Science.gov

Sample records for high voltage gain

  1. High-gain optical Cherenkov oscillator driven by low-voltage electron beam

    SciTech Connect

    Smetanin, I.V.; Oraevsky, A.N.

    1995-12-31

    A novel scheme of high-gain optical (from IR up to UV) Cherenkov-type oscillator driven by low-voltage high-current electron beam is proposed in the present report. In the scheme discussed the magnetized electron beam propagates above the surface of absorbing medium of complex dielectric susceptibility {epsilon}{omega} = {epsilon}{sub 1}({omega}) + i{epsilon}{sub 2}({omega}), {epsilon}{sub 2}>0. We have found that at frequencies {omega} that {beta}{sup 2}> 2{epsilon}{sub 1}/{vert_bar}{epsilon}{vert_bar}{sup 2} ({beta} = v/c, v is the electron velocity), an amplification of co-propagating slow surface electromagnetic wave is possible. In contrast to the conventional Cherenkov oscillators, the absorption condition {epsilon}2>0 is crucial for the gain, which is absent for transparent medium. The physics of this amplification effect is analogous to that of electron beam dissipative instability. The wavelength generated is determined here by dielectric properties of the surface, and does not depend strongly on electron energy. Thus it is possible to use rather compact low voltage ({le} 1MeV) high-current accelerators as drivers. Optimum oscillation conditions are found to be at frequencies near the resonance absorption lines of surface material (i.e. from IR up to UV). The gain up to {approximately}0.5cm{sup -1} in the near IR ({approximately}10THz, SrF{sub 2} absorption line) is possible for 250keV high current (density {approximately}10{sup 12}cm{sup -3}) electron beam.

  2. Comparative analysis of the intrinsic voltage gain and unit gain frequency between SOI and bulk FinFETs up to high temperatures

    NASA Astrophysics Data System (ADS)

    Oliveira, Alberto Vinicius de; Agopian, Paula Ghedini Der; Martino, Joao Antonio; Simoen, Eddy; Claeys, Cor; Collaert, Nadine; Thean, Aaron

    2016-09-01

    This paper presents an experimental analysis of the analog application figures of merit: the intrinsic voltage gain (AV) and unit gain frequency, focusing on the performance comparison between silicon triple gate pFinFET devices, which were processed on both Si and Silicon-On-Insulator (SOI) substrates. The high temperature (from 25 °C to 150 °C) influence and different channel lengths and fin widths were also taken into account. While the temperature impact on the intrinsic voltage gain (AV) is limited, the unit gain frequency was strongly affected due to the carrier mobility degradation at higher temperatures, for both p- and n-type FinFET structures. In addition, the pFinFETs showed slightly larger AV values compared to the n-type counterparts, whereby the bulk FinFETs presented a higher dispersion than the SOI FinFETs.

  3. A novel 4H-SiC lateral bipolar junction transistor structure with high voltage and high current gain

    NASA Astrophysics Data System (ADS)

    Deng, Yong-Hui; Xie, Gang; Wang, Tao; Sheng, Kuang

    2013-09-01

    In this paper, a novel structure of a 4H-SiC lateral bipolar junction transistor (LBJT) with a base field plate and double RESURF in the drift region is presented. Collector-base junction depletion extension in the base region is restricted by the base field plate. Thin base as well as low base doping of the LBJT therefore can be achieved under the condition of avalanche breakdown. Simulation results show that thin base of 0.32 μm and base doping of 3 × 1017 cm-3 are obtained, and corresponding current gain is as high as 247 with avalanche breakdown voltage of 3309 V when the drift region length is 30 μm. Besides, an investigation of a 4H-SiC vertical BJT (VBJT) with comparable breakdown voltage (3357 V) shows that the minimum base width of 0.25 μm and base doping as high as 8 × 1017 cm-3 contribute to a maximum current gain of only 128.

  4. Multi-level quantum electrodynamic calculation of spontaneous emission and small signal gain in high voltage free electron lasers

    NASA Astrophysics Data System (ADS)

    Chang, C. S.; Fluhler, H. U.

    1991-12-01

    Using the Weisskopf-Wigner technique, a self consistent quantum electrodynamic (SCQED) theory of spontaneous emission of radiation and single photon small signal gain is developed for high voltage free electron lasers (FEL). Excellent agreement is obtained simultaneously to our knowledge for the first time between the predictions and the experimental observations for lineshift, linewidth and gain. The SCQED theory predicts lineshift and broadening due to quantum mechanical effects for linear, helical and tapered undulator FELs which are not predicted by the classical/conventional FEL theories, but which have been observed 4,5,18,22,23,45,46. Excellent agreement is obtained between the SCQED theory predicted spontaneous emission spectra and the 1980?81 ACO FEL4,18, ACO Optical Klystron FEL45,46, Stanford 10.6 ?m FEL22 and Stanford 3.4 ?m FEL23 experimental spectra. This agreement is much better than the prediction from the classical/conventional FEL theory which gives errors of many tens of percent. We show that the spontaneous emission spectrum obtained from classical/conventional FEL theories is valid only in the limit of a short undulator containing a small number of periods. The small signal gain derived from the SCQED theory is shown to reduce to Colson's gain formula12,34 in the classical limit. However, the SCQED theory predicts significant reductions in the small signal gain which agree well with the ACO gain data5, and are not predicted well by Colson's formula. Due to the non-neglible finite electron state lifetime, it is discovered that a fundamental physical gain limit exists which is universal to all types of FELs within the limits of the single photon transition scheme considered (i.e. if multiphoton effects are ignored). Finally, the implications of the theoretically obtained results are discussed for practical conditions of experimental interest. It is shown that under practical experimental conditions quantum effects can be quite important in the

  5. Modelling of nonisolated high-voltage gain boost converters using the PWM switch model

    NASA Astrophysics Data System (ADS)

    Janeth Acosta Alcazar, Yblin; Lessa Tofoli, Fernando; de Souza Oliveira, Demercil, Jr.; Pastor Torrico-Bascopé, René

    2014-08-01

    This paper presents the small-signal models for nonisolated dc-dc boost converters based on the three-state switching cell (3SSC) and voltage multiplier cells (VMCs) by using the concept of pulse-width modulation switch introduced by Vorpérian. Two possible topologies are analysed in the study using one multiplier cell (VMC = 1) and two multiplier cells (VMC = 2). The models are validated by properly comparing the theoretical curves with those obtained in simulation tests. Besides, conventional average current-mode control is implemented in practice for the topology with VMC = 2. An experimental prototype rated at 1 kW is evaluated so that it can be seen that the control system is stable and the dynamic response of the converter is satisfactory.

  6. Gain results for low voltage FEL

    SciTech Connect

    Shaw, A.; Stuart, R.A.; Al-Shamma`a, A.

    1995-12-31

    We have designed and constructed a low voltage (130 kV) FEL system capable of operating in the microwave frequency range for which the electron beam current is cw (rather than pulsed) in time at a level of {approximately} 12 mA. The gain of this system has been measured as a function of the electron beam accelerating voltage and current level, and the input microwave frequency (8-10 GHz). The results are compared with the predictions of a simple theoretical model.

  7. HIGH VOLTAGE GENERATOR

    DOEpatents

    Zito, G.V.

    1959-04-21

    This patent relates to high voltage supply circuits adapted for providing operating voltages for GeigerMueller counter tubes, and is especially directed to an arrangement for maintaining uniform voltage under changing conditions of operation. In the usual power supply arrangement for counter tubes the counter voltage is taken from across the power supply output capacitor. If the count rate exceeds the current delivering capaciiy of the capacitor, the capacitor voltage will drop, decreasing the counter voltage. The present invention provides a multivibrator which has its output voltage controlled by a signal proportional to the counting rate. As the counting rate increases beyond the current delivering capacity of the capacitor, the rectified voltage output from the multivibrator is increased to maintain uniform counter voltage.

  8. High Voltage SPT Performance

    NASA Technical Reports Server (NTRS)

    Manzella, David; Jacobson, David; Jankovsky, Robert

    2001-01-01

    A 2.3 kW stationary plasma thruster designed to operate at high voltage was tested at discharge voltages between 300 and 1250 V. Discharge specific impulses between 1600 and 3700 sec were demonstrated with thrust between 40 and 145 mN. Test data indicated that discharge voltage can be optimized for maximum discharge efficiency. The optimum discharge voltage was between 500 and 700 V for the various anode mass flow rates considered. The effect of operating voltage on optimal magnet field strength was investigated. The effect of cathode flow rate on thruster efficiency was considered for an 800 V discharge.

  9. HIGH VOLTAGE REGULATOR

    DOEpatents

    Wright, B.T.

    1959-06-01

    A high voltage regulator for use with calutrons is described which rapidly restores accelerating voltage after a sudden drop such as is caused by sparking. The rapid restoration characteristic prevents excessive contamination of lighter mass receiver pockets by the heavier mass portion of the beam. (T.R.H.)

  10. High voltage power supply

    NASA Technical Reports Server (NTRS)

    Ruitberg, A. P.; Young, K. M. (Inventor)

    1985-01-01

    A high voltage power supply is formed by three discrete circuits energized by a battery to provide a plurality of concurrent output signals floating at a high output voltage on the order of several tens of kilovolts. In the first two circuits, the regulator stages are pulse width modulated and include adjustable ressistances for varying the duty cycles of pulse trains provided to corresponding oscillator stages while the third regulator stage includes an adjustable resistance for varying the amplitude of a steady signal provided to a third oscillator stage. In the first circuit, the oscillator, formed by a constant current drive network and a tuned resonant network included a step up transformer, is coupled to a second step up transformer which, in turn, supplies an amplified sinusoidal signal to a parallel pair of complementary poled rectifying, voltage multiplier stages to generate the high output voltage.

  11. High voltage pulse generator

    DOEpatents

    Fasching, George E.

    1977-03-08

    An improved high-voltage pulse generator has been provided which is especially useful in ultrasonic testing of rock core samples. An N number of capacitors are charged in parallel to V volts and at the proper instance are coupled in series to produce a high-voltage pulse of N times V volts. Rapid switching of the capacitors from the paralleled charging configuration to the series discharging configuration is accomplished by using silicon-controlled rectifiers which are chain self-triggered following the initial triggering of a first one of the rectifiers connected between the first and second of the plurality of charging capacitors. A timing and triggering circuit is provided to properly synchronize triggering pulses to the first SCR at a time when the charging voltage is not being applied to the parallel-connected charging capacitors. Alternate circuits are provided for controlling the application of the charging voltage from a charging circuit to be applied to the parallel capacitors which provides a selection of at least two different intervals in which the charging voltage is turned "off" to allow the SCR's connecting the capacitors in series to turn "off" before recharging begins. The high-voltage pulse-generating circuit including the N capacitors and corresponding SCR's which connect the capacitors in series when triggered "on" further includes diodes and series-connected inductors between the parallel-connected charging capacitors which allow sufficiently fast charging of the capacitors for a high pulse repetition rate and yet allow considerable control of the decay time of the high-voltage pulses from the pulse-generating circuit.

  12. Collapsible high gain antenna

    NASA Technical Reports Server (NTRS)

    Cribb, H. E. (Inventor)

    1973-01-01

    A lightweight small high gain antenna which is capable of being packaged in a collapsed form and automatically expanded when in use is described. The antenna includes a cylindrical housing having a rod with a piston adjacent to one end extending through it. Attached to the outer end of the rod in a normally collapsed state is a helical wire coil. When the gas producing means is activated the piston and rod are shifted outwardly to expand the wire coil. A latch is provided for holding the helical coil in the expanded position.

  13. Helicopter high gain control

    NASA Technical Reports Server (NTRS)

    Cunningham, T. B.; Nunn, E. C.

    1979-01-01

    High gain control is explored through a design study of the CH-47B helicopter. The plans are designed to obtain the maximum bandwidth possible given the hardware constraints. Controls are designed with modal control theory to specific bandwidths and closed loop mode shapes. Comparisons are made to an earlier complementary filter approach. Bandwidth improvement by removal of limitations is explored in order to establish hardware and mechanization options. Improvements in the pitch axis control system and in the rate gyro sensor noise characteristics in all axes are discussed. The use of rotor state feedback is assessed.

  14. High voltage distributed amplifier

    NASA Astrophysics Data System (ADS)

    Willems, D.; Bahl, I.; Wirsing, K.

    1991-12-01

    A high-voltage distributed amplifier implemented in GaAs MMIC technology has demonstrated good circuit performance over at least two octave bandwidth. This technique allows for very broadband amplifier operation with good efficiency in satellite, active-aperture radar, and battery-powered systems. Also, by increasing the number of FETs, the amplifier can be designed to match different voltage rails. The circuit does require a small amount of additional chip size over conventional distributed amplifiers but does not require power dividers or additional matching networks. This circuit configuration should find great use in broadband power amplifier design.

  15. Compact high voltage battery

    SciTech Connect

    Kinsman, G.F.; Land, E.H.

    1980-03-18

    A high voltage, low impedance laminar battery comprising a stack of series connected cells confined under pressure in a housing is described. The cells comprise laminar anodes, cathodes and separators. The cells are connected in series by laminar conductive intercell connectors. An annular spacer is associated with each cell. The spacers are separated by interdigitated ones of the separators and intercell connectors.

  16. High Voltage Insulation Technology

    NASA Astrophysics Data System (ADS)

    Scherb, V.; Rogalla, K.; Gollor, M.

    2008-09-01

    In preparation of new Electronic Power Conditioners (EPC's) for Travelling Wave Tub Amplifiers (TWTA's) on telecom satellites a study for the development of new high voltage insulation technology is performed. The initiative is mandatory to allow compact designs and to enable higher operating voltages. In a first task a market analysis was performed, comparing different materials with respect to their properties and processes. A hierarchy of selection criteria was established and finally five material candidates (4 Epoxy resins and 1 Polyurethane resin) were selected to be further investigated in the test program. Samples for the test program were designed to represent core elements of an EPC, the high voltage transformer and Printed Circuit Boards of the high voltage section. All five materials were assessed in the practical work flow of the potting process and electrical, mechanical, thermal and lifetime testing was performed. Although the lifetime tests results were overlayed by a larges scatter, finally two candidates have been identified for use in a subsequent qualification program. This activity forms part of element 5 of the ESA ARTES Programme.

  17. High voltage variable diameter insulator

    DOEpatents

    Vanacek, D.L.; Pike, C.D.

    1982-07-13

    A high voltage feedthrough assembly having a tubular insulator extending between the ground plane ring and the high voltage ring. The insulator is made of Pyrex and decreases in diameter from the ground plane ring to the high voltage ring, producing equipotential lines almost perpendicular to the wall of the insulator to optimize the voltage-holding capability of the feedthrough assembly.

  18. High Voltage Seismic Generator

    NASA Astrophysics Data System (ADS)

    Bogacz, Adrian; Pala, Damian; Knafel, Marcin

    2015-04-01

    This contribution describes the preliminary result of annual cooperation of three student research groups from AGH UST in Krakow, Poland. The aim of this cooperation was to develop and construct a high voltage seismic wave generator. Constructed device uses a high-energy electrical discharge to generate seismic wave in ground. This type of device can be applied in several different methods of seismic measurement, but because of its limited power it is mainly dedicated for engineering geophysics. The source operates on a basic physical principles. The energy is stored in capacitor bank, which is charged by two stage low to high voltage converter. Stored energy is then released in very short time through high voltage thyristor in spark gap. The whole appliance is powered from li-ion battery and controlled by ATmega microcontroller. It is possible to construct larger and more powerful device. In this contribution the structure of device with technical specifications is resented. As a part of the investigation the prototype was built and series of experiments conducted. System parameter was measured, on this basis specification of elements for the final device were chosen. First stage of the project was successful. It was possible to efficiently generate seismic waves with constructed device. Then the field test was conducted. Spark gap wasplaced in shallowborehole(0.5 m) filled with salt water. Geophones were placed on the ground in straight line. The comparison of signal registered with hammer source and sparker source was made. The results of the test measurements are presented and discussed. Analysis of the collected data shows that characteristic of generated seismic signal is very promising, thus confirms possibility of practical application of the new high voltage generator. The biggest advantage of presented device after signal characteristics is its size which is 0.5 x 0.25 x 0.2 m and weight approximately 7 kg. This features with small li-ion battery makes

  19. High voltage pulse conditioning

    DOEpatents

    Springfield, Ray M.; Wheat, Jr., Robert M.

    1990-01-01

    Apparatus for conditioning high voltage pulses from particle accelerators in order to shorten the rise times of the pulses. Flashover switches in the cathode stalk of the transmission line hold off conduction for a determinable period of time, reflecting the early portion of the pulses. Diodes upstream of the switches divert energy into the magnetic and electrostatic storage of the capacitance and inductance inherent to the transmission line until the switches close.

