Science.gov

Sample records for high temperature superconductive

  1. High-Temperature Superconductivity

    NASA Astrophysics Data System (ADS)

    Tanaka, Shoji

    2006-12-01

    A general review on high-temperature superconductivity was made. After prehistoric view and the process of discovery were stated, the special features of high-temperature superconductors were explained from the materials side and the physical properties side. The present status on applications of high-temperature superconductors were explained on superconducting tapes, electric power cables, magnets for maglev trains, electric motors, superconducting quantum interference device (SQUID) and single flux quantum (SFQ) devices and circuits.

  2. High Temperature Superconducting Materials Database

    National Institute of Standards and Technology Data Gateway

    SRD 149 NIST High Temperature Superconducting Materials Database (Web, free access)   The NIST High Temperature Superconducting Materials Database (WebHTS) provides evaluated thermal, mechanical, and superconducting property data for oxides and other nonconventional superconductors.

  3. High temperature interfacial superconductivity

    SciTech Connect

    Bozovic, Ivan; Logvenov, Gennady; Gozar, Adrian Mihai

    2012-06-19

    High-temperature superconductivity confined to nanometer-scale interfaces has been a long standing goal because of potential applications in electronic devices. The spontaneous formation of a superconducting interface in bilayers consisting of an insulator (La.sub.2CuO.sub.4) and a metal (La.sub.1-xSr.sub.xCuO.sub.4), neither of which is superconducting per se, is described. Depending upon the layering sequence of the bilayers, T.sub.c may be either .about.15 K or .about.30 K. This highly robust phenomenon is confined to within 2-3 nm around the interface. After exposing the bilayer to ozone, T.sub.c exceeds 50 K and this enhanced superconductivity is also shown to originate from a 1 to 2 unit cell thick interfacial layer. The results demonstrate that engineering artificial heterostructures provides a novel, unconventional way to fabricate stable, quasi two-dimensional high T.sub.c phases and to significantly enhance superconducting properties in other superconductors. The superconducting interface may be implemented, for example, in SIS tunnel junctions or a SuFET.

  4. High-temperature superconductivity

    NASA Astrophysics Data System (ADS)

    Chin, Ken C.

    1990-01-01

    The current status of high-temperature superconductivity (HTSC) and near-term prospects are briefly reviewed with particular reference to Lockheed's experience. Emphasis is placed on an integrated approach to systems applications of HTSC thin films, which hold the greatest near-term promise. These new materials are applied in the production of smaller, more sensitive, and more efficient electronic components to meet the ever-increasing demands for higher-performance signal acquisition and processing systems, communications systems, and computers.

  5. High temperature interface superconductivity

    DOE PAGESBeta

    Gozar, A.; Bozovic, I.

    2016-01-20

    High-Tc superconductivity at interfaces has a history of more than a couple of decades. In this review we focus our attention on copper-oxide based heterostructures and multi-layers. We first discuss the technique, atomic layer-by-layer molecular beam epitaxy (ALL-MBE) engineering, that enabled High-Tc Interface Superconductivity (HT-IS), and the challenges associated with the realization of high quality interfaces. Then we turn our attention to the experiments which shed light on the structure and properties of interfacial layers, allowing comparison to those of single-phase films and bulk crystals. Both ‘passive’ hetero-structures as well as surface-induced effects by external gating are discussed. Here, wemore » conclude by comparing HT-IS in cuprates and in other classes of materials, especially Fe-based superconductors, and by examining the grand challenges currently laying ahead for the field.« less

  6. High temperature interface superconductivity

    NASA Astrophysics Data System (ADS)

    Gozar, A.; Bozovic, I.

    2016-02-01

    High-Tc superconductivity at interfaces has a history of more than a couple of decades. In this review we focus our attention on copper-oxide based heterostructures and multi-layers. We first discuss the technique, atomic layer-by-layer molecular beam epitaxy (ALL-MBE) engineering, that enabled High-Tc Interface Superconductivity (HT-IS), and the challenges associated with the realization of high quality interfaces. Then we turn our attention to the experiments which shed light on the structure and properties of interfacial layers, allowing comparison to those of single-phase films and bulk crystals. Both 'passive' hetero-structures as well as surface-induced effects by external gating are discussed. We conclude by comparing HT-IS in cuprates and in other classes of materials, especially Fe-based superconductors, and by examining the grand challenges currently laying ahead for the field.

  7. High-Temperature Superconductivity

    SciTech Connect

    Peter Johnson

    2008-11-05

    Like astronomers tweaking images to gain a more detailed glimpse of distant stars, physicists at Brookhaven National Laboratory have found ways to sharpen images of the energy spectra in high-temperature superconductors — materials that carry electrical c

  8. High-Temperature Superconductivity

    ScienceCinema

    Peter Johnson

    2010-01-08

    Like astronomers tweaking images to gain a more detailed glimpse of distant stars, physicists at Brookhaven National Laboratory have found ways to sharpen images of the energy spectra in high-temperature superconductors ? materials that carry electrical c

  9. High-temperature superconductivity in perspective

    NASA Astrophysics Data System (ADS)

    1990-04-01

    The technology of superconductivity and its potential applications are discussed; it is warned that U.S companies are investing less than their main foreign competitors in both low- and high-temperature superconductivity R and D. This is by far the most critical issue affecting the future U.S. competitive position in superconductivity, and in many other emerging technologies. The major areas covered include: Executive summary; High-temperature superconductivity - A progress report; Applications of superconductivity; The U.S. response to high-temperature superconductivity; High-temperature superconductivity programs in other countries; Comparison of industrial superconductivity R and D efforts in the United States and Japan - An OTA survey; Policy issues and options.

  10. High Temperature Superconducting Underground Cable

    SciTech Connect

    Farrell, Roger, A.

    2010-02-28

    The purpose of this Project was to design, build, install and demonstrate the technical feasibility of an underground high temperature superconducting (HTS) power cable installed between two utility substations. In the first phase two HTS cables, 320 m and 30 m in length, were constructed using 1st generation BSCCO wire. The two 34.5 kV, 800 Arms, 48 MVA sections were connected together using a superconducting joint in an underground vault. In the second phase the 30 m BSCCO cable was replaced by one constructed with 2nd generation YBCO wire. 2nd generation wire is needed for commercialization because of inherent cost and performance benefits. Primary objectives of the Project were to build and operate an HTS cable system which demonstrates significant progress towards commercial progress and addresses real world utility concerns such as installation, maintenance, reliability and compatibility with the existing grid. Four key technical areas addressed were the HTS cable and terminations (where the cable connects to the grid), cryogenic refrigeration system, underground cable-to-cable joint (needed for replacement of cable sections) and cost-effective 2nd generation HTS wire. This was the world’s first installation and operation of an HTS cable underground, between two utility substations as well as the first to demonstrate a cable-to-cable joint, remote monitoring system and 2nd generation HTS.

  11. Dimensionality of high temperature superconductivity in oxides

    NASA Technical Reports Server (NTRS)

    Chu, C. W.

    1989-01-01

    Many models have been proposed to account for the high temperature superconductivity observed in oxide systems. Almost all of these models proposed are based on the uncoupled low dimensional carrier Cu-O layers of the oxides. Results of several experiments are presented and discussed. They suggest that the high temperature superconductivity observed cannot be strictly two- or one-dimensional, and that the environment between the Cu-O layers and the interlayer coupling play an important role in the occurrence of such high temperature superconductivity. A comment on the very short coherence length reported is also made.

  12. High-temperature superconductivity: A conventional conundrum

    DOE PAGESBeta

    Božović, Ivan

    2016-01-07

    High-temperature superconductivity in ultrathin films of iron selenide deposited on strontium titanate has been attributed to various exotic mechanisms, and new experiments indicate that it may be conventional, with broader implications.

  13. High-temperature superconducting vector switch

    SciTech Connect

    Chelluri, B.; Barber, J.; Clements, N.; Johnson, D. ); Spyker, R.; Sarkar, A.K.; Kozlowoski, G. )

    1991-04-15

    The feasibility of a high-temperature superconducting switch based on the principle of the superconducting vector switch (SVS) is discussed. This switch exploits the anisotropy in electrical conductivities of the high-temperature superconductors. Underlying the SVS mechanism is the ability to turn on/off large superconducting currents confined to the CuO{sub 2} planes that characterize these materials using lower currents flowing normal to the planes. The required conditions to optimize the switch and increase the gain are presented.

  14. High temperature superconducting fault current limiter

    DOEpatents

    Hull, J.R.

    1997-02-04

    A fault current limiter for an electrical circuit is disclosed. The fault current limiter includes a high temperature superconductor in the electrical circuit. The high temperature superconductor is cooled below its critical temperature to maintain the superconducting electrical properties during operation as the fault current limiter. 15 figs.

  15. High temperature superconducting fault current limiter

    DOEpatents

    Hull, John R.

    1997-01-01

    A fault current limiter (10) for an electrical circuit (14). The fault current limiter (10) includes a high temperature superconductor (12) in the electrical circuit (14). The high temperature superconductor (12) is cooled below its critical temperature to maintain the superconducting electrical properties during operation as the fault current limiter (10).

  16. The high temperature superconductivity space experiment

    NASA Technical Reports Server (NTRS)

    Webb, Denis C.; Nisenoff, M.

    1991-01-01

    The history and the current status of the high temperature superconductivity space experiment (HTSSE) initiated in 1988 are briefly reviewed. The goal of the HTSSE program is to demonstrate the feasibility of incorporating high temperature superconductivity (HTS) technology into space systems. The anticipated payoffs include the development of high temperature superconductor devices for space systems; preparation and space qualification of a cryogenically cooled experimental package containing HTS devices and components; and acquisition of data for future space experiments using more complex HTS devices and subsystems. The principal HTSSE systems and devices are described.

  17. A high temperature superconductivity communications flight experiment

    NASA Technical Reports Server (NTRS)

    Ngo, P.; Krishen, K.; Arndt, D.; Raffoul, G.; Karasack, V.; Bhasin, K.; Leonard, R.

    1992-01-01

    The proposed high temperature superconductivity (HTSC) millimeter-wave communications flight experiment from the payload bay of the Space Shuttle Orbiter to the Advanced Communications Technology Satellite (ACTS) in geosynchronous orbit is described. The experiment will use a Ka-band HTSC phased array antenna and front-end electronics to receive a downlink communications signal from the ACTS. The discussion covers the system configuration, a description of the ground equipment, the spacecraft receiver, link performance, thermal loading, and the superconducting antenna array.

  18. Space applications of high temperature superconductivity technology

    NASA Technical Reports Server (NTRS)

    Connolly, D. J.; Aron, P. R.; Leonard, R. F.; Wintucky, E. G.

    1991-01-01

    A review is presented of the present status of high temperature superconductivity (HTS) technology and related areas of potential space application. Attention is given to areas of application that include microwave communications, cryogenic systems, remote sensing, and space propulsion and power. Consideration is given to HTS phase shifters, miniaturization of microwave filters, far-IR bolometers, and magnetic refrigeration using flux compression.

  19. Magnetic suspension using high temperature superconducting cores

    NASA Technical Reports Server (NTRS)

    Scurlock, R. G.

    1992-01-01

    The development of YBCO high temperature superconductors, in wire and tape forms, is rapidly approaching the point where the bulk transport current density j vs magnetic field H characteristics with liquid nitrogen cooling will enable its use in model cores. On the other hand, BSCCO high temperature superconductor in wire form has poor j-H characteristics at 77 K today, although with liquid helium or hydrogen cooling, it appears to be superior to NbTi superconductor. Since liquid nitrogen cooling is approx. 100 times cheaper than liquid helium cooling, the use of YBCO is very attractive for use in magnetic suspension. The design is discussed of a model core to accommodate lift and drag loads up to 6000 and 3000 N respectively. A comparison is made between the design performance of a liquid helium cooled NbTi (or BSCCO) superconducting core and a liquid nitrogen cooled YBCO superconducting core.

  20. The NASA high temperature superconductivity program

    NASA Technical Reports Server (NTRS)

    Sokoloski, Martin M.; Romanofsky, Robert R.

    1990-01-01

    It has been recognized from the onset that high temperature superconductivity held great promise for major advances across a broad range of NASA interests. The current effort is organized around four key areas: communications and data, sensors and cryogenics, propulsion and power, and space materials technology. Recently, laser ablated YBa2Cu3O(7-x) films on LaAIO produced far superior RF characteristics when compared to metallic films on the same substrate. This achievement has enabled a number of unique microwave device applications, such as low insertion loss phase shifters and high Q filters. Melt texturing and melt quenched techniques are being used to produce bulk materials with optimized magnetic properties. These yttrium enriched materials possess enhanced flux pinning characteristics and will lead to prototype cryocooler bearings. Significant progress has also occurred in bolometer and current lead technology. Studies are being conducted to evaluate the effect of high temperature superconducting materials on the performance and life of high power magneto-plasma-dynamic thrusters. Extended studies were also performed to evaluate the benefit of superconducting magnetic energy storage for LEO space station, lunar and Mars mission applications. The project direction and level of effort of the program are also described.

  1. High temperature superconducting digital circuits and subsystems

    SciTech Connect

    Martens, J.S.; Pance, A.; Whiteley, S.R.; Char, K.; Johansson, M.F.; Lee, L.; Hietala, V.M.; Wendt, J.R.; Hou, S.Y.; Phillips, J.

    1993-10-01

    The advances in the fabrication of high temperature superconducting devices have enabled the demonstration of high performance and useful digital circuits and subsystems. The yield and uniformity of the devices is sufficient for circuit fabrication at the medium scale integration (MSI) level with performance not seen before at 77 K. The circuits demonstrated to date include simple gates, counters, analog to digital converters, and shift registers. All of these are mid-sized building blocks for potential applications in commercial and military systems. The processes used for these circuits and blocks will be discussed along with observed performance data.

  2. Aerospace applications of high temperature superconductivity

    NASA Technical Reports Server (NTRS)

    Heinen, V. O.; Connolly, D. J.

    1991-01-01

    Space application of high temperature superconducting (HTS) materials may occur before most terrestrial applications because of the passive cooling possibilities in space and because of the economic feasibility of introducing an expensive new technology which has a significant system benefit in space. NASA Lewis Research Center has an ongoing program to develop space technology capitalizing on the potential benefit of HTS materials. The applications being pursued include space communications, power and propulsion systems, and magnetic bearings. In addition, NASA Lewis is pursuing materials research to improve the performance of HTS materials for space applications.

  3. Perspectives on high temperature superconducting electronics

    NASA Technical Reports Server (NTRS)

    Venkatesan, T.

    1990-01-01

    The major challenges in making high temperature superconducting (HTSC) electronics viable are predominantly materials problems. Unlike their predecessors the metal oxide-based superconductors are integratable with other advanced technologies such as opto-electronics and micro-electronics. The materials problems to be addressed relate to the epitaxial growth of high quality films, highly oriented films on non-lattice matched substrates, heterostructures with atomically sharp interfaces of junctions and other novel devices, and the processing of these films with negligible deterioration of the superconducting properties. These issues are illustrated with results based on films prepared in-situ by a pulsed laser deposition process. Films with zero-transition temperatures of 90 K and critical current densities of 5 x 10(exp 6) A/sq cm at 77 K have been prepared by this technique. Ultra-thin films, less than 100 A show T(sub c) is greater than 80 K, supporting the idea of two-dimensional transport in these materials. By the use of appropriate buffer layers, films with T(sub c) of 87 K and J(sub c) of 6 x 10(exp 4) A/sq cm were fabricated on silicon substrates. Submicron structures with J(sub c) is greater than 2 x 10(exp 7) at 10 K were fabricated. Results on nonlinear switching elements, IR detectors, and microwave studies will be briefly summarized.

  4. Perspectives on high temperature superconducting electronics

    NASA Technical Reports Server (NTRS)

    Venkatesan, T.

    1991-01-01

    The major challenges in making high temperature superconducting (HTSC) electronics viable are predominantly materials problems. Unlike their predecessors, the metal oxide-based superconductors are integratable with other advanced technologies such as opto-electronics and micro-electronics. The materials problems to be addressed relate to the epitaxial growth of high quality films, highly oriented films on non-lattice matched substrates, heterostructures with atomically sharp interfaces of junctions and other novel devices, and the processing of these films with negligible deterioration of the superconducting properties. These issues are illustrated with results based on films prepared in-situ by a pulsed laser deposition process. Films with zero-transition temperatures of 90 K and critical current densities of 5 x 10(exp 6) A/sq cm at 77 K have been prepared by this technique. Ultra-thin films, less than 100 A show T(sub c) is greater than 80 K, supporting the idea of two-dimensional transport in these materials. By the use of appropriate buffer layers, films with T(sub c) of 87 K and J(sub c) of 6 x 10(exp 4) A/sq cm were fabricated on silicon substrates. Submicron structures with J(sub c) is greater than 2 x 10(exp 7) at 10 K were fabricated. Results on nonlinear switching elements, IR detectors, and microwave studies will be briefly summarized.

  5. Use of high-temperature superconducting films in superconducting bearings.

    SciTech Connect

    Cansiz, A.

    1999-07-14

    We have investigated the effect of high-temperature superconductor (HTS) films deposited on substrates that are placed above bulk HTSs in an attempt to reduce rotational drag in superconducting bearings composed of a permanent magnet levitated above the film/bulk HTS combination. According to the critical state model, hysteresis energy loss is inversely proportional to critical current density, J{sub c}, and because HTS films typically have much higher J{sub c} than that of bulk HTS, the film/bulk combination was expected to reduce rotational losses by at least one order of magnitude in the coefficient of fiction, which in turn is a measure of the hysteresis losses. We measured rotational losses of a superconducting bearing in a vacuum chamber and compared the losses with and without a film present. The experimental results showed that contrary to expectation, the rotational losses are increased by the film. These results are discussed in terms of flux drag through the film, as well as of the critical state model.

  6. High temperature superconducting magnetic energy storage for future NASA missions

    NASA Technical Reports Server (NTRS)

    Faymon, Karl A.; Rudnick, Stanley J.

    1988-01-01

    Several NASA sponsored studies based on 'conventional' liquid helium temperature level superconductivity technology have concluded that superconducting magnetic energy storage has considerable potential for space applications. The advent of high temperature superconductivity (HTSC) may provide additional benefits over conventional superconductivity technology, making magnetic energy storage even more attractive. The proposed NASA space station is a possible candidate for the application of HTSC energy storage. Alternative energy storage technologies for this and other low Earth orbit missions are compared.

  7. Aerospace applications of high temperature superconductivity

    NASA Technical Reports Server (NTRS)

    Connolly, D. J.; Heinen, V. O.; Aron, P. R.; Lazar, J.; Romanofsky, Robert R.

    1990-01-01

    A review is presented of all the applications that are part of the NASA program to develop space technology capitalizing on the potential benefit of high temperature superconducting materials. The applications in three major areas are being pursued: sensors and cryogenic systems, space communications, and propulsion and power systems. This review places emphasis on space communications applications and the propulsion and power applications. It is concluded that the power and propulsion applications will eventually be limited by structural considerations rather than by the availability of suitable superconductors. A cursory examination of structural limitations implied by the virial theorem suggested that there is an upper limit to the size of high field magnetic systems that are feasible in space.

  8. High temperature superconductivity space experiment (HTSSE)

    NASA Technical Reports Server (NTRS)

    Ritter, J. C.; Nisenoff, M.; Price, G.; Wolf, S. A.

    1991-01-01

    An experiment dealing with high-temperature superconducting devices and components in space is discussed. A variety of devices (primarily passive microwave and millimeter-wave components) has been procured and will be integrated with a cryogenic refrigerating and data acquisition system to form the space package, which will be launched in late 1992. This space experiment is expected to demonstrate that this technology is sufficiently robust to survive the space environment and that the technology has the potential to improve the operation of space systems significantly. The devices for the initial launch have been evaluated electrically, thermally, and mechanically, and will be integrated into the final space package early in 1991. The performance of the devices is summarized, and some potential applications of this technology in space systems are outlined.

  9. Parameters of high-temperature superconducting transformers

    NASA Astrophysics Data System (ADS)

    Volkov, E. P.; Dzhafarov, E. A.

    2015-12-01

    Parameters of the high-temperature superconducting (HTSC) transformer with a core-type magnetic circuit and with coaxial and symmetrical interleaved windings made of the first-generation HTSC wire with a localized magnetic field are considered. The parameters of the most widespread core-type transformer with a coaxial HTSC winding are compared with those of a conventional transformer with a copper wire winding. Advantages of the HTSC transformers, such as reduction in the leakage inductive reactance and the HTSC winding's cross section, volume, and mass, as compared with the same parameters of conventional transformers with a copper wire winding are demonstrated. The efficiency of the HTSC transformers has proven to be determined predominantly by the core loss. In order to increase the efficiency of the HTSC transformer, it is proposed to use the amorphous electrical steel as the material of its magnetic circuit.

  10. Aerospace Applications Of High Temperature Superconductivity

    NASA Astrophysics Data System (ADS)

    Anderson, W. W.

    1988-05-01

    The existence of superconductors with TcOOK (which implies device operating temper-atures the order of Top ≍45K) opens up a variety of potential applications within the aerospace/defense industry. This is partly due to the existence of well developed cooler technologies to reach this temperature regime and partly due to the present operation of some specialized components at cryogenic temperatures. In particular, LWIR focal planes may operate at 10K with some of the signal processing electronics at an intermediate temperature of 40K. Addition of high Tc superconducting components in the latter system may be "free" in the sense of additional system complexity required. The established techniques for cooling in the 20K to 50K temperature regime are either open cycle, expendable material (stored gas with Joule-Thomson expansion, liquid cryogen or solid cryogen) or mechanical refrigerators (Stirling cycle, Brayton cycle or closed cycle Joule-Thomson). The high Tc materials may also contribute to the development of coolers through magnetically levitated bearings or providing the field for a stage of magnetic refrigeration. The discovery of materials with Tc, 90K has generated a veritable shopping list of applications. The superconductor properties which are of interest for applications are (1) zero resistance, (2) Meissner effect, (3) phase coherence and (4) existence of an energy gap. The zero resistance property is significant in the development of high field magnets requiring neglible power to maintain the field. In addition to the publicized applications to rail guns and electromagnetic launcher, we can think of space born magnets for charged particle shielding or whistler mode propagation through a plasma sheath. Conductor losses dominate attenuation and dispersion in microstrip transmission lines. While the surface impedance of a superconductor is non vanishing, significant improvements in signal transmission may be obtained. The Meissner effect may be utilized

  11. Can doping graphite trigger room temperature superconductivity? Evidence for granular high-temperature superconductivity in water-treated graphite powder.

    PubMed

    Scheike, T; Böhlmann, W; Esquinazi, P; Barzola-Quiquia, J; Ballestar, A; Setzer, A

    2012-11-14

    Granular superconductivity in powders of small graphite grains (several tens of micrometers) is demonstrated after treatment with pure water. The temperature, magnetic field and time dependence of the magnetic moment of the treated graphite powder provides evidence for the existence of superconducting vortices with some similarities to high-temperature granular superconducting oxides but even at temperatures above 300 K. Room temperature superconductivity in doped graphite or at its interfaces appears to be possible. PMID:22949348

  12. Cryogenic deformation of high temperature superconductive composite structures

    DOEpatents

    Roberts, Peter R.; Michels, William; Bingert, John F.

    2001-01-01

    An improvement in a process of preparing a composite high temperature oxide superconductive wire is provided and involves conducting at least one cross-sectional reduction step in the processing preparation of the wire at sub-ambient temperatures.

  13. Engineer's guide to high-temperature superconductivity

    NASA Astrophysics Data System (ADS)

    Doss, James D.

    The physics, properties, preparation, and applications of high-Tc superconductors are described. Chapters are devoted to the history of superconductivity, fundamental considerations, superconductor applications, the processing of high-Tc superconductors, measurement techniques, and safety problems. Also provided are a review of basic electrical and magnetic theory; a table of units and conversions; a glossary of terms and symbols; and lists of superconductor-related products, services, publications, and associations.

  14. High-temperature superconductivity in iron pnictides and chalcogenides

    NASA Astrophysics Data System (ADS)

    Si, Qimiao; Yu, Rong; Abrahams, Elihu

    2016-04-01

    Superconductivity develops in metals upon the formation of a coherent macroscopic quantum state of electron pairs. Iron pnictides and chalcogenides are materials that have high superconducting transition temperatures. In this Review, we describe the advances in the field that have led to higher superconducting transition temperatures in iron-based superconductors and the wide range of materials that are used to form these superconductors. We summarize the essential aspects of the normal state and the mechanism for superconductivity. We emphasize the degree of electron–electron correlations and their manifestation in properties of the normal state. We examine the nature of magnetism, analyse its role in driving the electronic nematicity and discuss quantum criticality at the border of magnetism in the phase diagram. Finally, we review the amplitude and structure of the superconducting pairing, and survey the potential material settings for optimizing superconductivity.

  15. High-temperature superconductivity: Electron mirages in an iron salt

    NASA Astrophysics Data System (ADS)

    Zaanen, Jan

    2014-11-01

    The detection of unusual 'mirage' energy bands in photoemission spectra of single-atom layers of iron selenide reveals the probable cause of high-temperature superconductivity in these artificial structures. See Letter p.245

  16. Macroscopic character of composite high temperature superconducting wires

    NASA Astrophysics Data System (ADS)

    Kivelson, Steven; Spivak, Boris

    The ``d-wave'' symmetry of the superconducting order in the cuprate high temperature superconductors is a well established fact, and one which identifies them as ``unconventional.'' However, in macroscopic contexts - including many potential applications (i.e. superconducting ``wires'') - the material is a composite of randomly oriented superconducting grains in a metallic matrix, in which Josephson coupling between grains mediates the onset of long-range phase coherence. Here, we analyze the physics at length scales large compared to the size of such grains, and in particular the macroscopic character of the long-range order that emerges. While XY-superconducting glass order and macroscopic d-wave superconductivity may be possible, we show that under many circumstances - especially when the d-wave superconducting grains are embedded in a metallic matrix - the most likely order has global s-wave symmetry.

  17. Damping in high-temperature superconducting levitation systems

    DOEpatents

    Hull, John R.

    2009-12-15

    Methods and apparatuses for improved damping in high-temperature superconducting levitation systems are disclosed. A superconducting element (e.g., a stator) generating a magnetic field and a magnet (e.g. a rotor) supported by the magnetic field are provided such that the superconducting element is supported relative to a ground state with damped motion substantially perpendicular to the support of the magnetic field on the magnet. Applying this, a cryostat housing the superconducting bearing may be coupled to the ground state with high damping but low radial stiffness, such that its resonant frequency is less than that of the superconducting bearing. The damping of the cryostat may be substantially transferred to the levitated magnetic rotor, thus, providing damping without affecting the rotational loss, as can be derived applying coupled harmonic oscillator theory in rotor dynamics. Thus, damping can be provided to a levitated object, without substantially affecting the rotational loss.

  18. Microwave properties of high transition temperature superconducting thin films

    NASA Technical Reports Server (NTRS)

    Gordon, W. L.

    1991-01-01

    Extensive studies of the interaction of microwaves with YBa2Cu3O(7-delta), Bi-based, and Tl-based superconducting thin films deposited in several microwave substrates were performed. The data were obtained by measuring the microwave power transmitted through the film in the normal and the superconducting state and by resonant cavity techniques. The main motives were to qualify and understand the physical parameters such as the magnetic penetration depth, the complex conductivity, and the surface impedance, of high temperature superconducting (HTS) materials at microwave frequencies. Based on these parameters, the suitability of these HTS thin films is discussed for microwave applications.

  19. High-temperature superconducting thin films and their application to superconducting-normal-superconducting devices

    SciTech Connect

    Mankiewich, P.M.

    1993-01-01

    The existence of the proximity effect between the high temperature superconductor YBa[sub 2]Cu[sub 3]O[sub 7] (YBCO) and normal metal thin films has been demonstrated, and this effect has been exploited to produce lithographically fabricated superconducting-normal-superconducting (SNS) Josephson junctions. Improvement of the fabrication processes has led to new methods of in-situ film growth and plasma etching of YBCO, as well a YBCO-compatible processes for the deep-ultraviolet and electron-beam lithography required to fabricate submicron device structures. This proximity effect approach helps to circumvent the short coherence length ([xi] [approximately] 3 nm) characteristic of the high T[sub c] superconductors. In a clean normal metal such as gold or silver the relevant coherence length is governed by the higher Fermi velocity and longer mean free path. A Josephson device containing a normal metal weak link can be longer than an ideal all-YBCO microbridge (dimensions comparable to [xi]). Initially, SNS devices were fabricated and showed evidence for a supercurrent through the normal region. Properly spaced Shapiro steps as a function of microwave frequency were observed. This result was evidence for a proximity effect between a normal metal and YBCO. The fabrication process was not sufficiently reproducible, so new techniques were developed. In-situ film growth and fabrication is desirable to minimize contamination of and damage to the surface of the superconductor. In-situ reactive coevaporation of YBCO was demonstrated. Patterning of these in-situ films in to a structure required the development of a low-damage reactive ion etch. New lithographic techniques were developed to minimize chemical degradation of the superconductor. Deposition of gold onto heated device structures was demonstrated to produce a superior SNS device. The application of YBCO thin films to passive microwave devices and to active superconducting circuits was evaluated.

  20. Fabrication of Large Bulk High Temperature Superconducting Articles

    NASA Technical Reports Server (NTRS)

    Koczor, Ronald (Inventor); Hiser, Robert A. (Inventor)

    2003-01-01

    A method of fabricating large bulk high temperature superconducting articles which comprises the steps of selecting predetermined sizes of crystalline superconducting materials and mixing these specific sizes of particles into a homogeneous mixture which is then poured into a die. The die is placed in a press and pressurized to predetermined pressure for a predetermined time and is heat treated in the furnace at predetermined temperatures for a predetermined time. The article is left in the furnace to soak at predetermined temperatures for a predetermined period of time and is oxygenated by an oxygen source during the soaking period.

  1. High temperature superconductive flux gate magnetometer

    SciTech Connect

    Gershenson, M. )

    1991-03-01

    This paper proposes a different type of HTS superconducting magnetometer based on the non-linear magnetic behavior of bulk HTS materials. The device design is based on the generation of second harmonics which arise as a result of non-linear magnetization observed in Type-II superconductors. Even harmonics are generated from the non-linear interaction of an ac excitation signal with an external DC magnetic field which acts as a bias signal.

  2. Towards a better understanding of superconductivity at high transition temperatures

    NASA Astrophysics Data System (ADS)

    Hackl, R.; Hanke, W.

    2010-10-01

    We provide an overview over the following eleven contributions on superconductivity in copper-oxygen and iron-based compounds. The main objective of this volume is an improved general understanding of superconductivity at high transition temperatures. The key questions on the way towards understanding superconducting pairing beyond electron-phonon coupling are spelled out, and the present status of theoretical reasoning is summarized. The crucial experiments, their results and interrelations are discussed. The central result is that fluctuations of spin and charge contribute substantially to superconductivity and also to other ordering phenomena. Methodically, the simultaneous analysis of results obtained from different experimental techniques such as photoelectron spectroscopy and neutron scattering, on one and the same sample, turned out to be of pivotal importance.

  3. Optical studies of high-temperature superconducting cuprates.

    PubMed

    Tajima, Setsuko

    2016-09-01

    The optical studies of high-temperature superconducting cuprates (HTSC) are reviewed. From the doping dependence of room temperature spectra, a dramatic change of the electronic state from a Mott (charge transfer) insulator to a Fermi liquid has been revealed. Additionally, the unusual 2D nature of the electronic state has been found. The temperature dependence of the optical spectra provided a rich source of information on the pseudogap, superconducting gap, Josephson plasmon, transverse Josephson plasma mode and precursory superconductivity. Among these issues, Josephson plasmons and transverse Josephson plasma mode were experimentally discovered by optical measurements, and thus are unique to HTSC. The effect of the spin/charge stripe order is also unique to HTSC, reflecting the conducting nature of the stripe order in this system. The pair-breaking due to the stripe order seems stronger in the out-of-plane direction than in the in-plane one. PMID:27472654

  4. Optical studies of high-temperature superconducting cuprates

    NASA Astrophysics Data System (ADS)

    Tajima, Setsuko

    2016-09-01

    The optical studies of high-temperature superconducting cuprates (HTSC) are reviewed. From the doping dependence of room temperature spectra, a dramatic change of the electronic state from a Mott (charge transfer) insulator to a Fermi liquid has been revealed. Additionally, the unusual 2D nature of the electronic state has been found. The temperature dependence of the optical spectra provided a rich source of information on the pseudogap, superconducting gap, Josephson plasmon, transverse Josephson plasma mode and precursory superconductivity. Among these issues, Josephson plasmons and transverse Josephson plasma mode were experimentally discovered by optical measurements, and thus are unique to HTSC. The effect of the spin/charge stripe order is also unique to HTSC, reflecting the conducting nature of the stripe order in this system. The pair-breaking due to the stripe order seems stronger in the out-of-plane direction than in the in-plane one.

  5. High-temperature Superconductivity in compressed Solid Silane

    PubMed Central

    Zhang, Huadi; Jin, Xilian; Lv, Yunzhou; Zhuang, Quan; Liu, Yunxian; Lv, Qianqian; Bao, Kuo; Li, Da; Liu, Bingbing; Cui, Tian

    2015-01-01

    Crystal structures of silane have been extensively investigated using ab initio evolutionary simulation methods at high pressures. Two metallic structures with P21/c and C2/m symmetries are found stable above 383 GPa. The superconductivities of metallic phases are fully explored under BCS theory, including the reported C2/c one. Perturbative linear-response calculations for C2/m silane at 610 GPa reveal a high superconducting critical temperature that beyond the order of 102 K. PMID:25746861

  6. Macroscopic character of composite high-temperature superconducting wires

    NASA Astrophysics Data System (ADS)

    Kivelson, S. A.; Spivak, B.

    2015-11-01

    The "d -wave" symmetry of the superconducting order in the cuprate high temperature superconductors is a well established fact [J. Tsuei and J. R. Kirtley, Rev. Mod. Phys. 72, 969 (2000), 10.1103/RevModPhys.72.969 and D. J. Vanharlingen, Rev. Mod. Phys. 67, 515 (1995), 10.1103/RevModPhys.67.515], and one which identifies them as "unconventional." However, in macroscopic contexts—including many potential applications (i.e., superconducting "wires")—the material is a composite of randomly oriented superconducting grains in a metallic matrix, in which Josephson coupling between grains mediates the onset of long-range phase coherence. [See, e.g., D. C. Larbalestier et al., Nat. Mater. 13, 375 (2014), 10.1038/nmat3887, A. P. Malozemoff, MRS Bull. 36, 601 (2011), 10.1557/mrs.2011.160, and K. Heine et al., Appl. Phys. Lett. 55, 2441 (1989), 10.1063/1.102295] Here we analyze the physics at length scales that are large compared to the size of such grains, and in particular the macroscopic character of the long-range order that emerges. While X Y -superconducting glass order and macroscopic d -wave superconductivity may be possible, we show that under many circumstances—especially when the d -wave superconducting grains are embedded in a metallic matrix—the most likely order has global s -wave symmetry.

  7. Apparatus for continuous manufacture of high temperature superconducting wires from molten superconducting oxides

    SciTech Connect

    Hed, A.Z.

    1991-09-10

    This patent describes an apparatus for making a composite high-temperature superconducting wire, comprising a refractory core having a melting point above a melt temperature of a superconducting oxide ceramic having a critical temperature T{sub c} above 23{degrees} K and a layer of the superconducting oxide ceramic on the core. It comprises means forming a controlled-atmosphere chamber; a vessel received in the chamber and formed with an opening at a bottom thereof, the vessel receiving an annular mass of the superconducting oxide ceramic in solid form surrounding a passage traversing the mass and extending upwardly from the opening; means for forming a melt of the superconductive oxide ceramic in a small pool in the mass above the passage and at a temperature slightly above a melting point of the superconducting oxide ceramic; means for drawing the refractory core through the opening, the passage and the melt in succession and depositing the melt on the core, the pool being in contact only with the mass, the core and the atmosphere; means in the chamber above the pool for cooling the melt deposited on the core by radiation and convection.

  8. Structural features that optimize high temperature superconductivity

    SciTech Connect

    Jorgensen, J.D.; Hinks, D.G. Chmaissem, O.; Argyriou, D.N.; Mitchell, J.F.; Dabrowski, B.

    1996-01-01

    For example, various defects can be introduced into the blocking layer to provide the optimum carrier concentration, but defects that form in or adjacent to the CuO{sub 2} layers will lower T{sub c} and eventually destroy superconductivity. After these requirements are satisfied, the highest T{sub c}`s are observed for compounds (such as the HgBa{sub 2}Ca{sub n-1}CuO{sub 2n{plus}2{plus}x} family) that have flat and square CuO{sub 2} planes and long apical Cu-O bonds. This conclusion is confirmed by the study of materials in which the flatness of the CuO{sub 2} plane can be varied in a systematic way. In more recent work, attention has focused on how the structure can be modified, for example, by chemical substitution, to improve flux pinning properties. Two strategies are being investigated: (1) Increasing the coupling of pancake vortices to form vortex-lines by shortening or ``metallizing`` the blocking layer; and (2) the formation of defects that pin flux.

  9. Spin-bag mechanism of high-temperature superconductivity

    NASA Technical Reports Server (NTRS)

    Schrieffer, J. R.; Wen, X.-G.; Zhang, S.-C.

    1988-01-01

    A new approach to the theory of high-temperature superconductivity is proposed, based on the two-dimensional antiferromagnetic spin correlations observed in these materials over distances large compared to the lattice spacing. The spin ordering produces an electronic pseudogap which is locally suppressed by the addition of a hole. This suppression forms a bag inside which the hole is self-consistently trapped. Two holes are attracted by sharing a common bag. The resulting pairing interaction leads to a superconducting energy gap which is nodeless over the Femri surface.

  10. A Snapshot View of High Temperature Superconductivity 2002

    SciTech Connect

    Schuller, Ivan K.; Bansil, Arun; Basov, Dimitri N.

    2002-04-05

    This report outlines the conclusions of a workshop on High Temperature Superconductivity held April 5-8, 2002 in San Diego. The purpose of this report is to outline and highlight some outstanding and interesting issues in the field of High Temperature Superconductivity. The range of activities and new ideas that arose within the context of High Temperature Superconductors is so vast and extensive that it is impossible to summarize it in a brief document. Thus this report does not pretend to be all-inclusive and cover all areas of activity. It is a restricted snapshot and it only presents a few viewpoints. The complexity and difficulties with high temperature superconductivity is well illustrated by the Buddhist parable of the blind men trying to describe “experimentally” an elephant. These very same facts clearly illustrate that this is an extremely active field, with many unanswered questions, and with a great future potential for discoveries and progress in many (sometimes unpredictable) directions. It is very important to stress that independently of any current or future applications, this is a very important area of basic research.

  11. Silver alloys for high-temperature superconducting wire

    NASA Astrophysics Data System (ADS)

    Hubert, B. N.; Zhou, R.; Holesinger, T. G.; Hults, W. L.; Lacerda, A.; Murray, A. S.; Ray, R. D.; Buford, Cm.; Phillips, L. G.; Kebede, A.; Smith, J. L.

    1995-12-01

    The silver cladding for high-temperature superconducting wire can be modified for various applications by alloying. For example, for powder-in-tube wire, stiffer cladding improves the smoothness of the interface. For large coils, higher strength is needed at low temperatures to hold them together. Power applications require more resistance in the cladding. We have made a survey of the properties of alloys to check their feasibility for various applications. Alloys with several elements added to silver have been prepared and evaluated for hardness, electrical properties, and compatibility with high-temperature superconductors during processing.

  12. Stable superconducting magnet. [high current levels below critical temperature

    NASA Technical Reports Server (NTRS)

    Boom, R. W. (Inventor)

    1967-01-01

    Operation of a superconducting magnet is considered. A method is described for; (1) obtaining a relatively high current in a superconducting magnet positioned in a bath of a gas refrigerant; (2) operating a superconducting magnet at a relatively high current level without training; and (3) operating a superconducting magnet containing a plurality of turns of a niobium zirconium wire at a relatively high current level without training.

  13. High-temperature-superconducting magnetic susceptibility bolometer

    NASA Technical Reports Server (NTRS)

    Brasunas, J.; Lakew, B.; Lee, C.

    1992-01-01

    An infrared detector called the magnetic susceptibility bolometer is introduced which is based on the tmperature dependence of the diamagnetic screening of a high-Tc superconductor film near Tc. Results are reported for the response of a prototype model to modulated blackbody radiation. Possible improvements are discussed as is the potential sensitivity of an improved device.

  14. High temperature superconducting infrared imaging satellite

    NASA Technical Reports Server (NTRS)

    Angus, B.; Covelli, J.; Davinic, N.; Hailey, J.; Jones, E.; Ortiz, V.; Racine, J.; Satterwhite, D.; Spriesterbach, T.; Sorensen, D.

    1992-01-01

    A low earth orbiting platform for an infrared (IR) sensor payload is examined based on the requirements of a Naval Research Laboratory statement of work. The experiment payload is a 1.5-meter square by 0.5-meter high cubic structure equipped with the imaging system, radiators, and spacecraft mounting interface. The orbit is circular at 509 km (275 nmi) altitude and 70 deg. inclination. The spacecraft is three-axis stabilized with pointing accuracy of plus or minus 0.5 deg. in each axis. The experiment payload requires two 15-minute sensing periods over two contiguous orbit periods for 30 minutes of sensing time per day. The spacecraft design is presented for launch via a Delta 2 rocket. Subsystem designs include attitude control, propulsion, electric power, telemetry, tracking and command, thermal design, structure, and cost analysis.

  15. Space applications for high temperature superconductivity - Brief review

    NASA Technical Reports Server (NTRS)

    Krishen, Kumar

    1990-01-01

    An overview is presented of materials and devices based on high-temperature superconductivity (HTS) that could have useful space-oriented applications. Of specific interest are applications of HTS technologies to mm and microwave systems, spaceborne and planet-surface sensors, and to magnetic subsystems for robotic, rescue, and docking maneuvers. HTS technologies can be used in optoelectronics, magnetic-field detectors, antennae, transmission/delay lines, and launch/payload coils.

  16. Materials science challenges for high-temperature superconducting wire

    NASA Astrophysics Data System (ADS)

    Foltyn, S. R.; Civale, L.; MacManus-Driscoll, J. L.; Jia, Q. X.; Maiorov, B.; Wang, H.; Maley, M.

    2007-09-01

    Twenty years ago in a series of amazing discoveries it was found that a large family of ceramic cuprate materials exhibited superconductivity at temperatures above, and in some cases well above, that of liquid nitrogen. Imaginations were energized by the thought of applications for zero-resistance conductors cooled with an inexpensive and readily available cryogen. Early optimism, however, was soon tempered by the hard realities of these new materials: brittle ceramics are not easily formed into long flexible conductors; high current levels require near-perfect crystallinity; and - the downside of high transition temperature - performance drops rapidly in a magnetic field. Despite these formidable obstacles, thousands of kilometres of high-temperature superconducting wire have now been manufactured for demonstrations of transmission cables, motors and other electrical power components. The question is whether the advantages of superconducting wire, such as efficiency and compactness, can outweigh the disadvantage: cost. The remaining task for materials scientists is to return to the fundamentals and squeeze as much performance as possible from these wonderful and difficult materials.

  17. Experimental Investigation of High Temperature Superconducting Imaging Surface Magnetometry

    SciTech Connect

    Espy, M.A.; Matlachov, A.N.; Kraus, R.H., Jr.

    1999-06-21

    The behavior of high temperature superconducting quantum interference devices (SQUIDs) in the presence of high temperature superconducting surfaces has been investigated. When current sources are placed close to a superconducting imaging surface (SIS) an image current is produced due to the Meissner effect. When a SQUID magnetometer is placed near such a surface it will perform in a gradiometric fashion provided the SQUID and source distances to the SIS are much less than the size of the SIS. We present the first ever experimental verification of this effect for a high temperature SIS. Results are presented for two SQUID-SIS configurations, using a 100 mm diameter YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} disc as the SIS. These results indicate that when the current source and sensor coil (SQUID) are close to the SIS, the behavior is that of a first-order gradiometer. The results are compared to analytic solutions as well as the theoretical predictions of a finite element model.

  18. High Temperature Superconducting RF Resonators for Resonator Stabilized Oscillators

    NASA Astrophysics Data System (ADS)

    Goettee, Jeffrey David

    Electromagnetic resonators made of superconducting materials show unusually sharp resonances because resistive losses are minimized. The availability of high quality thin films of YB_2CU_3 O_{7-delta} (YBCO) with superconducting transitions at 92K has aroused interest in thin film resonators at microwave frequencies for use in filters and oscillators in communication and radar systems. I have investigated the design and radio frequency (rf) properties of superconducting resonators in microstrip geometries (in which the resonant element and a single ground plane are on opposite faces of the LaAlO_3 substrates). This monolithic approach minimizes vibration sensitivity, but exposes the resonators to interactions with the packaging structure. I used niobium (Nb) superconducting 2 GHz resonators at 4.2K to investigate the geometry dependence of the quality factor Q and the high frequency phase noise S_ {y}(f). Q's in excess of 250,000 and S_{y}(1 Hz) = -227 were achieved. Desirable geometries were then fabricated in YBCO thin films produced by coevaporation or sputtering. They typically showed Q's that are a factor of four lower than the comparable Nb resonator, but retained their usefulness to substantially higher temperatures ( ~60K). One of these YBCO resonators was successfully operated to stabilize an oscillator operating at 2 GHz with overall single-sideband phase noise }(1 Hz) = -30 dBc/Hz comparable to the best available competing technologies.

  19. Insights from the study of high-temperature interface superconductivity.

    PubMed

    Pereiro, J; Bollinger, A T; Logvenov, G; Gozar, A; Panagopoulos, C; Bozović, I

    2012-10-28

    A brief overview is given of the studies of high-temperature interface superconductivity based on atomic-layer-by-layer molecular beam epitaxy (ALL-MBE). A number of difficult materials science and physics questions have been tackled, frequently at the expense of some technical tour de force, and sometimes even by introducing new techniques. ALL-MBE is especially suitable to address questions related to surface and interface physics. Using this technique, it has been demonstrated that high-temperature superconductivity can occur in a single copper oxide layer-the thinnest superconductor known. It has been shown that interface superconductivity in cuprates is a genuine electronic effect-it arises from charge transfer (electron depletion and accumulation) across the interface driven by the difference in chemical potentials rather than from cation diffusion and mixing. We have also understood the nature of the superconductor-insulator phase transition as a function of doping. However, a few important questions, such as the mechanism of interfacial enhancement of the critical temperature, are still outstanding. PMID:22987034

  20. High temperature superconductivity in sulfur hydride under ultrahigh pressure: A complex superconducting phase beyond conventional BCS

    NASA Astrophysics Data System (ADS)

    Bussmann-Holder, Annette; Köhler, Jürgen; Whangbo, M.-H.; Bianconi, Antonio; Simon, Arndt

    2016-05-01

    The recent report of superconductivity under high pressure at the record transition temperature of Tc =203 K in pressurized H2S has been identified as conventional in view of the observation of an isotope effect upon deuteration. Here it is demonstrated that conventional theories of superconductivity in the sense of BCS or Eliashberg formalisms cannot account for the pressure dependence of the isotope coefficient. The only way out of the dilemma is a multi-band approach of superconductivity where already small interband coupling suffices to achieve the high values of Tc together with the anomalous pressure dependent isotope coefficient. In addition, it is shown that anharmonicity of the hydrogen bonds vanishes under pressure whereas anharmonic phonon modes related to sulfur are still active.

  1. High temperature superconducting composite conductor and method for manufacturing the same

    DOEpatents

    Holesinger, Terry G.; Bingert, John F.

    2002-01-01

    A high temperature superconducting composite conductor is provided including a high temperature superconducting material surrounded by a noble metal layer, the high temperature superconducting composite conductor characterized as having a fill factor of greater than about 40. Additionally, the conductor can be further characterized as containing multiple cores of high temperature superconducting material surrounded by a noble metal layer, said multiple cores characterized as having substantially uniform geometry in the cross-sectional dimensions. Processes of forming such a high temperature superconducting composite conductor are also provided.

  2. Nuclear Magnetic Resonance Study of High Temperature Superconductivity

    NASA Astrophysics Data System (ADS)

    Mounce, Andrew M.

    The high temperature superconductors HgBa2CuO 4+delta (Hg1201) and Bi2SrCa2Cu2O 8+delta (Bi2212) have been treated with 17O for both nuclear magnetic resonance (NMR) sensitivity and various electronic properties. Subsequently, NMR experiments were performed on Hg1201 and Bi2212 to reveal the nature of the pseudogap, in the normal state, and vortex phases, in the superconducting state. NMR has been performed on 17O in an underdoped Hg1201 crystal with a superconducting transition transition temperature of 74 K to look for circulating orbital currents proposed theoretically and inferred from neutron scattering. The measurements reveal narrow spectra which preclude static local fields in the pseudogap phase at the apical site, suggesting that the moments observed with neutrons are fluctuating or the orbital current ordering is not the correct model for the neutron scattering observation. The fine detail of the NMR frequency shifts at the apical oxygen site are consistent with a dipolar field from the Cu+2 site and diamagnetism below the superconducting transition. It has been predicted that superconducting vortices should be electrically charged and that this effect is particularly enhanced for high temperature superconductors. Here it is shown that the Abrikosov vortex lattice, characteristic of the mixed state of superconductors, will become unstable at sufficiently high magnetic field if there is charge trapped on the vortex core for highly anisotropic superconductors. NMR measurements of the magnetic fields generated by vortices in Bi2212 single crystals provide evidence for an electro-statically driven vortex lattice reconstruction with the magnitude of charge on each vortex pancake of 2x10-3e, depending on doping, in line with theoretical estimates. Competition with magnetism is at the heart of high temperature superconductivity, most intensely felt near a vortex core. To investigate vortex magnetism spatially resolved NMR has been used, finding a strongly non

  3. High temperature superconducting current leads for fusion magnet systems

    NASA Astrophysics Data System (ADS)

    Wu, J. L.; Dederer, J. T.; Singh, S. K.; Hull, J. R.

    Superconducting magnets for fusion applications typically have very high operating currents. These currents are transmitted from the room temperature power supplies to the low temperature superconducting coils by way of helium-vapor-cooled current leads. Because of the high current magnitude and the resistive characteristics associated with the normal metallic lead conductors, a substantial amount of power is dissipated in the lead. To maintain a stable operation, a high rate of helium vapor flow, generated by the boil-off of liquid helium, is required to cool the lead conductors. This helium boil-off substantially increases both the installation capacity and the operating cost of the helium refrigerator/liquefier. The boil-off of liquid helium can be significantly reduced by employing ceramic high temperature superconductors, such as Y-Ba-Cu-O, in the low temperature part of the lead conductor structure. This concept utilizes the superconducting, as well as the low thermal conductivity properties of the superconductor materials in eliminating power dissipation in part of the current lead and in inhibiting heat conduction into the liquid helium pool, resulting in reduced helium boil-off. This design concept has been conclusively demonstrated by a 2-kA current lead test model using Y-Ba-Cu-O (123) material which, although not optimized in design, has significantly reduced the rate of helium boil-off in comparison to optimized conventional leads. There appear to be no major technological barriers for scaling up this design to higher current levels for applications in fusion magnet systems or in fusion related testing activities. The theoretical basis of the current lead concept, as well as the important design and technology issues are addressed. The potential cost saving derived from employing these leads in fusion magnets is also discussed. In addition, a design concept for a 10-kA lead is presented.

  4. Silver Alloys for High-Temperature Superconducting Wire

    NASA Astrophysics Data System (ADS)

    Smith, J. L.; Zhou, R.; Holesinger, T. C.; Hults, W. L.; Peterson, E. J.

    1996-03-01

    Pure silver is commonly used for cladding or as substrates for making bismuth- and thallium-based high-temperature superconductor wires. Pure silver's softness, lack of mechanical strength, and high-electrical conductivity cause various problems with the final conductor. We have made many alloys of silver with small amounts of additions, studied their mechanical and electrical properties, and checked compatibility with the superconducting materials. The use of silver alloys improves the usefulness of the conductors and improves or does not change the critical currents of the final conductor. This work was performed under the auspices of the U.S.D.O.E.

  5. Conductor requirements for high-temperature superconducting utility power transformers

    SciTech Connect

    Pleva, E. F.; Mehrotra, V.; Schwenterly, S W

    2010-01-01

    High-temperature superconducting (HTS) coated conductors in utility power transformers must satisfy a set of operating requirements that are driven by two major considerations-HTS transformers must be economically competitive with conventional units, and the conductor must be robust enough to be used in a commercial manufacturing environment. The transformer design and manufacturing process will be described in order to highlight the various requirements that it imposes on the HTS conductor. Spreadsheet estimates of HTS transformer costs allow estimates of the conductor cost required for an HTS transformer to be competitive with a similarly performing conventional unit.

  6. Adaptive high temperature superconducting filters for interference rejection

    SciTech Connect

    Raihn, K.F.; Fenzi, N.O.; Hey-Shipton, G.L.; Saito, E.R.; Loung, P.V.; Aidnik, D.L.

    1996-07-01

    An optically switched high temperature superconducting (HTS) band-reject filter bank is presented. Fast low loss switching of high quality (Q) factor HTS filter elements enables digital selection of arbitrary pass-bands and stop-bands. Patterned pieces of GaAs and silicon are used in the manufacture of the photosensitive switches. Fiber optic cabling is used to transfer the optical energy from an LED to the switch. The fiber optic cable minimizes the thermal loading of the filter package and de-couples the switch`s power source from the RF circuit. This paper will discuss the development of a computer-controlled HTS bank of optically switchable, narrow band, high Q bandstop filters which incorporates a cryocooler to maintain the 77 K operating temperature of the HTS microwave circuit.

  7. Shock-induced synthesis of high temperature superconducting materials

    DOEpatents

    Ginley, D.S.; Graham, R.A.; Morosin, B.; Venturini, E.L.

    1987-06-18

    It has now been determined that the unique features of the high pressure shock method, especially the shock-induced chemical synthesis technique, are fully applicable to high temperature superconducting materials. Extraordinarily high yields are achievable in accordance with this invention, e.g., generally in the range from about 20% to about 99%, often in the range from about 50% to about 90%, lower and higher yields, of course, also being possible. The method of this invention involves the application of a controlled high pressure shock compression pulse which can be produced in any conventional manner, e.g., by detonation of a high explosive material, the impact of a high speed projectile or the effect of intense pulsed radiation sources such as lasers or electron beams. Examples and a discussion are presented.

  8. Photoemission, low-dimensionality and high-temperature superconductivity

    SciTech Connect

    Margaritondo, G.

    1996-12-31

    Several experiments by different authors have established the existence of an anomalous photoemission effect in one-dimensional systems, including one-dimensional metallic crystals and other examples of one-dimensional metals. The effect consists of the suppression of the photoemission signal at energies close to the Fermi level--whereas for metals one would expect to see a Fermi edge. Increasing evidence exists, in the authors opinion, that this phenomenon is due to the decoupling of charge and spin coordinates and to a departure from the Fermi-liquid framework. If confirmed, this conclusion would be extremely relevant to high-temperature superconductivity, since it would pave the way to the use of a similar concept for non-Fermi-liquid theories of high-temperature superconductors.

  9. Rotor instrumentation study for high-temperature superconducting generators

    SciTech Connect

    Schwenterly, S.W.; Wilson, C.T.

    1996-06-01

    In FY 9195, ORNL carried out work on rotor instrumentation systems in support of the General Electric (GE) Superconductivity Partnership Initiative (SPI) on Superconducting Generator Development. The objective was to develop a system for tramsitting data from sensors in the spinning rotor to a stationary data acquisition system. Previous work at ORNL had investigated an optical method of cryogenic temperature measurement using laser-induced fluorescence in certain phosphors. Later follow-up discussions with experts in the ORNL Engineering Technology Division indicated that this method could also be extended to measure strain and magnetic field. Another optical alternative using standard fiber optic transmission modules was also investigated. The equipment is very inexpensive, but needs to be adapted for operation in a high-g-force rotating environment. An optical analog of a commutator or slip ring also needs to be developed to couple the light signals from the rotor to the stationary frame. Sealed mercury-film rotary contacts are manufactured by Meridian Laboratory. Unlike conventional slipring assemblies, these offer low noise and long lifetime, with low costs per channel. Standard units may need some upgrading for 3600-rpm or high-voltage operation. A commercial electronic telemetry system offered by Wireless Data Corporation (WDC) was identified as a viable candidate, and information on this system was presented to GE. GE has since ordered two of these systems from WDC for temperature measurements in their rotating test cryostat.

  10. Importance of structural instability to high-temperature superconductivity

    SciTech Connect

    Bussmann-Holder, A. University of Bayreuth, D-8550 Bayreuth, Federal Republic of Germany ); Migliori, A.; Fisk, Z.; Sarrao, J.L.; Leisure, R.G. ); Cheong, S. )

    1991-07-22

    The orthorhombic-tetragonal structural phase transition of La{sub 2{minus}{ital x}}Sr{sub {ital x}}CuO{sub 4} is quantitatively analyzed as a function of composition {ital x} within an anharmonic electron-phonon interaction model. The correct temperature dependence of the soft mode and the elastic constant {ital c}{sub 66} is obtained. The double-well potential in the electron-phonon interaction is derived self-consistently and found to vary strongly with {ital x}. In the vicinity of the superconducting transition temperature {ital T}{sub {ital c}} electron--two-phonon interactions dominate the harmonic ones which may explain the high {ital T}{sub {ital c}}'s observed.

  11. The fabrication and characterization of high temperature superconducting magnetic shields

    SciTech Connect

    Purpura, J.W.; Clem, T.R.

    1989-03-01

    Tubes fabricated of polycrystalline YBa/sub 2/Cu/sub 3/O/sub 7-x/ are characterized and details of the fabrication procedure are discussed. The microstructure of the tubes determined by scanning electron microscopy and x-ray diffractometry is described. Resistive measurements of T/sub c/ and /Delta/T/sub c/ have been made. The tubes have also been characterized by means of SQUID magnetometry. The temperature dependence of magnetic fields trapped axially in the tubes has been measured and estimates of penetration depth are given. Moreover, measurements of transverse shielding effectiveness of the tubes have been made and are compared with theoretical predictions. Studies on flux penetration into the tubes are described. Findings from the microstructure studies are correlated with the observed superconductivity properties. The results on the high temperature materials are compared to results obtained previously on tubes made from conventional superconductors.

  12. The DARPA manufacturing initiative in high temperature superconductivity

    SciTech Connect

    Adams, K.R. )

    1989-01-01

    The Defense Advanced Research Projects Agency (DARPA) has a very aggressive Technology Base program in high temperature superconductivity. This program is expected to provide the basis for a specialized set of military products - passive microwave and millimeter wave devices - within the next three years. In order to get these high leverage products into military systems, a manufacturing base must be developed for HTSC components. A plan for DARPA in HTSC manufacturing is directly coupled with the ongoing DARPA materials and device oriented R and D program. In essence, this plan recommends a three phased effort: 1. Phase I (two years); Fund companies through R and D contracts for specialized HTSC components; prepare a detailed plan and develop an HTSC consortium. 2. Phase II (six years): Establish an HTSC Sematech initiative for electronic applications, including active devices. 3. Phase III (optional): Continue the HTSC Sematech with emphasis on high power applications.

  13. Transient analysis and burnout of high temperature superconducting current leads

    NASA Astrophysics Data System (ADS)

    Seol, S. Y.; Hull, J. R.

    The transient behaviour of high-temperature superconductor (HTS) current leads operated between liquid helium and liquid nitrogen temperatures is analysed for burnout conditions upon transition of the HTS into the normal state. Leads composed of HTS only and of HTS sheathed by pure silver or silver alloy are investigated numerically for temperature-dependent properties and analytically for temperature-independent properties. For lower values of shape factor (current density times length), the lead can be operated indefinitely without burnout. At higher values of shape factor, the lead reaches burnout in a finite time. With high current densities, the leads heat adiabatically. For a fixed shape factor, low current densities are desired to achieve long burnout times. To achieve a low helium boil-off rate in the superconducting state without danger of burnout, there is a preferred temperature dependence for thermal conductivity, and silver alloy sheaths are preferred to pure silver sheaths. However, for a given current density, pure silver sheaths take longer to burn out.

  14. High-temperature superconducting transformer performance, cost, and market evaluation

    SciTech Connect

    Dirks, J.A.; Dagle, J.E.; DeSteese, J.G.; Huber, H.D.; Smith, S.A.; Currie, J.W.; Merrick, S.B.; Williams, T.A.

    1993-09-01

    Recent laboratory breakthroughs in high-temperature superconducting (HTS) materials have stimulated both the scientific community and general public with questions regarding how these materials can be used in practical applications. While there are obvious benefits from using HTS materials (most notably the potential for reduced energy losses in the conductors), a number of issues (such as overall system energy losses, cost, and reliability) may limit applications of HTS equipment, even if the well known materials problems are solved. This study examined the future application potential of HTS materials to power transformers. This study effort was part of a US Department of Energy (DOE) Office of Energy Storage and Distribution (OESD) research program, Superconductivity Technology for Electric Power Systems (STEPS). The study took a systems perspective to gain insights to help guide DOE in managing research designed to realize the vision of HTS applications. Specific objectives of the study were as follows: to develop an understanding of the fundamental HTS transformer design issues that can provide guidance for developing practical devices of interest to the electric utility industry; to identify electric utility requirements for HTS transformers and to evaluate the potential for developing a commercial market; to evaluate the market potential and national benefits for HTS transformers that could be achieved by a successful HTS development program; to develop an integrated systems analysis framework, which can be used to support R&D planning by DOE, by identifying how various HTS materials characteristics impact the performance, cost, and national benefits of the HTS application.

  15. High Temperature Superconducting Reciprocating Magnetic Separator Final Report

    SciTech Connect

    James F. Maguire

    2008-06-05

    In 2001, under DOE's Superconductivity Partnership Initiative (SPI), E. I. du Pont de Nemours & Co. (Dupont) was awarded a cost-share contract to build a fully functional full-scale model high temperature superconducting reciprocating magnet unit specifically designed for the koalin clay industry. After competitive bidding, American Superconductor (AMSC) was selected to provide the coil for the magnet. Dupont performed the statement of work until September 2004, when it stopped work, with the concurrence of DOE, due to lack of federal funds. DOE had paid all invoices to that point, and Dupont had provided all cost share. At this same time, Dupont determined that this program did not fit with its corporate strategies and notified DOE that it was not interesting in resuming the program when funding became available. AMSC expressed interest in assuming performance of the Agreement to Dupont and DOE, and in March 2005, this project was transferred to AMSC by DOE amendment to the original contract and Novation Agreement between AMSC and Dupont. Design drawings and some hardware components and subassemblies were transferred to AMSC. However, no funding was obligated by DOE and AMSC never performed work on the project. This report contains a summary of the work performed by Dupont up to the September 04 timeframe.

  16. Reluctance machines incorporating high temperature superconducting materials on the rotor

    NASA Astrophysics Data System (ADS)

    Rodrigues, A. L.; Pires, A. J.

    2010-01-01

    The computer modelling of reluctance machines with rotors containing both iron and high temperature superconducting (HTS) materials, using the finite element method (FEM), is presented in this paper. The modelling permits to obtain the field and stator current distribution from where reluctance torque is evaluated. Different solutions are analyzed and experimental results on a 2 kW reluctance motor using HTS materials on the rotor and cooled by liquid nitrogen, show a significant increase in the torque values, when compared with that of a correspondent conventional machine. Pre-magnetization of these rotors by field cooling is explained and this process gives a mechanical output power undoubtedly better than that of a conventional reluctance machine.

