991-02-01

    A fiber-optic temperature sensor has been developed for aerospace applications on the basis of the time rate of decay (TRD) principle, with a view to an operational temperature range of -60 to 350 C. This TRD system has completed qualification testing and will then undergo flight tests. Attention is presently given to the design and performance of four low temperature sensors that are subelements of the larger sensor system; in order to convert analog signals into over/under temperature indications, simple comparators are implemented in software.

  10. High-Temperature Lubricants

    NASA Technical Reports Server (NTRS)

    1984-01-01

    In the early 1980's, Lewis Research Center began a program to develop high-temperature lubricants for use on future aircraft flying at three or more times the speed of sound, which can result in vehicle skin temperatures as high as 1,600 degrees Fahrenheit. A material that emerged from this research is a plasma-sprayed, self-lubricating metal- glass-fluoride coating able to reduce oxidation at very high temperatures. Technology is now in commercial use under the trade name Surf-Kote C-800, marketed by Hohman Plating and Manufacturing Inc. and manufactured under a patent license from NASA. Among its uses are lubrication for sliding contact bearings, shaft seals for turbopumps, piston rings for high performance compressors and hot glass processing machinery; it is also widely used in missile and space applications.

  11. TECHNICAL NOTE: Metal coating for enhancing the sensitivity of fibre Bragg grating sensors at cryogenic temperature

    NASA Astrophysics Data System (ADS)

    Lupi, C.; Felli, F.; Ippoliti, L.; Caponero, M. A.; Ciotti, M.; Nardelli, V.; Paolozzi, A.

    2005-12-01

    Fibre Bragg grating (FBG) sensors that are immune to electromagnetic interference could advantageously perform cryogenic temperature monitoring in superconducting magnetic fields, but their intrinsic temperature sensitivity is quite poor and must be enhanced. In fact, the low thermal expansion coefficient of silica limits the temperature sensitivity of bare FBG sensors at cryogenic temperature. In this paper the possibility of improving the temperature sensitivity of FBG sensors by metal coating is investigated. Specifically, zinc and copper coating depositions are performed by the traditional electrowinning process, after aluminium pre-coating of the sensor. Coated FBG sensors are inspected by both optical and metallographic techniques. SEM metallographic investigations show that a homogeneous deposit is obtained, with good metal adhesion to the FBG sensor. Optical testing shows that the optical properties of the coated FBG sensors are slightly affected: aluminium pre-coating produces appreciable modification of the diffraction spectrum in both peak width and peak shift, while zinc coating produces a moderate peak shift and copper coating just enlarges the peak width. Results presented in this paper show that both metals appreciably increase the temperature sensitivity of the FBG sensors. Zinc coating provides the highest sensitivity and high-resolution temperature measurements are possible at temperatures as low as 15 K.

  12. A nanometeric temperature sensor based on plasmonic waveguide with an ethanol-sealed rectangular cavity

    NASA Astrophysics Data System (ADS)

    Wu, Tiesheng; Liu, Yumin; Yu, Zhongyuan; Ye, Han; Peng, Yiwei; Shu, Changgan; Yang, Chuanghua; Zhang, Wen; He, Huifang

    2015-03-01

    A surface plasmon polaritons (SPPs) temperature sensor which consists of two metal-insulator-metal (MIM) waveguides coupled to each other by an ethanol-sealed rectangular cavity is proposed. The transmission characteristics of the nanodevice are theoretically analyzed and numerically simulated by two-dimension finite difference time domain (FDTD) method. The temperature sensing characteristics of the SPPs waveguide sensor are systematically analyzed by investigating the transmission spectra. The results indicate that the position of the transmission peak wavelengths has a linear relationship with the ambient temperature. The temperature sensitivity increases with the increase of the cavity length and decrease of the cavity height. The temperature sensitivity of the nanometeric sensor can reach as high as -0.65 nm/°C. It could be utilized to develop ultracompact temperature sensor for high integration.

  13. High temperature hydraulic seals

    NASA Astrophysics Data System (ADS)

    Williams, K. R.

    1993-05-01

    This program investigated and evaluated high temperature hydraulic sealing technology, including seals, fluids, and actuator materials. Test limits for fluid pressure and temperature were 8000 psi and 700 F respectively. The original plan to investigate CTFE fluid at 350 F as well as other fluids at higher temperatures was reduced in scope to include only the higher temperature investigation. Seals were obtained from 11 manufacturers. Design requirements including materials, dimensions, clearances, and tolerances were established and test modules were constructed from the detail designs which were produced. Nine piston seals and one rod seal were tested at temperatures ranging from -65 to +600 F and pressures to 6000 psi. Fluid performance under these conditions was evaluated. Details of this activity and results of the effort are summarized in this report.

  14. Temperature and Pressure Sensors Based on Spin-Allowed Broadband Luminescence of Doped Orthorhombic Perovskite Structures

    NASA Technical Reports Server (NTRS)

    Eldridge, Jeffrey I. (Inventor); Chambers, Matthew D. (Inventor)

    2014-01-01

    Systems and methods that are capable of measuring pressure or temperature based on luminescence are discussed herein. These systems and methods are based on spin-allowed broadband luminescence of sensors with orthorhombic perovskite structures of rare earth aluminates doped with chromium or similar transition metals, such as chromium-doped gadolinium aluminate. Luminescence from these sensors can be measured to determine at least one of temperature or pressure, based on either the intense luminescence of these sensors, even at high temperatures, or low temperature techniques discussed herein.

  15. Electrically conductive fibers thermally isolate temperature sensor

    NASA Technical Reports Server (NTRS)

    De Waard, R.; Norton, B.

    1966-01-01

    Mounting assembly provides thermal isolation and an electrical path for an unbacked thermal sensor. The sensor is suspended in the center of a plastic mounting ring from four plastic fibers, two of which are coated with an electrically conductive material and connected to electrically conductive coatings on the ring.

  16. Diamond thin film temperature and heat-flux sensors

    NASA Technical Reports Server (NTRS)

    Aslam, M.; Yang, G. S.; Masood, A.; Fredricks, R.

    1995-01-01

    Diamond film temperature and heat-flux sensors are developed using a technology compatible with silicon integrated circuit processing. The technology involves diamond nucleation, patterning, doping, and metallization. Multi-sensor test chips were designed and fabricated to study the thermistor behavior. The minimum feature size (device width) for 1st and 2nd generation chips are 160 and 5 micron, respectively. The p-type diamond thermistors on the 1st generation test chip show temperature and response time ranges of 80-1270 K and 0.29-25 microseconds, respectively. An array of diamond thermistors, acting as heat flux sensors, was successfully fabricated on an oxidized Si rod with a diameter of 1 cm. Some problems were encountered in the patterning of the Pt/Ti ohmic contacts on the rod, due mainly to the surface roughness of the diamond film. The use of thermistors with a minimum width of 5 micron (to improve the spatial resolution of measurement) resulted in lithographic problems related to surface roughness of diamond films. We improved the mean surface roughness from 124 nm to 30 nm by using an ultra high nucleation density of 10(exp 11)/sq cm. To deposit thermistors with such small dimensions on a curved surface, a new 3-D diamond patterning technique is currently under development. This involves writing a diamond seed pattern directly on the curved surface by a computer-controlled nozzle.

  17. Fabrication method for a room temperature hydrogen sensor

    NASA Technical Reports Server (NTRS)

    Seal, Sudipta (Inventor); Shukla, Satyajit V. (Inventor); Ludwig, Lawrence (Inventor); Cho, Hyoung (Inventor)

    2011-01-01

    A sensor for selectively determining the presence and measuring the amount of hydrogen in the vicinity of the sensor. The sensor comprises a MEMS device coated with a nanostructured thin film of indium oxide doped tin oxide with an over layer of nanostructured barium cerate with platinum catalyst nanoparticles. Initial exposure to a UV light source, at room temperature, causes burning of organic residues present on the sensor surface and provides a clean surface for sensing hydrogen at room temperature. A giant room temperature hydrogen sensitivity is observed after making the UV source off. The hydrogen sensor of the invention can be usefully employed for the detection of hydrogen in an environment susceptible to the incursion or generation of hydrogen and may be conveniently used at room temperature.

  18. High refractive index and temperature sensitivity LPGs for high temperature operation

    NASA Astrophysics Data System (ADS)

    Nascimento, I. M.; Gouveia, C.; Jana, Surnimal; Bera, Susanta; Baptista, J. M.; Moreira, Paulo; Biwas, Palas; Bandyopadhyay, Somnath; Jorge, Pedro A. S.

    2013-11-01

    A fiber optic sensor for high sensitivity refractive index and temperature measurement able to withstand temperature up to 450 °C is reported. Two identical LPG gratings were fabricated, whereas one was coated with a high refractive index (~1.78) sol-gel thin film in order to increase its sensitivity to the external refractive index. The two sensors were characterized and compared in refractive index and temperature. Sensitivities of 1063 nm/RIU (1.338 - 1.348) and 260 pm/°C were achieved for refractive index and temperature, respectively.

  19. Hybrid-type temperature sensor for in situ measurement

    SciTech Connect

    Iuchi, Tohru; Hiraka, Kensuke

    2006-11-15

    A hybrid-type surface temperature sensor combines the contact and noncontact methods, which allows us to overcome the shortcomings of both methods. The hybrid-type surface thermometer is composed mainly of two components: a metal film sheet that makes contact with an object and a radiometer that is used to detect the radiance of the rear surface of the metal film, which is actually a modified radiation thermometer. Temperature measurement using the hybrid-type thermometer with a several tens micrometer thick Hastelloy sheet, a highly heat and corrosion resistant alloy, is possible with a systematic error of -0.5 K and random errors of {+-}0.5 K, in the temperature range from 900 to 1000 K. This thermometer provides a useful means for calibration of in situ temperature measurement in various processes, especially in the silicon semiconductor industry. This article introduces the basic idea of the hybrid-type surface sensor, presents experimental results and discussions, and finally describes some applications.

  20. A novel fiber optic distributed temperature and strain sensor for building applications

    NASA Astrophysics Data System (ADS)

    Tregubov, A. V.; Svetukhin, V. V.; Novikov, S. G.; Berintsev, A. V.; Prikhodko, V. V.

    A novel fiber optic distributed sensor for temperature and strain measurements in building constructions has been developed and studied which is a composite optical element in the form of a reinforced single-mode optical fiber placed directly in the body of a fiberglass armature. The sensor has a reasonably high sensitivity to changes in external temperature and strain and a good spatial resolution. Besides, it is characterized by a high mechanical strength as compared to conventional fiber sensor elements. The experimental results obtained on a prototype show the value of the temperature sensitivity of 0.1 MHz/deg and the sensitivity to strain of 2.7 MHz/mm.

  1. Body/bone-marrow differential-temperature sensor

    NASA Technical Reports Server (NTRS)

    Anselmo, V. J.; Berdahl, C. M.

    1978-01-01

    Differential-temperature sensor developed to compare bone-marrow and body temperature in leukemia patients uses single stable amplifier to monitor temperature difference recorded by thermocouples. Errors are reduced by referencing temperatures to each other, not to separate calibration points.

  2. Theoretical modeling of a Localized Surface Plasmon Resonance (LSPR) based fiber optic temperature sensor

    NASA Astrophysics Data System (ADS)

    Algorri, J. F.; García-Cámara, B.; García-García, A.; Urruchi, V.; Sánchez-Pena, J. M.

    2014-05-01

    A localized surface plasmon resonance based fiber optic sensor for temperature sensing has been analyzed theoretically. The effects of the size of the spherical metal nanoparticle on the performance of the sensor have been studied in detail. The high sensitivity of localized surface plasmon resonances to refraction index changes, in collaboration with the high thermo-optic coefficients of Liquid Crystal materials, has result in a fiber optical sensor with high temperature sensitivity. This sensitivity has been demonstrated to be dependent on nanoparticle size. Maximum sensitivities of 4nm/°C can be obtained for some specific temperature ranges. The proposed sensor will be low cost, and will have all the typical advantages of fiber optic sensors.

  3. Electro-Optical High-Voltage Sensors

    NASA Technical Reports Server (NTRS)

    Gottsche, Allan; Johnston, Alan R.

    1992-01-01

    Electro-optical sensors for measuring high voltages developed for use in automatically controlled power-distribution systems. Sensors connected to optoelectronic interrogating equipment by optical fibers. Because sensitive material and optical fibers are all dielectric, no problem in electrically isolating interrogating circuitry from high voltage, and no need for voltage dividers. Sensor signals transmitted along fibers immune to electromagnetic noise at radio and lower frequencies.

  4. Silicon carbide, an emerging high temperature semiconductor

    NASA Astrophysics Data System (ADS)

    Matus, Lawrence G.; Powell, J. Anthony

    In recent years, the aerospace propulsion and space power communities have expressed a growing need for electronic devices that are capable of sustained high temperature operation. Applications for high temperature electronic devices include development instrumentation within engines, engine control, and condition monitoring systems, and power conditioning and control systems for space platforms and satellites. Other earth-based applications include deep-well drilling instrumentation, nuclear reactor instrumentation and control, and automotive sensors. To meet the needs of these applications, the High Temperature Electronics Program at the Lewis Research Center is developing silicon carbide (SiC) as a high temperature semiconductor material. Research is focussed on developing the crystal growth, characterization, and device fabrication technologies necessary to produce a family of silicon carbide electronic devices and integrated sensors. The progress made in developing silicon carbide is presented, and the challenges that lie ahead are discussed.