  20. Insulators for high voltages

    SciTech Connect

    Looms, J.S.T.

    1987-01-01

    This book describes electrical insulators for high voltage applications. Topics considered include the insulating materials, the manufacture of wet process porcelain, the manufacture of tempered glass, the glass-fibre core, the polymeric housing, the common problem - terminating an insulator, mechanical constraints, the physics of pollution flashover, the physics of contamination, testing of insulators, conclusions from testing, remedies for flashover, insulators for special cases, interference and noise, and the insulator of the future.

  1. HIGH VOLTAGE GENERATOR

    DOEpatents

    Schwemin, A.J.

    1959-03-17

    A generator is presented for producing relatively large currents at high voltages. In general, the invention comprises a plurality of capacitors connected in series by a plurality of switches alternately disposed with the capacitors. The circuit is mounted for movement with respect to contact members and switch closure means so that a load device and power supply are connected across successive numbers of capacitors, while the other capacitors are successively charged with the same power supply.

  2. High voltage generator

    DOEpatents

    Schwemin, A. J.

    1959-03-17

    A generator for producing relatively large currents at high voltages is described. In general, the invention comprises a plurality of capacitors connected in series by a plurality of switches alternately disposed with the capacitors. The above-noted circuit is mounted for movement with respect to contact members and switch closure means so that a load device and power supply are connected across successive numbers of capacitors, while the other capacitors are successively charged with the same power supply.

  3. HIGH VOLTAGE ION SOURCE

    DOEpatents

    Luce, J.S.

    1960-04-19

    A device is described for providing a source of molecular ions having a large output current and with an accelerated energy of the order of 600 kv. Ions are produced in an ion source which is provided with a water-cooled source grid of metal to effect maximum recombination of atomic ions to molecular ions. A very high accelerating voltage is applied to withdraw and accelerate the molecular ions from the source, and means are provided for dumping the excess electrons at the lowest possible potentials. An accelerating grid is placed adjacent to the source grid and a slotted, grounded accelerating electrode is placed adjacent to the accelerating grid. A potential of about 35 kv is maintained between the source grid and accelerating grid, and a potential of about 600 kv is maintained between the accelerating grid and accelerating electrode. In order to keep at a minimum the large number of oscillating electrons which are created when such high voltages are employed in the vicinity of a strong magnetic field, a plurality of high voltage cascaded shields are employed with a conventional electron dumping system being employed between each shield so as to dump the electrons at the lowest possible potential rather than at 600 kv.

  4. High voltage DC power supply

    DOEpatents

    Droege, T.F.

    1989-12-19

    A high voltage DC power supply having a first series resistor at the output for limiting current in the event of a short-circuited output, a second series resistor for sensing the magnitude of output current, and a voltage divider circuit for providing a source of feedback voltage for use in voltage regulation is disclosed. The voltage divider circuit is coupled to the second series resistor so as to compensate the feedback voltage for a voltage drop across the first series resistor. The power supply also includes a pulse-width modulated control circuit, having dual clock signals, which is responsive to both the feedback voltage and a command voltage, and also includes voltage and current measuring circuits responsive to the feedback voltage and the voltage developed across the second series resistor respectively. 7 figs.

  5. High voltage DC power supply

    DOEpatents

    Droege, Thomas F.

    1989-01-01

    A high voltage DC power supply having a first series resistor at the output for limiting current in the event of a short-circuited output, a second series resistor for sensing the magnitude of output current, and a voltage divider circuit for providing a source of feedback voltage for use in voltage regulation is disclosed. The voltage divider circuit is coupled to the second series resistor so as to compensate the feedback voltage for a voltage drop across the first series resistor. The power supply also includes a pulse-width modulated control circuit, having dual clock signals, which is responsive to both the feedback voltage and a command voltage, and also includes voltage and current measuring circuits responsive to the feedback voltage and the voltage developed across the second series resistor respectively.

  6. APPARATUS FOR REGULATING HIGH VOLTAGE

    DOEpatents

    Morrison, K.G.

    1951-03-20

    This patent describes a high-voltage regulator of the r-f type wherein the modulation of the r-f voltage is accomplished at a high level, resulting in good stabilization over a large range of load conditions.

  7. Crystal oscillators using negative voltage gain, single pole response amplifiers

    NASA Technical Reports Server (NTRS)

    Kleinberg, Leonard L. (Inventor)

    1989-01-01

    A simple and inexpensive crystal oscillator is provided which employs negative voltage gain, single pole response amplifiers. The amplifiers may include such configurations as gate inverters, operational amplifiers and conventional bipolar transistor amplifiers, all of which operate at a frequency which is on the roll-off portion of their gain versus frequency curve. Several amplifier feedback circuit variations are employed to set desired bias levels and to allow the oscillator to operate at the crystal's fundamental frequency or at an overtone of the fundamental frequency. The oscillator is made less expensive than comparable oscillators by employing relatively low frequency amplifiers and operating them at roll-off, at frequencies beyond which they are customarily used. Simplicity is provided because operation at roll-off eliminates components ordinarily required in similar circuits to provide sufficient phase-shift in the feedback circuitry for oscillation to occur.

  8. High voltage variable diameter insulator

    DOEpatents

    Vanecek, David L.; Pike, Chester D.

    1984-01-01

    A high voltage feedthrough assembly (10) having a tubular insulator (15) extending between the ground plane ring (16) and the high voltage ring (30). The insulator (15) is made of Pyrex and decreases in diameter from the ground plane ring (16) to the high voltage ring (30), producing equipotential lines almost perpendicular to the wall (27) of the insulator (15) to optimize the voltage-holding capability of the feedthrough assembly (10).

  9. High voltage isolation transformer

    NASA Technical Reports Server (NTRS)

    Clatterbuck, C. H.; Ruitberg, A. P. (Inventor)

    1985-01-01

    A high voltage isolation transformer is provided with primary and secondary coils separated by discrete electrostatic shields from the surfaces of insulating spools on which the coils are wound. The electrostatic shields are formed by coatings of a compound with a low electrical conductivity which completely encase the coils and adhere to the surfaces of the insulating spools adjacent to the coils. Coatings of the compound also line axial bores of the spools, thereby forming electrostatic shields separating the spools from legs of a ferromagnetic core extending through the bores. The transformer is able to isolate a high constant potential applied to one of its coils, without the occurrence of sparking or corona, by coupling the coatings, lining the axial bores to the ferromagnetic core and by coupling one terminal of each coil to the respective coating encasing the coil.

  10. High Voltage TAL Performance

    NASA Technical Reports Server (NTRS)

    Jacobson, David T.; Jankovsky, Robert S.; Rawlin, Vincent K.; Manzella, David H.

    2001-01-01

    The performance of a two-stage, anode layer Hall thruster was evaluated. Experiments were conducted in single and two-stage configurations. In single-stage configuration, the thruster was operated with discharge voltages ranging from 300 to 1700 V. Discharge specific impulses ranged from 1630 to 4140 sec. Thruster investigations were conducted with input power ranging from 1 to 8.7 kW, corresponding to power throttling of nearly 9: 1. An extensive two-stage performance map was generated. Data taken with total voltage (sum of discharge and accelerating voltage) constant revealed a decrease in thruster efficiency as the discharge voltage was increased. Anode specific impulse values were comparable in the single and two-stage configurations showing no strong advantage for two-stage operation.

  11. Low voltage to high voltage level shifter and related methods

    NASA Technical Reports Server (NTRS)

    Mentze, Erik J. (Inventor); Hess, Herbert L. (Inventor); Buck, Kevin M. (Inventor); Cox, David F. (Inventor)

    2006-01-01

    A shifter circuit comprises a high and low voltage buffer stages and an output buffer stage. The high voltage buffer stage comprises multiple transistors arranged in a transistor stack having a plurality of intermediate nodes connecting individual transistors along the stack. The transistor stack is connected between a voltage level being shifted to and an input voltage. An inverter of this stage comprises multiple inputs and an output. Inverter inputs are connected to a respective intermediate node of the transistor stack. The low voltage buffer stage has an input connected to the input voltage and an output, and is operably connected to the high voltage buffer stage. The low voltage buffer stage is connected between a voltage level being shifted away from and a lower voltage. The output buffer stage is driven by the outputs of the high voltage buffer stage inverter and the low voltage buffer stage.

  12. Improved Drain Current Saturation and Voltage Gain in Graphene-on-Silicon Field Effect Transistors.

    PubMed

    Song, Seung Min; Bong, Jae Hoon; Hwang, Wan Sik; Cho, Byung Jin

    2016-01-01

    Graphene devices for radio frequency (RF) applications are of great interest due to their excellent carrier mobility and saturation velocity. However, the insufficient current saturation in graphene field effect transistors (FETs) is a barrier preventing enhancements of the maximum oscillation frequency and voltage gain, both of which should be improved for RF transistors. Achieving a high output resistance is therefore a crucial step for graphene to be utilized in RF applications. In the present study, we report high output resistances and voltage gains in graphene-on-silicon (GoS) FETs. This is achieved by utilizing bare silicon as a supporting substrate without an insulating layer under the graphene. The GoSFETs exhibit a maximum output resistance of 2.5 MΩ∙μm, maximum intrinsic voltage gain of 28 dB, and maximum voltage gain of 9 dB. This method opens a new route to overcome the limitations of conventional graphene-on-insulator (GoI) FETs and subsequently brings graphene electronics closer to practical usage. PMID:27142861

  13. Improved Drain Current Saturation and Voltage Gain in Graphene–on–Silicon Field Effect Transistors

    PubMed Central

    Song, Seung Min; Bong, Jae Hoon; Hwang, Wan Sik; Cho, Byung Jin

    2016-01-01

    Graphene devices for radio frequency (RF) applications are of great interest due to their excellent carrier mobility and saturation velocity. However, the insufficient current saturation in graphene field effect transistors (FETs) is a barrier preventing enhancements of the maximum oscillation frequency and voltage gain, both of which should be improved for RF transistors. Achieving a high output resistance is therefore a crucial step for graphene to be utilized in RF applications. In the present study, we report high output resistances and voltage gains in graphene-on-silicon (GoS) FETs. This is achieved by utilizing bare silicon as a supporting substrate without an insulating layer under the graphene. The GoSFETs exhibit a maximum output resistance of 2.5 MΩ∙μm, maximum intrinsic voltage gain of 28 dB, and maximum voltage gain of 9 dB. This method opens a new route to overcome the limitations of conventional graphene-on-insulator (GoI) FETs and subsequently brings graphene electronics closer to practical usage. PMID:27142861

  14. Improved Drain Current Saturation and Voltage Gain in Graphene–on–Silicon Field Effect Transistors

    NASA Astrophysics Data System (ADS)

    Song, Seung Min; Bong, Jae Hoon; Hwang, Wan Sik; Cho, Byung Jin

    2016-05-01

    Graphene devices for radio frequency (RF) applications are of great interest due to their excellent carrier mobility and saturation velocity. However, the insufficient current saturation in graphene field effect transistors (FETs) is a barrier preventing enhancements of the maximum oscillation frequency and voltage gain, both of which should be improved for RF transistors. Achieving a high output resistance is therefore a crucial step for graphene to be utilized in RF applications. In the present study, we report high output resistances and voltage gains in graphene-on-silicon (GoS) FETs. This is achieved by utilizing bare silicon as a supporting substrate without an insulating layer under the graphene. The GoSFETs exhibit a maximum output resistance of 2.5 MΩ•μm, maximum intrinsic voltage gain of 28 dB, and maximum voltage gain of 9 dB. This method opens a new route to overcome the limitations of conventional graphene-on-insulator (GoI) FETs and subsequently brings graphene electronics closer to practical usage.

  15. Self-consistent quantum-electrodynamic calculation of spontaneous emission and small-signal gain in high-voltage free-electron lasers

    NASA Astrophysics Data System (ADS)

    Chang, C. S.; Fluhler, H. U.

    1990-10-01

    A self-consistent QED (SCQED) theory of spontaneous emission of radiation and single-photon small-signal gain (SSG) is developed for FELs using the Weisskopf-Wigner method. The results agree with existing experimental data on both the line broadening and the line shift and to a reasonable extent with the measured gain. It is shown that the spontaneous-emission spectrum obtained from classical or conventional FEL theories is valid only in the limit of a short undulator that contains a small number of periods. The SSG derived from the SCQED theory is shown to reduce to Colson's (1977) gain formula in the classical limit. However, the SCQED theory predicts significant reductions in the SSG that agree well with the ACO gain data and are not predicted well by Colson's formula. It is discovered that a fundamental physical gain limit exists that is universal to all types of FELs within the limits of the single-photon transition scheme considered.

  16. Temperature controlled high voltage regulator

    DOEpatents

    Chiaro, Jr., Peter J.; Schulze, Gerald K.

    2004-04-20

    A temperature controlled high voltage regulator for automatically adjusting the high voltage applied to a radiation detector is described. The regulator is a solid state device that is independent of the attached radiation detector, enabling the regulator to be used by various models of radiation detectors, such as gas flow proportional radiation detectors.

  17. High voltage lightning grounding device

    NASA Technical Reports Server (NTRS)

    Hoffman, R. G.; Peterson, V. S.

    1971-01-01

    Grounding device insertion in wire termination cabinets and terminal block modification prevent lightning-induced high voltage transients from reaching inputs or outputs of solid state instruments and control systems. Installation minimizes wiring confusion and achieves 100 percent protection.

  18. High voltage solar array experiments

    NASA Technical Reports Server (NTRS)

    Kennerud, K. L.

    1974-01-01

    The interaction between the components of a high voltage solar array and a simulated space plasma is studied to obtain data for the design of a high voltage solar array capable of 15kW at 2 to 16kV. Testing was conducted in a vacuum chamber 1.5-m long by 1.5-m diameter having a plasma source which simulated the plasma conditions existing in earth orbit between 400 nautical miles and synchronous altitude. Test samples included solar array segments pinholes in insulation covering high voltage electrodes, and plain dielectric samples. Quantitative data are presented in the areas of plasma power losses, plasma and high voltage induced damage, and dielectric properties. Limitations of the investigation are described.

  19. Improved Programmable High-Voltage Power Supply

    NASA Technical Reports Server (NTRS)

    Castell, Karen; Rutberg, Arthur

    1994-01-01

    Improved dc-to-dc converter functions as programmable high-voltage power supply with low-power-dissipation voltage regulator on high-voltage side. Design of power supply overcomes deficiencies of older designs. Voltage regulation with low power dissipation provided on high-voltage side.

  20. Mechanisms of gain control by voltage-gated channels in intrinsically-firing neurons.

    PubMed

    Patel, Ameera X; Burdakov, Denis

    2015-01-01

    Gain modulation is a key feature of neural information processing, but underlying mechanisms remain unclear. In single neurons, gain can be measured as the slope of the current-frequency (input-output) relationship over any given range of inputs. While much work has focused on the control of basal firing rates and spike rate adaptation, gain control has been relatively unstudied. Of the limited studies on gain control, some have examined the roles of synaptic noise and passive somatic currents, but the roles of voltage-gated channels present ubiquitously in neurons have been less explored. Here, we systematically examined the relationship between gain and voltage-gated ion channels in a conductance-based, tonically-active, model neuron. Changes in expression (conductance density) of voltage-gated channels increased (Ca2+ channel), reduced (K+ channels), or produced little effect (h-type channel) on gain. We found that the gain-controlling ability of channels increased exponentially with the steepness of their activation within the dynamic voltage window (voltage range associated with firing). For depolarization-activated channels, this produced a greater channel current per action potential at higher firing rates. This allowed these channels to modulate gain by contributing to firing preferentially at states of higher excitation. A finer analysis of the current-voltage relationship during tonic firing identified narrow voltage windows at which the gain-modulating channels exerted their effects. As a proof of concept, we show that h-type channels can be tuned to modulate gain by changing the steepness of their activation within the dynamic voltage window. These results show how the impact of an ion channel on gain can be predicted from the relationship between channel kinetics and the membrane potential during firing. This is potentially relevant to understanding input-output scaling in a wide class of neurons found throughout the brain and other nervous systems

  1. High Voltage Space Solar Arrays

    NASA Technical Reports Server (NTRS)

    Ferguson, D. C.; Hillard, G. B.; Vayner, B. V.; Galofaro, J. T.; Lyons, Valerie (Technical Monitor)

    2002-01-01

    Recent tests performed at the NASA Glenn Research Center and elsewhere have shown promise in the design and construction of high voltage (300-1000 V) solar arrays for space applications. Preliminary results and implications for solar array design will be discussed, with application to direct-drive electric propulsion and space solar power.

  2. LHCb calorimeters high voltage system

    NASA Astrophysics Data System (ADS)

    Gilitsky, Yu.; Golutvin, A.; Konoplyannikov, A.; Lefrancois, J.; Perret, P.; Schopper, A.; Soldatov, M.; Yakimchuk, V.