  17. JETC (Japanese Technology Evaluation Center) Panel Report on High Temperature Superconductivity in Japan

    NASA Technical Reports Server (NTRS)

    Shelton, Duane; Gamota, George

    1989-01-01

    The Japanese regard success in R and D in high temperature superconductivity as an important national objective. The results of a detailed evaluation of the current state of Japanese high temperature superconductivity development are provided. The analysis was performed by a panel of technical experts drawn from U.S. industry and academia, and is based on reviews of the relevant literature and visits to Japanese government, academic and industrial laboratories. Detailed appraisals are presented on the following: Basic research; superconducting materials; large scale applications; processing of superconducting materials; superconducting electronics and thin films. In all cases, comparisons are made with the corresponding state-of-the-art in the United States.

  18. The spin bag mechanism of high temperature superconductivity

    NASA Technical Reports Server (NTRS)

    Schrieffer, J. R.; Wen, X.-G.; Zhang, S.-C.

    1989-01-01

    In oxide superconductors the local suppression of antiferromagnetic correlations in the vicinity of a hole lowers the energy of the system. This quasi two-dimensional bag of weakened spin order follows the hole in its motion. In addition, holes prefer to share a bag, leading to a strong pairing attraction and a high Tc superconductivity. There are many experimental consequences of this mechanism for both the superconducting and normal phases.

  19. High-field magnets using high-critical-temperature superconducting thin films

    DOEpatents

    Mitlitsky, F.; Hoard, R.W.

    1994-05-10

    High-field magnets fabricated from high-critical-temperature superconducting ceramic (HTSC) thin films which can generate fields greater than 4 Tesla are disclosed. The high-field magnets are made of stackable disk-shaped substrates coated with HTSC thin films, and involves maximizing the critical current density, superconducting film thickness, number of superconducting layers per substrate, substrate diameter, and number of substrates while minimizing substrate thickness. The HTSC thin films are deposited on one or both sides of the substrates in a spiral configuration with variable line widths to increase the field. 4 figures.

  20. High-field magnets using high-critical-temperature superconducting thin films

    DOEpatents

    Mitlitsky, Fred; Hoard, Ronald W.

    1994-01-01

    High-field magnets fabricated from high-critical-temperature superconducting ceramic (HTSC) thin films which can generate fields greater than 4 Tesla. The high-field magnets are made of stackable disk-shaped substrates coated with HTSC thin films, and involves maximizing the critical current density, superconducting film thickness, number of superconducting layers per substrate, substrate diameter, and number of substrates while minimizing substrate thickness. The HTSC thin films are deposited on one or both sides of the substrates in a spiral configuration with variable line widths to increase the field.

  1. High-temperature study of superconducting hydrogen and deuterium sulfide

    NASA Astrophysics Data System (ADS)

    Durajski, A. P.; Szczȩśniak, R.; Pietronero, L.

    2016-05-01

    Hydrogen-rich compounds are extensively explored as candidates for a high-temperature superconductors. Currently, the measured critical temperature of $203$ K in hydrogen sulfide (H$_3$S) is among the highest over all-known superconductors. In present paper, using the strong-coupling Eliashberg theory of superconductivity, we compared in detail the thermodynamic properties of two samples containing different hydrogen isotopes H$_3$S and D$_3$S at $150$ GPa. Our research indicates that it is possible to reproduce the measured values of critical temperature $203$ K and $147$ K for H$_3$S and D$_3$S by using a Coulomb pseudopotential of $0.123$ and $0.131$, respectively. However, we also discuss a scenario in which the isotope effect is independent of pressure and the Coulomb pseudopotential for D$_3$S is smaller than for H$_3$S. For both scenarios, the energy gap, specific heat, thermodynamic critical field and related dimensionless ratios are calculated and compared with other conventional superconductors. We shown that the existence of the strong-coupling and retardation effects in the systems analysed result in significant differences between values obtained within the framework of the Eliashberg formalism and the prediction of the Bardeen-Cooper-Schrieffer theory.

  2. An overview of recent developments in high-temperature superconductivity

    SciTech Connect

    Falicov, L.M.

    1987-10-01

    The BCS theory, in all probability, will explain the properties of new superconducting oxide materials. However, a detailed account of why they have such an unusually high transition temperature will require much more work. The key to the answer to the theoretical questions may be found in the fact that all these materials are ceramics, i.e., bad conductors in their normal phase. In fact, they are ''almost insulators'', with strange and varied magnetic properties. And although the lattice polarization will certainly play a role (as shown by the isotope effect), the detailed motion of the electrons and the short-range Coulomb repulsion may give the unusual characteristics which result in high transition temperatures. From the point of view of practical applications and their implications in our everyday life, much can be speculated: transmission lines without any power losses, levitated trains, super-super-computers, new and not-yet-invented devices. But all these innovations will require the solution of complicated (and expensive to solve) materials problems (brittle, hard to handle ceramics; unstable phases; low critical currents) as well as a cool-headed economic analysis which this author is unable to provide. 13 refs.

  3. The infinite range Heisenberg model and high temperature superconductivity

    NASA Astrophysics Data System (ADS)

    Tahir-Kheli, Jamil

    1992-01-01

    The thesis deals with the theory of high temperature superconductivity from the standpoint of three-band Hubbard models.Chapter 1 of the thesis proposes a strongly coupled variational wavefunction that has the three-spin system of an oxygen hole and its two neighboring copper spins in a doublet and the background Cu spins in an eigenstate of the infinite range antiferromagnet. This wavefunction is expected to be a good "zeroth order" wavefunction in the superconducting regime of dopings. The three-spin polaron is stabilized by the hopping terms rather than the copper-oxygen antiferromagnetic coupling Jpd. Considering the effect of the copper-copper antiferromagnetic coupling Jdd, we show that the three-spin polaron cannot be pure Emery (Dg), but must have a non-negligible amount of doublet-u (Du) character for hopping stabilization. Finally, an estimate is made for the magnitude of the attractive coupling of oxygen holes.Chapter 2 presents an exact solution to a strongly coupled Hamiltonian for the motion of oxygen holes in a 1-D Cu-O lattice. The Hamiltonian separates into two pieces: one for the spin degrees of freedom of the copper and oxygen holes, and the other for the charge degrees of freedom of the oxygen holes. The spinon part becomes the Heisenberg antiferromagnet in 1-D that is soluble by the Bethe Ansatz. The holon piece is also soluble by a Bethe Ansatz with simple algebraic relations for the phase shifts.Finally, we show that the nearest neighbor Cu-Cu spin correlation increases linearly with doping and becomes positive at x [...] 0.70.

  4. Relevance of Phonons in High-Temperature Superconductivity

    NASA Astrophysics Data System (ADS)

    Egami, Takeshi; Chung, Jae-Ho; Piekarz, Przemek; Arai, Masatoshi; Tajima, Setsuko; Tachiki, Masashi

    2002-03-01

    For a long time phonons have been regarded to be irrelevant to high temperature superconductivity (HTSC). However, our recent measurements of phonon dispersion in YBCO with neutron inelastic scattering at MAPS of the ISIS and of electron dressing of phonons by x-ray inelastic scattering at the APS suggest otherwise. They show that the in-plane Cu-O bond-stretching mode interacts strongly with electrons, reflecting the SC order parameter, and the electronic structure is strongly anisotropic in the Cu-O plane. The results are consistent with the formation of a short-range stripe structure and a resonant vibronic state. We conjecture that the spin-charge stripe structure brings down the electronic energy scale close to those of phonons, creating the resonant condition. A model based upon overscreening of phonons by charge and formation of the vibronic state yields a SC transition temperature over 300K. While this magnitude may not be accurate it suggests that the phonons are likely to be closely involved in the mechanism of HTSC.

  5. Microwave response of high transition temperature superconducting thin films

    NASA Technical Reports Server (NTRS)

    Miranda, Felix Antonio

    1991-01-01

    We have studied the microwave response of YBa2Cu3O(7 - delta), Bi-Sr-Ca-Cu-O, and Tl-Ba-Ca-Cu-O high transition temperature superconducting (HTS) thin films by performing power transmission measurements. These measurements were carried out in the temperature range of 300 K to 20 K and at frequencies within the range of 30 to 40 GHz. Through these measurements we have determined the magnetic penetration depth (lambda), the complex conductivity (sigma(sup *) = sigma(sub 1) - j sigma(sub 2)) and the surface resistance (R(sub s)). An estimate of the intrinsic penetration depth (lambda approx. 121 nm) for the YBa2Cu3O(7 - delta) HTS has been obtained from the film thickness dependence of lambda. This value compares favorably with the best values reported so far (approx. 140 nm) in single crystals and high quality c-axis oriented thin films. Furthermore, it was observed that our technique is sensitive to the intrinsic anisotropy of lambda in this superconductor. Values of lambda are also reported for Bi-based and Tl-based thin films. We observed that for the three types of superconductors, both sigma(sub 1) and sigma(sub 2) increased when cooling the films below their transition temperature. The measured R(sub s) are in good agreement with other R(sub S) values obtained using resonant activity techniques if we assume a quadratic frequency dependence. Our analysis shows that, of the three types of HTS films studied, the YBa2Cu3O(7 - delta) thin film, deposited by laser ablation and off-axis magnetron sputtering are the most promising for microwave applications.

  6. High temperature superconductivity technology for advanced space power systems

    NASA Technical Reports Server (NTRS)

    Faymon, Karl A.; Myers, Ira T.; Connolly, Denis J.

    1990-01-01

    In 1987, the Lewis Research center of the NASA and the Argonne National Laboratory of the Department of Energy joined in a cooperative program to identify and assess high payoff space and aeronautical applications of high temperature superconductivity (HTSC). The initial emphasis of this effort was limited, and those space power related applications which were considered included microwave power transmission and magnetic energy storage. The results of these initial studies were encouraging and indicated the need of further studies. A continuing collaborative program with Argonne National Laboratory has been formulated and the Lewis Research Center is presently structuring a program to further evaluate HTSC, identify applications and define the requisite technology development programs for space power systems. This paper discusses some preliminary results of the previous evaluations in the area of space power applications of HTSC which were carried out under the joint NASA-DOE program, the future NASA-Lewis proposed program, its thrusts, and its intended outputs and give general insights on the anticipated impact of HTSC for space power applications of the future.

  7. Trial manufacture of liquid nitrogen cooling High Temperature Superconductivity Motor

    NASA Astrophysics Data System (ADS)

    Sugimoto, H.; Nishikawa, T.; Tsuda, T.; Hondou, Y.; Akita, Y.; Takeda, T.; Okazaki, T.; Ohashi, S.; Yoshida, Y.

    2006-06-01

    We present a new high temperature superconductivity (HTS) synchronous motor using the liquid nitrogen as the refrigerant in this paper. This motor is designed to be used as the propulsion motor in ship. Because we use the liquid nitrogen as the refrigerant, it is possible to simplify the cooling equipments in the motor. And in our design, we apply the axial flux type of motor to simplify the cryostat of the HTS wires used to make the field coils. Here, the fields using the bismuth HTS wire for the HTS coils are fixed. Moreover, the cores used in the fields are separated from cryostat, and the armature applies the core-less structure. According to various the electromagnetic field analysis results, the new motor was designed and produced. The diameter of the motor is 650mm, and the width of the motor is 360mm. The motor's rated output is 8.8kW at 100rpm, while the overload output is 44kW, and the maximum efficiency is 97.7%. Also, in order to further miniaturize the motor, other magnetic field analysis have been done when the high-current-density type HTS wire was used and the permendur was used instead of magnetic steel plates. In this case, the motor's rated output is 12kW, and the overload output is 60kW.

  8. A simple tuning method for high temperature superconducting microstrip filters

    NASA Astrophysics Data System (ADS)

    Pal, Srikanta; Stevens, Chris; Edwards, David

    2005-07-01

    In this paper we report a simple tuning methodology of high temperature superconducting (HTS) microstrip filters. In order to establish this new tuning approach a 5 pole lumped element HTS bandpass filter, centre frequency 800 MHz, narrowband (bandwidth, 7.6 MHz), is designed and fabricated on a 2 inch (diameter) Y Ba2Cu3O6.94 thin film of thickness 700 nm and lanthanum aluminate (LaAlO3) substrate of 0.5 mm thickness. The filter was etched using conventional photolithography and a wet chemical etching process. The 5 pole lumped element filter is tested in an integrated RF-cryocooler measurement system at 65 K and also in liquid nitrogen (77 K). We demonstrate a 19.3 MHz downward shift of the centre frequency of the 5 pole filter response. This is achieved by overlaying two layers of thin dielectric tape (PTFE) (50.0 µm thickness, permittivity 3.2) over the conducting patterned part of the filter surface. A full wave electromagnetic analysis of the dielectric environment of this tuning arrangement matches the measured response closely. To improve the passband response, the filter is tuned in liquid nitrogen, placing pieces of sapphire rods over the resonators of the filter layout.

  9. High temperature superconducting axial field magnetic coupler: realization and test

    NASA Astrophysics Data System (ADS)

    Belguerras, L.; Mezani, S.; Lubin, T.; Lévêque, J.; Rezzoug, A.

    2015-09-01

    Contactless torque transmission through a large airgap is required in some industrial applications in which hermetic isolation is necessary. This torque transmission usually uses magnetic couplers, whose dimension strongly depends on the airgap flux density. The use of high temperature superconducting (HTS) coils to create a strong magnetic field may constitute a solution to reduce the size of the coupler. It is also possible to use this coupler to replace a torque tube in transmitting the torque produced by a HTS motor to its load. This paper presents the detailed construction and tests of an axial field HTS magnetic coupler. Pancake coils have been manufactured from BSCCO tape and used in one rotor of the coupler. The second rotor is mainly composed of NdFeB permanent magnets. Several tests have been carried out showing that the constructed coupler is working properly. A 3D finite element (FE) model of the studied coupler has been developed. Airgap magnetic field and torque measurements have been carried out and compared to the FE results. It has been shown that the measured and the computed quantities are in satisfactory agreement.

  10. High Temperature Superconducting Thin Films and Their Application to Superconducting-Normal Devices.

    NASA Astrophysics Data System (ADS)

    Mankiewich, Paul M.

    The existence of the proximity effect between the high temperature superconductor YBa_2Cu _3O_7 (YBCO) and normal metal thin films has been demonstrated for the first time, and this effect has been exploited to produce lithographically fabricated superconducting-normal-superconducting (SNS) Josephson junctions. Improvement of the fabrication processes has led to new methods of in-situ film growth and plasma etching of YBCO, as well as YBCO-compatible processes for the deep -ultraviolet and electron-beam lithography required to fabricate submicron device structures. This proximity effect approach helps to circumvent the short coherence length (xi~3 nm) characteristic of the high T_ {c} superconductors. In a clean normal metal such as gold or silver the relevant coherence length is governed by the higher Fermi velocity and longer mean free path. As a result a Josephson device containing a normal metal weak link can be longer than an ideal all -YBCO microbridge (dimensions comparable to xi ). This makes fabrication possible. Initially, SNS devices were fabricated and showed evidence for a supercurrent through the normal region. Properly spaced Shapiro steps as a function of microwave frequency were also observed. This result was evidence for a proximity effect between a normal metal and YBCO. Nevertheless, due to the short coherence length and the sensitivity of the YBCO to damage, the fabrication process was not sufficiently reproducible. As a result, new techniques were developed to enable more reproducible device fabrication. In-situ film growth and fabrication is desirable to minimize contamination of and damage to the surface of the superconductor. In -situ reactive coevaporation of YBCO was demonstrated. Patterning of these in-situ films into a structure required the development of a low-damage reactive ion etch. New lithographic techniques were developed to minimize chemical degradation of the superconductor. Finally, deposition of gold onto heated device

  11. Infinite-range Heisenberg model and high-temperature superconductivity

    NASA Astrophysics Data System (ADS)

    Tahir-Kheli, Jamil; Goddard, William A., III

    1993-11-01

    A strongly coupled variational wave function, the doublet spin-projected Néel state (DSPN), is proposed for oxygen holes in three-band models of high-temperature superconductors. This wave function has the three-spin system of the oxygen hole plus the two neighboring copper atoms coupled in a spin-1/2 doublet. The copper spins in the neighborhood of a hole are in an eigenstate of the infinite-range Heisenberg antiferromagnet (SPN state). The doublet three-spin magnetic polaron or hopping polaron (HP) is stabilized by the hopping terms tσ and tτ, rather than by the copper-oxygen antiferromagnetic coupling Jpd. Although, the HP has a large projection onto the Emery (Dg) polaron, a non-negligible amount of doublet-u (Du) character is required for optimal hopping stabilization. This is due to Jdd, the copper-copper antiferromagnetic coupling. For the copper spins near an oxygen hole, the copper-copper antiferromagnetic coupling can be considered to be almost infinite ranged, since the copper-spin-correlation length in the superconducting phase (0.06-0.25 holes per in-plane copper) is approximately equal to the mean separation of the holes (between 2 and 4 lattice spacings). The general DSPN wave function is constructed for the motion of a single quasiparticle in an antiferromagnetic background. The SPN state allows simple calculations of various couplings of the oxygen hole with the copper spins. The energy minimum is found at symmetry (π/2,π/2) and the bandwidth scales with Jdd. These results are in agreement with exact computations on a lattice. The coupling of the quasiparticles leads to an attraction of holes and its magnitude is estimated.

  12. A Transverse Flux High-Temperature Superconducting Generator Topology for Large Direct Drive Wind Turbines

    NASA Astrophysics Data System (ADS)

    Keysan, Ozan; Mueller, Markus A.

    The cost and mass of an offshore wind turbine power-train can be reduced by using high-temperature superconducting generators, but for a successful commercial design the superconducting generator should be as reliable as its alternatives. In this paper, we present a novel transverse flux superconducting generator topology which is suitable for low-speed, high-torque applications. The generator is designed with a stationary superconducting field winding and a variable reluctance claw pole motor for simplified mechanical structure and maximum reliability. 3D FEA simulation results of a 70 kW prototype is presented.

  13. A novel excitonic mechanism for high temperature superconductivity

    SciTech Connect

    Tesanovic, Z.; Bishop, A.R.; Martin, R.L.

    1988-01-01

    We propose a novel mechanism for superconductivity, based on intra and interband Cu/longleftrightarrow/O charge transfer excitations in oxide superconductors. The dynamic polarizability of the environment surrounding CuO/sup 2/ planes plays an important role in enhancing T/sub c/. The ''sandwich'' structure in which CuO/sub 2/ planes are separated by a highly polarizable medium is ideally suited for this mechanism. Our proposal is consistent with a variety of available data, and suggests several new experimental directions. 9 refs., 2 figs.

  14. Recovery time of high temperature superconducting tapes exposed in liquid nitrogen

    NASA Astrophysics Data System (ADS)

    Sheng, Jie; Zeng, Weina; Yao, Zhihao; Zhao, Anfeng; Hu, Daoyu; Hong, Zhiyong

    2016-08-01

    The recovery time is a crucial parameter to high temperature superconducting tapes, especially in power applications. The cooperation between the reclosing device and the superconducting facilities mostly relies on the recovery time of the superconducting tapes. In this paper, a novel method is presented to measure the recovery time of several different superconducting samples. In this method criterion used to judge whether the sample has recovered is the liquid nitrogen temperature, instead of the critical temperature. An interesting phenomenon is observed during the testing of superconducting samples exposed in the liquid nitrogen. Theoretical explanations of this phenomenon are presented from the aspect of heat transfer. Optimization strategy of recovery characteristics based on this phenomenon is also briefly discussed.

  15. Exploratory research for a high temperature superconducting integrated circuit

    NASA Astrophysics Data System (ADS)

    Track, E. K.; Mukhanov, O.; Eckstein, J. N.; Bozovic, I.; Virshup, G. F.

    1993-09-01

    The objective of this effort was the investigation of the molecular beam epitaxy trilayer Josephson junction process under development by Varian Corporation. Under this effort, Stanford University provided fundamental materials characterization to understand and improve the surfaces and interfaces of the thin film structures. HYPRES Inc. provided an independent assessment of the junctions produced by Varian and addressed the possibilities of rapid single fluxquantum (RSFQ) circuit designs. The material system chosen for this investigation was bismuth strontium calcium copper oxide (BSSCO). The Josephson junction character of the devices was confirmed by the observation of microwave induced (Shapior) steps in the I-V curves. Contact resistance was reduced by three orders of magnitude by modulation doping the top few molecular layers of the upper superconductive electrode. The desired properties to warrant RSFQ circuit fabrication were not obtained. A material system with a higher Josephson junction critical temperature and higher critical current is necessary for circuits.

  16. Effect of ‘microwave window’ on the performance of high temperature superconducting antenna

    NASA Astrophysics Data System (ADS)

    Zhu, M. H.; Cao, B. S.; Huang, H. S.; Zhang, X. X.; Liu, T.; Liu, T. J.; Tu, G. B.; Jin, S. L.; Zhou, Y. L.; He, M.; Cui, D. F.

    We studied the effect of ‘microwave window’ on the performance of a high temperature superconducting antenna that was installed in a metal dewar with a low temperature superconducting magnet inside. Although the window was in the antenna's near and Fresnel zones, the signal attenuation induced by the ‘microwave window’ can be reduced to less than 1 dB in the far field. The configuration of the ‘microwave window’ is also presented.

  17. Damping and support in high-temperature superconducting levitation systems

    DOEpatents

    Hull, John R.; McIver, Carl R.; Mittleider, John A.

    2009-12-15

    Methods and apparatuses to provide improved auxiliary damping for superconducting bearings in superconducting levitation systems are disclosed. In a superconducting bearing, a cryostat housing the superconductors is connected to a ground state with a combination of a damping strip of material, a set of linkage arms to provide vertical support, and spring washers to provide stiffness. Alternately, the superconducting bearing may be supported by a cryostat connected to a ground state by posts constructed from a mesh of fibers, with the damping and stiffness controlled by the fiber composition, size, and mesh geometry.

  18. High temperature superconductivity in sulfur and selenium hydrides at high pressure

    NASA Astrophysics Data System (ADS)

    Flores-Livas, José A.; Sanna, Antonio; Gross, E. K. U.

    2016-03-01

    Due to its low atomic mass, hydrogen is the most promising element to search for high-temperature phononic superconductors. However, metallic phases of hydrogen are only expected at extreme pressures (400 GPa or higher). The measurement of the record superconducting critical temperature of 203 K in a hydrogen-sulfur compound at 160 GPa of pressure [A.P. Drozdov, M.I. Eremets, I.A. Troyan, arXiv:1412.0460 [cond-mat.supr-con] (2014); A.P. Drozdov, M.I. Eremets, I.A. Troyan, V. Ksenofontov, S.I. Shylin, Nature 525, 73 (2015)], shows that metallization of hydrogen can be reached at significantly lower pressure by inserting it in the matrix of other elements. In this work we investigate the phase diagram and the superconducting properties of the H-S systems by means of minima hopping method for structure prediction and density functional theory for superconductors. We also show that Se-H has a similar phase diagram as its sulfur counterpart as well as high superconducting critical temperature. We predict H3Se to exceed 120 K superconductivity at 100 GPa. We show that both H3Se and H3S, due to the critical temperature and peculiar electronic structure, present rather unusual superconducting properties. Supplementary material in the form of one pdf file available from the Journal web page at: http://dx.doi.org/10.1140/epjb/e2016-70020-0

  19. High Temperature Superconducting Bearings for Lunar Telescope Mounts

    NASA Technical Reports Server (NTRS)

    Lamb, Mark; BuiMa, Ki; Cooley, Rodger; Mackey, Daniel; Meng, Ruling; Chu, Ching Wu; Chu, Wei Kan; Chen, Peter C.; Wilson, Thomas

    1995-01-01

    A telescope to be installed on the lunar surface in the near future must work in a cold and dusty vacuum environment for long periods without on site human maintenance. To track stars, the drive mechanism must be capable of exceedingly fine steps and repeatability. Further, the use of lightweight telescopes for obvious economic benefits burdens the requirement for stable support and rotation. Conventional contact bearings and gear drives have numerous failure modes under such a restrictive and harsh environment. However, hybrid superconducting magnetic bearings (HSMB) fit in naturally. These bearings are stable, light, passive, and essentially frictionless, allowing high precision electronic positioning control. By passive levitation, the HSMB does not wear out and requires neither maintenance nor power. A prototype illustrating the feasibility of this application is presented.

  20. Method and apparatus for connecting high voltage leads to a high temperature super-conducting transformer

    DOEpatents

    Golner, Thomas M.; Mehta, Shirish P.

    2005-07-26

    A method and apparatus for connecting high voltage leads to a super-conducting transformer is provided that includes a first super-conducting coil set, a second super-conducting coil set, and a third super-conducting coil set. The first, second and third super-conducting coil sets are connected via an insulated interconnect system that includes insulated conductors and insulated connectors that are utilized to connect the first, second, and third super-conducting coil sets to the high voltage leads.

  1. The phenomenology of high-temperature superconductive materials

    NASA Astrophysics Data System (ADS)

    Gray, K. E.

    2002-01-01

    High-temperature superconductors offer considerable promise for high current applications. Some of the relevant issues, such as materials, grain boundaries and dissipation, will be introduced and both the fundamental and practical aspects will be addressed. For example, the first generation powder-in-tube wires based on the bismuth cuprate have restricted high field performance at liquid nitrogen temperature due to the weak inter-bilayer coupling of magnetic vortices. The second generation coated conductor uses YBa2Cu3O7 to overcome this, but it requires a high degree of biaxial texturing in order to provide notable performance in high fields in liquid nitrogen. .

  2. Performance evaluation of high-temperature superconducting current leads for micro-SMES systems

    SciTech Connect

    Niemann, R.C.; Cha, Y.S.; Hull, J.R.; Buckles, W.E.; Weber, B.R.; Yang, S.T.

    1995-08-01

    As part of the US Department of Energy`s Superconductivity Technology Program, Argonne National Laboratory and Superconductivity, Inc., are developing high-temperature superconductor (HTS) current leads for application to micro-superconducting magnetic energy storage systems. Two 1500-A HTS leads have been designed and constructed. The performance of the current lead assemblies is being evaluated in a zero-magnetic-field test program that includes assembly procedures, tooling, and quality assurance; thermal and electrical performance; and flow and mechanical characteristics. Results of evaluations performed to data are presented.

  3. Preisach-type modeling of high-temperature superconducting hysteresis

    NASA Astrophysics Data System (ADS)

    ElBidweihy, Hatem

    2016-05-01

    Even though Isaak Mayergoyz described it as: "much more accurate for the description of superconducting hysteresis than for the description of hysteresis of magnetic materials", Preisach modeling of superconducting hysteresis is not a popular investigative tool. This might be due to the complexity of identifying the Preisach distribution function or due to lack of convincing physical reasoning behind pure phenomenological versions. In this paper, a two-component Preisach-type model is presented which is computationally-efficient and physically-sound. The change in the slope of the minor hysteresis loops is incorporated in the model and is attributed to reversible fluxoid motion. The model presented is clearly capable of simulating various shapes of superconducting hysteresis loops and could be easily coupled with finite element method (FEM) numerical software.

  4. Hidden Fermionic Excitation Boosting High-Temperature Superconductivity in Cuprates.

    PubMed

    Sakai, Shiro; Civelli, Marcello; Imada, Masatoshi

    2016-02-01

    The dynamics of a microscopic cuprate model, namely, the two-dimensional Hubbard model, is studied with a cluster extension of the dynamical mean-field theory. We find a nontrivial structure of the frequency-dependent self-energies, which describes an unprecedented interplay between the pseudogap and superconductivity. We show that these properties are well described by quasiparticles hybridizing with (hidden) fermionic excitations, emergent from the strong electronic correlations. The hidden fermion enhances superconductivity via a mechanism distinct from a conventional boson-mediated pairing, and originates the normal-state pseudogap. Though the hidden fermion is elusive in experiments, it can solve many experimental puzzles. PMID:26894730

  5. Hidden Fermionic Excitation Boosting High-Temperature Superconductivity in Cuprates

    NASA Astrophysics Data System (ADS)

    Sakai, Shiro; Civelli, Marcello; Imada, Masatoshi

    2016-02-01

    The dynamics of a microscopic cuprate model, namely, the two-dimensional Hubbard model, is studied with a cluster extension of the dynamical mean-field theory. We find a nontrivial structure of the frequency-dependent self-energies, which describes an unprecedented interplay between the pseudogap and superconductivity. We show that these properties are well described by quasiparticles hybridizing with (hidden) fermionic excitations, emergent from the strong electronic correlations. The hidden fermion enhances superconductivity via a mechanism distinct from a conventional boson-mediated pairing, and originates the normal-state pseudogap. Though the hidden fermion is elusive in experiments, it can solve many experimental puzzles.

  6. High temperature superconductivity research in selected laboratories in West Germany

    NASA Astrophysics Data System (ADS)

    Liebenberg, Donald H.; Clark, Alan

    1988-07-01

    The superconductivity work at eight West German laboratories is reviewed. The laboratories are (or located at): the University of Giessen; the Technical University at Darmstadt; Hoechst AG; Siemens AG; KFA Julich; KFK, Karlsruhe; the Walter Meissner Institute, Garching; and the Max Planck Institute, Stuttgart.

  7. 630 kVA high temperature superconducting transformer

    NASA Astrophysics Data System (ADS)

    Zueger, H.

    This document describes the 630 KVA HTS transformer project made by ABB jointly with EDF and ASC. The project started April 1994 and its goal was to manufacture a real scale superconducting distribution transformer and to operate it during one year in the grid of Geneva's utility (SIG). The conclusion highlights the future perspective of HTS transformers.

  8. High temperature superconductive microwave technology for space applications

    NASA Technical Reports Server (NTRS)

    Leonard, R. F.; Connolly, D. J.; Bhasin, K. B.; Warner, J. D.; Alterovitz, S. A.

    1991-01-01

    Progress being made on space application technology research on film fabrication, passive microwave circuits, and semiconductor devices for cryogenic circuits is reviewed. Achievements in YBCO and TCBCO films are addressed along with circuit evaluations of microstrip resonators, phase shifters, microstrip filters, dielectric resonator filters, and superconducting antennas.

  9. Doping dependence of spin excitations and its correlations with high-temperature superconductivity in iron pnictides

    PubMed Central

    Wang, Meng; Zhang, Chenglin; Lu, Xingye; Tan, Guotai; Luo, Huiqian; Song, Yu; Wang, Miaoyin; Zhang, Xiaotian; Goremychkin, E.A.; Perring, T.G.; Maier, T.A.; Yin, Zhiping; Haule, Kristjan; Kotliar, Gabriel; Dai, Pengcheng

    2013-01-01

    High-temperature superconductivity in iron pnictides occurs when electrons and holes are doped into their antiferromagnetic parent compounds. Since spin excitations may be responsible for electron pairing and superconductivity, it is important to determine their electron/hole-doping evolution and connection with superconductivity. Here we use inelastic neutron scattering to show that while electron doping to the antiferromagnetic BaFe2As2 parent compound modifies the low-energy spin excitations and their correlation with superconductivity (<50 meV) without affecting the high-energy spin excitations (>100 meV), hole-doping suppresses the high-energy spin excitations and shifts the magnetic spectral weight to low-energies. In addition, our absolute spin susceptibility measurements for the optimally hole-doped iron pnictide reveal that the change in magnetic exchange energy below and above Tc can account for the superconducting condensation energy. These results suggest that high-Tc superconductivity in iron pnictides is associated with both the presence of high-energy spin excitations and a coupling between low-energy spin excitations and itinerant electrons. PMID:24301219

  10. The Fabrication Technique and Property Analysis of Racetrack-Type High Temperature Superconducting Magnet for High Power Motor

    NASA Astrophysics Data System (ADS)

    Xie, S. F.; Wang, Y.; Wang, D. Y.; Zhang, X. J.; Zhao, B.; Zhang, Y. Y.; Li, L.; Li, Y. N.; Chen, P. M.

    2013-03-01

    The superconducting motor is now the focus of the research on the application of high temperature superconducting (HTS) materials. In this manuscript, we mainly introduce the recent progress on the fabrication technique and property research of the superconducting motor magnet in Luoyang Ship Material Research Institute (LSMRI) in China, including the materials, the winding and impregnation technique, and property measurement of magnet. Several techniques and devices were developed to manufacture the magnet, including the technique of insulation and thermal conduction, the device for winding the racetrack-type magnet, etc. At last, the superconducting magnet used for the MW class motor were successfully developed, which is the largest superconducting motor magnet in china at present. The critical current of the superconducting magnet exceeds the design value (90 A at 30 K).

  11. Thermodynamics of the interplay between magnetism and high-temperature superconductivity

    PubMed Central

    Kivelson, Steven A.; Aeppli, G.; Emery, Victor J.

    2001-01-01

    Copper–oxide-based high-temperature superconductors have complex phase diagrams with multiple ordered phases. It even appears that the highest superconducting transition temperatures for certain cuprates are found in samples that display simultaneous onset of magnetism and superconductivity. We show here how the thermodynamics of fluid mixtures—a touchstone for chemistry as well as hard and soft condensed matter physics—accounts for this startling observation, as well as many other properties of the cuprates in the vicinity of the instability toward “striped” magnetism. PMID:11593001

  12. From quantum matter to high-temperature superconductivity in copper oxides.

    PubMed

    Keimer, B; Kivelson, S A; Norman, M R; Uchida, S; Zaanen, J

    2015-02-12

    The discovery of high-temperature superconductivity in the copper oxides in 1986 triggered a huge amount of innovative scientific inquiry. In the almost three decades since, much has been learned about the novel forms of quantum matter that are exhibited in these strongly correlated electron systems. A qualitative understanding of the nature of the superconducting state itself has been achieved. However, unresolved issues include the astonishing complexity of the phase diagram, the unprecedented prominence of various forms of collective fluctuations, and the simplicity and insensitivity to material details of the 'normal' state at elevated temperatures. PMID:25673411

  13. Phase Diagram and High-Temperature Superconductivity of Compressed Selenium Hydrides.

    PubMed

    Zhang, Shoutao; Wang, Yanchao; Zhang, Jurong; Liu, Hanyu; Zhong, Xin; Song, Hai-Feng; Yang, Guochun; Zhang, Lijun; Ma, Yanming

    2015-01-01

    Recent discovery of high-temperature superconductivity (Tc = 190 K) in sulfur hydrides at megabar pressures breaks the traditional belief on the Tc limit of 40 K for conventional superconductors, and opens up the doors in searching new high-temperature superconductors in compounds made up of light elements. Selenium is a sister and isoelectronic element of sulfur, with a larger atomic core and a weaker electronegativity. Whether selenium hydrides share similar high-temperature superconductivity remains elusive, but it is a subject of considerable interest. First-principles swarm structure predictions are performed in an effort to seek for energetically stable and metallic selenium hydrides at high pressures. We find the phase diagram of selenium hydrides is rather different from its sulfur analogy, which is indicated by the emergence of new phases and the change of relative stabilities. Three stable and metallic species with stoichiometries of HSe2, HSe and H3Se are identified above ~120 GPa and they all exhibit superconductive behaviors, of which the hydrogen-rich HSe and H3Se phases show high Tc in the range of 40-110 K. Our simulations established the high-temperature superconductive nature of selenium hydrides and provided useful route for experimental verification. PMID:26490223

  14. Phase Diagram and High-Temperature Superconductivity of Compressed Selenium Hydrides

    NASA Astrophysics Data System (ADS)

    Zhang, Shoutao; Wang, Yanchao; Zhang, Jurong; Liu, Hanyu; Zhong, Xin; Song, Hai-Feng; Yang, Guochun; Zhang, Lijun; Ma, Yanming

    2015-10-01

    Recent discovery of high-temperature superconductivity (Tc = 190 K) in sulfur hydrides at megabar pressures breaks the traditional belief on the Tc limit of 40 K for conventional superconductors, and opens up the doors in searching new high-temperature superconductors in compounds made up of light elements. Selenium is a sister and isoelectronic element of sulfur, with a larger atomic core and a weaker electronegativity. Whether selenium hydrides share similar high-temperature superconductivity remains elusive, but it is a subject of considerable interest. First-principles swarm structure predictions are performed in an effort to seek for energetically stable and metallic selenium hydrides at high pressures. We find the phase diagram of selenium hydrides is rather different from its sulfur analogy, which is indicated by the emergence of new phases and the change of relative stabilities. Three stable and metallic species with stoichiometries of HSe2, HSe and H3Se are identified above ~120 GPa and they all exhibit superconductive behaviors, of which the hydrogen-rich HSe and H3Se phases show high Tc in the range of 40-110 K. Our simulations established the high-temperature superconductive nature of selenium hydrides and provided useful route for experimental verification.

  15. Phase Diagram and High-Temperature Superconductivity of Compressed Selenium Hydrides

    PubMed Central

    Zhang, Shoutao; Wang, Yanchao; Zhang, Jurong; Liu, Hanyu; Zhong, Xin; Song, Hai-Feng; Yang, Guochun; Zhang, Lijun; Ma, Yanming

    2015-01-01

    Recent discovery of high-temperature superconductivity (Tc = 190 K) in sulfur hydrides at megabar pressures breaks the traditional belief on the Tc limit of 40 K for conventional superconductors, and opens up the doors in searching new high-temperature superconductors in compounds made up of light elements. Selenium is a sister and isoelectronic element of sulfur, with a larger atomic core and a weaker electronegativity. Whether selenium hydrides share similar high-temperature superconductivity remains elusive, but it is a subject of considerable interest. First-principles swarm structure predictions are performed in an effort to seek for energetically stable and metallic selenium hydrides at high pressures. We find the phase diagram of selenium hydrides is rather different from its sulfur analogy, which is indicated by the emergence of new phases and the change of relative stabilities. Three stable and metallic species with stoichiometries of HSe2, HSe and H3Se are identified above ~120 GPa and they all exhibit superconductive behaviors, of which the hydrogen-rich HSe and H3Se phases show high Tc in the range of 40–110 K. Our simulations established the high-temperature superconductive nature of selenium hydrides and provided useful route for experimental verification. PMID:26490223

  16. High temperature superconducting current lead test facility with heat pipe intercepts

    SciTech Connect

    Blumenfeld, P.E.; Prenger, C.; Roth, E.W.; Stewart, J.A.

    1998-12-31

    A high temperature superconducting (HTS) current lead test facility using heat pipe thermal intercepts is under development at the Superconducting Technology Center at Los Alamos National Laboratory. The facility can be configured for tests at currents up to 1,000 A. Mechanical cryocoolers provide refrigeration to the leads. Electrical isolation is maintained by intercepting thermal energy from the leads through cryogenic heat pipes. HST lead warm end temperature is variable from 65 K to over 90 K by controlling heat pipe evaporator temperature. Cold end temperature is variable up to 30 K. Performance predictions in terms of heat pipe evaporator temperature as a function of lead current are presented for the initial facility configuration, which supports testing up to 200 A. Measurements are to include temperature and voltage gradient in the conventional and HTS lead sections, temperature and heat transfer rate in the heat pipes. as well as optimum and off-optimum performance of the conventional lead sections.

  17. Narrowband high temperature superconducting receiver for low frequency radio waves

    DOEpatents

    Reagor, David W.

    2001-01-01

    An underground communicating device has a low-noise SQUID using high temperature superconductor components connected to detect a modulated external magnetic flux for outputting a voltage signal spectrum that is related to the varying magnetic flux. A narrow bandwidth filter may be used to select a portion of the voltage signal spectrum that is relatively free of power line noise to output a relatively low noise output signal when operating in a portion of the electromagnetic spectra where such power line noise exists. A demodulator outputs a communication signal, which may be an FM signal, indicative of a modulation on the modulated external magnetic flux.

  18. No mixing of superconductivity and antiferromagnetism in a high-temperature superconductor.

    PubMed

    Bozovic, I; Logvenov, G; Verhoeven, M A J; Caputo, P; Goldobin, E; Geballe, T H

    2003-04-24

    There is still no universally accepted theory of high-temperature superconductivity. Most models assume that doping creates 'holes' in the valence band of an insulating, antiferromagnetic 'parent' compound, and that antiferromagnetism and high-temperature superconductivity are intimately related. If their respective energies are nearly equal, strong antiferromagnetic fluctuations (temporally and spatially restricted antiferromagnetic domains) would be expected in the superconductive phase, and superconducting fluctuations would be expected in the antiferromagnetic phase; the two states should 'mix' over an extended length scale. Here we report that one-unit-cell-thick antiferromagnetic La2CuO4 barrier layers remain highly insulating and completely block a supercurrent; the characteristic decay length is 1 A, indicating that the two phases do not mix. We likewise found that isolated one-unit-cell-thick layers of La1.85Sr0.15CuO4 remain superconducting. The latter further implies that, on doping, new electronic states are created near the middle of the bandgap. These two findings are in conflict with most proposed models, with a few notable exceptions that include postulated spin-charge separation. PMID:12712200

  19. High-temperature superconductivity in potassium-coated multilayer FeSe thin films

    NASA Astrophysics Data System (ADS)

    Miyata, Y.; Nakayama, K.; Sugawara, K.; Sato, T.; Takahashi, T.

    2015-08-01

    The recent discovery of possible high-temperature (Tc) superconductivity over 65 K in a monolayer FeSe film on SrTiO3 (refs , , , , , ) triggered a fierce debate on how superconductivity evolves from bulk to film, because bulk FeSe crystal exhibits a Tc of no higher than 10 K (ref. ). However, the difficulty in controlling the carrier density and the number of FeSe layers has hindered elucidation of this problem. Here, we demonstrate that deposition of potassium onto FeSe films markedly expands the accessible doping range towards the heavily electron-doped region. Intriguingly, we have succeeded in converting non-superconducting films with various thicknesses into superconductors with Tc as high as 48 K. We also found a marked increase in the magnitude of the superconducting gap on decreasing the FeSe film thickness, indicating that the interface plays a crucial role in realizing the high-temperature superconductivity. The results presented provide a new strategy to enhance and optimize Tc in ultrathin films of iron-based superconductors.

  20. High temperature superconducting microwave switch. Interim report, April 1995-June 1996

    SciTech Connect

    Neel, M.M.

    1996-12-01

    This report presents the design, construction, and testing of a high temperature superconducting microwave switch. The circuit is implemented in microstrip transmission line geometry and utilizes voltage and or current to create the switching action. Results of RF power limiting are also presented.

  1. Spacecraft design project: High temperature superconducting infrared imaging satellite

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The High Temperature Superconductor Infrared Imaging Satellite (HTSCIRIS) is designed to perform the space based infrared imaging and surveillance mission. The design of the satellite follows the black box approach. The payload is a stand alone unit, with the spacecraft bus designed to meet the requirements of the payload as listed in the statement of work. Specifications influencing the design of the spacecraft bus were originated by the Naval Research Lab. A description of the following systems is included: spacecraft configuration, orbital dynamics, radio frequency communication subsystem, electrical power system, propulsion, attitude control system, thermal control, and structural design. The issues of testing and cost analysis are also addressed. This design project was part of the course Advanced Spacecraft Design taught at the Naval Postgraduate School.

  2. High Temperature Superconducting Terahertz Emitters with Various Mesa Structures

    NASA Astrophysics Data System (ADS)

    Delfanazari, Kaveh; Tsujimoto, M.; Kashiwagi, T.; Asai, H.; Kitamura, T.; Yamamoto, T.; Sawamura, M.; Ishida, K.; Watanabe, C.; Sekimoto, S.; Minami, H.; Tachiki, M.; Hattori, T.; Klemm, R. A.; Kadowaki, K.

    2013-03-01

    In 2007, the first observation of the coherent terahertz (THz) electromagnetic (EM) waves from a mesa structures of intrinsic Josephson junctions (IJJs) in high temperature superconductor Bi2Sr2CaCu2O8+δ (Bi-2212) is reported. The ac-Josephson effect as well as the cavity resonance conditions is considered as the principle mechanism of the THz radiation. In order to understand the cavity effect in THz radiation from IJJ mesas more clearly, we studied mesas with various geometries; various kinds of triangles, and pentagonal mesas with various sizes and thicknesses. The focused ion beam (FIB) milling technique is used in all mesa fabrications. In this talk, we discuss our recent progress in THz emission observation in pentagonal mesas. This work has been supported in part by CREST-JST (Japan Science and Technology Agency), WPI-MANA project (NIMS).

  3. High-temperature superconductivity in a single copper-oxygen plane.

    PubMed

    Logvenov, G; Gozar, A; Bozovic, I

    2009-10-30

    The question of how thin cuprate layers can be while still retaining high-temperature superconductivity (HTS) has been challenging to address, in part because experimental studies require the synthesis of near-perfect ultrathin HTS layers and ways to profile the superconducting properties such as the critical temperature and the superfluid density across interfaces with atomic resolution. We used atomic-layer molecular beam epitaxy to synthesize bilayers of a cuprate metal (La(1.65)Sr(0.45)CuO4) and a cuprate insulator (La2CuO4) in which each layer is just three unit cells thick. We selectively doped layers with isovalent Zn atoms, which suppress superconductivity and act as markers, to show that this interface HTS occurs within a single CuO2 plane. This approach may also be useful in fabricating HTS devices. PMID:19900926

  4. High-Temperature Superconductivity in a Single Copper-Oxygen Plane

    SciTech Connect

    Logvenov, G.; Gozar, A.; Bozovic, I.

    2009-10-30

    The question of how thin cuprate layers can be while still retaining high-temperature superconductivity (HTS) has been challenging to address, in part because experimental studies require the synthesis of near-perfect ultrathin HTS layers and ways to profile the superconducting properties such as the critical temperature and the superfluid density across interfaces with atomic resolution. We used atomic-layer molecular beam epitaxy to synthesize bilayers of a cuprate metal (La{sub 1.65}Sr{sub 0.45}CuO{sub 4}) and a cuprate insulator (La{sub 2}CuO{sub 4}) in which each layer is just three unit cells thick. We selectively doped layers with isovalent Zn atoms, which suppress superconductivity and act as markers, to show that this interface HTS occurs within a single CuO{sub 2} plane. This approach may also be useful in fabricating HTS devices.

  5. High-temperature interface superconductivity between metallic and insulating copper oxides.

    PubMed

    Gozar, A; Logvenov, G; Kourkoutis, L Fitting; Bollinger, A T; Giannuzzi, L A; Muller, D A; Bozovic, I

    2008-10-01

    The realization of high-transition-temperature (high-T(c)) superconductivity confined to nanometre-sized interfaces has been a long-standing goal because of potential applications and the opportunity to study quantum phenomena in reduced dimensions. This has been, however, a challenging target: in conventional metals, the high electron density restricts interface effects (such as carrier depletion or accumulation) to a region much narrower than the coherence length, which is the scale necessary for superconductivity to occur. By contrast, in copper oxides the carrier density is low whereas T(c) is high and the coherence length very short, which provides an opportunity-but at a price: the interface must be atomically perfect. Here we report superconductivity in bilayers consisting of an insulator (La(2)CuO(4)) and a metal (La(1.55)Sr(0.45)CuO(4)), neither of which is superconducting in isolation. In these bilayers, T(c) is either approximately 15 K or approximately 30 K, depending on the layering sequence. This highly robust phenomenon is confined within 2-3 nm of the interface. If such a bilayer is exposed to ozone, T(c) exceeds 50 K, and this enhanced superconductivity is also shown to originate from an interface layer about 1-2 unit cells thick. Enhancement of T(c) in bilayer systems was observed previously but the essential role of the interface was not recognized at the time. PMID:18843365

  6. A universal scaling behavior in magnetic resonance peak in high temperature superconductivity

    NASA Astrophysics Data System (ADS)

    Shin, Seung Joon; Salk, Sung-Ho Suck

    2015-08-01

    Eminent inelastic neutron scattering (INS) measurements of high temperature cuprates currently lacking theoretical interpretations are the observed temperature dependence of magnetic resonance peak and linear scaling relation between the resonance peak energy, Eres and the superconducting transition temperature, Tc. Using our slave-boson approach of the t-J Hamiltonian (Phys. Rev. 64, 052501 (2001)) for this study, we show that starting from the pseudogap temperature T∗, the magnetic resonance peak increases with decreasing temperature, revealing its inflection point at Tc and that spin pairing correlations are responsible for d-wave superconductivity. We find that there exists a universal linear scaling behavior of Eres/Tc = const., irrespective of the Heisenberg exchange coupling.

  7. Noise properties of high-temperature superconducting dc-SQUID gradiometers

    NASA Astrophysics Data System (ADS)

    Seidel, P.; Becker, C.; Steppke, A.; Foerster, T.; Wunderlich, S.; Grosse, V.; Pietzcker, R.; Schmidl, F.

    2007-09-01

    We have developed different types of superconducting magnetic field sensors based on high temperature superconducting (HTS) thin films. Here, we describe the fabrication of single layer dc-SQUID gradiometers with bicrystal Josephson junctions for operation in a flip-chip configuration to improve sensor performance. High-quality thin films are known to be essential in achieving suitable electrical properties in these superconducting devices. The influence of sample processing on sensor performance is discussed. The most important parameter for practical applications is the field gradient resolution of the investigated dc-SQUID sensors. To determine this parameter for different gradiometer layouts we measured their noise properties in unshielded as well as magnetically or electrically shielded environments.

  8. Progress in Nanoengineered Microstructures for Tunable High-Current, High-Temperature Superconducting Wires

    SciTech Connect

    Holesinger, T. G.; Civale, L.; Maiorov, B.; Feldmann, D. M.; Coulter, Yates; Miller, D. J.; Maroni, Victor A.; Chen, Zhijun; Larbalestier, D. C.; Feenstra, Roeland; Li, Xiaoping; Huang, Y.; Kodenkandath, Thomas; Zhang, W.; Rupich, Marty; Malozemoff, Alex

    2008-01-01

    High critical current densities (J{sub c}) in thick films of the Y{sub 1}Ba{sub 2}Cu{sub 3}O{sub 7-{delta}} (YBCO, {Tc}{approx}92 K) superconductor directly depend upon the types of nanoscale defects and their densities within the films. A major challenge for developing a viable wire technology is to introduce nanoscale defect structures into the YBCO grains of the thick film suitable for flux pinning and the tailoring of the superconducting properties to specific, application-dependent, temperature and magnetic field conditions. Concurrently, the YBCO film needs to be integrated into a macroscopically defect-free conductor in which the grain-to-grain connectivity maintains levels of inter-grain J{sub c} that are comparable to the intra-grain J{sub c}. That is, high critical current (I{sub c}) YBCO coated conductors must contain engineered in homogeneities on the nanoscale, while being homogeneous on the macroscale. An analysis is presented of the advances in high-performance YBCO coated-conductors using chemical solution deposition (CSD) based on metal trifluoroacetates and the subsequent processing to nano-engineer the microstructure for tunable superconducting wires. Multi-scale structural, chemical, and electrical investigations of the CSD film processes, thick film development, key microstructural features, and wire properties are presented. Prospects for further development of much higher I{sub c} wires for large-scale, commercial application are discussed within the context of these recent advances.

  9. Thermal response of large area high temperature superconducting YBaCuO infrared bolometer

    NASA Technical Reports Server (NTRS)

    Khalil, Ali E.

    1990-01-01

    Thermal analysis of large area high temperature superconducting infrared detector operating in the equilibrium mode (bolometer) was performed. An expression for the temperature coefficient beta=1/R(dR/dT) in terms of the thermal conductance and the thermal time constant of the detector were derived. A superconducting transition edge bolometer is a thermistor consisting of a thin film superconducting YBaCuO evaporated into a suitable thermally isolated substrate. The operating temperature of the bolometer is maintained close to the midpoint of the superconducting transition region where the resistance R has a maximum dynamic range. A detector with a strip configuration was analyzed and an expression for the temperature rise (delta T) above the ambient due to a uniform illumination with a source of power density P(sub i) was calculated. An expression for the thermal responsivity of the detector was derived using the thermal diffusion analysis with appropriate boundary conditions. It was found that the thermal responsibility depends upon the spatial modulation frequency and the angular frequency of the incoming radiation. The problem of the thermal cross talk between different detector elements was addressed. In the case of monolithic HTS detector array with a row of square elements of dimensions 2a and CCD or CID readout electronics the thermal spread function was derived for different spacing between elements. This analysis can be critical for future design and applications of large area focal plane arrays as broad band optical detectors made of granular thin films HTS YBaCuO.

  10. Thermal response of large area high temperature superconducting YBaCuO infrared bolometers

    NASA Technical Reports Server (NTRS)

    Khalil, Ali E.

    1991-01-01

    Thermal analysis of large area high temperature superconducting infrared detector operating in the equilibrium mode (bolometer) was performed. An expression for the temperature coefficient beta = 1/R(dR/dT) in terms of the thermal conductance and the thermal time constant of the detector were derived. A superconducting transition edge bolometer is a thermistor consisting of a thin film superconducting YBaCuO evaporated into a suitable thermally isolated substrate. The operating temperature of the bolometer is maintained close to the midpoint of the superconducting transition region where the resistance R has a maximum dynamic range. A detector with a strip configuration was analyzed and an expression for the temperature rise (delta T) above the ambient due to a uniform illumination with a source of power density was calculated. An expression for the thermal responsibility depends upon the spatial modulation frequency and the angular frequency of the incoming radiation. The problem of the thermal cross talk between different detector elements was addressed. In the case of monolithic HTS detector array with a row of square elements of dimensions 2a and CCD or CID readout electronics the thermal spread function was derived for different spacing between elements.

  11. Two-stage heat treatment of high temperature superconducting coatings

    NASA Astrophysics Data System (ADS)

    Malyshev, E. N.; Mikheenko, P. N.

    1991-12-01

    The properties of YBa2Cu3O(x) coatings, 30-40 microns thick, plasma-sprayed on quartz, Pyroceram, stainless steel, and ceramic dielectric substrates were investigated experimentally using X-ray diffraction, optical microscopy, and resistance measurements. It is found that the properties of the films depend to a large degree on the spraying conditions, the dispersity and grain size distribution of the starting powder, and substrate temperature during spraying. Coatings sprayed under optimal conditions have a critical current density of 300-400 A/sq cm at the liquid nitrogen temperature and effectively shield magnetic fields of several oersteds.

  12. A review of basic phenomena and techniques for sputter-deposition of high temperature superconducting films

    SciTech Connect

    Auciello, O. North Carolina State Univ., Raleigh, NC . Dept. of Materials Science and Engineering); Ameen, M.S.; Kingon, A.I.; Lichtenwalner, D.J. . Dept. of Materials Science and Engineering); Krauss, A.R. )

    1990-01-01

    The processes involved in plasma and ion beam sputter-deposition of high temperature superconducting thin films are critically reviewed. Recent advances in the development of these techniques are discussed in relation to basic physical phenomena, specific to each technique, which must be understood before high quality films can be produced. Control of film composition is a major issue in sputter-deposition of multicomponent materials. Low temperature processing of films is a common goal for each technique, particularly in relation to integrating high temperature superconducting films with the current microelectronics technology. It has been understood for some time that for Y{sub 1}Ba{sub 2}Cu{sub 3}O{sub 7} deposition, the most intensely studied high-{Tc} compound, incorporation of sufficient oxygen into the film during deposition is necessary to produce as-deposited superconducting films at relatively substrate temperatures. Recent results have shown that with the use of suitable buffer layers, high quality Y{sub 1}Ba{sub 2}Cu{sub 3}O{sub 7} sputtered films can be obtained on Si substrates without the need for post-deposition anneal processing. This review is mainly focussed on issues related to sputter-deposition of Y{sub 1}Ba{sub 2}Cu{sub 3}O{sub 7} thin films, although representative results concerning the bismuth and thallium based compounds are included. 143 refs., 11 figs.

  13. Possible light-induced superconductivity in K3C60 at high temperature.

    PubMed

    Mitrano, M; Cantaluppi, A; Nicoletti, D; Kaiser, S; Perucchi, A; Lupi, S; Di Pietro, P; Pontiroli, D; Riccò, M; Clark, S R; Jaksch, D; Cavalleri, A

    2016-02-25

    The non-equilibrium control of emergent phenomena in solids is an important research frontier, encompassing effects such as the optical enhancement of superconductivity. Nonlinear excitation of certain phonons in bilayer copper oxides was recently shown to induce superconducting-like optical properties at temperatures far greater than the superconducting transition temperature, Tc (refs 4-6). This effect was accompanied by the disruption of competing charge-density-wave correlations, which explained some but not all of the experimental results. Here we report a similar phenomenon in a very different compound, K3C60. By exciting metallic K3C60 with mid-infrared optical pulses, we induce a large increase in carrier mobility, accompanied by the opening of a gap in the optical conductivity. These same signatures are observed at equilibrium when cooling metallic K3C60 below Tc (20 kelvin). Although optical techniques alone cannot unequivocally identify non-equilibrium high-temperature superconductivity, we propose this as a possible explanation of our results. PMID:26855424

  14. A Cryogenic Magnetostrictive Actuator Using a Persistent High Temperature Superconducting Magnet. Part 1; Concept and Design

    NASA Technical Reports Server (NTRS)

    Horner, Garnett; Bromberg, Leslie; Teter, J. P.

    2000-01-01

    Cryogenic magnetostrictive materials, such as rare earth zinc crystals, offer high strains and high forces with minimally applied magnetic fields, making the material ideally suited for deformable optics applications. For cryogenic temperature applications the use of superconducting magnets offer the possibility of a persistent mode of operation, i.e., the magnetostrictive material will maintain a strain field without power. High temperature superconductors (HTS) are attractive options if the temperature of operation is higher than 10 degrees Kelvin (K) and below 77 K. However, HTS wires have constraints that limit the minimum radius of winding, and even if good wires can be produced, the technology for joining superconducting wires does not exist. In this paper, the design and capabilities of a rare earth zinc magnetostrictive actuator using bulk HTS is described. Bulk superconductors can be fabricated in the sizes required with excellent superconducting properties. Equivalent permanent magnets, made with this inexpensive material, are persistent, do not require a persistent switch as in HTS wires, and can be made very small. These devices are charged using a technique which is similar to the one used for charging permanent magnets, e.g., by driving them into saturation. A small normal conducting coil can be used for charging or discharging. Because of the magnetic field capability of the superconductor material, a very small amount of superconducting magnet material is needed to actuate the rare earth zinc. In this paper, several designs of actuators using YBCO and BSCCO 2212 superconducting materials are presented. Designs that include magnetic shielding to prevent interaction between adjacent actuators will also be described. Preliminary experimental results and comparison with theory for BSCCO 2212 with a magnetostrictive element will be discussed.

  15. Development of high-efficiency Stirling cryocoolers for high temperature superconducting motors

    NASA Astrophysics Data System (ADS)

    Nakano, K.; Yumoto, K.; Hiratsuka, Y.

    2015-12-01

    For wide spread high-temperature superconductor (HTS) devices, a cryocooler having COP of >0.1, with a compact size, light weight, high efficiency and high reliability is required. For practical use of superconductive devices, Sumitomo Heavy Industries, Ltd. (SHI) developed a high-efficiency Stirling type pulse tube cryocooler (STPC). The STPC had high reliability and low vibration. However, its efficiency was not enough to meet the demands of an HTS motor. To further improve the efficiency, we reconsidered the expander of cryocooler and developed a Stirling cryocooler (STC). Two prototype units of a compact, high-efficiency split Stirling cryocooler were designed, built and tested. With the second prototype unit, a cooling capacity of 151 W at 70 K and a minimum temperature of 33 K have been achieved with a compressor input power of 2.15 kW. Accordingly, COP of about 0.07 has been achieved. The detailed design of the prototype units and the experimental results will be reported in this paper.

  16. A Tl-based high-temperature superconducting X-band cavity

    NASA Astrophysics Data System (ADS)

    Arendt, P. N.; Cooke, D. W.; Elliott, N. E.; Gray, E. R.; Hubbard, K. M.; Piel, H.; Swain, G. R.

    1992-08-01

    A nonplanar X-band cavity amenable to coating with high-temperature superconducting films by conventional physical vapor deposition processes has been designed, fabricated, and tested. The cavity geometry resembles a symmetric clamshell configuration. It consists of two truncated cones joined at their bases. The specific dimensions of the cavity were calculated using the SUPERFISH computer code. Cavities were constructed using a silver-based alloy, Consil 995. The separate cavity sections were coated with Tl-based high-temperature superconducting material using a two-step deposition and annealing process. The unloaded Q values for this coated clamshell cavity are 66,000 and 105,000 at 77 and 20 K, respectively.

  17. Application of high-temperature superconducting wires to magnetostrictive transducers for underwater sonar

    SciTech Connect

    Voccio, J.P.; Joshi, C.H.; Lindberg, J.F.

    1994-07-01

    Recently discovered cryogenic magnetostrictive materials show maximum strains greater than any room temperature materials. These cryogenic magnetostrictors can be combined with high-temperature superconducting (HTS) coils to create a sonar transducer with high efficiency and high acoustic power density. A prototype low-frequency (< 1,000 Hz) magnetostrictive transducer is described. This transducer uses a terbium-dysprosium (TbDy) magnetostrictor rod with HTS coils cooled to 50--80 K using a single-stage cryocooler. The device is designed for operation at water depths of 100 m and is believed to be the first fully integrated prototype demonstration of HTS.

  18. The processing of high temperature ceramic superconducting devices, volume 2

    NASA Astrophysics Data System (ADS)

    Long, James H., Jr.

    1992-01-01

    BEI has completed the preliminary evaluation on the planar coil and conductor requirements for the brushless DC motor. Results indicate that current density is adequate. However, there is not enough cross section of the conductor using the thin film approach. Preliminary design was based on two planar coils attached on each side of a central chill plate filled with liquid nitrogen. Evaluation was further performed on the output anticipated in thick film substrates 100 times thicker than the 1 micron thin film. Estimates with thick film substrates yielded .168 watts output which is still inefficient for DC brushless motor design. Thick film designs appear to be the correct approach to achieve a high conductor cross section, enabling sufficient power levels to drive the actuator or motor.

  19. Use of thin films in high-temperature superconducting bearings.

    SciTech Connect

    Hull, J. R.; Cansiz, A.

    1999-09-30

    In a PM/HTS bearing, locating a thin-film HTS above a bulk HTS was expected to maintain the large levitation force provided by the bulk with a lower rotational drag provided by the very high current density of the film. For low drag to be achieved, the thin film must shield the bulk from inhomogeneous magnetic fields. Measurement of rotational drag of a PM/HTS bearing that used a combination of bulk and film HTS showed that the thin film is not effective in reducing the rotational drag. Subsequent experiments, in which an AC coil was placed above the thin-film HTS and the magnetic field on the other side of the film was measured, showed that the thin film provides good shielding when the coil axis is perpendicular to the film surface but poor shielding when the coil axis is parallel to the surface. This is consistent with the lack of reduction in rotational drag being due to a horizontal magnetic moment of the permanent magnet. The poor shielding with the coil axis parallel to the film surface is attributed to the aspect ratio of the film and the three-dimensional nature of the current flow in the film for this coil orientation.

  20. High-temperature superconducting superconductor/normal metal/superconducting devices

    NASA Technical Reports Server (NTRS)

    Foote, M. C.; Hunt, B. D.; Bajuk, L. J.

    1991-01-01

    We describe the fabrication and characterization of superconductor/normal metal/superconductor (SNS) devices made with the high-temperature superconductor (HTS) YBa2Cu3O(7-x). Structures of YBa2Cu3O(7-x)/Au/Nb on c-axis-oriented YBa2Cu3O(7-x) were made in both sandwich and edge geometries in order to sample the HTS material both along and perpendicular to the conducting a-b planes. These devices display fairly ideal Josephson properties at 4.2 K. In addition, devices consisting of YBa2Cu3O(7-x)/YBa2Cu3O(y)/YBa2Cu3O(7-x), with a 'normal metal' layer of reduced transition temperature YBa2Cu3O(7-x) were fabricated and show a great deal of promise for applications near 77 K. Current-voltage characteristics like those of the Resistively-Shunted Junction model are observed, with strong response to 10 GHz radiation above 60 K.

  1. Theory of high-TC superconductivity: transition temperature

    NASA Astrophysics Data System (ADS)

    Harshman, Dale R.; Fiory, Anthony T.; Dow, John D.