  5. Silicon carbide, an emerging high temperature semiconductor

    NASA Technical Reports Server (NTRS)

    Matus, Lawrence G.; Powell, J. Anthony

    1991-01-01

    In recent years, the aerospace propulsion and space power communities have expressed a growing need for electronic devices that are capable of sustained high temperature operation. Applications for high temperature electronic devices include development instrumentation within engines, engine control, and condition monitoring systems, and power conditioning and control systems for space platforms and satellites. Other earth-based applications include deep-well drilling instrumentation, nuclear reactor instrumentation and control, and automotive sensors. To meet the needs of these applications, the High Temperature Electronics Program at the Lewis Research Center is developing silicon carbide (SiC) as a high temperature semiconductor material. Research is focussed on developing the crystal growth, characterization, and device fabrication technologies necessary to produce a family of silicon carbide electronic devices and integrated sensors. The progress made in developing silicon carbide is presented, and the challenges that lie ahead are discussed.

  6. Design and laboratory testing of a prototype linear temperature sensor

    NASA Astrophysics Data System (ADS)

    Dube, C. M.; Nielsen, C. M.

    1982-07-01

    This report discusses the basic theory, design, and laboratory testing of a prototype linear temperature sensor (or "line sensor'), which is an instrument for measuring internal waves in the ocean. The operating principle of the line sensor consists of measuring the average resistance change of a vertically suspended wire (or coil of wire) induced by the passage of an internal wave in a thermocline. The advantage of the line sensor over conventional internal wave measurement techniques is that it is insensitive to thermal finestructure which contaminates point sensor measurements, and its output is approximately linearly proportional to the internal wave displacement. An approximately one-half scale prototype line sensor module was teste in the laboratory. The line sensor signal was linearly related to the actual fluid displacement to within 10%. Furthermore, the absolute output was well predicted (within 25%) from the theoretical model and the sensor material properties alone. Comparisons of the line sensor and a point sensor in a wavefield with superimposed turbulence (finestructure) revealed negligible distortion in the line sensor signal, while the point sensor signal was swamped by "turbulent noise'. The effects of internal wave strain were also found to be negligible.

  7. Sonic temperature sensor for food processing. Final report

    SciTech Connect

    1998-06-01

    The lack of adequate temperature measurement is the major barrier to the development of more efficient and better quality food processing methods. The objective of the sonic temperature sensor for food processing project is to develop a prototype sensor system to noninvasively measure the interior temperature of particulate foods during processing. The development of the prototype sensor is a collaborative project with the National Food Processors Association. The project is based on the property of materials that involves a change in the temperature of a material having a corresponding change in the speed of sound. The approach for the sonic sensor system is to determine the speed of sound through particulate foods using a tomographic reconstruction process. This work has shown that the speed of sound accurately can be determined using tomographic reconstruction methods to an accuracy of {+-} 0.4%, which corresponds to a temperature uncertainty of {+-}2{degrees}C.

  8. Optical Pressure-Temperature Sensor for a Combustion Chamber

    NASA Technical Reports Server (NTRS)

    Wiley, John; Korman, Valentin; Gregory, Don

    2008-01-01

    A compact sensor for measuring temperature and pressure in a combusti on chamber has been proposed. The proposed sensor would include two optically birefringent, transmissive crystalline wedges: one of sapph ire (Al2O3) and one of magnesium oxide (MgO), the optical properties of both of which vary with temperature and pressure. The wedges wou ld be separated by a vapor-deposited thin-film transducer, which wou ld be primarily temperaturesensitive (in contradistinction to pressur e- sensitive) when attached to a crystalline substrate. The sensor w ould be housed in a rugged probe to survive the extreme temperatures and pressures in a combustion chamber.

  9. High Temperature Structural Foam

    NASA Technical Reports Server (NTRS)

    Weiser, Erik S.; Baillif, Faye F.; Grimsley, Brian W.; Marchello, Joseph M.

    1997-01-01

    The Aerospace Industry is experiencing growing demand for high performance polymer foam. The X-33 program needs structural foam insulation capable of retaining its strength over a wide range of environmental conditions. The High Speed Research Program has a need for low density core splice and potting materials. This paper reviews the state of the art in foam materials and describes experimental work to fabricate low density, high shear strength foam which can withstand temperatures from -220 C to 220 C. Commercially available polymer foams exhibit a wide range of physical properties. Some with densities as low as 0.066 g/cc are capable of co-curing at temperatures as high as 182 C. Rohacell foams can be resin transfer molded at temperatures up to 180 C. They have moduli of elasticity of 0.19 MPa, tensile strengths of 3.7 Mpa and compressive strengths of 3.6 MPa. The Rohacell foams cannot withstand liquid hydrogen temperatures, however Imi-Tech markets Solimide (trademark) foams which withstand temperatures from -250 C to 200 C, but they do not have the required structural integrity. The research activity at NASA Langley Research Center focuses on using chemical blowing agents to produce polyimide thermoplastic foams capable of meeting the above performance requirements. The combination of blowing agents that decompose at the minimum melt viscosity temperature together with plasticizers to lower the viscosity has been used to produce foams by both extrusion and oven heating. The foams produced exhibit good environmental stability while maintaining structural properties.

  10. Flexible Temperature Sensor Array Based on a Graphite-Polydimethylsiloxane Composite

    PubMed Central

    Shih, Wen-Pin; Tsao, Li-Chi; Lee, Chian-Wen; Cheng, Ming-Yuan; Chang, Chienliu; Yang, Yao-Joe; Fan, Kuang-Chao

    2010-01-01

    This paper presents a novel method to fabricate temperature sensor arrays by dispensing a graphite-polydimethylsiloxane composite on flexible polyimide films. The fabricated temperature sensor array has 64 sensing cells in a 4 × 4 cm2 area. The sensor array can be used as humanoid artificial skin for sensation system of robots. Interdigitated copper electrodes were patterned on the flexible polyimide substrate for determining the resistivity change of the composites subjected to ambient temperature variations. Polydimethylsiloxane was used as the matrix. Composites of different graphite volume fractions for large dynamic range from 30 °C to 110 °C have been investigated. Our experiments showed that graphite powder provided the composite high temperature sensitivity. The fabricated temperature sensor array has been tested. The detected temperature contours are in good agreement with the shapes and magnitudes of different heat sources. PMID:22319314

  11. HIGH TEMPERATURE THERMOCOUPLE

    DOEpatents

    Eshayu, A.M.

    1963-02-12

    This invention contemplates a high temperature thermocouple for use in an inert or a reducing atmosphere. The thermocouple limbs are made of rhenium and graphite and these limbs are connected at their hot ends in compressed removable contact. The rhenium and graphite are of high purity and are substantially stable and free from diffusion into each other even without shielding. Also, the graphite may be thick enough to support the thermocouple in a gas stream. (AEC)

  12. High temperature thermometric phosphors

    DOEpatents

    Allison, Stephen W.; Cates, Michael R.; Boatner, Lynn A.; Gillies, George T.

    1999-03-23

    A high temperature phosphor consists essentially of a material having the general formula LuPO.sub.4 :Dy.sub.(x),Eu.sub.y) wherein: 0.1 wt %.ltoreq.x.ltoreq.20 wt % and 0.1 wt %.ltoreq.y.ltoreq.20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopent. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions.

  13. High temperature thermometric phosphors

    DOEpatents

    Allison, S.W.; Cates, M.R.; Boatner, L.A.; Gillies, G.T.

    1999-03-23

    A high temperature phosphor consists essentially of a material having the general formula LuPO{sub 4}:Dy{sub x},Eu{sub y} wherein: 0.1 wt % {<=} x {<=} 20 wt % and 0.1 wt % {<=} y {<=} 20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopant. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions. 2 figs.

  14. A Wide Range Temperature Sensor Using SOI Technology

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Elbuluk, Malik E.; Hammoud, Ahmad

    2009-01-01

    Silicon-on-insulator (SOI) technology is becoming widely used in integrated circuit chips for its advantages over the conventional silicon counterpart. The decrease in leakage current combined with lower power consumption allows electronics to operate in a broader temperature range. This paper describes the performance of an SOIbased temperature sensor under extreme temperatures and thermal cycling. The sensor comprised of a temperature-to-frequency relaxation oscillator circuit utilizing an SOI precision timer chip. The circuit was evaluated under extreme temperature exposure and thermal cycling between -190 C and +210 C. The results indicate that the sensor performed well over the entire test temperature range and it was able to re-start at extreme temperatures.

  15. Pressure and Temperature Spin Crossover Sensors with Optical Detection

    PubMed Central

    Linares, Jorge; Codjovi, Epiphane; Garcia, Yann

    2012-01-01

    Iron(II) spin crossover molecular materials are made of coordination centres switchable between two states by temperature, pressure or a visible light irradiation. The relevant macroscopic parameter which monitors the magnetic state of a given solid is the high-spin (HS) fraction denoted nHS, i.e., the relative population of HS molecules. Each spin crossover material is distinguished by a transition temperature T1/2 where 50% of active molecules have switched to the low-spin (LS) state. In strongly interacting systems, the thermal spin switching occurs abruptly at T1/2. Applying pressure induces a shift from HS to LS states, which is the direct consequence of the lower volume for the LS molecule. Each material has thus a well defined pressure value P1/2. In both cases the spin state change is easily detectable by optical means thanks to a thermo/piezochromic effect that is often encountered in these materials. In this contribution, we discuss potential use of spin crossover molecular materials as temperature and pressure sensors with optical detection. The ones presenting smooth transitions behaviour, which have not been seriously considered for any application, are spotlighted as potential sensors which should stimulate a large interest on this well investigated class of materials. PMID:22666041

  16. Temperature effects on polymer-carbon composite sensors

    NASA Technical Reports Server (NTRS)

    Lim, J. R.; Homer, M. L.; Manatt, K.; Kisor, A.; Lara, L.; Jewell, A. D.; Shevade, A.; Ryan, M. A.

    2003-01-01

    At JPL we have investigated the effects of temperature on polymer-carbon black composite sensors. While the electrical properties of polymer composites have been studied, with mechanisms of conductivity described by connectivity and tunneling, it is not fully understood how these properties affect sensor characteristics and responses.

  17. Dual fluorescence sensor for trace oxygen and temperature with unmatched range and sensitivity.

    PubMed

    Baleizão, Carlos; Nagl, Stefan; Schäferling, Michael; Berberan-Santos, Mário N; Wolfbeis, Otto S

    2008-08-15

    An optical dual sensor for oxygen and temperature is presented that is highly oxygen sensitive and covers a broad temperature range. Dual sensing is based on luminescence lifetime measurements. The novel sensor contains two luminescent compounds incorporated into polymer films. The temperature-sensitive dye (ruthenium tris-1,10-phenanthroline) has a highly temperature-dependent luminescence and is incorporated in poly(acrylonitrile) to avoid cross-sensitivity to oxygen. Fullerene C70 was used as the oxygen-sensitive probe owing to its strong thermally activated delayed fluorescence at elevated temperatures that is extremely oxygen sensitive. The cross-sensitivity of C70 to temperature is accounted for by means of the temperature sensor. C70 is incorporated into a highly oxygen-permeable polymer, either ethyl cellulose or organosilica. The two luminescent probes have different emission spectra and decay times, and their emissions can be discriminated using both parameters. Spatially resolved sensing is achieved by means of fluorescence lifetime imaging. The response times of the sensor to oxygen are short. The dual sensor exhibits a temperature operation range between at least 0 and 120 degrees C, and detection limits for oxygen in the ppbv range, operating for oxygen concentrations up to at least 50 ppmv. These ranges outperform all dual oxygen and temperature sensors reported so far. The dual sensor presented in this study is especially appropriate for measurements under extreme conditions such as high temperatures and ultralow oxygen levels. This dual sensor is a key step forward in a number of scientifically or commercially important applications including food packaging, for monitoring of hyperthermophilic microorganisms, in space technology, and safety and security applications in terms of detection of oxygen leaks. PMID:18651755

  18. High Sensitivity MEMS Strain Sensor: Design and Simulation

    PubMed Central

    Mohammed, Ahmed A. S.; Moussa, Walied A.; Lou, Edmond

    2008-01-01

    In this article, we report on the new design of a miniaturized strain microsensor. The proposed sensor utilizes the piezoresistive properties of doped single crystal silicon. Employing the Micro Electro Mechanical Systems (MEMS) technology, high sensor sensitivities and resolutions have been achieved. The current sensor design employs different levels of signal amplifications. These amplifications include geometric, material and electronic levels. The sensor and the electronic circuits can be integrated on a single chip, and packaged as a small functional unit. The sensor converts input strain to resistance change, which can be transformed to bridge imbalance voltage. An analog output that demonstrates high sensitivity (0.03mV/με), high absolute resolution (1με) and low power consumption (100μA) with a maximum range of ±4000με has been reported. These performance characteristics have been achieved with high signal stability over a wide temperature range (±50°C), which introduces the proposed MEMS strain sensor as a strong candidate for wireless strain sensing applications under harsh environmental conditions. Moreover, this sensor has been designed, verified and can be easily modified to measure other values such as force, torque…etc. In this work, the sensor design is achieved using Finite Element Method (FEM) with the application of the piezoresistivity theory. This design process and the microfabrication process flow to prototype the design have been presented.

  19. Apparatus for accurately measuring high temperatures

    DOEpatents

    Smith, D.D.

    The present invention is a thermometer used for measuring furnace temperatures in the range of about 1800/sup 0/ to 2700/sup 0/C. The thermometer comprises a broadband multicolor thermal radiation sensor positioned to be in optical alignment with the end of a blackbody sight tube extending into the furnace. A valve-shutter arrangement is positioned between the radiation sensor and the sight tube and a chamber for containing a charge of high pressure gas is positioned between the valve-shutter arrangement and the radiation sensor. A momentary opening of the valve shutter arrangement allows a pulse of the high gas to purge the sight tube of air-borne thermal radiation contaminants which permits the radiation sensor to accurately measure the thermal radiation emanating from the end of the sight tube.