    2007-02-01

    The calorimeter system in LHCb aims to identify electrons, photons and hadrons. All calorimeters are equipped with Hamamatsu photo tubes as devices for light to signal conversion. Eight thousand R7899-20 tubes are used for electromagnetic and hadronic calorimeters and two hundred 64 channels multi-anode R7600-00-M64 for Scintillator-Pad/Preshower detectors. The calorimeter high voltage (HV) system is based on a Cockroft Walton (CW) voltage converter and a control board connected to the Experiment Control System (ECS) by serial bus. The base of each photomultiplier tube (PMT) is built with a high voltage converter and constructed on an individual printed circuit board, using compact surface mount components. The base is attached directly to the PMT. There are no HV cables in the system. A Field Programmable Gate Array (FPGA) is used on the control board as an interface between the ECS and the 200 control channels. The FPGA includes also additional functionalities allowing automated monitoring and ramp up of the high voltage values. This paper describes the HV system architecture, some technical details of the electronics implementation and summarizes the system performance. This safe and low power consumption HV electronic system for the photomultiplier tubes can be used for various biomedical apparatus too.

  3. High-Voltage Droplet Dispenser

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.

    2003-01-01

    An apparatus that is extremely effective in dispensing a wide range of droplets has been developed. This droplet dispenser is unique in that it utilizes a droplet bias voltage, as well as an ionization pulse, to release a droplet. Apparatuses that deploy individual droplets have been used in many applications, including, notably, study of combustion of liquid fuels. Experiments on isolated droplets are useful in that they enable the study of droplet phenomena under well-controlled and simplified conditions. In this apparatus, a syringe dispenses a known value of liquid, which emerges from, and hangs onto, the outer end of a flat-tipped, stainless steel needle. Somewhat below the needle tip and droplet is a ring electrode. A bias high voltage, followed by a high-voltage pulse, is applied so as to attract the droplet sufficiently to pull it off the needle. The voltages are such that the droplet and needle are negatively charged and the ring electrode is positively charged.

  4. High-voltage CMOS detectors

    NASA Astrophysics Data System (ADS)

    Ehrler, F.; Blanco, R.; Leys, R.; Perić, I.

    2016-07-01

    High-voltage CMOS (HVCMOS) pixel sensors are depleted active pixel sensors implemented in standard commercial CMOS processes. The sensor element is the n-well/p-substrate diode. The sensor electronics are entirely placed inside the n-well which is at the same time used as the charge collection electrode. High voltage is used to deplete the part of the substrate around the n-well. HVCMOS sensors allow implementation of complex in-pixel electronics. This, together with fast signal collection, allows a good time resolution, which is required for particle tracking in high energy physics. HVCMOS sensors will be used in Mu3e experiment at PSI and are considered as an option for both ATLAS and CLIC (CERN). Radiation tolerance and time walk compensation have been tested and results are presented.

  5. High voltage photovoltaic power converter

    DOEpatents

    Haigh, Ronald E.; Wojtczuk, Steve; Jacobson, Gerard F.; Hagans, Karla G.

    2001-01-01

    An array of independently connected photovoltaic cells on a semi-insulating substrate contains reflective coatings between the cells to enhance efficiency. A uniform, flat top laser beam profile is illuminated upon the array to produce electrical current having high voltage. An essentially wireless system includes a laser energy source being fed through optic fiber and cast upon the photovoltaic cell array to prevent stray electrical signals prior to use of the current from the array. Direct bandgap, single crystal semiconductor materials, such as GaAs, are commonly used in the array. Useful applications of the system include locations where high voltages are provided to confined spaces such as in explosive detonation, accelerators, photo cathodes and medical appliances.

  6. TRANSISTOR HIGH VOLTAGE POWER SUPPLY

    DOEpatents

    Driver, G.E.

    1958-07-15

    High voltage, direct current power supplies are described for use with battery powered nuclear detection equipment. The particular advantages of the power supply described, are increased efficiency and reduced size and welght brought about by the use of transistors in the circuit. An important feature resides tn the employment of a pair of transistors in an alternatefiring oscillator circuit having a coupling transformer and other circuit components which are used for interconnecting the various electrodes of the transistors.

  7. Fast thermonuclear ignition with two nested high current lower voltage - high voltage lower current magnetically insulated transmission lines

    NASA Astrophysics Data System (ADS)

    Winterberg, F.

    2003-11-01

    Fast thermonuclear ignition with a high gain seems possible with two Marx generators feeding two nested magnetically insulated transmission lines, one delivering a high current lower voltage pulse for compression and confinement, and one delivering a high voltage lower current pulse for fast ignition. With an input energy conceivably as small as 100 kJ the gain can be as large as 10 3. The concept not only would be by orders of magnitude less expensive than laser compression and fast ignition schemes, but because of the large gain with a small yield also be more suitable for a thermonuclear reactor.

  8. Crosstalk in x-ray framing cameras: Effect on voltage, gain, and timing (invited).

    PubMed

    Benedetti, L R; Bell, P M; Bradley, D K; Brown, C G; Glenn, S M; Heeter, R; Holder, J P; Izumi, N; Khan, S F; Lacaille, G; Simanovskaia, N; Smalyuk, V A; Thomas, R

    2012-10-01

    We present evidence that electromagnetic crosstalk between independent strips in gated x-ray framing cameras can affect relative gains by up to an order of magnitude and gate arrival times up to tens of picoseconds when strip separation times are less then ∼1 ns. Crosstalk is observed by multiple methods, and it is confirmed by direct measurements of voltage on the active surface of the detector and also by indirect voltage monitors in routine operation. The voltage measurements confirm that crosstalk is produced not only in the active regions of the microchannel plate, but also along the entire input path of the voltage pulses. PMID:23126956

  9. High voltage RF feedthrough bushing

    DOEpatents

    Grotz, Glenn F.

    1984-01-01

    Described is a multi-element, high voltage radio frequency bushing for trmitting RF energy to an antenna located in a vacuum container. The bushing includes a center conductor of complex geometrical shape, an outer coaxial shield conductor, and a thin-walled hollow truncated cone insulator disposed between central and outer conductors. The shape of the center conductor, which includes a reverse curvature portion formed of a radially inwardly directed shoulder and a convex portion, controls the uniformity of the axial surface gradient on the insulator cone. The outer shield has a first substantially cylindrical portion and a second radially inwardly extending truncated cone portion.

  10. High Voltage TAL Erosion Characterization

    NASA Technical Reports Server (NTRS)

    Jacobson, David T.

    2003-01-01

    Extended operation of a D-80 anode layer thruster at high voltage was investigated. The thruster was operated for 1200 hours at 700 Volts and 4 Amperes. Laser profilometry was employed to quantify the erosion of the thruster's graphite guard rings and electrodes at 0, 300, 600, 900, and 1200 hours. Thruster performance and electrical characteristics were monitored over the duration of the investigation. The guard rings exhibited asymmetric erosion that was greatest in the region of the cathode. Erosion of the guard rings exposed the magnet poles between 600 to 900 hours of operation.

  11. High current gain transistor laser.

    PubMed

    Liang, Song; Qiao, Lijun; Zhu, Hongliang; Wang, Wei

    2016-01-01

    A transistor laser (TL), having the structure of a transistor with multi-quantum wells near its base region, bridges the functionality gap between lasers and transistors. However, light emission is produced at the expense of current gain for all the TLs reported up to now, leading to a very low current gain. We propose a novel design of TLs, which have an n-doped InP layer inserted in the emitter ridge. Numerical studies show that a current flow aperture for only holes can be formed in the center of the emitter ridge. As a result, the common emitter current gain can be as large as 143.3, which is over 15 times larger than that of a TL without the aperture. Besides, the effects of nonradiative recombination defects can be reduced greatly because the flow of holes is confined in the center region of the emitter ridge. PMID:27282466

  12. High current gain transistor laser

    NASA Astrophysics Data System (ADS)

    Liang, Song; Qiao, Lijun; Zhu, Hongliang; Wang, Wei

    2016-06-01

    A transistor laser (TL), having the structure of a transistor with multi-quantum wells near its base region, bridges the functionality gap between lasers and transistors. However, light emission is produced at the expense of current gain for all the TLs reported up to now, leading to a very low current gain. We propose a novel design of TLs, which have an n-doped InP layer inserted in the emitter ridge. Numerical studies show that a current flow aperture for only holes can be formed in the center of the emitter ridge. As a result, the common emitter current gain can be as large as 143.3, which is over 15 times larger than that of a TL without the aperture. Besides, the effects of nonradiative recombination defects can be reduced greatly because the flow of holes is confined in the center region of the emitter ridge.

  13. High current gain transistor laser

    PubMed Central

    Liang, Song; Qiao, Lijun; Zhu, Hongliang; Wang, Wei

    2016-01-01

    A transistor laser (TL), having the structure of a transistor with multi-quantum wells near its base region, bridges the functionality gap between lasers and transistors. However, light emission is produced at the expense of current gain for all the TLs reported up to now, leading to a very low current gain. We propose a novel design of TLs, which have an n-doped InP layer inserted in the emitter ridge. Numerical studies show that a current flow aperture for only holes can be formed in the center of the emitter ridge. As a result, the common emitter current gain can be as large as 143.3, which is over 15 times larger than that of a TL without the aperture. Besides, the effects of nonradiative recombination defects can be reduced greatly because the flow of holes is confined in the center region of the emitter ridge. PMID:27282466

  14. High-frequency graphene voltage amplifier.

    PubMed

    Han, Shu-Jen; Jenkins, Keith A; Valdes Garcia, Alberto; Franklin, Aaron D; Bol, Ageeth A; Haensch, Wilfried

    2011-09-14

    While graphene transistors have proven capable of delivering gigahertz-range cutoff frequencies, applying the devices to RF circuits has been largely hindered by the lack of current saturation in the zero band gap graphene. Herein, the first high-frequency voltage amplifier is demonstrated using large-area chemical vapor deposition grown graphene. The graphene field-effect transistor (GFET) has a 6-finger gate design with gate length of 500 nm. The graphene common-source amplifier exhibits ∼5 dB low frequency gain with the 3 dB bandwidth greater than 6 GHz. This first AC voltage gain demonstration of a GFET is attributed to the clear current saturation in the device, which is enabled by an ultrathin gate dielectric (4 nm HfO(2)) of the embedded gate structures. The device also shows extrinsic transconductance of 1.2 mS/μm at 1 V drain bias, the highest for graphene FETs using large-scale graphene reported to date. PMID:21805988

  15. A near infrared organic photodiode with gain at low bias voltage

    SciTech Connect

    Campbell, Ian H; Crone, Brian K

    2009-01-01

    We demonstrate an organic photodiode with near infrared optical response out to about 1100 run with a gain of {approx}10 at 1000 run under 5V reverse bias. The diodes employ a soluble naphthalocyanine with a peak absorption coefficient of {approx}10{sup 5} cm{sup -1} at 1000 nm. In contrast to most organic photodiodes, no exciton dissociating material is used. At zero bias, the diodes are inefficient with an external quantum efficiency of {approx} 10{sup -2}. In reverse bias, large gain occurs and is linear with bias voltage above 4V. The observed gain is consistent with a photoconductive gain mechanism.

  16. High voltage load resistor array

    DOEpatents

    Lehmann, Monty Ray

    2005-01-18

    A high voltage resistor comprising an array of a plurality of parallel electrically connected resistor elements each containing a resistive solution, attached at each end thereof to an end plate, and about the circumference of each of the end plates, a corona reduction ring. Each of the resistor elements comprises an insulating tube having an electrode inserted into each end thereof and held in position by one or more hose clamps about the outer periphery of the insulating tube. According to a preferred embodiment, the electrode is fabricated from stainless steel and has a mushroom shape at one end, that inserted into the tube, and a flat end for engagement with the end plates that provides connection of the resistor array and with a load.

  17. High voltage feed through bushing

    DOEpatents

    Brucker, J.P.

    1993-04-06

    A feed through bushing for a high voltage diode provides for using compression sealing for all sealing surfaces. A diode assembly includes a central conductor extending through the bushing and a grading ring assembly circumferentially surrounding and coaxial with the central conductor. A flexible conductive plate extends between and compressively seals against the central conductor and the grading ring assembly, wherein the flexibility of the plate allows inner and outer portions of the plate to axially translate for compression sealing against the central conductor and the grading ring assembly, respectively. The inner portion of the plate is bolted to the central conductor for affecting sealing. A compression beam is also bolted to the central conductor and engages the outer portion of the plate to urge the outer portion toward the grading ring assembly to obtain compression sealing therebetween.

  18. Low power, scalable multichannel high voltage controller

    DOEpatents

    Stamps, James Frederick; Crocker, Robert Ward; Yee, Daniel Dadwa; Dils, David Wright

    2006-03-14

    A low voltage control circuit is provided for individually controlling high voltage power provided over bus lines to a multitude of interconnected loads. An example of a load is a drive for capillary channels in a microfluidic system. Control is distributed from a central high voltage circuit, rather than using a number of large expensive central high voltage circuits to enable reducing circuit size and cost. Voltage is distributed to each individual load and controlled using a number of high voltage controller channel switches connected to high voltage bus lines. The channel switches each include complementary pull up and pull down photo isolator relays with photo isolator switching controlled from the central high voltage circuit to provide a desired bus line voltage. Switching of the photo isolator relays is further controlled in each channel switch using feedback from a resistor divider circuit to maintain the bus voltage swing within desired limits. Current sensing is provided using a switched resistive load in each channel switch, with switching of the resistive loads controlled from the central high voltage circuit.

  19. Low power, scalable multichannel high voltage controller

    DOEpatents

    Stamps, James Frederick; Crocker, Robert Ward; Yee, Daniel Dadwa; Dils, David Wright

    2008-03-25

    A low voltage control circuit is provided for individually controlling high voltage power provided over bus lines to a multitude of interconnected loads. An example of a load is a drive for capillary channels in a microfluidic system. Control is distributed from a central high voltage circuit, rather than using a number of large expensive central high voltage circuits to enable reducing circuit size and cost. Voltage is distributed to each individual load and controlled using a number of high voltage controller channel switches connected to high voltage bus lines. The channel switches each include complementary pull up and pull down photo isolator relays with photo isolator switching controlled from the central high voltage circuit to provide a desired bus line voltage. Switching of the photo isolator relays is further controlled in each channel switch using feedback from a resistor divider circuit to maintain the bus voltage swing within desired limits. Current sensing is provided using a switched resistive load in each channel switch, with switching of the resistive loads controlled from the central high voltage circuit.

  20. Very high gain Nd:YLF amplifiers

    SciTech Connect

    Knights, M.G.; Thomas, M.D.; Chicklis, E.P.; Rines, G.A.; Seka, W.

    1988-05-01

    The authors report on high gain Nd:YLF rod amplifiers in which single-pass, small signal gains of over 1700 have been obtained along with stored energy densitiesgreater than or equal to0.4J/cm/sup 3/. The ability of Nd:YLF amplifiers to support such gains is a result of high parasitic oscillation thresholds, due primarily to the low refractive index of the material. These results suggest that Nd:YLF is an excellent candidate for amplifiers where high specific stored energies and/or very high gains are required.

  1. HIGH VOLTAGE, HIGH CURRENT SPARK GAP SWITCH

    DOEpatents

    Dike, R.S.; Lier, D.W.; Schofield, A.E.; Tuck, J.L.

    1962-04-17

    A high voltage and current spark gap switch comprising two main electrodes insulatingly supported in opposed spaced relationship and a middle electrode supported medially between the main electrodes and symmetrically about the median line of the main electrodes is described. The middle electrode has a perforation aligned with the median line and an irradiation electrode insulatingly supported in the body of the middle electrode normal to the median line and protruding into the perforation. (AEC)

  2. High temperature electronic gain device

    DOEpatents

    McCormick, J. Byron; Depp, Steven W.; Hamilton, Douglas J.; Kerwin, William J.

    1979-01-01

    An integrated thermionic device suitable for use in high temperature, high radiation environments. Cathode and control electrodes are deposited on a first substrate facing an anode on a second substrate. The substrates are sealed to a refractory wall and evacuated to form an integrated triode vacuum tube.

  3. Experimental demonstration of an anode voltage sensor for high voltage IGBT over-voltage protection

    NASA Astrophysics Data System (ADS)

    Caramel, C.; Flores, D.; Hidalgo, S.; Legal, J.; Austin, P.; Imbernon, E.; Rebollo, J.; Sánchez, J. L.

    2010-11-01

    This paper deals with the design and fabrication of a monolithically integrated over-voltage sensor together with high voltage IGBTs. This solution will be of interest in harsh environment applications such as power modules for traction. First, the anode voltage sensor concept is introduced and an initial experimental validation on 600 V insulated gate bipolar transistor (IGBT) devices is provided. Then, guidelines for the design of a 3.3 kV IGBT including the proposed anode voltage sensor are pointed out together with its process fabrication. Finally, experimental results on fabricated 3.3 kV IGBTs are presented and compared with simulated expected behaviour.