    2010-12-01

    After reading over our published manuscript, we noticed that the discussion concerning the determination of σ for the ruthenate Ba2YRu0.9Cu0.1O6 in section 2.3.1 (3rd paragraph) is somewhat terse. Herein we provide an expanded analysis which better explains our estimate of γ (and thus σ) for this compound. All numbers, figures and conclusions remain unaltered. The ruthenate compounds A2YRu1-xCuxO6 (with A = Ba or Sr; x = 0.05-0.15) are double-perovskites containing no cuprate planes and with ν = μ = 1 [1] (reference [82] in the paper). The determination of γ follows from equation (2.5b), wherein rule 1b introduces the factor 1/2. In the lower limit, one expects a minimum of ~2 charges per Cu dopant, which are shared between two charge reservoirs of each layer type (AO and 1/2 (YRu1-xCuxO4)), producing a net factor of unity. Thus, for Ba2YRu0.9Cu0.1O6 (with TC0 ~ 30-40 K), we estimate γ = (1/2)(1) = 1/2, yielding σ = 0.05 as stated by equation (2.5c) in the paper. While one may expect an average effective charge state for Ru near +5, and that of Cu to be between +2 and +3 (post anneal) [2], the lower-limit estimation provided, which places the corresponding data point in figure 2 to the left of the line, appears sufficient to include the ruthenates with the other high-TC compounds found to follow equation (2.6) so far. Owing to the uncertainty in the experimental values for TC0, as well as the Ru and Cu valence states, however, this compound was excluded in the data analyses presented. Future research will attempt a more accurate determination of the charge per doped Cu, and thus σ. We would also like to point out a typographical correction in the definition of the corresponding ruthenate type II reservoir in the last column of table 1, which should read 1/2 (YRu0.9Cu0.1O4). An unrelated item is found in the fourth line of section 2.3.3, where Tb(O0.80F0.20)FeAs should read Tb(O0.80-yF0.20)FeAs. Additionally, reference [132] is now known and has the form

  2. DC characterization and 3D modelling of a triangular, epoxy-impregnated high temperature superconducting coil

    NASA Astrophysics Data System (ADS)

    Hu, D.; Ainslie, M. D.; Rush, J. P.; Durrell, J. H.; Zou, J.; Raine, M. J.; Hampshire, D. P.

    2015-06-01

    The direct current (dc) characterization of high temperature superconducting (HTS) coils is important for applications, such as electric machines, superconducting magnetic energy storage and transformers. In this paper, the dc characterization of a triangular-shaped, epoxy-impregnated HTS coil wound with YBCO coated conductor intended for use in an axial-flux HTS motor is presented. Voltage was measured at several points along the coil to provide detailed information of its dc characteristics. The coil is modelled based on the H -formulation using a new three-dimensional (3D) technique that utilizes the real superconducting layer thickness, and this model allows simulation of the actual geometrical layout of the HTS coil structure. Detailed information on the critical current density’s dependence on the magnitude and orientation of the magnetic flux density, Jc(B,θ), determined from experimental measurement of a short sample of the coated conductor comprising the coil is included directly in the numerical model by a two-variable direct interpolation to avoid developing complicated equations for data fitting and greatly improve the computational speed. Issues related to meshing the finite elements of the real thickness 3D model are also discussed in detail. Based on a comparison of the measurement and simulation results, it is found that non-uniformity along the length exists in the coil, which implies imperfect superconducting properties in the coated conductor, and hence, coil. By evaluating the current-voltage (I-V) curves using the experimental data, and after taking into account a more practical n value and critical current for the non-uniform region, the modelling results show good agreement with the experimental results, validating this model as an appropriate tool to estimate the dc I-V relationship of a superconducting coil. This work provides a further step towards effective and efficient 3D modelling of superconducting devices for large

  3. Real-time measurement of the emergence of superconducting order in a high-temperature superconductor

    NASA Astrophysics Data System (ADS)

    Madan, I.; Kusar, P.; Baranov, V. V.; Lu-Dac, M.; Kabanov, V. V.; Mertelj, T.; Mihailovic, D.

    2016-06-01

    Systems which rapidly evolve through symmetry-breaking transitions on timescales comparable to the fluctuation timescale of the single-particle excitations may behave very differently than under controlled near-ergodic conditions. A real-time investigation with high temporal resolution may reveal insights into the ordering through the transition that are not available in static experiments. We present an investigation of the system trajectory through a normal-to-superconductor transition in a prototype high-temperature superconducting cuprate in which such a situation occurs. Using a multiple pulse femtosecond spectroscopy technique we measure the system trajectory and time evolution of the single-particle excitations through the transition in La1.9Sr0.1CuO4 and compare the data to a simulation based on the time-dependent Ginzburg-Landau theory, using the laser excitation fluence as an adjustable parameter controlling the quench conditions in both experiment and theory. The comparison reveals the presence of significant superconducting fluctuations which precede the transition on short timescales. By including superconducting fluctuations as a seed for the growth of the superconducting order we can obtain a satisfactory agreement of the theory with the experiment. Remarkably, the pseudogap excitations apparently play no role in this process.

  4. High-temperature superconductivity for avionic electronic warfare and radar systems

    SciTech Connect

    Ryan, P.A.

    1994-12-31

    The electronic warfare (EW) and radar communities expect to be major beneficiaries of the performance advantages high-temperature superconductivity (HTS) has to offer over conventional technology. Near term upgrades to system hardware can be envisioned using extremely small, high Q, microwave filters and resonators; compact, wideband, low loss, microwave delay and transmission lines; as well as, wideband, low loss, monolithic microwave integrated circuit phase shifters. The most dramatic impact will be in the far term, using HTS to develop new, real time threat identification and response strategy receiver/processing systems designed to utilize the unique high frequency properties of microwave and ultimately digital HTS. To make superconductivity practical for operational systems, however, technological obstacles need to be overcome. Compact cryogenically cooled subsystems with exceptional performance able to withstand rugged operational environments for long periods of time need to be developed.

  5. Soldered joints—an essential component of demountable high temperature superconducting fusion magnets

    NASA Astrophysics Data System (ADS)

    Tsui, Yeekin; Surrey, Elizabeth; Hampshire, Damian

    2016-07-01

    Demountable superconducting magnet coils would offer significant benefits to commercial nuclear fusion power plants. Whether large pressed joints or large soldered joints provide the solution for demountable fusion magnets, a critical component or building block for both will be the many, smaller-scale joints that enable the supercurrent to leave the superconducting layer, cross the superconducting tape and pass into the solder that lies between the tape and the conductor that eventually provides one of the demountable surfaces. This paper considers the electrical and thermal properties of this essential component part of demountable high temperature superconducting (HTS) joints by considering the fabrication and properties of jointed HTSs consisting of a thin layer of solder (In52Sn48 or Pb38Sn62) sandwiched between two rare-earth-Ba2Cu3O7 (REBCO) second generation HTS coated conductors (CCs). The HTS joints are analysed using numerical modelling, critical current and resistivity measurements on the joints from 300 to 4.2 K in applied magnetic fields up to 12 T, as well as scanning electron microscopy studies. Our results show that the copper/silver layers significantly reduce the heating in the joints to less than a few hundred mK. When the REBCO alone is superconducting, the joint resistivity (R J) predominantly has two sources, the solder layer and an interfacial resistivity at the REBCO/silver interface (∼25 nΩ cm2) in the as-supplied CCs which together have a very weak magnetoresistance in fields up to 12 T. We achieved excellent reproducibility in the R J of the In52Sn48 soldered joints of better than 10% at temperatures below T c of the REBCO layer which can be compared to variations of more than two orders of magnitude in the literature. We also show that demountable joints in fusion energy magnets are viable and need only add a few percent to the total cryogenic cost for a fusion tokamak.

  6. Improving homogeneity of the magnetic field by a high-temperature superconducting shield

    NASA Astrophysics Data System (ADS)

    Kulikov, E.; Agapov, N.; Drobin, V.; Smirnov, A.; Trubnikov, G.; Dorofeev, G.; Malinowski, H.

    2014-05-01

    The shielding opportunity of the magnetic field perpendicular component by the high-temperature superconducting tape (HTS) is shown experimentally for the first time. The tapes are laid closely to each other with a shift of pieces from layer to layer equal to a half of the tape width at the experimental set-up. This multilayer cylindrical structure inserted into the solenoid is similar to the unclosed shield from a uniform piece of the superconducting foil with the corresponding current-carrying capacity. It has been found that the maximum shielding field is proportional to the number of layers and a half of the full magnetization field of one tape for the regular multilayer structure of the HTS segments. The obtained results are necessary to construct systems with the high magnetic field homogeneity, in particular, for the electron cooling system of charged particle beams at the new accelerator complex which is being developed at JINR in Dubna, Russia.

  7. Design analysis of a solid nitrogen cooled ''permanent'' high-temperature superconducting magnet system

    NASA Astrophysics Data System (ADS)

    Haid, Benjamin J.; Lee, Haigun; Iwasa, Yukikazu; Oh, Sang-Soo; Kwon, Young-Kil; Ryu, Kang-Sik

    2002-10-01

    Potential performance advantages of a solid nitrogen cooled "permanent" high-temperature superconducting (SN2/HTS) magnet system over a liquid helium cooled low-temperature superconducting (LHe/LTS) system are explored. The SN2/HTS system design includes a second solid heat capacitor that cools a radiation shield. Recooling of the heat capacitors is performed with a demountable cryocooler. The SN2/HTS system offers both enhanced stability and improved portability over a LHe/LTS system. Design codes are constructed to compare the SN2/HTS system design with a LHe/LTS design for a general permanent superconducting magnet system employing a room temperature bore. The codes predict the system volume and mass that should be expected for a given set of design requirements, i.e. field strength and bore size, and a given set of conductor properties. The results indicate that present HTS conductor critical current and index are not yet sufficient for producing SN2/HTS systems of a size that is comparable with that expected for a LHe/LTS system; however, the conductor properties of Bi2223/Ag have been consistently improving, and new HTS conductors are expected to be developed in the near future. The codes are used to determine the minimum Bi2223/Ag conductor performance required for a SN2/HTS system to be competitive with a LHe/LTS system.

  8. Method and apparatus for measuring gravitational acceleration utilizing a high temperature superconducting bearing

    DOEpatents

    Hull, John R.

    2000-01-01

    Gravitational acceleration is measured in all spatial dimensions with improved sensitivity by utilizing a high temperature superconducting (HTS) gravimeter. The HTS gravimeter is comprised of a permanent magnet suspended in a spaced relationship from a high temperature superconductor, and a cantilever having a mass at its free end is connected to the permanent magnet at its fixed end. The permanent magnet and superconductor combine to form a bearing platform with extremely low frictional losses, and the rotational displacement of the mass is measured to determine gravitational acceleration. Employing a high temperature superconductor component has the significant advantage of having an operating temperature at or below 77K, whereby cooling may be accomplished with liquid nitrogen.

  9. Method and Apparatus for measuring Gravitational Acceleration Utilizing a high Temperature Superconducting Bearing

    SciTech Connect

    Hull, John R.

    1998-11-06

    Gravitational acceleration is measured in all spatial dimensions with improved sensitivity by utilizing a high temperature superconducting (HTS) gravimeter. The HTS gravimeter is comprised of a permanent magnet suspended in a spaced relationship from a high temperature superconductor, and a cantilever having a mass at its free end is connected to the permanent magnet at its fixed end. The permanent magnet and superconductor combine to form a bearing platform with extremely low frictional losses, and the rotational displacement of the mass is measured to determine gravitational acceleration. Employing a high temperature superconductor component has the significant advantage of having an operative temperature at or below 77K, whereby cooling maybe accomplished with liquid nitrogen.

  10. The 20 GHz circularly polarized, high temperature superconducting microstrip antenna array

    NASA Technical Reports Server (NTRS)

    Morrow, Jarrett D.; Williams, Jeffery T.; Long, Stuart A.; Wolfe, John C.

    1994-01-01

    The primary goal was to design and characterize a four-element, 20 GHz, circularly polarized microstrip patch antenna fabricated from YBa2Cu3O(x) superconductor. The purpose is to support a high temperature superconductivity flight communications experiment between the space shuttle orbiter and the ACTS satellite. This study is intended to provide information into the design, construction, and feasibility of a circularly polarized superconducting 20 GHz downlink or cross-link antenna. We have demonstrated that significant gain improvements can be realized by using superconducting materials for large corporate fed array antennas. In addition, we have shown that when constructed from superconducting materials, the efficiency, and therefore the gain, of microstrip patches increases if the substrate is not so thick that the dominant loss mechanism for the patch is radiation into the surface waves of the conductor-backed substrate. We have considered two design configurations for a superconducting 20 GHz four-element circularly polarized microstrip antenna array. The first is the Huang array that uses properly oriented and phased linearly polarized microstrip patch elements to realize a circularly polarized pattern. The second is a gap-coupled array of circularly polarized elements. In this study we determined that although the Huang array operates well on low dielectric constant substrates, its performance becomes extremely sensitive to mismatches, interelement coupling, and design imperfections for substrates with high dielectric constants. For the gap-coupled microstrip array, we were able to fabricate and test circularly polarized elements and four-element arrays on LaAlO3 using sputtered copper films. These antennas were found to perform well, with relatively good circular polarization. In addition, we realized a four-element YBa2Cu3O(x) array of the same design and measured its pattern and gain relative to a room temperature copper array. The patterns were

  11. Performance evaluation of high-temperature superconducting current leads for micro-SMES systems

    SciTech Connect

    Niemann, R.C.; Cha, Y.S.; Hull, J.R.; Buckles, W.E.; Weber, B.R.; Yang, S.T.

    1995-02-01

    As part of the U.S. Department of Energy`s Superconductivity Technology Program, Argonne National Laboratory and Superconductivity, Inc., are developing high-temperature superconductor (HTS) current leads for application to micro-SMES systems. Two 1500-A HTS leads have been designed and constructed. A component performance evaluation program was conducted to confirm performance predictions and/or to qualify the design features for construction. The evaluations included HTS characteristics, demountable electrical connections, and heat intercept effectiveness. The performance of current lead assemblies is being evaluated in a zero-magnetic-field test program that included assembly procedures, tooling, and quality assurance; thermal and electrical performance; and flow and mechanical characteristics. The leads were installed in a liquid helium test cryostat and connected at their cold ends by a current jumper. The leads were heat intercepted with a cryocooler.

  12. Ultra-Low Heat-Leak, High-Temperature Superconducting Current Leads for Space Applications

    NASA Technical Reports Server (NTRS)

    Rey, Christopher M.

    2013-01-01

    NASA Goddard Space Flight Center has a need for current leads used in an adiabatic demagnetization refrigerator (ADR) for space applications. These leads must comply with stringent requirements such as a heat leak of approximately 100 W or less while conducting up to 10 A of electric current, from more than 90 K down to 10 K. Additionally, a length constraint of < 300 mm length and < 50 mm diameter is to be maintained. The need for these current leads was addressed by developing a superconducting hybrid lead. This hybrid lead comprises two different high-temperature superconducting (HTS) conductors bonded together at a thermally and electrically determined optimum point along the length of the current lead. By taking advantage of material properties of each conductor type, employing advanced fabrication techniques, and taking advantage of novel insulation materials, the company was able to develop and fabricate the lightweight, low heat-leak leads currently to NASA's specs.

  13. The creation of high-temperature superconducting cables of megawatt range in Russia

    SciTech Connect

    Sytnikov, V. E. Bemert, S. E.; Krivetsky, I. V.; Romashov, M. A.; Popov, D. A.; Fedotov, E. V.; Komandenko, O. V.

    2015-12-15

    Urgent problems of the power industry in the 21st century require the creation of smart energy systems, providing a high effectiveness of generation, transmission, and consumption of electric power. Simultaneously, the requirements for controllability of power systems and ecological and resource-saving characteristics at all stages of production and distribution of electric power are increased. One of the decision methods of many problems of the power industry is the development of new high-efficiency electrical equipment for smart power systems based on superconducting technologies to ensure a qualitatively new level of functioning of the electric power industry. The intensive research and development of new types of electrical devices based on superconductors are being carried out in many industrialized advanced countries. Interest in such developments has especially increased in recent years owing to the discovery of so-called high-temperature superconductors (HTS) that do not require complicated and expensive cooling devices. Such devices can operate at cooling by inexpensive and easily accessible liquid nitrogen. Taking into account the obvious advantages of superconducting cable lines for the transmission of large power flows through an electrical network, as compared with conventional cables, the Federal Grid Company of Unified Energy System (JSC FGC UES) initiated a research and development program including the creation of superconducting HTS AC and DC cable lines. Two cable lines for the transmitted power of 50 MVA/MW at 20 kV were manufactured and tested within the framework of the program.

  14. The creation of high-temperature superconducting cables of megawatt range in Russia

    NASA Astrophysics Data System (ADS)

    Sytnikov, V. E.; Bemert, S. E.; Krivetsky, I. V.; Romashov, M. A.; Popov, D. A.; Fedotov, E. V.; Komandenko, O. V.

    2015-12-01

    Urgent problems of the power industry in the 21st century require the creation of smart energy systems, providing a high effectiveness of generation, transmission, and consumption of electric power. Simultaneously, the requirements for controllability of power systems and ecological and resource-saving characteristics at all stages of production and distribution of electric power are increased. One of the decision methods of many problems of the power industry is the development of new high-efficiency electrical equipment for smart power systems based on superconducting technologies to ensure a qualitatively new level of functioning of the electric power industry. The intensive research and development of new types of electrical devices based on superconductors are being carried out in many industrialized advanced countries. Interest in such developments has especially increased in recent years owing to the discovery of so-called high-temperature superconductors (HTS) that do not require complicated and expensive cooling devices. Such devices can operate at cooling by inexpensive and easily accessible liquid nitrogen. Taking into account the obvious advantages of superconducting cable lines for the transmission of large power flows through an electrical network, as compared with conventional cables, the Federal Grid Company of Unified Energy System (JSC FGC UES) initiated a research and development program including the creation of superconducting HTS AC and DC cable lines. Two cable lines for the transmitted power of 50 MVA/MW at 20 kV were manufactured and tested within the framework of the program.

  15. Physical and Material Properties of Yttrium Barium Copper Oxide High Critical Temperature Superconducting Thin Films.

    NASA Astrophysics Data System (ADS)

    Ma, Qiyuan

    1990-01-01

    A simple method of using layered structures and rapid thermal annealing to produce Y_1 Ba_2 Cu_3 O_{7-x} (YBCO) superconducting thin films is presented. Material properties of the films depend strongly on the processing conditions, the film stoichiometry, and the substrates. The films with critical temperature (T_{ rm c}) higher than liquid nitrogen temperature (77 K) have been made on various substrates including magnesium oxide, sapphire, and silicon. The best film was obtained on a MgO substrate with T_{rm c} of 84 K. Silicon diffusion and reaction with oxygen during a high temperature anneal degrade the superconductivity of the film on a Si substrate. Using a buffer layer of gold, the Si-YBCO interaction is greatly reduced. Typical resistivity of the film shows a linear temperature dependence which may be attributed to an electron -phonon interaction. Anisotropic resistance behavior has been observed due to the layered structures. Different metal contacts to the YBCO films have been used to study the chemical and electrical properties of metal-YBCO film interfaces. Gold has been found nonreactive to YBCO film, thus, it has the lowest contact resistivity. Near the T_{rm c}, the contact resistivity of a Au-YBCO contact approaches zero. This may be due to the proximity effect. Other metals such as Pt, Pd, Sn and Ti, react with the YBCO film and form thin oxide layers at the interfaces. The oxide layer acts as an insulating barrier which forbids the proximity effect and causes a large contact resistivity. The structural and electrical properties of the Si-YBCO intermixed film have been studied for different thicknesses of the silicon layers. A novel patterning technique of using Si-YBCO intermixing has been developed for fabricating the YBCO superconducting device structures. A superconductor sample has a critical current value I _{rm c}. Below the I _{rm c} the material is superconducting, and above I_{rm c} the sample has a finite resistance. Based on this effect

  16. High T(c) superconducting NbN films deposited at room temperature

    NASA Technical Reports Server (NTRS)

    Thakoor, S.; Lamb, J. L.; Thakoor, A. P.; Khanna, S. K.

    1985-01-01

    The dc reactive magnetron sputtering process yields stoichiometric NbN films with superconducting transition temperature T(c) as high as 15.7 K on substrates as varied as glass, glazed ceramic, fused quartz, and sapphire. These films posses fcc (B1) structure and (111) texture. The most dominant factors governing the formation of the transition metal nitrides are the relative metal and nitrogen fluxes incident on the substrate and the background argon pressure (which dictates the overall reactive sites and residence times for nitrogen).

  17. Evaluation of high temperature superconductive thermal bridges for space-borne cryogenic infrared detectors

    NASA Technical Reports Server (NTRS)

    Scott, Elaine P.

    1993-01-01

    The focus of this research is on the reduction of the refrigeration requirements for infrared sensors operating in space through the use of high temperature superconductive (HTS) materials as electronic leads between the cooled sensors and the relatively warmer data acquisition components. Specifically, this initial study was directed towards the design of an experiment to quantify the thermal performance of these materials in the space environment. First, an intensive review of relevant literature was undertaken, and then, design requirements were formulated. From this background information, a preliminary experimental design was developed. Additional studies will involve a thermal analysis of the experiment and further modifications of the experimental design.

  18. Vertical Vibration Characteristics of a High-Temperature Superconducting Maglev Vehicle System

    NASA Astrophysics Data System (ADS)

    Jiang, Jing; Li, Ke Cai; Zhao, Li Feng; Ma, Jia Qing; Zhang, Yong; Zhao, Yong

    2013-06-01

    The vertical vibration characteristics of a high-temperature superconducting maglev vehicle system are investigated experimentally. The displacement variations of the maglev vehicle system are measured with different external excitation frequency, in the case of a certain levitation gap. When the external vibration frequency is low, the amplitude variations of the response curve are small. With the increase of the vibration frequency, chaos status can be found. The resonance frequencies with difference levitation gap are also investigated, while the external excitation frequency range is 0-100 Hz. Along with the different levitation gap, resonance frequency is also different. There almost is a linear relationship between the levitation gap and the resonance frequency.

  19. The high temperature superconductivity in cuprates: physics of the pseudogap region

    NASA Astrophysics Data System (ADS)

    Cea, Paolo

    2016-08-01

    We discuss the physics of the high temperature superconductivity in hole doped copper oxide ceramics in the pseudogap region. Starting from an effective reduced Hamiltonian relevant to the dynamics of holes injected into the copper oxide layers proposed in a previous paper, we determine the superconductive condensate wavefunction. We show that the low-lying elementary condensate excitations are analogous to the rotons in superfluid 4He. We argue that the rotons-like excitations account for the specific heat anomaly at the critical temperature. We discuss and compare with experimental observations the London penetration length, the Abrikosov vortices, the upper and lower critical magnetic fields, and the critical current density. We give arguments to explain the origin of the Fermi arcs and Fermi pockets. We investigate the nodal gap in the cuprate superconductors and discuss both the doping and temperature dependence of the nodal gap. We suggest that the nodal gap is responsible for the doping dependence of the so-called nodal Fermi velocity detected in angle resolved photoemission spectroscopy studies. We discuss the thermodynamics of the nodal quasielectron liquid and their role in the low temperature specific heat. We propose that the ubiquitous presence of charge density wave in hole doped cuprate superconductors in the pseudogap region originates from instabilities of the nodal quasielectrons driven by the interaction with the planar CuO2 lattice. We investigate the doping dependence of the charge density wave gap and the competition between charge order and superconductivity. We discuss the effects of external magnetic fields on the charge density wave gap and elucidate the interplay between charge density wave and Abrikosov vortices. Finally, we examine the physics underlying quantum oscillations in the pseudogap region.

  20. TOPICAL REVIEW: The physics behind high-temperature superconducting cuprates: the 'plain vanilla' version of RVB

    NASA Astrophysics Data System (ADS)

    Anderson, P. W.; Lee, P. A.; Randeria, M.; Rice, T. M.; Trivedi, N.; Zhang, F. C.

    2004-06-01

    One of the first theoretical proposals for understanding high-temperature superconductivity in the cuprates was Anderson's RVB theory using a Gutzwiller projected BCS wavefunction as an approximate ground state. Recent work by Paramekanti et al has shown that this variational approach gives a semi-quantitative understanding of the doping dependences of a variety of experimental observables in the superconducting state of the cuprates. In this paper we revisit these issues using the 'renormalized mean field theory' of Zhang et al based on the Gutzwiller approximation in which the kinetic and superexchange energies are renormalized by different doping-dependent factors gt and gS respectively. We point out a number of consequences of this early mean field theory for experimental measurements which were not available when it was first explored, and observe that it is able to explain the existence of the pseudogap, properties of nodal quasiparticles and approximate spin-charge separation, the latter leading to large renormalizations of the Drude weight and superfluid density. We use the Lee-Wen theory of the phase transition as caused by thermal excitation of nodal quasiparticles, and also obtain a number of further experimental confirmations. Finally, we remark that superexchange, and not phonons, is responsible for d-wave superconductivity in the cuprates.

  1. Large oscillations of the magnetoresistance in nanopatterned high-temperature superconducting films.

    PubMed

    Sochnikov, Ilya; Shaulov, Avner; Yeshurun, Yosef; Logvenov, Gennady; Bozović, Ivan

    2010-07-01

    Measurements on nanoscale structures constructed from high-temperature superconductors are expected to shed light on the origin of superconductivity in these materials. To date, loops made from these compounds have had sizes of the order of hundreds of nanometres(8-11). Here, we report the results of measurements on loops of La(1.84)Sr(0.16)CuO(4), a high-temperature superconductor that loses its resistance to electric currents when cooled below approximately 38 K, with dimensions down to tens of nanometres. We observe oscillations in the resistance of the loops as a function of the magnetic flux through the loops. The oscillations have a period of h/2e, and their amplitude is much larger than the amplitude of the resistance oscillations expected from the Little-Parks effect. Moreover, unlike Little-Parks oscillations, which are caused by periodic changes in the superconducting transition temperature, the oscillations we observe are caused by periodic changes in the interaction between thermally excited moving vortices and the oscillating persistent current induced in the loops. However, despite the enhanced amplitude of these oscillations, we have not detected oscillations with a period of h/e, as recently predicted for nanoscale loops of superconductors with d-wave symmetry, or with a period of h/4e, as predicted for superconductors that exhibit stripes. PMID:20543834

  2. A novel high temperature superconducting magnetic flux pump for MRI magnets

    NASA Astrophysics Data System (ADS)

    Bai, Zhiming; Yan, Guo; Wu, Chunli; Ding, Shufang; Chen, Chuan

    2010-10-01

    This paper presents a kind of minitype magnetic flux pump made of high temperature superconductor. This kind of novel high temperature superconducting (HTS) flux pump has not any mechanical revolving parts or thermal switches. The excitation current of copper coils in magnetic pole system is controlled by a singlechip. The structure design and operational principle have been described. The operating performance of the new model magnetic flux pump has been preliminarily tested. The experiments show that the maximum pumping current is approximately 200 A for Bi2223 flux pump and 80 A for MgB 2 flux pump operating at 20 K. By comparison, it is discovered that the operating temperature range is wider, the ripple is smaller and the pumping frequency is higher in Bi2223 flux pump than those in MgB 2 flux pump. These results indicate that the newly developed Bi2223 magnetic flux pump may efficiently compensate the magnetic field decay in HTS magnet and make the magnet operate in persistent current mode, this point is significant to the magnetic resonance imaging (MRI) magnets. This new flux pump is under construction presently. It is expected that the Bi2223 flux pump would be applied to the superconducting MRI magnets by further optimizing structure and improving working process.

  3. Large Oscillations of the Magnetoresistance in Nanopatterned High-temperature Superconducting Films

    SciTech Connect

    Sochnikov, I.; Bozovic, I.; Shaulov, A.; Yeshurun, Y.; Logvenov, G.

    2010-07-01

    Measurements on nanoscale structures constructed from high-temperature superconductors are expected to shed light on the origin of superconductivity in these materials. To date, loops made from these compounds have had sizes of the order of hundreds of nanometeres. Here, we report the results of measurements on loops of La{sub 1.84}Sr{sub 0.16}CuO{sub 4}, a high-temperature superconductor that loses its resistance to electric currents when cooled below {approx}38 K, with dimensions down to tens of nanometres. We observe oscillations in the resistance of the loops as a function of the magnetic flux through the loops. The oscillations have a period of h/2e, and their amplitude is much larger than the amplitude of the resistance oscillations expected from the Little-Parks effect. Moreover, unlike Little-Parks oscillations, which are caused by periodic changes in the superconducting transition temperature, the oscillations we observe are caused by periodic changes in the interaction between thermally excited moving vortices and the oscillating persistent current induced in the loops. However, despite the enhanced amplitude of these oscillations, we have not detected oscillations with a period of h/e, as recently predicted for nanoscale loops of superconductors with d-wave symmetry or with a period of h/4e, as predicted for superconductors that exhibit stripes.

  4. High-temperature superconductivity in two-band materials with interband pairing

    SciTech Connect

    Mazur, E. A. Dubovik, V. M.

    2015-07-15

    The Eliashberg theory generalized using peculiar properties of two-band electron–phonon (EP) systems is employed for studying T{sub c} in two-band materials (in particular, pnictides). In view of probably strong EP coupling, we take into account pairing within the entire width of the electron band, not only in a narrow layer at the Fermi surface. It is found that the effect of pairing of electrons belonging to different bands is a decisive factor for manifestation of the effect of high T{sub c} in these materials. It is shown that in materials analogous to pnictides, high T{sub c} values are reproduced by the two-band spectral function of electron–phonon interaction. The existence of one more family of two-band high-temperature materials with a superconducting transition temperature T{sub c} comparable to that in cuprates is predicted.

  5. Cryogenics Vision Workshop for High-Temperature Superconducting Electric Power Systems Proceedings

    SciTech Connect

    Energetics, Inc.

    2000-01-01

    The US Department of Energy's Superconductivity Program for Electric Systems sponsored the Cryogenics Vision Workshop, which was held on July 27, 1999 in Washington, D.C. This workshop was held in conjunction with the Program's Annual Peer Review meeting. Of the 175 people attending the peer review meeting, 31 were selected in advance to participate in the Cryogenics Vision Workshops discussions. The participants represented cryogenic equipment manufactures, industrial gas manufacturers and distributors, component suppliers, electric power equipment manufacturers (Superconductivity Partnership Initiative participants), electric utilities, federal agencies, national laboratories, and consulting firms. Critical factors were discussed that need to be considered in describing the successful future commercialization of cryogenic systems. Such systems will enable the widespread deployment of high-temperature superconducting (HTS) electric power equipment. Potential research, development, and demonstration (RD and D) activities and partnership opportunities for advancing suitable cryogenic systems were also discussed. The workshop agenda can be found in the following section of this report. Facilitated sessions were held to discuss the following specific focus topics: identifying Critical Factors that need to be included in a Cryogenics Vision for HTS Electric Power Systems (From the HTS equipment end-user perspective) identifying R and D Needs and Partnership Roles (From the cryogenic industry perspective) The findings of the facilitated Cryogenics Vision Workshop were then presented in a plenary session of the Annual Peer Review Meeting. Approximately 120 attendees participated in the afternoon plenary session. This large group heard summary reports from the workshop session leaders and then held a wrap-up session to discuss the findings, cross-cutting themes, and next steps. These summary reports are presented in this document. The ideas and suggestions raised during

  6. High-temperature superconductivity from fine-tuning of Fermi-surface singularities in iron oxypnictides

    PubMed Central

    Charnukha, A.; Evtushinsky, D. V.; Matt, C. E.; Xu, N.; Shi, M.; Büchner, B.; Zhigadlo, N. D.; Batlogg, B.; Borisenko, S. V.

    2015-01-01

    In the family of the iron-based superconductors, the REFeAsO-type compounds (with RE being a rare-earth metal) exhibit the highest bulk superconducting transition temperatures (Tc) up to 55 K and thus hold the key to the elusive pairing mechanism. Recently, it has been demonstrated that the intrinsic electronic structure of SmFe0.92Co0.08AsO (Tc = 18 K) is highly nontrivial and consists of multiple band-edge singularities in close proximity to the Fermi level. However, it remains unclear whether these singularities are generic to the REFeAsO-type materials and if so, whether their exact topology is responsible for the aforementioned record Tc. In this work, we use angle-resolved photoemission spectroscopy (ARPES) to investigate the inherent electronic structure of the NdFeAsO0.6F0.4 compound with a twice higher Tc = 38 K. We find a similarly singular Fermi surface and further demonstrate that the dramatic enhancement of superconductivity in this compound correlates closely with the fine-tuning of one of the band-edge singularities to within a fraction of the superconducting energy gap Δ below the Fermi level. Our results provide compelling evidence that the band-structure singularities near the Fermi level in the iron-based superconductors must be explicitly accounted for in any attempt to understand the mechanism of superconducting pairing in these materials. PMID:26678565

  7. A visualization instrument to investigate the mechanical-electro properties of high temperature superconducting tapes under multi-fields.

    PubMed

    Liu, Wei; Zhang, Xingyi; Liu, Cong; Zhang, Wentao; Zhou, Jun; Zhou, YouHe

    2016-07-01

    We construct a visible instrument to study the mechanical-electro behaviors of high temperature superconducting tape as a function of magnetic field, strain, and temperature. This apparatus is directly cooled by a commercial Gifford-McMahon cryocooler. The minimum temperature of sample can be 8.75 K. A proportion integration differentiation temperature control is used, which is capable of producing continuous variation of specimen temperature from 8.75 K to 300 K with an optional temperature sweep rate. We use an external loading device to stretch the superconducting tape quasi-statically with the maximum tension strain of 20%. A superconducting magnet manufactured by the NbTi strand is applied to provide magnetic field up to 5 T with a homogeneous range of 110 mm. The maximum fluctuation of the magnetic field is less than 1%. We design a kind of superconducting lead composed of YBa2Cu3O7-x coated conductor and beryllium copper alloy (BeCu) to transfer DC to the superconducting sample with the maximum value of 600 A. Most notably, this apparatus allows in situ observation of the electromagnetic property of superconducting tape using the classical magnetic-optical imaging. PMID:27475594

  8. A visualization instrument to investigate the mechanical-electro properties of high temperature superconducting tapes under multi-fields

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Zhang, Xingyi; Liu, Cong; Zhang, Wentao; Zhou, Jun; Zhou, YouHe

    2016-07-01

    We construct a visible instrument to study the mechanical-electro behaviors of high temperature superconducting tape as a function of magnetic field, strain, and temperature. This apparatus is directly cooled by a commercial Gifford-McMahon cryocooler. The minimum temperature of sample can be 8.75 K. A proportion integration differentiation temperature control is used, which is capable of producing continuous variation of specimen temperature from 8.75 K to 300 K with an optional temperature sweep rate. We use an external loading device to stretch the superconducting tape quasi-statically with the maximum tension strain of 20%. A superconducting magnet manufactured by the NbTi strand is applied to provide magnetic field up to 5 T with a homogeneous range of 110 mm. The maximum fluctuation of the magnetic field is less than 1%. We design a kind of superconducting lead composed of YBa2Cu3O7-x coated conductor and beryllium copper alloy (BeCu) to transfer DC to the superconducting sample with the maximum value of 600 A. Most notably, this apparatus allows in situ observation of the electromagnetic property of superconducting tape using the classical magnetic-optical imaging.

  9. Towards material-specific simulations of high-temperature superconducting cuprates

    NASA Astrophysics Data System (ADS)

    Schulthess, Thomas

    2006-03-01

    Simulations of high-temperature superconducting (HTSC) cuprates have typically fallen into two categories: (1) studies of generic models such as the two-dimensional (2D) Hubbard model, that are believed to capture the essential physics necessary to describe the superconducting state, and, (2) first principles electronic structure calculations that are based on the local density approximation (LDA) to density functional theory (DFT) and lead to materials specific models. With advent of massibely parallel vector supercomputers, such as the Cray X1E at ORNL, and cluster algorithms such as the Dynamical Cluster Approximation (DCA), it is now possible to systematically solve the 2D Hubbard model with Quantum Monte Carol (QMC) simulations and to establish that the model indeed describes d-wave superconductivity [1]. Furthermore, studies of a multi-band model with input parameters generated from LDA calculations demonstrate that the existence of a superconducting transition is very sensitive to the underlying band structure [2]. Application of the LDA to transition metal oxides is, however, hampered by spurious self-interactions that particularly affects localized orbitals. Here we apply the self-interaction corrected local spin-density method (SIC-LSD) to describe the electronic structure of the cuprates. It was recently applied with success to generate input parameters for simple models of Mn doped III-V semiconductors [3] and is known to properly describe the antiferromagnetic insulating ground state of the parent compounds of the HTSC cuprates. We will discus the models for HTSC cuprates derived from the SIC-LSD study and how the differences to the well-known LDA results impact the QMC-DCA simulations of the magnetic and superconducting properties. [1] T. A. Maier, M. Jarrell, T. C. Schulthess, P. R. C. Kent, and J. B. White, Phys. Rev. Lett. 95, 237001 (2005). [2] P. Kent, A. Macridin, M. Jarrell, T. Schulthess, O. Andersen, T. Dasgupta, and O. Jepsen, Bulletin of

  10. Impurities: A smoking gun for the physical origin of high temperature superconductivity

    SciTech Connect

    Pines, D.

    1994-12-31

    Philippe Monthoux and the author have recently carried out detailed strong coupling (Eliashberg) calculations for YBa{sub 2}Cu{sub 3}O{sub 7} of the influence of impurities on the normal state quasiparticle self-energy and resistivity, and the superconducting transition temperature, T{sub c}. They find, in agreement with experiment, that although both Ni and Zn impurities primarily substitute for planar Cu(2) atoms, their influence on T{sub c} is markedly different. That difference arises from the experimental fact that Zn, when substituted for Cu(2), alters the local magnetic order, and hence the local spin fluctuation spectrum, while Ni does not. This difference is the equivalent of the isotope effect for conventional superconductors: it is a smoking gun for the physical origin of high temperature superconductivity and provides strong evidence for the spin-fluctuation mechanism, and the d{sub x{sup 2}{minus}y{sup 2}} pairing state to which it gives rise.

  11. Biomolecular ion detection using high-temperature superconducting MgB2 strips

    NASA Astrophysics Data System (ADS)

    Zen, N.; Shibata, H.; Mawatari, Y.; Koike, M.; Ohkubo, M.

    2015-06-01

    Superconducting strip ion detectors (SSIDs) are promising for realization of ideal ion detection with 100% efficiency and nanosecond-scale time response in time-of-flight mass spectrometry. We have detected single biomolecular ions in the keV range using a 10-nm-thick and 250-nm-wide strip of a high temperature superconductor, magnesium diboride (MgB2), at temperatures of up to 13 K. The output pulse shape is explained remarkably well using circuit simulations and time-dependent Ginzburg-Landau simulations coupled with a heat diffusion equation. The simulations show that the hot spot model is applicable to the proposed MgB2-SSIDs and the normal region expansion is completed within 16 ps, which corresponds to a maximum length of 1010 nm.

  12. Space-deployed, thin-walled enclosure for a cryogenically-cooled high temperature superconducting coil

    NASA Astrophysics Data System (ADS)

    Porter, Allison K.

    The interaction of magnetic fields generated by large superconducting coils has multiple applications in space, including actuation of spacecraft or spacecraft components, wireless power transfer, and shielding of spacecraft from radiation and high energy particles. These applications require coils with major diameters as large as 20 meters and a thermal management system to maintain the superconducting material of the coil below its critical temperature. Since a rigid thermal management system, such as a heat pipe, is unsuitable for compact stowage inside a 5 meter payload fairing, a thin-walled thermal enclosure is proposed. A 1.85 meter diameter test article consisting of a bladder layer for containing chilled nitrogen vapor, a restraint layer, and multilayer insulation was tested in a custom toroidal vacuum chamber. The material properties found during laboratory testing are used to predict the performance of the test article in low Earth orbit. Deployment motion of the same test article was measured using a motion capture system and the results are used to predict the deployment in space. A 20 meter major diameter and coil current of 6.7 MA is selected as a point design case. This design point represents a single coil in a high energy particle shielding system. Sizing of the thermal and structural components of the enclosure is completed. The thermal and deployment performance is predicted.

  13. Dome-shaped magnetic order competing with high-temperature superconductivity at high pressures in FeSe

    PubMed Central

    Sun, J. P.; Matsuura, K.; Ye, G. Z.; Mizukami, Y.; Shimozawa, M.; Matsubayashi, K.; Yamashita, M.; Watashige, T.; Kasahara, S.; Matsuda, Y.; Yan, J. -Q.; Sales, B. C.; Uwatoko, Y.; Cheng, J. -G.; Shibauchi, T.

    2016-01-01

    The coexistence and competition between superconductivity and electronic orders, such as spin or charge density waves, have been a central issue in high transition-temperature (Tc) superconductors. Unlike other iron-based superconductors, FeSe exhibits nematic ordering without magnetism whose relationship with its superconductivity remains unclear. Moreover, a pressure-induced fourfold increase of Tc has been reported, which poses a profound mystery. Here we report high-pressure magnetotransport measurements in FeSe up to ∼15 GPa, which uncover the dome shape of magnetic phase superseding the nematic order. Above ∼6 GPa the sudden enhancement of superconductivity (Tc≤38.3 K) accompanies a suppression of magnetic order, demonstrating their competing nature with very similar energy scales. Above the magnetic dome, we find anomalous transport properties suggesting a possible pseudogap formation, whereas linear-in-temperature resistivity is observed in the normal states of the high-Tc phase above 6 GPa. The obtained phase diagram highlights unique features of FeSe among iron-based superconductors, but bears some resemblance to that of high-Tc cuprates. PMID:27431724

  14. Dome-shaped magnetic order competing with high-temperature superconductivity at high pressures in FeSe

    NASA Astrophysics Data System (ADS)

    Sun, J. P.; Matsuura, K.; Ye, G. Z.; Mizukami, Y.; Shimozawa, M.; Matsubayashi, K.; Yamashita, M.; Watashige, T.; Kasahara, S.; Matsuda, Y.; Yan, J.-Q.; Sales, B. C.; Uwatoko, Y.; Cheng, J.-G.; Shibauchi, T.

    2016-07-01

    The coexistence and competition between superconductivity and electronic orders, such as spin or charge density waves, have been a central issue in high transition-temperature (Tc) superconductors. Unlike other iron-based superconductors, FeSe exhibits nematic ordering without magnetism whose relationship with its superconductivity remains unclear. Moreover, a pressure-induced fourfold increase of Tc has been reported, which poses a profound mystery. Here we report high-pressure magnetotransport measurements in FeSe up to ~15 GPa, which uncover the dome shape of magnetic phase superseding the nematic order. Above ~6 GPa the sudden enhancement of superconductivity (Tc<=38.3 K) accompanies a suppression of magnetic order, demonstrating their competing nature with very similar energy scales. Above the magnetic dome, we find anomalous transport properties suggesting a possible pseudogap formation, whereas linear-in-temperature resistivity is observed in the normal states of the high-Tc phase above 6 GPa. The obtained phase diagram highlights unique features of FeSe among iron-based superconductors, but bears some resemblance to that of high-Tc cuprates.

  15. Dome-shaped magnetic order competing with high-temperature superconductivity at high pressures in FeSe.

    PubMed

    Sun, J P; Matsuura, K; Ye, G Z; Mizukami, Y; Shimozawa, M; Matsubayashi, K; Yamashita, M; Watashige, T; Kasahara, S; Matsuda, Y; Yan, J-Q; Sales, B C; Uwatoko, Y; Cheng, J-G; Shibauchi, T

    2016-01-01

    The coexistence and competition between superconductivity and electronic orders, such as spin or charge density waves, have been a central issue in high transition-temperature (Tc) superconductors. Unlike other iron-based superconductors, FeSe exhibits nematic ordering without magnetism whose relationship with its superconductivity remains unclear. Moreover, a pressure-induced fourfold increase of Tc has been reported, which poses a profound mystery. Here we report high-pressure magnetotransport measurements in FeSe up to ∼15 GPa, which uncover the dome shape of magnetic phase superseding the nematic order. Above ∼6 GPa the sudden enhancement of superconductivity (Tc≤38.3 K) accompanies a suppression of magnetic order, demonstrating their competing nature with very similar energy scales. Above the magnetic dome, we find anomalous transport properties suggesting a possible pseudogap formation, whereas linear-in-temperature resistivity is observed in the normal states of the high-Tc phase above 6 GPa. The obtained phase diagram highlights unique features of FeSe among iron-based superconductors, but bears some resemblance to that of high-Tc cuprates. PMID:27431724

  16. A Temperature-Stable Cryo-System for High-Temperature Superconducting MR In-Vivo Imaging

    PubMed Central

    Lin, In-Tsang; Yang, Hong-Chang; Chen, Jyh-Horng

    2013-01-01

    To perform a rat experiment using a high-temperature superconducting (HTS) surface resonator, a cryostat is essential to maintain the rat's temperature. In this work, a compact temperature-stable HTS cryo-system, keeping animal rectal temperature at 37.4°C for more than 3 hours, was successfully developed. With this HTS cryo-system, a 40-mm-diameter Bi2Sr2Ca2Cu3Ox (Bi-2223) surface resonator at 77 K was demonstrated in a 3-Tesla MRI system. The proton resonant frequency (PRF) method was employed to monitor the rat's temperature. Moreover, the capacity of MR thermometry in the HTS experiments was evaluated by correlating with data from independent fiber-optic sensor temperature measurements. The PRF thermal coefficient was derived as 0.03 rad/°C and the temperature-monitoring architecture can be implemented to upgrade the quality and safety in HTS experiments. The signal-to-noise ratio (SNR) of the HTS surface resonator at 77 K was higher than that of a professionally made copper surface resonator at 300 K, which has the same geometry, by a 3.79-fold SNR gain. Furthermore, the temperature-stable HTS cryo-system we developed can obtain stable SNR gain in every scan. A temperature-stable HTS cryo-system with an external air-blowing circulation system is demonstrated. PMID:23637936

  17. Processing study of high temperature superconducting Y-Ba-Cu-O ceramics

    SciTech Connect

    Safari, A.; Wachtman, J.B. Jr.; Ward, C.; Parkhe, V.; Jisrawi, N.; McLean, W.L. )

    1987-07-01

    Processing of the YBa{sub 2}Cu{sub 3}O{sub 6+x} superconducting phase by employing different precursor powder preparation techniques (ball milling, attrition milling) and samples formed by different sintering conditions are discussed. The superconducting phase has been identified by powder x-ray diffraction. The effect of different powder processing and pressing conditions on the structure, density, resistivity and a.c. magnetic susceptibility were studied. Though there is no variation in T{sub c} for all the samples, attrition milled samples show a much lower resistance and less temperature dependence compared to ball milled samples above the superconducting transition temperature up to room temperature. Ball milled samples were loosely packed with more voids compared to attrition milled samples which are more densely packed with a needle-like structure.

  18. Compact design of high-temperature superconducting duplexer and triplexer for satellite communications

    NASA Astrophysics Data System (ADS)

    Zhang, Xu; He, Ming; Ji, Lu; Zhao, Xinjie; Fang, Lan; Yan, Shaolin

    2012-10-01

    This paper presents a compact C-band high-temperature superconducting (HTS) input module duplexer, which can be scaled to a triplexer. The duplexer includes a common node as the input port, which is an extensible and effective structure for integrating a HTS multiplexer on a single superconducting film. The input node is realized by an open-loop microstrip line, which resonates at the frequency in the guard band between the two channels. In addition two four-pole bandpass filters consisting of rectangular spiral line resonators are used as output channels of the device. The duplexer is designed at 3995 MHz with a bandwidth of 226 MHz. The frequency ranges of the two channels are 3882-3942 MHz and 4048-4108 MHz, respectively. It is fabricated using double-sided Y Ba2Cu3O7 (YBCO) thin films on a piece of 30× 10 mm 2 MgO substrate. The experimental results show that the insertion loss is less than 0.1 dB for both channel filters and the isolation between the two channels is higher than 40 dB. Good agreement has been achieved between simulations and measurements to illustrate the effectiveness of the proposed approach. Moreover, the triplexer is also designed and measured and the scalability is verified by simulation and experiments.

  19. Magnetic properties of superconducting GdBa2Cu3O(6 + delta) at low temperature and high field

    NASA Technical Reports Server (NTRS)

    Huang, C. Y.; Shapira, Y.; Hor, P. H.; Meng, R. L.; Chu, C. W.

    1988-01-01

    The magnetization of antiferromagnetic superconducting GdBa2Cu3O(6 + delta) has been measured for T in the range of 1.5 - 4.2 K for magnetic fields up to about 20 T. It is found that all Gd(3+) spins are nearly parallel at very high fields, and that this saturated spin subsystem coexists with superconductivity. Below the Neel temperature, 2.22 K, the transition from the 'canted' phase to the paramagnetic phase is observed by the application of a high magnetic field. The temperature dependence of this phase transition is also reported.

  20. Studies on the levitation height decay of the high temperature superconducting Maglev vehicle

    NASA Astrophysics Data System (ADS)

    Deng, Z. G.; Zheng, J.; Zhang, J.; Wang, J. S.; Wang, S. Y.; Zhang, Y.; Liu, L.

    2007-10-01

    The levitation height decay was found in the high temperature superconducting (HTS) Maglev test vehicle system during man-loading running. Experimental results show that the no-load levitating system would drift to a new equilibrium position by the external loaded history, but the new equilibrium position will almost not drift by the second-round same loaded history. A new method is proposed to improve the stability of the HTS Maglev vehicle, that is, a pre-load was applied to the HTS Maglev vehicle before running. The impulse responses are performed on the HTS Maglev vehicle before the pre-load and after the pre-load. The results show that the pre-load method is considerably effective to improve the stiffness and damping coefficient of the HTS Maglev vehicle. Moreover, it helps to suppress the levitation height decay and enhance the stability of the HTS Maglev vehicle in practical operation.

  1. Compensation techniques for high-temperature superconducting quantum interference device gradiometers operating in unshielded environment

    NASA Astrophysics Data System (ADS)

    Borgmann, J.; David, P.; Krause, H. J.; Otto, R.; Braginski, A. I.

    1997-08-01

    We have tested two methods of compensating environmental disturbances applicable to high-temperature superconducting quantum interference device (SQUID) systems operating in magnetically unshielded environments. For testing, we used first- and second-order axial electronic gradiometer setups with rf SQUID magnetometers operating at 77 K and base lines between 7 and 8 cm. The magnetometers were single-layer washer rf SQUIDs with bulk or thin-film magnetic flux concentrators in flip-chip geometry. The tested methods resulted in disturbance compensation levels comparable to those attained using electronically formed gradiometers. The white noise of the compensated magnetometers resulted in 13.5 fT/cm √Hz for first-order and 22 fT/cm2 √Hz for second-order compensation down to a few Hz. Common mode rejection was balanced to better than 10 000 for homogeneous fields and better than 200 for gradient fields with second-order compensation.

  2. Triple-band high-temperature superconducting microstrip filter based on multimode split ring resonator

    NASA Astrophysics Data System (ADS)

    Liu, Hai-Wen; Wang, Yan; Fan, Yi-Chao; Guan, Xue-Hui; He, Yusheng

    2013-09-01

    A compact triple-band high-temperature superconducting (HTS) YBa2Cu3Oy microstrip bandpass filter using multimode split ring resonator (SRR) is presented in this letter. Also, its properties and equivalent circuit models are investigated by even- and odd-mode analysis. Moreover, design method of the proposed triple-band HTS filter for the applications of global positioning system at 1.57 GHz, worldwide interoperability for microwave access at 3.5 GHz, and wireless local area networks at 5.8 GHz is discussed. The centre frequencies and the bandwidths of the three passbands can be allocated properly choosing the dimension parameters of the multimode SRR. In addition, four transmission zeros are produced to improve the selectivity of this filter.

  3. Performance improvement of a high-temperature superconducting coil by separating and grading the coil edge

    NASA Astrophysics Data System (ADS)

    Ishiguri, Shinichi; Funamoto, Taisuke

    2011-06-01

    In this paper, we establish a model to analyze the transport current performance of a high-temperature superconducting (HTS) coil, considering the dependencies of critical current and n-value of an HTS tape on magnetic field and magnetic field angles. This analysis shows that relatively large electric fields appear at the coil’s edges, preventing improvement in the transport current performance of the coil. To solve this problem, in this paper, we propose a graded coil in which several coil edges of different heights are separated and graded. Analysis of its performance shows that the coil’s critical current increases, thus confirming that there exists an optimum coil cross section at which the stored energy and central magnetic field improve 2.1 times and 45%, respectively, compared with a typical rectangular coil that employs the same total length of the HTS tape. It is recommended that these results of the coil should be applied to SMES.

  4. Design and construction of a high temperature superconducting power cable cryostat for use in railway system applications

    NASA Astrophysics Data System (ADS)

    Tomita, M.; Muralidhar, M.; Suzuki, K.; Fukumoto, Y.; Ishihara, A.; Akasaka, T.; Kobayashi, Y.

    2013-10-01

    The primary objective of the current effort was to design and test a cryostat using a prototype five-meter long high temperature Bi2Sr2Ca2Cu3Oy (Bi-2223) superconducting dc power cable for railway systems. To satisfy the safety regulations of the Govt of Japan a mill sheet covered by super-insulation was used inside the walls of the cryostat. The thicknesses of various walls in the cryostat were obtained from a numerical analysis. A non-destructive inspection was utilized to find leaks under vacuum or pressure. The cryostat target temperature range was around 50 K, which is well below liquid nitrogen temperature, the operating temperature of the superconducting cable. The qualification testing was carried out from 77 down to 66 K. When using only the inner sheet wire, the maximum current at 77.3 K was 10 kA. The critical current (Ic) value increased with decreasing temperature and reached 11.79 kA at 73.7 K. This is the largest dc current reported in a Bi2Sr2Ca2Cu3Oy or YBa2Cu3Oy (Y-123) superconducting prototype cable so far. These results verify that the developed DC superconducting cable is reliable and fulfils all the requirements necessary for successful use in various power applications including railway systems. The key issues for the design of a reliable cryogenic system for superconducting power cables for railway systems are discussed.

  5. Thermodynamic Critical Field and Superconducting Fluctuation of Vortices for High Temperature Cuprate Superconductor: La-214

    SciTech Connect

    Yung Moo Huh

    2001-05-01

    Thermodynamics has been studied systematically for the high temperature cuprate superconductor La{sub 2-x}Sr{sub x}CuO{sub 4-{delta}}, La-214, in the entire superconductive region from strongly underdoped to strongly overdoped regimes. Magnetization studies with H{parallel}c have been made in order to investigate the changes in free energy of the system as the number of carriers is reduced. Above the superconducting transition temperature, the normal-state magnetization exhibits a two-dimensional Heisenberg antiferromagnetic behavior. Below T{sub c}, magnetization data are thermodynamically reversible over large portions of the H-T plane, so the free energy is well defined in these regions. As the Sr concentration is varied over the wide range from 0.060 (strongly underdoped) to 0.234 (strongly overdoped), the free energy change goes through a maximum at the optimum doped in a manner similar to the T{sub c0} vs. x curve. The density of states, N(0), remains nearly constant in the overdoped and optimum doped regimes, taking a broad maximum around x = 0.188, and then drops abruptly towards zero in the underdoped regime. The La{sub 2-x}Sr{sub x}CuO{sub 4} (La-214) system displays the fluctuating vortex behavior with the characteristic of either 2D or 3D fluctuations as indicated by clearly identifiable crossing points T* close to T{sub c}. The dimensional character of the fluctuations depends on both applied magnetic fields and the density of charge carriers. The dimensional crossover from 2D to 3D occurs in the strongly underdoped regime when the c-axis coherence distance {zeta}{sub c} becomes comparable to the spacing between adjacent CuO{sub 2} layers s at sufficiently high magnetic fields near H{sub c2}.

  6. Thermodynamic Critical Field and Superconducting Fluctuation of Vortices for High Temperature Cuprate Superconductor: La-214

    SciTech Connect

    Douglas K. Finnemore

    2001-06-25

    Thermodynamics has been studied systematically for the high temperature cuprate superconductor La{sub 2-x}Sr{sub x}CuO{sub 4-{delta}}, La-214, in the entire superconductive region from strongly underdoped to strongly overdoped regimes. Magnetization studies with H {parallel} c have been made in order to investigate the changes in free energy of the system as the number of carriers is reduced. Above the superconducting transition temperature, the normal-state magnetization exhibits a two-dimensional Heisenberg antiferromagnetic behavior. Below T{sub c}, magnetization data are thermodynamically reversible over large portions of the H-T plane, so the free energy is well defined in these regions. As the Sr concentration is varied over the wide range from 0.060 (strongly underdoped) to 0.234 (strongly overdoped), the free energy change goes through a maximum at the optimum doped in a manner similar to the T{sub c0} vs. x curve. The density of states, N(0), remains nearly constant in the overdoped and optimum doped regimes, taking a broad maximum around x = 0.188, and then drops abruptly towards zero in the underdoped regime. The La{sub 2-x}Sr{sub x}CuO{sub 4} (La-214) system displays the fluctuating vortex behavior with the characteristic of either 2D or 3D fluctuations as indicated by clearly identifiable crossing points T* close to T{sub c}. The dimensional character of the fluctuations depends on both applied magnetic fields and the density of charge carriers. The dimensional crossover from 2D to 3D occurs in the strongly underdoped regime when the c-axis coherence distance {xi}{sub c} becomes comparable to the spacing between adjacent CuO{sub 2} layers s at sufficiently high magnetic field near H{sub c2}.

  7. AC loss in high-temperature superconducting conductors, cables and windings for power devices

    NASA Astrophysics Data System (ADS)

    Oomen, M. P.; Rieger, J.; Hussennether, V.; Leghissa, M.

    2004-05-01

    High-temperature superconducting (HTS) transformers and reactor coils promise decreased weight and volume and higher efficiency. A critical design parameter for such devices is the AC loss in the conductor. The state of the art for AC-loss reduction in HTS power devices is described, starting from the loss in the single HTS tape. Improved tape manufacturing techniques have led to a significant decrease in the magnetization loss. Transport-current loss is decreased by choosing the right operating current and temperature. The role of tape dimensions, filament twist and resistive matrix is discussed and a comparison is made between state-of-the-art BSCCO and YBCO tapes. In transformer and reactor coils the AC loss in the tape is influenced by adjacent tapes in the coil, fields from other coils, overcurrents and higher harmonics. These factors are accounted for by a new AC-loss prediction model. Field components perpendicular to the tape are minimized by optimizing the coil design and by flux guidance pieces. High-current windings are made of Roebel conductors with transposed tapes. The model iteratively finds the temperature distribution in the winding and predicts the onset of thermal instability. We have fabricated and tested several AC windings and used them to validate the model. Now we can confidently use the model as an engineering tool for designing HTS windings and for determining the necessary tape properties.

  8. Quantitative determination of pairing interactions for high-temperature superconductivity in cuprates.

    PubMed

    Bok, Jin Mo; Bae, Jong Ju; Choi, Han-Yong; Varma, Chandra M; Zhang, Wentao; He, Junfeng; Zhang, Yuxiao; Yu, Li; Zhou, X J

    2016-03-01

    A profound problem in modern condensed matter physics is discovering and understanding the nature of fluctuations and their coupling to fermions in cuprates, which lead to high-temperature superconductivity and the invariably associated strange metal state. We report the quantitative determination of normal and pairing self-energies, made possible by laser-based angle-resolved photoemission measurements of unprecedented accuracy and stability. Through a precise inversion procedure, both the effective interactions in the attractive d-wave symmetry and the repulsive part in the full symmetry are determined. The latter is nearly angle-independent. Near T c, both interactions are nearly independent of frequency and have almost the same magnitude over the complete energy range of up to about 0.4 eV, except for a low-energy feature at around 50 meV that is present only in the repulsive part, which has less than 10% of the total spectral weight. Well below T c, they both change similarly, with superconductivity-induced features at low energies. Besides finding the pairing self-energy and the attractive interactions for the first time, these results expose the central paradox of the problem of high T c: how the same frequency-independent fluctuations can dominantly scatter at angles ±π/2 in the attractive channel to give d-wave pairing and lead to angle-independent repulsive scattering. The experimental results are compared with available theoretical calculations based on antiferromagnetic fluctuations, the Hubbard model, and quantum-critical fluctuations of the loop-current order. PMID:26973872

  9. Quantitative determination of pairing interactions for high-temperature superconductivity in cuprates

    PubMed Central

    Bok, Jin Mo; Bae, Jong Ju; Choi, Han-Yong; Varma, Chandra M.; Zhang, Wentao; He, Junfeng; Zhang, Yuxiao; Yu, Li; Zhou, X. J.

    2016-01-01

    A profound problem in modern condensed matter physics is discovering and understanding the nature of fluctuations and their coupling to fermions in cuprates, which lead to high-temperature superconductivity and the invariably associated strange metal state. We report the quantitative determination of normal and pairing self-energies, made possible by laser-based angle-resolved photoemission measurements of unprecedented accuracy and stability. Through a precise inversion procedure, both the effective interactions in the attractive d-wave symmetry and the repulsive part in the full symmetry are determined. The latter is nearly angle-independent. Near Tc, both interactions are nearly independent of frequency and have almost the same magnitude over the complete energy range of up to about 0.4 eV, except for a low-energy feature at around 50 meV that is present only in the repulsive part, which has less than 10% of the total spectral weight. Well below Tc, they both change similarly, with superconductivity-induced features at low energies. Besides finding the pairing self-energy and the attractive interactions for the first time, these results expose the central paradox of the problem of high Tc: how the same frequency-independent fluctuations can dominantly scatter at angles ±π/2 in the attractive channel to give d-wave pairing and lead to angle-independent repulsive scattering. The experimental results are compared with available theoretical calculations based on antiferromagnetic fluctuations, the Hubbard model, and quantum-critical fluctuations of the loop-current order. PMID:26973872

  10. Interface-induced high-temperature superconductivity in FeSe/TiO2(001) heterostructure

    NASA Astrophysics Data System (ADS)

    Ding, Hao

    2015-03-01

    The recently discovered high transition temperature (Tc) superconductivity at the interface of single unit-cell (UC) FeSe films on SrTiO3(001) has generated considerable excitement, which may eventually lead to the discovery of a new family of high-Tc superconductors at many different interfaces. In this talk, we will present our recent work on a new interfacial system with high-Tc superconductivity, 1 UC FeSe films on anatase TiO2(001). By using molecular beam epitaxy (MBE) techniques, we have successfully prepared high-quality 1 UC FeSe films on anatase TiO2(001) formed on SrTiO3. In situ scanning tunneling spectroscopy (STS) reveals large superconducting gap (Δ) ranging from 17 meV to 22 meV, which is nearly one order of magnitude larger than Δ = 2.2 meV of bulk FeSe with Tc = 9.4 K, indicating the signature of high-Tc superconductivity. The superconductivity of this heterostructure system is further verified by imaging vortex lattice under external magnetic field. By examining the distinct properties of anatase TiO2 from SrTiO3, as well as their influences on superconductivity, we will also discuss about the possible pairing mechanism of this system. Together with our previous work of 1 UC FeSe/SrTiO3, this work demonstrates that interface engineering is a powerful way to fabricate new high-Tc superconductors and investigate the mechanism of high-Tc superconductivity.

  11. Magnetic levitation using high temperature superconducting pancake coils as composite bulk cylinders

    NASA Astrophysics Data System (ADS)

    Patel, A.; Hopkins, S. C.; Baskys, A.; Kalitka, V.; Molodyk, A.; Glowacki, B. A.