  20. The effectiveness of metal coating on FBG sensor sensitivity at cryogenic temperature

    NASA Astrophysics Data System (ADS)

    Lupi, C.; Felli, F.; Caponero, M. A.; Paolozzi, A.

    2007-07-01

    The very low thermal expansion coefficient of silica at cryogenic temperature prevents the use of Fibre Bragg Grating (FBG) sensors for high resolution temperature monitoring in cryogenic environments involving liquid gases or space applications. To overcome such limitations sensors have been coated with different metals to improve the measurement sensitivity in the very low temperature region, i.e. 4.2-35 K. Various coatings have been deposited by electrowinning on the external fibre surface after aluminium pre-coating. Full characterization of this new type of sensor is described in the paper.

  1. High temperature adsorption measurements

    SciTech Connect

    Bertani, R.; Parisi, L.; Perini, R.; Tarquini, B.

    1996-01-24

    Adsorption phenomena are a rich and rather new field of study in geothermal research, in particular at very high temperature. ENEL is interested in the exploitation of geothermal regions with superheated steam, and it is important to understand the behavior of water-rock interaction. We have analyzed in the 170-200 °C temperature range four samples of Monteverdi cuttings; the next experimental effort will be at 220 °C and over in 1996. The first results of the 1995 runs are collected in this paper. We can highlight four main items: 1. At relative pressures over 0.6 the capillarity forces are very important. 2. There is no significant temperature effect. 3. Adsorbed water can be present, and it is able to multiply by a factor of 15 the estimated reserve of super-heated steam only. 4. Pores smaller than 15 Å do not contribute to the adsorbed mass.

  2. High temperature adsorption measurements

    SciTech Connect

    Bertani, R.; Parisi, L.; Perini, R.; Tarquini, B.

    1996-12-31

    Adsorption phenomena are a rich and rather new field of study in geothermal research, in particular at very high temperature. ENEL is interested in the exploitation of geothermal regions with super-heated steam, and it is important to understand the behavior of water-rock interaction. We have analyzed in the 170-200{degrees}C temperature range four samples of Monteverdi cuttings; the next experimental effort will be at 220{degrees}C and over in 1996. The first results of the 1995 runs are collected in this paper. We can highlight four main items: (1) At relative pressures over 0.6 the capillarity forces are very important. (2) There is no significant temperature effect. (3) Adsorbed water can be present, and it is able to multiply by a factor of 15 the estimated reserve of super-heated steam only. (4) Pores smaller than 15 {Angstrom} do not contribute to the adsorbed mass.

  3. Fiber-Optic Surface Temperature Sensor Based on Modal Interference.

    PubMed

    Musin, Frédéric; Mégret, Patrice; Wuilpart, Marc

    2016-01-01

    Spatially-integrated surface temperature sensing is highly useful when it comes to controlling processes, detecting hazardous conditions or monitoring the health and safety of equipment and people. Fiber-optic sensing based on modal interference has shown great sensitivity to temperature variation, by means of cost-effective image-processing of few-mode interference patterns. New developments in the field of sensor configuration, as described in this paper, include an innovative cooling and heating phase discrimination functionality and more precise measurements, based entirely on the image processing of interference patterns. The proposed technique was applied to the measurement of the integrated surface temperature of a hollow cylinder and compared with a conventional measurement system, consisting of an infrared camera and precision temperature probe. As a result, the optical technique is in line with the reference system. Compared with conventional surface temperature probes, the optical technique has the following advantages: low heat capacity temperature measurement errors, easier spatial deployment, and replacement of multiple angle infrared camera shooting and the continuous monitoring of surfaces that are not visually accessible. PMID:27483271

  4. 10.3 High-temperature Instrumentation

    NASA Technical Reports Server (NTRS)

    Piazza, Anthony

    2008-01-01

    This viewgraph presentation describes high temperature instrumentation development from 1960-1970, 1980-1990 and 2000-present. The contents include: 1) Background; 2) Objective; 3) Application and Sensor; 4) Attachment Techniques; 5) Evaluation/Characterization Testing; and 6) Future testing.

  5. High Temperature Metallic Seal Development

    NASA Astrophysics Data System (ADS)

    Datta, Amit; More, D. Greg

    2002-10-01

    A high temperature static seal capable of long term operation at temperature ranging from 1400 F to 1800 F is presented. The contents include: 1) Development approach; 2) Stress relaxation curves; 3) High temperature seal test rig; 4) High temperature seal design; and 5) High temperature seal testing. This paper is in viewgraph form.

  6. High Temperature Thermosets

    NASA Technical Reports Server (NTRS)

    Hergenrother, Paul M.

    1999-01-01

    A thermoset or network polymer is an organic material where the molecules are tied together through chemical bonds (crosslinks) and therefore they cannot move past one another. As a result, these materials exhibit a certain degree of dimensional stability. The chemical composition and the degree of crosslink density of the thermoset have a pronounced effect upon the properties. High temperature thermosets offer a favorable combination of properties that makes them attractive for many applications. Their most important features are the excellent processability particularly of the low molecular weight precusor forms, the chemical and solvent resistance and the dimensional stability. The market for high temperature thermosets will increase as new uses for them are uncovered and new thermosets with better combinations of properties are developed.

  7. High temperature future

    SciTech Connect

    Sheinkopf, K.

    1994-09-01

    During the past few years, there have been dramatic accomplishments and success of high temperature solar thermal systems and significant development of these systems. High temperature technologies, about 500 F and higher, such as dish engines, troughs, central receiver power towers and solar process heat systems, have been tested, demonstrated and used in an array of applications, including many cost-effective utility bulk power production and demand side supply projects in the United States. Large systems provide power and hot water to prisons, schools, nursing homes and other institutions. Joint ventures with industry, utility projects, laboratory design assistance and other activities are building a solid industry of US solar thermal systems ready for use today.

  8. Effects of electrostatic discharge on three cryogenic temperature sensor models

    NASA Astrophysics Data System (ADS)

    Courts, S. Scott; Mott, Thomas B.

    2014-01-01

    Cryogenic temperature sensors are not usually thought of as electrostatic discharge (ESD) sensitive devices. However, the most common cryogenic thermometers in use today are thermally sensitive diodes or resistors - both electronic devices in their base form. As such, they are sensitive to ESD at some level above which either catastrophic or latent damage can occur. Instituting an ESD program for safe handling and installation of the sensor is costly and it is desirable to balance the risk of ESD damage against this cost. However, this risk cannot be evaluated without specific knowledge of the ESD vulnerability of the devices in question. This work examines three types of cryogenic temperature sensors for ESD sensitivity - silicon diodes, Cernox{trade mark, serif} resistors, and wire wound platinum resistors, all manufactured by Lake Shore Cryotronics, Inc. Testing was performed per TIA/EIA FOTP129 (Human Body Model). Damage was found to occur in the silicon diode sensors at discharge levels of 1,500 V. For Cernox{trade mark, serif} temperature sensors, damage was observed at 3,500 V. The platinum temperature sensors were not damaged by ESD exposure levels of 9,900 V. At the lower damage limit, both the silicon diode and the Cernox{trade mark, serif} temperature sensors showed relatively small calibration shifts of 1 to 3 K at room temperature. The diode sensors were stable with time and thermal cycling, but the long term stability of the Cernox{trade mark, serif} sensors was degraded. Catastrophic failure occurred at higher levels of ESD exposure.

  9. Effects of electrostatic discharge on three cryogenic temperature sensor models

    SciTech Connect

    Courts, S. Scott; Mott, Thomas B.

    2014-01-29

    Cryogenic temperature sensors are not usually thought of as electrostatic discharge (ESD) sensitive devices. However, the most common cryogenic thermometers in use today are thermally sensitive diodes or resistors - both electronic devices in their base form. As such, they are sensitive to ESD at some level above which either catastrophic or latent damage can occur. Instituting an ESD program for safe handling and installation of the sensor is costly and it is desirable to balance the risk of ESD damage against this cost. However, this risk cannot be evaluated without specific knowledge of the ESD vulnerability of the devices in question. This work examines three types of cryogenic temperature sensors for ESD sensitivity - silicon diodes, Cernox(trade mark, serif) resistors, and wire wound platinum resistors, all manufactured by Lake Shore Cryotronics, Inc. Testing was performed per TIA/EIA FOTP129 (Human Body Model). Damage was found to occur in the silicon diode sensors at discharge levels of 1,500 V. For Cernox(trade mark, serif) temperature sensors, damage was observed at 3,500 V. The platinum temperature sensors were not damaged by ESD exposure levels of 9,900 V. At the lower damage limit, both the silicon diode and the Cernox(trade mark, serif) temperature sensors showed relatively small calibration shifts of 1 to 3 K at room temperature. The diode sensors were stable with time and thermal cycling, but the long term stability of the Cernox(trade mark, serif) sensors was degraded. Catastrophic failure occurred at higher levels of ESD exposure.

  10. High-temperature superconductivity

    NASA Astrophysics Data System (ADS)

    Chin, Ken C.

    1990-01-01

    The current status of high-temperature superconductivity (HTSC) and near-term prospects are briefly reviewed with particular reference to Lockheed's experience. Emphasis is placed on an integrated approach to systems applications of HTSC thin films, which hold the greatest near-term promise. These new materials are applied in the production of smaller, more sensitive, and more efficient electronic components to meet the ever-increasing demands for higher-performance signal acquisition and processing systems, communications systems, and computers.

  11. High temperature adhesives

    NASA Technical Reports Server (NTRS)

    St.clair, Terry L.

    1991-01-01

    The aerospace and electronics industries have an ever increasing need for higher performance materials. In recent years, linear aromatic polyimides have been proven to be a superior class of materials for various applications in these industries. The use of this class of polymers as adhesives is continuing to increase. Several NASA Langley developed polyimides show considerable promise as adhesives because of their high glass transition temperatures, thermal stability, resistance to solvents/water, and their potential for cost effective manufacture.

  12. Internal reflection sensors with high angular resolution

    NASA Astrophysics Data System (ADS)

    Shavirin, I.; Strelkov, O.; Vetskous, A.; Norton-Wayne, L.; Harwood, R.

    1996-07-01

    We discuss the use of total internal reflection for the production of sensors with high angular resolution. These sensors are intended for measurement of the angle between a sensor's axis and the direction to a source of radiation or reflecting object. Sensors of this type are used in controlling the position of machine parts in robotics and industry, orienting space vehicles and astronomic devices in relation to the Sun, and as autocollimators for checking angles of deviation. This kind of sensor was used in the Apollo space vehicle some 20 years ago. Using photodetectors with linear and area CCD arrays has opened up new application possibilities for appropriately designed sensors. A generalized methodology is presented applicable to a wide range of tasks. Some modifications that can improve the performance of the basic design are described.

  13. Silica Bottle Resonator Sensor for Refractive Index and Temperature Measurements

    PubMed Central

    Nemova, Galina; Kashyap, Raman

    2016-01-01

    We propose and theoretically demonstrate a bottle resonator sensor with a nanoscale altitude and with alength several of hundreds of microns made on the top of the fiber with a radius of tens microns for refractive index and temperature sensor applications. The whispering gallery modes (WGMs) in the resonators can be excited with a taper fiber placed on the top of the resonator. These sensors can be considered as an alternative to fiber Bragg grating (FBG) sensors.The sensitivity of TM-polarized modes is higher than the sensitivity of the TE-polarized modes, but these values are comparable and both polarizations are suitable for sensor applications. The sensitivity ~150 (nm/RIU) can be reached with abottle resonator on the fiber with the radius 10 μm. It can be improved with theuse of a fiber with a smaller radius. The temperature sensitivity is found to be ~10 pm/K. The temperature sensitivity can decrease ~10% for a fiber with a radius rco = 10 μm instead of a fiber with a radius rco = 100 μm. These sensors have sensitivities comparable to FBG sensors. A bottle resonator sensor with a nanoscale altitude made on the top of the fiber can be easily integrated in any fiber scheme. PMID:26761011

  14. Silica Bottle Resonator Sensor for Refractive Index and Temperature Measurements.

    PubMed

    Nemova, Galina; Kashyap, Raman

    2016-01-01

    We propose and theoretically demonstrate a bottle resonator sensor with a nanoscale altitude and with alength several of hundreds of microns made on the top of the fiber with a radius of tens microns for refractive index and temperature sensor applications. The whispering gallery modes (WGMs) in the resonators can be excited with a taper fiber placed on the top of the resonator. These sensors can be considered as an alternative to fiber Bragg grating (FBG) sensors.The sensitivity of TM-polarized modes is higher than the sensitivity of the TE-polarized modes, but these values are comparable and both polarizations are suitable for sensor applications. The sensitivity ~150 (nm/RIU) can be reached with abottle resonator on the fiber with the radius 10 μm. It can be improved with theuse of a fiber with a smaller radius. The temperature sensitivity is found to be ~10 pm/K. The temperature sensitivity can decrease ~10% for a fiber with a radius r(co) = 10 μm instead of a fiber with a radius r(co) = 100 μm. These sensors have sensitivities comparable to FBG sensors. A bottle resonator sensor with a nanoscale altitude made on the top of the fiber can be easily integrated in any fiber scheme. PMID:26761011

  15. A wind energy powered wireless temperature sensor node.

    PubMed

    Zhang, Chuang; He, Xue-Feng; Li, Si-Yu; Cheng, Yao-Qing; Rao, Yang

    2015-01-01

    A wireless temperature sensor node composed of a piezoelectric wind energy harvester, a temperature sensor, a microcontroller, a power management circuit and a wireless transmitting module was developed. The wind-induced vibration energy harvester with a cuboid chamber of 62 mm × 19.6 mm × 10 mm converts ambient wind energy into electrical energy to power the sensor node. A TMP102 temperature sensor and the MSP430 microcontroller are used to measure the temperature. The power management module consists of LTC3588-1 and LT3009 units. The measured temperature is transmitted by the nRF24l01 transceiver. Experimental results show that the critical wind speed of the harvester was about 5.4 m/s and the output power of the harvester was about 1.59 mW for the electrical load of 20 kΩ at wind speed of 11.2 m/s, which was sufficient to power the wireless sensor node to measure and transmit the temperature every 13 s. When the wind speed increased from 6 m/s to 11.5 m/s, the self-powered wireless sensor node worked normally. PMID:25734649