  4. Electro-Optical High-Voltage Sensors

    NASA Technical Reports Server (NTRS)

    Gottsche, Allan; Johnston, Alan R.

    1992-01-01

    Electro-optical sensors for measuring high voltages developed for use in automatically controlled power-distribution systems. Sensors connected to optoelectronic interrogating equipment by optical fibers. Because sensitive material and optical fibers are all dielectric, no problem in electrically isolating interrogating circuitry from high voltage, and no need for voltage dividers. Sensor signals transmitted along fibers immune to electromagnetic noise at radio and lower frequencies.

  5. High voltage MOSFET switching circuit

    DOEpatents

    McEwan, T.E.

    1994-07-26

    The problem of source lead inductance in a MOSFET switching circuit is compensated for by adding an inductor to the gate circuit. The gate circuit inductor produces an inductive spike which counters the source lead inductive drop to produce a rectangular drive voltage waveform at the internal gate-source terminals of the MOSFET. 2 figs.

  6. High voltage MOSFET switching circuit

    DOEpatents

    McEwan, Thomas E.

    1994-01-01

    The problem of source lead inductance in a MOSFET switching circuit is compensated for by adding an inductor to the gate circuit. The gate circuit inductor produces an inductive spike which counters the source lead inductive drop to produce a rectangular drive voltage waveform at the internal gate-source terminals of the MOSFET.

  7. Hybrid permeable metal-base transistor with large common-emitter current gain and low operational voltage.

    PubMed

    Feng, Chengang; Yi, Mingdong; Yu, Shunyang; Hümmelgen, Ivo A; Zhang, Tong; Ma, Dongge

    2008-04-01

    We demonstrate the suitability of N,N'-diphenyl-N,N'-bis(1-naphthylphenyl)-1,1'-biphenyl-4,4'-diamine (NPB), an organic semiconductor widely used in organic light-emitting diodes (OLEDs), for high-gain, low operational voltage nanostructured vertical-architecture transistors, which operate as permeable-base transistors. By introducing vanadium oxide (V2O5) between the injecting metal and NPB layer at the transistor emitter, we reduced the emitter operational voltage. The addition of two Ca layers, leading to a Ca/Ag/Ca base, allowed to obtain a large value of common-emitter current gain, but still retaining the permeable-base transistor character. This kind of vertical devices produced by simple technologies offer attractive new possibilities due to the large variety of available molecular semiconductors, opening the possibility of incorporating new functionalities in silicon-based devices. PMID:18572611

  8. ZVS Full-Bridge Based DC-DC Converter with Linear Voltage Gain According to Duty Cycle

    NASA Astrophysics Data System (ADS)

    Do, Hyun-Lark

    2013-09-01

    This paper presents a zero-voltage-switching (ZVS) full-bridge based DC-DC converter with linear voltage gain according to duty cycle. The proposed converter is based on an asymmetrical pulse-width-modulation (APWM) full-bridge converter which has various advantages over other converters. However, it has some drawbacks such as limited maximum duty cycle to 0.5 and narrow input range. The proposed converter overcomes these problems. The duty cycle is not limited and input voltage range is wide. Also, the ZVS operation of all power switches is achieved. Therefore, switching losses are significantly reduced and high-efficiency is obtained. Steady-state analysis and experimental results for the proposed converter are presented to validate the feasibility and the performance of the proposed converter.

  9. Control of microbial fuel cell voltage using a gain scheduling control strategy

    NASA Astrophysics Data System (ADS)

    Boghani, Hitesh C.; Michie, Iain; Dinsdale, Richard M.; Guwy, Alan J.; Premier, Giuliano C.

    2016-08-01

    Recent microbial fuel cell (MFC) research frequently addresses matters associated with scale and deployability. Modularisation is often needed to reduce ohmic losses with increasing volume. Series/parallel is then often an obvious strategy to enhance power quality during operation, to make best use of generated electricity. Hence, voltage reversal resulting from power and voltage mismatch between cells become virtually unavoidable. Control MFC voltages could be used to stabilise MFC stacks. Here, nonlinear MFCs are controlled using simple gain scheduled Proportional + Integral actions. Parsimonious control may be necessary for implementation in MFC arrays, so minimising costs. Controller parameterisation used several linearised models over the dynamic operating range of the MFCs. Controller gains were then scheduled according to the operating conditions. A digital potentiometer was used to actuate the control, varying the current sourced from the MFC. The results show that the controller was able to control MFC voltages, rejecting the disturbances. It was shown that the controller was transferable between MFCs with different power performances. This study demonstrates that the control of MFCs can be achieved with relatively simple digital approaches, plausibly implementable using low cost microcontrollers, and likely to be useful in the effective deployment of MFCs in large scale arrays.

  10. The Galileo high gain antenna deployment anomaly

    NASA Technical Reports Server (NTRS)

    Johnson, Michael R.

    1994-01-01

    On April 11, 1991, the Galileo spacecraft executed a sequence that would open the spacecraft's High Gain Antenna. The Antenna's launch restraint had been released just after deployment sequence, the antenna, which opens like an umbrella, never reached the fully deployed position. The analyses and tests that followed allowed a conclusive determination of the likely failure mechanisms and pointed to some strategies to use for recovery of the high gain antenna.

  11. APS linac klystron and accelerating structure gain measurements and klystron PFN voltage regulation requirements

    SciTech Connect

    Sereno, N.S.

    1997-07-01

    This note details measurements of the APS positron linac klystron and accelerating structure gain and presents an analysis of the data using fits to simple mathematical models. The models are used to investigate the sensitivity of the energy dependence of the output positron beam to klystron parameters. The gain measurements are separated into two parts: first, the energy gains of the accelerating structures of the positron linac are measured as a function of output power of the klystron; second, the klystron output power is measured as a function of input drive power and pulse forming network (PFN) voltage. This note concentrates on the positron linac rf and its performance as it directly affects the energy stability of the positron beam injected into the positron accumulator ring (PAR). Ultimately it is important to be able to minimize beam energy variations to maximize the PAR accumulation efficiency.

  12. Radiatively heated high voltage pyroelectric crystal pulser

    NASA Astrophysics Data System (ADS)

    Antolak, A. J.; Chen, A. X.; Leung, K.-N.; Morse, D. H.; Raber, T. N.

    2014-01-01

    Thin lithium tantalate pyroelectric crystals in a multi-stage pulser were heated by quartz lamps during their charging phase to generate high voltage pulses. The charging voltage was determined empirically based on the measured breakdown voltage in air and verified by the induced breakdown voltage of an external high voltage power supply. A four-stage pyroelectric crystal device generated pulse discharges of up to 86 kV using both quartz lamps (radiative) and thermoelectric (conductive) heating. Approximately 50 mJ of electrical energy was harvested from the crystals when radiatively heated in air, and up to 720 mJ was produced when the crystals were submerged in a dielectric fluid. It is anticipated that joule-level pulse discharges could be obtained by employing additional stages and optimizing the heating configuration.

  13. Ultrasonic evaluation of high voltage circuit boards

    NASA Technical Reports Server (NTRS)

    Klima, S. J.; Riley, T. J.

    1976-01-01

    Preliminary observations indicate that an ultrasonic scanning technique may be useful as a quick, low cost, nondestructive method for judging the quality of circuit board materials for high voltage applications. Corona inception voltage tests were conducted on fiberglass-epoxy and fiberglass-polyimide high pressure laminates from 20 to 140 C. The same materials were scanned ultrasonically by utilizing the single transducer, through-transmission technique with reflector plate, and recording variations in ultrasonic energy transmitted through the board thickness. A direct relationship was observed between ultrasonic transmission level and corona inception voltage. The ultrasonic technique was subsequently used to aid selection of high quality circuit boards for the Communications Technology Satellite.

  14. High voltage space plasma interactions

    NASA Astrophysics Data System (ADS)

    McCoy, J. E.

    1980-07-01

    Two primary problems resulted from plasma interactions; one of concern to operations in geosynchronous orbit (GEO), the other in low orbits (LEO). The two problems are not the same. Spacecraft charging has become widely recognized as a problem, particularly for communications satellites operating in GEO. The very thin thermal plasmas at GEO are insufficient to bleed off voltage buildups due to higher energy charged particle radiation collected on outer surfaces. Resulting differential charging/discharging causes electrical transients, spurious command signals and possible direct overload damage. An extensive NASA/Air Force program has been underway for several years to address this problem. At lower altitudes, the denser plasmas of the plasmasphere/ionosphere provide sufficient thermal current to limit such charging to a few volts or less. Unfortunately, these thermal plasma currents which solve the GEO spacecraft charging problem can become large enough to cause just the opposite problem in LEO.

  15. Cryogenic High Voltage Insulation Breaks for ITER

    NASA Astrophysics Data System (ADS)

    Kovalchuk, O. A.; Safonov, A. V.; Rodin, I. Yu.; Mednikov, A. A.; Lancetov, A. A.; Klimchenko, Yu. A.; Grinchenko, V. A.; Voronin, N. M.; Smorodina, N. V.; Bursikov, A. S.

    High voltage insulation breaks are used in cryogenic lines with gas or liquid (helium, hydrogen, nitrogen, etc.) at a temperature range of 4.2-300 K and pressure up to 30 MPa to insulate the parts of an electrophysical facility with different electrical potentials. In 2013 JSC "NIIEFA" delivered 95 high voltage insulation breaks to the IO ITER, i.e. 65 breaks with spiral channels and 30 breaks with uniflow channels. These high voltage insulation breaks were designed, manufactured and tested in accordance with the ITER Technical Specifications: «Axial Insulating Breaks for the Qualification Phase of ITER Coils and Feeders». The high voltage insulation breaks consist of the glass-reinforced plastic cylinder equipped with channels for cryoagent and stainless steel end fittings. The operating voltage is 30 kV for the breaks with spiral channels (30 kV HV IBs) and 4 kV for the breaks with uniflow channels (4 kV HV IBs). The main design feature of the 30 kV HV IBs is the spiral channels instead of a linear one. This approach has enabled us to increase the breakdown voltage and decrease the overall dimensions of the high voltage insulation breaks. In 2013 the manufacturing technique was developed to produce the high voltage insulation breaks with the spiral and uniflow channels that made it possible to proceed to serial production. To provide the acceptance tests of the breaks a special test facility was prepared. The helium tightness test at 10-11 m3Pa/s under the pressure up to 10 MPa, the high voltage test up to 135 kV and different types of mechanical tests were carried out at the room and liquid nitrogen temperatures.

  16. Electrical safety for high voltage arrays

    NASA Technical Reports Server (NTRS)

    Marshall, N. A.

    1983-01-01

    A number of key electrical safety requirements for the high voltage arrays of central station photovoltaic power systems are explored. The suitability of representative industrial DC power switchgear for control and fault protection was evaluated. Included were AC/DC circuit breakers, electromechanical contactors and relays, load interruptors, cold disconnect devices, sectionalizing switches, and high voltage DC fuses. As appropriate, steady state and transient characteristics were analyzed. Failure modes impacting upon operation and maintenance safety were also identified, as were the voltage withstand and current interruption levels.

  17. Pulsed high-voltage dc RF sputtering

    NASA Technical Reports Server (NTRS)

    Przybyszewski, J. S., Jr.; Shaltens, R. K.

    1969-01-01

    Sputtering technique uses pulsed high voltage direct current to the object to be plated and a radio frequency sputtered film source. Resultant film has excellent adhesion, and objects can be plated uniformly on all sides.

  18. High Voltage Lines: Hazard at a Distance.

    ERIC Educational Resources Information Center

    Marino, Andrew A.; Becker, Robert O.

    1978-01-01

    It appears that a variety of biological organisms, including man, are sensitive to both long and short-term exposure to the extra low frequency electric and magnetic fields produced by high voltage lines. (BB)

  19. Detecting Faults In High-Voltage Transformers

    NASA Technical Reports Server (NTRS)

    Blow, Raymond K.

    1988-01-01

    Simple fixture quickly shows whether high-voltage transformer has excessive voids in dielectric materials and whether high-voltage lead wires too close to transformer case. Fixture is "go/no-go" indicator; corona appears if transformer contains such faults. Nests in wire mesh supported by cap of clear epoxy. If transformer has defects, blue glow of corona appears in mesh and is seen through cap.

  20. Spacecraft high-voltage power supply construction

    NASA Technical Reports Server (NTRS)

    Sutton, J. F.; Stern, J. E.

    1975-01-01

    The design techniques, circuit components, fabrication techniques, and past experience used in successful high-voltage power supplies for spacecraft flight systems are described. A discussion of the basic physics of electrical discharges in gases is included and a design rationale for the prevention of electrical discharges is provided. Also included are typical examples of proven spacecraft high-voltage power supplies with typical specifications for design, fabrication, and testing.

  1. Boeing's High Voltage Solar Tile Test Results

    NASA Technical Reports Server (NTRS)

    Reed, Brian J.; Harden, David E.; Ferguson, Dale C.; Snyder, David B.

    2002-01-01

    Real concerns of spacecraft charging and experience with solar array augmented electrostatic discharge arcs on spacecraft have minimized the use of high voltages on large solar arrays despite numerous vehicle system mass and efficiency advantages. Boeing's solar tile (patent pending) allows high voltage to be generated at the array without the mass and efficiency losses of electronic conversion. Direct drive electric propulsion and higher power payloads (lower spacecraft weight) will benefit from this design. As future power demand grows, spacecraft designers must use higher voltage to minimize transmission loss and power cable mass for very large area arrays. This paper will describe the design and discuss the successful test of Boeing's 500-Volt Solar Tile in NASA Glenn's Tenney chamber in the Space Plasma Interaction Facility. The work was sponsored by NASA's Space Solar Power Exploratory Research and Technology (SERT) Program and will result in updated high voltage solar array design guidelines being published.

  2. Efficient circuit triggers high-current, high-voltage pulses

    NASA Technical Reports Server (NTRS)

    Green, E. D.

    1964-01-01

    Modified circuit uses diodes to effectively disconnect the charging resistors from the circuit during the discharge cycle. Result is an efficient parallel charging, high voltage pulse modulator with low voltage rating of components.

  3. High voltage planar multijunction solar cell

    NASA Technical Reports Server (NTRS)

    Evans, J. C., Jr.; Chai, A. T.; Goradia, C. P. (Inventor)

    1982-01-01

    A high voltage multijunction solar cell is provided wherein a plurality of discrete voltage generating regions or unit cells are formed in a single generally planar semiconductor body. The unit cells are comprised of doped regions of opposite conductivity type separated by a gap or undiffused region. Metal contacts connect adjacent cells together in series so that the output voltages of the individual cells are additive. In some embodiments, doped field regions separated by a overlie the unit cells but the cells may be formed in both faces of the wafer.

  4. Programmable high voltage power supply with regulation confined to the high voltage section

    NASA Technical Reports Server (NTRS)

    Castell, Karen D. (Inventor); Ruitberg, Arthur P. (Inventor)

    1994-01-01

    A high voltage power supply in a dc-dc converter configuration includes a pre-regulator which filters and regulates the dc input and drives an oscillator which applies, in turn, a low voltage ac signal to the low side of a step-up high voltage transformer. The high voltage side of the transformer drives a voltage multiplier which provides a stepped up dc voltage to an output filter. The output voltage is sensed by a feedback network which then controls a regulator. Both the input and output of the regulator are on the high voltage side, avoiding isolation problems. The regulator furnishes a portion of the drive to the voltage multiplier, avoiding having a regulator in series with the load with its attendant, relatively high power losses. This power supply is highly regulated, has low power consumption, a low parts count and may be manufactured at low cost. The power supply has a programmability feature that allows for the selection of a large range of output voltages.

  5. 30 CFR 75.826 - High-voltage trailing cables.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-voltage trailing cables. 75.826 Section 75...-Voltage Longwalls § 75.826 High-voltage trailing cables. High-voltage trailing cables must: (a) Meet existing trailing cable requirements and the approval requirements of the high-voltage continuous...

  6. 30 CFR 75.826 - High-voltage trailing cables.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false High-voltage trailing cables. 75.826 Section 75...-Voltage Longwalls § 75.826 High-voltage trailing cables. High-voltage trailing cables must: (a) Meet existing trailing cable requirements and the approval requirements of the high-voltage continuous...

  7. 30 CFR 75.826 - High-voltage trailing cables.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false High-voltage trailing cables. 75.826 Section 75...-Voltage Longwalls § 75.826 High-voltage trailing cables. High-voltage trailing cables must: (a) Meet existing trailing cable requirements and the approval requirements of the high-voltage continuous...