    2015-11-01

    Stacks of superconducting tape can be used as composite bulk superconductors for both trapped field magnets and for magnetic levitation. Little previous work has been done on quantifying the levitation force behavior between stacks of tape and permanent magnets. This paper reports the axial levitation force properties of superconducting tape wound into pancake coils to act as a composite bulk cylinder, showing that similar stable forces to those expected from a uniform bulk cylinder are possible. Force creep was also measured and simulated for the system. The geometry tested is a possible candidate for a rotary superconducting bearing. Detailed finite element modeling in COMSOL Multiphysics was also performed including a full critical state model for induced currents, with temperature and field dependent properties and 3D levitation force models. This work represents one of the most complete levitation force modeling frameworks yet reported using the H-formulation and helps explain why the coil-like stacks of tape are able to sustain levitation forces. The flexibility of geometry and consistency of superconducting properties offered by stacks of tapes, make them attractive for superconducting levitation applications.

  12. Dynamic compaction of high-temperature superconducting YBa2Cu3O(x) powders by laser-driven shocks

    NASA Astrophysics Data System (ADS)

    Darquey, P.; Kieffer, J. C.; Gauthier, J.; Pepin, H.; Chaker, M.; Champagne, B.; Villeneuve, D.; Baldis, H.

    1991-10-01

    Laser-driven shocks are successfully used to density high-temperature superconducting YBa2Cu3O7 ceramic powders. Pressures of 10 GPa on a nanosecond time scale were generated by producing a confined plasma with a high-intensity laser pulse. Significant consolidation is generated up to 300 microns below the irradiated surface. Magnetic susceptibility measurements indicate that the pinning of the intergranular vortices is strongly affected by the shock propagation. Recovery of superconductivity in compacted material is obtained with a postshock oxygen annealing.

  13. Influence of ion beam mixing on the growth of high temperature oxide superconducting thin film

    SciTech Connect

    Bordes, N.; Rollett, A.D.; Cohen, M.R.; Nastasi, M.

    1989-01-01

    The superconducting properties of high temperature superconductor thin films are dependent on the quality of the substrate used to grow these films. In order to maximize the lattice matching between the superconducting film and the substrate, we have used a YBa{sub 2}Cu{sub 3}O{sub 7} thin film deposited on {l angle}100{r angle} SrTiO{sub 3} as a template. The first film was prepared by coevaporation of Y, BaF{sub 2} and Cu on {l angle}100{r angle} SrTiO{sub 3}, followed by an anneal in wet'' oxygen at 850{degree}C. This film showed a sharp transition at about 90 K. A thicker layer of about 5000 A was then deposited on top of this first 2000 {angstrom} film, using the same procedure. After the post anneal at 850{degree}C, the transition took place at 80 K and no epitaxy of the second film was observed. Ion beam mixing at 400{degree}C, using 400 keV O ions was done at the interface of the two films (the second one being not annealed). After the post anneal, the film displayed an improved Tc at 90K. Moreover, epitaxy was shown to take place from the interface SrTiO{sub 3}-123 film towards the surface and was dependent of the dose. These results will be discussed from the data obtained from Rutherford backscattering spectroscopy (RBS) combined with channeling experiments, x-ray diffraction (XRD) and scanning electron microscopy (SEM) observations. 8 refs., 2 figs., 2 tabs.

  14. van Hove Singularities and Spectral Smearing in High Temperature Superconducting H3S

    NASA Astrophysics Data System (ADS)

    Quan, Yundi; Pickett, Warren E.

    The superconducting phase of hydrogen sulfide at Tc=200 K observed by Drozdov and collaborators at pressures around 200 GPa is simple bcc Im 3 m H3S reopens questions about what is achievable in high Tc. The various ''extremes'' that are involved - pressure, implying extreme reduction of volume, extremely high H phonon energy scale around 1400K, extremely high temperature for a superconductor - necessitate a close look at new issues raised by these characteristics in relation to high Tc. We have applied first principles methods to analyze the H3S electronic structure, particularly the van Hove singularities (vHs) and the effect of sulfur. Focusing on the two closely spaced vHs near the Fermi level that give rise to the impressively sharp peak in the density of states, the implications of strong coupling Migdal-Eliashberg theory are assessed. The electron spectral density smearing due to virtual phonon emission and absorption, as done in earlier days for A15 superconductors, must be included explicitly to obtain accurate theoretical predictions and a correct understanding. Means for increasing Tc in H3S-like materials will be mentioned. NSF DMR Grant 1207622.

  15. Quench Detection and Protection for High Temperature Superconducting Transformers by Using the Active Power Method

    NASA Astrophysics Data System (ADS)

    Nanato, N.; Kobayashi, Y.

    AC high temperature superconducting (HTS) coils have been developed for transformers, motors and so on. Quench detection and protection system are essential for safety operations of the AC HTS facilities. The balance voltage method is universally used for the quench detection and protection, however especially for AC operations, the method has risks in terms of high voltage sparks. Because the method needs a voltage tap soldered to a midpoint of the coil winding and the AC HTS facilities generally operate at high voltages and therefore high voltage sparks may occur at the midpoint with no insulation. We have proposed the active power method for the quench detection and protection. The method requires no voltage tap on the midpoint of the coil winding and therefore it has in-built effectiveness for the AC HTS facilities. In this paper, we show that the method can detect the quench in an HTS transformer and moreover our proposed quench protection circuits which consist of thyristors are simple and useful for the AC HTS facilities.

  16. Van Hove singularities and spectral smearing in high-temperature superconducting H3S

    NASA Astrophysics Data System (ADS)

    Quan, Yundi; Pickett, Warren E.

    2016-03-01

    The superconducting phase of hydrogen sulfide at Tc=200 K observed by Drozdov and collaborators at pressures around 200 GPa is simple bcc I m 3 ¯m H3S from a combination of theoretical and experimental confirmation. The various "extremes" that are involved—high pressure implying extreme reduction of volume, extremely high H phonon energy scale around 1400 K, extremely high temperature for a superconductor—necessitates a close look at new issues raised by these characteristics in relation to high Tc itself. First principles methods are applied to analyze the H3S electronic structure, beginning with the effect of sulfur and then focusing on the origin and implications of the two van Hove singularities (vHs) providing an impressive peak in the density of states near the Fermi energy. Implications arising from strong coupling Migdal-Eliashberg theory are studied. It becomes evident that electron spectral density smearing due to virtual phonon emission and absorption must be accounted for in a correct understanding of this unusual material and to obtain accurate theoretical predictions. Means for increasing Tc in H3S -like materials are noted.

  17. Evaluation of high temperature superconductive thermal bridges for space borne cryogenic detectors

    NASA Technical Reports Server (NTRS)

    Scott, Elaine P.

    1996-01-01

    Infrared sensor satellites are used to monitor the conditions in the earth's upper atmosphere. In these systems, the electronic links connecting the cryogenically cooled infrared detectors to the significantly warmer amplification electronics act as thermal bridges and, consequently, the mission lifetimes of the satellites are limited due to cryogenic evaporation. High-temperature superconductor (HTS) materials have been proposed by researchers at the National Aeronautics and Space Administration Langley's Research Center (NASA-LaRC) as an alternative to the currently used manganin wires for electrical connection. The potential for using HTS films as thermal bridges has provided the motivation for the design and the analysis of a spaceflight experiment to evaluate the performance of this superconductive technology in the space environment. The initial efforts were focused on the preliminary design of the experimental system which allows for the quantitative comparison of superconductive leads with manganin leads, and on the thermal conduction modeling of the proposed system. Most of the HTS materials were indicated to be potential replacements for the manganin wires. In the continuation of this multi-year research, the objectives of this study were to evaluate the sources of heat transfer on the thermal bridges that have been neglected in the preliminary conductive model and then to develop a methodology for the estimation of the thermal conductivities of the HTS thermal bridges in space. The Joule heating created by the electrical current through the manganin wires was incorporated as a volumetric heat source into the manganin conductive model. The radiative heat source on the HTS thermal bridges was determined by performing a separate radiant interchange analysis within a high-T(sub c) superconductor housing area. Both heat sources indicated no significant contribution on the cryogenic heat load, which validates the results obtained in the preliminary conduction

  18. Strong-coupling theory of high-temperature superconductivity and colossal magnetoresistance

    NASA Astrophysics Data System (ADS)

    Alexandrov, A. S.

    2005-08-01

    We argue that the extension of the BCS theory to the strong-coupling regime describes the high-temperature superconductivity of cuprates and the colossal magnetoresistance (CMR) of ferromagnetic oxides if the phonon dressing of carriers and strong attractive correlations are taken into account. The attraction between carriers, which is prerequisite to high-temperature superconductivity, is caused by an almost unretarted electron-phonon interaction sufficient to overcome the direct Coulomb repulsion in the strong-coupling limit, where electrons become polarons and bipolarons (real-space electron or hole pairs dressed by phonons). The long-range Froehlich electron-phonon interaction has been identified as the most essential in cuprates providing "superlight" lattice polarons and bipolarons. A number of key observations have been predicted and/or explained with polarons and bipolarons including unusual isotope effects, normal state (pseudo)gaps, upper critical fields, etc. Here some kinetic, magnetic, and more recent thermomagnetic normal state measurements are interpreted in the framework of the strong-coupling theory, including the Nernst effect and normal state diamagnetism. Remarkably, a similar strong-coupling approach offers a simple explanation of CMR in ferromagnetic oxides, while the conventional double-exchange (DEX) model, proposed half a century ago and generalised more recently to include the electronphonon interaction, is in conflict with a number of modern experiments. Among these experiments are site-selective spectroscopies, which have shown that oxygen p-holes are current carriers rather than d-electrons in ferromagnetic manganites (and in cuprates) ruling out DEX mechanism of CMR. Also some samples of ferromagnetic manganites manifest an insulating-like optical conductivity at all temperatures contradicting the DEX notion that their ferromagnetic phase is metallic. On the other hand, the pairing of oxygen holes into heavy bipolarons in the

  19. Ac susceptibility of a coated conductor with high-temperature superconducting film and covered copper stabilizer

    NASA Astrophysics Data System (ADS)

    Chen, D.-X.

    2014-07-01

    The ac susceptibility, χ=χ‧-jχ″, of a nearly square sample, cut from a coated conductor tape consisting of a high-temperature superconducting film and a covered copper stabilizer, is measured as a function of temperature, T, at several values of frequency, f. It is found that the χ(f) at T>Tc can be well simulated by a modeling eddy-current susceptibility of the stabilizer, and there is an extra low-T stage, where χ is not constant as expected and may be separated into two parts. The T-independent part is contributed by Meissner currents in the film with over-low |χ‧|, indicating that the film edge was damaged by cutting during tape and sample preparation. The T-dependent part is contributed by both eddy-currents and supercurrents, having a special f dependence with unknown mechanism. Both currents are interacted to each other in a complex way in the T range below and near Tc, resulting in interesting features in χ(T,f).

  20. Protection of high temperature superconducting thin-films in a semiconductor processing environment

    SciTech Connect

    Xu, Yizi; Fiske, R.; Sanders, S.C.; Ekin, J.W.

    1996-12-31

    Annealing studies have been carried out for high temperature superconductor YBaCuO{sub 7{minus}{delta}} in a reducing ambient, in order to identify insulator layer(s) that will effectively protect the superconducting film in the hostile environment. While a layer of magnesium oxide (MgO) sputter deposited directly on YBaCuO{sub 7{minus}{delta}} film provides some degree of protection, the authors found that a composite structure of YBCO/SrTiO{sub 3}/MgO, where the SrTiO{sub 3} was grown by laser ablation immediately following YBCO deposition (in-situ process), was much more effective. They also address the need for a buffer layer between YBCO and aluminum (Al) during annealing. Al is most commenly used for semiconductor metalization, but is known to react readily with YBCO at elevated temperatures. The authors found that the most effective buffer layers are platinum (Pt) and gold/platinum (Au/Pt).

  1. Development of practical high temperature superconducting wire for electric power applications

    SciTech Connect

    Hawsey, R.A.; Sokolowski, R.S.; Haldar, P.; Motowidlo, L.R.

    1994-09-01

    The technology of high temperature superconductivity has gone from beyond mere scientific curiosity into the manufacturing environment. Single lengths of multifilamentary wire are now produced that are over 200 meters long and that carry over 13 amperes at 77 K. Short-sample critical current densities approach 5 {times} 10{sup 4} A/cm{sup 2} at 77 K. Conductor requirements such as high critical current density in a magnetic field, strain-tolerant sheathing materials, and other engineering properties are addressed. A new process for fabricating round BSCCO-2212 wire has produced wires with critical current densities as high as 165,000 A/cm{sup 2} at 4.2 K and 53,000 A/cm{sup 2} at 40 K. This process eliminates the costly, multiple pressing and rolling steps that are commonly used to develop texture in the wires. New multifilamentary wires with strengthened sheathing materials have shown improved yield strengths up to a factor of five better than those made with pure silver. Many electric power devices require the wire to be formed into coils for production of strong magnetic fields. Requirements for coils and magnets for electric power applications are described.

  2. Progress in development of high temperature superconducting wire for electric power applications

    SciTech Connect

    Hawsey, R.A.; Sokolowski, R.S.; Haldar, P.; Motowidlo, L.R.

    1994-12-31

    The technology of high temperature superconductivity has gone beyond mere scientific curiosity and into the manufacturing environment. Single lengths of multifilamentary wire are now produced that are over 200 meters long and that carry over 13 amperes at 77 K. Short-sample critical current densities approach 5 x 10{sup 4} A/cm{sup 2} at 77 K. Conductor requirements such as high critical current density in a magnetic field, strain-tolerant sheathing materials, and other engineering properties are addressed. A new process for fabricating round BSCCO-2212 wire has produced wires with critical current densities as high as 165,000 A/cm{sup 2} at 4.2 K and 53,000 A/cm{sup 2} at 40 K. This process eliminates the costly, multiple pressing and rolling steps that are commonly used to develop texture in the wires. New multifilamentary wires with strengthened sheathing materials have shown improved yield strengths up to a factor of five better than those made with pure silver. Many electric power devices require the wire to be formed into coils for production of strong magnetic fields. Requirements for coils and magnets for electric power applications are described.

  3. Development of practical high temperature superconducting wire for electric power application

    NASA Technical Reports Server (NTRS)

    Hawsey, Robert A.; Sokolowski, Robert S.; Haldar, Pradeep; Motowidlo, Leszek R.

    1995-01-01

    The technology of high temperature superconductivity has gone from beyond mere scientific curiousity into the manufacturing environment. Single lengths of multifilamentary wire are now produced that are over 200 meters long and that carry over 13 amperes at 77 K. Short-sample critical current densities approach 5 x 104 A/sq cm at 77 K. Conductor requirements such as high critical current density in a magnetic field, strain-tolerant sheathing materials, and other engineering properties are addressed. A new process for fabricating round BSCCO-2212 wire has produced wires with critical current densities as high as 165,000 A/sq cm at 4.2 K and 53,000 A/sq cm at 40 K. This process eliminates the costly, multiple pressing and rolling steps that are commonly used to develop texture in the wires. New multifilamentary wires with strengthened sheathing materials have shown improved yield strengths up to a factor of five better than those made with pure silver. Many electric power devices require the wire to be formed into coils for production of strong magnetic fields. Requirements for coils and magnets for electric power applications are described.

  4. Magnetic and levitation characteristics of bulk high-temperature superconducting magnets above a permanent magnet guideway

    NASA Astrophysics Data System (ADS)

    Zheng, Jun; Zheng, Botian; He, Dabo; Sun, Ruixue; Deng, Zigang; Xu, Xun; Dou, Shixue

    2016-09-01

    Due to the large levitation force or the large guidance force of bulk high-temperature superconducting magnets (BHTSMs) above a permanent magnet guideway (PMG), it is reasonable to employ pre-magnetized BHTSMs to replace applied-magnetic-field-cooled superconductors in a maglev system. There are two combination modes between the BHTSM and the PMG, distinguished by the different directions of the magnetization. One is the S-S pole mode, and the other is the S-N pole mode combined with a unimodal PMG segment. A multi-point magnetic field measurement platform was employed to acquire the magnetic field signals of the BHTSM surface in real time during the pre-magnetization process and the re-magnetization process. Subsequently, three experimental aspects of levitation, including the vertical movement due to the levitation force, the lateral movement due to the guidance force, and the force relaxation with time, were explored above the PMG segment. Moreover, finite element modeling by COMSOL Multiphysics has been performed to simulate the different induced currents and the potentially different temperature rises with different modes inside the BHTSM. It was found that the S-S pole mode produced higher induced current density and a higher temperature rise inside the BHTSM, which might escalate its lateral instability above the PMG. The S-N pole mode exhibits the opposite characteristics. In general, this work is instructive for understanding and connecting the magnetic flux, the inner current density, the levitation behavior, and the temperature rise of BHTSMs employed in a maglev system.

  5. Study of second generation, high-temperature superconducting coils: Determination of critical current

    NASA Astrophysics Data System (ADS)

    Zhang, Min; Kim, Jae-Ho; Pamidi, Sastry; Chudy, Michal; Yuan, Weijia; Coombs, T. A.

    2012-04-01

    This paper presents the modeling of second generation (2 G) high-temperature superconducting (HTS) pancake coils using finite element method. The axial symmetric model can be used to calculate current and magnetic field distribution inside the coil. The anisotropic characteristics of 2 G tapes are included in the model by direct interpolation. The model is validated by comparing to experimental results. We use the model to study critical currents of 2 G coils and find that 100 μV/m is too high a criterion to determine long-term operating current of the coils, because the innermost turns of a coil will, due to the effect of local magnetic field, reach their critical current much earlier than outer turns. Our modeling shows that an average voltage criterion of 20 μV/m over the coil corresponds to the point at which the innermost turns' electric field exceeds 100 μV/m. So 20 μV/m is suggested to be the critical current criterion of the HTS coil. The influence of background field on the coil critical current is also studied in the paper.

  6. Performance Calculation of High Temperature Superconducting Hysteresis Motor Using Finite Element Method

    NASA Astrophysics Data System (ADS)

    Konar, G.; Chakraborty, N.; Das, J.

    Hysteresis motors being capable of producing a steady torque at low speeds and providing good starting properties at loaded condition became popular among different fractional horse power electrical motors. High temperature superconducting materials being intrinsically hysteretic are suitable for this type of motor. In the present work, performance study of a 2-pole, 50 Hz HTS hysteresis motor with conventional stator and HTS rotor has been carried out numerically using finite element method. The simulation results confirm the ability of the segmented HTS rotor with glued circular sectors to trap the magnetic field as high as possible compared to the ferromagnetic rotor. Also the magnetization loops in the HTS hysteresis motor are obtained and the corresponding torque and AC losses are calculated. The motor torque thus obtained is linearly proportional to the current which is the common feature of any hysteresis motor. Calculations of torques, current densities etc are done using MATLAB program developed in-house and validated using COMSOL Multiphysics software. The simulation result shows reasonable agreement with the published results.

  7. Analyses, algorithms, and computations for models of high-temperature superconductivity. Final report

    SciTech Connect

    Du, Q.

    1997-06-01

    Under the sponsorship of the Department of Energy, the authors have achieved significant progress in the modeling, analysis, and computation of superconducting phenomena. The work so far has focused on mezoscale models as typified by the celebrated Ginzburg-Landau equations; these models are intermediate between the microscopic models (that can be used to understand the basic structure of superconductors and of the atomic and sub-atomic behavior of these materials) and the macroscale, or homogenized, models (that can be of use for the design of devices). The models they have considered include a time dependent Ginzburg-Landau model, a variable thickness thin film model, models for high values of the Ginzburg-landau parameter, models that account for normal inclusions and fluctuations and Josephson effects, and the anisotropic ginzburg-Landau and Lawrence-Doniach models for layered superconductors, including those with high critical temperatures. In each case, they have developed or refined the models, derived rigorous mathematical results that enhance the state of understanding of the models and their solutions, and developed, analyzed, and implemented finite element algorithms for the approximate solution of the model equations.

  8. Analyses, algorithms, and computations for models of high-temperature superconductivity. Final technical report

    SciTech Connect

    Gunzburger, M.D.; Peterson, J.S.

    1998-04-01

    Under the sponsorship of the Department of Energy, the authors have achieved significant progress in the modeling, analysis, and computation of superconducting phenomena. Their work has focused on mezoscale models as typified by the celebrated ginzburg-Landau equations; these models are intermediate between the microscopic models (that can be used to understand the basic structure of superconductors and of the atomic and sub-atomic behavior of these materials) and the macroscale, or homogenized, models (that can be of use for the design of devices). The models the authors have considered include a time dependent Ginzburg-Landau model, a variable thickness thin film model, models for high values of the Ginzburg-Landau parameter, models that account for normal inclusions and fluctuations and Josephson effects, and the anisotropic Ginzburg-Landau and Lawrence-Doniach models for layered superconductors, including those with high critical temperatures. In each case, they have developed or refined the models, derived rigorous mathematical results that enhance the state of understanding of the models and their solutions, and developed, analyzed, and implemented finite element algorithms for the approximate solution of the model equations.

  9. Engineering Nanocolumnar Defect Configurations for Optimized Vortex Pinning in High Temperature Superconducting Nanocomposite Wires

    SciTech Connect

    Wee, Sung Hun; Zuev, Yuri L; Cantoni, Claudia; Goyal, Amit; Ahuja, Raj; Abiade, J.

    2013-01-01

    High temperature superconducting (HTS), coated conductor wires based on nanocomposite films containing self-assembled, insulating BaZrO3 (BZO) nanocolumnar defects have previously been reported to exhibit enhanced vortex pinning. Here, we report on microstructural design via control of BZO nanocolumns density in YBa2Cu3O7- (YBCO)+BZO nancomposite films to achieve the highest critical current density, Jc(H, ,T). X-ray diffraction and microstructural examination shows increasing number density of epitaxial BZO nanocolumns in the highly cube-textured YBCO matrix with increasing nominal BZO additions. Transport property measurement reveals that an increase in BZO content upto 4 vol% is required to sustain the highest pinning and Jc performance as the magnetic field increases. By growing thicker, single-layer nanocomposite films (~4 m) with controlled density of BZO columnar defects, the critical current (Ic) of ~1000 A/cm at 77 K, self-field and the minimum Ic of 455 A/cm at 65 K and 3 T for all magnetic field orientations were obtained. This is the highest Ic reported to date for films on metallic templates which are the basis for the 2nd generation, coated conductor-based HTS wires.

  10. Fermi-surface reconstruction and the origin of high-temperature superconductivity.

    SciTech Connect

    Norman, M. R.; Materials Science Division

    2010-01-01

    lattice into a d{sup 9} configuration, with one localized hole in the 3d shell per copper site. Given the localized nature of this state, it was questioned whether a momentum-space picture was an appropriate description of the physics of the cuprates. In fact, this question relates to a long-standing debate in the physics community: Since the parent state is also an antiferromagnet, one can, in principle, map the Mott insulator to a band insulator with magnetic order. In this 'Slater' picture, Mott physics is less relevant than the magnetism itself. It is therefore unclear which of the two, magnetism or Mott physics, is more fundamentally tied to superconductivity in the cuprates. After twenty years of effort, definitive quantum oscillations that could be used to map the Fermi surface were finally observed in a high-temperature cuprate superconductor in 2007. This and subsequent studies reveal a profound rearrangement of the Fermi surface in underdoped cuprates. The cause of the reconstruction, and its implication for the origin of high-temperature superconductivity, is a subject of active debate.

  11. Contribution of ion beam analysis methods to the development of 2nd generation high temperature superconducting (HTS) wires

    SciTech Connect

    Usov, Igor O; Arendt, Paul N; Stan, Liliana; Holesinger, Terry G; Foltyn, Steven R; Depaula, Raymond F

    2009-01-01

    One of the crucial steps in the second generation high temperature superconducting wire program was development of the buffer layer architecture. The architecture designed at the Superconductivity Technology Center at Los Alamos National Laboratory consists of several oxide layers wherein each layer plays a specific role, namely: nucleation layer, diffusion barrier, biaxially textured template, and an intermediate layer with a good match to the lattice parameter of superconducting Y{sub 1}Ba{sub 2}Cu{sub 3}O{sub 7} (YBCO) compound. This report demonstrates how a wide range of ion beam analysis techniques (SIMS, RBS, channeling, PIXE, PIGE, NRA, ERD) was employed for analysis of each buffer layer and the YBCO films. These results assisted in understanding of a variety of physical processes occurring during the buffet layer fabrication and helped to optimize the buffer layer architecture as a whole.

  12. Comparative Assessment of Direct Drive High Temperature Superconducting Generators in Multi-Megawatt Class Wind Turbines

    SciTech Connect

    Maples, B.; Hand, M.; Musial, W.

    2010-10-01

    This paper summarizes the work completed under the CRADA between NREL and American Superconductor (AMSC). The CRADA combined NREL and AMSC resources to benchmark high temperature superconducting direct drive (HTSDD) generator technology by integrating the technologies into a conceptual wind turbine design, and comparing the design to geared drive and permanent magnet direct drive (PMDD) wind turbine configurations. Analysis was accomplished by upgrading the NREL Wind Turbine Design Cost and Scaling Model to represent geared and PMDD turbines at machine ratings up to 10 MW and then comparing cost and mass figures of AMSC's HTSDD wind turbine designs to theoretical geared and PMDD turbine designs at 3.1, 6, and 10 MW sizes. Based on the cost and performance data supplied by AMSC, HTSDD technology has good potential to compete successfully as an alternative technology to PMDD and geared technology turbines in the multi megawatt classes. In addition, data suggests the economics of HTSDD turbines improve with increasing size, although several uncertainties remain for all machines in the 6 to 10 MW class.

  13. A novel approach to quench detection for high temperature superconducting coils

    NASA Astrophysics Data System (ADS)

    Song, W. J.; Fang, X. Y.; Fang, J.; Wei, B.; Hou, J. Z.; Liu, L. F.; Lu, K. K.; Li, Shuo

    2015-11-01

    A novel approach to quench detection for high temperature superconducting (HTS) coils is proposed, which is mainly based on phase angle between voltage and current of two coils to detect the quench resistance voltage. The approach is analyzed theoretically, verified experimentally and analytically by MATLAB Simulink and LabVIEW. An analog quench circuit is built on Simulink and a quench alarm system program is written in LabVIEW. Experiment of quench detection is further conducted. The sinusoidal AC currents ranging from 19.9 A to 96 A are transported to the HTS coils, whose critical current is 90 A at 77 K. The results of analog simulation and experiment are analyzed and they show good consistency. It is shown that with the increase of current, the phase undergoes apparent growth, and it is up to 60° and 15° when the current reaches critical value experimentally and analytically, respectively. It is concluded that the approach proposed in this paper can meet the need of precision and quench resistance voltage can be detected in time.

  14. Dynamic response characteristics of the high-temperature superconducting maglev system under lateral eccentric distance

    NASA Astrophysics Data System (ADS)

    Wang, Bo; Zheng, Jun; Si, Shuaishuai; Qian, Nan; Li, Haitao; Li, Jipeng; Deng, Zigang

    2016-07-01

    Off-centre operation of high-temperature superconducting (HTS) maglev systems caused by inevitable conditions such as the misregistration of vehicle, crosswind and curve negotiation, may change the distribution of the trapped flux in the HTS bulks and the magnetic interaction between HTS bulks and the PMG. It impacts on the performance of HTS maglev, and more seriously makes the maglev vehicle overturned. Therefore, understanding the performance of the HTS maglev in off-center operation is very important. In this paper, the dynamic response characteristics of a cryostat with twenty-four onboard YBaCuO superconductor bulks were experimentally investigated at different eccentric distances under loads before the initial FC process. Parameters such as vibration accelerations, displacement, natural frequency and dynamic stiffness were acquired and analyzed via the B&K vibration analyzer and laser displacement sensors. Results suggest that the natural frequency and dynamic stiffness of the maglev vehicle would be obviously reduced with the eccentric distance, posing negative effects on the stability of HTS maglev.

  15. Calculating AC Losses in High-temperature Superconducting Cables Comprising Coated Conductors

    NASA Astrophysics Data System (ADS)

    Noji, Hideki; Kawano, Shouta; Akaki, Yoji; Hamada, Tsugio

    In this study, we present a new calculation model of AC loss in a high-temperature superconducting (HTS) cable comprising coated conductors. AC loss is calculated by an electric circuit (EC) model. A previous EC model had three circuit elements: resistance as a function of the layer current, inductances related to the circumferential and axial fields. The new EC model has only inductances, and resistance is eliminated. In both models, AC loss of the coated conductor in each layer of an HTS cable is calculated on the basis of the Norris equation for a thin strip. The differences between measurement and calculations using the previous and new models are 12% and 14%, respectively, when transporting 1 kArms, which indicates that the new model is applicable for the calculation of AC loss in an HTS cable. These results indicate that layer current is dependent on inductances and not on resistance. The elimination of resistance simplifies AC loss calculation because it does not require repeated calculations for the convergence of the layer current. The calculation time was 1/20th of that of the previous model. In the new model, the Norris equation can be replaced with the calculation result obtained by the two-dimensional finite element method to obtain more accurate AC loss.

  16. Possible high-temperature superconductivity in hole-doped MgB2C2

    NASA Astrophysics Data System (ADS)

    Verma, A. K.; Modak, P.; Gaitonde, D. M.; Rao, R. S.; Godwal, B. K.; Gupta, L. C.

    2003-09-01

    We report first-principles full potential linearised augmented plane wave calculations of the electronic band structure of the compound MgB2C2 and its hole-doped derivatives Mg0.5Li0.5B2C2, Mg0.5Na0.5B2C2, Mg0.9Na0.1B2C2 and Mg0.5K0.5B2C2. The parent compound MgB2C2 is a band insulator, which on hole doping, is predicted to turn metallic with a large density of states at the Fermi energy. Its band dispersion shows a flat band feature close to the Fermi energy, reminiscent of MgB2. Based on our estimates of changes in the density of states at the Fermi level, we predict that hole-doped MgB2C2 is a potential candidate for high-temperature superconductivity.

  17. Operating experience with the southwire 30-meter high-temperature superconducting power cable

    NASA Astrophysics Data System (ADS)

    Stovall, J. P.; Lue, J. W.; Demko, J. A.; Fisher, P. W.; Gouge, M. J.; Hawsey, R. A.; Armstrong, J. W.; Hughey, R. L.; Lindsay, D. T.; Roden, M. L.; Sinha, U. K.; Tolbert, J. C.

    2002-05-01

    Southwire Company is operating a high-temperature superconducting (HTS) cable system at its corporate headquarters. The 30-m long, 3-phase cable system is powering three Southwire manufacturing plants and is rated at 12.4-kV, 1250-A, 60-Hz. Cooling is provided by a pressurized liquid nitrogen system operating at 70-80 K. The cables were energized on January 5, 2000 for on-line testing and operation and in April 2000 were placed into extended service. As of June 1, 2001, the HTS cables have provided 100% of the customer load for 8000 hours. The cryogenic system has been in continuous operation since November 1999. The HTS cable system has not been the cause of any power outages to the average 20 MW industrial load served by the cable. The cable has been exposed to short-circuit currents caused by load-side faults without damage. Based upon field measurements described herein, the cable critical current-a key performance parameter-remains the same and has not been affected by the hours of real-world operation, further proving the viability of this promising technology.

  18. Engineering nanocolumnar defect configurations for optimized vortex pinning in high temperature superconducting nanocomposite wires.

    PubMed

    Wee, Sung Hun; Zuev, Yuri L; Cantoni, Claudia; Goyal, Amit

    2013-01-01

    We report microstructural design via control of BaZrO3 (BZO) defect density in high temperature superconducting (HTS) wires based on epitaxial YBa2Cu3O7-δ (YBCO) films to achieve the highest critical current density, Jc, at different fields, H. We find the occurrence of Jc(H) cross-over between the films with 1-4 vol% BZO, indicating that optimal BZO doping is strongly field-dependent. The matching fields, Bφ, estimated by the number density of BZO nanocolumns are matched to the field ranges for which 1-4 vol% BZO-doped films exhibit the highest Jc(H). With incorporation of BZO defects with the controlled density, we fabricate 4-μm-thick single layer, YBCO + BZO nanocomposite film having the critical current (Ic) of ~1000 A cm(-1) at 77 K, self-field and the record minimum Ic, Ic(min), of 455 A cm(-1) at 65 K and 3 T for all field angles. This Ic(min) is the largest value ever reported from HTS films fabricated on metallic templates. PMID:23939231

  19. Engineering nanocolumnar defect configurations for optimized vortex pinning in high temperature superconducting nanocomposite wires

    PubMed Central

    Wee, Sung Hun; Zuev, Yuri L.; Cantoni, Claudia; Goyal, Amit

    2013-01-01

    We report microstructural design via control of BaZrO3 (BZO) defect density in high temperature superconducting (HTS) wires based on epitaxial YBa2Cu3O7-δ (YBCO) films to achieve the highest critical current density, Jc, at different fields, H. We find the occurrence of Jc(H) cross-over between the films with 1–4 vol% BZO, indicating that optimal BZO doping is strongly field-dependent. The matching fields, Bφ, estimated by the number density of BZO nanocolumns are matched to the field ranges for which 1–4 vol% BZO-doped films exhibit the highest Jc(H). With incorporation of BZO defects with the controlled density, we fabricate 4-μm-thick single layer, YBCO + BZO nanocomposite film having the critical current (Ic) of ~1000 A cm−1 at 77 K, self-field and the record minimum Ic, Ic(min), of 455 A cm−1 at 65 K and 3 T for all field angles. This Ic(min) is the largest value ever reported from HTS films fabricated on metallic templates. PMID:23939231

  20. High Temperature Superconducting Magnets with Active Control for Attraction Levitation Transport Applications

    NASA Technical Reports Server (NTRS)

    Jones, Harry; Jenkins, Richard G.; Goodall, Roger M.; Macleod, Colin; ElAbbar, Abdallah A.; Campbell, Archie M.

    1996-01-01

    A research program, involving 3 British universities, directed at quantifying the controllability of High Temperature Superconducting (HTS) magnets for use in attraction levitation transport systems will be described. The work includes measurement of loss mechanisms for iron cored HTS magnets which need to produce a flux density of approx. 1 tesla in the airgap between the magnet poles and a ferromagnetic rail. This flux density needs to be maintained and this is done by introducing small variations of the magnet current using a feedback loop, at frequencies up to 10 Hz to compensate for load changes, track variation etc. The test magnet assemblies constructed so far will be described and the studies and modelling of designs for a practical levitation demonstrator (using commercially obtained HTS tape) will be discussed with particular emphasis on how the field distribution and its components, e.g., the component vector normal to the broad face of the tape, can radically affect design philosophy compared to the classical electrical engineering approach. Although specifically aimed at levitation transport the controllability data obtained have implications for a much wider range of applications.

  1. High pressure studies of superconductivity

    NASA Astrophysics Data System (ADS)

    Hillier, Narelle Jayne

    Superconductivity has been studied extensively since it was first discovered over 100 years ago. High pressure studies, in particular, have been vital in furthering our understanding of the superconducting state. Pressure allows researchers to enhance the properties of existing superconductors, to find new superconductors, and to test the validity of theoretical models. This thesis presents a series of high pressure measurements performed in both He-gas and diamond anvil cell systems on various superconductors and on materials in which pressure-induced superconductivity has been predicted. Under pressure the alkali metals undergo a radical departure from the nearly-free electron model. In Li this leads to a superconducting transition temperature that is among the highest of the elements. All alkali metals have been predicted to become superconducting under pressure. Pursuant to this, a search for superconductivity has been conducted in the alkali metals Na and K. In addition, the effect of increasing electron concentration on Li1-xMgx alloys has been studied. Metallic hydrogen and hydrogen-rich compounds are believed to be good candidates for high temperature superconductivity. High pressure optical studies of benzene (C6H6) have been performed to 2 Mbar to search for pressure-induced metallization. Finally, cuprate and iron-based materials are considered high-Tc superconductors. These layered compounds exhibit anisotropic behavior under pressure. Precise hydrostatic measurements of dTc/dP on HgBa2CuO 4+delta have been carried out in conjunction with uniaxial pressure experiments by another group. The results obtained provide insight into the effect of each of the lattice parameters on Tc. Finally, a series of hydrostatic and non-hydrostatic measurements on LnFePO (Ln = La, Pr, Nd) reveal startling evidence that the superconducting state in the iron-based superconductors is highly sensitive to lattice strain.

  2. High temperature superconducting thin film microwave circuits: Fabrication, characterization, and applications

    NASA Technical Reports Server (NTRS)

    Bhasin, K. B.; Warner, J. D.; Romanofsky, R. R.; Heinen, V. O.; Chorey, C. M.

    1990-01-01

    Epitaxial YBa2Cu3O7 films were grown on several microwave substrates. Surface resistance and penetration depth measurements were performed to determine the quality of these films. Here the properties of these films on key microwave substrates are described. The fabrication and characterization of a microwave ring resonator circuit to determine transmission line losses are presented. Lower losses than those observed in gold resonator circuits were observed at temperatures lower than critical transition temperature. Based on these results, potential applications of microwave superconducting circuits such as filters, resonators, oscillators, phase shifters, and antenna elements in space communication systems are identified.

  3. High-temperature superconductivity from fine-tuning of Fermi-surface singularities in iron oxypnictides

    NASA Astrophysics Data System (ADS)

    Charnukha, Aliaksei

    2015-03-01

    In the family of iron-based superconductors, 1111-type materials exhibit superconductivity with the highest transition temperature Tc=55K. Early theoretical predictions of their electronic structure revealed multiple large circular sheets of the Fermi surface. Here we use ARPES to show that two prototypical compounds of the 1111 type are at odds with this description. Their low-energy band structure is formed by the edges of several bands, which are pulled to the Fermi level from the depths of the theoretically predicted band structure by strong electronic interactions. We further demonstrate that although their low-energy electronic looks remarkably similar, the Tc differs by a factor of 2. Upon closer examination we uncover that one of the bands in the higher-Tc compound sinks to 2.3meV below the Fermi level and thus does not produce a Fermi surface. And yet we find that it hosts a superconducting energy gap 10x larger than the same band in the lower-Tc sister compound. Our results show that the Fermi-surface singularities in the iron-oxypnictides dramatically affect their low-energy electronic properties, including superconductivity, and must therefore be explicitly taken into account in any attempt to understand the pairing mechanism.

  4. Photoemission results and understanding of high-temperature superconducting oxides: Non-issues, real issues, limitations and opportunities

    SciTech Connect

    Margaritondo, G.

    1994-12-31

    The authors argue that the photoelectric effect in high-temperature superconductors is not only a source of extremely valuable information, but one of the most important and interesting open problems in today`s physics. Even without a complete picture of this phenomenon, very important conclusions can be obtained from an empirical analysis of photoemission data, notably on the parity (see Onellion`s article in this volume) and on the link between superconductivity and Anderson locations But a complete theoretical framework is urgently needed. Its development can contribute to the conceptual revolution that might be necessary to understand high-temperature superconductivity, as the Drude-Fermi-Landau revolution was necessary to understand metallic conductivity.

  5. Basic concepts, status, opportunities, and challenges of electrical machines utilizing high-temperature superconducting (HTS) windings

    NASA Astrophysics Data System (ADS)

    Frauenhofer, J.; Grundmann, J.; Klaus, G.; Nick, W.

    2008-02-01

    An overview of the different approaches towards achieving a marketable application of a superconducting electrical machine, either as synchronous motor or generator, will be given. This field ranges from relatively small industrial drives to utility generators with large power ratings, from the low speed and high torque of wind power generators and ship propulsion motors, to high speed generators attached to turbines. Essentially HTS machine technology offers several advantages such as compactness (weight and volume reduction), increased efficiency, and other operational benefits. The machine features have to be optimized with regard to the specific application, and different concepts were developed by internationally competing teams, with Siemens being one of them. The achieved status in these fields will be summarized, pointing to the specific technical challenges to overcome. For this purpose we have not only to consider the technology of manufacturing the HTS rotor winding itself, but also to check requirements and availability of supporting technologies. This ranges from new challenges posed to the non-superconducting ("conventional") components of such innovative HTS machines, manufacturing superconducting material in the coming transition from 1st to 2nd generation HTS tape, cryogenic technology including material behavior, to new and challenging tasks in simulating and predicting the performance of such machines by computational tools. The question of market opportunities for this technology obviously is a function of all these aspects; however, a strong tendency for the near future is seen in the area of high-torque ship propulsion.

  6. Local structural studies of oriented high-temperature superconducting cuprates by polarized XAFS spectroscopy

    NASA Astrophysics Data System (ADS)

    Haskel, Daniel

    1998-07-01

    Doping (Sr,Ba) in Lasb{2-x}(Sr,Ba)sb{x}CuOsb4 induces high Tsb{c} superconductivity in addition to profound changes in structural, magnetic and normal state electronic properties. The purpose of this thesis is to investigate the structural characteristics accompanying this doping by performing orientation dependent x-ray absorption fine structure (XAFS) measurements on magnetically aligned powders. This type of measurements allowed obtaining critical information at the La/(Sr,Ba) site previously unavailable, as detailed below. The measurements show that hole carriers introduced with Sr are polaronic in nature as evident from the two site configuration found for the O(2) apical neighboring Sr and the lack of temperature dependence in the O(2) distribution, which indicates that the hole states associated with each site are not discrete but rather broader than ksb{B}T up to T = 300K. There is a good theoretical argument suggesting each O(2) site is associated with holes being doped into O(1) 2psb{x,y}-Cu 3dsb{xsp2-ysp2} in-plane and O(2) 2psb{z}-Cu 3dsb{3zsp2-rsp2} out-of-plane electronic bands resulting in two different Jahn-Teller distortions of the CuOsb6 octahedra neighboring Sr, where the doped holes are peaked. Based on this argument, the predominance of out-of-plane character for the doped holes, as evidenced from the concentration dependence of the relative population of O(2) sites, would imply that theories of high Tsb{c} relying only on in-plane character of the doped holes are not complete in describing the properties of these cuprates. Our measurements showed that all structural phase transitions in Lasb{2-x}(Sr,Ba)sb{x}CuOsb4 have a significant order-disorder component, as opposed to the purely displacive models found in crystallographic studies. The CuOsb6 octahedra are locally tilted in the high-doping, high-temperature phases but fail to order over long range resulting in the average structures of the crystallographic studies. A critical parameter in

  7. Superconductivity in highly disordered dense carbon disulfide

    PubMed Central

    Dias, Ranga P.; Yoo, Choong-Shik; Struzhkin, Viktor V.; Kim, Minseob; Muramatsu, Takaki; Matsuoka, Takahiro; Ohishi, Yasuo; Sinogeikin, Stanislav

    2013-01-01

    High pressure plays an increasingly important role in both understanding superconductivity and the development of new superconducting materials. New superconductors were found in metallic and metal oxide systems at high pressure. However, because of the filled close-shell configuration, the superconductivity in molecular systems has been limited to charge-transferred salts and metal-doped carbon species with relatively low superconducting transition temperatures. Here, we report the low-temperature superconducting phase observed in diamagnetic carbon disulfide under high pressure. The superconductivity arises from a highly disordered extended state (CS4 phase or phase III[CS4]) at ∼6.2 K over a broad pressure range from 50 to 172 GPa. Based on the X-ray scattering data, we suggest that the local structural change from a tetrahedral to an octahedral configuration is responsible for the observed superconductivity. PMID:23818624

  8. Ultrafast Dynamics Evidence of High Temperature Superconductivity in Single Unit Cell FeSe on SrTiO_{3}.

    PubMed

    Tian, Y C; Zhang, W H; Li, F S; Wu, Y L; Wu, Q; Sun, F; Zhou, G Y; Wang, Lili; Ma, Xucun; Xue, Qi-Kun; Zhao, Jimin

    2016-03-11

    We report the time-resolved excited state ultrafast dynamics of single unit cell (1 UC) thick FeSe films on SrTiO_{3} (STO), with FeTe capping layers. By measuring the photoexcited quasiparticles' density and lifetime, we unambiguously identify a superconducting (SC) phase transition, with a transition temperature T_{c} of 68 (-5/+2)  K and a SC gap of Δ(0)=20.2±1.5  meV. The obtained electron-phonon coupling strength λ is as large as 0.48, demonstrating the likely crucial role of electron-phonon coupling in the high temperature superconductivity of the 1 UC FeSe on STO systems. We further find a 0.05 THz coherent acoustic phonon branch in the capping layer, which provides an additional decay channel to the gluing bosons. PMID:27015504

  9. Ultrafast Dynamics Evidence of High Temperature Superconductivity in Single Unit Cell FeSe on SrTiO3

    NASA Astrophysics Data System (ADS)

    Tian, Y. C.; Zhang, W. H.; Li, F. S.; Wu, Y. L.; Wu, Q.; Sun, F.; Zhou, G. Y.; Wang, Lili; Ma, Xucun; Xue, Qi-Kun; Zhao, Jimin

    2016-03-01

    We report the time-resolved excited state ultrafast dynamics of single unit cell (1 UC) thick FeSe films on SrTiO3 (STO), with FeTe capping layers. By measuring the photoexcited quasiparticles' density and lifetime, we unambiguously identify a superconducting (SC) phase transition, with a transition temperature Tc of 68 (-5 /+2 ) K and a SC gap of Δ (0 )=20.2 ±1.5 meV . The obtained electron-phonon coupling strength λ is as large as 0.48, demonstrating the likely crucial role of electron-phonon coupling in the high temperature superconductivity of the 1 UC FeSe on STO systems. We further find a 0.05 THz coherent acoustic phonon branch in the capping layer, which provides an additional decay channel to the gluing bosons.

  10. Effects of interlayer coupling on the magnetic and transport properties of superconducting multilayers and high-temperature superconductors

    SciTech Connect

    Gray, K.E.; Hettinger, J.D.; Kim, D.H.

    1994-06-01

    The effect of interlayer coupling on the transport properties and dissipation in a magnetic field is reviewed for superconducting multilayers including highly-anisotropic high-temperature superconductors (HTS). For the applied field parallel to the superconducting layers the absence of any Lorentz-force dependence of the dissipation leads to an explanation other than flux motion. This is consistent with a Josephson junction dissipation which dominates flux motion of the insulating regions between layers. However, in is seen to cross over from phase slips at Josephson junctions to depinning of vortices from the external field at high fields and temperatures. For fields perpendicular to the superconducting layers the much greater resistive broadening in HTS is due to dissipation by thermally-activated flux motion, consistent with a lack of intrinsic pinning. We show experimental evidence that the associated flux motion occurs as a result of a crossover from three dimensional (3D) vortex lines to 2D independent pancake-like vortices, residing in the Cu-O layers. This 3D to 2D crossover occurs after k{sub B}T exceeds the Josephson coupling energy.

  11. A simple method for characterizing the RF properties of high-temperature superconductive materials

    NASA Technical Reports Server (NTRS)

    Chang, K.; Pandey, R. K.; Skrehot, M. K.; Li, M.

    1989-01-01

    A simple method using a resonant strip in a rectangular waveguide has been devised for superconductive material characterization. The method has the advantages of simplicity; and it requires only a small piece of the superconductive material. The resonant frequency of the superconductive strip can be predicted theoretically.

  12. SSTAC/ARTS review of the draft Integrated Technology Plan (ITP). Volume 8: Aerothermodynamics Automation and Robotics (A/R) systems sensors, high-temperature superconductivity

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Viewgraphs of briefings presented at the SSTAC/ARTS review of the draft Integrated Technology Plan (ITP) on aerothermodynamics, automation and robotics systems, sensors, and high-temperature superconductivity are included. Topics covered include: aerothermodynamics; aerobraking; aeroassist flight experiment; entry technology for probes and penetrators; automation and robotics; artificial intelligence; NASA telerobotics program; planetary rover program; science sensor technology; direct detector; submillimeter sensors; laser sensors; passive microwave sensing; active microwave sensing; sensor electronics; sensor optics; coolers and cryogenics; and high temperature superconductivity.

  13. Present Status and Future Perspective of Bismuth-Based High-Temperature Superconducting Wires Realizing Application Systems

    NASA Astrophysics Data System (ADS)

    Sato, Ken-ichi; Kobayashi, Shin-ichi; Nakashima, Takayoshi

    2012-01-01

    Among a series of high-temperature superconducting materials that have been discovered to date, (Bi,Pb)2Sr2Ca2Cu3O10-x is the best candidate for superconducting wires that are long with commercial productivity, and critical current performance. In particular, the controlled overpressure (CT-OP) sintering technique gave us a 100% density of (Bi,Pb)2Sr2Ca2Cu3O10-x portion, which leads to robustness, increase in critical current, and mechanical tolerance. Many application prototypes are already verified and are being evaluated worldwide. Current leads for large magnets and magnetic billet heaters are already commercial products. Commercial applications for power cables, motors for ship propulsion and electric vehicles, and many kinds of magnets are promising in the near future.

  14. Ultra-High Performance, High-Temperature Superconducting Wires via Cost-effective, Scalable, Co-evaporation Process

    SciTech Connect

    Kim, Dr. Hosup; Oh, Sang-Soo; Ha, HS; Youm, D; Moon, SH; Kim, JH; Heo, YU; Dou, SX; Wee, Sung Hun; Goyal, Amit

    2014-01-01

    Long-length, high-temperature superconducting (HTS) wires capable of carrying high critical current, Ic, are required for a wide range of applications. Here, we report extremely high performance HTS wires based on 5 m thick SmBa2Cu3O7- (SmBCO) single layer films on textured metallic templates. SmBCO layer wires over 20 meters long were deposited by a cost-effective, scalable co-evaporation process using a batch-type drum in a dual chamber. All deposition parameters influencing the composition, phase, and texture of the films were optimized via a unique combinatorial method that is broadly applicable for co-evaporation of other promising complex materials containing several cations. Thick SmBCO layers deposited under optimized conditions exhibit excellent cube-on-cube epitaxy. Such excellent structural epitaxy over the entire thickness results in exceptionally high Ic performance, with average Ic over 1000 A/cm for the entire 22 meter long wire and maximum Ic over 1,500 A/cm for a short 12 cm long tape. The Ic values reported in this work are the highest values ever reported from any lengths of cuprate-based HTS wire or conductor.

  15. Ultra-High Performance, High-Temperature Superconducting Wires via Cost-effective, Scalable, Co-evaporation Process

    PubMed Central

    Kim, Ho-Sup; Oh, Sang-Soo; Ha, Hong-Soo; Youm, Dojun; Moon, Seung-Hyun; Kim, Jung Ho; Dou, Shi Xue; Heo, Yoon-Uk; Wee, Sung-Hun; Goyal, Amit

    2014-01-01

    Long-length, high-temperature superconducting (HTS) wires capable of carrying high critical current, Ic, are required for a wide range of applications. Here, we report extremely high performance HTS wires based on 5 μm thick SmBa2Cu3O7 − δ (SmBCO) single layer films on textured metallic templates. SmBCO layer wires over 20 meters long were deposited by a cost-effective, scalable co-evaporation process using a batch-type drum in a dual chamber. All deposition parameters influencing the composition, phase, and texture of the films were optimized via a unique combinatorial method that is broadly applicable for co-evaporation of other promising complex materials containing several cations. Thick SmBCO layers deposited under optimized conditions exhibit excellent cube-on-cube epitaxy. Such excellent structural epitaxy over the entire thickness results in exceptionally high Ic performance, with average Ic over 1,000 A/cm-width for the entire 22 meter long wire and maximum Ic over 1,500 A/cm-width for a short 12 cm long tape. The Ic values reported in this work are the highest values ever reported from any lengths of cuprate-based HTS wire or conductor. PMID:24752189

  16. Nanostructures of Boron, Carbon and Magnesium Diboride for High Temperature Superconductivity

    SciTech Connect

    Pfefferle, Lisa; Fang, Fang; Iyyamperumal, Eswarmoorthi; Keskar, Gayatri

    2013-12-23

    Direct fabrication of MgxBy nanostructures is achieved by employing metal (Ni,Mg) incorporated MCM-41 in the Hybrid Physical-Chemical Vapor Deposition (HPCVD) reaction. Different reaction conditions are tested to optimize the fabrication process. TEM analysis shows the fabrication of MgxBy nanostructures starting at the reaction temperature of 600oC, with the yield of the nanostructures increasing with increasing reaction temperature. The as-synthesized MgxBy nanostructures have the diameters in the range of 3-5nm, which do not increase with the reaction temperature consistent with templated synthesis. EELS analysis of the template removed nanostructures confirms the existence of B and Mg with possible contamination of Si and O. NEXAFS and Raman spectroscopy analysis suggested a concentric layer-by-layer MgxBy nanowire/nanotube growth model for our as-synthesized nanostructures. Ni k-edge XAS indicates that the formation of MgNi alloy particles is important for the Vapor-Liquid-Solid (VLS) growth of MgxBy nanostructures with fine diameters, and the presence of Mg vapor not just Mg in the catalyst is crucial for the formation of Ni-Mg clusters. Physical templating by the MCM-41 pores was shown to confine the diameter of the nanostructures. DC magnetization measurements indicate possible superconductive behaviors in the as-synthesized samples.

  17. Preparation, structure and superconductivity of high T(c) compounds: Research of high temperature superconductors in Hungary

    NASA Technical Reports Server (NTRS)

    Kirschner, I.

    1995-01-01

    In this paper the main directions, methods and results of the investigation of high-T(c) superconductors in Hungary are briefly summarized. The fundamental idea of this research is to study the effect of starting conditions on the microstructure of samples and the influence of the latter one on their superconducting parameters. The investigation concerning technical development is also mentioned.

  18. High- and Mid-temperature Superconducting Sensors for Far IR/Sub-mm Applications in Space

    NASA Technical Reports Server (NTRS)

    Lakew, Brook; Brasunas, J. C.

    2004-01-01

    In this review paper an overview of the potential applications of high Tc (approx. 90 K) superconductors (HTS) and mid-Tc (approx. 39 K) superconductors (MTS) thin films in far IR/Sub-mm thermal detectors is presented. HTSs (YBCO, GdBCO etc.) were discovered in the late 80s while superconductivity in MgB2, an MTS, was discovered in 2001. The sharp transition in transport properties of HTS has allowed the fabrication of composite infrared thermal detectors (bolometers) with better figures of merit than thermopile detectors - thermopiles are currently on board the CIRS instrument on the Cassini mission to Saturn. The potential for developing even more sensitive sensors for IR/Sub-mm applications using MgB2 thin films is assessed. Current MgB2 thin film deposition techniques and film quality are reviewed.

  19. Neutron scattering experiments on high-temperature superconducting materials: Foreign trip report, September 13, 1988--October 4, 1988

    NASA Astrophysics Data System (ADS)

    Mook, H. A.

    1988-10-01

    The trip to the Institut Laue-Langevin (ILL) was made to perform neutron scattering experiments on the new high temperature superconducting materials. Part of this work could have been accomplished at the High Flux Isotope Reactor (HFIR) at ORNL had it been operational; other parts utilized the special instrumentation at the ILL available at no other place. Experiments performed were the following: high energy magnetic excitations in pure and Ba-doped La2CuO4, magnetic excitations and structural phase transitions in the Bi2Ba2Cu1O6 superconductor, search for the fluxoid lattice in the high temperature materials, and magnetic spin structures in ErBa2Cu3O7 and GdBa2Cu3O6.5. Measurements were also made on supermirrors important for polarizing and neutron guide applications.

  20. Electrodynamic stabilization conditions for high-temperature superconducting composites with different types of current-voltage characteristic nonlinearity

    NASA Astrophysics Data System (ADS)

    Arkharov, A. M.; Lavrov, N. A.; Romanovskii, V. R.

    2014-06-01

    The current instability is studied in high-temperature superconducting current-carrying elements with I- V characteristics described by power or exponential equations. Stability analysis of the macroscopic states is carried out in terms of a stationary zero-dimensional model. In linear temperature approximation criteria are derived that allow one to find the maximum allowable values of the induced current, induced electric field intensity, and overheating of the superconductor. A condition is formulated for the complete thermal stabilization of the superconducting composite with regard to the nonlinearity of its I- V characteristic. It is shown that both subcritical and supercritical stable states may arise. In the latter case, the current and electric field intensity are higher than the preset critical parameters of the superconductor. Conditions for these states depending on the properties of the matrix, superconductor's critical current, fill factor, and nonlinearity of the I- V characteristic are discussed. The obtained results considerably augment the class of allowable states for high-temperature superconductors: it is demonstrated that there exist stable resistive conditions from which superconductors cannot pass to the normal state even if the parameters of these conditions are supercritical.

  1. Nuclear Magnetic Resonance and High-Temperature Superconductivity in YTTRIUM(1-X)PRASEODYMIUM(X)BARIUM Cuprate

    NASA Astrophysics Data System (ADS)

    Reyes, Arneil Payongayong

    Copper nuclear magnetic resonance (NMR) has been performed on praseodymium-doped YBa_2Cu _3O_7, to investigate the nature of the depression of the superconducting transition temperature T_{c} with Pr concentration in this series and to provide insight into the microscopic and magnetic properties of high T_{c } planar cuprate materials. Praseodymium is unique among rare-earth dopants in suppressing superconductivity in the high T _{c} cuprate YBa _2Cu_3O_7 while maintaining the orthorhombic structure of the host. Temperature dependence of the Knight shift K and the nuclear relaxation rate 1/T_1 has been observed in Y-rich Y_{1-x}Pr _ xBa_2Cu _3O_7. Its striking resemblance to the behavior found in oxygen deficient YBa_2Cu_3O _{7-y} provides evidence that T_{c} depression in the former is primarily due to the removal of hole carriers as a consequence of Pr being close to tetravalent state. This hole-filling mechanism is consistent with the observed antiferromagnetic ordering of Cu spins on the plane sites in both PrBa_2Cu_3O_7 and YBa_2Cu_3O_6 since the absence of the doped-holes on the Cu -O_2 planes enhances spin correlations among Cu local moments. On the other hand, extensive analysis of the spin susceptibility has shown a tendency towards trivalency of Pr in specimens with low x values, suggesting that in the dilute limit pair-breaking due to conduction band-4f hybridization is also involved in the depression of T_{c}. The mixed-valent nature of Pr must therefore be considered for any adequate explanation of the suppression of superconductivity in Y_{1-x}Pr_ xBa_2Cu_3 O_7. The phenomenological model of antiferromagnetic Fermi liquid (AFL) proposed by Millis, Monien and Pines has been used to explain the behavior of the planar ^{63}Cu relaxation rate and to extract information on the strength of correlations among the local spins. Analysis has shown that the unusual behavior of the relaxation rate is a consequence of a competition between the temperature

  2. Model for superconductivity at any temperature

    NASA Astrophysics Data System (ADS)

    Anber, Mohamed M.; Burnier, Yannis; Sabancilar, Eray; Shaposhnikov, Mikhail

    2016-01-01

    We construct a 2 +1 dimensional model that sustains superconductivity at all temperatures. This is achieved by introducing a Chern-Simons mixing term between two Abelian gauge fields A and Z . The superfluid is described by a complex scalar charged under Z , whereas a sufficiently strong magnetic field of A forces the superconducting condensate to form at all temperatures. In fact, at finite temperature, the theory exhibits Berezinsky-Kosterlitz-Thouless phase transition due to proliferation of topological vortices admitted by our construction. However, the critical temperature is proportional to the magnetic field of A , and thus, the phase transition can be postponed to high temperatures by increasing the strength of the magnetic field.

  3. High Power Intermodulation Measurements up to 30 W of High Temperature Superconducting Filters

    NASA Technical Reports Server (NTRS)

    Wilker, Charles; Carter, Charles F., III; Shen, Zhi-Yuan

    1999-01-01

    We have demonstrated a high power intermodulation measurement set-up capable of delivering 30 W in each of two fundamental tones. For closely spaced frequencies (less than 35 MHz), the dynamic range of the measurement is limited by the nonlinear performance of the mixer in the front end of the HP71210C spectrum analyzer. A tunable TE(sub 011) mode copper cavity was fabricated in which one of the endwalls could be adjusted shifting its resonant frequency between 5.7 and 6.6 GHz. Since the Q-value of this cavity is high, greater than 10(exp 4), and its bandwidth is small, less than 1 MHz, it can be used to attenuate the two fundamental tones relative to one of the harmonic tones, which greatly enhances the dynamic range of the measurement. This set-up can be used to measure the two-tone intermodulation distortion of any passive microwave device, e.g. a HTS filter, a connector, a cable, etc., over a frequency range of 5.9 to 6.4 GHz and a power range of 0.1 to 30 W. The third order intercept (TOI) of a prototype HTS filter measured at powers up to 30 W was +81.3 dBm.

  4. Ripple current loss measurement with DC bias condition for high temperature superconducting power cable using calorimetry method

    NASA Astrophysics Data System (ADS)

    Kim, D. W.; Kim, J. G.; Kim, A. R.; Park, M.; Yu, I. K.; Sim, K. D.; Kim, S. H.; Lee, S. J.; Cho, J. W.; Won, Y. J.

    2010-11-01

    The authors calculated the loss of the High Temperature Superconducting (HTS) model cable using Norris ellipse formula, and measured the loss of the model cable experimentally. Two kinds of measuring method are used. One is the electrical method, and the other is the calorimetric method. The electrical method can be used only in AC condition. But the calorimetric method can be used in both AC and DC bias conditions. In order to propose an effective measuring approach for Ripple Dependent Loss (RDL) under DC bias condition using the calorimetric method, Bismuth Strontium Calcium Copper Oxide (BSCCO) wires were used for the HTS model cable, and the SUS tapes were used as a heating tape to make the same pattern of the temperature profiles as in the electrical method without the transport current. The temperature-loss relations were obtained by the electrical method, and then applied to the calorimetric method by which the RDL under DC bias condition was well estimated.

  5. Performance of a four-element Ka-band high-temperature superconducting microstrip antenna

    NASA Technical Reports Server (NTRS)

    Richard, M. A.; Bhasin, K. B.; Gilbert, C.; Metzler, S.; Koepf, G.; Claspy, P. C.

    1992-01-01

    Superconducting four-element microstrip array antennas operating at 30 GHz have been designed and fabricated on a lanthanum aluminate (LaAlO3) substrates. The experimental performance of these thin film Y-Ba-Cu-O superconducting antennas is compared with that of identical antenna patterned with evaporated gold. Efficiency measurements of these antennas show an improvement of 2 dB at 70 K and as much as 3.5 dB at 40 K in the superconducting antenna over the gold antenna.

  6. Method and apparatus for forming high-critical-temperature superconducting layers on flat and/or elongated substrates

    DOEpatents

    Ciszek, T.F.

    1994-04-19

    An elongated, flexible superconductive wire or strip is fabricated by pulling it through and out of a melt of metal oxide material at a rate conducive to forming a crystalline coating of superconductive metal oxide material on an elongated, flexible substrate wire or strip. A coating of crystalline superconductive material, such as Bi[sub 2]Sr[sub 2]CaCu[sub 2]O[sub 8], is annealed to effect conductive contact between adjacent crystalline structures in the coating material, which is then cooled to room temperature. The container for the melt can accommodate continuous passage of the substrate through the melt. Also, a second pass-through container can be used to simultaneously anneal and overcoat the superconductive coating with a hot metallic material, such as silver or silver alloy. A hollow, elongated tube casting method of forming an elongated, flexible superconductive wire includes drawing the melt by differential pressure into a heated tubular substrate. 8 figures.

  7. Method and apparatus for forming high-critical-temperature superconducting layers on flat and/or elongated substrates

    SciTech Connect

    Ciszek, Theodore F.

    1994-01-01

    An elongated, flexible superconductive wire or strip is fabricated by pulling it through and out of a melt of metal oxide material at a rate conducive to forming a crystalline coating of superconductive metal oxide material on an elongated, flexible substrate wire or strip. A coating of crystalline superconductive material, such as Bi.sub.2 Sr.sub.2 CaCu.sub.2 O.sub.8, is annealed to effect conductive contact between adjacent crystalline structures in the coating material, which is then cooled to room temperature. The container for the melt can accommodate continuous passage of the substrate through the melt. Also, a second pass-through container can be used to simultaneously anneal and overcoat the superconductive coating with a hot metallic material, such as silver or silver alloy. A hollow, elongated tube casting method of forming an elongated, flexible superconductive wire includes drawing the melt by differential pressure into a heated tubular substrate.