  16. Recent Improvement of Medical Optical Fibre Pressure and Temperature Sensors

    PubMed Central

    Poeggel, Sven; Duraibabu, Dineshbabu; Kalli, Kyriacos; Leen, Gabriel; Dooly, Gerard; Lewis, Elfed; Kelly, Jimmy; Munroe, Maria

    2015-01-01

    This investigation describes a detailed analysis of the fabrication and testing of optical fibre pressure and temperature sensors (OFPTS). The optical sensor of this research is based on an extrinsic Fabry–Perot interferometer (EFPI) with integrated fibre Bragg grating (FBG) for simultaneous pressure and temperature measurements. The sensor is fabricated exclusively in glass and with a small diameter of 0.2 mm, making it suitable for volume-restricted bio-medical applications. Diaphragm shrinking techniques based on polishing, hydrofluoric (HF) acid and femtosecond (FS) laser micro-machining are described and analysed. The presented sensors were examined carefully and demonstrated a pressure sensitivity in the range of sp = 2–10 nmkPa and a resolution of better than ΔP = 10 Pa (0.1 cm H2O). A static pressure test in 38 cmH2O shows no drift of the sensor in a six-day period. Additionally, a dynamic pressure analysis demonstrated that the OFPTS never exceeded a drift of more than 130 Pa (1.3 cm H2O) in a 12-h measurement, carried out in a cardiovascular simulator. The temperature sensitivity is given by k=10.7 pmK, which results in a temperature resolution of better than ΔT = 0.1 K. Since the temperature sensing element is placed close to the pressure sensing element, the pressure sensor is insensitive to temperature changes. PMID:26184331

  17. A Wind Energy Powered Wireless Temperature Sensor Node

    PubMed Central

    Zhang, Chuang; He, Xue-Feng; Li, Si-Yu; Cheng, Yao-Qing; Rao, Yang

    2015-01-01

    A wireless temperature sensor node composed of a piezoelectric wind energy harvester, a temperature sensor, a microcontroller, a power management circuit and a wireless transmitting module was developed. The wind-induced vibration energy harvester with a cuboid chamber of 62 mm × 19.6 mm × 10 mm converts ambient wind energy into electrical energy to power the sensor node. A TMP102 temperature sensor and the MSP430 microcontroller are used to measure the temperature. The power management module consists of LTC3588-1 and LT3009 units. The measured temperature is transmitted by the nRF24l01 transceiver. Experimental results show that the critical wind speed of the harvester was about 5.4 m/s and the output power of the harvester was about 1.59 mW for the electrical load of 20 kΩ at wind speed of 11.2 m/s, which was sufficient to power the wireless sensor node to measure and transmit the temperature every 13 s. When the wind speed increased from 6 m/s to 11.5 m/s, the self-powered wireless sensor node worked normally. PMID:25734649

  18. Recent Improvement of Medical Optical Fibre Pressure and Temperature Sensors.

    PubMed

    Poeggel, Sven; Duraibabu, Dineshbabu; Kalli, Kyriacos; Leen, Gabriel; Dooly, Gerard; Lewis, Elfed; Kelly, Jimmy; Munroe, Maria

    2015-01-01

    This investigation describes a detailed analysis of the fabrication and testing of optical fibre pressure and temperature sensors (OFPTS). The optical sensor of this research is based on an extrinsic Fabry-Perot interferometer (EFPI) with integrated fibre Bragg grating (FBG) for simultaneous pressure and temperature measurements. The sensor is fabricated exclusively in glass and with a small diameter of 0.2 mm, making it suitable for volume-restricted bio-medical applications. Diaphragm shrinking techniques based on polishing, hydrofluoric (HF) acid and femtosecond (FS) laser micro-machining are described and analysed. The presented sensors were examined carefully and demonstrated a pressure sensitivity in the range of sp = 2-10 nm/kPa and a resolution of better than ΔP = 10 Pa protect (0.1 cm H2O). A static pressure test in 38 cm H2O shows no drift of the sensor in a six-day period. Additionally, a dynamic pressure analysis demonstrated that the OFPTS never exceeded a drift of more than 130 Pa (1.3 cm H2O) in a 12-h measurement, carried out in a cardiovascular simulator. The temperature sensitivity is given by k = 10.7 pm/K, which results in a temperature resolution of better than ΔT = 0.1 K. Since the temperature sensing element is placed close to the pressure sensing element, the pressure sensor is insensitive to temperature changes. PMID:26184331

  19. High accuracy optical rate sensor

    NASA Technical Reports Server (NTRS)

    Uhde-Lacovara, J.

    1990-01-01

    Optical rate sensors, in particular CCD arrays, will be used on Space Station Freedom to track stars in order to provide inertial attitude reference. An algorithm to provide attitude rate information by directly manipulating the sensor pixel intensity output is presented. The star image produced by a sensor in the laboratory is modeled. Simulated, moving star images are generated, and the algorithm is applied to this data for a star moving at a constant rate. The algorithm produces accurate derived rate of the above data. A step rate change requires two frames for the output of the algorithm to accurately reflect the new rate. When zero mean Gaussian noise with a standard deviation of 5 is added to the simulated data of a star image moving at a constant rate, the algorithm derives the rate with an error of 1.9 percent at a rate of 1.28 pixels per frame.

  20. Scheme of optical fiber temperature sensor employing deep-grooved process optimization

    NASA Astrophysics Data System (ADS)

    Liu, Yu; Liu, Cong; Xiang, Gaolin; Wang, Ruijie; Wang, Yibing; Xiang, Lei; Wu, Linzhi; Liu, Song

    2015-03-01

    To optimize the optical fiber temperature sensor employing the deep-grooved process, a novel scheme was proposed. Fabricated by the promising CO2 laser irradiation system based on the two-dimensional scanning motorized stage with high precision, the novel deep-grooved optical fiber temperature sensor was obtained with its temperature sensitivity of the transmission attenuation -0.107 dB/°C, which was 18.086 times higher than the optical fiber sensor with the normal depth of grooves while other parameters remained unchanged. The principal research and experimental testing showed that the designed temperature sensor measurement unit had the ability of high sensitivity in transmission attenuation and insensitivity to the wavelength, which offers possible applications in engineering.

  1. Calibration and temperature correction of heat dissipation matric potential sensors

    USGS Publications Warehouse

    Flint, A.L.; Campbell, G.S.; Ellett, K.M.; Calissendorff, C.

    2002-01-01

    This paper describes how heat dissipation sensors, used to measure soil water matric potential, were analyzed to develop a normalized calibration equation and a temperature correction method. Inference of soil matric potential depends on a correlation between the variable thermal conductance of the sensor's porous ceramic and matric poten-tial. Although this correlation varies among sensors, we demonstrate a normalizing procedure that produces a single calibration relationship. Using sensors from three sources and different calibration methods, the normalized calibration resulted in a mean absolute error of 23% over a matric potential range of -0.01 to -35 MPa. Because the thermal conductivity of variably saturated porous media is temperature dependent, a temperature correction is required for application of heat dissipation sensors in field soils. A temperature correction procedure is outlined that reduces temperature dependent errors by 10 times, which reduces the matric potential measurement errors by more than 30%. The temperature dependence is well described by a thermal conductivity model that allows for the correction of measurements at any temperature to measurements at the calibration temperature.

  2. A quantum sensor for high-performance mass spectrometry

    NASA Astrophysics Data System (ADS)

    Rodríguez, D.

    2012-06-01

    A novel device, called quantum sensor, has been conceived to measure the mass of a single ion with ultimate accuracy and unprecedented sensitivity while the ion is stored and cooled in a trap. The quantum sensor consists of a single calcium ion as sensor, which is laser cooled to mK temperatures and stored in a second trap connected to the trap for the ion under study by a common endcap. The cyclotron motion of the ion under investigation is transformed into axial motion along the magnetic field lines and coupled to the sensor ion by the image current induced in the common endcap. The axial motion of the sensor ion in turn is monitored spatially resolved by its fluorescence light. In this way the detection of phonons can be upgraded to a detection of photons. This device will allow one to overcome recent limitations in high-precision mass spectrometry.

  3. A solution-based temperature sensor using the organic compound CuTsPc.

    PubMed

    Abdullah, Shahino Mah; Ahmad, Zubair; Sulaiman, Khaulah

    2014-01-01

    An electrochemical cell using an organic compound, copper (II) phthalocyanine-tetrasulfonic acid tetrasodium salt (CuTsPc,) has been fabricated and investigated as a solution-based temperature sensor. The capacitance and resistance of the ITO/CuTsPc solution/ITO chemical cell has been characterized as a function of temperature in the temperature range of 25-80 °C. A linear response with minimal hysteresis is observed. The fabricated temperature sensor has shown high consistency and sensitive response towards a specific range of temperature values. PMID:24901979

  4. Electro-optic high voltage sensor

    DOEpatents

    Davidson, James R.; Seifert, Gary D.

    2002-01-01

    A small sized electro-optic voltage sensor capable of accurate measurement of high levels of voltages without contact with a conductor or voltage source is provided. When placed in the presence of an electric field, the sensor receives an input beam of electromagnetic radiation into the sensor. A polarization beam displacer serves as a filter to separate the input beam into two beams with orthogonal linear polarizations. The beam displacer is oriented in such a way as to rotate the linearly polarized beams such that they enter a Pockels crystal having at a preferred angle of 45 degrees. The beam displacer is therefore capable of causing a linearly polarized beam to impinge a crystal at a desired angle independent of temperature. The Pockels electro-optic effect induces a differential phase shift on the major and minor axes of the input beam as it travels through the Pockels crystal, which causes the input beam to be elliptically polarized. A reflecting prism redirects the beam back through the crystal and the beam displacer. On the return path, the polarization beam displacer separates the elliptically polarized beam into two output beams of orthogonal linear polarization representing the major and minor axes. The system may include a detector for converting the output beams into electrical signals, and a signal processor for determining the voltage based on an analysis of the output beams. The output beams are amplitude modulated by the frequency of the electric field and the amplitude of the output beams is proportional to the magnitude of the electric field, which is related to the voltage being measured.

  5. Temperature-Sensitive Coating Sensor Based on Hematite

    NASA Technical Reports Server (NTRS)

    Bencic, Timothy J.

    2011-01-01

    A temperature-sensitive coating, based on hematite (iron III oxide), has been developed to measure surface temperature using spectral techniques. The hematite powder is added to a binder that allows the mixture to be painted on the surface of a test specimen. The coating dynamically changes its relative spectral makeup or color with changes in temperature. The color changes from a reddish-brown appearance at room temperature (25 C) to a black-gray appearance at temperatures around 600 C. The color change is reversible and repeatable with temperature cycling from low to high and back to low temperatures. Detection of the spectral changes can be recorded by different sensors, including spectrometers, photodiodes, and cameras. Using a-priori information obtained through calibration experiments in known thermal environments, the color change can then be calibrated to yield accurate quantitative temperature information. Temperature information can be obtained at a point, or over an entire surface, depending on the type of equipment used for data acquisition. Because this innovation uses spectrophotometry principles of operation, rather than the current methods, which use photoluminescence principles, white light can be used for illumination rather than high-intensity short wavelength excitation. The generation of high-intensity white (or potentially filtered long wavelength light) is much easier, and is used more prevalently for photography and video technologies. In outdoor tests, the Sun can be used for short durations as an illumination source as long as the amplitude remains relatively constant. The reflected light is also much higher in intensity than the emitted light from the inefficient current methods. Having a much brighter surface allows a wider array of detection schemes and devices. Because color change is the principle of operation, the development of high-quality, lower-cost digital cameras can be used for detection, as opposed to the high-cost imagers

  6. High Temperature Piezoelectric Drill

    NASA Technical Reports Server (NTRS)

    Bao, Xiaoqi; Bar-Cohen, Yoseph; Sherrit, Stewart; Badescu, Mircea; Shrout, Tom

    2012-01-01

    Venus is one of the planets in the solar systems that are considered for potential future exploration missions. It has extreme environment where the average temperature is 460 deg C and its ambient pressure is about 90 atm. Since the existing actuation technology cannot maintain functionality under the harsh conditions of Venus, it is a challenge to perform sampling and other tasks that require the use of moving parts. Specifically, the currently available electromagnetic actuators are limited in their ability to produce sufficiently high stroke, torque, or force. In contrast, advances in developing electro-mechanical materials (such as piezoelectric and electrostrictive) have enabled potential actuation capabilities that can be used to support such missions. Taking advantage of these materials, we developed a piezoelectric actuated drill that operates at the temperature range up to 500 deg C and the mechanism is based on the Ultrasonic/Sonic Drill/Corer (USDC) configuration. The detailed results of our study are presented in this paper

  7. Platinum-Resistor Differential Temperature Sensor

    NASA Technical Reports Server (NTRS)

    Kolbly, R. B.; Britcliffe, M. J.

    1985-01-01

    Platinum resistance elements used in bridge circuit for measuring temperature difference between two flowing liquids. Temperature errors with circuit are less than 0.01 degrees C over range of 100 degrees C.