  8. 30 CFR 75.826 - High-voltage trailing cables.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false High-voltage trailing cables. 75.826 Section 75...-Voltage Longwalls § 75.826 High-voltage trailing cables. High-voltage trailing cables must: (a) Meet existing trailing cable requirements and the approval requirements of the high-voltage continuous...

  9. Electro-optic high voltage sensor

    DOEpatents

    Davidson, James R.; Seifert, Gary D.

    2003-09-16

    A small sized electro-optic voltage sensor capable of accurate measurement of high voltages without contact with a conductor or voltage source is provided. When placed in the presence of an electric field, the sensor receives an input beam of electromagnetic radiation. A polarization beam displacer separates the input beam into two beams with orthogonal linear polarizations and causes one linearly polarized beam to impinge a crystal at a desired angle independent of temperature. The Pockels effect elliptically polarizes the beam as it travels through the crystal. A reflector redirects the beam back through the crystal and the beam displacer. On the return path, the polarization beam displacer separates the elliptically polarized beam into two output beams of orthogonal linear polarization. The system may include a detector for converting the output beams into electrical signals and a signal processor for determining the voltage based on an analysis of the output beams.

  10. High-Voltage Isolation Transformer

    NASA Technical Reports Server (NTRS)

    Clatterbuck, C. H.; Ruitberg, A. P.

    1985-01-01

    Arcing and field-included surface erosion reduced by electrostatic shields around windings and ferromagnetic core of 80-kilovolt isolation transformer. Fabricated from high-resistivity polyurethane-based material brushed on critical surfaces, shields maintained at approximately half potential difference of windings.

  11. High voltage testing for the MAJORANA DEMONSTRATOR

    NASA Astrophysics Data System (ADS)

    Abgrall, N.; Arnquist, I. J.; Avignone, F. T.; Barabash, A. S.; Bertrand, F. E.; Bradley, A. W.; Brudanin, V.; Busch, M.; Buuck, M.; Byram, D.; Caldwell, A. S.; Chan, Y.-D.; Christofferson, C. D.; Chu, P.-H.; Cuesta, C.; Detwiler, J. A.; Doe, P. J.; Dunagan, C.; Efremenko, Yu.; Ejiri, H.; Elliott, S. R.; Fu, Z.; Galindo-Uribarri, A.; Giovanetti, G. K.; Goett, J.; Green, M. P.; Gruszko, J.; Guinn, I. S.; Guiseppe, V. E.; Henning, R.; Hoppe, E. W.; Howard, S.; Howe, M. A.; Jasinski, B. R.; Keeter, K. J.; Kidd, M. F.; Konovalov, S. I.; Kouzes, R. T.; LaFerriere, B. D.; Leon, J.; Li, A.; MacMullin, J.; Martin, R. D.; Massarczyk, R.; Meijer, S. J.; Mertens, S.; Orrell, J. L.; O'Shaughnessy, C.; Poon, A. W. P.; Radford, D. C.; Rager, J.; Rielage, K.; Robertson, R. G. H.; Romero-Romero, E.; Shanks, B.; Shirchenko, M.; Snyder, N.; Suriano, A. M.; Tedeschi, D.; Thompson, A.; Ton, K. T.; Trimble, J. E.; Varner, R. L.; Vasilyev, S.; Vetter, K.; Vorren, K.; White, B. R.; Wilkerson, J. F.; Wiseman, C.; Xu, W.; Yakushev, E.; Yu, C.-H.; Yumatov, V.

    2016-07-01

    The MAJORANA Collaboration is constructing the MAJORANA DEMONSTRATOR, an ultra-low background, 44-kg modular high-purity Ge (HPGe) detector array to search for neutrinoless double-beta decay in 76Ge. The phenomenon of surface micro-discharge induced by high-voltage has been studied in the context of the MAJORANA DEMONSTRATOR. This effect can damage the front-end electronics or mimic detector signals. To ensure the correct performance, every high-voltage cable and feedthrough must be capable of supplying HPGe detector operating voltages as high as 5 kV without exhibiting discharge. R&D measurements were carried out to understand the testing system and determine the optimum design configuration of the high-voltage path, including different improvements of the cable layout and feedthrough flange model selection. Every cable and feedthrough to be used at the MAJORANA DEMONSTRATOR was characterized and the micro-discharge effects during the MAJORANA DEMONSTRATOR commissioning phase were studied. A stable configuration has been achieved, and the cables and connectors can supply HPGe detector operating voltages without exhibiting discharge.

  12. High voltage testing for the Majorana Demonstrator

    DOE PAGESBeta

    Abgrall, N.; Arnquist, I. J.; Avignone, III, F. T.; Barabash, A. S.; Bertrand, F. E.; Bradley, A. W.; Brudanin, V.; Busch, M.; Buuck, M.; Byram, D.; et al

    2016-04-04

    The Majorana Collaboration is constructing the Majorana Demonstrator, an ultra-low background, 44-kg modular high-purity Ge (HPGe) detector array to search for neutrinoless double-beta decay in 76Ge. The phenomenon of surface micro-discharge induced by high-voltage has been studied in the context of the Majorana Demonstrator. This effect can damage the front-end electronics or mimic detector signals. To ensure the correct performance, every high-voltage cable and feedthrough must be capable of supplying HPGe detector operating voltages as high as 5 kV without exhibiting discharge. R&D measurements were carried out to understand the testing system and determine the optimum design configuration of themore » high-voltage path, including different improvements of the cable layout and feedthrough flange model selection. Every cable and feedthrough to be used at the Majorana Demonstrator was characterized and the micro-discharge effects during the Majorana Demonstrator commissioning phase were studied. Furthermore, a stable configuration has been achieved, and the cables and connectors can supply HPGe detector operating voltages without exhibiting discharge.« less

  13. Compact high voltage solid state switch

    DOEpatents

    Glidden, Steven C.

    2003-09-23

    A compact, solid state, high voltage switch capable of high conduction current with a high rate of current risetime (high di/dt) that can be used to replace thyratrons in existing and new applications. The switch has multiple thyristors packaged in a single enclosure. Each thyristor has its own gate drive circuit that circuit obtains its energy from the energy that is being switched in the main circuit. The gate drives are triggered with a low voltage, low current pulse isolated by a small inexpensive transformer. The gate circuits can also be triggered with an optical signal, eliminating the trigger transformer altogether. This approach makes it easier to connect many thyristors in series to obtain the hold off voltages of greater than 80 kV.

  14. High-voltage electrocution causing bulbar dysfunction

    PubMed Central

    Parvathy, G.; Shaji, C. V.; Kabeer, K. A.; Prasanth, S. R.

    2016-01-01

    Electrical shock can result in neurological complications, involving both peripheral and central nervous systems, which may present immediately or later on. High-voltage electrical injuries are uncommonly reported and may predispose to both immediate and delayed neurologic complications. We report the case of a 68-year-old man who experienced a high-voltage electrocution injury, subsequently developed bulbar dysfunction and spontaneously recovered. We describe the development of bulbar palsy following a significant electrical injury, which showed no evidence of this on magnetic resonance imaging. High-voltage electrocution injuries are a serious problem with potential for both immediate and delayed neurologic sequelae. The existing literature has no reports on bulbar dysfunction following electrocution, apart from motor neuron disease. PMID:27365968

  15. Potted High Voltage Modules For Space Application

    NASA Astrophysics Data System (ADS)

    Herty, Frank

    2011-10-01

    The European Space Mission GOCE, the Mercury mis- sion BepiColombo and the new High Efficiency Multistage Plasma (HEMP) thruster for the SGEO telecom mission have triggered the development of high voltage power supplies at Astrium Satellites covering different classes of output power (20W up to 1.4kW) and voltages (1kV up to 10kV). These supplies are equipped with encapsulated high voltage modules which have been designed as core functional blocks. The potting material - based on epoxy resin - was developed by Astrium Satellites. It is space-qualified for more than 30 years. Many types of high voltage modules have been manufactured since then, starting from transformer modules for the ERS mission to the modules used for electric propulsion. Technical trends, improvements and future goals of this technology are presented and discussed. New and re- fined processes are presented like the encapsulation of high-power toroidal transformers and the void-free electrical shielding by means of thin copper sheets which are laminated onto the surface of the potting material.

  16. High voltage planar multijunction. [Patent application

    SciTech Connect

    Evans, J.C. Jr.; Chai, A.T.; Goradia, C.P.

    1980-12-01

    A solar cell which provides high output voltages, comprises a semiconductor wafer in which a number or array of voltage generating regions or unit cells are formed. Each of the unit cells has two regions of opposite conductivity type (e.g., n+ and p+) which are separated by a gap region. The unit cells are connected together by metal contacts so that their outputs are additive. Field regions, separated by gaps, overlie the unit cells. Cells are formed in both faces of the wafer a circular wafer is employed. NASA

  17. An Inexpensive Source of High Voltage

    ERIC Educational Resources Information Center

    Saraiva, Carlos

    2012-01-01

    As a physics teacher I like recycling old apparatus and using them for demonstrations in my classes. In physics laboratories in schools, sources of high voltage include induction coils or electronic systems that can be bought from companies that sell lab equipment. But these sources can be very expensive. In this article, I will explain how you…

  18. Recommended practices for encapsulating high voltage assemblies

    NASA Technical Reports Server (NTRS)

    Tankisley, E. W.

    1974-01-01

    Preparation and encapsulation of high voltage assemblies are considered. Related problems in encapsulating are brought out in these instructions. A test sampling of four frequently used encapsulating compounds is shown in table form. The purpose of this table is to give a general idea of the working time available and the size of the container required for mixing and de-aerating.

  19. Modular high voltage power supply for chemical analysis

    DOEpatents

    Stamps, James F.; Yee, Daniel D.

    2010-05-04

    A high voltage power supply for use in a system such as a microfluidics system, uses a DC-DC converter in parallel with a voltage-controlled resistor. A feedback circuit provides a control signal for the DC-DC converter and voltage-controlled resistor so as to regulate the output voltage of the high voltage power supply, as well as, to sink or source current from the high voltage supply.

  20. Modular high voltage power supply for chemical analysis

    DOEpatents

    Stamps, James F.; Yee, Daniel D.

    2008-07-15

    A high voltage power supply for use in a system such as a microfluidics system, uses a DC-DC converter in parallel with a voltage-controlled resistor. A feedback circuit provides a control signal for the DC-DC converter and voltage-controlled resistor so as to regulate the output voltage of the high voltage power supply, as well as, to sink or source current from the high voltage supply.

  1. Modular high voltage power supply for chemical analysis

    DOEpatents

    Stamps, James F.; Yee, Daniel D.

    2007-01-09

    A high voltage power supply for use in a system such as a microfluidics system, uses a DC--DC converter in parallel with a voltage-controlled resistor. A feedback circuit provides a control signal for the DC--DC converter and voltage-controlled resistor so as to regulate the output voltage of the high voltage power supply, as well as, to sink or source current from the high voltage supply.

  2. 30 CFR 75.804 - Underground high-voltage cables.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Underground high-voltage cables. 75.804 Section... AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Underground High-Voltage Distribution § 75.804 Underground high-voltage cables. (a) Underground high-voltage cables used in...

  3. High voltage pulse generator. [Patent application

    DOEpatents

    Fasching, G.E.

    1975-06-12

    An improved high-voltage pulse generator is described which is especially useful in ultrasonic testing of rock core samples. An N number of capacitors are charged in parallel to V volts and at the proper instance are coupled in series to produce a high-voltage pulse of N times V volts. Rapid switching of the capacitors from the paralleled charging configuration to the series discharging configuration is accomplished by using silicon-controlled rectifiers which are chain self-triggered following the initial triggering of the first rectifier connected between the first and second capacitors. A timing and triggering circuit is provided to properly synchronize triggering pulses to the first SCR at a time when the charging voltage is not being applied to the parallel-connected charging capacitors. The output voltage can be readily increased by adding additional charging networks. The circuit allows the peak level of the output to be easily varied over a wide range by using a variable autotransformer in the charging circuit.

  4. 30 CFR 75.804 - Underground high-voltage cables.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Underground high-voltage cables. 75.804 Section... § 75.804 Underground high-voltage cables. (a) Underground high-voltage cables used in resistance... cables shall be adequate for the intended current and voltage. Splices made in such cables shall...

  5. 30 CFR 75.804 - Underground high-voltage cables.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Underground high-voltage cables. 75.804 Section... § 75.804 Underground high-voltage cables. (a) Underground high-voltage cables used in resistance... cables shall be adequate for the intended current and voltage. Splices made in such cables shall...

  6. 30 CFR 75.804 - Underground high-voltage cables.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Underground high-voltage cables. 75.804 Section... § 75.804 Underground high-voltage cables. (a) Underground high-voltage cables used in resistance... cables shall be adequate for the intended current and voltage. Splices made in such cables shall...

  7. Hybrid optical antenna with high directivity gain.

    PubMed

    Bonakdar, Alireza; Mohseni, Hooman

    2013-08-01

    Coupling of a far-field optical mode to electronic states of a quantum absorber or emitter is a crucial process in many applications, including infrared sensors, single molecule spectroscopy, and quantum metrology. In particular, achieving high quantum efficiency for a system with a deep subwavelength quantum absorber/emitter has remained desirable. In this Letter, a hybrid optical antenna based on coupling of a photonic nanojet to a metallo-dielectric antenna is proposed, which allows such efficient coupling. A quantum efficiency of about 50% is predicted for a semiconductor with volume of ~λ³/170. Despite the weak optical absorption coefficient of 2000 cm(-1) in the long infrared wavelength of ~8 μm, very strong far-field coupling has been achieved, as evidenced by an axial directivity gain of 16 dB, which is only 3 dB below of theoretical limit. Unlike the common phased array antenna, this structure does not require coherent sources to achieve a high directivity. The quantum efficiency and directivity gain are more than an order of magnitude higher than existing metallic, dielectric, or metallo-dielectric optical antenna. PMID:23903124

  8. Planar multijunction high voltage solar cell chip

    NASA Technical Reports Server (NTRS)

    Valco, G. J.; Kapoor, V. J.; Evans, J. C., Jr.

    1982-01-01

    A new innovative planar multijunction solar cell chip for concentrated sunlight applications is proposed. The chip consists of many voltage-generating regions, called unit cells, which are connected in series within a single silicon wafer, thereby providing a high open-circuit voltage at multiple sun illumination levels. The unit cells are fabricated on 75 micron thick p-type single crystal silicon substrate. Each chip consists of 1.42 x 9.63 mm n(+)/p collecting junctions on the back of the wafer, while the illuminated front surface area is divided into 0.3 micron deep n(+) regions. The fabrication sequence includes standard degreasing and cleaning procedures, double-sided alignment photomasking, introduction of boron and phosphorus impurities, and photolithography. The open circuit voltage of the chip increased rapidly with illumination up to about 4 AM1 suns, and then began to saturate at the sum of the individual unit cell voltages of 3.5 above 4 AM1 suns. A short circuit density per unit cell of 300 mA/sq cm at 20 AM1 suns was observed.

  9. Mechanisms of the Rosetta high gain antenna

    NASA Astrophysics Data System (ADS)

    Pereira, Carlos

    2001-09-01

    This paper describes the antenna pointing mechanism (APM) and the hold down and release mechanism (HRM) used in the high gain antenna of the ROSETTA mission. The hold down and release mechanism consists of three units which compensate the tolerance mismatch between antenna and spacecraft through incorporation of potting rings. Given that the activation mode is pyrotechnic, release shock is a major concern and is minimised through integration of shock absorbers which allow stroking of the separation nuts. The antenna pointing mechanism is a dual drive (azimuth over elevation) unit which allows controlled rotation of the antenna. The drive units incorporate spring loaded end stops to prevent the antenna from hitting the spacecraft, and optical encoders which register the absolute position of the antenna. The pointing and the hold down mechanisms of the ROSETTA antenna are fully qualified and will withstand the high launch loads of the Ariane-5 and the environmental demands of deep space operation.

  10. High-voltage portable pulsed power supply fed by low voltage source

    NASA Astrophysics Data System (ADS)

    Rezanejad, Mohammad; Sheikholeslami, Abdolreza; Adabi, Jafar; Valinejad, Mohammadreza

    2016-05-01

    This article proposes a new structure of voltage multiplier for portable pulsed power applications. In this configuration, which is based on capacitor-diode voltage multiplier, the capacitors are charged by low AC input voltage and discharge through the load in series during pulse generation mode. The proposed topology is achieved by integrating of solid-state switches with conventional voltage multiplier, which can increase the low input voltage step by step and generate high-voltage high-frequency pulsed power across the load. After some discussion, simulations and experimental results are provided to verify the effectiveness of the proposed topology.