  8. Analytical approximations for thermophysical properties of supercritical nitrogen (SCN) to be used in futuristic high temperature superconducting (HTS) cables

    NASA Astrophysics Data System (ADS)

    Dondapati, Raja Sekhar; Ravula, Jeswanth; Thadela, S.; Usurumarti, Preeti Rao

    2015-12-01

    Future power transmission applications demand higher efficiency due to the limited resources of energy. In order to meet such demand, a novel method of transmission is being developed using High Temperature Superconducting (HTS) cables. However, these HTS cables need to be cooled below the critical temperature of superconductors used in constructing the cable to retain the superconductivity. With the advent of new superconductors whose critical temperatures having reached up to 134 K (Hg based), a need arises to find a suitable coolant which can accommodate the heating loads on the superconductors. The present work proposes, Supercritical Nitrogen (SCN) to be a feasible coolant to achieve the required cooling. Further, the feasibility of proposed coolant to be used in futuristic HTS cables is investigated by studying the thermophysical properties such as density, viscosity, specific heat and thermal conductivity with respect to temperature (TC + 10 K) and pressure (PC + 10 bar). In addition, few temperature dependent analytical functions are developed for thermophysical properties of SCN which are useful in predicting thermohydraulic performance (pressure drop, pumping power and cooling capacity) using numerical or computational techniques. Also, the developed analytical functions are used to calculate the pumping power and the temperature difference between inlet and outlet of HTS cable. These results are compared with those of liquid nitrogen (LN2) and found that the circulating pumping power required to pump SCN is significantly smaller than that to pump LN2. Further, it is found that the temperature difference between the inlet and outlet is smaller as compared to that when LN2 is used, SCN can be preferred to cool long length Hg based HTS cables.

  9. Experimental observation of high-temperature superconductivity in HxS at P ~150 GPa

    NASA Astrophysics Data System (ADS)

    Eremets, M.

    2015-03-01

    We found that sulfur hydride transforms at P ~90 GPa to metal and superconductor with Tc increasing with pressure to 150 K at ~ 200 GPa. Moreover we found superconductivity with Tc ~ 190 K in a H2S sample pressurized to P > 150 GPa at T > 220 K. This superconductivity likely associates with the dissociation of H2S, and formation of SHn (n > 2) hydrides. We proved occurrence of superconductivity by the drop of the resistivity at least 50 times lower than the copper resistivity, the decrease of Tc with magnetic field, and the strong isotope shift of Tc in D2S which evidences a major role of phonons in the superconductivity.

  10. Measurements and calculations of transport AC loss in second generation high temperature superconducting pancake coils

    NASA Astrophysics Data System (ADS)

    Yuan, Weijia; Coombs, T. A.; Kim, Jae-Ho; Han Kim, Chul; Kvitkovic, Jozef; Pamidi, Sastry

    2011-12-01

    Theoretical and experimental AC loss data on a superconducting pancake coil wound using second generation (2 G) conductors are presented. An anisotropic critical state model is used to calculate critical current and the AC losses of a superconducting pancake coil. In the coil there are two regions, the critical state region and the subcritical region. The model assumes that in the subcritical region the flux lines are parallel to the tape wide face. AC losses of the superconducting pancake coil are calculated using this model. Both calorimetric and electrical techniques were used to measure AC losses in the coil. The calorimetric method is based on measuring the boil-off rate of liquid nitrogen. The electric method used a compensation circuit to eliminate the inductive component to measure the loss voltage of the coil. The experimental results are consistent with the theoretical calculations thus validating the anisotropic critical state model for loss estimations in the superconducting pancake coil.

  11. Phenomenological study of the normal state angle resolved photoelectron spectroscopy line shapes of high temperature superconducting cuprates

    NASA Astrophysics Data System (ADS)

    Matsuyama, Kazue; Dilip, Rohit; Gweon, G.-H.

    2015-03-01

    Understanding the normal state properties of high temperature (high-Tc) superconducting cuprates remains a central mystery in the high-Tc problem. Standing out among those mysterious properties are the anomalous angle resolved photoelectron spectroscopy (ARPES) line shapes. The extremely correlated Fermi liquid (ECFL) theory recently introduced by Shastry has renewed interest in quantitatively understanding ARPES line shapes. In this talk, we combine certain phenomenological considerations with the ECFL framework in order to describe the ARPES data. Our phenomenological models have the property of preserving the universal property of the original ECFL theory, while introducing phenomenological changes in a non-universal property. Our models describe, with unprecedented fidelity, the key aspects of the dichotomy between momentum distribution curves (MDCs) and energy distribution curves (EDCs) of high-Tc ARPES data. Therefore, our study goes well beyond the prevailing studies that discuss only MDCs and EDCs.

  12. A deployable high temperature superconducting coil (DHTSC) - A novel concept for producing magnetic shields against both solar flare and Galactic radiation during manned interplanetary missions

    NASA Technical Reports Server (NTRS)

    Cocks, F. Hadley

    1991-01-01

    The discovery of materials which are superconducting above 100 K makes possible the use of superconducting coils deployed beyong the hull of an interplanetary spacecraft to produce a magnetic shield capable of giving protection not only against solar flare radiation, but also even against Galactic radiation. Such deployed coils can be of very large size and can thus achieve the great magnetic moments required using only relatively low currents. Deployable high-temperature-superconducting coil magnetic shields appear to offer very substantial reductions in mass and energy compared to other concepts and could readily provide the radiation protection needed for a Mars mission or space colonies.

  13. High Temperature Superconducting Degaussing-Cooling Two Hts Coils with One Cryocooler for the Littoral Combat Ship

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, B. K.; Golda, E. M.; Kephart, J. T.

    2008-03-01

    The concept of creating a high temperature superconducting degaussing system has previously been studied by the Navy and shown to provide significant weight savings over conventional copper based degaussing systems. Modeling efforts have shown that in a HTS Degaussing System (HTSDG) for the Littoral Combat Ship, the dominant costs are cryocoolers. In an effort to minimize the number of cryocoolers, a two coil demonstrator cooled by one cryocooler has been constructed at NSWCCD Philadelphia. The demonstration consists of two 22 m long sections of flexible cryostat that are electrically isolated but connected in series through two junction boxes for serial gas flow. Within each cryostat section, 12 turns of HTS represent a vertical and horizontal degaussing coil. Use of Helium as the working fluid reduces safety impacts and allows higher current density in the HTS conductor due to lower temperature operation. Design, testing results, and lessons learned from the installation and operation of this cable are presented in this paper.

  14. Role of weakly bound oxygen in the exoemission and superconductivity of YBa2Cu3O(7-x) high-temperature superconductor ceramic

    NASA Astrophysics Data System (ADS)

    Krylova, I. V.; Makarov, A. V.

    1991-12-01

    Experiments were carried out on a high-temperature superconductor ceramic, YBa2Cu3o(6.86), to determine the effect of various forms of sorbed oxygen on superconductivity and formation of the surface localization levels of electrons that determine exoemission. Results of the high-temperature mass spectrometry of thermal oxygen desoprtion, thermally stimulated exoemission in the temperature range 293-700 K, and exoemission parameters in the low-temperature regions (293-77 K) are compared.

  15. Segregation of antiferromagnetism and high-temperature superconductivity in Ca1-xLaxFe2As2

    NASA Astrophysics Data System (ADS)

    Saha, Shanta R.; Drye, T.; Goh, S. K.; Klintberg, L. E.; Silver, J. M.; Grosche, F. M.; Sutherland, M.; Munsie, T. J. S.; Luke, G. M.; Pratt, D. K.; Lynn, J. W.; Paglione, J.

    2014-04-01

    We report the effect of applied pressures on magnetic and superconducting order in single crystals of the aliovalent La-doped iron pnictide material Ca1-xLaxFe2As2. Using electrical transport, elastic neutron scattering, and resonant tunnel diode oscillator measurements on samples under both quasihydrostatic and hydrostatic pressure conditions, we report a series of phase diagrams spanning the range of substitution concentrations for both antiferromagnetic and superconducting ground states that include pressure-tuning through the antiferromagnetic (AFM) superconducting critical point. Our results indicate that the observed superconducting phase with a maximum transition temperature of Tc=47 K is intrinsic to these materials, appearing only upon suppression of magnetic order by pressure-tuning through the AFM critical point. Thus, the superconducting phase appears to exist exclusively in juxtaposition to the antiferromagnetic phase in a manner similar to the oxygen- and fluorine-based iron-pnictide superconductors with the highest transition temperatures reported to date. Unlike the lower-Tc systems, in which superconductivity and magnetism usually coexist, the tendency for the highest-Tc systems to show noncoexistence provides an important insight into the distinct transition temperature limits in different members of the iron-based superconductor family.

  16. High-Temperature Superconductivity in Single-Unit-Cell FeSe Films on Anatase TiO_{2}(001).

    PubMed

    Ding, Hao; Lv, Yan-Feng; Zhao, Kun; Wang, Wen-Lin; Wang, Lili; Song, Can-Li; Chen, Xi; Ma, Xu-Cun; Xue, Qi-Kun

    2016-08-01

    We report on the observation of high-temperature (T_{c}) superconductivity and magnetic vortices in single-unit-cell FeSe films on anatase TiO_{2}(001) substrate by using scanning tunneling microscopy. A systematic study and engineering of interfacial properties has clarified the essential roles of substrate in realizing the high-T_{c} superconductivity, probably via interface-induced electron-phonon coupling enhancement and charge transfer. By visualizing and tuning the oxygen vacancies at the interface, we find their very limited effect on the superconductivity, which excludes interfacial oxygen vacancies as the primary source for charge transfer between the substrate and FeSe films. Our findings have placed severe constraints on any microscopic model for the high-T_{c} superconductivity in FeSe-related heterostructures. PMID:27541474

  17. High-Temperature Superconductivity in Single-Unit-Cell FeSe Films on Anatase TiO2(001 )

    NASA Astrophysics Data System (ADS)

    Ding, Hao; Lv, Yan-Feng; Zhao, Kun; Wang, Wen-Lin; Wang, Lili; Song, Can-Li; Chen, Xi; Ma, Xu-Cun; Xue, Qi-Kun

    2016-08-01

    We report on the observation of high-temperature (Tc) superconductivity and magnetic vortices in single-unit-cell FeSe films on anatase TiO2(001 ) substrate by using scanning tunneling microscopy. A systematic study and engineering of interfacial properties has clarified the essential roles of substrate in realizing the high-Tc superconductivity, probably via interface-induced electron-phonon coupling enhancement and charge transfer. By visualizing and tuning the oxygen vacancies at the interface, we find their very limited effect on the superconductivity, which excludes interfacial oxygen vacancies as the primary source for charge transfer between the substrate and FeSe films. Our findings have placed severe constraints on any microscopic model for the high-Tc superconductivity in FeSe-related heterostructures.

  18. High field superconducting magnets

    NASA Technical Reports Server (NTRS)

    Hait, Thomas P. (Inventor); Shirron, Peter J. (Inventor)

    2011-01-01

    A superconducting magnet includes an insulating layer disposed about the surface of a mandrel; a superconducting wire wound in adjacent turns about the mandrel to form the superconducting magnet, wherein the superconducting wire is in thermal communication with the mandrel, and the superconducting magnet has a field-to-current ratio equal to or greater than 1.1 Tesla per Ampere; a thermally conductive potting material configured to fill interstices between the adjacent turns, wherein the thermally conductive potting material and the superconducting wire provide a path for dissipation of heat; and a voltage limiting device disposed across each end of the superconducting wire, wherein the voltage limiting device is configured to prevent a voltage excursion across the superconducting wire during quench of the superconducting magnet.

  19. Dielectric resonator for measuring the magnetic penetration depth at low temperature in high-Tc superconducting thin films

    NASA Astrophysics Data System (ADS)

    Mourachkine, A. P.

    1995-11-01

    Knowledge of magnetic penetration depth λ(T) at low temperatures allows one to determine the pairing state in the superconductors. A simple method for the evaluation of λ(T) of small (˜1 cmט1 cm), flat, high-Tc superconductive samples at low T is discussed. The resolution of the method is a few Å. In addition to high resolution, the method has several advantages including nondestructive analysis, flexibility in sample size, and minimal requirements on the dielectric resonator. The current distribution within the sample being tested can also be accurately calculated, the experimental setup is convenient, and the procedure is comparatively rapid and can be performed in the necktube of a liquid-helium storage Dewar. The measurements for YBCO thin films have been performed at 14.4 GHz.

  20. Space applications of superconductivity - High field magnets

    NASA Technical Reports Server (NTRS)

    Fickett, F. R.

    1979-01-01

    The paper discusses developments in superconducting magnets and their applications in space technology. Superconducting magnets are characterized by high fields (to 15T and higher) and high current densities combined with low mass and small size. The superconducting materials and coil design are being improved and new high-strength composites are being used for magnet structural components. Such problems as maintaining low cooling temperatures (near 4 K) for long periods of time and degradation of existing high-field superconductors at low strain levels can be remedied by research and engineering. Some of the proposed space applications of superconducting magnets include: cosmic ray analysis with magnetic spectrometers, energy storage and conversion, energy generation by magnetohydrodynamic and thermonuclear fusion techniques, and propulsion. Several operational superconducting magnet systems are detailed.

  1. High gradient superconducting quadrupoles

    SciTech Connect

    Lundy, R.A.; Brown, B.C.; Carson, J.A.; Fisk, H.E.; Hanft, R.H.; Mantsch, P.M.; McInturff, A.D.; Remsbottom, R.H.

    1987-07-01

    Prototype superconducting quadrupoles with a 5 cm aperture and gradient of 16 kG/cm have been built and tested as candidate magnets for the final focus at SLC. The magnets are made from NbTi Tevatron style cable with 10 inner and 14 outer turns per quadrant. Quench performance and multipole data are presented. Design and data for a low current, high gradient quadrupole, similar in cross section but wound with a cable consisting of five insulated conductors are also discussed.

  2. Neutron scattering studies of spin-phonon hybridization and superconducting spin gaps in the high temperature superconductor La2-x(Sr;Ba)xCuO4

    DOE PAGESBeta

    Wagman, J. J.; Carlo, Jeremy P.; Gaudet, J.; Van Gastel, G. J.; Abernathy, Douglas L.; Stone, Matthew B.; Granroth, Garrett E.; Kolesnikov, Alexander I.; Savici, Andrei T.; Kim, Young -June; et al

    2016-03-14

    We present time-of-flight neutron-scattering measurements on single crystals of La2-xBaxCuO4 (LBCO) with 0 ≤ x ≤ 0.095 and La2-xSrxCuO4 (LSCO) with x = 0.08 and 0.11. This range of dopings spans much of the phase diagram relevant to high temperature cuprate superconductivity, ranging from insulating, three dimensional commensurate long range antiferromagnetic order for x ≤ 0.02 to two dimensional (2D) incommensurate antiferromagnetism co-existing with superconductivity for x ≥ 0.05. Previous work on lightly doped LBCO with x = 0.035 showed a clear resonant enhancement of the inelastic scattering coincident with the low energy crossings of the highly dispersive spin excitationsmore » and quasi-2D optic phonons. The present work extends these measurements across the phase diagram and shows this enhancement to be a common feature to this family of layered quantum magnets. Furthermore we show that the low temperature, low energy magnetic spectral weight is substantially larger for samples with non-superconducting ground states relative to any of the samples with superconducting ground states. Lastly spin gaps, suppression of low energy magnetic spectral weight, are observed in both superconducting LBCO and LSCO samples, consistent with previous observations for superconducting LSCO« less

  3. Alternating current loss of second-generation high-temperature superconducting coils with magnetic and non-magnetic substrate

    NASA Astrophysics Data System (ADS)

    Zhang, Min; Kvitkovic, J.; Kim, Jae-Ho.; Kim, C. H.; Pamidi, S. V.; Coombs, T. A.

    2012-09-01

    It is widely believed that the second-generation high-temperature superconducting (2G HTS) tapes with magnetic substrates suffer higher transport loss compared to those with non-magnetic substrates. To test this, we prepared two identical coils with magnetic and non-magnetic substrates, respectively. The experimental result was rather surprising that they generated roughly the same amount of transport loss. We used finite element method to understand this result. It is found that, unlike in the single tape where the magnetic field-dependent critical current characteristic can be neglected and the effect of magnetic substrate dominates, the magnetic field-dependent critical current characteristic of 2G tape plays as an equally important role as magnetic substrate in terms of HTS coils.

  4. Study on the effect of transition curve to the dynamic characteristics of high-temperature superconducting maglev

    NASA Astrophysics Data System (ADS)

    Qian, Nan; Zheng, Botian; Gou, Yanfeng; Chen, Ping; Zheng, Jun; Deng, Zigang

    2015-12-01

    High temperature superconducting (HTS) maglev technology is becoming more and more mature, and many key technologies have been deeply studied. However, the transition curve plays a key role in HTS maglev system, and related studies have not been carried out. In this paper series of simulations were conducted to test the lateral and vertical vibration of HTS maglev when passing through curves. Two magnetic guideways, of which one has transition curves but the other does not, are designed to test the vibration characteristics of a mini HTS maglev model running though curves. Results show that after adding transition curves between straight line and circular curve the vibration of HTS maglev model in lateral and vertical directions are all weakened in different degrees. It proves that adding transition curve into HTS maglev system is favorable and necessary.

  5. Electrodeposited Ag-Stabilization Layer for High Temperature Superconducting Coated Conductors: Preprint

    SciTech Connect

    Bhattacharya, R. N.; Mann, J.; Qiao, Y.; Zhang, Y.; Selvamanickam, V.

    2010-11-01

    We developed a non-aqueous based electrodepostion process of Ag-stabilization layer on YBCO superconductor tapes. The non-aqueous electroplating solution is non-reactive to the HTS layer thus does not detoriate the critical current capability of the superconductor layer when plated directly on the HTS tape. The superconducting current capabilities of these tapes were measured by non-contact magnetic measurements.

  6. Low-temperature transport in highly disordered films of superconducting magnesium diboride

    NASA Astrophysics Data System (ADS)

    Breznay, Nicholas; Kapitulnik, Aharon

    2008-03-01

    Many features make magnesium diboride an interesting model system for understanding the behavior of two dimensional BCS superconductors, including its sensitivity to disorder and low spin-orbit coupling. We study the transport behavior of highly disordered magnesium diboride films, and will review preliminary low-temperature magnetoresistance measurements in the regime of high magnetic fields. We connect these results to recent work on multilayered films prepared using a similar process and also to similar work on other model systems, and review prospects for future study.

  7. Cryogenic-temperature profiling of high-power superconducting lines using local and distributed optical-fiber sensors.

    PubMed

    Chiuchiolo, Antonella; Palmieri, Luca; Consales, Marco; Giordano, Michele; Borriello, Anna; Bajas, Hugues; Galtarossa, Andrea; Bajko, Marta; Cusano, Andrea

    2015-10-01

    This contribution presents distributed and multipoint fiber-optic monitoring of cryogenic temperatures along a superconducting power transmission line down to 30 K and over 20 m distance. Multipoint measurements were conducted using fiber Bragg gratings sensors coated with two different functional overlays (epoxy and poly methyl methacrylate (PMMA)) demonstrating cryogenic operation in the range 300-4.2 K. Distributed measurements exploited optical frequency-domain reflectometry to analyze the Rayleigh scattering along two concatenated fibers with different coatings (acrylate and polyimide). The integrated system has been placed along the 20 m long cryostat of a superconducting power transmission line, which is currently being tested at the European Organization for Nuclear Research (CERN). Cool-down events from 300-30 K have been successfully measured in space and time, confirming the viability of these approaches to the monitoring of cryogenic temperatures along a superconducting transmission line. PMID:26421547

  8. Grain boundary studies of high temperature superconducting materials using electron backscatter Kikuchi diffraction

    SciTech Connect

    Goyal, A.; Specht, E.D.; Wang, Z.L.; Kroeger, D.M.

    1996-12-31

    Grain Orientation and gain boundary misorientation distributions in high critical current density, high temperature superconductors were determined using electron backscatter Kikuchi diffraction. It is found that depending on the type of superconductor and the processing method used to fabricate it, there exist different scales of biaxial texture from no biaxial texture, local biaxial texture, to complete biaxial texture. Experimentally obtained grain boundary misorientation distributions (GBMDs) were found to be skewed significantly to low angles in comparison to what is expected on the basis of macroscopic texture alone, suggesting that minimization of energy may be a driving force during the processing of high critical current density materials. In addition, a higher than expected fraction of coincident-site lattice boundaries is observed. Examination of maps of grain boundary misorientations in spatially correlated gains, i.e. the grain boundary mesotexture, suggests the presence percolative paths of high critical current density. A combination of orientation measurements, theoretical modeling of GBMDs and modeling of percolative current flow through an assemblage of gain boundaries is performed to gain an insight into the important microstructural features dictating the transport properties of high temperature superconductors. It is found that maximization of low energy, in particular, low angle boundaries is essential for higher critical currents. The combination of experimental and analytical techniques employed are applicable to other materials where physical properties are dominated by interganular characteristics.

  9. Gauge Model of High-Tc Superconductivity

    NASA Astrophysics Data System (ADS)

    Kui Ng, Sze

    2012-12-01

    A simple gauge model of superconductivity is presented. The seagull vertex term of this gauge model gives an attractive potential between electrons for the forming of Cooper pairs of superconductivity. This gauge model gives a unified description of superconductivity and magnetism including antiferromagnetism, pseudogap phenomenon, stripes phenomenon, paramagnetic Meissner effect, Type I and Type II supeconductivity and high-Tc superconductivity. The doping mechanism of superconductivity is found. It is shown that the critical temperature Tc is related to the ionization energies of elements and can be computed by a formula of Tc. For the high-Tc superconductors such as La2-xSrxCuO4, Y Ba2Cu3O7, and MgB2, the computational results of Tc agree with the experimental results.

  10. Superconductivity

    NASA Astrophysics Data System (ADS)

    Yeo, Yung K.

    Many potential high-temperature superconductivity (HTS) military applications have been demonstrated by low-temperature superconductivity systems; they encompass high efficiency electric drives for naval vessels, airborne electric generators, energy storage systems for directed-energy weapons, electromechanical launchers, magnetic and electromagnetic shields, and cavity resonators for microwave and mm-wave generation. Further HST applications in militarily relevant fields include EM sensors, IR focal plane arrays, SQUIDs, magnetic gradiometers, high-power sonar sources, and superconducting antennas and inertial navigation systems. The development of SQUID sensors will furnish novel magnetic anomaly detection methods for ASW.

  11. Doubling the critical current density of high temperature superconducting coated conductors through proton irradiation

    SciTech Connect

    Jia, Y.; LeRoux, M.; Miller, D. J.; Wen, J. G.; Kwok, W. K.; Welp, U.; Rupich, M. W.; Li, X.; Sathyamurthy, S.; Fleshler, S.; Malozemoff, A. P.; Kayani, A.; Ayala-Valenzuela, O.; Civale, L.

    2013-09-16

    The in-field critical current of commercial YBa{sub 2}Cu{sub 3}O{sub 7} coated conductors can be substantially enhanced by post-fabrication irradiation with 4 MeV protons. Irradiation to a fluence of 8 × 10{sup 16} p/cm{sup 2} induces a near doubling of the critical current in fields of 6 T || c at a temperature of 27 K, a field and temperature range of interest for applications, such as rotating machinery. A mixed pinning landscape of preexisting precipitates and twin boundaries and small, finely dispersed irradiation induced defects may account for the improved vortex pinning in high magnetic fields. Our data indicate that there is significant head-room for further enhancements.

  12. Design, fabrication, and characterization of double-sided high-temperature superconducting RF filter

    NASA Astrophysics Data System (ADS)

    Sahba, Shapur

    2000-10-01

    This dissertation reports the design, fabrication, and characterization of double-sided high-Tc superconducting (HTS) resonator-based RF filter. This filter operates in HF range (3-30 MHz) of electromagnetic spectrum, demonstrating the center frequency of about 18 MHz, and the 3-dB bandwidth of 5%. The main feature of the proposed device is the double- sided structure that not only reduces the size of a HF filter, but also provides a much higher quality factor, Q, and extremely low insertion loss between the input and output of the filter. Such ideal characteristics have become possible because of the inherently low surface impedance of the superconductors, and the strong magnetic coupling between the input/output ports of the filter. The latter is accomplished because of the unique device configuration, which provides the maximum magnetic flux shared between the different elements of the filter. The heart of the new device is the multi-turn HTS spiral resonator structure. Three of such resonators are utilized to form a three-pole filter. The resonant frequencies of these resonators are chosen to be the same in order to provide the maximum coupling and transfer of energy between them. Also due to such coupling, the energy transfer between the input and output of the filter is maximized, indicating a very low insertion loss. In addition to the resonators, two single-turn coils are employed as the input and output structures. Each loop is concentric with one of the resonators to share the maximum magnetic flux, which in turn translates to stronger magnetic coupling between the different filter elements. A variety of device configurations have been designed, fabricated, and characterized. The three-pole frequency responses for different filter configurations, including a single-input/three-output channelizer structure, have been analyzed, and the results will be provided in this work. One of the structures for a single-input/single- output three-pole filter

  13. Neutron scattering studies of spin-phonon hybridization and superconducting spin gaps in the high-temperature superconductor La2-x(Sr,Ba)xCuO4

    NASA Astrophysics Data System (ADS)

    Wagman, J. J.; Carlo, J. P.; Gaudet, J.; Van Gastel, G.; Abernathy, D. L.; Stone, M. B.; Granroth, G. E.; Kolesnikov, A. I.; Savici, A. T.; Kim, Y. J.; Zhang, H.; Ellis, D.; Zhao, Y.; Clark, L.; Kallin, A. B.; Mazurek, E.; Dabkowska, H. A.; Gaulin, B. D.

    2016-03-01

    We present time-of-flight neutron scattering measurements on single crystals of La2-xBaxCuO4 (LBCO) with 0 ≤x ≤0.095 and La2-xSrxCuO4 (LSCO) with x =0.08 and 0.11. This range of dopings spans much of the phase diagram relevant to high-temperature cuprate superconductivity, ranging from insulating, three-dimensional commensurate long-range antiferromagnetic order, for x ≤0.02 , to two-dimensional (2D) incommensurate antiferromagnetism coexisting with superconductivity for x ≥0.05 . Previous work on lightly doped LBCO with x =0.035 showed a clear enhancement of the inelastic scattering coincident with the low-energy crossings of the highly dispersive spin excitations and quasi-2D optic phonons. The present work extends these measurements across the phase diagram and shows this enhancement to be a common feature to this family of layered quantum magnets. Furthermore, we show that the low-temperature, low-energy magnetic spectral weight is substantially larger for samples with nonsuperconducting ground states relative to any of the samples with superconducting ground states. Spin gaps, suppression of low-energy magnetic spectral weight as a function of decreasing temperature, are observed in both superconducting LBCO and LSCO samples, consistent with previous observations for superconducting LSCO.

  14. Multivibrator transistor switch module using a high-temperature superconducting core

    NASA Astrophysics Data System (ADS)

    Uchiyama, T.; Shibata, T.; Makino, M.; Mohri, K.

    1991-11-01

    A transistor switching module based on the Royer oscillator-type magnetic multivibrator is presented in which a high-temperature superconductor thin disk core, with four coils tightly set around it, is connected with two switching transistors. This Royer-type module has superior properties such as pulse-triggered switching; moreover, oscillation of this circuit starts within a half cycle, while parametric oscillation switching modules need several cycles to turn on. The module has a total switching time of less than 0.4 microsec, which is about 1 percent that of the Royer circuit using an amorphous core.

  15. Fields and forces in flywheel energy storage with high-temperature superconducting bearings

    SciTech Connect

    Turner, L.R.

    1997-03-01

    The development of low-loss bearings employing high-temperature superconductors has brought closer the advent of practical flywheel energy storage systems. These systems require magnetic fields and forces for levitation, stabilization, and energy transfer. This paper describes the status of experiments on flywheel energy storage at Argonne National Laboratory and computations in support of that project, in particular computations for the permanent-magnet rotor of the motor-generator that transfers energy to and from the flywheel, for other energy-transfer systems under consideration, and for the levitation and stability subsystems.

  16. Fields and forces in flywheel energy storage with high-temperature superconducting bearings

    SciTech Connect

    Turner, L.R.

    1996-05-01

    The development of low-loss bearings employing high-temperature superconductors has brought closer the advent of practical flywheel energy storage systems. These systems require magnetic fields and forces for levitation, stabilization, and energy transfer. This paper describes the status of experiments on flywheel energy storage at Argonne National Laboratory and computations in support of that project, in particular computations for the permanent-magnet rotor of the motor-generator that transfers energy to and from the flywheel, for other energy-transfer systems under consideration, and for the levitation and stabilization subsystem.

  17. Development of a 13C-optimized 1.5-mm high temperature superconducting NMR probe

    NASA Astrophysics Data System (ADS)

    Ramaswamy, Vijaykumar; Hooker, Jerris W.; Withers, Richard S.; Nast, Robert E.; Brey, William W.; Edison, Arthur S.

    2013-10-01

    We report a 1.5-mm NMR probe based on high temperature superconductors operating at 14.1 T optimized for 13C detection. The probe has a total sample volume of about 35 microliters (μL) with an active volume of 20 μL and provides exceptional mass sensitivity for 13C detection. The probe also has excellent 1H sensitivity and employs a 2H lock; 15N irradiation capability can be added in the future. The coils are cooled to about 20 K using a standard Agilent cryogenic refrigeration system, and the sample temperature is regulated near room temperature. The coil design considerations are discussed in detail. This probe is ideal for directly detected 13C NMR experiments for natural products chemistry and metabolomics applications, for which 35 μL is an optimal sample volume. The outstanding 13C sensitivity of this probe allowed us to directly determine the 13C connectivity on 1.1 mg of natural abundance histidine using an INADEQUATE experiment. We demonstrated the utility of this probe for 13C-based metabolomics using a synthetic mixture of common natural abundance metabolites whose concentrations ranged from 1 to 5 mM (40-200 nmol).

  18. Development of a 13C-Optimized 1.5-mm High Temperature Superconducting NMR Probe

    PubMed Central

    Ramaswamy, Vijaykumar; Hooker, Jerris W.; Withers, Richard S.; Nast, Robert E.; Brey, William W.; Edison, Arthur S.

    2013-01-01

    We report a 1.5-mm NMR probe based on high temperature superconductors operating at 14.1 T optimized for 13C detection. The probe has a total sample volume of about 35 microliters (μL) with an active volume of 20 μL and provides exceptional mass sensitivity for 13C detection. The probe also has excellent 1H sensitivity and employs a 2H channel lock; 15N irradiation capability can be added in the future. The coils are cooled to about 20 K using a standard Agilent cryogenic refrigeration system, and the sample temperature is regulated near room temperature. The coil design considerations are discussed in detail. This probe is ideal for directly detected 13C NMR experiments for natural products chemistry and metabolomics applications, for which 35 μL is an optimal sample volume. The outstanding 13C sensitivity of this probe allowed us to directly determine the 13C connectivity on 1.1 mg of natural abundance histidine using an INADEQUATE experiment. We demonstrated the utility of this probe for 13C-based metabolomics using a synthetic mixture of common natural abundance metabolites whose concentrations ranged from 1 to 5 mM (40 to 200 nmol). PMID:23969086

  19. Assessment of High Temperature Superconducting (HTS) electric motors for rotorcraft propulsion

    NASA Technical Reports Server (NTRS)

    Doernbach, Jay

    1990-01-01

    The successful development of high temperature superconductors (HTS) could have a major impact on future aeronautical propulsion and aeronautical flight vehicle systems. Applications of high temperature superconductors have been envisioned for several classes of aeronautical systems, including subsonic and supersonic transports, hypersonic aircraft, V/STOL aircraft, rotorcraft and solar powered aircraft. The potential of HTS electric motors and generators for providing primary shaft power for rotorcraft propulsion is examined. Three different sized production helicopters were investigated; namely, the Bell Jet Ranger, the Sikorsky Black Hawk and the Sikorsky Super Stallion. These rotorcraft have nominal horsepower ratings of 500, 3600, and 13400 respectively. Preliminary results indicated that an all-electric HTS drive system produces an improvement in rotorcraft Takeoff Gross Weight (TOGW) for those rotorcraft with power ratings above 2000 horsepower. The predicted TOGW improvements are up to 9 percent for the medium-sized Sikorsky Black Hawk and up to 20 percent for the large-sized Sikorsky Super Stallion. The small-sized Bell Jet Ranger, however, experienced a penalty in TOGW with the all-electric HTS drive system.

  20. Material-parameter Dependence of Superconductivity in High-temperature Cuprates

    NASA Astrophysics Data System (ADS)

    Yanagisawa, Takashi; Miyazaki, Mitake; Yamaji, Kunihiko

    We show that there is an interesting correlation between material parameters and critical temperature Tc in cuprate high temperature superconductors. Our analysis is based on the d-p model, that is, the three-band Hubbard model including d and p orbitals explicitly. This model contains many parameters; the transfer integrals tdp and tpp, the energy levels ɛp and ɛd, and the Coulomb interaction parameters Ud and Up. Our main results are the following: (a) Tc increases as ɛp-ɛd is increased for Up = 0, (2) Tc is lowered with increase of Up when ɛp-ɛd > 0, (3) Tc is increased with increase of Up when ɛp-ɛd < 0, (4) Tc has a minimum at near ɛp-ɛd = 0 as a function of ɛp-ɛd when Ud and Up are comparable, (5) Ud induces dx2-y2 pairing while Up induces dxy pairing, (6) Tc has a peak as a function of tpp. The results imply that Tc will increase if we can suppress Up. The role of Up is consistent with the experimental tendency that Tc increases as the relative ratio of the hole density at oxygen site to that at copper site is increased, which means that when Up increases, the number of p holes is decreased and Tc is also decreased.

  1. Serial and parallel power equipment with high-temperature superconducting elements

    NASA Technical Reports Server (NTRS)

    Bencze, Laszlo; Goebl, Nandor; Palotas, Bela; Vajda, Istvan

    1995-01-01

    One of the prospective, practical applications of high-temperature superconductors is the fault-current limitation in electrical energy networks. The development and testing of experimental HTSC serial current limiters have been reported in the literature. A Hungarian electric power company has proposed the development of a parallel equipment for arc suppressing both in the industrial and customers' networks. On the basis of the company's proposal the authors have outlined the scheme of a compound circuit that can be applied both for current limitation and arc suppressing. In this paper the design principles and methods of the shunt equipment are presented. These principles involve the electrical, mechanical and cryogenic aspects with the special view on the electrical and mechanical connection between the HTSC material and the current lead. Preliminary experiments and tests have been carried out to demonstrate the validity of the design principles developed. The results of the experiments and of the technological investigations are presented.

  2. No-insulation multi-width winding technique for high temperature superconducting magnet

    PubMed Central

    Hahn, Seungyong; Kim, Youngjae; Keun Park, Dong; Kim, Kwangmin; Voccio, John P.; Bascuñán, Juan; Iwasa, Yukikazu

    2013-01-01

    We present a No-Insulation (NI) Multi-Width (MW) winding technique for an HTS (high temperature superconductor) magnet consisting of double-pancake (DP) coils. The NI enables an HTS magnet self-protecting and the MW minimizes the detrimental anisotropy in current-carrying capacity of HTS tape by assigning tapes of multiple widths to DP coils within a stack, widest tape to the top and bottom sections and the narrowest in the midplane section. This paper presents fabrication and test results of an NI-MW HTS magnet and demonstrates the unique features of the NI-MW technique: self-protecting and enhanced field performance, unattainable with the conventional technique. PMID:24255549

  3. Some problems in the competition of high-temperature superconductivity research during the late 1980s

    NASA Astrophysics Data System (ADS)

    Liu, Bing

    2014-03-01

    After A. Müller and J.G. Bednorz found that Oxide Ba-La-Cu-O could have Tc for 30K in 1986, a special competition in High Temperature superconductors research began in the world, especially among American, Japanese and Chinese scientists in late 1980's. By investigating that competition in history, some interesting problems were found. There are strategy used by scientists in different country which differ from normal science period; Question about the peer review and competition in that special period; ``Matthew's Effect'' in that competition; some question about the disclosure of the secret information and competition; and, finally what methodology was used by Chinese scientists. All that problems are not only historically, but also have some sociological and philosophical meaning. Based on historical re-investigation, all those problems were discussed in the paper.

  4. YBCO High-Temperature Superconducting Filters on M-Plane Sapphire Substrates

    NASA Technical Reports Server (NTRS)

    Sabataitis, J. C.; Mueller, C. H.; Miranda, F. A.; Warner, J.; Bhasin, K. B.

    1996-01-01

    Since the discovery of High Temperature Superconductors (HTS) in 1986, microwave circuits have been demonstrated using HTS films on various substrates. These HTS-based circuits have proven to operate with less power loss than their metallic film counterparts at 77 K. This translates into smaller and lighter microwave circuits for space communication systems such as multiplexer filter banks. High quality HTS films have conventionally been deposited on lanthanum aluminate (LaAlO3) substrates. However, LaAlO3 has a relative dielectric constant (epsilon(sub r)) of 24. With a epsilon(sub r) approx. 9.4-11.6, sapphire (Al2O3) would be a preferable substrate for the fabrication of HTS-based components since the lower dielectric constant would permit wider microstrip lines to be used in filter design, since the lower dielectric constant would permit wider microstrip lines to be used for a given characteristic impedance (Z(sub 0)), thus lowering the insertion losses and increasing the power handling capabilities of the devices. We report on the fabrication and characterization of YBa2Cu3O(7-delta) (YBCO) on M-plane sapphire bandpass filters at 4.0 GHz. For a YBCO 'hairpin' filter, a minimum insertion loss of 0.5 dB was measured at 77 K as compared with 1.4 dB for its gold counterpart. In an 'edge-coupled' configuration, the insertion loss went down from 0.9 dB for the gold film to 0.8 dB for the YBCO film at the same temperature.

  5. Interface induced high temperature superconductivity in single unit-cell FeSe on SrTiO3(110)

    NASA Astrophysics Data System (ADS)

    Zhou, Guanyu; Zhang, Ding; Liu, Chong; Tang, Chenjia; Wang, Xiaoxiao; Li, Zheng; Song, Canli; Ji, Shuaihua; He, Ke; Wang, Lili; Ma, Xucun; Xue, Qi-Kun

    2016-05-01

    We report high temperature superconductivity in one unit-cell (1-UC) FeSe films grown on SrTiO3 (STO)(110) substrate by molecular beam epitaxy. By in-situ scanning tunneling microscopy measurement, we observe a superconducting gap as large as 17 meV on the 1-UC FeSe films. Transport measurements on 1-UC FeSe/STO(110) capped with FeTe layers reveal superconductivity with an onset transition temperature (TC) of 31.6 K and an upper critical magnetic field of 30.2 T. We also find that TC can be further increased by external electric field although the effect is weaker than that on STO(001) substrate.

  6. Design and development of high-temperature superconducting magnet system with joint-winding for the helical fusion reactor

    NASA Astrophysics Data System (ADS)

    Yanagi, N.; Ito, S.; Terazaki, Y.; Seino, Y.; Hamaguchi, S.; Tamura, H.; Miyazawa, J.; Mito, T.; Hashizume, H.; Sagara, A.

    2015-05-01

    An innovative winding method is developed by connecting high-temperature superconducting (HTS) conductors to enable efficient construction of a magnet system for the helical fusion reactor FFHR-d1. A large-current capacity HTS conductor, referred to as STARS, is being developed by the incorporation of several innovative ideas, such as the simple stacking of state-of-the-art yttrium barium copper oxide tapes embedded in a copper jacket, surrounded by electrical insulation inside a conductor, and an outer stainless-steel jacket cooled by helium gas. A prototype conductor sample was fabricated and reached a current of 100 kA at a bias magnetic field of 5.3 T with the temperature at 20 K. At 4.2 K, the maximum current reached was 120 kA, and a current of 100 kA was successfully sustained for 1 h. A low-resistance bridge-type mechanical lap joint was developed and a joint resistance of 2 nΩ was experimentally confirmed for the conductor sample.

  7. Characterization of a high-temperature superconducting conductor on round core cables in magnetic fields up to 20 T

    SciTech Connect

    van der Laan, D. C.; Noyes, P. D.; Miller, G. E.; Weijers, H. W.; Willering, G. P.

    2013-02-13

    The next generation of high-ï¬eld magnets that will operate at magnetic ï¬elds substantially above 20 T, or at temperatures substantially above 4.2 K, requires high-temperature superconductors (HTS). Conductor on round core (CORC) cables, in which RE-Ba{sub 2}Cu{sub 3}O{sub 7-{delta}} (RE = rare earth) (REBCO) coated conductors are wound in a helical fashion on a flexible core, are a practical and versatile HTS cable option for low-inductance, high-field magnets. We performed the first tests of CORC magnet cables in liquid helium in magnetic fields of up to 20 T. A record critical current I{sub c} of 5021 A was measured at 4.2 K and 19 T. In a cable with an outer diameter of 7.5 mm, this value corresponds to an engineering current density J{sub e} of 114 A mm{sup -2} , the highest J{sub e} ever reported for a superconducting cable at such high magnetic fields. Additionally, the first magnet wound from an HTS cable was constructed from a 6 m-long CORC cable. The 12-turn, double-layer magnet had an inner diameter of 9 cm and was tested in a magnetic field of 20 T, at which it had an I{sub c} of 1966 A. The cables were quenched repetitively without degradation during the measurements, demonstrating the feasibility of HTS CORC cables for use in high-field magnet applications.

  8. Phase Diagram and High Temperature Superconductivity at 65K in the Single-Layer FeSe Films Revealed by ARPES

    NASA Astrophysics Data System (ADS)

    He, Shaolong

    2013-03-01

    The discovery of the iron-based superconductors in 2008 not only provides another venue to understand the origin of high-Tc superconductivity but also a new playground to explore novel superconductors with higher superconducting transition temperature. The latest report of possible high temperature superconductivity in the single-layer FeSe films grown on SrTiO3 substrate is both surprising and interesting. In this talk, we report the electronic structure and phase diagram of the single-layer FeSe films by angle-resolved photoemission spectroscopy (ARPES). Our high-resolution ARPES results show that it has a simple Fermi surface topology consisting only of electron pockets near the zone corner without indication of any Fermi surface around the zone center. In addition, our observation of large and nearly isotropic superconducting gap in this strictly two-dimensional system rules out existence of node in the superconducting gap. We also established a phase diagram in this single-layer FeSe films by an annealing procedure to tune the charge carrier concentration over a wide range. By optimizing the annealing process, we observed evidence of a record high Tc of ~ 65K in the single-layer FeSe films. The wide tunability of the system across different phases, and its high-Tc, make the single-layer FeSe film ideal not only to investigate the superconductivity physics and mechanism, but also to study novel quantum phenomena and for potential applications. Work done in collaboration with J. He, W. Zhang, L. Zhao, D. Liu, X. Liu, D. Mou, Y. Ou, Q. Wang, Z. Li, L. Wang, Y. Peng, Y. Liu, C. Chen, L. Yu, G. Liu, X. Dong, J. Zhang, C. Chen, Z. Xu, X. Chen, X. Ma, Q.-K. Xue, and X. J. Zhou in IOP, CAS, and Tsinghua Univ., Beijing

  9. High-Temperature Superconductive Cabling Investigated for Space Solar Power Satellites

    NASA Technical Reports Server (NTRS)

    Tew, Roy C.; Juhasz, Albert J.

    2000-01-01

    NASA has been directed by Congress to take a fresh look at the Space Solar Power (SSP) concept that was studied by the Department of Energy and NASA about 20 years ago. To summarize, the concept involves (1) collecting solar energy and converting it to electrical energy via photovoltaic arrays on satellites in Earth orbit, (2) conducting the electricity to the microwave transmitting portion of the satellite, and (3) transmitting the power via microwave transmitters (or possibly via lasers) to ground power station antennas located on the surface of the Earth. One Sun Tower SSP satellite concept is illustrated here. This figure shows many photovoltaic arrays attached to a "backbone" that conducts electricity down to a wireless transmitter, which is pointed toward the Earth. Other variations on this concept use multiple backbones to reduce the overall length of the satellite structure. In addition, non-Sun-Tower concepts are being considered. The objective of the work reported here was to determine the benefits to the SSP concept of using high-temperature superconductors (HTS) to conduct the electricity from the photovoltaic arrays to the wireless power transmitters. Possible benefits are, for example, reduced mass, improved efficiency, and improved reliability. Dr. James Powell of Plus Ultra Technologies, Inc., of Stony Brook, New York, is conducting the study, and it is being managed by the NASA Glenn Research Center at Lewis Field via a task-order contract through Scientific Applications International Corp. (SAIC).

  10. Locating of normal transitions in a Bi2223 high temperature superconducting coil by non-contact voltage measurement method

    NASA Astrophysics Data System (ADS)

    Nanato, N.; Nishiyama, K.

    2015-12-01

    Locating of normal transitions in high temperature superconducting (HTS) coils is important for protection and safety design of HTS apparatus. A general method to locate the normal transitions is to measure resistive voltages along HTS windings by many voltage taps directly soldered to the HTS coils. However, electrical insulation characteristics of the HTS coils are deteriorated because it is necessary to remove electrical insulations of the HTS wires for the soldering. It is a serious problem especially for AC HTS coils to which high voltages are applied. Therefore the authors have presented a non-contact voltage measurement method that can detect the resistive voltages without removing the insulations by voltage dividing capacitors. So far the authors have verified the principle of the non-contact method. In this paper, a method to locate the normal transitions in a Bi2223 HTS coil based on the non-contact method is proposed. The proposed method can not only detect the normal transitions but also locate their positions. It is experimentally confirmed that the proposed method is useful for locating the normal transitions.

  11. Designing heterostructures with higher-temperature superconductivity

    NASA Astrophysics Data System (ADS)

    Le Hur, Karyn; Chung, Chung-Hou; Paul, I.

    2011-07-01

    We propose to increase the superconducting transition temperature Tc of strongly correlated materials by designing heterostructures which exhibit a high pairing energy as a result of magnetic fluctuations. More precisely, applying an effective theory of the doped Mott insulator, we envisage a bilayer Hubbard system where both layers exhibit intrinsic intralayer (intraband) d-wave superconducting correlations. Introducing a finite asymmetry between the hole densities of the two layers such that one layer becomes slightly more underdoped and the other more overdoped, we show a visible enhancement of Tc compared to the optimally doped isolated layer. Using the bonding and antibonding band basis, we show that the mechanism behind this enhancement of Tc is the interband pairing correlation mediated by the hole asymmetry which strives to decrease the paramagnetic nodal contribution to the superfluid stiffness. For two identical layers, Tc remains comparable to that of the isolated layer until moderate values of the interlayer single-particle tunneling term. These heterostructures shed new light on fundamental questions related to superconductivity.

  12. Low temperature magnetic force microscopy on ferromagnetic and superconducting oxides

    NASA Astrophysics Data System (ADS)

    Sirohi, Anshu; Sheet, Goutam

    2016-05-01

    We report the observation of complex ferromagnetic domain structures on thin films of SrRuO3 and superconducting vortices in high temperature superconductors through low temperature magnetic force microscopy. Here we summarize the experimental details and results of magnetic imaging at low temperatures and high magnetic fields. We discuss these data in the light of existing theoretical concepts.

  13. Design and preliminary results from a high temperature superconducting SQUID milliscope used for non-destructive evaluation

    SciTech Connect

    Espy, M.A.; Atencio, L.; Flynn, E.R.; Kraus, R.H. Jr.; Matlashov, A.

    1998-12-31

    The authors present the design and preliminary results from a SQUID milliscope. The device was designed for nondestructive evaluation (NDE) as part of the Enhanced Surveillance Program at Los Alamos National Laboratory and uses a high temperature superconducting (HTS) SQUID sensor to map magnetic fields induced in the sample. Eddy currents are induced in the conducting sample by a wire coil designed to produce minimal magnetic field at the SQUID when no sample is present. The features of interest are characterized by anomalies in the induced magnetic field. The goal of the instrument is sensitivity to small features generally buried under several intervening layers ({approximately}1--10 mm) of conducting and/or non-conducting materials and robustness of design (i.e., the ability to operate in a noisy, unshielded environment). The device has primarily focused on specific NDE problems such as the ability to detect buried seams in conducting materials and quantify the width of these seams. The authors present the design of the instrument, and some data to demonstrate its capabilities.

  14. Dynamic response characteristics of high temperature superconducting maglev systems: Comparison between Halbach-type and normal permanent magnet guideways

    NASA Astrophysics Data System (ADS)

    Wang, B.; Zheng, J.; Che, T.; Zheng, B. T.; Si, S. S.; Deng, Z. G.

    2015-12-01

    The permanent magnet guideway (PMG) is very important for the performance of the high temperature superconducting (HTS) system in terms of electromagnetic force and operational stability. The dynamic response characteristics of a HTS maglev model levitating on two types of PMG, which are the normal PMG with iron flux concentration and Halbach-type PMG, were investigated by experiments. The dynamic signals for different field-cooling heights (FCHs) and loading/unloading processes were acquired and analyzed by a vibration analyzer and laser displacement sensors. The resonant frequency, stiffness and levitation height of the model were discussed. It was found that the maglev model on the Halbach-type PMG has higher resonant frequency and higher vertical stiffness compared with the normal PMG. However, the low lateral stiffness of the model on the Halbach-type PMG indicates poor lateral stability. Besides, the Halbach-type PMG has better loading capacity than the normal PMG. These results are helpful to design a suitable PMG for the HTS system in practical applications.

  15. High-Tc superconducting monolithic phase shifter

    NASA Astrophysics Data System (ADS)

    Takemoto-Kobayashi, June H.; Jackson, Charles M.; Pettiette-Hall, Claire L.; Burch, John F.

    1992-03-01

    A high temperature superconducting (HTS) X-band phase shifter using a distributed Josephson inductance (DJI) approach was designed and fabricated. Phase swings of over 60 deg were measured at 65 K and below, with measurable phase shifts at temperatures above 77 K. High quality HTS films and superconducting quantum interference devices (SQUIDs) were deposited by laser ablation. A total of 40 HTS step edge SQUIDs were successfully integrated into a monolithic HTS circuit to produce a phase shifter in a resonant configuration. The magnitude of the Josephson inductance is calculated and a lumped element model is compared to measurements.

  16. Signs of high-temperature superconductivity in frustrated manganites La1 - y Sm y MnO3 + δ ( y = 0.85, 1)

    NASA Astrophysics Data System (ADS)

    Bukhanko, F. N.; Bukhanko, A. F.

    2016-03-01

    The characteristics signs of the coexistence of nanoscale superconductivity and fluctuating antiferromagnetic state of the spin-liquid type have been revealed for the first time in frustrated manganites La1‒ y Sm y MnO3 + δ (δ ~ 0.1, y = 0.85, 1.0) in the form of macroscopic quantization of magnetic properties in weak magnetic fields. A sharp decrease and oscillations of close-in-magnitude critical temperatures of transitions to fluctuating antiferromagnetic ( T A) and superconducting ( T c0) states with an increase in the external magnetic field strength have been found. Quantum oscillations of the magnetization and magnetic susceptibility near the critical temperatures of fluctuating antiferromagnetic phase transitions of the A- and CE-types have been discovered and investigated in detail. It has been shown that the studied samples exhibit properties of a multicomponent composite in which at temperatures T < 60 K in weak magnetic fields, there coexist fluctuating charge and antiferromagnetic correlations of the A- and CE-types with properties of the spin-liquid state and a small fraction of the superconducting phase in the form of individual and Josephsontunnel- junction-coupled superconducting loops with low critical currents. It has been assumed that, in samples with samarium concentrations y ≥ 0.8 at temperatures below 60 K, there is a new inhomogeneous state of doped manganites of the magneto-electronic liquid crystal type with strong quantum fluctuations of the magnetic and electronic order parameters, which are similar to electronic liquid crystals in lightly doped high-temperature superconducting cuprates.

  17. A Cryogenic Magnetostrictive Actuator using a Persistent High Temperature Superconducting Magnet, Part 1: Concept and Design. Part 1; Concept and Design

    NASA Technical Reports Server (NTRS)

    Horner, Garnett C.; Bromberg, Leslie; Teter, J. P.

    2001-01-01

    Cryogenic magnetostrictive materials, such as rare earth zinc crystals, offer high strains and high forces with minimally applied magnetic fields, making the material ideally suited for deformable optics applications. For cryogenic temperature applications, such as Next Generation Space Telescope (NGST), the use of superconducting magnets offer the possibility of a persistent mode of operation, i.e., the magnetostrictive material will maintain a strain field without power. High temperature superconductors (HTS) are attractive options if the temperature of operation is higher than 10 degrees Kelvin (K) and below 77 K. However, HTS wires have constraints that limit the minimum radius of winding, and even if good wires can be produced, the technology for joining superconducting wires does not exist. In this paper, the design and capabilities of a rare earth zinc magnetostrictive actuator using bulk HTS is described. Bulk superconductors can be fabricated in the sizes required with excellent superconducting properties. Equivalent permanent magnets, made with this inexpensive material, are persistent, do not require a persistent switch as in HTS wires, and can be made very small. These devices are charged using a technique which is similar to the one used for charging permanent magnets, e.g., by driving them into saturation. A small normal conducting coil can be used for charging or discharging. Very fast charging and discharging of HTS tubes, as short as 100 microseconds, has been demonstrated. Because of the magnetic field capability of the superconductor material, a very small amount of superconducting magnet material is needed to actuate the rare earth zinc. In this paper, several designs of actuators using YBCO and BSCCO 2212 superconducting materials are presented. Designs that include magnetic shielding to prevent interaction between adjacent actuators will also be described. Preliminary experimental results and comparison with theory for BSSCO 2212 with a

  18. Phased-array components for the High-Temperature Superconducting Space Experiment (HTSSE). Final report

    SciTech Connect

    Not Available

    1991-06-07

    A new class of X-band phase shifters using the distributed Josephson inductance (DJI) effect were delivered to NRL for the HTS Space Experiment project. Phase shifts were observed above 77 K, and large phase shifts were observed at 65 K and below. This narrow-band device was developed as a first step to a broadband device. A total of 40 HTS SQUIDs were successfully integrated into a monolithic circuit. Measurement of the temperature dependance of the Q of a resonator in June 1990 and in February 1991 showed no significant change due to aging. A total of seven X-band phase shifters were fabricated, and five were delivered to Naval Research Laboratory. The HTS phase shifter consists of a low loss YBa2Cu3O7 microstrip resonator with 40 SQUID devices monolithically imbedded into the transmission line. This narrow-band device was developed as a first step to a broadband device.

  19. Phased array components for the High Temperature Superconducting Space Experiment (HTSSE)

    NASA Astrophysics Data System (ADS)

    1991-06-01

    A new class of X-band phase shifters using the distributed Josephson inductance (DJI) effect were delivered to NRL for the HTS Space Experiment project. Phase shifts were observed above 77 K, and large phase shifts were observed at 65 K and below. This narrow-band device was developed as a first step to a broadband device. A total of 40 HTS SQUIDs were successfully integrated into a monolithic circuit. Measurement of the temperature dependence of the Q of a resonator in June 1990 and in February 1991 showed no significant change due to aging. A total of seven X-band phase shifters were fabricated, and five were delivered to Naval Research Laboratory. The HTS phase shifter consists of a low loss YBa2Cu3O7 microstrip resonator with 40 SQUID devices monolithically imbedded into the transmission line. This narrow-band device was developed as a first step to a broadband device.

  20. Reasons for high-temperature superconductivity in the electron–phonon system of hydrogen sulfide

    SciTech Connect

    Degtyarenko, N. N.; Mazur, E. A.

    2015-08-15

    We have calculated the electron and phonon spectra, as well as the densities of the electron and phonon states, of the stable orthorhombic structure of hydrogen sulfide SH{sub 2} in the pressure interval 100–180 GPa. It is found that at a pressure of 175 GPa, a set of parallel planes of hydrogen atoms is formed due to a structural modification of the unit cell under pressure with complete accumulation of all hydrogen atoms in these planes. As a result, the electronic properties of the system become quasi-two-dimensional. We have also analyzed the collective synphase and antiphase vibrations of hydrogen atoms in these planes, leading to the occurrence of two high-energy peaks in the phonon density of states.

  1. Permanent magnet design for high-speed superconducting bearings

    DOEpatents

    Hull, John R.; Uherka, Kenneth L.; Abdoud, Robert G.

    1996-01-01

    A high temperature superconducting bearing including a permanent magnet rotor levitated by a high temperature superconducting structure. The rotor preferably includes one or more concentric permanent magnet rings coupled to permanent magnet ring structures having substantially triangular and quadrangular cross-sections. Both alternating and single direction polarity magnet structures can be used in the bearing.

  2. Permanent magnet design for high-speed superconducting bearings

    DOEpatents

    Hull, J.R.; Uherka, K.L.; Abdoud, R.G.

    1996-09-10

    A high temperature superconducting bearing including a permanent magnet rotor levitated by a high temperature superconducting structure is disclosed. The rotor preferably includes one or more concentric permanent magnet rings coupled to permanent magnet ring structures having substantially triangular and quadrangular cross-sections. Both alternating and single direction polarity magnet structures can be used in the bearing. 9 figs.

  3. Optimization of the Processing Parameters of High Temperature Superconducting Glass-Ceramics: Center Director's Discretionary Fund Final Report

    NASA Technical Reports Server (NTRS)

    Ethridge, E. C.; Kaukler, W. F.

    1993-01-01

    A number of promising glass forming compositions of high Tc superconducting Ba-Sr-Ca-Cu-O (BSCCO) materials were evaluated for their glass-ceramic crystallization ability. The BSCCO ceramics belonging to the class of superconductors in the Ba-Sr-Ca-Cu-O system were the focus of this study. By first forming the superconducting material as a glass, subsequent devitrification into the crystalline (glass-ceramic) superconductor can be performed by thermal processing of the glass preform body. Glass formability and phase formation were determined by a variety of methods in another related study. This study focused on the nucleation and crystallization of the materials. Thermal analysis during rapid cooling aids in the evaluation of nucleation and crystallization behavior. Melt viscosity is used to predict glass formation ability.

  4. First-principles prediction of MgB2-like NaBC: A more promising high-temperature superconducting material than LiBC

    NASA Astrophysics Data System (ADS)

    Miao, Rende; Huang, Guiqin; Yang, Jun

    2016-05-01

    Crystal structure, lattice dynamics, and superconducting properties for sodium borocarbides NaB1+xC1-x are investigated with first-principles calculations. Based on crystal structure analysis by particle swarm optimization methodology, NaBC is predicted to crystallize in the layered P63 / mmc crystal structure as LiBC. However, it is different from LiBC, in that Na atoms are effectively ionized, with no longitudinal covalence exist between Na and B-C layers, just as in the case of MgB2. Therefore, Na1-xBC is more similar to MgB2 than Li1-xBC as a potential high-temperature superconductor. Further more, we suggest that the slight hole doping of NaBC through partial substitution of C by B atoms can also produce cause superconductivity. The phonon spectra for NaBC and NaB1.1C0.9 are obtained within the virtual-crystal approximation treatment. There is a remarkable softening of the in-plane B-C bond-stretching modes for NaB1.1C0.9 in certain regions of the Brillouin zone, while other phonon bands show no obvious softening behavior. This conspicuous softening of the in-plane B-C bond-stretching modes indicates a strong electron-phonon coupling for them. The obtained total electron-phonon coupling strength λ for NaB1.1C0.9 is 0.73, and superconducting transition temperature TC is predicted to be 35 K (μ* = 0.1). This indicates that NaB1+xC1-x is potentially high-temperature superconducting and hole doping of NaBC could produce high-temperature superconductivity. In addition, we conjecture that, to design a MgB2-like high TC superconducting material, the longitudinal covalent bonds between the metal cations and graphite-like layers need be excluded.

  5. Embedded fiber Bragg grating sensors for true temperature monitoring in Nb3Sn superconducting magnets for high energy physics

    NASA Astrophysics Data System (ADS)

    Chiuchiolo, A.; Bajas, H.; Bajko, M.; Consales, M.; Giordano, M.; Perez, J. C.; Cusano, A.

    2016-05-01

    The luminosity upgrade of the Large Hadron Collider (HL-LHC) planned at the European Organization for Nuclear Research (CERN) requires the development of a new generation of superconducting magnets based on Nb3Sn technology. The instrumentation required for the racetrack coils needs the development of reliable sensing systems able to monitor the magnet thermo-mechanical behavior during its service life, from the coil fabrication to the magnet operation. With this purpose, Fiber Bragg Grating (FBG) sensors have been embedded in the coils of the Short Model Coil (SMC) magnet fabricated at CERN. The FBG sensitivity to both temperature and strain required the development of a solution able to separate mechanical and temperature effects. This work presents for the first time a feasibility study devoted to the implementation of an embedded FBG sensor for the measurement of the "true" temperature in the impregnated Nb3Sn coil during the fabrication process.

  6. Generalized statistics and high- Tc superconductivity

    NASA Astrophysics Data System (ADS)

    Uys, H.; Miller, H. G.; Khanna, F. C.

    2001-10-01

    Introducing the generalized, non-extensive statistics proposed by Tsallis (J. Stat. Phys. 52 (1/2) (1988) 479) into the standard s-wave pairing BCS theory of superconductivity in 2D yields a reasonable description of many of the main properties of high temperature superconductors, provided some allowance is made for non-phonon mediated interactions.

  7. Interface-enhanced electron-phonon coupling and high-temperature superconductivity in potassium-coated ultrathin FeSe films on SrTiO3

    NASA Astrophysics Data System (ADS)

    Tang, Chenjia; Liu, Chong; Zhou, Guanyu; Li, Fangsen; Ding, Hao; Li, Zhi; Zhang, Ding; Li, Zheng; Song, Canli; Ji, Shuaihua; He, Ke; Wang, Lili; Ma, Xucun; Xue, Qi-Kun

    2016-01-01

    Alkali-metal (potassium) adsorption on FeSe thin films with thickness from 2 unit cells (UC) to 4 UC on SrTi O3 grown by molecular beam epitaxy is investigated with a low-temperature scanning tunneling microscope. At appropriate potassium coverage (0.20-0.25 monolayer), the tunneling spectra of the films all exhibit a superconductinglike gap which is overall larger than 11 meV (five times the gap value of bulk FeSe) and decreases with increasing thickness, and two distinct features of characteristic phonon modes at ˜11 and ˜21 meV. The results reveal the critical role of the interface-enhanced electron-phonon coupling for possible high-temperature superconductivity in ultrathin FeSe films on SrTi O3 and is consistent with recent theories. Our study provides compelling evidence for the conventional pairing mechanism for this type of heterostructure superconducting system.

  8. Magnetic and Superconducting Materials at High Pressures

    SciTech Connect

    Struzhkin, Viktor V.

    2015-03-24

    The work concentrates on few important tasks in enabling techniques for search of superconducting compressed hydrogen compounds and pure hydrogen, investigation of mechanisms of high-Tc superconductivity, and exploring new superconducting materials. Along that route we performed several challenging tasks, including discovery of new forms of polyhydrides of alkali metal Na at very high pressures. These experiments help us to establish the experimental environment that will provide important information on the high-pressure properties of hydrogen-rich compounds. Our recent progress in RIXS measurements opens a whole field of strongly correlated 3d materials. We have developed a systematic approach to measure major electronic parameters, like Hubbard energy U, and charge transfer energy Δ, as function of pressure. This technique will enable also RIXS studies of magnetic excitations in iridates and other 5d materials at the L edge, which attract a lot of interest recently. We have developed new magnetic sensing technique based on optically detected magnetic resonance from NV centers in diamond. The technique can be applied to study superconductivity in high-TC materials, to search for magnetic transitions in strongly correlated and itinerant magnetic materials under pressure. Summary of Project Activities; development of high-pressure experimentation platform for exploration of new potential superconductors, metal polyhydrides (including newly discovered alkali metal polyhydrides), and already known superconductors at the limit of static high-pressure techniques; investigation of special classes of superconducting compounds (high-Tc superconductors, new superconducting materials), that may provide new fundamental knowledge and may prove important for application as high-temperature/high-critical parameter superconductors; investigation of the pressure dependence of superconductivity and magnetic/phase transformations in 3d transition metal compounds, including

  9. High-resolution room-temperature sample scanning superconducting quantum interference device microscope configurable for geological and biomagnetic applications

    SciTech Connect

    Fong, L.E.; Holzer, J.R.; McBride, K.K.; Lima, E.A.; Baudenbacher, F.; Radparvar, M.