  8. Application of a one-wire digital temperature sensor in the monitoring system of a granary's temperature

    NASA Astrophysics Data System (ADS)

    Ma, Hongtao; Wang, Xiaojun; Zhang, Xiuqing

    2009-07-01

    A temperature monitoring system with characteristics of bus topology structure is made up of computer, interface adapter, bus driver, bus converter, transmission line and especially 1-wire digital temperature sensor DS18B20. Category 5 twisted-pair is used to form a tree-like or star-like network, in which more than 500 digital temperature sensors can be connected. Bus drivers and converters in network are composed of low-cost 74HC series logic ICs which has a very low static power consumption and high performance, so they can be powered through the sensor bus and make installation, maintenance, and expansion of system very convenient. Because of hardware fault-tolerant technology used by bus driver and converter circuits, the fault sensor branch or branch bus can automatically detach from the main bus and will not affect normal working of other sensors in network, so to solve the problem of a certain sensor or branch's damage causing the paralysis of entire bus. The length of sensor bus can extend to more than 1000 meters. It is very suitable for the multi-point temperature monitoring sites where the detected points are relative concentrated such as food storage, vegetables greenhouses and so on.

  9. Temperature measurement method using temperature coefficient timing for resistive or capacitive sensors

    DOEpatents

    Britton, C.L. Jr.; Ericson, M.N.

    1999-01-19

    A method and apparatus for temperature measurement especially suited for low cost, low power, moderate accuracy implementation. It uses a sensor whose resistance varies in a known manner, either linearly or nonlinearly, with temperature, and produces a digital output which is proportional to the temperature of the sensor. The method is based on performing a zero-crossing time measurement of a step input signal that is double differentiated using two differentiators functioning as respective first and second time constants; one temperature stable, and the other varying with the sensor temperature. 5 figs.

  10. Temperature measurement method using temperature coefficient timing for resistive or capacitive sensors

    DOEpatents

    Britton, Jr., Charles L.; Ericson, M. Nance

    1999-01-01

    A method and apparatus for temperature measurement especially suited for low cost, low power, moderate accuracy implementation. It uses a sensor whose resistance varies in a known manner, either linearly or nonlinearly, with temperature, and produces a digital output which is proportional to the temperature of the sensor. The method is based on performing a zero-crossing time measurement of a step input signal that is double differentiated using two differentiators functioning as respective first and second time constants; one temperature stable, and the other varying with the sensor temperature.

  11. An Integrated-Circuit Temperature Sensor for Calorimetry and Differential Temperature Measurement.

    ERIC Educational Resources Information Center

    Muyskens, Mark A.

    1997-01-01

    Describes the application of an integrated-circuit (IC) chip which provides an easy-to-use, inexpensive, rugged, computer-interfaceable temperature sensor for calorimetry and differential temperature measurement. Discusses its design and advantages. (JRH)

  12. Optical temperature sensor using thermochromic semiconductors

    DOEpatents

    Kronberg, J.W.

    1994-01-01

    Optical thermometry is a growing technological field which exploits the ability of certain materials to change their optical properties with temperature. A subclass of such materials are those which change their color as a reversible and reproducible function of temperature. These materials are thermochromic. This invention is a composition to measure temperature utilizing thermochromic semiconductors.

  13. Fiber-Optic Temperature Sensor Using a Thin-Film Fabry-Perot Interferometer

    NASA Technical Reports Server (NTRS)

    Beheim, Glenn

    1997-01-01

    A fiber-optic temperature sensor was developed that is rugged, compact, stable, and can be inexpensively fabricated. This thin-film interferometric temperature sensor was shown to be capable of providing a +/- 2 C accuracy over the range of -55 to 275 C, throughout a 5000 hr operating life. A temperature-sensitive thin-film Fabry-Perot interferometer can be deposited directly onto the end of a multimode optical fiber. This batch-fabricatable sensor can be manufactured at a much lower cost than can a presently available sensor, which requires the mechanical attachment of a Fabry-Perot interferometer to a fiber. The principal disadvantage of the thin-film sensor is its inherent instability, due to the low processing temperatures that must be used to prevent degradation of the optical fiber's buffer coating. The design of the stable thin-film temperature sensor considered the potential sources of both short and long term drifts. The temperature- sensitive Fabry-Perot interferometer was a silicon film with a thickness of approx. 2 microns. A laser-annealing process was developed which crystallized the silicon film without damaging the optical fiber. The silicon film was encapsulated with a thin layer of Si3N4 over coated with aluminum. Crystallization of the silicon and its encapsulation with a highly stable, impermeable thin-film structure were essential steps in producing a sensor with the required long-term stability.

  14. Mechanical robustness of cryogenic temperature sensors packaged in a flat, hermetically-sealed package

    NASA Astrophysics Data System (ADS)

    Courts, S. S.

    2015-12-01

    Much of the work to develop internationally recognized temperature scales over the past 50 years was performed with thermometers whose sensing elements were constructed from platinum wire, rhodium-iron wire, or doped germanium elements. For high stability, the best results were obtained when the sensing element was strain-free mounted which reduced the effects of temperature-induced mechanical stress and deformation. Unfortunately, the devices were still highly susceptible to mechanical damage, and, barring a catastrophic mechanical shock, damage to the temperature sensors could go unnoticed as it could continue to operate with degraded accuracy. While not at the same level of stability as standards grade thermometers, many of the most commonly used cryogenic thermometers today are far more resistant to mechanical handling. This work examines the calibration offsets on three models of cryogenic temperature sensors resulting from mechanical shock and vibration. The models tested in this work were all obtained from Lake Shore Cryotronics, Inc., and included Cemox™ resistance thermometer models CX-1050-SD and CX-1050-AA, and a diode temperature sensor model DT-670-SD. Mechanical treatments were performed via a simple drop test (heights 20 cm, 50 cm, 1 m, and 4 m), random vibration per MIL-STD-202, Method 214, Table 2, Condition H, and mechanical shock per MIL-STD-883, Method 2002, Condition B. Each sensor was calibrated pre- and post-mechanical treatment and the effect of the treatment on each test sensor was quantified in terms of the equivalent temperature calibration shift. This work details the calibration shift of each sensor type following each treatment type over the 1.4 K to 325 K temperature range. No effects from the testing were discemable for Cemox and diode sensors packaged in the -SD package, a flat, hermetically sealed package, while small calibration offsets of less than 0.15% of temperature at higher temperatures were observed for Cemox sensors

  15. High temperature detonator

    DOEpatents

    Johnson, James O.; Dinegar, Robert H.

    1988-01-01

    A detonator assembly is provided which is usable at high temperatures about 300.degree. C. A detonator body is provided with an internal volume defining an anvil surface. A first acceptor explosive is disposed on the anvil surface. A donor assembly having an ignition element, an explosive material, and a flying plate, are placed in the body effective to accelerate the flying plate to impact the first acceptor explosive on the anvil for detonating the first acceptor explosive. A second acceptor explosive is eccentrically located in detonation relationship with the first acceptor explosive to thereafter effect detonation of a main charge.

  16. High temperature drilling fluids

    SciTech Connect

    Stong, R.E.; Walinsky, S.W.

    1986-01-28

    This patent describes an aqueous drilling fluid suitable for high-temperature use. This fluid is composed of a water base. Clay is suspended in the base and from about 0.01-25 pounds per barrel total composition of a hydrolyzed terpolymer of maleic anhydride, styrene and a third monomer selected from acrylamide, methacrylamide, acrylic acid and metacrylic acid. The molar ratio of maleic anhydride to styrene to the third monomer is from about 30:10:60 to 50:40:10, and the alkali metal, ammonium and lower aliphatic amine salts thereof, the weight-average molecular weight of the hydrolyzed terpolymer is from about 500-10,000.

  17. High temperature skin friction measurement

    NASA Technical Reports Server (NTRS)

    Tcheng, Ping; Holmes, Harlan K.; Supplee, Frank H., Jr.

    1989-01-01

    Skin friction measurement in the NASA Langley hypersonic propulsion facility is described. The sensor configuration utilized an existing balance, modified to provide thermal isolation and an increased standoff distance. For test run times of about 20 sec and ambient-air cooling of the test section and balance, the modified balance performed satisfactorily, even when it was subjected to acoustic and structural vibration. The balance is an inertially balanced closed-loop servo system where the current to a moving-coil motor needed to restore or null the output from the position sensor is a measure of the force or skin friction tending to displace the moving element. The accuracy of the sensor is directly affected by the position sensor in the feedback loop, in this case a linear-variable differential transformer which has proven to be influenced by temperature gradients.

  18. Differential temperature stress measurement employing array sensor with local offset

    NASA Technical Reports Server (NTRS)

    Lesniak, Jon R. (Inventor)

    1993-01-01

    The instrument has a focal plane array of infrared sensors of the integrating type such as a multiplexed device in which a charge is built up on a capacitor which is proportional to the total number of photons which that sensor is exposed to between read-out cycles. The infrared sensors of the array are manufactured as part of an overall array which is part of a micro-electronic device. The sensor achieves greater sensitivity by applying a local offset to the output of each sensor before it is converted into a digital word. The offset which is applied to each sensor will typically be the sensor's average value so that the digital signal which is periodically read from each sensor of the array corresponds to the portion of the signal which is varying in time. With proper synchronization between the cyclical loading of the test object and the frame rate of the infrared array the output of the A/D converted signal will correspond to the stress field induced temperature variations. A digital lock-in operation may be performed on the output of each sensor in the array. This results in a test instrument which can rapidly form a precise image of the thermoelastic stresses in an object.

  19. Elevated Temperature Sensors for On-Line Critical Equipment Health Monitoring

    SciTech Connect

    James Sebastian

    2006-03-31

    The objective of the program was to improve high temperature piezoelectric aluminum nitride (AlN) sensor technology to make it useful for instrumentation and health monitoring of current and future electrical power generation equipment. Improvements were aimed primarily at extending the useful temperature range of the sensor from approximately 700 C to above 1000 C, and investigating ultrasonic coupling to objects at these temperatures and tailoring high temperature coupling for use with the sensor. During the project, the chemical vapor deposition (CVD) AlN deposition process was successfully transferred from film production on tungsten carbide substrates to titanium alloy and silicon carbide (SiC) substrates. Film adhesion under thermal cycling was found to be poor, and additional substrate materials and surface preparations were evaluated. A new, porous SiC substrate improved the performance but not to the point of making the films useful for sensors. Near the end of the program, a new family of high temperature piezoelectric materials came to the attention of the program. Samples of langasite, the most promising member of this family, were obtained and experimental data showed promise for use up to the 1000 C target temperature. In parallel, research successfully determined that metal foil under moderate pressure provided a practical method of coupling ultrasound at high temperature. A conceptual sensor was designed based upon these methods and was tested in the laboratory.

  20. Improved Blackbody Temperature Sensors for a Vacuum Furnace

    NASA Technical Reports Server (NTRS)

    Farmer, Jeff; Coppens, Chris; O'Dell, J. Scott; McKechnie, Timothy N.; Schofield, Elizabeth

    2009-01-01

    Some improvements have been made in the design and fabrication of blackbody sensors (BBSs) used to measure the temperature of a heater core in a vacuum furnace. Each BBS consists of a ring of thermally conductive, high-melting-temperature material with two tantalum-sheathed thermocouples attached at diametrically opposite points. The name "blackbody sensor" reflects the basic principle of operation. Heat is transferred between the ring and the furnace heater core primarily by blackbody radiation, heat is conducted through the ring to the thermocouples, and the temperature of the ring (and, hence, the temperature of the heater core) is measured by use of the thermocouples. Two main requirements have guided the development of these BBSs: (1) The rings should have as high an emissivity as possible in order to maximize the heat-transfer rate and thereby maximize temperature-monitoring performance and (2) the thermocouples must be joined to the rings in such a way as to ensure long-term, reliable intimate thermal contact. The problem of fabricating a BBS to satisfy these requirements is complicated by an application-specific prohibition against overheating and thereby damaging nearby instrumentation leads through the use of conventional furnace brazing or any other technique that involves heating the entire BBS and its surroundings. The problem is further complicated by another application-specific prohibition against damaging the thin tantalum thermocouple sheaths through the use of conventional welding to join the thermocouples to the ring. The first BBS rings were made of graphite. The tantalum-sheathed thermocouples were attached to the graphite rings by use of high-temperature graphite cements. The ring/thermocouple bonds thus formed were found to be weak and unreliable, and so graphite rings and graphite cements were abandoned. Now, each BBS ring is made from one of two materials: either tantalum or a molybdenum/titanium/zirconium alloy. The tantalum

  1. High temperature filter materials

    SciTech Connect

    Alvin, M.A.; Lippert, T.E.; Bachovchin, D.M.; Tressler, R.E.

    1992-12-01

    Objectives of this program are to identify the potential long-term thermal/chemical effects that advanced coal-based power generating system environments have on the stability of porous ceramic filter materials, as well as to assess the influence of these effects on filter operating performance and life. We have principally focused our efforts on developing an understanding of the stability of the alumina/mullite filter material at high temperature (i.e., 870, 980, and 1100{degrees}C) under oxidizing conditions which contain gas phase alkali species. Testing has typically been performed in two continuous flow-through, high temperature test facilities at the Westinghouse Science and Technology Center, using 7 cm diameter {times} 6.4 mm thick discs. (Alvin, 1992) Each disc of ceramic filter material is exposed for periods of 100 to 3,000 hours in duration. Additional efforts have been performed at Westinghouse to broaden our understanding of the stability of cordierite, cordierite-silicon nitride, reaction and sintered silicon nitride, and clay bonded silicon carbide under similar simulated advanced coal fired process conditions. The results of these efforts are presented in this paper.