  11. High Voltage Design Guidelines: A Timely Update

    NASA Technical Reports Server (NTRS)

    Hillard, G. Barry; Kirkici, H.; Ensworth, Clint (Technical Monitor)

    2001-01-01

    The evolving state of high voltage systems and their increasing use in the space program have called for a revision of the High Voltage Design Guidelines, Marshall Space Flight Center technical document MSFC-STD-531, originally issued September 1978 (previously 50 M05189b, October 1972). These guidelines deal in depth with issues relating to the specification of materials, particularly electrical insulation, as well as design practices and test methods. Emphasis is on corona and Paschen breakdown as well as plasma effects for Low Earth Orbiting systems. We will briefly review the history of these guidelines as well as their immediate predecessors and discuss their range of applicability. In addition, this document has served as the basis for several derived works that became focused, program-specific HV guidelines. We will briefly review two examples, guidelines prepared for the X-33 program and for the Space Shuttle Electric Auxiliary Power Unit (EAPU) upgrade.

  12. High voltage system: Plasma interaction summary

    NASA Technical Reports Server (NTRS)

    Stevens, N. John

    1986-01-01

    The possible interactions that could exist between a high voltage system and the space plasma environment are reviewed. A solar array is used as an example of such a system. The emphasis in this review is on the discrepancies that exist in this technology in both flight and ground experiment data. It has been found that, in ground testing, there are facility effects, cell size effects and area scaling uncertainties. For space applications there are area scaling and discharge concerns for an array as well as the influence of the large space structures on the collection process. There are still considerable uncertainties in the high voltage-space plasma interaction technology even after several years of effort.

  13. Electro-optic high voltage sensor

    DOEpatents

    Davidson, James R.; Seifert, Gary D.

    2002-01-01

    A small sized electro-optic voltage sensor capable of accurate measurement of high levels of voltages without contact with a conductor or voltage source is provided. When placed in the presence of an electric field, the sensor receives an input beam of electromagnetic radiation into the sensor. A polarization beam displacer serves as a filter to separate the input beam into two beams with orthogonal linear polarizations. The beam displacer is oriented in such a way as to rotate the linearly polarized beams such that they enter a Pockels crystal having at a preferred angle of 45 degrees. The beam displacer is therefore capable of causing a linearly polarized beam to impinge a crystal at a desired angle independent of temperature. The Pockels electro-optic effect induces a differential phase shift on the major and minor axes of the input beam as it travels through the Pockels crystal, which causes the input beam to be elliptically polarized. A reflecting prism redirects the beam back through the crystal and the beam displacer. On the return path, the polarization beam displacer separates the elliptically polarized beam into two output beams of orthogonal linear polarization representing the major and minor axes. The system may include a detector for converting the output beams into electrical signals, and a signal processor for determining the voltage based on an analysis of the output beams. The output beams are amplitude modulated by the frequency of the electric field and the amplitude of the output beams is proportional to the magnitude of the electric field, which is related to the voltage being measured.

  14. High voltage spark carbon fiber detection system

    NASA Technical Reports Server (NTRS)

    Yang, L. C.

    1980-01-01

    The pulse discharge technique was used to determine the length and density of carbon fibers released from fiber composite materials during a fire or aircraft accident. Specifications are given for the system which uses the ability of a carbon fiber to initiate spark discharge across a high voltage biased grid to achieve accurate counting and sizing of fibers. The design of the system was optimized, and prototype hardware proved satisfactory in laboratory and field tests.

  15. A high voltage programmable ramp generator

    SciTech Connect

    Upadhyay, J.; Joshi, M. J.; Deshpande, P. P.; Sharma, M. L.; Navathe, C. P.

    2008-05-15

    In this paper, a ramp generator with programmable slope is presented. It consists of a high voltage step generator, followed by integrator. The capacitor and inductor in the integrator are designed such that they can be varied by a microcontroller. This circuit generates two bipolar ramps with fastest speed <1 ns and provides continuous speed variation from 6 to 30 ns for a ramp of 500 V. This is being developed as a part of automated streak camera for deflection of electron beam.

  16. Energy harvesting in high voltage measuring techniques

    NASA Astrophysics Data System (ADS)

    Żyłka, Pawel; Doliński, Marcin

    2016-02-01

    The paper discusses selected problems related to application of energy harvesting (that is, generating electricity from surplus energy present in the environment) to supply autonomous ultra-low-power measurement systems applicable in high voltage engineering. As a practical example of such implementation a laboratory model of a remote temperature sensor is presented, which is self-powered by heat generated in a current-carrying busbar in HV- switchgear. Presented system exploits a thermoelectric harvester based on a passively cooled Peltier module supplying micro-power low-voltage dc-dc converter driving energy-efficient temperature sensor, microcontroller and a fibre-optic transmitter. Performance of the model in laboratory simulated conditions are presented and discussed.

  17. Progress toward high-gain laser fusion

    SciTech Connect

    Storm, E.

    1988-09-28

    A 1985-1986 Review of the US inertial confinement fusion program by the National Academy of Sciences concluded that five more years might be required to obtain enough data to determine the future course of the program. Since then, data from the Nova laser and from the Halite/Centurion program have resolved most of the outstanding problems identified by the NAS review. In particular, we now believe that we can produce a sufficiently uniform target; that we can keep the energy content in hot electrons and high-energy photons low enough (/approximately/1--10% of drive energy, depending on target design) and achieve enough pulse-shaping accuracy (/approximately/10%, with a dynamic range of 100:1) to keep the fuel on a near-Fermi-degenerate adiabat; that we can produce an /approximately/100-Mbar pressure pulse of sufficient uniformity (/approximately/1%), and can we control hydrodynamic instabilities so that the mix of the pusher into the hot spot is low enough to permit marginal ignition. These results are sufficiently encouraging that the US Department of Energy is planning to complete a 10-MJ laboratory microfusion facility to demonstrate high-gain ICF in the laboratory within a decade. 22 refs., 1 fig.

  18. Progress toward high-gain laser fusion

    NASA Astrophysics Data System (ADS)

    Storm, Erik

    1988-09-01

    A 1985 to 1986 Review of the U.S. inertial confinement fusion program by the National Academy of Sciences concluded that five more years might be required to obtain enough data to determine the future course of the program. Since then, data from the Nova laser and from the Halite/Centurion program have resolved most of the outstanding problems identified by the NAS review. In particular, we now believe that we can produce a sufficiently uniform target; that we can keep the energy content in hot electrons and high-energy photons low enough (approximately 1 to 10 percent of drive energy, depending on target design) and achieve enough pulse-shaping accuracy (approximately 10 percent, with a dynamic range of 100:1) to keep the fuel on a near-Fermi-degenerate adiabat; that we can produce an approximately 100-Mbar pressure pulse of sufficient uniformity (approximately 1 percent), and can control hydrodynamic instabilities so that the mix of the pusher into the hot spot is low enough to permit marginal ignition. These results are sufficiently encouraging that DOE is planning to complete a 10-MJ laboratory microfusion facility to demonstrate high-gain ICF in the laboratory within a decade.

  19. Controllable high voltage source having fast settling time

    NASA Technical Reports Server (NTRS)

    Doong, H.; Acuna, M. H. (Inventor)

    1975-01-01

    A high voltage dc stepping power supply for sampling a utilization device such as an electrostatic analyzer has a relatively fast settling time for voltage steps. The supply includes a waveform generator for deriving a low voltage staircase waveform that feeds a relatively long response time power supply, deriving a high output voltage generally equal to a predetermined multiple of the input voltage. In the power supply, an ac voltage modulated by the staircase waveform is applied to a step-up transformer and then to a voltage multiplier stack to form a high voltage, relatively poor replica of the input waveform at an intermediate output terminal. A constant dc source, applied to the input of the power supply, biases the voltage at the intermediate output terminal to be in excess of the predetermined multiple of the input voltage.

  20. High Voltage in Noble Liquids for High Energy Physics

    SciTech Connect

    Rebel, B.; Bernard, E.; Faham, C. H.; Ito, T. M.; Lundberg, B.; Messina, M.; Monrabal, F.; Pereverzev, S. P.; Resnati, F.; Rowson, P. C.; Soderberg, M.; Strauss, T.; Tomas, A.; Va'vra, J.; Wang, H.

    2014-08-22

    A workshop was held at Fermilab November 8-9, 2013 to discuss the challenges of using high voltage in noble liquids. The participants spanned the fields of neutrino, dark matter, and electric dipole moment physics. All presentations at the workshop were made in plenary sessions. This document summarizes the experiences and lessons learned from experiments in these fields at developing high voltage systems in noble liquids.

  1. High gain holmium-doped fibre amplifiers.

    PubMed

    Simakov, Nikita; Li, Zhihong; Jung, Yongmin; Daniel, Jae M O; Barua, Pranabesh; Shardlow, Peter C; Liang, Sijing; Sahu, Jayanta K; Hemming, Alexander; Clarkson, W Andrew; Alam, Shaif-Ul; Richardson, David J

    2016-06-27

    We investigate the operation of holmium-doped fibre amplifiers (HDFAs) in the 2.1 µm spectral region. For the first time we demonstrate a diode-pumped HDFA. This amplifier provides a peak gain of 25 dB at 2040 nm with a 15 dB gain window spanning the wavelength range 2030 - 2100 nm with an external noise figure (NF) of 4-6 dB. We also compare the operation of HDFAs when pumped at 1950 nm and 2008 nm. The 1950 nm pumped HDFA provides 41 dB peak gain at 2060 nm with 15 dB of gain spanning the wavelength range 2050 - 2120 nm and an external NF of 7-10 dB. By pumping at the longer wavelength of 2008 nm the gain bandwidth of the amplifier is shifted to longer wavelengths and using this architecture a HDFA was demonstrated with a peak gain of 39 dB at 2090 nm and 15 dB of gain spanning the wavelength range 2050 - 2150 nm. The external NF over this wavelength range was 8-14 dB. PMID:27410557

  2. A 1 to 18 GHz high gain ultra-broadband amplifier with temperature compensation

    NASA Astrophysics Data System (ADS)

    Ariel, D.; Thibout, T.; Lacombe, J. L.

    1989-05-01

    Design and performance of a high gain ultra-broadband hybrid amplifier with temperature compensation are presented. The amplifier consists of six distributed amplifier stages using GaAs FETs. Design emphasis was on minimizing gain variations with temperature; this was achieved by biasing the gates of the FETs with a temperature varying voltage. The amplifier exhibits a gain of 35 dB with a maximum deviation of + or - 4 dB over the frequency range from 1 to 18 GHz and the temperature range from -55 to +85 C. The gain flatness and temperature stability performance of this amplifier make it useful for EW subsystem applications.

  3. Safe epoxy encapsulant for high voltage magnetics

    SciTech Connect

    Sanchez, R.O.; Archer, W.E.

    1998-01-01

    This paper describes the use of Formula 456, an aliphatic amine cured epoxy for impregnating coils and high voltage transformers. Sandia has evaluated a number of MDA-free epoxy encapsulants which relied on either anhydride or other aromatic amine curing agents. The use of aliphatic amine curing agents was more recently evaluated and has resulted in the definition of Formula 456 resin. Methylene dianiline (MDA) has been used for more than 20 years as the curing agent for various epoxy formulations throughout the Department of Energy and much of industry. Sandia National Laboratories began the process of replacing MDA with other formulations because of regulations imposed by OSHA on the use of MDA. OSHA has regulated MDA because it is a suspect carcinogen. Typically the elimination of OSHA-regulated materials provides a rare opportunity to qualify new formulations in a range of demanding applications. It was important to take full advantage of that opportunity, although the associated materials qualification effort was costly. Small high voltage transformers are one of those demanding applications. The successful implementation of the new formulation for high reliability transformers will be described. The test results that demonstrate the parts are qualified for use in DOE weapon systems will be presented.

  4. High voltage compliance constant current ballast

    NASA Technical Reports Server (NTRS)

    Rosenthal, L. A.

    1976-01-01

    A ballast circuit employing a constant current diode and a vacuum tube that can provide a constant current over a voltage range of 1000 volts. The simple circuit can prove useful in studying voltage breakdown characteristics.

  5. Accelerator System Development at High Voltage Engineering

    SciTech Connect

    Klein, M. G.; Gottdang, A.; Haitsma, R. G.; Mous, D. J. W.

    2009-03-10

    Throughout the years, HVE has continuously extended the capabilities of its accelerator systems to meet the rising demands from a diverse field of applications, among which are deep level ion implantation, micro-machining, neutron production for biomedical research, isotope production or accelerator mass spectrometry. Characteristic for HVE accelerators is the coaxial construction of the all solid state power supply around the acceleration tubes. With the use of solid state technology, the accelerators feature high stability and very low ripple. Terminal voltages range from 1 to 6 MV for HVE Singletrons and Tandetrons. The high-current versions of these accelerators can provide ion beams with powers of several kW. In the last years, several systems have been built with terminal voltages of 1.25 MV, 2 MV and 5 MV. Recently, the first system based on a 6 MV Tandetron has passed the factory tests. In this paper we describe the characteristics of the HVE accelerator systems and present as example recent systems.

  6. High-Gain High-Field Fusion Plasma

    NASA Astrophysics Data System (ADS)

    Li, Ge

    2015-10-01

    A Faraday wheel (FW)—an electric generator of constant electrical polarity that produces huge currents—could be implemented in an existing tokamak to study high-gain high-field (HGHF) fusion plasma, such as the Experimental Advanced Superconducting Tokamak (EAST). HGHF plasma can be realized in EAST by updating its pulsed-power system to compress plasma in two steps by induction fields; high gains of the Lawson trinity parameter and fusion power are both predicted by formulating the HGHF plasma. Both gain rates are faster than the decrease rate of the plasma volume. The formulation is checked by earlier ATC tests. Good agreement between theory and tests indicates that scaling to over 10 T at EAST may be possible by two-step compressions with a compression ratio of the minor radius of up to 3. These results point to a quick new path of fusion plasma study, i.e., simulating the Sun by EAST.

  7. High-Gain High-Field Fusion Plasma.

    PubMed

    Li, Ge

    2015-01-01

    A Faraday wheel (FW)-an electric generator of constant electrical polarity that produces huge currents-could be implemented in an existing tokamak to study high-gain high-field (HGHF) fusion plasma, such as the Experimental Advanced Superconducting Tokamak (EAST). HGHF plasma can be realized in EAST by updating its pulsed-power system to compress plasma in two steps by induction fields; high gains of the Lawson trinity parameter and fusion power are both predicted by formulating the HGHF plasma. Both gain rates are faster than the decrease rate of the plasma volume. The formulation is checked by earlier ATC tests. Good agreement between theory and tests indicates that scaling to over 10 T at EAST may be possible by two-step compressions with a compression ratio of the minor radius of up to 3. These results point to a quick new path of fusion plasma study, i.e., simulating the Sun by EAST. PMID:26507314

  8. Design of a high linearity and high gain accuracy analog baseband circuit for DAB receiver

    NASA Astrophysics Data System (ADS)

    Li, Ma; Zhigong, Wang; Jian, Xu; Yiqiang, Wu; Junliang, Wang; Mi, Tian; Jianping, Chen

    2015-02-01

    An analog baseband circuit of high linearity and high gain accuracy for a digital audio broadcasting receiver is implemented in a 0.18-μm RFCMOS process. The circuit comprises a 3rd-order active-RC complex filter (CF) and a programmable gain amplifier (PGA). An automatic tuning circuit is also designed to tune the CF's pass band. Instead of the class-A fully differential operational amplifier (FDOPA) adopted in the conventional CF and PGA design, a class-AB FDOPA is specially employed in this circuit to achieve a higher linearity and gain accuracy for its large current swing capability with lower static current consumption. In the PGA circuit, a novel DC offset cancellation technique based on the MOS resistor is introduced to reduce the settling time significantly. A reformative switching network is proposed, which can eliminate the switch resistor's influence on the gain accuracy of the PGA. The measurement result shows the gain range of the circuit is 10-50 dB with a 1-dB step size, and the gain accuracy is less than ±0.3 dB. The OIP3 is 23.3 dBm at the gain of 10 dB. Simulation results show that the settling time is reduced from 100 to 1 ms. The image band rejection is about 40 dB. It only draws 4.5 mA current from a 1.8 V supply voltage.

  9. 30 CFR 77.810 - High-voltage equipment; grounding.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false High-voltage equipment; grounding. 77.810 Section 77.810 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE... COAL MINES Surface High-Voltage Distribution § 77.810 High-voltage equipment; grounding....

  10. 30 CFR 77.810 - High-voltage equipment; grounding.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-voltage equipment; grounding. 77.810 Section 77.810 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE... COAL MINES Surface High-Voltage Distribution § 77.810 High-voltage equipment; grounding....

  11. High gain Raman amplifier with inherent gain flattening and dispersion compensation

    NASA Astrophysics Data System (ADS)

    Kakkar, Charu; Thyagarajan, K.