    2005-05-15

    We have developed a scanning superconducting quantum interference device (SQUID) microscope system with interchangeable sensor configurations for imaging magnetic fields of room-temperature (RT) samples with submillimeter resolution. The low-critical-temperature (T{sub c}) niobium-based monolithic SQUID sensors are mounted on the tip of a sapphire and thermally anchored to the helium reservoir. A 25 {mu}m sapphire window separates the vacuum space from the RT sample. A positioning mechanism allows us to adjust the sample-to-sensor spacing from the top of the Dewar. We achieved a sensor-to-sample spacing of 100 {mu}m, which could be maintained for periods of up to four weeks. Different SQUID sensor designs are necessary to achieve the best combination of spatial resolution and field sensitivity for a given source configuration. For imaging thin sections of geological samples, we used a custom-designed monolithic low-T{sub c} niobium bare SQUID sensor, with an effective diameter of 80 {mu}m, and achieved a field sensitivity of 1.5 pT/Hz{sup 1/2} and a magnetic moment sensitivity of 5.4x10{sup -18} A m{sup 2}/Hz{sup 1/2} at a sensor-to-sample spacing of 100 {mu}m in the white noise region for frequencies above 100 Hz. Imaging action currents in cardiac tissue requires a higher field sensitivity, which can only be achieved by compromising spatial resolution. We developed a monolithic low-T{sub c} niobium multiloop SQUID sensor, with sensor sizes ranging from 250 {mu}m to 1 mm, and achieved sensitivities of 480-180 fT/Hz{sup 1/2} in the white noise region for frequencies above 100 Hz, respectively. For all sensor configurations, the spatial resolution was comparable to the effective diameter and limited by the sensor-to-sample spacing. Spatial registration allowed us to compare high-resolution images of magnetic fields associated with action currents and optical recordings of transmembrane potentials to study the bidomain nature of cardiac tissue or to match petrography

  10. The Progress on Low-Cost, High-Quality, High-Temperature Superconducting Tapes Deposited by the Combustion Chemical Vapor Deposition Process

    SciTech Connect

    Shoup, S.S.; White, M.K.; Krebs, S.L.; Darnell, N.; King, A.C.; Mattox, D.S.; Campbell, I.H.; Marken, K.R.; Hong, S.; Czabaj, B.; Paranthaman, M.; Christen, H.M.; Zhai, H.-Y. Specht, E.

    2008-06-24

    The innovative Combustion Chemical Vapor Deposition (CCVD) process is a non-vacuum technique that is being investigated to enable next generation products in several application areas including high-temperature superconductors (HTS). In combination with the Rolling Assisted Biaxially Textured Substrate (RABiTS) technology, the CCVD process has significant promise to provide low-cost, high-quality lengths of YBCO coated conductor. Over 100 meter lengths of both Ni and Ni-W (3 at. Wt.%) substrates with a surface roughness of 12-18 nm were produced. The CCVD technology has been used to deposit both buffer layer coatings as well as YBCO superconducting layers. Buffer layer architecture of strontium titanate (SrTiO{sub 3}) and ceria (CeO{sub 2}) have been deposited by CCVD on textured nickel substrates and optimized to appropriate thicknesses and microstructures to provide templates for growing PLD YBCO with a J{sub c} of 1.1 MA/cm{sup 2} at 77 K and self-field. The CCVD buffer layers have been scaled to meter plus lengths with good epitaxial uniformity along the length. A short sample cut from one of the lengths enabled high critical current density PLD YBCO. Films of CCVD YBCO superconductors have been grown on single crystal substrates with critical current densities over 1 MA/cm{sup 2}. In addition, superconducting YBCO films with an I{sub c} of 60 A/cm-width (J{sub c} = 1.5 MA/cm{sup 2}) were grown on ORNL RABiTS (CeO{sub 2}/YSZ/Y{sub 2}O{sub 3}/Ni/Ni-3W) using CCVD process.

  11. Upward shift of the vortex solid phase in high-temperature-superconducting wires through high density nanoparticle addition

    NASA Astrophysics Data System (ADS)

    Miura, Masashi; Maiorov, Boris; Balakirev, Fedor F.; Kato, Takeharu; Sato, Michio; Takagi, Yuji; Izumi, Teruo; Civale, Leonardo

    2016-02-01

    We show a simple and effective way to improve the vortex irreversibility line up to very high magnetic fields (60T) by increasing the density of second phase BaZrO3 nanoparticles. (Y0.77,Gd0.23)Ba2Cu3Oy films were grown on metal substrates with different concentration of BaZrO3 nanoparticles by the metal organic deposition method. We find that upon increase of the BaZrO3 concentration, the nanoparticle size remains constant but the twin-boundary density increases. Up to the highest nanoparticle concentration (n ~ 1.3 × 1022/m3), the irreversibility field (Hirr) continues to increase with no sign of saturation up to 60 T, although the vortices vastly outnumber pinning centers. We find extremely high Hirr, namely Hirr = 30 T (H||45°) and 24 T (H||c) at 65 K and 58 T (H||45°) and 45 T (H||c) at 50K. The difference in pinning landscape shifts the vortex solid-liquid transition upwards, increasing the vortex region useful for power applications, while keeping the upper critical field, critical temperature and electronic mass anisotropy unchanged.

  12. Upward shift of the vortex solid phase in high-temperature-superconducting wires through high density nanoparticle addition.

    PubMed

    Miura, Masashi; Maiorov, Boris; Balakirev, Fedor F; Kato, Takeharu; Sato, Michio; Takagi, Yuji; Izumi, Teruo; Civale, Leonardo

    2016-01-01

    We show a simple and effective way to improve the vortex irreversibility line up to very high magnetic fields (60T) by increasing the density of second phase BaZrO3 nanoparticles. (Y0.77,Gd0.23)Ba2Cu3Oy films were grown on metal substrates with different concentration of BaZrO3 nanoparticles by the metal organic deposition method. We find that upon increase of the BaZrO3 concentration, the nanoparticle size remains constant but the twin-boundary density increases. Up to the highest nanoparticle concentration (n ~ 1.3 × 10(22)/m(3)), the irreversibility field (Hirr) continues to increase with no sign of saturation up to 60 T, although the vortices vastly outnumber pinning centers. We find extremely high Hirr, namely Hirr = 30 T (H||45°) and 24 T (H||c) at 65 K and 58 T (H||45°) and 45 T (H||c) at 50K. The difference in pinning landscape shifts the vortex solid-liquid transition upwards, increasing the vortex region useful for power applications, while keeping the upper critical field, critical temperature and electronic mass anisotropy unchanged. PMID:26853703

  13. Upward shift of the vortex solid phase in high-temperature-superconducting wires through high density nanoparticle addition

    PubMed Central

    Miura, Masashi; Maiorov, Boris; Balakirev, Fedor F.; Kato, Takeharu; Sato, Michio; Takagi, Yuji; Izumi, Teruo; Civale, Leonardo

    2016-01-01

    We show a simple and effective way to improve the vortex irreversibility line up to very high magnetic fields (60T) by increasing the density of second phase BaZrO3 nanoparticles. (Y0.77,Gd0.23)Ba2Cu3Oy films were grown on metal substrates with different concentration of BaZrO3 nanoparticles by the metal organic deposition method. We find that upon increase of the BaZrO3 concentration, the nanoparticle size remains constant but the twin-boundary density increases. Up to the highest nanoparticle concentration (n ~ 1.3 × 1022/m3), the irreversibility field (Hirr) continues to increase with no sign of saturation up to 60 T, although the vortices vastly outnumber pinning centers. We find extremely high Hirr, namely Hirr = 30 T (H||45°) and 24 T (H||c) at 65 K and 58 T (H||45°) and 45 T (H||c) at 50K. The difference in pinning landscape shifts the vortex solid-liquid transition upwards, increasing the vortex region useful for power applications, while keeping the upper critical field, critical temperature and electronic mass anisotropy unchanged. PMID:26853703

  14. Upward shift of the vortex solid phase in high-temperature-superconducting wires through high density nanoparticle addition

    DOE PAGESBeta

    Miura, Masashi; Maiorov, Boris; Balakirev, Fedor F.; Kato, Takeharu; Sato, Michio; Takagi, Yuji; Izumi, Teruo; Civale, Leonardo

    2016-02-08

    Here, we show a simple and effective way to improve the vortex irreversibility line up to very high magnetic fields (60T) by increasing the density of second phase BaZrO3 nanoparticles. (Y0.77,Gd0.23)Ba2Cu3Oy films were grown on metal substrates with different concentration of BaZrO3 nanoparticles by the metal organic deposition method. We find that upon increase of the BaZrO3 concentration, the nanoparticle size remains constant but the twin-boundary density increases. Up to the highest nanoparticle concentration (n ~ 1.3 × 1022/m3), the irreversibility field (Hirr) continues to increase with no sign of saturation up to 60 T, although the vortices vastly outnumbermore » pinning centers. We find extremely high Hirr, namely Hirr = 30 T (H||45°) and 24 T (H||c) at 65 K and 58 T (H||45°) and 45 T (H||c) at 50K. The difference in pinning landscape shifts the vortex solid-liquid transition upwards, increasing the vortex region useful for power applications, while keeping the upper critical field, critical temperature and electronic mass anisotropy unchanged.« less

  15. Theory of exotic superconductivity and normal states of heavy electron and high temperature superconductivity materials. Progress report, February 15, 1994--February 14, 1995

    SciTech Connect

    Cox, D.L.

    1995-02-01

    This is a progress report for the DOE project covering the period 2/15/94 to 2/14/95. The PI had a fruitful sabbatical during this period, and had some important new results, particularly in the area of new phenomenology for heavy fermion superconductivity. Significant new research accomplishments are in the area of odd-in-time-reversal pairing states/staggered superconductivity, the two-channel Kondo lattice, and a general model for Ce impurities which admits one-, two-, and three-channel Kondo effects. Papers submitted touch on these areas: staggered superconductivity - a new phenomenology for UPt{sub 3}; theory of the two-channel Kondo lattice in infinite dimensions; general model of a Ce{sup 3+} impurity. Other work was done in the areas: Knight shift in heavy fermion alloys and compounds; symmetry analysis of singular pairing correlations for the two-channel Kondo impurity model.

  16. An experimental investigation of high temperature superconducting microstrip antennas at K- and Ka-band frequencies. Ph.D. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Richard, Mark A.

    1993-01-01

    The recent discovery of high temperature superconductors (HTS) has generated a substantial amount of interest in microstrip antenna applications. However, the high permittivity of substrates compatible with HTS results in narrow bandwidths and high patch edge impedances of such antennas. To investigate the performance of superconducting microstrip antennas, three antenna architectures at K and Ka-band frequencies are examined. Superconducting microstrip antennas that are directly coupled, gap coupled, and electromagnetically coupled to a microstrip transmission line were designed and fabricated on lanthanum aluminate substrates using YBa2Cu3O7 superconducting thin films. For each architecture, a single patch antenna and a four element array were fabricated. Measurements from these antennas, including input impedance, bandwidth, patterns, efficiency, and gain are presented. The measured results show usable antennas can be constructed using any of the architectures. All architectures show excellent gain characteristics, with less than 2 dB of total loss in the four element arrays. Although the direct and gap coupled antennas are the simplest antennas to design and fabricate, they suffer from narrow bandwidths. The electromagnetically coupled antenna, on the other hand, allows the flexibility of using a low permittivity substrate for the patch radiator, while using HTS for the feed network, thus increasing the bandwidth while effectively utilizing the low loss properties of HTS. Each antenna investigated in this research is the first of its kind reported.

  17. Low-temperature in situ formation of Y-Ba-Cu-O high T sub c superconducting thin films by plasma-enhanced metalorganic chemical vapor deposition

    SciTech Connect

    Zhao, J.; Noh, D.W.; Chern, C.; Li, Y.Q.; Norris, P.; Gallois, B.; Kear, B. )

    1990-06-04

    Highly textured, highly dense, superconducting YBa{sub 2}Cu{sub 3}O{sub 7{minus}{ital x}} thin films with mirror-like surfaces have been prepared, {ital in} {ital situ}, at a reduced substrate temperature as low as 570 {degree}C by a remote microwave plasma-enhanced metalorganic chemical vapor deposition process (PE-MOCVD). Nitrous oxide was used as the oxidizer gas. The as-deposited films grown by PE-MOCVD show attainment of zero resistance at 72 K. PE-MOCVD was carried out in a commercial scale MOCVD reactor.

  18. Diffusion tensor imaging using a high-temperature superconducting resonator in a 3 T magnetic resonance imaging for a spontaneous rat brain tumor

    NASA Astrophysics Data System (ADS)

    Lin, In-Tsang; Yang, Hong-Chang; Chen, Jyh-Horng

    2013-02-01

    This study investigates the peri-tumor signal abnormalities of a spontaneous brain tumor in a rat by using a 4 cm high-temperature superconducting (HTS) surface resonator. Fractional anisotropy (FA) values derived from diffusion tensor imaging reflect the interstitial characteristic of the peri-lesional tissues of brain tumors. Low FA indicates interstitial tumor infiltration and tissue injury, while high FA indicates better tissue integrity. Better delineation of tissue contents obtained by the HTS surface resonator at 77 K may facilitate therapeutic strategy and improve clinical outcomes.

  19. Superconductivity in the metallic elements at high pressures

    NASA Astrophysics Data System (ADS)

    Hamlin, J. J.

    2015-07-01

    Although the highest superconducting critical temperature, Tc , found in an elemental solid at ambient pressure is 9.2 K (niobium), under the application of ultra-high pressures, several elements exhibit Tc values near or above 20 K. This review includes a survey of the occurrence and understanding of pressure-induced superconductivity in the subset of elements that are metallic at ambient pressure. A particular focus is directed towards those elements that display the highest superconducting critical temperatures or exhibit substantial increases in Tc with pressure. A separate article in this issue by Shimizu will cover pressure-induced superconductivity in elements that are insulating at ambient pressure.

  20. Unconventional high-Tc superconductivity in fullerides.

    PubMed

    Takabayashi, Yasuhiro; Prassides, Kosmas

    2016-09-13

    A3C60 molecular superconductors share a common electronic phase diagram with unconventional high-temperature superconductors such as the cuprates: superconductivity emerges from an antiferromagnetic strongly correlated Mott-insulating state upon tuning a parameter such as pressure (bandwidth control) accompanied by a dome-shaped dependence of the critical temperature, Tc However, unlike atom-based superconductors, the parent state from which superconductivity emerges solely by changing an electronic parameter-the overlap between the outer wave functions of the constituent molecules-is controlled by the C60 (3-) molecular electronic structure via the on-molecule Jahn-Teller effect influence of molecular geometry and spin state. Destruction of the parent Mott-Jahn-Teller state through chemical or physical pressurization yields an unconventional Jahn-Teller metal, where quasi-localized and itinerant electron behaviours coexist. Localized features gradually disappear with lattice contraction and conventional Fermi liquid behaviour is recovered. The nature of the underlying (correlated versus weak-coupling Bardeen-Cooper-Schrieffer theory) s-wave superconducting states mirrors the unconventional/conventional metal dichotomy: the highest superconducting critical temperature occurs at the crossover between Jahn-Teller and Fermi liquid metal when the Jahn-Teller distortion melts.This article is part of the themed issue 'Fullerenes: past, present and future, celebrating the 30th anniversary of Buckminster Fullerene'. PMID:27501971

  1. High Temperature Superconductivity in Praseodymium Doped (0%, 2%, 4%) in Melt-Textured Y(1-x)Pr(x)Ba2Cu3O(7-delta) Systems

    NASA Technical Reports Server (NTRS)

    James, Claudell

    1995-01-01

    A study of the magnetic and structural properties of the alloy Y(1-x)Pr(x)Ba2Cu3O(7-delta) of 0%, 2%, and 4% doping of praseodymium is presented. The resulting oxides of the alloy series are a high-temperature superconductor Y-Ba-Cu-O, which has an orthorhombic superconducting crystal-lattice. Magnetic relaxation studies have been performed on the Y-Pr-Ba-CuO bulk samples for field orientation parallel to the c-axis, using a vibrating sample magnetometer. Relaxation was measured at several temperatures to obtain the irreversible magnetization curves used for the Bean model. Magnetization current densities were derived from the relaxation data. Field and temperature dependence of the logarithmic flux-creep relaxation was measured in critical state. The data indicates that the effective activation energy U(eff) increases with increasing T between 77 K and 86 K. Also, the data shows that U(eff)(T) and superconducting transition temperature, Tc, decreased as the lattice parameters increased with increasing Pr ion concentration, x, for the corresponding Y(1-x)Pr(x)Ba(x)Cu3O(7-delta) oxides. One contribution to Tc decrease in this sampling is suspected to be due to the larger ionic radius of the Pr(3+) ion. The upper critical field (H(sub c2)) was measured in the presence of magnetic field parallel to the c axis. A linear temperature dependence with H(sub c2) was obtained.

  2. High-temperature superconductivity in space-charge regions of lanthanum cuprate induced by two-dimensional doping

    NASA Astrophysics Data System (ADS)

    Baiutti, F.; Logvenov, G.; Gregori, G.; Cristiani, G.; Wang, Y.; Sigle, W.; van Aken, P. A.; Maier, J.

    2015-10-01

    The exploitation of interface effects turned out to be a powerful tool for generating exciting material properties. Such properties include magnetism, electronic and ionic transport and even superconductivity. Here, instead of using conventional homogeneous doping to enhance the hole concentration in lanthanum cuprate and achieve superconductivity, we replace single LaO planes with SrO dopant planes using atomic-layer-by-layer molecular beam epitaxy (two-dimensional doping). Electron spectroscopy and microscopy, conductivity measurements and zinc tomography reveal such negatively charged interfaces to induce layer-dependent superconductivity (Tc up to 35 K) in the space-charge zone at the side of the planes facing the substrate, where the strontium (Sr) profile is abrupt. Owing to the growth conditions, the other side exhibits instead a Sr redistribution resulting in superconductivity due to conventional doping. The present study represents a successful example of two-dimensional doping of superconducting oxide systems and demonstrates its power in this field.

  3. Low cost, formable, high T(sub c) superconducting wire

    NASA Technical Reports Server (NTRS)

    Smialek, James L. (Inventor)

    1991-01-01

    A ceramic superconductivity part such as a wire is produced through the partial oxidation of a specially formulated copper alloy in the core. The alloys contain low level quantities of rare earth and alkaline earth dopant elements. Upon oxidation at high temperature, superconducting oxide phases are formed as a thin film.

  4. The low-temperature, high-magnetic-field critical current characteristics of Zr-added (Gd, Y)Ba2Cu3Ox superconducting tapes

    SciTech Connect

    Selvamanickam, V; Yao, Y; Chen, Y; Shi, T; Liu, Y; Khatri, ND; Liu, J; Lei, C; Galstyan, E; Majkic, G

    2012-10-26

    Critical current performances of state-of-the-art Zr-added (Gd, Y)BaCuO tapes have been investigated over a temperature range of 20-77 K, in magnetic fields up to 9 T and over a wide angular range of magnetic field orientations. The peak in critical current that is commonly observed in the field orientation perpendicular to the tape in BaZrO3 (BZO) containing superconducting tapes is found to vanish at 30 K in magnetic fields at 1-9 T. While the critical current of 15% Zr-added tapes was about 40% lower than that of 7.5% Zr-added tapes at 77 K, the pinning force values of the former were found to be 18-23% higher than those of the latter in the temperature range of 20-40 K and in magnetic fields of 3-5 T. The results from this study emphasize the importance of optimization of coated conductor fabrication processes for optimum performance not just in low magnetic fields at 77 K but also at the operating conditions of low temperatures and high magnetic fields that are of interest, especially for rotating superconducting machinery applications.

  5. Microwave properties of YBa2Cu3O(7-delta) high-transition-temperature superconducting thin films measured by the power transmission method

    NASA Technical Reports Server (NTRS)

    Miranda, F. A.; Gordon, W. L.; Bhasin, K. B.; Heinen, V. O.; Warner, J. D.

    1991-01-01

    The microwave response of YBa2Cu3O(7-delta) superconducting thin films deposited on LaAlO3, MgO, YSZ, and LaGaO3 substrates are studied. It is found that the microwave transmission properties are very weakly dependent on temperature in the normal state but change drastically upon transition to the superconducting state. In particular, the transmission decreases and there is a negative phase shift with respect to the phase at room temperature when the sample is cooled through its transition temperature. The magnetic penetration depth for all the films was determined from the surface reactance of the films. The microwave complex conductivity is determined in both the normal and the superconducting state. It is observed that both sigma1 and sigma2 increase in transition to the superconducting state. The surface resistivity is calculated for all the films.

  6. Method of enhancing the upper critical field (HC sub 2 ) in high temperature superconducting ceramic copper oxide perovskites

    SciTech Connect

    Rosen, C.Z.

    1992-03-03

    This patent describes a method of increasing the current carrying capacity and enhancing the upper critical (H{sub c2}) in a Type II superconducting material. It comprises providing a sample of a Type II superconducting material; exposing the sample to gamma radiation ranging in dosage level from about ten million rads to about one hundred million rads at a dose rate of about three million rads per hour.

  7. Review of high-temperature superconductivity and the effect of chemical modifications on Bi2Sr2CaCu2O8 and Bi2Sr2Ca2Cu3O10. Technical report

    SciTech Connect

    Jones, T.E.; McGinnis, W.C.; Boss, R.D.

    1991-08-01

    Perform chemical modifications to existing materials that may enhance their superconducting properties and provide insight into the mechanisms responsible for high-temperature superconductivity. This report presented a review of high-temperature superconductivity. An overview of superconductivity from its original discovery to the present is also given. Synthesized two sets of samples. One set was based on the structure Bi2Sr2CaCu2O8 and the other on Bi2Sr2Ca2Cu3O10. In both cases, the copper was partially replaced with elements from the first transition row of elements. The replacement was at the level of 5 mol.-% of the transition element for copper. The transition elements used were vanadium (V), manganese (Mn), titanium (Ti), nickel (Ni), zinc (Zn), cobalt (Co), and iron (Fe) and determined the effect of the substitutions on the crystal structure.

  8. Thermal contact conductance of ceramic AlN and oxygen-free high-conductivity copper interfaces under low temperature and vacuum for high-temperature superconducting cryocooler cooling

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Wang, Huiling; Zhuang, Hanrui

    2006-02-01

    In this article, a device for measuring thermal contact conductance under low temperature and vacuum for cryocooler cooling in high-temperature superconducting (HTS) system is presented. Such device may be used to simulate the real running condition of HTS equipments cooled by cryocooler. It is also convenient for temperature controlling. The thermal conductivity of ceramic AlN and the thermal contact conductance (TCC) between AlN and oxygen-free high-conductivity copper for the temperature range of 45-140 K and the vacuum range of 10-3-10-4Pa have been measured using axial steady heat-flow method on the Giffard-McMahon cryocooler with 5 W (20 K) capacity. Investigation shows that the TCC of the AlN /Cu interface increases as the temperature and the pressure load of contact interface increase, and the conductivity of ceramic AlN increases as temperature rises. An analysis based on micro- and nanocryogenic concepts is made to explain the behaviors of thermal conductivity for AlN and thermal contact conductance for the AlN /Cu interface.

  9. High specific heat superconducting composite

    DOEpatents

    Steyert, Jr., William A.

    1979-01-01

    A composite superconductor formed from a high specific heat ceramic such as gadolinium oxide or gadolinium-aluminum oxide and a conventional metal conductor such as copper or aluminum which are insolubly mixed together to provide adiabatic stability in a superconducting mode of operation. The addition of a few percent of insoluble gadolinium-aluminum oxide powder or gadolinium oxide powder to copper, increases the measured specific heat of the composite by one to two orders of magnitude below the 5.degree. K. level while maintaining the high thermal and electrical conductivity of the conventional metal conductor.

  10. Insertion loss and noise-temperature contribution of high-temperature superconducting bandpass filters centered at 2.3 and 8.45 GHz

    NASA Technical Reports Server (NTRS)

    Prater, J. L.; Bautista, J. J.

    1993-01-01

    Two superconducting Tl-Ca-Cu-Ba-O bandpass filters were fabricated for JPL by Superconductor Technologies Incorporated, Santa Barbara, California. The filters were designed to operate at 2.3 GHz (S-band) with a 0.5-dB bandwidth of 60 MHz and at 8.45 GHz (X-band) with a 0.5-dB bandwidth of 150 MHz. The structure selected for both filters incorporates half-wavelength thin-film resonators in a stripline configuration. The S-band filter uses an edge-coupled interdigital design and the X-band filter uses an end-coupled design. The insertion loss and the noise-temperature contribution were measured at 12 K for both filters.

  11. High-temperature superconductivity in space-charge regions of lanthanum cuprate induced by two-dimensional doping

    PubMed Central

    Baiutti, F.; Logvenov, G.; Gregori, G.; Cristiani, G.; Wang, Y.; Sigle, W.; van Aken, P. A.; Maier, J.

    2015-01-01

    The exploitation of interface effects turned out to be a powerful tool for generating exciting material properties. Such properties include magnetism, electronic and ionic transport and even superconductivity. Here, instead of using conventional homogeneous doping to enhance the hole concentration in lanthanum cuprate and achieve superconductivity, we replace single LaO planes with SrO dopant planes using atomic-layer-by-layer molecular beam epitaxy (two-dimensional doping). Electron spectroscopy and microscopy, conductivity measurements and zinc tomography reveal such negatively charged interfaces to induce layer-dependent superconductivity (Tc up to 35 K) in the space-charge zone at the side of the planes facing the substrate, where the strontium (Sr) profile is abrupt. Owing to the growth conditions, the other side exhibits instead a Sr redistribution resulting in superconductivity due to conventional doping. The present study represents a successful example of two-dimensional doping of superconducting oxide systems and demonstrates its power in this field. PMID:26481902

  12. Electrical transport in the superconducting and normal states in Y2Ba5Cu7Ox high-temperature superconductor

    NASA Astrophysics Data System (ADS)

    Mazaheri, M.; Jamasb, S.

    2016-05-01

    The resistivity of a recently reported Y2Ba5Cu7Ox (Y257) polycrystalline, high-temperature superconductor has been characterized over temperature in the presence of magnetic field intensities in the 0-15 kOe range. The magnetoresistive behavior of Y257 has been analyzed to determine the functional dependence of the pinning energy, U, associated with the resistive transition. Within the temperature range of 0.60 < T /Tc < 0.95 the Y257 resistivity data are consistent with the thermally activated flux creep model with the pinning energy following the temperature and magnetic field according to (1 - T /Tc) 2H-1. The pinning energy in this temperature range was determined to be in the 0.0125-0.8151 eV range. Furthermore, application of the Mott variable range hopping model to account for the normal-state behavior of resistivity in Y257 is critically assessed.

  13. An improved oxygen diffusion model to explain the effect of low-temperature baking on high field losses in niobium superconducting cavities

    SciTech Connect

    Ciovati, Gianluigi

    2006-07-01

    Radio-frequency (RF) superconducting cavities made of high purity niobium are widely used to accelerate charged particle beams in particle accelerators. The major limitation to achieve RF field values approaching the theoretical limit for niobium is represented by ''anomalous'' losses which degrade the quality factor of the cavities starting at peak surface magnetic fields of about 100 mT, in absence of field emission. These high field losses are often referred to as ''Q-drop''. It has been observed that the Q-drop is drastically reduced by baking the cavities at 120 C for about 48 h under ultrahigh vacuum. An improved oxygen diffusion model for the niobium-oxide system is proposed to explain the benefit of the low-temperature baking on the Q-drop in niobium superconducting rf cavities. The model shows that baking at 120 C for 48 h allows oxygen to diffuse away from the surface, and therefore increasing the lower critical field towards the value for pure niobium.

  14. Emergence of a High-Temperature Superconductivity in Hydrogen Cycled pd Compounds as AN Evidence for Superstoihiometric H/d Sites

    NASA Astrophysics Data System (ADS)

    Lipson, Andrei; Castano, Carlos; Miley, George; Lipson, Andrei; Lyakhov, Boris; Mitin, Alexander

    2006-02-01

    Transport and magnetic properties of hydrogen cycled PdHx and Pd/PdO:Hx (x ~ (4/6) × 10-4) nano-composite consisting of a Pd matrix with hydrogen trapped inside dislocation cores have been studied. The results suggest emergence of a high-temperature superconductivity state of a condensed hydrogen phase confined inside deep dislocation cores in the Pd matrix. The possible role of hydrogen/deuterium filled dislocation nano-tubes is discussed. These dislocation cores could be considered as active centers of LENR triggering due to (i) short D-D separation distance (~Bohr radius); (ii) high-local D-loading in the Pd and the corresponding effective lattice compression; (iii) a large optic phonon energy resulting in a most effective lattice-nuclei energy transfer.

  15. Room-Temperature Deposition of NbN Superconducting Films

    NASA Technical Reports Server (NTRS)

    Thakoor, S.; Lamb, J. L.; Thakoor, A. P.; Khanna, S. K.

    1986-01-01

    Films with high superconducting transition temperatures deposited by reactive magnetron sputtering. Since deposition process does not involve significantly high substrate temperatures, employed to deposit counter electrode in superconductor/insulator/superconductor junction without causing any thermal or mechanical degradation of underlying delicate tunneling barrier. Substrates for room-temperature deposition of NbN polymeric or coated with photoresist, making films accessible to conventional lithographic patterning techniques. Further refinements in deposition technique yield films with smaller transition widths, Tc of which might approach predicted value of 18 K.

  16. Thin film technology of high-critical-temperature superconducting electronics. Annual report 1 Aug 82-30 Oct 83

    SciTech Connect

    Talvacchio, J.; Braginski, A.I.; Gavaler, J.R.; Janocko, M.A.; Manocha, A.S.

    1983-12-05

    The objective of the first year's work was to investigate A15 superconductor/barrier oxide interfaces, identify oxide depth profiles, and determine resulting tunneling characteristics using soft tunnel junction counterelectrodes. Bilayers consisting of Nb and vanadium-silicon (A15) base electrodes and thin Y, Al, and Si barriers have been deposited in-situ and oxidized in humid air for up to three days. XPS analysis was used to compare the barrier coverage, uniformity, oxidation, and ability to protect the base electrode from oxidation for three deposition techniques: dc magnetron sputtering, dc diode sputtering, and reactive diode sputtering followed by pyrolysis. Y and Al have been found to be fully oxidized due to long oxidation times. In the above conditions the overlayers did not protect the superconductors from oxidation/hydration, and the surface of oxidized vanadium-silicon was also degraded by atomic segregation. The tunneling I-V characteristics exhibited very high leakage currents also suggestive of incomplete superconductor coverage by the metallic overlayer. Mo-Re was investigated for its potential as a high-critical-temperature counterelectrode. A very low oxidation rate was found indicating potential compatibility with yttrium hydroxide-sealed barriers. Low temperature growth (60 C) of MoRe (86 at. % Mo) with only a 5% decline in critical temperature has been demonstrated. Work will continue in a closed system to eliminate the base superconductor degradation, reduce leakage and study high-critical-temperature counterelectrodes.

  17. A single-sided linear synchronous motor with a high temperature superconducting coil as the excitation system

    NASA Astrophysics Data System (ADS)

    Yen, F.; Li, J.; Zheng, S. J.; Liu, L.; Ma, G. T.; Wang, J. S.; Wang, S. Y.; Liu, Wei

    2010-10-01

    Thrust measurements were performed on a coil made of a YBa2Cu3O7 - δ coated conductor acting as the excitation system of a single-sided linear synchronous motor. The superconducting coil was a single pancake in the shape of a racetrack with 100 turns, the width and effective lengths were 42 mm and 84 mm, respectively. The stator was made of conventional copper wire. At 77 K and a gap of 10 mm, with an operating direct current of IDC = 30 A for the superconducting coil and alternating current of IAC = 9 A for the stator coils, a thrust of 24 N was achieved. With addition of an iron core, thrust was increased by 49%. With addition of an iron back-plate, thrust was increased by 70%.

  18. Miniaturized microstrip multipole low-pass filters using high-temperature superconducting YBa2Cu3O7-x thin films

    NASA Astrophysics Data System (ADS)

    Kim, Jeha; Kang, Kwang-Yong; Han, Seok K.; Lee, Sang Yeol; Ahn, Dal

    1995-09-01

    We have designed the microstrip-type multipole (7-pole and 9-pole) lowpass filters consisting of both transmission lines and open stubs. The filters were fabricated on high temperature superconducting (HTS) YBa2Cu3O7-(delta ) (YBCO) thin films grown on MgO(100) substrates by pulsed laser deposition. For 7-pole lowpass filter, the measured insertion losses were within 0.5 dB, and up to 8 GHz the passband shows very flat with ripples of less than 0.05 dB. For 9-pole filter, we observed the insertion loss of 5.0 dB and the ripples of 0.64 dB. The skirt became steep and the off-band rejection increased large as the number of poles increases.

  19. High resolution NMR measurements using a 400 MHz NMR with an (RE)Ba2Cu3O7-x high-temperature superconducting inner coil: Towards a compact super-high-field NMR

    NASA Astrophysics Data System (ADS)

    Piao, R.; Iguchi, S.; Hamada, M.; Matsumoto, S.; Suematsu, H.; Saito, A. T.; Li, J.; Nakagome, H.; Takao, T.; Takahashi, M.; Maeda, H.; Yanagisawa, Y.

    2016-02-01

    Use of high-temperature superconducting (HTS) inner coils in combination with conventional low-temperature superconducting (LTS) outer coils for an NMR magnet, i.e. a LTS/HTS NMR magnet, is a suitable option to realize a high-resolution NMR spectrometer with operating frequency >1 GHz. From the standpoint of creating a compact magnet, (RE: Rare earth) Ba2Cu3O7-x (REBCO) HTS inner coils which can tolerate a strong hoop stress caused by a Lorentz force are preferred. However, in our previous work on a first-generation 400 MHz LTS/REBCO NMR magnet, the NMR resolution and sensitivity were about ten times worse than that of a conventional LTS NMR magnet. The result was caused by a large field inhomogeneity in the REBCO coil itself and the shielding effect of a screening current induced in that coil. In the present paper, we describe the operation of a modified 400 MHz LTS/REBCO NMR magnet with an advanced field compensation technology using a combination of novel ferromagnetic shimming and an appropriate procedure for NMR spectrum line shape optimization. We succeeded in obtaining a good NMR line shape and 2D NOESY spectrum for a lysozyme aqueous sample. We believe that this technology is indispensable for the realization of a compact super-high-field high-resolution NMR.

  20. Insights in High-Temperature Superconductivity from the Study of Films and Heterostructures Synthesized by Molecular Beam Epitaxy

    SciTech Connect

    Bozovic,I.

    2009-01-09

    Using molecular beam epitaxy, we synthesize atomically smooth thin films, multilayers and superlattices of cuprate high-temperature superconductors (HTS). Such heterostructures enable novel experiments that probe the basicphysics of HTS. For example, we have established that HTS and antiferromagnetic phases separate on Ångstrom scale, while the pseudo-gap state apparently mixes with HTS over an anomalously large length scale ('Giant Proximity Effect'). Here, we briefly review our most recent experiments on such films and superlattices. The new results include an unambiguous demonstration of strong coupling of in-plane charge excitations to out-of-plane lattice vibrations and the discovery of interface HTS.

  1. Development of high magnetic field superconducting magnet technology and applications in China

    NASA Astrophysics Data System (ADS)

    Wang, Qiuliang; Dai, Yingming; Zhao, Baozhi; Song, Shouseng; Lei, Yuanzhong; Wang, Houseng; Ye, Bai; Hu, Xinning; Huang, Tianbing; Wang, Hui; He, Chu; Shang, Muxi; Wang, Chao; Cui, Chunyan; Zhao, Shangwu; Zhang, Quan; Diao, Yanhua; Peng, Yan; Xu, Guoxin; Deng, Fanping; Weng, Peide; Kuang, Guangli; Gao, Bingjun; Lin, Liangzhen; Yan, Luguang

    2007-07-01

    High magnetic field superconducting magnet technology has been developed in the recent years for all kinds of applications in China. The superconducting magnets on the basis of the conduction-cooled high (HTS) and lower temperature superconductor (LTS) through GM cryocooler are designed, fabricated and operated for the magnetic separator, superconducting magnet energy storage system (SMES), material processing, gyrotron, electromagnetic launcher, space anti-matter detection, magnetic surgery system (MSS), heavy ion accelerator dipole magnet and test bed for characteristics of superconducting material in Institute of Electrical Engineering, Chinese Academy of Sciences (IEECAS). The EAST superconducting Tokamak is being fabricated in Institute of Plasma Physics, Chinese Academy of Sciences. In the paper, we report the successful development of high magnetic field superconducting magnet technology in China. Some new research projects, such as 40 T hybrid magnet, 25 T high magnetic field superconducting magnet, split-pair magnets for the pallation Neutron Source, high temperature superconducting coils for MSS and MRI are introduced.

  2. From Kondo behavior to high temperature superconductivity in Sr(Ni1-xFex)2As2

    NASA Astrophysics Data System (ADS)

    Wakeham, Nicholas; Ni, Ni; Bauer, Eric; Thompson, Joe; Ronning, Filip

    SrFe2As2 has an antiferromagnetic groundstate at ambient pressure that can be suppressed by chemical doping or pressure to produce unconventional superconductivity. SrNi2As2 is a non-magnetic conventional superconductor with Tc of 0.6 K. It has been shown that in Sr(Ni1-xFex)2As2 there is a dome of superconductivity between x = 0 . 95 and x = 0 . 9 . However, little is known about this doping series for small x values. We will present the study of the thermodynamic and transport properties of the doping series of Sr(Ni(1-x)Fex)2As2 for x <= 0 . 6 . In the dilute Fe limit (x <= 0 . 01) we find strong evidence for single-ion Kondo behaviour. As the concentration of Fe is increased, Fe-Fe interaction effects become significant and the Kondo scale increases. For 0 . 2 <= x <= 0 . 6 magnetic susceptibility measurements show the presence of a spin glass transition. The presence of Kondo behaviour in Sr(Ni(1-x)Fex)2As2 indicates the formation of local moments interacting with conduction electrons. Therefore, we will address the relevance of this result to the discussion of the itineracy of the magnetism in SrFe2As2, as well as the observed enhancement of the effective mass seen in many pnictide compounds.

  3. Study - Radiation Shielding Effectiveness of the Prototyped High Temperature Superconductivity (HTS) 'Artificial' Magnetosphere for Deep Space Missions

    NASA Technical Reports Server (NTRS)

    Denkins, Pamela

    2010-01-01

    The high temperature superconductor (HTS) is being used to develop the magnets for the Variable Specific Impulse Magneto-plasma Rocket (VASIMR ) propulsion system and may provide lightweight magnetic radiation shielding to protect spacecraft crews from radiation caused by GCR and SPEs on missions to Mars. A study is being planned to assess the radiation shielding effectiveness of the artificial magnetosphere produced by the HTS magnet. VASIMR is an advanced technology propulsion engine which is being touted as enabling one way transit to Mars in 90 days or less. This is extremely important to NASA. This technology would enable a significant reduction in the number of days in transit to and from Mars and significantly reduce the astronauts exposure to a major threat - high energy particles from solar storms and GCR during long term deep space missions. This paper summarizes the plans for the study and the subsequent testing of the VASIMR technology onboard the ISS slated for 2013.

  4. High critical current superconducting tapes

    DOEpatents

    Holesinger, Terry G.; Jia, Quanxi; Foltyn, Stephen R.

    2003-09-23

    Improvements in critical current capacity for superconducting film structures are disclosed and include the use of a superconducting RE-BCO layer including a mixture of rare earth metals, e.g., yttrium and europium, where the ratio of yttrium to europium in the RE-BCO layer ranges from about 3 to 1 to from about 1.5 to 1.

  5. Development and testing of a 2.5 kW synchronous generator with a high temperature superconducting stator and permanent magnet rotor

    NASA Astrophysics Data System (ADS)

    Qu, Timing; Song, Peng; Yu, Xiaoyu; Gu, Chen; Li, Longnian; Li, Xiaohang; Wang, Dewen; Hu, Boping; Chen, Duxing; Zeng, Pan; Han, Zhenghe

    2014-04-01

    High temperature superconducting (HTS) armature windings have the potential for increasing the electric loading of a synchronous generator due to their high current transport capacity, which could increase the power density of an HTS rotating machine. In this work, a novel synchronous generator prototype with an HTS stator and permanent magnet rotor has been developed. It has a basic structure of four poles and six slots. The armature winding was constructed from six double-pancake race-track coils with 44 turns each. It was designed to deliver 2.5 kW at 300 rpm. A concentrated winding configuration was proposed, to prevent interference at the ends of adjacent HTS coils. The HTS stator was pressure mounted into a hollow Dewar cooled with liquid nitrogen. The whole stator could be cooled down to around 82 K by conduction cooling. In the preliminary testing, the machine worked properly and could deliver 1.8 kW power when the armature current was 14.4 A. Ic for the HTS coils was found to be suppressed due to the influence of the temperature and the leakage field.

  6. A study on the electrical insulation properties of solid nitrogen for cooling of the high temperature superconducting systems

    NASA Astrophysics Data System (ADS)

    Choi, J. H.; Choi, J. W.; Lee, H.; Song, J. B.; Kim, H. J.; Seong, K. C.; Kim, S. H.

    2009-10-01

    Recently, for improvement of the magnetic field of high temperature superconductor (HTS) apparatus, many studies on operating in the temperature range of 20-65 K with liquid helium or the thermal conducting method using cryocooler are actively reviewed. Also, the cooling method of using solid nitrogen as cryogen is currently being suggested. Since nitrogen has a very large specific heat in solid state, it is expected that it can enable long-time operation without a continuous supply of cooling energy. However, there is still insufficient data on the characteristics of solid nitrogen such as thermodynamic properties and liquid-solid phase transition. Especially, there was almost no study done on the electrical insulation properties of solid nitrogen so far. In this study, solid nitrogen to find the electrical characteristics was made by using cryocooler and cryostat, and investigated the flashover discharge and breakdown. The results of this study will be useful as a basic data for electrical insulation design of the HTS system such as SMES using solid nitrogen as cryogen.

  7. Advanced thin-film deposition and physical properties of high-temperature and other novel superconducting materials. Annual report, 15 October 1991-31 October 1992

    SciTech Connect

    Beasley, M.R.; Geballe, T.H.; Kapitulnik, A.

    1993-06-03

    Progress under AFOSR Contract F49620-92-C-0004 for the period 15 October 1991 to 31 October 1992 is reported. Important results include studies of the grain boundaries in a-axis oriented high-Tc superconducting 123 YBCO thin films, the study of the vortex properties of high-Tc single crystals of the superconductor 2212 BSCCO and the artificially structured Mo-Ge/Ge quasi-two-dimensional superconductors. The latter provide an outstanding model system for the study of vortices in highly anisotropic superconductors, such at the high-Tc cuprates, without all the attendant difficult materials problems. Progress in the synthesis and study of the so-called infinite layer cuprate SrCuO4 and the normally conducting oxide SrRuO3 of interest as a barrier materials in high-Tc SNS devices are also reported. Finally the authors report the development of advanced approaches to rate control of the cation fluxes in the reactive coevaporation of the high-Tc superconductors.... High-Tc superconductivity, Anisotropic superconductivity, SrCuO4, SrRuO3, Mo-Ge/Ge superconducting multilayers.

  8. Vacuum low-temperature superconductivity is the essence of superconductivity - Atomic New Theory

    NASA Astrophysics Data System (ADS)

    Yongquan, Han

    2010-10-01

    The universe when the temperature closest to the Big Bang the temperature should be nuclear. Because, after the big bang, instant formation of atoms, nuclei and electrons between the absolute vacuum, the nucleus can not emit energy. (Radioactive elements, except in fact, radiation Yuan Su limited power emitted) which causes atomic nuclei and external temperature difference are so enormous that a large temperature difference reasons, all external particles became closer to the nucleus, affect the motion of electrons. When the conductor conductivity and thus affect the conductivity, the formation of resistance. Assumption that no particles affect the motion of electrons (except outside the nucleus) to form a potential difference will not change after the vector form, is now talking about the phenomenon of superconductivity, and then to introduce general, the gap between atoms in molecules or between small, valence electron number of high temperature superconducting conductors. This theory of atomic nuclei, but also explain the atomic and hydrogen bombs can remain after an explosion Why can release enormous energy reasons. Can also explain the ``super flow'' phenomenon. natural world. Tel 13241375685

  9. Superconducting high-pressure phases of disilane

    PubMed Central

    Jin, Xilian; Meng, Xing; He, Zhi; Ma, Yanming; Liu, Bingbing; Cui, Tian; Zou, Guangtian; Mao, Ho-kwang

    2010-01-01

    High-pressure structures of disilane (Si2H6) are investigated extensively by means of first-principles density functional theory and a random structure-searching method. Three metallic structures with P-1, Pm-3m, and C2/c symmetries are found, which are more stable than those of XY3-type candidates under high pressure. Enthalpy calculations suggest a remarkably wide decomposition (Si and H2) pressure range below 135 GPa, above which three metallic structures are stable. Perturbative linear-response calculations for Pm-3m disilane at 275 GPa show a large electron-phonon coupling parameter λ of 1.397 and the resulting superconducting critical temperature beyond the order of 102 K. PMID:20479272

  10. Superconducting high-pressure phases of disilane.

    PubMed

    Jin, Xilian; Meng, Xing; He, Zhi; Ma, Yanming; Liu, Bingbing; Cui, Tian; Zou, Guangtian; Mao, Ho-Kwang

    2010-06-01

    High-pressure structures of disilane (Si(2)H(6)) are investigated extensively by means of first-principles density functional theory and a random structure-searching method. Three metallic structures with P-1, Pm-3m, and C2/c symmetries are found, which are more stable than those of XY(3)-type candidates under high pressure. Enthalpy calculations suggest a remarkably wide decomposition (Si and H(2)) pressure range below 135 GPa, above which three metallic structures are stable. Perturbative linear-response calculations for Pm-3m disilane at 275 GPa show a large electron-phonon coupling parameter lambda of 1.397 and the resulting superconducting critical temperature beyond the order of 10(2) K. PMID:20479272

  11. Pb solubility of the high-temperature superconducting phase Bi2Sr2Ca2Cu3O(10+d)

    NASA Technical Reports Server (NTRS)

    Kaesche, Stefanie; Majewski, Peter; Aldinger, Fritz

    1995-01-01

    For the nominal composition of Bi(2.27-x)Pb(x)Sr2 Ca2 Cu3 O(10+d) lead content was varied from x = 0.05 to 0.45. The compositions were examined between 830 and 890 C which is supposed to be the temperature range over which the so-called 2223 phase (Bi2Sr2Ca2Cu3O(10+d)) is stable. Only compositions between x = 0.18 to 0.36 could be synthesized in a single phase state. For x is greater than 0.36 a lead containing phase with a stoichiometry of Pb4(Sr,Ca)5CuO(d) is formed, for x is less than 0.18 mainly Bi2Sr2CaCu2O(10+d) and cuprates are the equilibrium phases. The temperature range for the 2223 phase was found to be 830 to 890 C but the 2223 phase has extremely varying cation ratios over this temperature range. Former single phase 2223 samples turn to multi phase samples when annealed at slightly higher or lower temperatures. A decrease in the Pb solubility with increasing temperature was found for the 2223 phase.

  12. Comprehensive Study of High-Tc Interface Superconductivity

    SciTech Connect

    Logvenov, G.; Gozar A.; Butko, V.Y.; Bollinger, A.T.; Bozovic, N.; Radovic, Z.; Bozovic, I.

    2010-08-01

    Using ALL-MBE technique, we have synthesized different heterostructures consisting of an insulator La{sub 2}CuO{sub 4} (I) and a metal La{sub 1.56}Sr{sub 0.44}CuO{sub 4} (M) layer neither of which is superconducting by itself. The M-I bilayers were superconducting with a critical temperature T{sub c} {approx} 30-36 K. This highly robust phenomenon is confined within 1-2 nm from the interface and is primarily caused by the redistribution of doped holes across the interface. In this paper, we present a comprehensive study of the interface superconductivity by a range of experimental techniques including transport measurements of superconducting properties.

  13. High Performance High-Tc Superconducting Wires

    SciTech Connect

    Kang, Sukill; Goyal, Amit; Li, Jing; Gapud, Albert Agcaoili; Martin, Patrick M; Heatherly Jr, Lee; Thompson, James R; Christen, David K; List III, Frederick Alyious; Paranthaman, Mariappan Parans; Lee, Dominic F

    2006-01-01

    We demonstrated short segments of a superconducting wire that meets or exceeds performance requirements for many large-scale applications of high-temperature superconducting materials, especially those requiring a high supercurrent and/or a high engineering critical current density in applied magnetic fields. The performance requirements for these varied applications were met in 3-micrometer-thick YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} films epitaxially grown via pulsed laser ablation on rolling assisted biaxially textured substrates. Enhancements of the critical current in self-field as well as excellent retention of this current in high applied magnetic fields were achieved in the thick films via incorporation of a periodic array of extended columnar defects, composed of self-aligned nanodots of nonsuperconducting material extending through the entire thickness of the film. These columnar defects are highly effective in pinning the superconducting vortices or flux lines, thereby resulting in the substantially enhanced performance of this wire.

  14. Superconducting High Resolution Fast-Neutron Spectrometers

    SciTech Connect

    Hau, I D

    2006-05-25

    Superconducting high resolution fast-neutron calorimetric spectrometers based on {sup 6}LiF and TiB{sub 2} absorbers have been developed. These novel cryogenic spectrometers measure the temperature rise produced in exothermal (n, {alpha}) reactions with fast neutrons in {sup 6}Li and {sup 10}B-loaded materials with heat capacity C operating at temperatures T close to 0.1 K. Temperature variations on the order of 0.5 mK are measured with a Mo/Cu thin film multilayer operated in the transition region between its superconducting and its normal state. The advantage of calorimetry for high resolution spectroscopy is due to the small phonon excitation energies k{sub B}T on the order of {mu}eV that serve as signal carriers, resulting in an energy resolution {Delta}E {approx} (k{sub B}T{sup 2}C){sup 1/2}, which can be well below 10 keV. An energy resolution of 5.5 keV has been obtained with a Mo/Cu superconducting sensor and a TiB{sub 2} absorber using thermal neutrons from a {sup 252}Cf neutron source. This resolution is sufficient to observe the effect of recoil nuclei broadening in neutron spectra, which has been related to the lifetime of the first excited state in {sup 7}Li. Fast-neutron spectra obtained with a {sup 6}Li-enriched LiF absorber show an energy resolution of 16 keV FWHM, and a response in agreement with the {sup 6}Li(n, {alpha}){sup 3}H reaction cross section and Monte Carlo simulations for energies up to several MeV. The energy resolution of order of a few keV makes this novel instrument applicable to fast-neutron transmission spectroscopy based on the unique elemental signature provided by the neutron absorption and scattering resonances. The optimization of the energy resolution based on analytical and numerical models of the detector response is discussed in the context of these applications.

  15. Research on high Tc superconducting compounds

    NASA Technical Reports Server (NTRS)

    Oliver, Frederick W. (Principal Investigator)

    1996-01-01

    Mossbauer research using the 21.54 kev resonance radiation of Eu-151 on the high temperature superconductors Bi(2)Ca(0.5)Eu(0.5)Sr(2)CU2O(x), and EuBa(2)CU(3)O(7-x) is performed. For the Bismuth compound the Mossbauer measurements gave a weak signal at room temperature but improved at lower temperatures. Experimental data indicated that europium is located at only one crystallographic site. Isomer shift measurements were .69 + 0.02 mm/s with respect to EuF(3). The linewidth at room temperature was found to be 2.54 mm/s. This value falls within the values observed by other researchers on Eu based 1,2,3 high-Tc compounds. Our results also show the Eu to be trivalent with no trace of divalent europium present. Superconducting europium based 1,2,3 compounds were prepared and measurements completed. Our results show the Eu to be trivalent with no trace of divalent europium present. These compounds had an average isomer shift of .73 mm/s +/- O.02 for all samples made. One of these was irradiated with 3.5 X 10(exp 16) neutrons and a comparison made of the Mossbauer parameters for the irradiated and non-irradiated samples. Experimental results showed no difference between linewidths but a measurable effect was seen for the isomer shift.

  16. NASA space applications of high-temperature superconductors

    NASA Technical Reports Server (NTRS)

    Heinen, Vernon O.; Sokoloski, Martin M.; Aron, Paul R.; Bhasin, Kul B.

    1992-01-01

    The application of superconducting technology in space has been limited by the requirement of cooling to near liquid helium temperatures. The only means of attaining these temperatures has been with cryogenic fluids which severely limits mission lifetime. The development of materials with superconducting transition temperatures (T sub c) above 77 K has made superconducting technology more attractive and feasible for employment in aerospace systems. Potential applications of high-temperature superconducting technology in cryocoolers and remote sensing, communications, and power systems are discussed.

  17. NASA Space applications of high-temperature superconductors

    NASA Technical Reports Server (NTRS)

    Heinen, Vernon O.; Sokoloski, Martin M.; Aron, Paul R.; Bhasin, Kul B.; Wintucky, Edwin G.; Connolly, Denis J.

    1992-01-01

    The application of superconducting technology in space has been limited by the requirement of cooling to near liquid helium temperatures. The only means of obtaining these temperatures has been with cryogenic fluids which severely limit mission lifetime. The development of materials with superconducting transition temperatures above 77 K has made superconducting technology more attractive and feasible for employment in aerospace systems. Here, potential applications of high temperature superconducting technology in cryocoolers, remote sensing, communications, and power systems are discussed.

  18. Temperature Mapping of Nitrogen-doped Niobium Superconducting Radiofrequency Cavities

    SciTech Connect

    Makita, Junki; Ciovati, Gianluigi; Dhakal, Pashupati

    2015-09-01

    It was recently shown that diffusing nitrogen on the inner surface of superconducting radiofrequency (SRF) cavities at high temperature can improve the quality factor of the niobium cavity. However, a reduction of the quench field is also typically found. To better understand the location of rf losses and quench, we used a thermometry system to map the temperature of the outer surface of ingot Nb cavities after nitrogen doping and electropolishing. Surface temperature of the cavities was recorded while increasing the rf power and also during the quenching. The results of thermal mapping showed no precursor heating on the cavities and quenching to be ignited near the equator where the surface magnetic field is maximum. Hot-spots at the equator area during multipacting were also detected by thermal mapping.

  19. Advances in second generation high temperature superconducting wire manufacturing and R&D at American Superconductor Corporation

    NASA Astrophysics Data System (ADS)

    Rupich, Martin W.; Li, Xiaoping; Thieme, Cees; Sathyamurthy, Srivatsan; Fleshler, Steven; Tucker, David; Thompson, Elliot; Schreiber, Jeff; Lynch, Joseph; Buczek, David; DeMoranville, Ken; Inch, James; Cedrone, Paul; Slack, James

    2010-01-01

    The RABiTS™/MOD-YBCO (rolling assisted biaxially textured substrate/metal-organic deposition of YBa2Cu3O7-δ) route has been established as a low-cost manufacturing process for producing high performance second generation (2G) wire. American Superconductor Corporation (AMSC) has used this approach to establish a production scale manufacturing line based on a wide-web manufacturing process. This initial production line is currently capable of producing 2G wire in lengths to 500 m with critical currents exceeding 250 A cmwidth-1 at 77 K, in the self-field. The wide-web process, combined with slitting and lamination processes, allows customization of the 2G wire width and stabilizer composition to meet application specific wire requirements. The production line is currently supplying 2G wire for multiple cable, fault current limiter and coil applications. Ongoing R&D is focused on the development of thicker YBCO layers and improved flux pinning centers. This paper reviews the history of 2G wire development at AMSC, summarizes the current capability of the 2G wire manufacturing at AMSC, and describes future R&D improvements.

  20. Effects of critical current inhomogeneity in long high-temperature superconducting tapes on the self-field loss, studied by means of numerical analysis

    NASA Astrophysics Data System (ADS)

    Wang, Yinshun; Dai, Shaotao; Zhao, Xiang; Xiao, Liye; Lin, Liangzhen; Hui, Dong

    2006-12-01

    The effect of the local critical current on the self-field loss in single tapes and multi-parallel tapes is investigated computationally. Generally, the self-AC loss of a superconductor can be described using the Norris equation based on Bean's critical state model with elliptical, circular or strip cross-sections. However, because of its intrinsic characteristics, the critical current of high-temperature superconducting (HTS) tape is inhomogeneous. It is reasonable to expect the local critical currents to have a Gaussian statistical distribution, according to the central limit theorem; a detailed analysis of self-AC loss is made to develop an interesting calculation procedure for both single tapes and multi-parallel tapes. The results show that the inhomogeneity of local critical currents has an important effect on the self-field loss. One of the goals in this paper is to provide an accurate method for estimating quality, or what level of critical current inhomogeneity in HTS tape is permissible in practical application. As manufacturing processes are refined through powder in tube and coating technologies, and the sources of extrinsic macroscopic defects are decreased, electromagnetic and mechanical performances of Bi2223 and YBCO tapes are greatly improved. Nevertheless, intrinsic microscopic defects such as weak links, microcracks and small second-phase formations still exist in the tapes, which will lead to statistically local critical current variations. Therefore, it is very important to study the effect that variation in local critical currents may have on the self-field losses of practical long single and multi-parallel HTS tapes.

  1. High Temperature Superconducting Thick Films

    DOEpatents

    Arendt, Paul N.; Foltyn, Stephen R.; Groves, James R.; Holesinger, Terry G.; Jia, Quanxi

    2005-08-23

    An article including a substrate, a layer of an inert oxide material upon the surface of the substrate, (generally the inert oxide material layer has a smooth surface, i.e., a RMS roughness of less than about 2 nm), a layer of an amorphous oxide or oxynitride material upon the inert oxide material layer, a layer of an oriented cubic oxide material having a rock-salt-like structure upon the amorphous oxide material layer is provided together with additional layers such as at least one layer of a buffer material upon the oriented cubic oxide material layer or a HTS top-layer of YBCO directly upon the oriented cubic oxide material layer. With a HTS top-layer of YBCO upon at least one layer of a buffer material in such an article, Jc's of 1.4×106 A/cm2 have been demonstrated with projected Ic's of 210 Amperes across a sample 1 cm wide.

  2. High-temperature superconducting radiofrequency probe for magnetic resonance imaging applications operated below ambient pressure in a simple liquid-nitrogen cryostat

    NASA Astrophysics Data System (ADS)

    Lambert, Simon; Ginefri, Jean-Christophe; Poirier-Quinot, Marie; Darrasse, Luc

    2013-05-01

    The present work investigates the joined effects of temperature and static magnetic field on the electrical properties of a 64 MHz planar high-temperature superconducting (HTS) coil, in order to enhance the signal-to-noise ratio (SNR) in nuclear magnetic resonance (NMR) applications with a moderate decrease of the HTS coil temperature (THTS). Temperature control is provided with accuracy better than 0.1 K from 80 to 66 K by regulating the pressure of the liquid nitrogen bath of a dedicated cryostat. The actual temperature of the HTS coil is obtained using a straightforward wireless method that eliminates the risks of coupling electromagnetic interference to the HTS coil and of disturbing the static magnetic field by DC currents near the region of interest. The resonance frequency ( f0) and the quality factor (Q) of the HTS coil are measured as a function of temperature in the 0-4.7 T field range with parallel and orthogonal orientations relative to the coil plane. The intrinsic HTS coil sensitivity and the detuning effect are then analyzed from the Q and f0 data. In the presence of the static magnetic field, the initial value of f0 in Earth's field could be entirely recovered by decreasing THTS, except for the orthogonal orientation above 1 T. The improvement of Q by lowering THTS was substantial. From 80 to 66 K, Q was multiplied by a factor of 6 at 1.5 T in orthogonal orientation. In parallel orientation, the maximum measured improvement of Q from 80 K to 66 K was a factor of 2. From 80 to 66 K, the improvement of the RF sensitivity relative to the initial value at the Earth's field and ambient pressure was up to 4.4 dB in parallel orientation. It was even more important in orthogonal orientation and continued to increase, up to 8.4 dB, at the maximum explored field of 1.5 T. Assuming that the noise contributions from the RF receiver are negligible, the SNR improvement using enhanced HTS coil cooling in NMR experiments was extracted from Q measurements either

  3. Designs for a high power superconducting delay line

    SciTech Connect

    Chen, Y.J.; Caporaso, G.

    1997-06-26

    Potential designs for a high power superconducting delay line of approximately 10 microsecs duration are described. The transmitted signal should have low dispersion and little attenuation to recapture the original signal. Such demands cannot be met using conventional metal conductors. This paper outlines a proposal for a new transmission line design using low temperature superconducting material which meets system specifications. The 25 omega line is designed to carry pulsed signals with an approximate rise time of 8 nsec and a maximum voltage magnitude of 25 kV. Predicted electrical design and performance of the line will be presented.

  4. Fabrication and superconducting properties of high Tc oxide wire

    NASA Astrophysics Data System (ADS)

    Sadakata, N.; Ikeno, Y.; Nakagawa, M.; Gotoh, K.; Kohno, O.

    The fabrication of silver sheathed Y-Ba-Cu-O wire by powder metallurgical techniques is discussed along with the superconducting properties of the wire. Although the wire deforming process was shown to degrade superconductivity in the oxide core, the crystal structure remained orthorhombic. Heat treatment at 900 C was found to be effective in recovering a high critical temperature at 89 K. Due to defects in the oxide core, the maximum critical current density was only 560 A/sq cm. It is noted that oxide wire without a silver sheath achieved a value of 3930 A/sq cm in liquid nitrogen.

  5. Reinforced fluropolymer nanocomposites with high-temperature superconducting Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub y}

    SciTech Connect

    Jayasree, T. K.

    2014-10-15

    Bismuth Strontium Calcium Copper Oxide (Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub y})/Polyvinylidene fluoride (PVDF) nanocomposite was prepared and their thermal properties were analyzed. The composite consists of the polyvinylidene fluoride (PVDF) as an insulating polymer matrix, and homogenously distributed Bismuth strontium calcium copperoxide (2212) nanoparticles. SEM data shows flaky grains of the superconductor coated and linked by polymer. Differential scanning calorimetry (DSC) results indicated that the melting point was not affected significantly by the addition of BSCCO. However, the addition of superconducting ceramic resulted in an extra melting peak at a lower temperature (145°C). Thermogravimetric analysis of the samples shows that the onset decomposition temperature of the PVDF matrix was decreased by the addition of SC filler.

  6. High intensity neutrino source superconducting solenoid cyrostat design

    SciTech Connect

    Page, T.M.; Nicol, T.H.; Feher, S.; Terechkine, I.; Tompkins, J.; /Fermilab

    2006-06-01

    Fermi National Accelerator Laboratory (FNAL) is involved in the development of a 100 MeV superconducting linac. This linac is part of the High Intensity Neutrino Source (HINS) R&D Program. The initial beam acceleration in the front end section of the linac is achieved using room temperature spoke cavities, each of which is combined with a superconducting focusing solenoid. These solenoid magnets are cooled with liquid helium at 4.5K, operate at 250 A and have a maximum magnetic field strength of 7.5 T. The solenoid cryostat will house the helium vessel, suspension system, thermal shield, multilayer insulation, power leads, instrumentation, a vacuum vessel and cryogenic distribution lines. This paper discusses the requirements and detailed design of these superconducting solenoid cryostats.