  2. High temperature filter materials

    SciTech Connect

    Alvin, M.A.; Lippert, T.E.; Bachovchin, D.M. . Science and Technology Center); Tressler, R.E. )

    1992-01-01

    Objectives of this program are to identify the potential long-term thermal/chemical effects that advanced coal-based power generating system environments have on the stability of porous ceramic filter materials, as well as to assess the influence of these effects on filter operating performance and life. We have principally focused our efforts on developing an understanding of the stability of the alumina/mullite filter material at high temperature (i.e., 870, 980, and 1100[degrees]C) under oxidizing conditions which contain gas phase alkali species. Testing has typically been performed in two continuous flow-through, high temperature test facilities at the Westinghouse Science and Technology Center, using 7 cm diameter [times] 6.4 mm thick discs. (Alvin, 1992) Each disc of ceramic filter material is exposed for periods of 100 to 3,000 hours in duration. Additional efforts have been performed at Westinghouse to broaden our understanding of the stability of cordierite, cordierite-silicon nitride, reaction and sintered silicon nitride, and clay bonded silicon carbide under similar simulated advanced coal fired process conditions. The results of these efforts are presented in this paper.

  3. Fiber Bragg grating cryogenic temperature sensors

    NASA Astrophysics Data System (ADS)

    Gupta, Sanjay; Mizunami, Toru; Yamao, Takashi; Shimomura, Teruo

    1996-09-01

    Temperature sensing to as low as 80 K was demonstrated with 1.55- mu m fiber Bragg gratings. The gratings were bonded on substrates to increase sensitivity, and a shift of the reflection wavelength was measured. The temperature sensitivity was 0.02 nm/K at 100 K when an aluminum substrate was used and 0.04 nm/K at 100 K when a poly(methyl methacrylate) substrate was used. These values are smaller than those at room temperature because of the nonlinearity of both the thermal expansion and the thermo-optic effect. Extension to the liquid helium temperature is also discussed.

  4. Digital temperature sensor performance assessment report. [in simulated shuttle environments

    NASA Technical Reports Server (NTRS)

    Canniff, J. H.

    1974-01-01

    Performance assessment data accumulated during exposure of the digital temperature sensor to simulated shuttle flight type environments are presented. The test parameters were specifically designed to check the sensor for its: (1) ability to resolve temperature relative to the design specifications; (2) ability to maintain accuracy after interchanging the temperature probes with each electronics interface assembly; (3) stability (i.e., satisfactory operation and accuracy during and after exposure to flight environments); and (4) repeatability, or its ability to produce the same output on subsequent exposures to the identical stimulus. Equipment list, test descriptions, data summary, and conclusions are included.

  5. Design, fabrication and testing of an optical temperature sensor

    NASA Technical Reports Server (NTRS)

    Morey, W. W.; Glenn, W. H.; Decker, R. O.; Mcclurg, W. C.

    1980-01-01

    The laboratory breadboard optical temperature sensor based on the temperature dependent absorptive characteristics of a rare earth (europium) doped optical fiber. The principles of operation, materials characterization, fiber and optical component design, design and fabrication of an electrooptic interface unit, signal processing, and initial test results are discussed. Initial tests indicated that, after a brief warmup period, the output of the sensor was stable to approximately 1 C at room temperature or approximately + or - 0.3 percent of point (K). This exceeds the goal of 1 percent of point. Recommendations are presented for further performance improvement.

  6. Platinum thin film resistors as accurate and stable temperature sensors

    NASA Technical Reports Server (NTRS)

    Diehl, W.

    1984-01-01

    The measurement characteristics of thin-Pt-film temperature sensors fabricated using advanced methods are discussed. The limitations of wound-wire Pt temperature sensors and the history of Pt-film development are outlined, and the commonly used film-deposition, structuring, and trimming methods are presented in a table. The development of a family of sputtered film resistors is described in detail and illustrated with photographs of the different types. The most commonly used tolerances are reported as + or - 0.3 C + 0.5 percent of the temperature measured.

  7. Ultrasonic level and temperature sensor for power reactor applications

    SciTech Connect

    Dress, W.B.: Miller, G.N.

    1983-01-01

    An ultrasonic waveguide employing torsional and extensional acoustic waves has been developed for use as a level and temperature sensor in pressurized and boiling water nuclear power reactors. Features of the device include continuous measurement of level, density, and temperature producing a real-time profile of these parameters along a chosen path through the reactor vessel.

  8. Multiwalled carbon nanotube films as small-sized temperature sensors

    NASA Astrophysics Data System (ADS)

    Di Bartolomeo, A.; Sarno, M.; Giubileo, F.; Altavilla, C.; Iemmo, L.; Piano, S.; Bobba, F.; Longobardi, M.; Scarfato, A.; Sannino, D.; Cucolo, A. M.; Ciambelli, P.

    2009-03-01

    We present the fabrication of thick and dense carbon nanotube networks in the form of freestanding films (CNTFs) and the study of their electric resistance as a function of the temperature, from 4 to 420 K. A nonmetallic behavior with a monotonic R(T ) and a temperature coefficient of resistance around -7×10-4 K-1 is generally observed. A behavioral accordance of the CNTF conductance with the temperature measured by a solid-state thermistor (ZnNO, Si, or Pt) is demonstrated, suggesting the possibility of using CNTFs as temperature small-sized (freely scalable) sensors, besides being confirmed by a wide range of sensitivity, fast response, and good stability and durability. Concerning electric behavior, we also underline that a transition from nonmetal to metal slightly below 273 K has been rarely observed. A model involving regions of highly anisotropic metallic conduction separated by tunneling barrier regions can explain the nonmetallic to metallic crossover based on the competing mechanisms of the metallic resistance rise and the barrier resistance lowering.

  9. High Temperature Aquifer Storage

    NASA Astrophysics Data System (ADS)

    Ueckert, Martina; Niessner, Reinhard; Baumann, Thomas

    2015-04-01

    Combined heat and power generation (CHP) is highly efficient because excess heat is used for heating and/or process energy. However, the demand of heat energy varies considerably throughout the year while the demand for electrical energy is rather constant. It seems economically and ecologically highly beneficial for municipalities and large power consumers such as manufacturing plants to store excess heat in groundwater aquifers and to recuperate this energy at times of higher demand. Apart from the hydrogeological conditions, high transmissivity and favorable pressure gradients, the hydrochemical conditions are crucial for long-term operation. Within the project High Temperature Aquifer Storage, scientists investigate storage and recuperation of excess heat energy into the bavarian Malm aquifer. After one year of planning, construction, and the successful drilling of a research well to 495 m b.s.l. the first large scale heat storage test in the Malm aquifer was finished just before Christmas 2014. An enormous technical challenge was the disruption of the carbonate equilibrium - modeling results indicated a carbonate precipitation of 10-50 kg/d in the heat exchangers. The test included five injection pulses of hot water (60 °C up to 110 °C) and four tracer pulses, each consisting of a reactive and a conservative fluorescent dye. Injection and production rates were 15 L/s. About 4 TJ of heat energy were necessary to achieve the desired water temperatures. Electrical conductivity, pH and temperature were recorded at a bypass where also samples were taken. A laboratory container at the drilling site was equipped for the analysis of the concentration of the tracers and the cation concentrations at sampling intervals of down to 15 minutes. Additional water samples were taken and analyzed for major ions and trace elements in the laboratory. The disassembled heat exchanger proved that precipitation was successfully prevented by adding CO2 to the water before heating

  10. Sensor study for high speed autonomous operations

    NASA Astrophysics Data System (ADS)

    Schneider, Anne; La Celle, Zachary; Lacaze, Alberto; Murphy, Karl; Del Giorno, Mark; Close, Ryan

    2015-06-01

    As robotic ground systems advance in capabilities and begin to fulfill new roles in both civilian and military life, the limitation of slow operational speed has become a hindrance to the wide-spread adoption of these systems. For example, military convoys are reluctant to employ autonomous vehicles when these systems slow their movement from 60 miles per hour down to 40. However, these autonomous systems must operate at these lower speeds due to the limitations of the sensors they employ. Robotic Research, with its extensive experience in ground autonomy and associated problems therein, in conjunction with CERDEC/Night Vision and Electronic Sensors Directorate (NVESD), has performed a study to specify system and detection requirements; determined how current autonomy sensors perform in various scenarios; and analyzed how sensors should be employed to increase operational speeds of ground vehicles. The sensors evaluated in this study include the state of the art in LADAR/LIDAR, Radar, Electro-Optical, and Infrared sensors, and have been analyzed at high speeds to study their effectiveness in detecting and accounting for obstacles and other perception challenges. By creating a common set of testing benchmarks, and by testing in a wide range of real-world conditions, Robotic Research has evaluated where sensors can be successfully employed today; where sensors fall short; and which technologies should be examined and developed further. This study is the first step to achieve the overarching goal of doubling ground vehicle speeds on any given terrain.

  11. High Temperature Inspection System

    SciTech Connect

    Robinson, C.W.

    1999-01-26

    The Remote and Specialty Equipment Section (RSES) of the Savannah River Technology Center has developed a High Temperature Inspection System (HTIS) for remotely viewing the interior of the Defense Waste Processing Facility (DWPF) melter pour spout. The DWPF is a vitrification facility at the Savannah River Site where radioactive waste is processed, mixed and melted with glass frit in an electrically heated melter, and poured into canisters for long-term storage. The glass mixture is transferred from the melter to the canisters via the pour spout, a vertical interface between the melter and the canisters. During initial operation of the melter, problems were experienced with wicking of the glass stream to the sides of the pour spout resulting in pluggage of the pour spout. A removable insert was developed to eliminate the wicking problem. Routine cleaning of the pour spout and replacement of the insert requires that the pour spout interior be inspected on a regular basis. The HTIS was developed to perform the inspection. The HTIS provides two video images: one view for aligning the HTIS with the pour spout and the other for inspecting the pour spout wall condition and other surfaces. The HTIS is carried into the melter cell using an overhead crane and is remotely connected to the cell's telerobotic manipulator (TRM). An operator uses the TRM to insert the HTIS into the 2-inch (5.08 cm) diameter pour spout, rotate it 360 degrees, and then remove it. This application created many challenges for the inspection device, especially regarding size and temperature. The HTIS design allows the video cameras to stay below a safe operating temperature during use in the 1100 degrees C environment. Many devices are designed to penetrate a wall and extend into a heated chamber only a few inches, but the HTIS is inserted into the heated chamber 22 inches (55.88 cm). Other devices can handle the insertion length and small diameter, but they are not designed to handle the high

  12. Machine vision guided sensor positioning system for leaf temperature assessment.

    PubMed

    Kim, Y; Ling, P P

    2001-01-01

    A sensor positioning system was developed for monitoring plants' well-being using a non-contact sensor. Image processing algorithms were developed to identify a target region on a plant leaf. A novel algorithm to recover view depth was developed by using a camera equipped with a computer-controlled zoom lens. The methodology has improved depth recovery resolution over a conventional monocular imaging technique. An algorithm was also developed to find a maximum enclosed circle on a leaf surface so the conical field-of-view of an infrared temperature sensor could be filled by the target without peripheral noise. The center of the enclosed circle and the estimated depth were used to define the sensor 3-D location for accurate plant temperature measurement. PMID:12088029

  13. Machine vision guided sensor positioning system for leaf temperature assessment

    NASA Technical Reports Server (NTRS)

    Kim, Y.; Ling, P. P.; Janes, H. W. (Principal Investigator)

    2001-01-01

    A sensor positioning system was developed for monitoring plants' well-being using a non-contact sensor. Image processing algorithms were developed to identify a target region on a plant leaf. A novel algorithm to recover view depth was developed by using a camera equipped with a computer-controlled zoom lens. The methodology has improved depth recovery resolution over a conventional monocular imaging technique. An algorithm was also developed to find a maximum enclosed circle on a leaf surface so the conical field-of-view of an infrared temperature sensor could be filled by the target without peripheral noise. The center of the enclosed circle and the estimated depth were used to define the sensor 3-D location for accurate plant temperature measurement.

  14. High Temperature Aquifer Storage

    NASA Astrophysics Data System (ADS)

    Ueckert, Martina; Niessner, Reinhard; Baumann, Thomas

    2016-04-01

    Combined heat and power generation (CHP) is highly efficient because excess heat is used for heating and/or process energy. However, the demand of heat energy varies considerably throughout the year while the demand for electrical energy is rather constant. It seems economically and ecologically highly beneficial for municipalities and large power consumers such as manufacturing plants to store excess heat in groundwater aquifers and to recuperate this energy at times of higher demand. Within the project High Temperature Aquifer Storage, scientists investigate storage and recuperation of excess heat energy into the bavarian Malm aquifer. Apart from high transmissivity and favorable pressure gradients, the hydrochemical conditions are crucial for long-term operation. An enormous technical challenge is the disruption of the carbonate equilibrium - modeling results indicated a carbonate precipitation of 10 - 50 kg/d in the heat exchangers. The test included five injection pulses of hot water (60 °C up to 110 °C) and four tracer pulses, each consisting of a reactive and a conservative fluorescent dye, into a depth of about 300 m b.s.l. resp. 470 m b.s.l. Injection and production rates were 15 L/s. To achieve the desired water temperatures, about 4 TJ of heat energy were necessary. Electrical conductivity, pH and temperature were recorded at a bypass where also samples were taken. A laboratory container at the drilling site was equipped for analysing the concentration of the dyes and the major cations at sampling intervals of down to 15 minutes. Additional water samples were taken and analysed in the laboratory. The disassembled heat exchanger prooved that precipitation was successfully prevented by adding CO2 to the water before heating. Nevertheless, hydrochemical data proved both, dissolution and precipitation processes in the aquifer. This was also suggested by the hydrochemical modelling with PhreeqC and is traced back to mixture dissolution and changing

  15. Optical Fiber Strain Instrumentation for High Temperature Aerospace Structural Monitoring

    NASA Technical Reports Server (NTRS)

    Wang, A.