    2005-06-01

    We report here an inherently gain-flattened, high-gain discrete Raman fiber amplifier design with 21 dB net gain (±1.4 dB gain ripple) over 25 nm bandwidth. The amplifier design is based on a W-shape highly nonlinear fiber, in which, optimized spectral variation of leakage loss has been used to achieve inherent gain flattening of Raman gain. The proposed fiber has an additional advantage of having a high negative dispersion coefficient (∼-84 ps/km nm) over the operating range of wavelength and thus the designed discrete amplifier module, based on this fiber, is also capable of compensating dispersion accumulated in one span (70 km) of transmission through G.652 fiber. Hence, the designed module is proposed as a composite amplifier and dispersion-compensating unit for 25 nm bandwidth, which is capable of handling both attenuation and dispersion of one span of G. 652 transmission.

  12. Complete low power controller for high voltage power systems

    SciTech Connect

    Sumner, R.; Blanar, G.

    1997-12-31

    The MHV100 is a custom CMOS integrated circuit, developed for the AMS experiment. It provides complete control for a single channel high voltage (HV) generator and integrates all the required digital communications, D to A and A to D converters, the analog feedback loop and output drivers. This chip has been designed for use in both distributed high voltage systems or for low cost single channel high voltage systems. The output voltage and current range is determined by the external components.

  13. High Voltage Power Transmission for Wind Energy

    NASA Astrophysics Data System (ADS)

    Kim, Young il

    The high wind speeds and wide available area at sea have recently increased the interests on offshore wind farms in the U.S.A. As offshore wind farms become larger and are placed further from the shore, the power transmission to the onshore grid becomes a key feature. Power transmission of the offshore wind farm, in which good wind conditions and a larger installation area than an onshore site are available, requires the use of submarine cable systems. Therefore, an underground power cable system requires unique design and installation challenges not found in the overhead power cable environment. This paper presents analysis about the benefit and drawbacks of three different transmission solutions: HVAC, LCC/VSC HVDC in the grid connecting offshore wind farms and also analyzed the electrical characteristics of underground cables. In particular, loss of HV (High Voltage) subsea power of the transmission cables was evaluated by the Brakelmann's theory, taking into account the distributions of current and temperature.

  14. High voltage with Si series photovoltaics.

    SciTech Connect

    Hsia, Alex; Bennett, Reid Stuart; Patel, Rupal K.; Nasby, Robert D.; Stein, David J.

    2006-02-01

    A monolithic crystalline Si photovoltaic device, developing a potential of 2,120 Volts, has been demonstrated. The monolithic device consists of 3600 small photovoltaic cells connected in series and fabricated using standard CMOS processing on SOI wafers. The SOI wafers with trenches etched to the buried oxide (BOX) depth are used for cell isolation. The photovoltaic cell is a Si pn junction device with the n surface region forming the front surface diffused region upon which light impinges. Contact is formed to the deeper diffused region at the cell edge. The p+ deep-diffused region forms the contact to the p-type base region. Base regions were 5 or 10 {micro}m thick. Series connection of individual cells is accomplished using standard CMOS interconnects. This allows for the voltage to range from approximately 0.5 Volts for a single cell to above a thousand volts for strings of thousands of cells. The current is determined by cell area. The voltage is limited by dielectric breakdown. Each cell is isolated from the adjacent cells through dielectric-filled trench isolation, the substrate through the SOI buried oxide, and the metal wiring by the deposited pre-metal dielectric. If any of these dielectrics fail (whether due to high electric fields or inherent defects), the photovoltaic device will not produce the desired potential. We have used ultra-thick buried oxide SOI and several novel processes, including an oxynitride trench fill process, to avoid dielectric breakdown.

  15. High Voltage GaN Schottky Rectifiers

    SciTech Connect

    CAO,X.A.; CHO,H.; CHU,S.N.G.; CHUO,C.-C.; CHYI,J.-I.; DANG,G.T.; HAN,JUNG; LEE,C.-M.; PEARTON,S.J.; REN,F.; WILSON,R.G.; ZHANG,A.P.

    1999-10-25

    Mesa and planar GaN Schottky diode rectifiers with reverse breakdown voltages (V{sub RB}) up to 550V and >2000V, respectively, have been fabricated. The on-state resistance, R{sub ON}, was 6m{Omega}{center_dot} cm{sup 2} and 0.8{Omega}cm{sup 2}, respectively, producing figure-of-merit values for (V{sub RB}){sup 2}/R{sub ON} in the range 5-48 MW{center_dot}cm{sup -2}. At low biases the reverse leakage current was proportional to the size of the rectifying contact perimeter, while at high biases the current was proportional to the area of this contact. These results suggest that at low reverse biases, the leakage is dominated by the surface component, while at higher biases the bulk component dominates. On-state voltages were 3.5V for the 550V diodes and {ge}15 for the 2kV diodes. Reverse recovery times were <0.2{micro}sec for devices switched from a forward current density of {approx}500A{center_dot}cm{sup -2} to a reverse bias of 100V.

  16. High gain feedback and telerobotic tracking

    NASA Technical Reports Server (NTRS)

    Koditschek, D. E.

    1987-01-01

    Asymptotically stable linear time invariant systems are capable of tracking arbitrary reference signals with a bounded error proportional to the magnitude of the reference signal (and its derivatives). It is shown that a similar property holds for a general class of nonlinear dynamical systems which includes all robots. As in the linear case, the error bound may be made arbitrarily small by increasing the magnitude of the feedback gains which stabilize the system.

  17. High voltage supply for neutron tubes in well logging applications

    DOEpatents

    Humphreys, D. Russell

    1989-01-01

    A high voltage supply is provided for a neutron tube used in well logging. The "biased pulse" supply of the invention combines DC and "full pulse" techniques and produces a target voltage comprising a substantial negative DC bias component on which is superimposed a pulse whose negative peak provides the desired negative voltage level for the neutron tube. The target voltage is preferably generated using voltage doubling techniques and employing a voltage source which generates bipolar pulse pairs having an amplitude corresponding to the DC bias level.

  18. Conceptual definition of a high voltage power supply test facility

    NASA Technical Reports Server (NTRS)

    Biess, John J.; Chu, Teh-Ming; Stevens, N. John

    1989-01-01

    NASA Lewis Research Center is presently developing a 60 GHz traveling wave tube for satellite cross-link communications. The operating voltage for this new tube is - 20 kV. There is concern about the high voltage insulation system and NASA is planning a space station high voltage experiment that will demonstrate both the 60 GHz communications and high voltage electronics technology. The experiment interfaces, requirements, conceptual design, technology issues and safety issues are determined. A block diagram of the high voltage power supply test facility was generated. It includes the high voltage power supply, the 60 GHz traveling wave tube, the communications package, the antenna package, a high voltage diagnostics package and a command and data processor system. The interfaces with the space station and the attached payload accommodations equipment were determined. A brief description of the different subsystems and a discussion of the technology development needs are presented.

  19. A new very high voltage semiconductor switch

    NASA Technical Reports Server (NTRS)

    Sundberg, G. R.

    1985-01-01

    A new family of semiconductor switches using double injection techniques and compensated deep impurities is described. They have the potential to raise switching voltages a factor of 10 higher (up to 100 kV) than p-n junction devices while exhibiting extremely low (or zero) forward voltage. Several potential power switching applications are indicated.

  20. Neutron-induced single event burnout in high voltage electronics

    SciTech Connect

    Normand, E.; Wert, J.L.; Oberg, D.L.; Majewski, P.P.; Voss, P.; Wender, S.A.

    1997-12-01

    Energetic neutrons with an atmospheric neutron spectrum, which were demonstrated to induce single event burnout in power MOSFETs, have been shown to induce burnout in high voltage (>3,000V) electronics when operated at voltages as low as 50% of rated voltage. The laboratory failure rates correlate well with field failure rates measured in Europe.

  1. On the ignition of high gain thermonuclear microexplosions with electric pulse power

    NASA Astrophysics Data System (ADS)

    Winterberg, F.

    2004-02-01

    It was recently shown that the ignition of thermonuclear microexplosions seems possible with two Marx generators of modest size, one with a high current lower voltage for compression and confinement, and one with a high voltage lower current for ignition, transmitting their energy to the thermonuclear target by two nested magnetically insulated transmission lines. Here it is shown in much greater detail how this concept has the potential for the ignition of high gain thermonuclear microexplosions with a yield sufficiently low for a thermonuclear reactor and rocket propulsion. The concept also offers the possibility for the concurrent burn of deuterium-tritium with natural uranium or thorium.

  2. High-Gain High-Field Fusion Plasma

    PubMed Central

    Li, Ge

    2015-01-01

    A Faraday wheel (FW)—an electric generator of constant electrical polarity that produces huge currents—could be implemented in an existing tokamak to study high-gain high-field (HGHF) fusion plasma, such as the Experimental Advanced Superconducting Tokamak (EAST). HGHF plasma can be realized in EAST by updating its pulsed-power system to compress plasma in two steps by induction fields; high gains of the Lawson trinity parameter and fusion power are both predicted by formulating the HGHF plasma. Both gain rates are faster than the decrease rate of the plasma volume. The formulation is checked by earlier ATC tests. Good agreement between theory and tests indicates that scaling to over 10 T at EAST may be possible by two-step compressions with a compression ratio of the minor radius of up to 3. These results point to a quick new path of fusion plasma study, i.e., simulating the Sun by EAST. PMID:26507314

  3. Low-noise pseudomorphic dual-gate cascode HEMT's with extremely high gain

    NASA Astrophysics Data System (ADS)

    Wenger, J.; Narozny, P.; Daembkes, H.; Splettstoesser, J.; Werres, C.

    1992-02-01

    Quarter-micron InGaAs-GaAs dual-gate HEMTs connected as a cascode MMIC in a compact manner have been fabricated and investigated. The devices show a high output impedance and a very low feedback capacitance, resulting in a high-voltage gain factor gm/gd of 125 and a Cgs/Cgd ratio of 45. The current gain cutoff frequency fT is 45 GHz and the maximum stable gain is 23.5 dB at 10 GHz and 19 dB at 20 GHz. The pseudomorphic cascode HEMTs show a low-noise figure of 1.1 dB with an associated gain of 22 dB at 10 GHz, at 18 GHz the minimum noise figure is 1.9 dB with 16-dB gain.

  4. Resonator modes in high gain free electron lasers

    SciTech Connect

    Xie, Ming ); Deacon, D.A.G. ); Madey, J.M.J. . Dept. of Physics)

    1989-10-01

    When the gain in a free electron laser is high enough to produce optical guiding, the resonator mode distorts and loses its forward-backward symmetry. We show that the resonator mode in a high gain FEL can be easily constructed using the mode expansion technique taken separately in the interaction and the free-space regions. We propose design strategies to achieve maximal gain and optimal mode quality, and discuss the stability of the optimized mode. 11 refs., 4 figs.

  5. Electromagnetic compatibility in high-voltage engineering

    NASA Astrophysics Data System (ADS)

    Vanhouten, Marinus Albertus

    1990-09-01

    Electro Magnetic Compatibility (EMC) concepts for an efficient and consistant approach to practical interference problems are described. A critical analysis of 'grounding' is given. The design of a 'differentiated/integrated' system to measure fast voltage transients is described. Measurements of steep transient voltages across interruptions in a Gas Insulated Switchear (GIS) installation, due to switching actions, are presented. Available means to reduce the influence of this interference source on the measuring are discussed. General conclusions are that general, linear and basic design methods for the protection of electronics and (large) interconnected electrical systems against interference can be developed which can save production costs and research time. The design methods described concentrate on the reduction of dangerous voltages between critical points which can be achieved by correct layout choice.

  6. Solid electrolyte: The key for high-voltage lithium batteries

    SciTech Connect

    Li, Juchuan; Ma, Cheng; Chi, Miaofang; Liang, Chengdu; Dudney, Nancy J.

    2014-10-14

    A solid-state high-voltage (5 V) lithium battery is demonstrated to deliver a cycle life of 10 000 with 90% capacity retention. Furthermore, the solid electrolyte enables the use of high-voltage cathodes and Li anodes with minimum side reactions, leading to a high Coulombic efficiency of 99.98+%.

  7. Bus-controlled power driver circuits for high voltages, using linear compatible I2L logic

    NASA Astrophysics Data System (ADS)

    Clauss, H.; Kuebler, M.

    1986-04-01

    A technology for monolithic integration of bipolar transistors, having breakdown voltages greater than or = to 60 V, and I2L-logic was developed. Bipolar transistors with high breakdown voltages must have thick, low doped epitaxial layers and low dc current gain, but I2L-logic with high packing density and short gate delay demands thin epitaxial layers and high dc current gain. A process with two epitaxial layers with buried layer and different intrinsic base doping for the two types of npn-transistor was developed. Bus-controlled power driver circuits for inductive loads in industrial systems were realized. Devices have 60 V maximum supply voltage and, electronically limited, 260 mA max output current.

  8. High gain durable anti-reflective coating

    DOEpatents

    Maghsoodi, Sina; Brophy, Brenor L.; Colson, Thomas E.; Gonsalves, Peter R.; Abrams, Ze'ev R.

    2016-07-26

    Disclosed herein are polysilsesquioxane-based anti-reflective coating (ARC) compositions, methods of preparation, and methods of deposition on a substrate. In one embodiment, the polysilsesquioxane of this disclosure is prepared in a two-step process of acid catalyzed hydrolysis of organoalkoxysilane followed by addition of tetralkoxysilane that generates silicone polymers with >40 mol % silanol based on Si-NMR. These high silanol siloxane polymers are stable and have a long shelf-life in polar organic solvents at room temperature. Also disclosed are low refractive index ARC made from these compositions with and without additives such as porogens, templates, thermal radical initiator, photo radical initiators, crosslinkers, Si--OH condensation catalyst and nano-fillers. Also disclosed are methods and apparatus for applying coatings to flat substrates including substrate pre-treatment processes, coating processes and coating curing processes including skin-curing using hot-air knives. Also disclosed are coating compositions and formulations for highly tunable, durable, highly abrasion-resistant functionalized anti-reflective coatings.

  9. Surface voltage gradient role in high voltage solar array-plasma interaction: Center Director's discretionary fund

    NASA Technical Reports Server (NTRS)

    Carruth, M. R., Jr.

    1985-01-01

    A large amount of experimental and analytical effort has been directed toward understanding the plasma sheath growth and discharge phenomena which lead to high voltage solar array-space plasma interactions. An important question which has not been addressed is how the surface voltage gradient on such an array may affect these interactions. The results of this study indicate that under certain conditions, the voltage gradient should be taken into account when evaluating the effect on a solar array operating in a plasma environment.

  10. High voltage switches having one or more floating conductor layers

    SciTech Connect

    Werne, Roger W.; Sampayan, Stephen; Harris, John Richardson

    2015-11-24

    This patent document discloses high voltage switches that include one or more electrically floating conductor layers that are isolated from one another in the dielectric medium between the top and bottom switch electrodes. The presence of the one or more electrically floating conductor layers between the top and bottom switch electrodes allow the dielectric medium between the top and bottom switch electrodes to exhibit a higher breakdown voltage than the breakdown voltage when the one or more electrically floating conductor layers are not present between the top and bottom switch electrodes. This increased breakdown voltage in the presence of one or more electrically floating conductor layers in a dielectric medium enables the switch to supply a higher voltage for various high voltage circuits and electric systems.

  11. Stacking nonenzymatic circuits for high signal gain

    PubMed Central

    Chen, Xi; Briggs, Neima; McLain, Jeremy R.; Ellington, Andrew D.

    2013-01-01

    Signal amplification schemes that do not rely on protein enzymes show great potential in areas as abstruse as DNA computation and as applied as point-of-care molecular diagnostics. Toehold-mediated strand displacement, a programmable form of dynamic DNA hybridization, can be used to design powerful amplification cascades that can achieve polynomial or exponential amplification of input signals. However, experimental implementation of such amplification cascades has been severely hindered by circuit leakage due to catalyst-independent side reactions. In this study, we systematically analyzed the origins, characteristics, and outcomes of circuit leakage in amplification cascades and devised unique methods to obtain high-quality DNA circuits that exhibit minimal leakage. We successfully implemented a two-layer cascade that yielded 7,000-fold signal amplification and a two-stage, four-layer cascade that yielded upward of 600,000-fold signal amplification. Implementation of these unique methods and design principles should greatly empower molecular programming in general and DNA-based molecular diagnostics in particular. PMID:23509255

  12. Electrical system architecture having high voltage bus

    DOEpatents

    Hoff, Brian Douglas; Akasam, Sivaprasad

    2011-03-22

    An electrical system architecture is disclosed. The architecture has a power source configured to generate a first power, and a first bus configured to receive the first power from the power source. The architecture also has a converter configured to receive the first power from the first bus and convert the first power to a second power, wherein a voltage of the second power is greater than a voltage of the first power, and a second bus configured to receive the second power from the converter. The architecture further has a power storage device configured to receive the second power from the second bus and deliver the second power to the second bus, a propulsion motor configured to receive the second power from the second bus, and an accessory motor configured to receive the second power from the second bus.