  7. Spin dynamics near a putative antiferromagnetic quantum critical point in Cu-substituted BaFe2As2 and its relation to high-temperature superconductivity

    DOE PAGESBeta

    Kim, M. G.; Wang, M.; Tucker, G. S.; Valdivia, P. N.; Abernathy, D. L.; Chi, Songxue; Christianson, A. D.; Aczel, A. A.; Hong, T.; Heitmann, T. W.; et al

    2015-12-02

    We present the results of elastic and inelastic neutron scattering measurements on nonsuperconducting Ba(Fe0.957Cu0.043)2As2, a composition close to a quantum critical point between antiferromagnetic (AFM) ordered and paramagnetic phases. By comparing these results with the spin fluctuations in the low-Cu composition as well as the parent compound BaFe2As2 and superconducting Ba(Fe1–xNix)2As2 compounds, we demonstrate that paramagnon-like spin fluctuations are evident in the antiferromagnetically ordered state of Ba(Fe0.957Cu0.043)2As2, which is distinct from the AFM-like spin fluctuations in the superconducting compounds. Our observations suggest that Cu substitution decouples the interaction between quasiparticles and the spin fluctuations. In addition, we show that themore » spin-spin correlation length ξ(T) increases rapidly as the temperature is lowered and find ω/T scaling behavior, the hallmark of quantum criticality, at an antiferromagnetic quantum critical point.« less

  8. Spin dynamics near a putative antiferromagnetic quantum critical point in Cu-substituted BaFe2As2 and its relation to high-temperature superconductivity

    NASA Astrophysics Data System (ADS)

    Kim, M. G.; Wang, M.; Tucker, G. S.; Valdivia, P. N.; Abernathy, D. L.; Chi, Songxue; Christianson, A. D.; Aczel, A. A.; Hong, T.; Heitmann, T. W.; Ran, S.; Canfield, P. C.; Bourret-Courchesne, E. D.; Kreyssig, A.; Lee, D. H.; Goldman, A. I.; McQueeney, R. J.; Birgeneau, R. J.

    2015-12-01

    We present the results of elastic and inelastic neutron scattering measurements on nonsuperconducting Ba (Fe 0.957Cu 0.043) 2As 2 , a composition close to a quantum critical point between antiferromagnetic (AFM) ordered and paramagnetic phases. By comparing these results with the spin fluctuations in the low-Cu composition as well as the parent compound BaFe2As2 and superconducting Ba (Fe1-xNix) 2As2 compounds, we demonstrate that paramagnon-like spin fluctuations are evident in the antiferromagnetically ordered state of Ba (Fe0.957Cu0.043)2As2 , which is distinct from the AFM-like spin fluctuations in the superconducting compounds. Our observations suggest that Cu substitution decouples the interaction between quasiparticles and the spin fluctuations. We also show that the spin-spin correlation length ξ (T ) increases rapidly as the temperature is lowered and find ω /T scaling behavior, the hallmark of quantum criticality, at an antiferromagnetic quantum critical point.

  9. Behavior of a high-temperature superconducting conductor on a round core cable at current ramp rates as high as 67.8 kA s-1 in background fields of up to 19 T

    NASA Astrophysics Data System (ADS)

    Michael, P. C.; Bromberg, L.; van der Laan, D. C.; Noyes, P.; Weijers, H. W.

    2016-04-01

    High temperature superconducting (HTS) conductor-on-round-core (CORC®) cables have been developed for use in power transmission systems and large high-field magnets. The use of high-current conductors for large-scale magnets reduces system inductance and limits the peak voltage needed for ramped field operation. A CORC® cable contains a large number of RE-Ba2Cu3O7-δ (RE = rare earth) (REBCO) coated conductors, helically wound in multiple layers on a thin, round former. Large-scale applications, such as fusion and accelerator magnets, require current ramp rates of several kilo-Amperes per second during pulsed operation. This paper presents results that demonstrate the electromagnetic stability of a CORC® cable during transient conditions. Measurements were performed at 4.2 K using a 1.55 m long CORC® cable in background fields of up to 19 T. Repeated current pulses in a background field of 19 T at current ramp rates of up to 67.8 kA s-1 to approximately 90% of the cable’s quench current at that field, did not show any sign of degradation in cable performance due to excessive ac loss or electromagnetic instability. The very high current ramp rates applied during these tests were used to compensate, to the extent possible, the limited cable length accommodated by the test facility, assuming that the measured results could be extrapolated to longer length cables operated at proportionally lower current ramp rates. No shift of the superconducting transition to lower current was measured when the current ramp rate was increased from 25 A s-1 to 67.8 kA s-1. These results demonstrate the viability of CORC® cables for use in low-inductance magnets that operate at moderate to high current ramp rates.

  10. Simple Superconducting "Permanent" Electromagnet

    NASA Technical Reports Server (NTRS)

    Israelson, Ulf E.; Strayer, Donald M.

    1992-01-01

    Proposed short tube of high-temperature-superconducting material like YBa2Cu3O7 acts as strong electromagnet that flows as long as magnetic field remains below critical value and temperature of cylinder maintained sufficiently below superconducting-transition temperature. Design exploits maximally anisotropy of high-temperature-superconducting material.

  11. Fast high-temperature superconductor switch for high current applications

    NASA Astrophysics Data System (ADS)

    Solovyov, Vyacheslav F.; Li, Qiang

    2013-07-01

    Reversible operation of a high current superconductor switch based on the quench of high-resistance second generation high temperature superconducting wire is demonstrated. The quench is induced by a burst of an ac field generated by an inductively coupled radio-frequency coil. The switch makes a superconducting-to-normal transition within 5 ms and also has a rapid recovery to the superconducting state. The device has potential applications as an active current limiter or as a storage switch for superconducting magnetic energy storage systems. Operation in a full flux penetration/flow regime can effectively minimize the detrimental effects of the intrinsic conductor non-uniformity.

  12. Jet Propulsion Laboratory/NASA Lewis Research Center space qualified hybrid high temperature superconducting/semiconducting 7.4 GHz low-noise downconverter for NRL HTSSE-II program

    SciTech Connect

    Javadi, H.H.S.; Bowen, J.G.; Rascoe, D.L.; Romanofsky, R.R.; Bhasin, K.B.; Chorey, C.M.

    1996-07-01

    A deep space satellite downconverter receiver was proposed by Jet Propulsion Laboratory (JPL) and NASA Lewis Research Center (LeRC) for the Naval Research Laboratory`s (NRL) high temperature superconductivity space experiment, phase-II (HTSSE-II) program. Space qualified low-noise cryogenic downconverter receivers utilizing thin-film high temperature superconducting (HTS) passive circuitry and semiconductor active devices were developed and delivered to NRL. The downconverter consists of an HTS preselect filter, a cryogenic low-noise amplifier, a cryogenic mixer, and a cryogenic oscillator with an HTS resonator. HTS components were inserted as the front-end filter and the local oscillator resonator for their superior 77 K performance over the conventional components. The semiconducting low noise amplifier also benefited from cooling to 77 K. The mixer was designed specifically for cryogenic applications and provided low conversion loss and low power consumption. In addition to an engineering model, two space qualified units (qualification, flight) were built and delivered to NRL. Manufacturing, integration and test of the space qualified downconverters adhered to the requirements of JPL class-D space instruments and partially to MIL-STD-883D specifications. The qualification unit has {approximately}50 K system noise temperature which is a factor of three better than a conventional downconverter at room temperature.

  13. Superconductivity:

    NASA Astrophysics Data System (ADS)

    Sacchetti, N.

    In this paper a short historical account of the discovery of superconductivity and of its gradual development is given. The physical interpretation of its various aspects took about forty years (from 1911 to 1957) to reach a successful description of this phenomenon in terms of a microscopic theory At the very end it seemed that more or less everything could be reasonably interpreted even if modifications and refinements of the original theory were necessary. In 1986 the situation changed abruptly when a cautious but revolutionary paper appeared showing that superconductivity was found in certain ceramic oxides at temperatures above those up to then known. A rush of frantic experimental activity started world-wide and in less than one year it was shown that superconductivity is a much more widespread phenomenon than deemed before and can be found at temperatures well above the liquid air boiling point. The complexity and the number of the substances (mainly ceramic oxides) involved call for a sort of modern alchemy if compounds with the best superconducting properties are to be manufactured. We don't use the word alchemy in a deprecatory sense but just to emphasise that till now nobody can say why these compounds are what they are: superconductors.

  14. Method of forming low cost, formable High T(subc) superconducting wire

    NASA Technical Reports Server (NTRS)

    Smialek, James L. (Inventor)

    1989-01-01

    A ceramic superconductivity part, such as a wire, is produced through the partial oxidation of a specially formulated copper alloy in a core. The alloys contains low level of quantities of rare earth and alkaline earth dopant elements. Upon oxidation at high temperatures, and superconducting oxide phases are formed as a thin film.

  15. Study of some superconducting and magnetic materials on high T sub c oxide superconductors

    NASA Technical Reports Server (NTRS)

    Wu, M. K.

    1987-01-01

    On the basis of existing data it appears that the high-temperature superconductivity above 77 K reported here, occurs only in compound systems consisting of a phase other than the K2NiF4 phase. A narrow superconducting transition was obtained with T sub c0 = 98 K and T sub c1 = 94 K in Y-Ba-Cu-O (YBCO). Preliminary results indicate that YBCO is rather different from the layered LaBCO, LaSCO, and LaCCO. While electron-photon interaction cannot be absent from this compound system, nonconventional enhanced superconducting interactions due to interfaces, Resonating Valence Bond (RVB) states, or even a superconducting state beyond the BCS framework, may be required to account for the high T sub c in YBCO. It is believed that study of the possible subtle correlation between magnetism and superconductivity will definitely provide important insight into the superconducting mechanism in YBCO and other oxides.

  16. Superconducting transition temperature in heterogeneous ferromagnet-superconductor systems

    NASA Astrophysics Data System (ADS)

    Pokrovsky, Valery L.; Wei, Hongduo

    2004-03-01

    We study the superconducting phase transition in two systems: ferromagnet-superconductor bilayer (FSB) and a thin superconducting film with a periodic array of magnetic dots (SFMD) upon it. We show that this transition is of the first order in FSB and of the second order in SFMD. The shift of the transition temperature ΔTc due to the presence of a ferromagnetic layer may be positive or negative in the FSB and is always negative in the SFMD. The dependence of ΔTc on geometrical factors and external magnetic field is found. Theory is extended to multilayers.

  17. Fabrication Of High-Tc Superconducting Integrated Circuits

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul B.; Warner, Joseph D.

    1992-01-01

    Microwave ring resonator fabricated to demonstrate process for fabrication of passive integrated circuits containing high-transition-temperature superconductors. Superconductors increase efficiencies of communication systems, particularly microwave communication systems, by reducing ohmic losses and dispersion of signals. Used to reduce sizes and masses and increase aiming accuracies and tracking speeds of millimeter-wavelength, electronically steerable antennas. High-Tc superconductors preferable for such applications because they operate at higher temperatures than low-Tc superconductors do, therefore, refrigeration systems needed to maintain superconductivity designed smaller and lighter and to consume less power.

  18. Advanced composite materials and processes for the manufacture of SSC (Superconducting Super Collider) and RHIC (Relativistic Heavy Ion Collider) superconducting magnets used at cryogenic temperatures in a high radiation environment

    SciTech Connect

    Sondericker, J.H.

    1989-01-01

    Presently, BNL work on superconducting magnets centers mainly on the development of 17 meter length dipoles for the Superconducting Super Collider Project, approved for construction at Waxahatchie, Texas and 9.7 meter dipoles and quadrupoles for the Relativistic Heavy Ion Collider, a BNL project to start construction next year. This paper will discuss the role of composites in the manufacture of magnets, their operational requirements in cryogenic and radiation environments, and the benefits derived from their use. 13 figs.

  19. Prospects and progress of high Tc superconductivity for space applications

    NASA Technical Reports Server (NTRS)

    Romanofsky, Robert R.; Sokoloski, Marty M.

    1991-01-01

    Current research in the area of high temperature superconductivity is organized around four key areas: communications and data, sensors and cryogenics, propulsion and power, and space materials technology. Recently, laser ablated YBa2Cu3O(7-x) films on LaAlO3 produced far superior RF characteristics when compared to metallic films on the same substrate. The achievement has enabled a number of unique microwave device applications, such as low insertion loss phase shifters and high-Q filters. Melt texturing and melt-quenched techniques are being used to produce bulk material with optimized magnetic properties. These yttrium-enriched materials possess enhanced flux pinning characteristics and could lead to prototype cryocooler bearings. Significant progress has also occurred in bolometer and current lead technology. Studies were conducted to evaluate the effect of high temperature superconducting materials on the performance and life of high power magnetoplasma-dynamic thrusters. Extended studies were also performed to evaluate the benefit of superconducting magnetic energy storage for LEO space station, lunar, and Mars mission applications.

  20. Development of superconducting thin films with a critical temperature greater than 110 K

    NASA Astrophysics Data System (ADS)

    Ianno, Ned

    1991-12-01

    CSA provided superconducting thin films consisting of Tl2Ca1Ba2Cu2O(x) on LaAlO3. Films were generated using the pulsed laser deposition (PLD) method. The company achieved a zero resistance temperature of 115 K and a critical current density of 1,000,000 A/sq cm at 77 K. Relationships between the deposition process, the as-deposited film, annealing conditions, and the annealed film were investigated. Twenty thallium-based high temperature superconducting films on microwave compatible substrates were delivered under provisions of this contract.

  1. High Tc superconducting materials and devices

    NASA Technical Reports Server (NTRS)

    Haertling, Gene H.

    1990-01-01

    The high Tc Y1Ba2Cu3O(7-x) ceramic materials, initially developed in 1987, are now being extensively investigated for a variety of engineering applications. The superconductor applications which are presently identified as of most interest to NASA-LaRC are low-noise, low thermal conductivity grounding links; large-area linear Meissner-effect bearings; and sensitive, low-noise sensors and leads. Devices designed for these applications require the development of a number of processing and fabrication technologies. Included among the technologies most specific to the present needs are tapecasting, melt texturing, magnetic field grain alignment, superconductor/polymer composite fabrication, thin film MOD (metal-organic decomposition) processing, screen printing of thick films, and photolithography of thin films. The overall objective of the program was to establish a high Tc superconductivity laboratory capability at NASA-LaRC and demonstrate this capability by fabricating superconducting 123 material via bulk and thin film processes. Specific objectives include: order equipment and set up laboratory; prepare 1 kg batches of 123 material via oxide raw material; construct tapecaster and tapecaster 123 material; fabricate 123 grounding link; fabricate 123 composite for Meissner linear bearing; develop 123 thin film processes (nitrates, acetates); establish Tc and Jc measurement capability; and set up a commercial use of space program in superconductivity at LaRC. In general, most of the objectives of the program were met. Finally, efforts to implement a commercial use of space program in superconductivity at LaRC were completed and at least two industrial companies have indicated their interest in participating.

  2. Effect of high temperature heat treatments on the quality factor of a large-grain superconducting radio-frequency niobium cavity

    SciTech Connect

    Dhakal, P.; Ciovati, G.; Myneni, G. R.; Gray, K. E.; Groll, N.; Maheshwari, P.; McRae, D. M.; Pike, R.; Proslier, T.; Stevie, F.; Walsh, R. P.; Yang, Q.; Zasadzinzki, J.

    2013-04-01

    Large-grain Nb has become a viable alternative to fine-grain Nb for the fabrication of superconducting radio-frequency cavities. In this contribution we report the results from a heat treatment study of a large-grain 1.5 GHz single-cell cavity made of “medium purity” Nb. The baseline surface preparation prior to heat treatment consisted of standard buffered chemical polishing. The heat treatment in the range 800–1400°C was done in a newly designed vacuum induction furnace. Q{sub 0} values of the order of 2×10{sup 10} at 2.0 K and peak surface magnetic field (B{sub p}) of 90 mT were achieved reproducibly. A Q{sub 0} value of (5±1)×10{sup 10} at 2.0 K and B{sub p}=90mT was obtained after heat treatment at 1400°C. This is the highest value ever reported at this temperature, frequency, and field. Samples heat treated with the cavity at 1400°C were analyzed by secondary ion mass spectrometry, x-ray photoelectron spectroscopy, energy dispersive x ray, point-contact tunneling, and x-ray diffraction, and revealed a complex surface composition which includes titanium oxide, increased carbon, and nitrogen content but reduced hydrogen concentration compared to a non-heat-treated sample.

  3. High-Tc superconducting materials for electric power applications.

    PubMed

    Larbalestier, D; Gurevich, A; Feldmann, D M; Polyanskii, A

    2001-11-15

    Large-scale superconducting electric devices for power industry depend critically on wires with high critical current densities at temperatures where cryogenic losses are tolerable. This restricts choice to two high-temperature cuprate superconductors, (Bi,Pb)2Sr2Ca2Cu3Ox and YBa2Cu3Ox, and possibly to MgB2, recently discovered to superconduct at 39 K. Crystal structure and material anisotropy place fundamental restrictions on their properties, especially in polycrystalline form. So far, power applications have followed a largely empirical, twin-track approach of conductor development and construction of prototype devices. The feasibility of superconducting power cables, magnetic energy-storage devices, transformers, fault current limiters and motors, largely using (Bi,Pb)2Sr2Ca2Cu3Ox conductor, is proven. Widespread applications now depend significantly on cost-effective resolution of fundamental materials and fabrication issues, which control the production of low-cost, high-performance conductors of these remarkable compounds. PMID:11713544

  4. Superconductive sodalite-like clathrate calcium hydride at high pressures

    PubMed Central

    Wang, Hui; Tse, John S.; Tanaka, Kaori; Iitaka, Toshiaki; Ma, Yanming

    2012-01-01

    Hydrogen-rich compounds hold promise as high-temperature superconductors under high pressures. Recent theoretical hydride structures on achieving high-pressure superconductivity are composed mainly of H2 fragments. Through a systematic investigation of Ca hydrides with different hydrogen contents using particle-swam optimization structural search, we show that in the stoichiometry CaH6 a body-centered cubic structure with hydrogen that forms unusual “sodalite” cages containing enclathrated Ca stabilizes above pressure 150 GPa. The stability of this structure is derived from the acceptance by two H2 of electrons donated by Ca forming an “H4” unit as the building block in the construction of the three-dimensional sodalite cage. This unique structure has a partial occupation of the degenerated orbitals at the zone center. The resultant dynamic Jahn–Teller effect helps to enhance electron–phonon coupling and leads to superconductivity of CaH6. A superconducting critical temperature (Tc) of 220–235 K at 150 GPa obtained from the solution of the Eliashberg equations is the highest among all hydrides studied thus far. PMID:22492976

  5. Method of producing high T(subc) superconducting NBN films

    NASA Technical Reports Server (NTRS)

    Thakoor, Sarita (Inventor); Lamb, James L. (Inventor); Thakoor, Anilkumar P. (Inventor); Khanna, Satish K. (Inventor)

    1988-01-01

    Thin films of niobium nitride with high superconducting temperature (T sub c) of 15.7 K are deposited on substrates held at room temperature (approx 90 C) by heat sink throughout the sputtering process. Films deposited at P sub Ar 12.9 + or - 0.2 mTorr exhibit higher T sub c with increasing P sub N2,I with the highest T sub c achieved at P sub n2,I= 3.7 + or - 0.2 mTorr and total sputtering pressure P sub tot = 16.6 + or - 0.4. Further increase of N2 injection starts decreasing T sub c.

  6. On the high-pressure superconducting phase in platinum hydride

    NASA Astrophysics Data System (ADS)

    Szczȩśniak, D.; Zemła, T. P.

    2015-08-01

    Motivated by the ambiguous experimental data for the superconducting phase in silane (SiH4), which may originate from platinum hydride (PtH), we provide a theoretical study of the superconducting state in the latter alloy. The quantitative estimates of the thermodynamics of PtH at 100 GPa are given for a wide range of Coulomb pseudopotential values ({μ }*) within the Eliashberg formalism. The obtained critical temperature value ({T}{{C}}\\in < 12.94,20.01> for {μ }*\\in < 0.05,0.15> ) agrees well with the experimental TC for SiH4, which may be ascribed to PtH. Moreover, the calculated characteristic thermodynamic ratios exceed the predictions of the Bardeen-Cooper-Schrieffer theory, implying the occurrence of strong-coupling and retardation effects in PtH. We note that our results may be of high relevance for future theoretical and experimental studies on hydrides.

  7. Gradient Limitations in Room Temperature and Superconducting Acceleration Structures

    SciTech Connect

    Solyak, N. A.

    2009-01-22

    Accelerating gradient is a key parameter of the accelerating structure in large linac facilities, like future Linear Collider. In room temperature accelerating structures the gradient is limited mostly by breakdown phenomena, caused by high surface electric fields or pulse surface heating. High power processing is a necessary procedure to clean surface and improve the gradient. In the best tested X-band structures the achieved gradient is exceed 100 MV/m in of {approx}200 ns pulses for breakdown rate of {approx}10{sup -7}. Gradient limit depends on number of factors and no one theory which can explain all sets of experimental results and predict gradient in new accelerating structure. In paper we briefly overview the recent experimental results of breakdown studies, progress in understanding of gradient limitations and scaling laws. Although superconducting rf technology has been adopted throughout the world for ILC, it has frequently been difficult to reach the predicted performance in these structures due to a number of factors: multipactoring, field emission, Q-slope, thermal breakdown. In paper we are discussing all these phenomena and the ways to increase accelerating gradient in SC cavity, which are a part of worldwide R and D program.

  8. Gradient limitations in room temperature and superconducting acceleration structures

    SciTech Connect

    Solyak, N.A.; /Fermilab

    2008-10-01

    Accelerating gradient is a key parameter of the accelerating structure in large linac facilities, like future Linear Collider. In room temperature accelerating structures the gradient is limited mostly by breakdown phenomena, caused by high surface electric fields or pulse surface heating. High power processing is a necessary procedure to clean surface and improve the gradient. In the best tested X-band structures the achieved gradient is exceed 100 MV/m in of {approx}200 ns pulses for breakdown rate of {approx} 10{sup -7}. Gradient limit depends on number of factors and no one theory which can explain all sets of experimental results and predict gradient in new accelerating structure. In paper we briefly overview the recent experimental results of breakdown studies, progress in understanding of gradient limitations and scaling laws. Although superconducting rf technology has been adopted throughout the world for ILC, it has frequently been difficult to reach the predicted performance in these structures due to a number of factors: multipactoring, field emission, Q-slope, thermal breakdown. In paper we are discussing all these phenomena and the ways to increase accelerating gradient in SC cavity, which are a part of worldwide R&D program.

  9. Structural relationships in high temperature superconductors

    SciTech Connect

    Schuller, I.K.; Segre, C.U.; Hinks, D.G.; Jorgensen, J.D.; Soderholm, L.; Beno, M.; Zhang, K.

    1987-09-01

    The recent discovery of two types of metallic copper oxide compounds which are superconducting to above 90/sup 0/K has renewed interest in the search for new high temperature superconducting materials. It is significant that both classes of compounds, La/sub 2-x/Sr/sub x/CuO/sub 4-y/ and YBa/sub 2/Cu/sub 3/O/sub 7-delta/ are intimately related to the extensively studied perovskite family. Both compounds contain highly oxidized, covalently bonded Cu-O sublattices, however, they differ in geometry. In this paper we discuss the relationship of these features to the superconducting properties. 30 refs., 6 figs.

  10. Ambient temperature field measuring system for LHC superconducting dipoles

    SciTech Connect

    Billan, J.; De Panfilis, S.; Giloteaux, D.; Pagano, O.

    1996-07-01

    It is foreseen to perform acceptance tests including field measurements of the collared coils assembly of the LHC superconducting dipoles to estimate, at an early production stage, the possible significant deviations from the expected multipole component value of these magnets. A sensitive measuring probe and efficient data acquisition are the consequence of a low magnetizing current necessary to limit the coils heating. This demands a high signals sensitivity and an enhanced signal-to-noise ratio to retrieve the higher multipole component. Moreover, the correlation with the multipoles content of the magnets at cryogenic temperature and nominal excitation current need to be identified before the manufacturing process may continue. The field probe of the mole-type is equipped with three radial rotating search coils, an angular encoder and gravity sensor. It has been designed to slide inside the bore of the dipole coils and to measure the local field at fixed positions. The field analysis resulting in terms of multipole components, field direction and field integrals, measured on four 10 m long, twin-aperture LHC dipole prototypes, will be described together with the performance of the measuring method.

  11. Comment on ``Superconducting state of Ca-VII below a critical temperature of 29 K at a pressure of 216 GPa''

    NASA Astrophysics Data System (ADS)

    Andersson, M.

    2011-12-01

    In a recent paper, Sakata [Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.83.220512 83, 220512(R) (2011)] report on superconductivity at 29 K in Ca under high pressure. Here, I argue that their method to define the onset of the superconducting transition temperature from resistivity measurements is misleading and that the correct value for the onset of the transition based on resistivity data shown in their paper should be 21 K. The discrepancy between these two temperatures is explained by superconducting fluctuations occurring at temperatures above the superconducting transition temperature.

  12. Superconducting gamma and fast-neutron spectrometers with high energy resolution

    DOEpatents

    Friedrich, Stephan; , Niedermayr, Thomas R.; Labov, Simon E.

    2008-11-04

    Superconducting Gamma-ray and fast-neutron spectrometers with very high energy resolution operated at very low temperatures are provided. The sensor consists of a bulk absorber and a superconducting thermometer weakly coupled to a cold reservoir, and determines the energy of the incident particle from the rise in temperature upon absorption. A superconducting film operated at the transition between its superconducting and its normal state is used as the thermometer, and sensor operation at reservoir temperatures around 0.1 K reduces thermal fluctuations and thus enables very high energy resolution. Depending on the choice of absorber material, the spectrometer can be configured either as a Gamma-spectrometer or as a fast-neutron spectrometer.

  13. Study of Superconducting Magnesium Diboride at milli-Kelvin Temperatures

    NASA Astrophysics Data System (ADS)

    Mlack, J. T.; Lambert, J. G.; Thrailkill, Z. E.; Carabello, S. A.; Galwaduge, P. T.; Ramos, R. C.

    2010-02-01

    The superconducting properties of magnesium diboride (MgB2) were first discovered in 2001 and since then many studies of this interesting material have been performed. MgB2 has a transition temperature of 40K and has been typically studied down to around 4.0K. We report results of recent current-voltage measurements, at milli-Kelvin temperatures, of MgB2-based Josephson junctions obtained from our collaborators [1]. We investigate its I-V characteristics and the structure of its sub-gap resistance.[4pt] [1] Samples were obtained from Prof. Xiaoxing Xi's Research group at Temple University. )

  14. Superconducting slab in contact with thin superconducting layer at higher critical temperature

    NASA Astrophysics Data System (ADS)

    Barba-Ortega, J.; Silva, Clécio C. de Souza; Aguiar, J. Albino

    2009-07-01

    Within the framework of nonlinear time dependent Ginzburg-Landau equations (TDGL) we study the properties of a mesoscopic superconducting film with both surfaces in contact with a thin superconducting layer at a higher critical temperature. The properties of the layer are taken into account by the de Gennes boundary conditions via the extrapolation length b. We assume that the magnetic field is parallel to the multilayer interfaces. We obtain magnetization curves and calculate the spatial distribution of the superconducting electron density using a numerical method based on the technique of gauge invariant variables. This work tests both the rectangular cross-section size and b limit for the occurrence of vortices in a mesoscopic sample of area d xxd y where d y = 80 ξ(0) and dx varies discretely from 20 ξ(0) to 3 ξ(0). Our data also show a linear behavior of the magnetization curve and a power-law of order parameter modulus in limit b → 0 -.

  15. A laboratory superconducting high gradient magnetic separator

    SciTech Connect

    Yan, L.G.; Yu, Y.J.; Wang, Z.K.; Kao, Z.Y.; Ye, Z.X.; Xue, C.L.; Ye, P.; Cheng, Y.L.; Li, X.M.; Kong, Q.M.

    1989-03-01

    In order to know the effectiveness of high gradient magnetic separation for Kaolin clay purification and coal desulfurization in China and to develop suitable technology, a superconducting HGMS facility has been constructed and put into operation at the Institute of Electrical Engineering of Chinese Academy of Sciences. The working separation chamber is 80mm in diameter and 400mm in length. the magnet is wound with 0.75 and 0.5 mm in diameter NbTi superconducting composite. The winding is compact and wax-filled. The test proves that the magnet can operate at 5T. Special attention has been paid in the design and construction of the magnet cryostat in order for it to work as long as possible. In the wet beneficiation mode, there are two separation systems available, one is the upward pumping feeding system and another is with the downward gravity feeding. The rate of flow and the linear velocity are 0-0.5L/s and 0-100 cm/s respectively. The preliminary sample test results for Kaolin clay purification and coal desulfurization show the good feasibility of magnetic separation.

  16. High field superconductivity in alkali metal intercalates of MoS2

    NASA Technical Reports Server (NTRS)

    Woollam, J. A.; Flood, D. J.; Wagoner, D. E.; Somoano, R. B.; Rembaum, A.

    1973-01-01

    In the search for better high temperature, high critical field superconductors, a class of materials was found which have layered structures and can be intercalated with various elements and compounds. Since a large number of compounds can be formed, intercalation provides a method of control of superconducting properties. They also provide the possible medium for excitonic superconductivity. Results of magnetic field studies are presented on alkali metal (Na, K, Rb, and Cs) intercalated MoS2 (2H polymorph).

  17. Neutron-diffraction measurements of an antiferromagnetic semiconducting phase in the vicinity of the high-temperature superconducting state of K(x)Fe(2-y)Se2.

    PubMed

    Zhao, Jun; Cao, Huibo; Bourret-Courchesne, E; Lee, D-H; Birgeneau, R J

    2012-12-28

    The recently discovered K-Fe-Se high-temperature superconductor has caused heated debate regarding the nature of its parent compound. Transport, angle-resolved photoemission spectroscopy, and STM measurements have suggested that its parent compound could be insulating, semiconducting, or even metallic [M. H. Fang, H.-D. Wang, C.-H. Dong, Z.-J. Li, C.-M. Feng, J. Chen, and H. Q. Yuan, Europhys. Lett. 94, 27009 (2011); F. Chen et al., Phys. Rev. X 1, 021020 (2011); and W. Li et al., Phys. Rev. Lett. 109, 057003 (2012)]. Because the magnetic ground states associated with these different phases have not yet been identified and the relationship between magnetism and superconductivity is not fully understood, the real parent compound of this system remains elusive. Here, we report neutron-diffraction experiments that reveal a semiconducting antiferromagnetic (AFM) phase with rhombus iron vacancy order. The magnetic order of the semiconducting phase is the same as the stripe AFM order of the iron pnictide parent compounds. Moreover, while the sqrt[5]×sqrt[5] block AFM phase coexists with superconductivity, the stripe AFM order is suppressed by it. This leads us to conjecture that the new semiconducting magnetic ordered phase is the true parent phase of this superconductor. PMID:23368605

  18. Ultrafast IR detector response in high Tc superconducting thin films

    NASA Technical Reports Server (NTRS)

    Lindgren, Mikael; Ahlberg, Henrik; Danerud, Martin; Larsson, Anders; Eng, Sverre T.

    1991-01-01

    The response from a high Tc superconducting multielement optical detector made of a laser deposited Y-Ba-Cu-O thin film has been evaluated. Several microscopic and spectroscopic techniques were used to establish the presence of the correct phase of the thin film. Optical pulses from a laser diode at 830 nm and from a Q-switched CO2-laser at 10.6 microns were used. The detector responded to 50 ps (FWHM) pulses. A comparison between dR/dT of the film and the response amplitude as a function of temperature indicated a bolometric response.

  19. Low-Temperature Thermodynamic Properties of Superconducting Antiperovskite CdCNi_3

    NASA Astrophysics Data System (ADS)

    Szczȩśniak, R.; Durajski, A. P.; Skoczylas, K. M.; Herok, Ł.

    2016-06-01

    We investigate the thermodynamic parameters of the superconducting antiperovskite CdCNi_3 using the Eliashberg approach which is an excellent tool to the exact characterization of the conventional superconductors. In particular, we reproduce the measured superconducting transition temperature (T_C=3.2 K) for a high value of the Coulomb pseudopotential (μ ^{star }C=0.22). Then we determine the energy gap, the thermodynamic critical field and the specific heat for the superconducting and normal state. On this basis, we show that the thermodynamic properties of CdCNi_3 differ slightly from the prediction of the Bardeen-Cooper-Schrieffer theory, which means that CdCNi_3 is a medium-coupling superconductor in contrast to related strong-coupling MgCNi_3.

  20. Tunable high-q superconducting notch filter

    DOEpatents

    Pang, C.S.; Falco, C.M.; Kampwirth, R.T.; Schuller, I.K.

    1979-11-29

    A superconducting notch filter is made of three substrates disposed in a cryogenic environment. A superconducting material is disposed on one substrate in a pattern of a circle and an annular ring connected together. The second substrate has a corresponding pattern to form a parallel plate capacitor and the second substrate has the circle and annular ring connected by a superconducting spiral that forms an inductor. The third substrate has a superconducting spiral that is placed parallel to the first superconducting spiral to form a transformer. Relative motion of the first substrate with respect to the second is effected from outside the cryogenic environment to vary the capacitance and hence the frequency of the resonant circuit formed by the superconducting devices.

  1. Mechanical behavior of MgO-whisker reinforced (Bi,Pb){sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub y} high-temperature superconducting composite

    SciTech Connect

    Yuan, Y.S.; Wong, M.S.; Wang, S.S.

    1996-07-01

    The inherently weak mechanical properties of bulk monolithic high-temperature superconductors (HTS) have been a concern. Properly selected reinforcements in fiber and whisker forms have been introduced to the HTS ceramics to improve their mechanical properties. In this paper, mechanical behavior of a MgO-whisker reinforced Pb-doped Bi-2223 (BPSCCO) HTS composite fabricated by a solid-state processing method is studied. The (MgO){sub {ital w}}/BPSCCO HTS composite has been shown to exhibit excellent superconducting properties. Elastic properties, strengths, and notched fracture toughnesses of both the monolithic BPSCCO and the (MgO){sub {ital w}}/BPSCCO HTS composite are investigated. Detailed mechanical properties are reported for the first time for the (MgO){sub {ital w}}/BPSCCO HTS composite. Mechanisms of strengthening and toughening in the MgO-whisker-reinforced HTS composite are also discussed. {copyright} {ital 1996 Materials Research Society.}

  2. High temperature superconductor materials and applications

    NASA Technical Reports Server (NTRS)

    Doane, George B., III.; Banks, Curtis; Golben, John

    1990-01-01

    Research on processing methods leading to a significant enhancement in the critical current densities (Jc) and the critical temperature (Tc) of high temperature superconducting in thin bulk and thin film forms. The fabrication of important devices for NASA unique applications (sensors) is investigated.

  3. Superconductivity

    SciTech Connect

    Langone, J.

    1989-01-01

    This book explains the theoretical background of superconductivity. Includes discussion of electricity, material fabrication, maglev trains, the superconducting supercollider, and Japanese-US competition. The authors reports the latest discoveries.

  4. High-field superconducting nested coil magnet

    NASA Technical Reports Server (NTRS)

    Laverick, C.; Lobell, G. M.

    1970-01-01

    Superconducting magnet, employed in conjunction with five types of superconducting cables in a nested solenoid configuration, produces total, central magnetic field strengths approaching 70 kG. The multiple coils permit maximum information on cable characteristics to be gathered from one test.

  5. Type II/1 Superconductivity with Extremely High Hc3 in Noncentrosymmetric LaRhSi3

    NASA Astrophysics Data System (ADS)

    Kimura, Noriaki; Kabeya, Noriyuki; Saitoh, Kohsuke; Satoh, Kazunori; Ogi, Hajime; Ohsaki, Kohki; Aoki, Haruyoshi

    2016-02-01

    We report the specific heat and ac magnetic susceptibility of noncentrosymmetric superconductor LaRhSi3. A first-order superconducting transition is observed in specific heat C under different magnetic field values. The C(T) values in zero-field-cooling and field-cooling processes become different at a magnetic field between 20 and 130 Oe. These results suggest that conversion from type-I to type-II/1 superconductivity is realized in LaRhSi3. The ac susceptibility indicates that surface superconductivity with an extremely high limiting field occurs probably due to the conversion temperature.

  6. Evidence of Superstoichiometric H/d Lenr Active Sites and High-Temperature Superconductivity in a Hydrogen-Cycled Pd/PdO

    NASA Astrophysics Data System (ADS)

    Lipson, A. G.; Castano, C. H.; Miley, G. H.; Lyakhov, B. F.; Tsivadze, A. Yu.; Mitin, A. V.

    Electron transport and magnetic properties have been studied in a 12.5 μm thick Pd foil with a thermally grown oxide and a low-residual concentration of hydrogen. This foil was deformed by cycling across the Pd hydride miscibility gap and the residual hydrogen was trapped at dislocation cores. Anomalies of both resistance and magnetic susceptibility have been observed below 70 K, indicating the appearance of excess conductivity and a diamagnetic response that we interpret in terms of filamentary superconductivity. These anomalies are attributed to a condensed hydrogen-rich phase at dislocation cores. The role of deuterium rich dislocation cores as LENR active sites is discussed.

  7. Structural alloys for high field superconducting magnets

    SciTech Connect

    Morris, J.W. Jr.

    1985-08-01

    Research toward structural alloys for use in high field superconducting magnets is international in scope, and has three principal objectives: the selection or development of suitable structural alloys for the magnet support structure, the identification of mechanical phenomena and failure modes that may influence service behavior, and the design of suitable testing procedures to provide engineering design data. This paper reviews recent progress toward the first two of these objectives. The structural alloy needs depend on the magnet design and superconductor type and differ between magnets that use monolithic and those that employ force-cooled or ICCS conductors. In the former case the central requirement is for high strength, high toughness, weldable alloys that are used in thick sections for the magnet case. In the latter case the need is for high strength, high toughness alloys that are used in thin welded sections for the conductor conduit. There is productive current research on both alloy types. The service behavior of these alloys is influenced by mechanical phenomena that are peculiar to the magnet environment, including cryogenic fatigue, magnetic effects, and cryogenic creep. The design of appropriate mechanical tests is complicated by the need for testing at 4/sup 0/K and by rate effects associated with adiabatic heating during the tests. 46 refs.

  8. Superconducting/non-superconducting phase boundary in the low temperature tetragonal phase of (La,RE)-Sr-Cu-O

    SciTech Connect

    Buechner, B.; Breuer, M.; Cramm, M.; Freimuth, A.; Micklitz, H.; Schlabitz, W.; Kampf, A.P.

    1994-04-01

    From measurements of the structural, superconducting and normal state transport properties of rare earth doped La{sub 2{minus}x}Sr{sub x}CuO{sub 4} the authors find a phase boundary between a superconducting and a non-superconducting state of the low temperature tetragonal phase. This phase boundary is determined by the magnitude of the buckling of the Cu-O-Cu bonds in the CuO{sub 2} layers, suggesting the importance of spin-orbit coupling for the electronic properties of these compounds.

  9. Density and elasticity of superconducting niobium nitride under high pressure

    NASA Astrophysics Data System (ADS)

    Zou, Y.; Li, B.; Wang, X.; Chen, T.

    2013-12-01

    Hard superconducting materials are of considerable interest for specific electronic applications. Transition-metal (TM) nitrides have increasingly attracted attention because of their outstanding mechanical, optoelectronic, thermal, magnetic and/or superconducting properties and potential usage in a variety of technological areas, such as NbN exploited in superconducting and high hardness coatings. Previous hardness measurements on NbN by Vickers indentation method reported a Vickers hardness about 20 GPa and its bulk modulus was found close to that of cubic boron nitride. In addition, experimental studies and first-principles calculations have investigated the equation-of-state (EOS) for B1 structured NbN and provided important insights into the origin of its outstanding mechanical properties. In spite of its importance, to date, the high-pressure behavior and elastic properties of NbN are not well studied experimentally, in particular for the shear properties under pressure. In this study, we hot-pressed high quality (well-sintered, free of cracks, small grain size and homogeneous) polycrystalline NbN specimens and performed simultaneous measurements of compressional and shear wave travel times using ultrasonic interferometry techniques up to ~12 GPa at room temperature in a large-volume high-pressure apparatus. By fitting these experimental data to finite strain equations, the compressional and shear wave velocities, density, and the bulk and shear moduli as a function of pressure are all obtained. These new data not only allow us to compare with previous EOS data on NbN and those of other transition metal nitrides, but also enable us to further explore the constitutive relations between elastic moduli and hardness in these nitrides.

  10. High-Density Superconducting Cables for Advanced ACTPol

    NASA Astrophysics Data System (ADS)

    Pappas, C. G.; Austermann, J.; Beall, J. A.; Duff, S. M.; Gallardo, P. A.; Grace, E.; Henderson, S. W.; Ho, S. P.; Koopman, B. J.; Li, D.; McMahon, J.; Nati, F.; Niemack, M. D.; Niraula, P.; Salatino, M.; Schillaci, A.; Schmitt, B. L.; Simon, S. M.; Staggs, S. T.; Stevens, J. R.; Vavagiakis, E. M.; Ward, J. T.; Wollack, E. J.

    2016-01-01

    Advanced ACTPol (AdvACT) is an upcoming Atacama Cosmology Telescope (ACT) receiver upgrade, scheduled to deploy in 2016, that will allow measurement of the cosmic microwave background polarization and temperature to the highest precision yet with ACT. The AdvACT increase in sensitivity is partly provided by an increase in the number of transition-edge sensors (TESes) per array by up to a factor of two over the current ACTPol receiver detector arrays. The high-density AdvACT TES arrays require 70 \\upmu m pitch superconducting flexible cables (flex) to connect the detector wafer to the first-stage readout electronics. Here, we present the flex fabrication process and test results. For the flex wiring layer, we use a 400-nm-thick sputtered aluminum film. In the center of the cable, the wiring is supported by a polyimide substrate, which smoothly transitions to a bare (uncoated with polyimide) silicon substrate at the ends of the cable for a robust wedge wire-bonding interface. Tests on the first batch of flex made for the first AdvACT array show that the flex will meet the requirements for AdvACT, with a superconducting critical current above 1 mA at 500 mK, resilience to mechanical and cryogenic stress, and a room temperature yield of 97 %.

  11. High-Density Superconducting Cables for Advanced ACTPol

    NASA Astrophysics Data System (ADS)

    Pappas, C. G.; Austermann, J.; Beall, J. A.; Duff, S. M.; Gallardo, P. A.; Grace, E.; Henderson, S. W.; Ho, S. P.; Koopman, B. J.; Li, D.; McMahon, J.; Nati, F.; Niemack, M. D.; Niraula, P.; Salatino, M.; Schillaci, A.; Schmitt, B. L.; Simon, S. M.; Staggs, S. T.; Stevens, J. R.; Vavagiakis, E. M.; Ward, J. T.; Wollack, E. J.

    2016-07-01

    Advanced ACTPol (AdvACT) is an upcoming Atacama Cosmology Telescope (ACT) receiver upgrade, scheduled to deploy in 2016, that will allow measurement of the cosmic microwave background polarization and temperature to the highest precision yet with ACT. The AdvACT increase in sensitivity is partly provided by an increase in the number of transition-edge sensors (TESes) per array by up to a factor of two over the current ACTPol receiver detector arrays. The high-density AdvACT TES arrays require 70 \\upmu m pitch superconducting flexible cables (flex) to connect the detector wafer to the first-stage readout electronics. Here, we present the flex fabrication process and test results. For the flex wiring layer, we use a 400-nm-thick sputtered aluminum film. In the center of the cable, the wiring is supported by a polyimide substrate, which smoothly transitions to a bare (uncoated with polyimide) silicon substrate at the ends of the cable for a robust wedge wire-bonding interface. Tests on the first batch of flex made for the first AdvACT array show that the flex will meet the requirements for AdvACT, with a superconducting critical current above 1 mA at 500 mK, resilience to mechanical and cryogenic stress, and a room temperature yield of 97 %.

  12. Architecture for high critical current superconducting tapes

    DOEpatents

    Jia, Quanxi; Foltyn, Stephen R.

    2002-01-01

    Improvements in critical current capacity for superconducting film structures are disclosed and include the use of, e.g., multilayer YBCO structures where individual YBCO layers are separated by a layer of an insulating material such as CeO.sub.2 and the like, a layer of a conducting material such as strontium ruthenium oxide and the like or by a second superconducting material such as SmBCO and the like.

  13. Development of semi-rigid cables for low temperature superconducting detectors

    NASA Astrophysics Data System (ADS)

    Kushino, Akihiro; Kasai, Soichi

    We are developing semi-rigid cables for accurate readout of superconducting radiation/particle detectors and other low temperature experiments. The center conductor with a diameter of 0.86 mm is separated with seamless metal outer conductor by dielectric material, polytetrafluoroethylene. We used various metal materials with low thermal conductivity for the electrical conductors such as stainless-steel, cupro-nickel, brass, beryllium-copper, phosphor-bronze, niobium-titanium, and niobium. In addition to the conventional semi-rigid cables, low-pass-filter type cables were manufactured and evaluated to cut the high frequency noise into superconducting detectors. We measured their low thermal conductance and attenuation property up to 10 GHz below the liquid helium temperature.

  14. Superconductivity and Magnetic Properties of High Superconducting Transition Temperature Lanthanum - Barium - Calcium - COPPER(3) - OXYGEN(7-DELTA), YTTRIUM(1-X) Praseodymium(x) - BARIUM(2) - COPPER(2) - OXYGEN(7-DELTA), and NEODYMIUM(2-X) - Cesium(x) - Copper - OXYGEN(4-DELTA)

    NASA Astrophysics Data System (ADS)

    Peng, Jian-Liang

    A systematic study of the superconducting and normal state properties of LaBaCaCu_3O _{7-delta}, Y_{1-x}Pr_{x} Ba_2 Cu_3 O_{7-delta} and rm Nd_{2-x}Ce _{x} CuO_{4-delta} is reported in this work. X-ray powder diffraction, thermogravimetric analysis, dc electrical resistivity, and dc magnetic susceptibility measurements were used to characterize these samples. The compound LaBaCaCu _3O_{7-delta} belongs to the YBa_2 Cu _3 O_{7-delta} category, with Ca on the Y sites and La on Ba sites. This compound has a tetragonal structure and a superconducting transition temperature (T_{c}) of 78K. The low temperature x-ray powder diffraction indicated that the tetragonal structure of this compound is preserved down to 5K. The achievement of high-T_ {c} superconductivity in this tetragonal compound along with the other tetragonal superconductors indicates that the presence of one dimensional chains is not essential for achieving T_ {c} > 70K. In contrast, the existence of Cu-O planes is crucial in sustaining the high T _{c}. Substitution of Pr for Y in the Y_{1-x} Pr_{x}Ba_2 Cu_3O_{7-delta} system depresses T_{c}, with a behavior which is consistent with the classical Abrikosov-Gor'kov pair breaking theory. The critical field versus temperature shows a "bell"-shaped behavior for some compositions. This discovery is reminiscent of the magnetic superconductors RRh_4B_4 and RMo_6S_8 (R = rare earths), and is consistent with the presence of magnetic pair breaking interactions. The fact that the Pauli susceptibility increases with the addition of Pr and the super-oxygenation studies imply that the effect of the Pr cannot be just to remove holes from the Cu-O planes. A metal-insulator transition is evidenced in the normal state resistivity measurements at x ~ 0.6. Samples of Nd_{2 -x} Ce_{x} CuO_{4-delta } (0 <=q x <=q 0.2) were prepared by annealing both in air and under vacuum (10 ^{-5} torr). Electrical resistivity measurements showed that all Ce doped Nd_2 CuO_{4-delta} samples

  15. Passivation of high temperature superconductors

    NASA Technical Reports Server (NTRS)

    Vasquez, Richard P. (Inventor)

    1991-01-01

    The surface of high temperature superconductors such as YBa2Cu3O(7-x) are passivated by reacting the native Y, Ba and Cu metal ions with an anion such as sulfate or oxalate to form a surface film that is impervious to water and has a solubility in water of no more than 10(exp -3) M. The passivating treatment is preferably conducted by immersing the surface in dilute aqueous acid solution since more soluble species dissolve into the solution. The treatment does not degrade the superconducting properties of the bulk material.

  16. Magnetotransport Properties in High-Quality Ultrathin Two-Dimensional Superconducting Mo2C Crystals.

    PubMed

    Wang, Libin; Xu, Chuan; Liu, Zhibo; Chen, Long; Ma, Xiuliang; Cheng, Hui-Ming; Ren, Wencai; Kang, Ning

    2016-04-26

    Ultrathin transition metal carbides are a class of developing two-dimensional (2D) materials with superconductivity and show great potentials for electrical energy storage and other applications. Here, we report low-temperature magnetotransport measurements on high-quality ultrathin 2D superconducting α-Mo2C crystals synthesized by a chemical vapor deposition method. The magnetoresistance curves exhibit reproducible oscillations at low magnetic fields for temperature far below the superconducting transition temperature of the crystals. We interpret the oscillatory magnetoresistance as a consequence of screening currents circling around the boundary of triangle-shaped terraces found on the surface of ultrathin Mo2C crystals. As the sample thickness decreases, the Mo2C crystals exhibit negative magnetoresistance deep in the superconducting transition regime, which reveals strong phase fluctuations of the superconducting order parameters associated with the superconductor-insulator transition. Our results demonstrate that the ultrathin superconducting Mo2C crystals provide an interesting system for studying rich transport phenomena in a 2D crystalline superconductor with enhanced quantum fluctuations. PMID:27065100

  17. Use of high temperature superconductors in magnetoplasmadynamic systems

    SciTech Connect

    Reed, C.B.; Sovey, J.S.

    1988-01-01

    The use of Tesla-class high-temperature superconducting magnets may have an extremely large impact on critical development issues (erosion, heat transfer, and performance) related to MPD thrusters and also may provide significant benefits in reducing the mass of magnetics used in the power processing system. These potential performance improvements, coupled with additional benefits of high-temperature superconductivity, provide a very strong motivation to develop high-temperature superconductivity (HTS) applied-field magnetoplasmadynamic (MPD) thruster propulsion systems. The application of HTS to MPD thruster propulsion systems may produce an enabling technology for these electric propulsion systems. This paper summarizes the impact that HTS may have upon MPD propulsion systems.

  18. Use of high temperature superconductors in magnetoplasmadynamic systems

    NASA Technical Reports Server (NTRS)

    Reed, C. B.; Sovey, J. S.

    1988-01-01

    The use of Tesla-class high-temperature superconducting magnets may have an extremely large impact on critical development issues (erosion, heat transfer, and performance) related to magnetoplasmadynamic (MPD) thrusters and also may provide significant benefits in reducing the mass of magnetics used in the power processing system. These potential performance improvements, coupled with additional benefits of high-temperature superconductivity, provide a very strong motivation to develop high-temperature superconductivity (HTS) applied-field MPD thruster propulsion systems. The application of HTS to MPD thruster propulsion systems may produce an enabling technology for these electric propulsion systems. This paper summarizes the impact that HTS may have upon MPD propulsion systems.

  19. Design considerations for high-current superconducting ion linacs

    SciTech Connect

    Delayen, J.R.; Bohn, C.L.; Micklich, B.J.; Roche, C.T.; Sagalovsky, L.

    1993-08-01

    Superconducting linacs may be a viable option for high-current applications such as fusion materials irradiation testing, spallation neutron source, transmutation of radioactive waste, tritium production, and energy production. These linacs must run reliably for many years and allow easy routine maintenance. Superconducting cavities operate efficiently with high cw gradients, properties which help to reduce operating and capital costs, respectively. However, cost-effectiveness is not the sole consideration in these applications. For example, beam impingement must be essentially eliminated to prevent unsafe radioactivation of the accelerating structures, and thus large apertures are needed through which to pass the beam. Because of their high efficiency, superconducting cavities can be designed with very large bore apertures, thereby reducing the effect of beam impingement. Key aspects of high-current cw superconducting linac designs are explored in this context.

  20. Highly textured oxypnictide superconducting thin films on metal substrates

    NASA Astrophysics Data System (ADS)

    Iida, Kazumasa; Kurth, Fritz; Chihara, Masashi; Sumiya, Naoki; Grinenko, Vadim; Ichinose, Ataru; Tsukada, Ichiro; Hänisch, Jens; Matias, Vladimir; Hatano, Takafumi; Holzapfel, Bernhard; Ikuta, Hiroshi

    2014-10-01

    Highly textured NdFeAs(O,F) thin films have been grown on ion beam assisted deposition-MgO/Y2O3/Hastelloy substrates by molecular beam epitaxy. The oxypnictide coated conductors showed a superconducting transition temperature (Tc) of 43 K with a self-field critical current density (Jc) of 7.0 × 10 4 A / cm 2 at 5 K, more than 20 times higher than powder-in-tube processed SmFeAs(O,F) wires. Albeit higher Tc as well as better crystalline quality than Co-doped BaFe2As2 coated conductors, in-field Jc of NdFeAs(O,F) was lower than that of Co-doped BaFe2As2. These results suggest that grain boundaries in oxypnictides reduce Jc significantly compared to that in Co-doped BaFe2As2 and, hence biaxial texture is necessary for high Jc.

  1. Nernst effect in high temperature superconductors

    NASA Astrophysics Data System (ADS)

    Wang, Yayu

    This thesis presents a study of the Nernst effect in high temperature superconductors. The vortex Nernst measurements have been carried out on various high Tc cuprates to high magnetic fields. These results provide vital information about the properties and relations of the pseudogap phase and superconducting phase in high Tc superconductors. Our first finding is the existence of vortex-like excitations at temperatures much higher than Tc0, the zero filed transition temperature, in the underdoped cuprates. This result suggests that in the putative normal state of cuprates, although bulk Meissner effect is absent and resistivity looks normal, the amplitude of the Cooper pairing is still sizable. The transition at Tc0 is driven by the loss of long range phase coherence rather than the disappearance of superconducting condensate. The high field Nernst effect offers a reliable way to determine the upper critical field Hc2 of high Tc cuprates and many unusual properties are uncovered. For cuprates with relatively large hole density (x > 0.15), we found that H c2 is almost temperature independent for T < Tc0. This is in strong contrast to the Hc2 - T relation of conventional superconductors. Moreover, using a scaling analysis, we have demonstrated that H c2 increases with decreasing hole density x in this doping range, implying a stronger pairing potential at lower doping. In the severely underdoped regime (x < 0.12), some new features become apparent and they imply that the vortex Nernst signal is comprised of two distinct contributions. The first is from coherent regions with long range phase coherence and relatively low upper critical field, more like the superconducting phase; the second is from phase incoherent regions with much larger field scales, indicative of the pseudogap phase. As temperature rises, the superconducting phase gives weight to the pseudogap phase. Moreover, the upper critical field Hc2 of the superconducting phase scales with the onset

  2. Double-sided Tl{sub 2}Ba{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10} thin films based high temperature superconducting filter operating above 100 K

    SciTech Connect

    Xie, Wei; Wang, Pei; He, Ming Qiao, Ren; Du, Jia-Nan; Gao, Xiao-Xin; Liu, Xin; Zhang, Xu; Ji, Lu; Chen, Hai-Hua; Zhao, Xin-Jie

    2014-09-01

    A high temperature superconducting (HTS) filter on double-sided Tl{sub 2}Ba{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10} (Tl-2223) thin films is designed in this letter. High-quality double-sided Tl-2223 thin films are prepared on 10 × 10 × 0.5 mm{sup 3} LaAlO{sub 3} (001) substrate. The critical temperatures T{sub c} of the films are 120 ± 1 K and the critical current densities J{sub c} are 3–4 MA/cm{sup 2} at 77 K for both sides. X-ray diffraction θ-2θ scans and rotational ϕ-scans prove that the films are strongly textured with the c axis perpendicular to the substrate surface. A 3-pole band-pass filter is then fabricated on the Tl-2223 thin films with 4% relative bandwidth and a center frequency of 4.0 GHz. At 77 K, 100 K, and 102 K, the insertion loss in the passband is 0.088 dB, 0.21 dB, and 0.27 dB, respectively. These performances show that the proposed HTS filter is satisfying even when the operating temperature is above 100 K, which makes it possible to work in outer space without cryogenic systems.

  3. Fermi surfaces and energy gaps of high-temperature superconductors

    SciTech Connect

    Shen, Z.X.; Dessau, D.S.

    1994-12-31

    In this short paper, the authors describe their recent experimental results from high-temperature superconductors. In the normal state, the data reveals interesting features of the Fermi surfaces and low energy excitations near the Fermi level. In the superconducting state, the data shows a very strong anisotropy in the superconducting gap.

  4. High-Tc superconducting rectangular microstrip patch covered with a dielectric layer

    NASA Astrophysics Data System (ADS)

    Bedra, Sami; Fortaki, Tarek

    2016-05-01

    This paper presents a full-wave method to calculate the resonant characteristics of rectangular microstrip antenna with and without dielectric cover, to explain the difference of performance with temperature between superconducting and normal conducting antenna. Especially the characteristics of high temperature superconducting (HTS) antenna were almost ideal around the critical temperature (Tc). The dyadic Green's functions of the considered structure are efficiently determined in the vector Fourier transform domain. The effect of the superconductivity of the patch is taken into account using the concept of the complex resistive boundary condition. The computed results are found to be in good agreement with results obtained using other methods. Also, the effects of the superstrate on the resonant frequency and bandwidth of rectangular microstrip patch in a substrate-superstrate configuration are investigated. This type of configuration can be used for wider bandwidth by proper selection of superstrate thickness and its dielectric constants.

  5. Highly flexible, mechanically robust superconducting wire consisting of NbN-carbon-nanotube nanofibril composites

    NASA Astrophysics Data System (ADS)

    Kim, Jeong-Gyun; Kang, Haeyong; Kim, Joonggyu; Lee, Young Hee; Suh, Dongseok

    A flexible superconducting fiber is prepared by twisting carbon nanotube (CNT) sheets coated with sputter-deposited niobium nitride (NbN) layer to form the shape of yarn. Twisted CNT yarn, which has been extensively studied due to its high flexibility as well as excellent mechanical properties, and NbN, which is a superconducting material with high transition temperature (Tc) and critical magnetic field (Hc), are combined together by the deposition of NbN layer on free-standing CNT-sheet substrate followed by the biscrolling process. We tried many experimental conditions to investigate the superconducting properties of NbN-CNT yarn as a function of NbN thickness and number of CNT-sheet layers, and found out that the superconducting property of NbN on CNT-sheet can be comparable to that of NbN thin film on the normal solid substrate. In addition, the superconducting property survived even under the condition of severe mechanical deformation such as knotting. These results show the potential application of this technology as a large-scale fabrication method of flexible, mechanically robust, high performance superconducting wire. This work is supported by the Institute for Basic Science (IBS-R011-D1), and by the National Research Foundation (BSR-2013R1A1A1076063) funded by the Ministry of Science, ICT & Future Planning, Republic of Korea.

  6. Improved capacitive stress transducers for high-field superconducting magnets

    NASA Astrophysics Data System (ADS)

    Benson, Christopher Pete; Holik, Eddie Frank, III; Jaisle, Andrew; McInturff, A.; McIntyre, P.

    2012-06-01

    High-field (12-18 Tesla) superconducting magnets are required to enable an increase in the energy of future colliders. Such field strength requires the use of Nb3Sn superconductor, which has limited tolerance for compressive and shear strain. A strategy for stress management has been developed at Texas A&M University and is being implemented in TAMU3, a short-model 14 Tesla stress-managed Nb3Sn block dipole. The strategy includes the use of laminar capacitive stress transducers to monitor the stresses within the coil package. We have developed fabrication techniques and fixtures, which improve the reproducibility of the transducer response both at room temperature and during cryogenic operation. This is a report of the status of transducer development.

  7. High-pressure structures of disilane and their superconducting properties.

    PubMed

    Flores-Livas, José A; Amsler, Maximilian; Lenosky, Thomas J; Lehtovaara, Lauri; Botti, Silvana; Marques, Miguel A L; Goedecker, Stefan

    2012-03-16

    A systematic ab initio search for low-enthalpy phases of disilane (Si2H6) at high pressures was performed based on the minima hopping method. We found a novel metallic phase of disilane with Cmcm symmetry, which is enthalpically more favorable than the recently proposed structures of disilane up to 280 GPa, but revealing compositional instability below 190 GPa. The Cmcm phase has a moderate electron-phonon coupling yielding a superconducting transition temperature T(c) of around 20 K at 100 GPa, decreasing to 13 K at 220 GPa. These values are significantly smaller than previously predicted T(c))s for disilane at equivalent pressure. This shows that similar but different crystalline structures of a material can result in dramatically different T(c)'s and stresses the need for a systematic search for a crystalline ground state. PMID:22540502

  8. High-Pressure Structures of Disilane and Their Superconducting Properties

    NASA Astrophysics Data System (ADS)

    Flores-Livas, José A.; Amsler, Maximilian; Lenosky, Thomas J.; Lehtovaara, Lauri; Botti, Silvana; Marques, Miguel A. L.; Goedecker, Stefan

    2012-03-01

    A systematic ab initio search for low-enthalpy phases of disilane (Si2H6) at high pressures was performed based on the minima hopping method. We found a novel metallic phase of disilane with Cmcm symmetry, which is enthalpically more favorable than the recently proposed structures of disilane up to 280 GPa, but revealing compositional instability below 190 GPa. The Cmcm phase has a moderate electron-phonon coupling yielding a superconducting transition temperature Tc of around 20 K at 100 GPa, decreasing to 13 K at 220 GPa. These values are significantly smaller than previously predicted Tc’s for disilane at equivalent pressure. This shows that similar but different crystalline structures of a material can result in dramatically different Tc’s and stresses the need for a systematic search for a crystalline ground state.

  9. Theory of High-T{sub c} Superconducting Cuprates Based on Experimental Evidence

    DOE R&D Accomplishments Database

    Abrikosov, A. A.

    1999-12-10

    A model of superconductivity in layered high-temperature superconducting cuprates is proposed, based on the extended saddle point singularities in the electron spectrum, weak screening of the Coulomb interaction and phonon-mediated interaction between electrons plus a small short-range repulsion of Hund's, or spin-fluctuation, origin. This permits to explain the large values of T{sub c}, features of the isotope effect on oxygen and copper, the existence of two types of the order parameter, the peak in the inelastic neutron scattering, the positive curvature of the upper critical field, as function of temperature etc.

  10. Thermodynamic critical fields in high T c superconductivity

    NASA Astrophysics Data System (ADS)

    Clougherty, Dennis P.; Johnson, Keith H.

    1988-06-01

    Using the free electron approximation, a real space mechanism of how magnetic fields of sufficient strength destroy the superconducting state is outlined. Using the resultant equation together with the molecular orbital model of superconductivity 1,2, the thermodynamic critical magnetic field is calculated and compared to experiment for type I elemental superconductors and type II superconductors, including high-Tc superconductors. The expression for critical field compares favorably with an expression derived by Schrieffer.

  11. Discovery of a Superconducting High-Entropy Alloy

    NASA Astrophysics Data System (ADS)

    Koželj, P.; Vrtnik, S.; Jelen, A.; Jazbec, S.; Jagličić, Z.; Maiti, S.; Feuerbacher, M.; Steurer, W.; Dolinšek, J.