    2002-01-01

    The objective of the program is the development and laboratory demonstration of sensors based on silica optical fibers for measurement of high temperature strain for aerospace materials evaluations. A complete fiber strain sensor system based on white-light interferometry was designed and implemented. An experiment set-up was constructed to permit testing of strain measurement up to 850 C. The strain is created by bending an alumina cantilever beam to which is the fiber sensor is attached. The strain calibration is provided by the application of known beam deflections. To ensure the high temperature operation capability of the sensor, gold-coated single-mode fiber is used. Moreover, a new method of sensor surface attachment which permits accurate sensor gage length determination is also developed. Excellent results were obtained at temperatures up to 800-850 C.

  16. Development of a Temperature Sensor for Jet Engine and Space Mission Applications

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammoud, Ahmad; Elbuluk, Malik; Culley, Dennis

    2008-01-01

    Electronics for Distributed Turbine Engine Control and Space Exploration Missions are expected to encounter extreme temperatures and wide thermal swings. In particular, circuits deployed in a jet engine compartment are likely to be exposed to temperatures well exceeding 150 C. To meet this requirement, efforts exist at the NASA Glenn Research Center (GRC), in support of the Fundamental Aeronautics Program/Subsonic Fixed Wing Project, to develop temperature sensors geared for use in high temperature environments. The sensor and associated circuitry need to be located in the engine compartment under distributed control architecture to simplify system design, improve reliability, and ease signal multiplexing. Several circuits were designed using commercial-off-the-shelf as well as newly-developed components to perform temperature sensing at high temperatures. The temperature-sensing circuits will be described along with the results pertaining to their performance under extreme temperature.

  17. High temperature interfacial superconductivity

    SciTech Connect

    Bozovic, Ivan; Logvenov, Gennady; Gozar, Adrian Mihai

    2012-06-19

    High-temperature superconductivity confined to nanometer-scale interfaces has been a long standing goal because of potential applications in electronic devices. The spontaneous formation of a superconducting interface in bilayers consisting of an insulator (La.sub.2CuO.sub.4) and a metal (La.sub.1-xSr.sub.xCuO.sub.4), neither of which is superconducting per se, is described. Depending upon the layering sequence of the bilayers, T.sub.c may be either .about.15 K or .about.30 K. This highly robust phenomenon is confined to within 2-3 nm around the interface. After exposing the bilayer to ozone, T.sub.c exceeds 50 K and this enhanced superconductivity is also shown to originate from a 1 to 2 unit cell thick interfacial layer. The results demonstrate that engineering artificial heterostructures provides a novel, unconventional way to fabricate stable, quasi two-dimensional high T.sub.c phases and to significantly enhance superconducting properties in other superconductors. The superconducting interface may be implemented, for example, in SIS tunnel junctions or a SuFET.

  18. High-temperature resins

    NASA Technical Reports Server (NTRS)

    Serafini, T. T.

    1982-01-01

    The basic chemistry, cure processes, properties, and applications of high temperature resins known as polyimides are surveyed. Condensation aromatic polymides are prepared by reacting aromatic diamines with aromatic dianhydrides, aromatic tetracarboxylic acids, or with dialkyl esters of aromatic tetracarboxylic acids, depending on the intended end use. The first is for coatings or films while the latter two are more suitable for polyimide matrix resins. Prepreg solutions are made by dissolving reactants in an aprotic solvent, and advances in the addition of a diamine on the double bond and radical polymerization of the double bond are noted to have yielded a final cure product with void-free characteristics. Attention is given to properties of the Skybond, Pyralin, and NR-150B polyimide prepreg materials and characteristics of aging in the NP-150 polyimides. Finally, features of the NASA-developed PMR polyimides are reviewed.

  19. High Temperature Hybrid Elastomers

    NASA Astrophysics Data System (ADS)

    Drake, Kerry Anthony

    Conventional high temperature elastomers are produced by chain polymerization of olefinic or fluorinated olefinic monomers. Ultimate thermal stabilities are limited by backbone bond strengths, lower thermal stability of cross-link sites relative to backbone bonds, and depolymerization or "unzipping" at high temperatures. In order to develop elastomers with enhanced thermal stability, hybrid thermally cross-linkable polymers that consisted only of organic-inorganic and aromatic bonds were synthesized and evaluated. The addition of phenylethynyl or phenylacetylinic functional groups to these polymers resulted in conversion of the polymers into high temperature elastomers when cross-linked by thermal curing. Polyphenyoxydiphenylsilanes were synthesized via several different condensation reactions. Results of these synthetic reactions, which utilized both hydroquinone and biphenol as monomers, were systematically evaluated to determine the optimal synthetic conditions for subsequent endcapping reactions. It was determined that dichlorodiphenylsilane condensations with biphenol in toluene or THF were best suited for this work. Use of excess dichlorodiphenylsilane yielded polymers of appropriate molecular weights with terminal reactive chlorosilane groups that could be utilized for coupling with phenylethynyl reagents in a subsequent reaction. Two new synthetic routes were developed to endcap biphenoxysilanes with ethynyl containing substituents, to yield polymers with cross-linkable end groups. Endcapping by lithiumphenylacetylide and 4[(4-fluorophenylethynyl))phenol yielded two new polymers that could be thermally cross-linked on heating above 300 °C. Successful endcapping was verified chemically by 13C NMR, FTIR and Raman analysis. Exothermic peaks consistent with ethynyl curing reactions were observed in endcapped polymers by DSC. A new diacetylinic polymer was prepared through reaction of 4,4'-buta-1,3-diyne-1,4-diyldiphenol and dichlorodiphenylsilane. This

  20. Linearization strategies for high sensitivity magnetoresistive sensors

    NASA Astrophysics Data System (ADS)

    Silva, Ana V.; Leitao, Diana C.; Valadeiro, João; Amaral, José; Freitas, Paulo P.; Cardoso, Susana

    2015-10-01

    Ultrasensitive magnetic field sensors envisaged for applications on biomedical imaging require the detection of low-intensity and low-frequency signals. Therefore linear magnetic sensors with enhanced sensitivity low noise levels and improved field detection at low operating frequencies are necessary. Suitable devices can be designed using magnetoresistive sensors, with room temperature operation, adjustable detected field range, CMOS compatibility and cost-effective production. The advent of spintronics set the path to the technological revolution boosted by the storage industry, in particular by the development of read heads using magnetoresistive devices. New multilayered structures were engineered to yield devices with linear output. We present a detailed study of the key factors influencing MR sensor performance (materials, geometries and layout strategies) with focus on different linearization strategies available. Furthermore strategies to improve sensor detection levels are also addressed with best reported values of ˜40 pT/√Hz at 30 Hz, representing a step forward the low field detection at room temperature.

  1. ELEVATED TEMPERATURE SENSORS FOR ON-LINE CRITICAL EQUIPMENT HEALTH MONITORING

    SciTech Connect

    James Sebastian

    2005-03-01

    The objective of this research program is to improve high temperature piezoelectric aluminum nitride (AlN) sensor technology to make it useful for instrumentation and health monitoring of current and future electrical power generation equipment. The program will extend the temperature range of the sensor from approximately 700 C to above 1000 C, and ultrasonic coupling to objects at these temperatures will be investigated and tailored for use with the sensor. The chemical vapor deposition (CVD) AlN deposition process was successfully transferred from film production on tungsten carbide substrates to titanium alloy and silicon carbide (SiC) substrates in the first year of the program, and additional substrates were evaluated. In the second year of the program, additional substrate research was performed with the goal of improving the performance of using SiC substrates. While greatly improved bandwidth was achieved, sensor survival at elevated temperature remains problematic. The elevated temperature coupling work continued with significant experimentation. Molten glasses were found to work within a limited temperature range, but metal foils applied with heat and pressure were found to have superior performance overall. The final year of the program will be dedicated to making further advances in AlN/ substrate behavior, and the design and implementation of a sensor demonstration experiment at very high temperature in a simulated industrial application.

  2. A Temperature Sensor using a Silicon-on-Insulator (SOI) Timer for Very Wide Temperature Measurement

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammoud, Ahmad; Elbuluk, Malik; Culley, Dennis E.

    2008-01-01

    A temperature sensor based on a commercial-off-the-shelf (COTS) Silicon-on-Insulator (SOI) Timer was designed for extreme temperature applications. The sensor can operate under a wide temperature range from hot jet engine compartments to cryogenic space exploration missions. For example, in Jet Engine Distributed Control Architecture, the sensor must be able to operate at temperatures exceeding 150 C. For space missions, extremely low cryogenic temperatures need to be measured. The output of the sensor, which consisted of a stream of digitized pulses whose period was proportional to the sensed temperature, can be interfaced with a controller or a computer. The data acquisition system would then give a direct readout of the temperature through the use of a look-up table, a built-in algorithm, or a mathematical model. Because of the wide range of temperature measurement and because the sensor is made of carefully selected COTS parts, this work is directly applicable to the NASA Fundamental Aeronautics/Subsonic Fixed Wing Program--Jet Engine Distributed Engine Control Task and to the NASA Electronic Parts and Packaging (NEPP) Program. In the past, a temperature sensor was designed and built using an SOI operational amplifier, and a report was issued. This work used an SOI 555 timer as its core and is completely new work.

  3. Development of a 2-Channel Embedded Infrared Fiber-Optic Temperature Sensor Using Silver Halide Optical Fibers

    PubMed Central

    Yoo, Wook Jae; Jang, Kyoung Won; Seo, Jeong Ki; Moon, Jinsoo; Han, Ki-Tek; Park, Jang-Yeon; Park, Byung Gi; Lee, Bongsoo

    2011-01-01

    A 2-channel embedded infrared fiber-optic temperature sensor was fabricated using two identical silver halide optical fibers for accurate thermometry without complicated calibration processes. In this study, we measured the output voltages of signal and reference probes according to temperature variation over a temperature range from 25 to 225 °C. To decide the temperature of the water, the difference between the amounts of infrared radiation emitted from the two temperature sensing probes was measured. The response time and the reproducibility of the fiber-optic temperature sensor were also obtained. Thermometry with the proposed sensor is immune to changes if parameters such as offset voltage, ambient temperature, and emissivity of any warm object. In particular, the temperature sensing probe with silver halide optical fibers can withstand a high temperature/pressure and water-chemistry environment. It is expected that the proposed sensor can be further developed to accurately monitor temperature in harsh environments. PMID:22163711

  4. A CMOS Smart Temperature and Humidity Sensor with Combined Readout

    PubMed Central

    Eder, Clemens; Valente, Virgilio; Donaldson, Nick; Demosthenous, Andreas

    2014-01-01

    A fully-integrated complementary metal-oxide semiconductor (CMOS) sensor for combined temperature and humidity measurements is presented. The main purpose of the device is to monitor the hermeticity of micro-packages for implanted integrated circuits and to ensure their safe operation by monitoring the operating temperature and humidity on-chip. The smart sensor has two modes of operation, in which either the temperature or humidity is converted into a digital code representing a frequency ratio between two oscillators. This ratio is determined by the ratios of the timing capacitances and bias currents in both oscillators. The reference oscillator is biased by a current whose temperature dependency is complementary to the proportional to absolute temperature (PTAT) current. For the temperature measurement, this results in an exceptional normalized sensitivity of about 0.77%/°C at the accepted expense of reduced linearity. The humidity sensor is a capacitor, whose value varies linearly with relative humidity (RH) with a normalized sensitivity of 0.055%/% RH. For comparison, two versions of the humidity sensor with an area of either 0.2 mm2 or 1.2 mm2 were fabricated in a commercial 0.18 μm CMOS process. The on-chip readout electronics operate from a 5 V power supply and consume a current of approximately 85 μA. PMID:25230305

  5. A CMOS smart temperature and humidity sensor with combined readout.

    PubMed

    Eder, Clemens; Valente, Virgilio; Donaldson, Nick; Demosthenous, Andreas

    2014-01-01

    A fully-integrated complementary metal-oxide semiconductor (CMOS) sensor for combined temperature and humidity measurements is presented. The main purpose of the device is to monitor the hermeticity of micro-packages for implanted integrated circuits and to ensure their safe operation by monitoring the operating temperature and humidity on-chip. The smart sensor has two modes of operation, in which either the temperature or humidity is converted into a digital code representing a frequency ratio between two oscillators. This ratio is determined by the ratios of the timing capacitances and bias currents in both oscillators. The reference oscillator is biased by a current whose temperature dependency is complementary to the proportional to absolute temperature (PTAT) current. For the temperature measurement, this results in an exceptional normalized sensitivity of about 0.77%/°C at the accepted expense of reduced linearity. The humidity sensor is a capacitor, whose value varies linearly with relative humidity (RH) with a normalized sensitivity of 0.055%/% RH. For comparison, two versions of the humidity sensor with an area of either 0.2 mm2 or 1.2 mm2 were fabricated in a commercial 0.18 μm CMOS process. The on-chip readout electronics operate from a 5 V power supply and consume a current of approximately 85 µA. PMID:25230305

  6. Fiber Bragg grating sensors for use in pavement structural strain-temperature monitoring

    NASA Astrophysics Data System (ADS)

    Wang, Jian-Neng; Tang, Jaw-Luen; Chang, Hsiang-Ping

    2006-03-01

    In this paper, we describe the development and realization of a newly high-resolution temperature and strain sensor with fiber Bragg grating (FBG) technology. The FBG sensor consists of a reference fiber grating and a grating pair scheme that could offer the potential of simultaneous measurement of strain and temperature for monitoring pavement structures. Experimental results showed that measurement errors of 6 μɛ and 0.13 °C for strain and temperature could be achieved, respectively. The reliability and long-term stability for temperature measurement with this type of sensor were examined by mounting sensors on the surface of asphalt and concrete specimens. Small root mean square temperature variations (better than 1 °C) and excellent long-term stability (within 2%) were obtained. The maximum variations in temperature for 48 hours were only 1.94% and 2.32% for asphalt and concrete specimens, respectively. The feasibility of strain measurement for pavement structures was conducted by mounting the packaged sensor on the surface of an asphalt specimen under the indirect tensile loading condition. The measured strains from the packaged FBG sensor agreed linearly with applied loads. A finite-element model (FEM) was conducted to verify the strains obtained from the sensors. In comparison with experimental data and numerical results, the numerical values were all located within FBG measurement error ranges. The strain differences between measurements from the FBG sensor and FEM predictions were between 5% and 7%. This type of simple and low-cost FBG sensor is expected to benefit the developments and applications of pavement structures or transportation infrastructure.