    2014-09-01

    High-entropy alloys (HEAs) are multicomponent mixtures of elements in similar concentrations, where the high entropy of mixing can stabilize disordered solid-solution phases with simple structures like a body-centered cubic or a face-centered cubic, in competition with ordered crystalline intermetallic phases. We have synthesized an HEA with the composition Ta34Nb33Hf8Zr14Ti11 (in at. %), which possesses an average body-centered cubic structure of lattice parameter a =3.36 Å. The measurements of the electrical resistivity, the magnetization and magnetic susceptibility, and the specific heat revealed that the Ta34Nb33Hf8Zr14Ti11 HEA is a type II superconductor with a transition temperature Tc≈7.3 K, an upper critical field μ0Hc2≈8.2 T, a lower critical field μ0Hc1≈32 mT, and an energy gap in the electronic density of states (DOS) at the Fermi level of 2Δ ≈2.2 meV. The investigated HEA is close to a BCS-type phonon-mediated superconductor in the weak electron-phonon coupling limit, classifying it as a "dirty" superconductor. We show that the lattice degrees of freedom obey Vegard's rule of mixtures, indicating completely random mixing of the elements on the HEA lattice, whereas the electronic degrees of freedom do not obey this rule even approximately so that the electronic properties of a HEA are not a "cocktail" of properties of the constituent elements. The formation of a superconducting gap contributes to the electronic stabilization of the HEA state at low temperatures, where the entropic stabilization is ineffective, but the electronic energy gain due to the superconducting transition is too small for the global stabilization of the disordered state, which remains metastable.

  12. Comparisons between the 35 mm Quadrature Surface Resonator at 300 K and the 40 mm High-Temperature Superconducting Surface Resonator at 77 K in a 3T MRI Imager

    PubMed Central

    Song, Manli; Chen, Jyh-Horng; Chen, Ji; Lin, In-Tsang

    2015-01-01

    This study attempts to compare the signal-to-noise ratio (SNR) of the 40 mm High-Temperature Superconducting (HTS) surface resonator at 77 K and the 35 mm commercial quadrature (QD) surface resonator at 300 K in a 3 Tesla (T) MRI imager. To aquire images for the comparison, we implemented a phantom experiment using the 40 mm diameter Bi2Sr2Ca2Cu3Ox (Bi-2223) HTS surface resonator, the 35 mm commercial QD surface resonator and the 40 mm professionally-made copper surface resonator. The HTS surface resonator at 77 K provided a 1.43-fold SNR gain over the QD surface resonator at 300 K and provided a 3.84-fold SNR gain over the professionally-made copper surface resonator at 300 K on phantom images. The results agree with the predictions, and the difference between the predicted SNR gains and measured SNR gains is 1%. Although the geometry of the HTS surface resonator is different from the QD surface resonator, its SNR is still higher. The results demonstrate that a higher image quality can be obtained with the HTS surface resonator at 77 K. With the HTS surface resonator, the SNR can be improved, suggesting that the HTS surface resonator is a potentially helpful diagnostic tool for MRI imaging in various applications. PMID:25812124

  13. Effect of temperature on superconducting nanowire single-photon detector noise

    NASA Astrophysics Data System (ADS)

    Bahgat Shehata, A.; Ruggeri, A.; Stellari, F.; Weger, Alan J.; Song, P.; Sunter, K.; Najafi, F.; Berggren, Karl K.; Anant, Vikas

    2015-08-01

    Today Superconducting Nanowire Single-Photon Detectors (SNSPDs) are commonly used in different photon-starved applications, including testing and diagnostics of VLSI circuits. Detecting very faint signals in the near-infrared wavelength range requires not only good detection efficiency, but also very low Dark Count Rate (DCR) and jitter. For example, low noise is crucial to enable ultra-low voltage optical testing of integrated circuits. The effect of detector temperature and background thermal radiation on the noise of superconducting single-photon detectors made of NbN meanders is studied in this paper. It is shown that two different regimes can be identified in the DCR vs. bias current characteristics. At high bias, the dark count rate is dominated by the intrinsic noise of the detector, while at low bias current it is dominated by the detection of stray photons that get onto the SNSPD. Changing the detector temperature changes its switching current and only affects the high bias branch of the characteristics: a reduction of the DCR can be achieved by lowering the SNSPD base temperature. On the other hand, changing the temperature of the single-photon light source (e.g. the VLSI circuit under test) only affects the low bias regime: a lower target temperature leads to a smaller DCR.

  14. Planar high temperature superconductor filters with backside coupling

    NASA Technical Reports Server (NTRS)

    Shen, Zhi-Yuan (Inventor)

    1998-01-01

    An improved high temperature superconducting planar filter wherein the coupling circuit or connecting network is located, in whole or in part, on the side of the substrate opposite the resonators and enables higher power handling capability.

  15. A Superconducting transformer system for high current cable testing

    SciTech Connect

    Godeke, A.; Dietderich, D. R.; Joseph, J. M.; Lizarazo, J.; Prestemon, S. O.; Miller, G.; Weijers, H. W.

    2010-02-15

    This article describes the development of a direct-current (dc) superconducting transformer system for the high current test of superconducting cables. The transformer consists of a core-free 10 464 turn primary solenoid which is enclosed by a 6.5 turn secondary. The transformer is designed to deliver a 50 kA dc secondary current at a dc primary current of about 50 A. The secondary current is measured inductively using two toroidal-wound Rogowski coils. The Rogowski coil signal is digitally integrated, resulting in a voltage signal that is proportional to the secondary current. This voltage signal is used to control the secondary current using a feedback loop which automatically compensates for resistive losses in the splices to the superconducting cable samples that are connected to the secondary. The system has been commissioned up to 28 kA secondary current. The reproducibility in the secondary current measurement is better than 0.05% for the relevant current range up to 25 kA. The drift in the secondary current, which results from drift in the digital integrator, is estimated to be below 0.5 A/min. The system's performance is further demonstrated through a voltage-current measurement on a superconducting cable sample at 11 T background magnetic field. The superconducting transformer system enables fast, high resolution, economic, and safe tests of the critical current of superconducting cable samples.

  16. A superconducting transformer system for high current cable testing.

    PubMed

    Godeke, A; Dietderich, D R; Joseph, J M; Lizarazo, J; Prestemon, S O; Miller, G; Weijers, H W

    2010-03-01

    This article describes the development of a direct-current (dc) superconducting transformer system for the high current test of superconducting cables. The transformer consists of a core-free 10,464 turn primary solenoid which is enclosed by a 6.5 turn secondary. The transformer is designed to deliver a 50 kA dc secondary current at a dc primary current of about 50 A. The secondary current is measured inductively using two toroidal-wound Rogowski coils. The Rogowski coil signal is digitally integrated, resulting in a voltage signal that is proportional to the secondary current. This voltage signal is used to control the secondary current using a feedback loop which automatically compensates for resistive losses in the splices to the superconducting cable samples that are connected to the secondary. The system has been commissioned up to 28 kA secondary current. The reproducibility in the secondary current measurement is better than 0.05% for the relevant current range up to 25 kA. The drift in the secondary current, which results from drift in the digital integrator, is estimated to be below 0.5 A/min. The system's performance is further demonstrated through a voltage-current measurement on a superconducting cable sample at 11 T background magnetic field. The superconducting transformer system enables fast, high resolution, economic, and safe tests of the critical current of superconducting cable samples. PMID:20370213

  17. Processing of superconductive materials and high frequency

    SciTech Connect

    Smith, J.L.

    1987-01-01

    We do not know yet if superconductivity will become useful without refrigeration. Now, the superconductors are so different from copper that it is difficult to imagine replacing copper with such a brittle material. Superconductors conduct dc with no loss, ac with small losses, and microwaves in co-axial lines with almost no loss and with no dispersion from dc to the highest frequencies. They will probably allow us to close the gap between radio frequency and infrared optical transmission. Clearly your industry should know some things about where superconductivity may lead us and must consider whether the greater risk is to develop them or to let others try it. There are no easy answers yet.

  18. High pressure superconducting radial magnetic bearing

    NASA Technical Reports Server (NTRS)

    Eyssa, Y. M.; Huang, X.

    1990-01-01

    In a conventional radial magnetic bearing, the rotor (soft magnetic material) can only have attraction force from one of the electromagnets in the stator. The stator electromagnets consist of small copper windings with a soft magnetic material iron yoke. The maximum pressure obtainable is about 200 N/sq cm. It is shown that replacing the stator copper winding by a superconducting winding in the above configuration can increase the pressure to about 1000 N/sq cm. It is also shown that replacing the iron in the rotor by a group of superconducting windings in persistent mode and using a group of saddle coils in the stator can produce a pressure in excess of 2000 N/sq cm.

  19. Molybdenum-rhenium alloy based high-Q superconducting microwave resonators

    SciTech Connect

    Singh, Vibhor Schneider, Ben H.; Bosman, Sal J.; Merkx, Evert P. J.; Steele, Gary A.

    2014-12-01

    Superconducting microwave resonators (SMRs) with high quality factors have become an important technology in a wide range of applications. Molybdenum-Rhenium (MoRe) is a disordered superconducting alloy with a noble surface chemistry and a relatively high transition temperature. These properties make it attractive for SMR applications, but characterization of MoRe SMR has not yet been reported. Here, we present the fabrication and characterization of SMR fabricated with a MoRe 60–40 alloy. At low drive powers, we observe internal quality-factors as high as 700 000. Temperature and power dependence of the internal quality-factors suggest the presence of the two level systems from the dielectric substrate dominating the internal loss at low temperatures. We further test the compatibility of these resonators with high temperature processes, such as for carbon nanotube chemical vapor deposition growth, and their performance in the magnetic field, an important characterization for hybrid systems.

  20. Induced superconductivity in high-mobility two-dimensional electron gas in gallium arsenide heterostructures.

    PubMed

    Wan, Zhong; Kazakov, Aleksandr; Manfra, Michael J; Pfeiffer, Loren N; West, Ken W; Rokhinson, Leonid P

    2015-01-01

    Search for Majorana fermions renewed interest in semiconductor-superconductor interfaces, while a quest for higher-order non-Abelian excitations demands formation of superconducting contacts to materials with fractionalized excitations, such as a two-dimensional electron gas in a fractional quantum Hall regime. Here we report induced superconductivity in high-mobility two-dimensional electron gas in gallium arsenide heterostructures and development of highly transparent semiconductor-superconductor ohmic contacts. Supercurrent with characteristic temperature dependence of a ballistic junction has been observed across 0.6 μm, a regime previously achieved only in point contacts but essential to the formation of well separated non-Abelian states. High critical fields (>16 T) in NbN contacts enables investigation of an interplay between superconductivity and strongly correlated states in a two-dimensional electron gas at high magnetic fields. PMID:26067452

  1. Induced superconductivity in high-mobility two-dimensional electron gas in gallium arsenide heterostructures

    NASA Astrophysics Data System (ADS)

    Wan, Zhong; Kazakov, Aleksandr; Manfra, Michael J.; Pfeiffer, Loren N.; West, Ken W.; Rokhinson, Leonid P.

    2015-06-01

    Search for Majorana fermions renewed interest in semiconductor-superconductor interfaces, while a quest for higher-order non-Abelian excitations demands formation of superconducting contacts to materials with fractionalized excitations, such as a two-dimensional electron gas in a fractional quantum Hall regime. Here we report induced superconductivity in high-mobility two-dimensional electron gas in gallium arsenide heterostructures and development of highly transparent semiconductor-superconductor ohmic contacts. Supercurrent with characteristic temperature dependence of a ballistic junction has been observed across 0.6 μm, a regime previously achieved only in point contacts but essential to the formation of well separated non-Abelian states. High critical fields (>16 T) in NbN contacts enables investigation of an interplay between superconductivity and strongly correlated states in a two-dimensional electron gas at high magnetic fields.

  2. Induced superconductivity in high-mobility two-dimensional electron gas in gallium arsenide heterostructures

    PubMed Central

    Wan, Zhong; Kazakov, Aleksandr; Manfra, Michael J.; Pfeiffer, Loren N.; West, Ken W.; Rokhinson, Leonid P.

    2015-01-01

    Search for Majorana fermions renewed interest in semiconductor–superconductor interfaces, while a quest for higher-order non-Abelian excitations demands formation of superconducting contacts to materials with fractionalized excitations, such as a two-dimensional electron gas in a fractional quantum Hall regime. Here we report induced superconductivity in high-mobility two-dimensional electron gas in gallium arsenide heterostructures and development of highly transparent semiconductor–superconductor ohmic contacts. Supercurrent with characteristic temperature dependence of a ballistic junction has been observed across 0.6 μm, a regime previously achieved only in point contacts but essential to the formation of well separated non-Abelian states. High critical fields (>16 T) in NbN contacts enables investigation of an interplay between superconductivity and strongly correlated states in a two-dimensional electron gas at high magnetic fields. PMID:26067452

  3. Induced superconductivity in high mobility two dimensional electron gas in GaAs heterostructures

    NASA Astrophysics Data System (ADS)

    Rokhinson, Leonid P.

    Search for Majorana fermions renewed interest in semiconductor-superconductor interfaces, while a quest for higher order non-Abelian excitations demands formation of superconducting contacts to materials with fractionalized excitations, e.g. a two-dimensional electron gas in a fractional quantum Hall regime. Here we report induced superconductivity in high mobility two-dimensional electron gas in GaAs heterostructures and development of highly transparent semiconductor-superconductor ohmic contacts. Supercurrent with characteristic temperature dependence of a ballistic junction has been observed across 0.6 μm, a regime previously achieved only in point contacts but essential to the formation of well separated non-Abelian states. High critical fields (> 16 Tesla) in NbN contacts enables investigation of an interplay between superconductivity and strongly correlated states in a two dimensional electron gas at high magnetic fields.

  4. On local pairs vs. BCS: Quo vadis high-Tc superconductivity

    DOE PAGESBeta

    Pavuna, D.; Dubuis, G.; Bollinger, A. T.; Wu, J.; He, X.; Bozovic, I.

    2016-07-28

    Since the discovery of high-temperature superconductivity in cuprates, proposals have been made that pairing may be local, in particular in underdoped samples. Furthermore, we briefly review evidence for local pairs from our experiments on thin films of La 2–xSrxCuO4, synthesized by atomic layer-by-layer molecular beam epitaxy (ALL-MBE).

  5. Calorimeters for Precision Power Dissipation Measurements on Controlled-Temperature Superconducting Radiofrequency Samples

    SciTech Connect

    Xiao, Binping P.; Kelley, Michael J.; Reece, Charles E.; Phillips, H. L.

    2012-12-01

    Two calorimeters, with stainless steel and Cu as the thermal path material for high precision and high power versions, respectively, have been designed and commissioned for the surface impedance characterization (SIC) system at Jefferson Lab to provide low temperature control and measurement for CW power up to 22 W on a 5 cm dia. disk sample which is thermally isolated from the RF portion of the system. A power compensation method has been developed to measure the RF induced power on the sample. Simulation and experimental results show that with these two calorimeters, the whole thermal range of interest for superconducting radiofrequency (SRF) materials has been covered. The power measurement error in the interested power range is within 1.2% and 2.7% for the high precision and high power versions, respectively. Temperature distributions on the sample surface for both versions have been simulated and the accuracy of sample temperature measurements have been analysed. Both versions have the ability to accept bulk superconductors and thin film superconducting samples with a variety of substrate materials such as Al, Al{sub 2}O{sub 3}, Cu, MgO, Nb and Si.

  6. Calorimeters for precision power dissipation measurements on controlled-temperature superconducting radiofrequency samples.

    PubMed

    Xiao, B P; Reece, C E; Phillips, H L; Kelley, M J

    2012-12-01

    Two calorimeters, with stainless steel and Cu as the thermal path material for high precision and high power versions, respectively, have been designed and commissioned for the 7.5 GHz surface impedance characterization system at Jefferson Lab to provide low temperature control and measurement for CW power up to 22 W on a 5 cm diameter disk sample which is thermally isolated from the radiofrequency (RF) portion of the system. A power compensation method has been developed to measure the RF induced power on the sample. Simulation and experimental results show that with these two calorimeters, the whole thermal range of interest for superconducting radiofrequency materials has been covered. The power measurement error in the interested power range is within 1.2% and 2.7% for the high precision and high power versions, respectively. Temperature distributions on the sample surface for both versions have been simulated and the accuracy of sample temperature measurements have been analyzed. Both versions have the ability to accept bulk superconductors and thin film superconducting samples with a variety of substrate materials such as Al, Al(2)O(3), Cu, MgO, Nb, and Si. PMID:23278016

  7. Electrical modulation of superconducting critical temperature in liquid-gated thin niobium films

    SciTech Connect

    Choi, Jiman; Pradheesh, R.; Chong, Yonuk Chae, Dong-Hun; Kim, Hyungsang; Im, Hyunsik

    2014-07-07

    We demonstrate that the superconducting critical temperature (T{sub c}) of thin niobium films can be electrically modulated in a liquid-gated geometry device. T{sub c} can be suppressed and enhanced by applying positive and negative gate voltage, respectively, in a reversible manner within a range of about 0.1 K. At a fixed temperature below T{sub c}, we observed that the superconducting critical current can be modulated by gate voltage. This result suggests a possibility of an electrically controlled switching device operating at or above liquid helium temperature, where superconductivity can be turned on or off solely by the applied gate voltage.

  8. Low-Temperature Synthesis of Superconducting Nanocrystalline MgB 2

    DOE PAGESBeta

    Lu, Jun; Xiao, Zhili; Lin, Qiyin; Claus, Helmut; Fang, Zhigang Zak

    2010-01-01

    Magnesium diboride (MgB 2 ) is considered a promising material for practical application in superconducting devices, with a transition temperature near 40 K. In the present paper, nanocrystalline MgB 2 with an average particle size of approximately 70 nm is synthesized by reacting LiBH 4 with MgH 2 at temperatures as low as 450 ° C. This synthesis approach successfully bypasses the usage of either elemental boron or toxic diborane gas. The superconductivity of the nanostructures is confirmed by magnetization measurements, showing a superconducting critical temperature of 38.7 K.

  9. Emergence of superconductivity in HighTc copper oxide superconductors via two crossovers

    NASA Astrophysics Data System (ADS)

    Chatterjee, Utpal; Norman, Mike; Randeria, Mohit; Rosenkranz, Stephan; Campuzano, Juan Carlos

    2011-03-01

    From our detailed ARPES measurements on BISCO 2212 High Tc Superconductors we found that unlike in conventional superconductors, where there is a single temperature scale Tc separating the normal from the superconducting state, HTSCs exhibit with two additional temperature scales. One is T*, below which electronic excitations are gapped. And the other one is Tcoh, below which electronic states are long-lived. We observed that T* and Tcoh change strongly with doping. They cross each other near optimal doping. There is a region in the normal state where the single particle excitations are gapped as well as coherent. Quite remarkably, this is the region from which superconductivity with highest Tc emerges. Our experimental finding that the two crossover lines intersect is not consistent with a ``single quantum critical'' point near optimal doping, rather it is more naturally consistent with theories of superconductivity for doped Mott insulators.

  10. High temperature furnace

    DOEpatents

    Borkowski, Casimer J.

    1976-08-03

    A high temperature furnace for use above 2000.degree.C is provided that features fast initial heating and low power consumption at the operating temperature. The cathode is initially heated by joule heating followed by electron emission heating at the operating temperature. The cathode is designed for routine large temperature excursions without being subjected to high thermal stresses. A further characteristic of the device is the elimination of any ceramic components from the high temperature zone of the furnace.

  11. Numerical solution of High-kappa model of superconductivity

    SciTech Connect

    Karamikhova, R.

    1996-12-31

    We present formulation and finite element approximations of High-kappa model of superconductivity which is valid in the high {kappa}, high magnetic field setting and accounts for applied magnetic field and current. Major part of this work deals with steady-state and dynamic computational experiments which illustrate our theoretical results numerically. In our experiments we use Galerkin discretization in space along with Backward-Euler and Crank-Nicolson schemes in time. We show that for moderate values of {kappa}, steady states of the model system, computed using the High-kappa model, are virtually identical with results computed using the full Ginzburg-Landau (G-L) equations. We illustrate numerically optimal rates of convergence in space and time for the L{sup 2} and H{sup 1} norms of the error in the High-kappa solution. Finally, our numerical approximations demonstrate some well-known experimentally observed properties of high-temperature superconductors, such as appearance of vortices, effects of increasing the applied magnetic field and the sample size, and the effect of applied constant current.

  12. Effect of Electropolishing and Low-Temperature Baking on the Superconducting Properties of Large-Grain Niobium

    SciTech Connect

    A. S. Dhavale, G. Ciovati, G. R. Myneni

    2011-03-01

    Measurements of superconducting properties such as bulk and surface critical fields and thermal conductivity have been carried out in the temperature range from 2 K to 8 K on large-grain samples of different purity and on a high-purity fine-grain sample, for comparison. The samples were treated by electropolishing and low temperature baking (120° C, 48 h). While the residual resistivity ratio changed by a factor of ~3 among the samples, no significant variation was found in their superconducting properties. The onset field for flux penetration at 2 K, Hffp, measured within a ~30 µm depth from the surface, was ~160 mT, close to the bulk value. The baking effect was mainly to increase the field range up to which a coherent superconducting phase persists on the surface, above the upper critical field.

  13. Enhancement of the superconducting transition temperature of FeSe by intercalation of a molecular spacer layer

    NASA Astrophysics Data System (ADS)

    Burrard-Lucas, Matthew; Free, David G.; Sedlmaier, Stefan J.; Wright, Jack D.; Cassidy, Simon J.; Hara, Yoshiaki; Corkett, Alex J.; Lancaster, Tom; Baker, Peter J.; Blundell, Stephen J.; Clarke, Simon J.

    2013-01-01

    The discovery of high-temperature superconductivity in a layered iron arsenide has led to an intensive search to optimize the superconducting properties of iron-based superconductors by changing the chemical composition of the spacer layer between adjacent anionic iron arsenide layers. Superconductivity has been found in iron arsenides with cationic spacer layers consisting of metal ions (for example, Li+, Na+, K+, Ba2+) or PbO- or perovskite-type oxide layers, and also in Fe1.01Se (ref. ) with neutral layers similar in structure to those found in the iron arsenides and no spacer layer. Here we demonstrate the synthesis of Lix(NH2)y(NH3)1-yFe2Se2 (x~0.6 y~0.2), with lithium ions, lithium amide and ammonia acting as the spacer layer between FeSe layers, which exhibits superconductivity at 43(1) K, higher than in any FeSe-derived compound reported so far. We have determined the crystal structure using neutron powder diffraction and used magnetometry and muon-spin rotation data to determine the superconducting properties. This new synthetic route opens up the possibility of further exploitation of related molecular intercalations in this and other systems to greatly optimize the superconducting properties in this family.

  14. Testing prototypes of high-temperature superconducting current leads of cryogenic stand for testing magnetic elements of the NICA accelerating complex

    NASA Astrophysics Data System (ADS)

    Kres, E. V.; Kadenko, I. N.; Bessheiko, O. A.; Belov, D. V.; Blinov, N. A.; Galimov, A. R.; Zorin, A. G.; Karpinsky, V. N.; Nikiforov, D. N.; Pivin, R. V.; Smirnov, A. V.; Shevchenko, E. V.; Smirnov, S. A.; Khodzhibagiyan, G. G.; Liu, Cheng Lian

    2014-09-01

    In the Laboratory of High Energies at the Joint Institute for Nuclear Research, as part of the NICA-MPD [1] project, tests of two prototypes of HTSC current leads prepared at ASIPP institute (Hefei, China) have been performed [2, 3] to measure electric and heat parameters and to search for structural and physical drawbacks. Based on the experimental results, necessary changes are made in the structure of HTSC current leads of the testing stand for the magnetic element testing of the NICA accelerating complex and its basic setups: the Nuclotron, Booster, and Collider.

  15. Superconductivity in bad metals

    SciTech Connect

    Emery, V.J.; Kivelson, S.A.

    1995-12-31

    It is argued that many synthetic metals, including high temperature superconductors are ``bad metals`` with such a poor conductivity that the usual mean-field theory of superconductivity breaks down because of anomalously large classical and quantum fluctuations of the phase of the superconducting order parameter. Some consequences for high temperature superconductors are described.

  16. Design, Fabrication, and Test of a 5-kWh/100-kW Flywheel Energy Storage Utilizing a High-Temperature Superconducting Bearing

    SciTech Connect

    Dr. Michael Strasik, Philip E Johnson; A. C. Day; J. Mittleider; M. D. Higgins; J. Edwards; J. R. Schindler; K. E. McCrary; C.R. McIver; D. Carlson; J. F. Gonder; J. R. Hull

    2007-10-29

    The summaries of this project are: (1) Program goal is to design, develop, and demonstrate a 100 kW UPS flywheel electricity system; (2) flywheel system spin tested up to 15,000 RPM in a sensorless, closed loop mode; (3) testing identified a manufacturing deficiency in the motor stator--overheats at high speed, limiting maximum power capability; (4) successfully spin tested direct cooled HTS bearing up to 14,500 RPM (limited by Eddy current clutch set-up); (5) Testing confirmed commercial feasibility of this bearing design--Eddy Current losses are within acceptable limits; and (6) Boeing's investment in flywheel test facilities increased the spin-test capabilities to one of the highest in the nation.

  17. TLS-like temperature and power dependence for loss in superconducting coplanar resonators

    NASA Astrophysics Data System (ADS)

    Gladchenko, S.; Stoutimore, M. J. A.; Khalil, M.; Osborn, K.

    2013-03-01

    Loss in 2D superconducting coplanar resonators and qubits is often limited by two-level systems thought to be on the metal and substrate surfaces. While these TLSs are thought to be similar to those found in amorphous dielectrics, their nature is generally different. In most experiments, loss in coplanar resonators shows power and temperature dependence which disagrees with TLS theory. Here we will show new data from high-quality Al on sapphire coplanar resonators which is in qualitative agreement with TLS theory, and discuss the quantitative differences to TLS theory. The data on surface TLS behavior will be compared to resonator measurements of ALD-grown thin films.

  18. Superconductivity in the high-Tc Bi-Ca-Sr-Cu-O system - Phase identification

    NASA Technical Reports Server (NTRS)

    Hazen, R. M.; Prewitt, C. T.; Angel, R. J.; Ross, N. L.; Finger, L. W.

    1988-01-01

    Four phases are observed in superconducting Bi-Ca-Sr-Cu-O samples. The superconducting phase, with onset temperature near 120 K, is a 15.4-A-layered compound with composition near Bi2Ca1Sr2Cu2O9 and an A-centered orthorhombic unit subcell 5.41 x 5.44 x 30.78 A. X-ray diffraction and electron microscopy data are consistent with a structure of alternating perovskite and Bi2O2 layers. High-resolution transmission electron microscopy images reveal a b-axis superstructure of 27.2 A, numerous (001) stacking faults, and other defects.

  19. Superconducting spoke cavities for high-velocity applications

    SciTech Connect

    Hopper, Christopher S.; Delayen, Jean R.

    2013-10-01

    To date, superconducting spoke cavities have been designed, developed, and tested for particle velocities up to {beta}{sub 0}~0.6, but there is a growing interest in possible applications of multispoke cavities for high-velocity applications. We have explored the design parameter space for low-frequency, high-velocity, double-spoke superconducting cavities in order to determine how each design parameter affects the electromagnetic properties, in particular the surface electromagnetic fields and the shunt impedance. We present detailed design for cavities operating at 325 and 352 MHz and optimized for {beta}{sub 0}~=0.82 and 1.

  20. Proximity superconductivity in ballistic graphene at high magnetic fields

    NASA Astrophysics Data System (ADS)

    Prance, J. R.; Ben Shalom, M.; Zhu, M. J.; Fal'Ko, V. I.; Mishchenko, A.; Kretinin, A. V.; Novoselov, K. S.; Woods, C. R.; Watanabe, K.; Taniguchi, T.; Geim, A. K.

    We present measurements of the superconducting proximity effect in graphene-based Josephson junctions with a mean free path of several microns, which exceeds the junctions' length. The junctions exhibit low contact resistance and large supercurrents. We observe Fabry-Pérot oscillations in the normal-state resistance and the critical current of the junctions. The proximity effect is mostly suppressed in magnetic fields of <10 mT showing the conventional Fraunhofer interference pattern; however, unexpectedly, a weak proximity effect survives in magnetic fields as high as 1 T. Superconducting states randomly appear and disappear as a function of field and carrier concentration, and each exhibits a supercurrent carrying capacity close to the universal limit of e Δ/h where Δ is the superconducting gap of the contacts. We attribute the high-field supercurrent to mesoscopic Andreev states that persist near graphene edges. Our work reveals new proximity regimes that can be controlled by quantum confinement and cyclotron motion.

  1. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system

    NASA Astrophysics Data System (ADS)

    Drozdov, A. P.; Eremets, M. I.; Troyan, I. A.; Ksenofontov, V.; Shylin, S. I.

    2015-09-01

    A superconductor is a material that can conduct electricity without resistance below a superconducting transition temperature, Tc. The highest Tc that has been achieved to date is in the copper oxide system: 133 kelvin at ambient pressure and 164 kelvin at high pressures. As the nature of superconductivity in these materials is still not fully understood (they are not conventional superconductors), the prospects for achieving still higher transition temperatures by this route are not clear. In contrast, the Bardeen-Cooper-Schrieffer theory of conventional superconductivity gives a guide for achieving high Tc with no theoretical upper bound--all that is needed is a favourable combination of high-frequency phonons, strong electron-phonon coupling, and a high density of states. These conditions can in principle be fulfilled for metallic hydrogen and covalent compounds dominated by hydrogen, as hydrogen atoms provide the necessary high-frequency phonon modes as well as the strong electron-phonon coupling. Numerous calculations support this idea and have predicted transition temperatures in the range 50-235 kelvin for many hydrides, but only a moderate Tc of 17 kelvin has been observed experimentally. Here we investigate sulfur hydride, where a Tc of 80 kelvin has been predicted. We find that this system transforms to a metal at a pressure of approximately 90 gigapascals. On cooling, we see signatures of superconductivity: a sharp drop of the resistivity to zero and a decrease of the transition temperature with magnetic field, with magnetic susceptibility measurements confirming a Tc of 203 kelvin. Moreover, a pronounced isotope shift of Tc in sulfur deuteride is suggestive of an electron-phonon mechanism of superconductivity that is consistent with the Bardeen-Cooper-Schrieffer scenario. We argue that the phase responsible for high-Tc superconductivity in this system is likely to be H3S, formed from H2S by decomposition under pressure. These findings raise hope for the

  2. High temperature sensor

    DOEpatents

    Tokarz, Richard D.

    1982-01-01

    A high temperature sensor includes a pair of electrical conductors separated by a mass of electrical insulating material. The insulating material has a measurable resistivity within the sensor that changes in relation to the temperature of the insulating material within a high temperature range (1,000 to 2,000 K.). When required, the sensor can be encased within a ceramic protective coating.

  3. Extended Magnetization of Superconducting Pellets in Highly Inhomogeneous Magnetic Field

    NASA Astrophysics Data System (ADS)

    Maynou, R.; López, J.; Granados, X.; Torres, R.; Bosch, R.

    The magnetization of superconducting pellets is a worth point in the development of trapped flux superconducting motors. Experimental and simulated data have been reported extensively according to the framework of one or several pulses of a homogeneous magnetizing field applied to a pellet or a set of pellets. In case of cylindrical rotors of low power motors with radial excitation, however, the use of the copper coils to produce the starting magnetization of the pellets produces a highly inhomogeneous magnetic field which cannot be reduced to a 2D standard model. In this work we present an analysis of the magnetization of the superconducting cylindrical rotor of a small motor by using a commercial FEM program, being the rotor magnetized by the working copper coils of the motor. The aim of the study is a report of the magnetization obtained and theheat generated in the HTSC pellets.

  4. The spin-polaron theory of high-Tc superconductivity

    NASA Astrophysics Data System (ADS)

    Mott, N. F.

    1990-01-01

    An outline is given of the model for some high-temperature superconductors which assumes that the carriers are holes in the (hybridized) oxygen 2p band and form ‘spin polarons’ with the moments on the copper atoms. A comparison is made with observations of spin polarons in Gd3-xvxS4 and with the properties of La1-xSrxVO3 in relation to those of La2-xSrxCuO4. It is assumed, following several authors, that in the superconductors the polarons form bipolarons, which are bosons, and a comparison is made with some other treatments of this hypothesis. It is proposed that in many such superconductors the boson, essentially a pair of these holes, moves in an impurity band, and that normally all the polarons (fermions) form bipolarons; the fermions repel each other on the same site (positive Hubbard U) but attract when on adjacent sites; the critical temperature Tc is then that at which the Bose gas becomes non-degenerate. In such materials a non-degenerate gas of bosons would carry the current above Tc as first suggested by Alexandrov et al. (1986). The linear increase in the resistivity above Tc is explained on this hypothesis. The effective mass of the bipolaron is, we believe, large (˜20 30me). The copper 3d9 moments in the superconducting range resonate between their two orientations as a consequence of the motion of the carriers, as they do in the description by Brinkman and Rice (1970) of highly correlated metals. Spin polarons, we believe, form only when this is so, but not in the antiferromagnetic range of x. A discussion is given of the resistivity above Tc, thermopower above Tc, and of the nature of the superconducting gap as shown by tunnelling. We confine our discussion to the materials containing copper, excluding for instance cubic Ba1-xKxBiO3, and possibly any superconductor containing bismuth, where the bosons may be Bi3+.

  5. Survey of high field superconducting material for accelerator magnets

    SciTech Connect

    Scahlan, R.; Greene, A.F.; Suenaga, M.

    1986-05-01

    The high field superconductors which could be used in accelerator dipole magnets are surveyed, ranking these candidates with respect to ease of fabrication and cost as well as superconducting properties. Emphasis is on Nb/sub 3/Sn and NbTi. 27 refs., 2 figs. (LEW)

  6. Highly textured oxypnictide superconducting thin films on metal substrates

    SciTech Connect

    Iida, Kazumasa Kurth, Fritz; Grinenko, Vadim; Hänisch, Jens; Chihara, Masashi; Sumiya, Naoki; Hatano, Takafumi; Ikuta, Hiroshi; Ichinose, Ataru; Tsukada, Ichiro; Matias, Vladimir; Holzapfel, Bernhard

    2014-10-27

    Highly textured NdFeAs(O,F) thin films have been grown on ion beam assisted deposition-MgO/Y{sub 2}O{sub 3}/Hastelloy substrates by molecular beam epitaxy. The oxypnictide coated conductors showed a superconducting transition temperature (T{sub c}) of 43 K with a self-field critical current density (J{sub c}) of 7.0×10{sup 4} A/cm{sup 2} at 5 K, more than 20 times higher than powder-in-tube processed SmFeAs(O,F) wires. Albeit higher T{sub c} as well as better crystalline quality than Co-doped BaFe{sub 2}As{sub 2} coated conductors, in-field J{sub c} of NdFeAs(O,F) was lower than that of Co-doped BaFe{sub 2}As{sub 2}. These results suggest that grain boundaries in oxypnictides reduce J{sub c} significantly compared to that in Co-doped BaFe{sub 2}As{sub 2} and, hence biaxial texture is necessary for high J{sub c.}.

  7. Experimental evidence for lattice effects in high temperature superconductors

    SciTech Connect

    Billinge, S.J.L.; Kwei, G.H.; Thompson, J.D.

    1994-01-18

    We present an overview of the experimental evidence for a role of the lattice in the mechanism of high temperature superconductivity. It appears unlikely that a solely conventional electron-phonon interaction produces the pairing. However, there is ample evidence of strong electron and spin to lattice coupling and observations of a response of the lattice to the electronic state. We draw attention to the importance of the local structure in discussions of lattice effects in high-{Tc} superconductivity.

  8. High temperature refrigerator

    DOEpatents

    Steyert, Jr., William A.

    1978-01-01

    A high temperature magnetic refrigerator which uses a Stirling-like cycle in which rotating magnetic working material is heated in zero field and adiabatically magnetized, cooled in high field, then adiabatically demagnetized. During this cycle said working material is in heat exchange with a pumped fluid which absorbs heat from a low temperature heat source and deposits heat in a high temperature reservoir. The magnetic refrigeration cycle operates at an efficiency 70% of Carnot.

  9. Optimal High-TC Superconductivity in Cs3C60

    NASA Astrophysics Data System (ADS)

    Harshman, Dale; Fiory, Anthony

    The highest superconducting transition temperatures in the (A1-xBx)3C60 superconducting family are seen in the A15 and FCC structural phases of Cs3C60 (optimized under hydrostatic pressure), exhibiting measured values for near-stoichiometric samples of TC0 meas . = 37.8 K and 35.7 K, respectively. It is argued these two Cs-intercalated C60 compounds represent the optimal materials of their respective structures, with superconductivity originating from Coulombic e- h interactions between the C60 molecules, which host the n-type superconductivity, and mediating holes associated with the Cs cations. A variation of the interlayer Coulombic pairing model [Harshman and Fiory, J. Supercond. Nov. Magn. 28 ̲, 2967 (2015), and references therein] is introduced in which TC0 calc . ~ 1 / lζ , where l relates to the mean spacing between interacting charges on surfaces of the C60 molecules, and ζ is the average radial distance between the surface of the C60 molecules and the neighboring Cs cations. For stoichiometric Cs3C60, TC0 calc . = 38.08 K and 35.67 K for the A15 and FCC macrostructures, respectively; the dichotomy is attributable to differences in ζ.

  10. Method And Apparatus For Evaluatin Of High Temperature Superconductors

    DOEpatents

    Fishman, Ilya M.; Kino, Gordon S.

    1996-11-12

    A technique for evaluation of high-T.sub.c superconducting films and single crystals is based on measurement of temperature dependence of differential optical reflectivity of high-T.sub.c materials. In the claimed method, specific parameters of the superconducting transition such as the critical temperature, anisotropy of the differential optical reflectivity response, and the part of the optical losses related to sample quality are measured. The apparatus for performing this technique includes pump and probe sources, cooling means for sweeping sample temperature across the critical temperature and polarization controller for controlling a state of polarization of a probe light beam.

  11. High-Field Superconducting Magnets Supporting PTOLEMY

    NASA Astrophysics Data System (ADS)

    Hopkins, Ann; Luo, Audrey; Osherson, Benjamin; Gentile, Charles; Tully, Chris; Cohen, Adam

    2013-10-01

    The Princeton Tritium Observatory for Light, Early Universe, Massive Neutrino Yield (PTOLEMY) is an experiment planned to collect data on Big Bang relic neutrinos, which are predicted to be amongst the oldest and smallest particles in the universe. Currently, a proof-of-principle prototype is being developed at Princeton Plasma Physics Laboratory to test key technologies associated with the experiment. A prominent technology in the experiment is the Magnetic Adiabatic Collimation with an Electrostatic Filter (MAC-E filter), which guides tritium betas along magnetic field lines generated by superconducting magnets while deflecting those of lower energies. B field mapping is performed to ensure the magnets produce a minimum field at the midpoint of the configuration of the magnets and to verify accuracy of existing models. Preliminary tests indicate the required rapid decrease in B field strength from the bore of the more powerful 3.35 T magnet, with the field dropping to 0.18 T approximately 0.5 feet from the outermost surface of the magnet.

  12. Magnetic forces in high-Tc superconducting bearings

    NASA Technical Reports Server (NTRS)

    Moon, F. C.

    1991-01-01

    In September 1987, researchers at Cornell levitated a small rotor on superconducting bearings at 10,000 rpm. In April 1989, a speed of 120,000 rpm was achieved in a passive bearing with no active control. The bearing material used was YBa2Cu307. There is no evidence that the rotation speed has any significant effect on the lift force. Magnetic force measurements between a permanent rare-earth magnet and high T(sub c) superconducting material versus vertical and lateral displacements were made. A large hysteresis loop results for large displacements, while minor loops result for small displacements. These minor loops seem to give a slope proportional to the magnetic stiffness, and are probably indicative of flux pinning forces. Experiments of rotary speed versus time show a linear decay in a vacuum. Measurements of magnetic dipole over a high-T(sub c) superconducting disc of YBCO show that the lateral vibrations of levitated rotors were measured which indicates that transverse flux motion in the superconductor will create dissipation. As a result of these force measurements, an optimum shape for the superconductor bearing pads which gives good lateral and axial stability was designed. Recent force measurements on melt-quench processed superconductors indicate a substantial increase in levitation force and magnetic stiffness over free sintered materials. As a result, application of high-T(sub c) superconducting bearings are beginning to show great promise at this time.

  13. Superconducting fiber with transition temperature up to 7.43 K in Nb2PdxS5-δ (0.6 < x <1).

    PubMed

    Yu, Hongyan; Zuo, Ming; Zhang, Lei; Tan, Shun; Zhang, Changjin; Zhang, Yuheng

    2013-09-01

    Wiring systems powered by highly efficient superconductors have long been a dream of scientists, but researchers have faced practical challenges such as finding flexible materials. Here we report superconductivity in Nb2PdxS5-δ fibers with transition temperature up to 7.43 K, which have typical diameters of 0.3-3 μm. Superconductivity occurs in a wide range of Pd (0.6 < x <1) and S (0 < δ <0.61) contents, suggesting that the superconductivity in this system is very robust. Long fibers with suitable size provide a new route to high-power transmission cables and electronic devices. PMID:23964660

  14. High temperature measuring device

    DOEpatents

    Tokarz, Richard D.

    1983-01-01

    A temperature measuring device for very high design temperatures (to 2,000.degree. C.). The device comprises a homogenous base structure preferably in the form of a sphere or cylinder. The base structure contains a large number of individual walled cells. The base structure has a decreasing coefficient of elasticity within the temperature range being monitored. A predetermined quantity of inert gas is confined within each cell. The cells are dimensionally stable at the normal working temperature of the device. Increases in gaseous pressure within the cells will permanently deform the cell walls at temperatures within the high temperature range to be measured. Such deformation can be correlated to temperature by calibrating similarly constructed devices under known time and temperature conditions.

  15. Superconductivity induced in iron telluride films by low-temperature oxygen incorporation

    NASA Astrophysics Data System (ADS)

    Nie, Y. F.; Telesca, D.; Budnick, J. I.; Sinkovic, B.; Wells, B. O.

    2010-07-01

    We report superconductivity induced in films of the nonsuperconducting, antiferromagnetic parent material FeTe by low-temperature oxygen incorporation in a reversible manner. X-ray absorption shows that oxygen incorporation changes the nominal Fe valence state from 2+ in the nonsuperconducting state to mainly 3+ in the superconducting state. Thus superconductivity in O-doped FeTe occurs in a quite different charge and strain state than the more common FeTe1-xSex . This work also suggests a convenient path for conducting doping experiments in situ with many measurement techniques.

  16. Field-History Dependence of the Superconducting Transition Temperature in Erbium/Niobium Bilayers

    NASA Astrophysics Data System (ADS)

    Witt, James; Satchell, Nathan; Langridge, Sean; Burnell, Gavin

    Recently, there has been much interest in a new class of superconducting (S) spintronic devices based upon hybrid S/F (ferromagnet) heterostructures. The prototypical super-spintronic device is the superconducting spin valve (SSV), within which the critical temperature (Tc) of an S layer can be controlled by the relative orientation of two or more F layers. Such manipulation of the F layers requires careful engineering of the heterostructure and the rotation of the structure with respect to an applied magnetic field. Here, we show that such control over Tc is also possible in a simple S/F bilayer. By manipulating the remenant magnetic state of a thin Er layer - which is proximity coupled to a Nb S layer - we are able to demonstrate a high level of control over the Tc of the Nb (which is measured in zero field). The shifts in Tc are comparable in size to the largest seen in the SSV and are manipulated using solely the field history. The system can be reset by warming the sample through the Er Curie temperature (approximately 20 K). Our results are of particular interest due to the simplicity of both the bilayer and the measurement geometry in comparison to the SSV.

  17. High-temperature sensor

    DOEpatents

    Not Available

    1981-01-29

    A high temperature sensor is described which includes a pair of electrical conductors separated by a mass of electrical insulating material. The insulating material has a measurable resistivity within the sensor that changes in relation to the temperature of the insulating material within a high temperature range (1000 to 2000/sup 0/K). When required, the sensor can be encased within a ceramic protective coating.

  18. Research On Bi-Based High-Temperature Superconductors

    NASA Technical Reports Server (NTRS)

    Banks, Curtis; Doane, George B., III; Golben, John

    1993-01-01

    Brief report describes effects of melt sintering on Bi-based high-temperature superconductor system, as well as use of vibrating-sample magnetometer to determine hysteresis curves at 77 K for partially melt-sintered samples. Also discussed is production of high-temperature superconducting thin films by laser ablation: such films potentially useful in detection of signals of very low power.

  19. Low temperature phase formation of Tl-based superconducting thin films in reduced oxygen atmosphere

    NASA Technical Reports Server (NTRS)

    Wu, C. Y.; Foong, F.; Liou, S. H.; Ho, J. C.

    1993-01-01

    Tl-Ba-Cu-Cu-O superconducting thin films were prepared by magnetron sputtering with postannealing in a reduced oxygen atmosphere. Single-phase Tl2Ba2Ca2Cu3O(x) can form on the MgO substrate at 800 C under P(O2) about 0.1 atm. However the phase formation temperature can be affected by the starting composition of the film. Tl1Ba2Ca2Cu3O(x) phase can be formed by simply lowering the Tl2O pressure. The thermal stability of Tl1Ba2Ca2Cu3O(x) phase was studied by resistivity measurements at high temperatures.

  20. High-field, high-current-density, stable superconducting magnets for fusion machines

    SciTech Connect

    Lue, J.W.; Dresner, L.; Lubell, M.S.

    1989-01-01

    Designs for large fusion machines require high-performance superconducting magnets to reduce cost or increase machine performance. By employing force-flow cooling, cable-in-conduit conductor configuration, and NbTi superconductor, it is now possible to design superconducting magnets that operate a high fields (8-12 T) with high current densities (5-15 kA/cm/sup 2/ over the winding pack) in a stable manner. High current density leads to smaller, lighter, and thus less expensive coils. The force-flow cooling provides confined helium, full conductor insulation, and a rigid winding pack for better load distribution. The cable-in-conduit conductor configuration ensures a high stability margin for the magnet. The NbTi superconductor has reached a good engineering material standard. Its strain-insensitive critical parameters are particularly suitable for complex coil windings of a stellarator machine. The optimization procedure for such a conductor design, developed over the past decade, is summarized here. If desired a magnet built on the principles outlines in this paper can be extended to a field higher than the design value without degrading its stability by simply lowering the operating temperature below 4.2 K. 11 refs., 3 figs.

  1. RAPID COMMUNICATION: High performance superconducting wire in high applied magnetic fields via nanoscale defect engineering

    NASA Astrophysics Data System (ADS)

    Wee, Sung Hun; Goyal, Amit; Zuev, Yuri L.; Cantoni, Claudia

    2008-09-01

    High temperature superconducting (HTS) wires capable of carrying large critical currents with low dissipation levels in high applied magnetic fields are needed for a wide range of applications. In particular, for electric power applications involving rotating machinery, such as large-scale motors and generators, a high critical current, Ic, and a high engineering critical current density, JE, in applied magnetic fields in the range of 3-5 Tesla (T) at 65 K are required. In addition, exceeding the minimum performance requirements needed for these applications results in a lower fabrication cost, which is regarded as crucial to realize or enable many large-scale bulk applications of HTS materials. Here we report the fabrication of short segments of a potential superconducting wire comprised of a 4 µm thick YBa2Cu3O7-δ (YBCO) layer on a biaxially textured substrate with a 50% higher Ic and JE than the highest values reported previously. The YBCO film contained columns of self-assembled nanodots of BaZrO3 (BZO) roughly oriented along the c-axis of YBCO. Although the YBCO film was grown at a high deposition rate, three-dimensional self-assembly of the insulating BZO nanodots still occurred. For all magnetic field orientations, minimum Ic and JE at 65 K, 3 T for the wire were 353 A cm-1 and 65.4 kA cm-2, respectively.

  2. High Performance Superconducting Wire in High Applied Magnetic Fields via Nanoscale Defect Engineering

    SciTech Connect

    Goyal, Amit; Wee, Sung Hun; Zuev, Yuri L; Cantoni, Claudia

    2008-01-01

    High temperature superconducting (HTS) wires capable of carrying large critical currents with low dissipation levels in high applied magnetic fields are needed for a wide range of applications. In particular, for electric power applications involving rotating machinery, such as large-scale motors and generators, a high critical current, Ic, and a high engineering critical current density, JE, in applied magnetic fields in the range of 3 5 Tesla (T) at 65 K are required. In addition, exceeding the minimum performance requirements needed for these applications results in a lower fabrication cost, which is regarded as crucial to realize or enable many large-scale bulk applications of HTS materials. Here we report the fabrication of short segments of a potential superconducting wire comprised of a 4 m thick YBa2Cu3O7− (YBCO) layer on a biaxially textured substrate with a 50% higher Ic and JE than the highest values reported previously. The YBCO film contained columns of self-assembled nanodots of BaZrO3 (BZO) roughly oriented along the c-axis of YBCO. Although the YBCO film was grown at a high deposition rate, three-dimensional self-assembly of the insulating BZO nanodots still occurred. For all magnetic field orientations, minimum Ic and JE at 65 K, 3 T for the wire were 353 A cm−1 and 65.4 kA cm−2, respectively.

  3. High speed data transmission at the Superconducting Super Collider

    SciTech Connect

    Leskovar, B.

    1990-04-01

    High speed data transmission using fiber optics in the data acquisition system of the Superconducting Super Collider has been investigated. Emphasis is placed on the high speed data transmission system overview, the local data network and on subassemblies, such as optical transmitters and receivers. Also, the performance of candidate subassemblies having a low power dissipation for the data acquisition system is discussed. 14 refs., 5 figs.

  4. A design approach for superconducting high-current ion linacs

    SciTech Connect

    Garnett, R.W.; Wangler, T.P.

    1996-09-01

    An approach for designing superconducting high-current ion linacs is described. This approach takes advantage of the large velocity acceptance of high-gradient cavities with a small number of cells. It is well known that this feature leads to a linac design with great operational flexibility. Algorithms which have been incorporated into a design code and a beam dynamics code are discussed. Simulation results using these algorithms are also presented.

  5. Tellurium Hydrides at High Pressures: High-Temperature Superconductors

    NASA Astrophysics Data System (ADS)

    Zhong, Xin; Wang, Hui; Zhang, Jurong; Liu, Hanyu; Zhang, Shoutao; Song, Hai-Feng; Yang, Guochun; Zhang, Lijun; Ma, Yanming

    2016-02-01

    Observation of high-temperature superconductivity in compressed sulfur hydrides has generated an irresistible wave of searches for new hydrogen-containing superconductors. We herein report the prediction of high-Tc superconductivity in tellurium hydrides stabilized at megabar pressures identified by first-principles calculations in combination with a swarm structure search. Although tellurium is isoelectronic to sulfur or selenium, its heavier atomic mass and weaker electronegativity makes tellurium hydrides fundamentally distinct from sulfur or selenium hydrides in stoichiometries, structures, and chemical bondings. We identify three metallic stoichiometries of H4Te , H5Te2 , and HTe3 , which are not predicted or known stable structures for sulfur or selenium hydrides. The two hydrogen-rich H4Te and H5Te2 phases are primarily ionic and contain exotic quasimolecular H2 and linear H3 units, respectively. Their high-Tc (e.g., 104 K for H4Te at 170 GPa) superconductivity originates from the strong electron-phonon couplings associated with intermediate-frequency H-derived wagging and bending modes, a superconducting mechanism which differs substantially with those in sulfur or selenium hydrides where the high-frequency H-stretching vibrations make considerable contributions.

  6. Tellurium Hydrides at High Pressures: High-Temperature Superconductors.

    PubMed

    Zhong, Xin; Wang, Hui; Zhang, Jurong; Liu, Hanyu; Zhang, Shoutao; Song, Hai-Feng; Yang, Guochun; Zhang, Lijun; Ma, Yanming

    2016-02-01

    Observation of high-temperature superconductivity in compressed sulfur hydrides has generated an irresistible wave of searches for new hydrogen-containing superconductors. We herein report the prediction of high-T_{c} superconductivity in tellurium hydrides stabilized at megabar pressures identified by first-principles calculations in combination with a swarm structure search. Although tellurium is isoelectronic to sulfur or selenium, its heavier atomic mass and weaker electronegativity makes tellurium hydrides fundamentally distinct from sulfur or selenium hydrides in stoichiometries, structures, and chemical bondings. We identify three metallic stoichiometries of H_{4}Te, H_{5}Te_{2}, and HTe_{3}, which are not predicted or known stable structures for sulfur or selenium hydrides. The two hydrogen-rich H_{4}Te and H_{5}Te_{2} phases are primarily ionic and contain exotic quasimolecular H_{2} and linear H_{3} units, respectively. Their high-T_{c} (e.g., 104 K for H_{4}Te at 170 GPa) superconductivity originates from the strong electron-phonon couplings associated with intermediate-frequency H-derived wagging and bending modes, a superconducting mechanism which differs substantially with those in sulfur or selenium hydrides where the high-frequency H-stretching vibrations make considerable contributions. PMID:26894729

  7. Temporal Correlations of Superconductivity Above the Transition Temperature in La2-xSrxCuO4 Probed by Terahertz Spectroscopy

    SciTech Connect

    Bilbro, L.S.; Bozovic, I.; Aguilar, R.V.; Logvenov, G.; Pelleg, O.; Armitage, N.P.

    2011-02-13

    The nature of the underdoped pseudogap regime of the high-temperature copper oxide superconductors has been a matter of long-term debate. On quite general grounds, we expect that, owing to their low superfluid densities and short correlation lengths, superconducting fluctuations will be significant for transport and thermodynamic properties in this part of the phase diagram. Although there is ample experimental evidence for such correlations, there has been disagreement about how high in temperature they may persist, their role in the phenomenology of the pseudogap and their significance for understanding high-temperature superconductivity. Here we use THz time-domain spectroscopy to probe the temporal fluctuations of superconductivity above the critical temperature (T{sub c}) in La{sub 2-x}Sr{sub x}CuO{sub 4} (LSCO) thin films over a doping range that spans almost the entire superconducting dome (x = 0.09-0.25). Signatures of the fluctuations persist in the conductivity in a comparatively narrow temperature range, at most 16 K above T{sub c}. Our measurements show that superconducting correlations do not make an appreciable contribution to the charge-transport anomalies of the pseudogap in LSCO at temperatures well above T{sub c}.

  8. High Temperature Capacitor Development

    SciTech Connect

    John Kosek

    2009-06-30

    The absence of high-temperature electronics is an obstacle to the development of untapped energy resources (deep oil, gas and geothermal). US natural gas consumption is projected to grow from 22 trillion cubic feet per year (tcf) in 1999 to 34 tcf in 2020. Cumulatively this is 607 tcf of consumption by 2020, while recoverable reserves using current technology are 177 tcf. A significant portion of this shortfall may be met by tapping deep gas reservoirs. Tapping these reservoirs represents a significant technical challenge. At these depths, temperatures and pressures are very high and may require penetrating very hard rock. Logistics of supporting 6.1 km (20,000 ft) drill strings and the drilling processes are complex and expensive. At these depths up to 50% of the total drilling cost may be in the last 10% of the well depth. Thus, as wells go deeper it is increasingly important that drillers are able to monitor conditions down-hole such as temperature, pressure, heading, etc. Commercial off-the-shelf electronics are not specified to meet these operating conditions. This is due to problems associated with all aspects of the electronics including the resistors and capacitors. With respect to capacitors, increasing temperature often significantly changes capacitance because of the strong temperature dependence of the dielectric constant. Higher temperatures also affect the equivalent series resistance (ESR). High-temperature capacitors usually have low capacitance values because of these dielectric effects and because packages are kept small to prevent mechanical breakage caused by thermal stresses. Electrolytic capacitors do not operate at temperatures above 150oC due to dielectric breakdown. The development of high-temperature capacitors to be used in a high-pressure high-temperature (HPHT) drilling environment was investigated. These capacitors were based on a previously developed high-voltage hybridized capacitor developed at Giner, Inc. in conjunction with a

  9. High temperature pressure gauge

    DOEpatents

    Echtler, J. Paul; Scandrol, Roy O.

    1981-01-01

    A high temperature pressure gauge comprising a pressure gauge positioned in fluid communication with one end of a conduit which has a diaphragm mounted in its other end. The conduit is filled with a low melting metal alloy above the diaphragm for a portion of its length with a high temperature fluid being positioned in the remaining length of the conduit and in the pressure gauge.

  10. High-temperature electronics

    NASA Technical Reports Server (NTRS)

    Matus, Lawrence G.; Seng, Gary T.

    1990-01-01

    To meet the needs of the aerospace propulsion and space power communities, the high temperature electronics program at the Lewis Research Center is developing silicon carbide (SiC) as a high temperature semiconductor material. This program supports a major element of the Center's mission - to perform basic and developmental research aimed at improving aerospace propulsion systems. Research is focused on developing the crystal growth, characterization, and device fabrication technologies necessary to produce a family of SiC devices.

  11. High-temperature electronics

    NASA Astrophysics Data System (ADS)

    Matus, Lawrence G.; Seng, Gary T.

    1990-02-01

    To meet the needs of the aerospace propulsion and space power communities, the high temperature electronics program at the Lewis Research Center is developing silicon carbide (SiC) as a high temperature semiconductor material. This program supports a major element of the Center's mission - to perform basic and developmental research aimed at improving aerospace propulsion systems. Research is focused on developing the crystal growth, characterization, and device fabrication technologies necessary to produce a family of SiC devices.

  12. High temperature electronics

    NASA Astrophysics Data System (ADS)

    Seng, Gary T.

    1991-03-01

    In recent years, the aerospace propulsion and space power communities have acknowledged a growing need for electronic devices that are capable of sustained high-temperature operation. Aeropropulsion applications for high-temperature electronic devices include engine ground test instrumentation such as multiplexers, analog-to-digital converters, and telemetry systems capable of withstanding hot section engine temperatures in excess of 600 C. Uncooled operation of control and condition monitoring systems in advanced supersonic aircraft would subject the electronics to temperatures in excess of 300 C. Similarly, engine-mounted integrated electronic sensors could reach temperatures which exceed 500 C. In addition to aeronautics, there are many other areas that could benefit from the existence of high-temperature electronic devices. Space applications include power electronic devices for space platforms and satellites. Since power electronics require radiators to shed waste heat, electronic devices that operate at higher temperatures would allow a reduction in radiator size. Terrestrial applications include deep-well drilling instrumentation, high power electronics, and nuclear reactor instrumentation and control. To meet the needs of the applications mentioned previously, the high-temperature electronics (HTE) program at the Lewis Research Center is developing silicon carbide (SiC) as a high-temperature semiconductor material. Research is focused on developing the crystal growth, growth modeling, characterization, and device fabrication technologies necessary to produce a family of SiC devices. Interest in SiC has grown dramatically in recent years due to solid advances in the technology. Much research remains to be performed, but SiC appears ready to emerge as a useful semiconductor material.

  13. Antenna-coupled high T.sub.c superconducting microbolometer

    DOEpatents

    Hu, Qing

    1992-01-01

    A device is provided for measuring radiant energy, the device comprising a substrate; a bolometer formed from a high T.sub.c superconducting material disposed on the substrate in an area that is about 1.times.5 .mu.m.sup.2 and about 0.02 .mu.m in depth; and a planar antenna disposed on the substrate and coupled to receive radiation and to impart the received radiation to the bolometer.

  14. Antenna-coupled high T[sub c] superconducting microbolometer

    DOEpatents

    Hu, Q.

    1992-12-15

    A device is provided for measuring radiant energy, the device comprising a substrate; a bolometer formed from a high T[sub c] superconducting material disposed on the substrate in an area that is about 1[times]5 [mu]m[sup 2] and about 0.02 [mu]m in depth; and a planar antenna disposed on the substrate and coupled to receive radiation and to impart the received radiation to the bolometer. 5 figs.

  15. High temperature structural silicides

    SciTech Connect

    Petrovic, J.J.

    1997-03-01

    Structural silicides have important high temperature applications in oxidizing and aggressive environments. Most prominent are MoSi{sub 2}-based materials, which are borderline ceramic-intermetallic compounds. MoSi{sub 2} single crystals exhibit macroscopic compressive ductility at temperatures below room temperature in some orientations. Polycrystalline MoSi{sub 2} possesses elevated temperature creep behavior which is highly sensitive to grain size. MoSi{sub 2}-Si{sub 3}N{sub 4} composites show an important combination of oxidation resistance, creep resistance, and low temperature fracture toughness. Current potential applications of MoSi{sub 2}-based materials include furnace heating elements, molten metal lances, industrial gas burners, aerospace turbine engine components, diesel engine glow plugs, and materials for glass processing.

  16. High temperature probe

    DOEpatents

    Swan, Raymond A.

    1994-01-01

    A high temperature probe for sampling, for example, smokestack fumes, and is able to withstand temperatures of 3000.degree. F. The probe is constructed so as to prevent leakage via the seal by placing the seal inside the water jacket whereby the seal is not exposed to high temperature, which destroys the seal. The sample inlet of the probe is also provided with cooling fins about the area of the seal to provide additional cooling to prevent the seal from being destroyed. Also, a heated jacket is provided for maintaining the temperature of the gas being tested as it passes through the probe. The probe includes pressure sensing means for determining the flow velocity of an efficient being sampled. In addition, thermocouples are located in various places on the probe to monitor the temperature of the gas passing there through.

  17. High Temperature ESP Monitoring

    SciTech Connect

    Jack Booker; Brindesh Dhruva

    2011-06-20

    The objective of the High Temperature ESP Monitoring project was to develop a downhole monitoring system to be used in wells with bottom hole well temperatures up to 300°C for measuring motor temperature, formation pressure, and formation temperature. These measurements are used to monitor the health of the ESP motor, to track the downhole operating conditions, and to optimize the pump operation. A 220 ºC based High Temperature ESP Monitoring system was commercially released for sale with Schlumberger ESP motors April of 2011 and a 250 ºC system with will be commercially released at the end of Q2 2011. The measurement system is now fully qualified, except for the sensor, at 300 °C.

  18. Superconducting Materials Testing with a High-Q Copper RF Cavity

    SciTech Connect

    Tantawi, S.G.; Dolgashev, V.; Bowden, G.; Lewandowski, J.; Nantista, C.D.; Canabal, A.; Tajima, T.; Capmpisi, I.E.; /Oak Ridge

    2007-11-07

    Superconducting RF is of increasing importance in particle accelerators. We have developed a resonant cavity with high quality factor and an interchangeable wall for testing of superconducting materials. A compact TE01 mode launcher attached to the coupling iris selectively excites the azimuthally symmetric cavity mode, which allows a gap at the detachable wall and is free of surface electric fields that could cause field emission, multipactor, and RF breakdown. The shape of the cavity is tailored to focus magnetic field on the test sample. We describe cryogenic experiments conducted with this cavity. An initial experiment with copper benchmarked our apparatus. This was followed by tests with Nb and MgB2. In addition to characterizing the onset of superconductivity with temperature, our cavity can be resonated with a high power klystron to determine the surface magnetic field level sustainable by the material in the superconducting state. A feedback code is used to make the low level RF drive track the resonant frequency.

  19. Superconductivity in doped insulators

    SciTech Connect

    Emery, V.J.; Kivelson, S.A.

    1995-12-31

    It is shown that many synthetic metals, including high temperature superconductors are ``bad metals``, with such a poor conductivity that the usual meanfield theory of superconductivity breaks down because of anomalously large classical and quantum fluctuations of the phase of the superconducting order parameter. It is argued that the supression of a first order phase transition (phase separation) by the long-range Coulomb interaction leads to high temperature superconductivity accompanied by static or dynamical charge inhomogeneIty. Evidence in support of this picture for high temperature superconductors is described.

  20. High temperature electronics technology

    NASA Astrophysics Data System (ADS)

    Dening, J. C.; Hurtle, D. E.

    1984-03-01

    This report summarizes the barrier metallization developments accomplished in a program intended to develop 300 C electronic controls capability for potential on-engine aircraft engine application. In addition, this report documents preliminary life test results at 300 C and above and discusses improved design practices required for high temperature integrated injection logic semiconductors. Previous Phase 1 activities focused on determining the viability of operating silicon semiconductor devices over the -55 C to +300 C temperature range. This feasibility was substantiated but the need for additional design work and process development was indicated. Phase 2 emphasized the development of a high temperature metallization system as the primary development need for high temperature silicon semiconductor applications.