  7. An integrated temperature-compensated flexible shear-stress sensor microarray with concentrated leading-wire.

    PubMed

    Tang, Jian; Liu, Wu; Zhang, Weiping; Sun, Yongming; Chen, Honghai

    2016-02-01

    Flexible shear stress sensor is quite important for characterizing curved surface flows. In this work, a novel integrated shear stress sensor microarray is designed with twenty parallel channels, which share the concentrated leading-wire to transmit the ground signal. Electrical pads in rows are easily connected to the circuits with two separate Wheatstone bridges and constant-temperature-difference mode operation is provided for the hot-wires. Temperature crosstalk between adjacent hot-wires is prevented well and the effectiveness of the temperature compensated circuits is verified. Relatively large output response is obtained as the shear stress varies and the sensitivity of the sensors is measured about 0.086 V(2)/Pa(1/3) with nonlinearity lower than 1%, revealing high performance characteristic of the sensors. PMID:26931882

  8. An integrated temperature-compensated flexible shear-stress sensor microarray with concentrated leading-wire

    NASA Astrophysics Data System (ADS)

    Tang, Jian; Liu, Wu; Zhang, Weiping; Sun, Yongming; Chen, Honghai

    2016-02-01

    Flexible shear stress sensor is quite important for characterizing curved surface flows. In this work, a novel integrated shear stress sensor microarray is designed with twenty parallel channels, which share the concentrated leading-wire to transmit the ground signal. Electrical pads in rows are easily connected to the circuits with two separate Wheatstone bridges and constant-temperature-difference mode operation is provided for the hot-wires. Temperature crosstalk between adjacent hot-wires is prevented well and the effectiveness of the temperature compensated circuits is verified. Relatively large output response is obtained as the shear stress varies and the sensitivity of the sensors is measured about 0.086 V2/Pa1/3 with nonlinearity lower than 1%, revealing high performance characteristic of the sensors.

  9. Temperature Effects on the Wind Direction Measurement of 2D Solid Thermal Wind Sensors

    PubMed Central

    Chen, Bei; Zhu, Yan-Qing; Yi, Zhenxiang; Qin, Ming; Huang, Qing-An

    2015-01-01

    For a two-dimensional solid silicon thermal wind sensor with symmetrical structure, the wind speed and direction information can be derived from the output voltages in two orthogonal directions, i.e., the north-south and east-west. However, the output voltages in these two directions will vary linearly with the ambient temperature. Therefore, in this paper, a temperature model to study the temperature effect on the wind direction measurement has been developed. A theoretical analysis has been presented first, and then Finite Element Method (FEM) simulations have been performed. It is found that due to symmetrical structure of the thermal wind sensor, the temperature effects on the output signals in the north-south and east-west directions are highly similar. As a result, the wind direction measurement of the thermal wind sensor is approximately independent of the ambient temperature. The experimental results fit the theoretical analysis and simulation results very well. PMID:26633398

  10. Effect of YSZ sintering temperature on mixed potential sensor performance

    SciTech Connect

    Sekhar, Praveen K; Brosha, Eric L; Rangachary, Mukundan; Garzon, Fernando H; Nelson, Mark A; Toracco, Dennis

    2009-01-01

    In this article, the influence of Yttria-Stabilized Zirconia (YSZ) sintering temperature on a Pt/YSZ/La{sub 0.8}Sr{sub 0.2}CrO{sub 3} mixed potential sensor performance is reported. The sintering temperature of YSZ was varied from 1000 to 1200 C. Mercury porosity measurements were performed to estimate the porosity and tortuosity of the YSZ sample as a function of sintering temperature. Further, the surface area of YSZ was computed by the BET method. After YSZ characterization, the unbiased and biased sensor response was recorded. The 1000 C sintered YSZ sample was taken as the reference for comparison purposes. Experimental results indicated a 30% reduction in porosity for the 1200 C sintered YSZ sample, accounting for a 14-fold increase in the sensor response rise time. In addition, for the same sample, a 13-fold increase in sensitivity was observed upon exposure to propylene (100 ppm), associated with a 76% reduction in surface area. The slow response time of the sensor with YSZ sintered at higher temperatures has been attributed to higher tortuosity (delay in gas permeation to the three phase interface). Whereas, reduced heterogeneous catalysis induced by lower surface area accounts for the rise in sensitivity levels. The optimum YSZ sintering temperature was found to lie between 1100 and 1150 C.

  11. Joining of ceramics for high temperature applications

    NASA Technical Reports Server (NTRS)

    Vilpas, Martti

    1987-01-01

    Summarized is a literature survey of the methods for joining ceramics to ceramics or ceramics to metals for high temperature applications. Also mechanical properties and potential applications of the joints are considered. The joining of ceramics is usually carried out by brazing or diffusion bonding. Especially the latter has been found useful, increasing the application of bonded ceramics. The possibility of using electron beam and laser beam welding for joining ceramics has also recently been investigated. The bonding of ceramics has found numerous applications typical for high operating temperatures, i.e., sensors and thermocouples.

  12. High Temperature Superconducting Materials Database

    National Institute of Standards and Technology Data Gateway

    SRD 149 NIST High Temperature Superconducting Materials Database (Web, free access)   The NIST High Temperature Superconducting Materials Database (WebHTS) provides evaluated thermal, mechanical, and superconducting property data for oxides and other nonconventional superconductors.

  13. Plasmonic nanocomposite thin film enabled fiber optic sensors for simultaneous gas and temperature sensing at extreme temperatures

    NASA Astrophysics Data System (ADS)

    Ohodnicki, Paul R.; Buric, Michael P.; Brown, Thomas D.; Matranga, Christopher; Wang, Congjun; Baltrus, John; Andio, Mark

    2013-09-01

    Embedded sensors capable of operation in extreme environments including high temperatures, high pressures, and highly reducing, oxidizing and/or corrosive environments can make a significant impact on enhanced efficiencies and reduced greenhouse gas emissions of current and future fossil-based power generation systems. Relevant technologies can also be leveraged in a wide range of other applications with similar needs including nuclear power generation, industrial process monitoring and control, and aviation/aerospace. Here we describe a novel approach to embedded sensing under extreme temperature conditions by integration of Au-nanoparticle based plasmonic nanocomposite thin films with optical fibers in an evanescent wave absorption spectroscopy configuration. Such sensors can potentially enable simultaneous temperature and gas sensing at temperatures approaching 900-1000 °C in a manner compatible with embedded and distributed sensing approaches. The approach is demonstrated using the Au/SiO2 system deposited on silica-based optical fibers. Stability of optical fibers under relevant high temperature conditions and interactions with changing ambient gas atmospheres is an area requiring additional investigation and development but the simplicity of the sensor design makes it potentially cost-effective and may offer a potential for widespread deployment.Embedded sensors capable of operation in extreme environments including high temperatures, high pressures, and highly reducing, oxidizing and/or corrosive environments can make a significant impact on enhanced efficiencies and reduced greenhouse gas emissions of current and future fossil-based power generation systems. Relevant technologies can also be leveraged in a wide range of other applications with similar needs including nuclear power generation, industrial process monitoring and control, and aviation/aerospace. Here we describe a novel approach to embedded sensing under extreme temperature conditions by

  14. Numerical analysis of flow about a total temperature sensor

    NASA Technical Reports Server (NTRS)

    Von Lavante, Ernst; Bruns, Russell L., Jr.; Sanetrik, Mark D.; Lam, Tim

    1989-01-01

    The unsteady flowfield about an airfoil-shaped inlet temperature sensor has been investigated using the thin-layer and full Navier-Stokes equations. A finite-volume formulation of the governing equations was used in conjunction with a Runge-Kutta time stepping scheme to analyze the flow about the sensor. Flow characteristics for this configuration were established at Mach numbers of 0.5 and 0.8 for different Reynolds numbers. The results were obtained for configurations of increasing complexity; important physical phenomena such as shock formation, boundary-layer separation, and unsteady wake formation were noted. Based on the computational results, recommendations for further study and refinement of the inlet temperature sensor were made.

  15. A FBG-based, temperature-insensitive vibration sensor

    NASA Astrophysics Data System (ADS)

    Zhou, Wenjun; Dong, Xinyong; Li, Lan; Ni, Kai; Jin, Yongxing

    2009-08-01

    In this paper, a novel temperature-insensitive vibration sensor based on a FBG is demonstrated. The FBG is glued in a slanted direction onto the lateral side of a right-angled triangle cantilever beam with an eccentric gear installed on its free end. Vertical vibration applied by the eccentric gear to the cantilever beam leads to a uniform bending along the beam length. As a result, the FBG is chirped and its reflection bandwidth and power change periodically with the variation of the displacement of the free end. The experimental results were compared with the data of vibration measurement of a conventional electrical strain sensor. Furthermore, this sensor is temperature insensitive, owning to the temperatureindependence nature of reflection bandwidth and power of the FBG.

  16. High-temperature ceramic superconductors

    NASA Astrophysics Data System (ADS)

    Mazdiyasni, K. S.

    1990-11-01

    The principal goals of this program are (1) to demonstrate fabrication of high-temperature ceramic superconductors via sol-gel method that can operate at or above 90 K with appropriate current density, J(sub c), in forms useful for application in resonant cavities, magnets, motors, sensors, computers, and other devices; and (2) to fabricate and demonstrate selected components made of these materials, including microwave cavities and magnetic shields. Chemical pathways for synthesis of 123 identified, process parameters window for sol-gel derived 123 fibers established, continuous flexible fibers 15 to 200 microns in diameter producted, fibers with T(sub c) is approximate or equal to 92.5 K, Delta T = 1.5 K, J(sub c) = 2000 A/sqcm at 77 K, 0 field; 4000 at 57K, 100 Oe was produced, formed adherent 123 oriented films on metals and ceramic substrates, achieved film T(sub c) is approximate or equal to 92 K, Delta T = 4 k, J(sub c) = 400 A/sq cm at 40 K, O field.

  17. Metallic glass as a temperature sensor during ion plating

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Spalvins, T.; Buckley, D. H.

    1985-01-01

    The temperature of the interface and/or a superficial layer of a substrate during ion plating was investigated using a metallic glass of the composition Fe67Co18B14Si1 as the substrate and as the temperature sensor. Transmission electron microscopy and diffraction studies determined the microstructure of the ion-plated gold film and the substrate. Results indicate that crystallization occurs not only in the film, but also in the substrate. The grain size of crystals formed during ion plating was 6 to 60 nm in the gold film and 8 to 100 nm in the substrate at a depth of 10 to 15 micrometers from the ion-plated interface. The temperature rise of the substrate during ion plating was approximately 500 C. Discontinuous changes in metallurgical microstructure, and physical, chemical, and mechanical properties during the amorphous to crystalline transition in metallic glasses make metallic glasses extremely useful materials for temperature sensor applications in coating processes.

  18. Metallic glass as a temperature sensor during ion plating

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Spalvins, T.; Buckley, D. H.

    1984-01-01

    The temperature of the interface and/or a superficial layer of a substrate during ion plating was investigated using a metallic glass of the composition Fe67Co18B14Si1 as the substrate and as the temperature sensor. Transmission electron microscopy and diffraction studies determined the microstructure of the ion-plated gold film and the substrate. Results indicate that crystallization occurs not only in the film, but also in the substrate. The grain size of crystals formed during ion plating was 6 to 60 nm in the gold film and 8 to 100 nm in the substrate at a depth of 10 to 15 micrometers from the ion-plated interface. The temperature rise of the substrate during ion plating was approximately 500 C. Discontinuous changes in metallurgical microstructure, and physical, chemical, and mechanical properties during the amorphous to crystalline transition in metallic glasses make metallic glasses extremely useful materials for temperature sensor applications in coating processes.

  19. Computational design of an optic fiber temperature sensor

    NASA Astrophysics Data System (ADS)

    Campo Caicedo, Damián Andrés

    2012-06-01

    I will present a computational method for the analysis and design of a temperature sensor based on optical fiber. I will combine symbolic and numerical computations using the following software: Maple, for symbolic computation; Ansys: and Quick-Field for the numerical-graph computation of temperature profiles; Opticfiber for the numerical-graph computation of the electromagnetic modes in the fiber optics. The design strategy is to convert the patterns of temperature in changes of the refractive index of the fiber and the detection of changes in the electro-optical normal modes in the fiber. The proposed method has many advantages for the design of optical fiber sensors nowadays, for temperature measurements as well for other physical variables. We will use many special functions of Mathematical Physics such as the error function, Bessel functions, Kummer functions, Heun functiions, Whittaker functions and Laguerre functions. We will use Maple to make very complex computations with such functions.

  20. Metal-Coated Optical Fibers for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Zeakes, Jason; Murphy, Kent; Claus, Richard; Greene, Jonathan; Tran, Tuan

    1996-01-01

    This poster will highlight on-going research at the Virginia Tech Fiber & Electro-Optics Research Center (FEORC) in the area of thin films on optical fibers. Topics will include the sputter deposition of metals and metal; alloys onto optical fiber and fiber optic sensors for innovative applications. Specific information will be available on thin film fiber optic hydrogen sensors, corrosion sensors, and metal-coated optical fiber for high temperature aerospace applications.