  13. Optimizing planar lipid bilayer single-channel recordings for high resolution with rapid voltage steps.

    PubMed Central

    Wonderlin, W F; Finkel, A; French, R J

    1990-01-01

    We describe two enhancements of the planar bilayer recording method which enable low-noise recordings of single-channel currents activated by voltage steps in planar bilayers formed on apertures in partitions separating two open chambers. First, we have refined a simple and effective procedure for making small bilayer apertures (25-80 micrograms diam) in plastic cups. These apertures combine the favorable properties of very thin edges, good mechanical strength, and low stray capacitance. In addition to enabling formation of small, low-capacitance bilayers, this aperture design also minimizes the access resistance to the bilayer, thereby improving the low-noise performance. Second, we have used a patch-clamp headstage modified to provide logic-controlled switching between a high-gain (50 G omega) feedback resistor for high-resolution recording and a low-gain (50 M omega) feedback resistor for rapid charging of the bilayer capacitance. The gain is switched from high to low before a voltage step and then back to high gain 25 microseconds after the step. With digital subtraction of the residual currents produced by the gain switching and electrostrictive changes in bilayer capacitance, we can achieve a steady current baseline within 1 ms after the voltage step. These enhancements broaden the range of experimental applications for the planar bilayer method by combining the high resolution previously attained only with small bilayers formed on pipette tips with the flexibility of experimental design possible with planar bilayers in open chambers. We illustrate application of these methods with recordings of the voltage-step activation of a voltage-gated potassium channel. PMID:1698470

  14. A compact high voltage pulse generator

    SciTech Connect

    Rohwein, G.J.; Babcock, S.R.

    1994-07-01

    A compact, easily transportable, pulse generator has been developed for a variety of applications that require a pulse duration in the range of 1 {mu} sec., voltages from 150 to 300 KV and current levels from 2,000 to 3,000 amps. The generator has a simple cylindrical configuration and modular construction to facilitate assembly and service. The generator may be operated single-pulse or repetitively at pulse repetition rates to 50 Hz in a burst mode.

  15. Living and Working Safely Around High-Voltage Power Lines.

    SciTech Connect

    United States. Bonneville Power Administration.

    2001-06-01

    High-voltage transmission lines can be just as safe as the electrical wiring in the homes--or just as dangerous. The crucial factor is ourselves: they must learn to behave safely around them. This booklet is a basic safety guide for those who live and work around power lines. It deals primarily with nuisance shocks due to induced voltages, and with potential electric shock hazards from contact with high-voltage lines. References on possible long-term biological effects of transmission lines are shown. In preparing this booklet, the Bonneville Power Administration has drawn on more than 50 years of experience with high-voltage transmission. BPA operates one of the world`s largest networks of long-distance, high-voltage lines. This system has more than 400 substations and about 15,000 miles of transmission lines, almost 4,400 miles of which are operated at 500,000 volts.

  16. Bipolar high-repetition-rate high-voltage nanosecond pulser

    SciTech Connect

    Tian Fuqiang; Wang Yi; Shi Hongsheng; Lei Qingquan

    2008-06-15

    The pulser designed is mainly used for producing corona plasma in waste water treatment system. Also its application in study of dielectric electrical properties will be discussed. The pulser consists of a variable dc power source for high-voltage supply, two graded capacitors for energy storage, and the rotating spark gap switch. The key part is the multielectrode rotating spark gap switch (MER-SGS), which can ensure wider range modulation of pulse repetition rate, longer pulse width, shorter pulse rise time, remarkable electrical field distortion, and greatly favors recovery of the gap insulation strength, insulation design, the life of the switch, etc. The voltage of the output pulses switched by the MER-SGS is in the order of 3-50 kV with pulse rise time of less than 10 ns and pulse repetition rate of 1-3 kHz. An energy of 1.25-125 J per pulse and an average power of up to 10-50 kW are attainable. The highest pulse repetition rate is determined by the driver motor revolution and the electrode number of MER-SGS. Even higher voltage and energy can be switched by adjusting the gas pressure or employing N{sub 2} as the insulation gas or enlarging the size of MER-SGS to guarantee enough insulation level.

  17. Planar LTCC transformers for high voltage flyback converters.

    SciTech Connect

    Schofield, Daryl; Schare, Joshua M.; Glass, Sarah Jill; Roesler, Alexander William; Ewsuk, Kevin Gregory; Slama, George; Abel, Dave

    2007-06-01

    This paper discusses the design and use of low-temperature (850 C to 950 C) co-fired ceramic (LTCC) planar magnetic flyback transformers for applications that require conversion of a low voltage to high voltage (> 100V) with significant volumetric constraints. Measured performance and modeling results for multiple designs showed that the LTCC flyback transformer design and construction imposes serious limitations on the achievable coupling and significantly impacts the transformer performance and output voltage. This paper discusses the impact of various design factors that can provide improved performance by increasing transformer coupling and output voltage. The experiments performed on prototype units demonstrated LTCC transformer designs capable of greater than 2 kV output. Finally, the work investigated the effect of the LTCC microstructure on transformer insulation. Although this paper focuses on generating voltages in the kV range, the experimental characterization and discussion presented in this work applies to designs requiring lower voltage.

  18. An output amplitude configurable wideband automatic gain control with high gain step accuracy

    NASA Astrophysics Data System (ADS)

    Xiaofeng, He; Taishan, Mo; Chengyan, Ma; Tianchun, Ye

    2012-02-01

    An output amplitude configurable wideband automatic gain control (AGC) with high gain step accuracy for the GNSS receiver is presented. The amplitude of an AGC is configurable in order to cooperate with baseband chips to achieve interference suppression and be compatible with different full range ADCs. And what's more, the gain-boosting technology is introduced and the circuit is improved to increase the step accuracy. A zero, which is composed by the source feedback resistance and the source capacity, is introduced to compensate for the pole. The AGC is fabricated in a 0.18 μm CMOS process. The AGC shows a 62 dB gain control range by 1 dB each step with a gain error of less than 0.2 dB. The AGC provides 3 dB bandwidth larger than 80 MHz and the overall power consumption is less than 1.8 mA, and the die area is 800 × 300 μm2.

  19. Optically triggered high voltage switch network and method for switching a high voltage

    DOEpatents

    El-Sharkawi, Mohamed A.; Andexler, George; Silberkleit, Lee I.

    1993-01-19

    An optically triggered solid state switch and method for switching a high voltage electrical current. A plurality of solid state switches (350) are connected in series for controlling electrical current flow between a compensation capacitor (112) and ground in a reactive power compensator (50, 50') that monitors the voltage and current flowing through each of three distribution lines (52a, 52b and 52c), which are supplying three-phase power to one or more inductive loads. An optical transmitter (100) controlled by the reactive power compensation system produces light pulses that are conveyed over optical fibers (102) to a switch driver (110') that includes a plurality of series connected optical triger circuits (288). Each of the optical trigger circuits controls a pair of the solid state switches and includes a plurality of series connected resistors (294, 326, 330, and 334) that equalize or balance the potential across the plurality of trigger circuits. The trigger circuits are connected to one of the distribution lines through a trigger capacitor (340). In each switch driver, the light signals activate a phototransistor (300) so that an electrical current flows from one of the energy reservoir capacitors through a pulse transformer (306) in the trigger circuit, producing gate signals that turn on the pair of serially connected solid state switches (350).

  20. E-beam high voltage switching power supply

    DOEpatents

    Shimer, Daniel W.; Lange, Arnold C.

    1996-01-01

    A high-power power supply produces a controllable, constant high voltage put under varying and arcing loads. The power supply includes a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, an output rectifier for producing a dc voltage at the output of each module, and a current sensor for sensing output current. The power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle and circuitry is provided for sensing incipient arc currents at the output of the power supply to simultaneously decouple the power supply circuitry from the arcing load. The power supply includes a plurality of discrete switching type dc--dc converter modules.

  1. E-beam high voltage switching power supply

    DOEpatents

    Shimer, D.W.; Lange, A.C.

    1996-10-15

    A high-power power supply produces a controllable, constant high voltage output under varying and arcing loads. The power supply includes a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, an output rectifier for producing a dc voltage at the output of each module, and a current sensor for sensing output current. The power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle and circuitry is provided for sensing incipient arc currents at the output of the power supply to simultaneously decouple the power supply circuitry from the arcing load. The power supply includes a plurality of discrete switching type dc--dc converter modules. 5 figs.

  2. COTS Li-Ion Cells in High Voltage Batteries

    NASA Technical Reports Server (NTRS)

    Davies, Francis; Darcy, Eric; Jeevarajan, Judy; Cowles, Phil

    2003-01-01

    Testing at NASA JSC and COMDEV shows that Commercial Off the Shelf (COTS) Li Ion cells can not be used in high voltage batteries safely without considering the voltage stresses that may be put on the protective devices in them during failure modes.

  3. High voltage high repetition rate pulse using Marx topology

    NASA Astrophysics Data System (ADS)

    Hakki, A.; Kashapov, N.

    2015-06-01

    The paper describes Marx topology using MOSFET transistors. Marx circuit with 10 stages has been done, to obtain pulses about 5.5KV amplitude, and the width of the pulses was about 30μsec with a high repetition rate (PPS > 100), Vdc = 535VDC is the input voltage for supplying the Marx circuit. Two Ferrite ring core transformers were used to control the MOSFET transistors of the Marx circuit (the first transformer to control the charging MOSFET transistors, the second transformer to control the discharging MOSFET transistors).

  4. High-voltage pulsed generators for electro-discharge technologies

    NASA Astrophysics Data System (ADS)

    Kovalchuk, B. M.; Kharlov, A. V.; Kumpyak, E. V.; Sinebrykhov, V. A.

    2013-09-01

    A high-voltage pulse technology is one of effective techniques for the disintegration and milling of rocks, separation of ores and synthesized materials, recycling of building and elastoplastic materials. We present here the design and test results of two portable HV pulsed generators, designed for materials fragmentation, though some other technological applications are possible as well. Generator #1 consists of low voltage block, high voltage transformer, high voltage capacitive storage block, two electrode gas switch, fragmentation chamber and control system block. Technical characteristics of the #1 generator: stored energy in HV capacitors can be varied from 50 to 1000 J, output voltage up to 300 kV, voltage rise time ~ 50 ns, typical operation regime 1000 pulses bursts with a repetitive rate up to 10 Hz. Generator #2 is made on an eight stages Marx scheme with two capacitors (100 kV-400 nF) per stage, connected in parallel. Two electrode spark gap switches, operated in atmospheric air, are used in the Marx generator. Parameters of the generator: stored energy in capacitors 2÷8 kJ, amplitude of the output voltage 200÷400 kV, voltage rise time on a load 50÷100 ns, repetitive rate up to 0.5 Hz. The fragmentation process can be controlled within a wide range of parameters for both generators.

  5. Computer simulation of space station computer steered high gain antenna

    NASA Technical Reports Server (NTRS)

    Beach, S. W.

    1973-01-01

    The mathematical modeling and programming of a complete simulation program for a space station computer-steered high gain antenna are described. The program provides for reading input data cards, numerically integrating up to 50 first order differential equations, and monitoring up to 48 variables on printed output and on plots. The program system consists of a high gain antenna, an antenna gimbal control system, an on board computer, and the environment in which all are to operate.

  6. High-Current Gain Two-Dimensional MoS₂-Base Hot-Electron Transistors.

    PubMed

    Torres, Carlos M; Lan, Yann-Wen; Zeng, Caifu; Chen, Jyun-Hong; Kou, Xufeng; Navabi, Aryan; Tang, Jianshi; Montazeri, Mohammad; Adleman, James R; Lerner, Mitchell B; Zhong, Yuan-Liang; Li, Lain-Jong; Chen, Chii-Dong; Wang, Kang L

    2015-12-01

    The vertical transport of nonequilibrium charge carriers through semiconductor heterostructures has led to milestones in electronics with the development of the hot-electron transistor. Recently, significant advances have been made with atomically sharp heterostructures implementing various two-dimensional materials. Although graphene-base hot-electron transistors show great promise for electronic switching at high frequencies, they are limited by their low current gain. Here we show that, by choosing MoS2 and HfO2 for the filter barrier interface and using a noncrystalline semiconductor such as ITO for the collector, we can achieve an unprecedentedly high-current gain (α ∼ 0.95) in our hot-electron transistors operating at room temperature. Furthermore, the current gain can be tuned over 2 orders of magnitude with the collector-base voltage albeit this feature currently presents a drawback in the transistor performance metrics such as poor output resistance and poor intrinsic voltage gain. We anticipate our transistors will pave the way toward the realization of novel flexible 2D material-based high-density, low-energy, and high-frequency hot-carrier electronic applications. PMID:26524388

  7. System for instrumenting and manipulating apparatuses in high voltage

    DOEpatents

    Jordan, Kevin

    2016-06-07

    A system for energizing, operating and manipulating apparatuses in high voltage systems. The system uses a dielectric gas such as SF.sub.6 as a driving power supply for a pneumatic motor which ultimately charges a battery or other energy storage device. The stored energy can then be used for instrumentation equipment, or to power any electrical equipment, in the high voltage deck. The accompanying method provides for the use of the SF6 system for operating an electrical device in a high-voltage environment.

  8. High voltage bushing having weathershed and surrounding stress relief collar

    DOEpatents

    Cookson, Alan H.

    1981-01-01

    A high voltage electric bushing comprises a hollow elongated dielectric weathershed which encloses a high voltage conductor. A collar formed of high voltage dielectric material is positioned over the weathershed and is bonded thereto by an interface material which precludes moisture-like contaminants from entering between the bonded portions. The collar is substantially thicker than the adjacent weathershed which it surrounds, providing relief of the electric stresses which would otherwise appear on the outer surface of the weathershed. The collar may include a conductive ring or capacitive foil to further relieve electric stresses experienced by the bushing.

  9. High-gain, high-bandwidth, rail-to-rail, constant-gm CMOS operational amplifier

    NASA Astrophysics Data System (ADS)

    Huang, Hong-Yi; Wang, Bo-Ruei

    2013-01-01

    This study presents a high-gain, high-bandwidth, constant-gm , rail-to-rail operational amplifier (op-amp). The constant transconductance is improved with a source-to-bulk bias control of an input pair. A source degeneration scheme is also adapted to the output stage for receiving wide input range without degradation of the gain. Additionally, several compensation schemes are employed to enhance the stability. A test chip is fabricated in a 0.18 µm complementary metal-oxide semiconductor process. The active area of the op-amp is 181 × 173 µm2 and it consumes a power of 2.41 mW at a supply voltage of 1.8 V. The op-amp achieves a dc gain of 94.3 dB and a bandwidth of 45 MHz when the output capacitive load is connected to an effective load of 42.5 pF. A class-AB output stage combining a slew rate (SR) boost circuit provides a sinking current of 6 mA and an SR of 17 V/µs.

  10. Fast recovery, high voltage silicon diodes for AC motor controllers

    NASA Technical Reports Server (NTRS)

    Balodis, V.; Berman, A. H.; Gaugh, C.

    1982-01-01

    The fabrication and characterization of a high voltage, high current, fast recovery silicon diode for use in AC motor controllers, originally developed for NASA for use in avionics power supplies, is presented. The diode utilizes a positive bevel PIN mesa structure with glass passivation and has the following characteristics: peak inverse voltage - 1200 volts, forward voltage at 50 amperes - 1.5 volts, reverse recovery time of 200 nanoseconds. Characterization data for the diode, included in a table, show agreement with design concepts developed for power diodes. Circuit diagrams of the diode are also given.

  11. High voltage, low inductance hydrogen thyratron study program, phase 5

    NASA Astrophysics Data System (ADS)

    Friedman, S.

    1983-08-01

    50 kv per stage dynamic breakdown voltage (DBV) was demonstrated in low inductance multistage hydrogen thyratrons for total voltages up to nearly 200 kv, at pressures consistent with a 10 ns current rise time. High peak current operation has been demonstrated up to 14 ka at 56 kv (the limits of our high current test kit). Bottom stage holdoff the per stage DBV are comparable to that of the best single stage thyratrons, bottom stage holdoff, stage voltage addition, and prefire problems are solved.

  12. Multiple high voltage output DC-to-DC power converter

    NASA Technical Reports Server (NTRS)

    Cronin, Donald L. (Inventor); Farber, Bertrand F. (Inventor); Gehm, Hartmut K. (Inventor); Goldin, Daniel S. (Inventor)

    1977-01-01

    Disclosed is a multiple output DC-to-DC converter. The DC input power is filtered and passed through a chopper preregulator. The chopper output is then passed through a current source inverter controlled by a squarewave generator. The resultant AC is passed through the primary winding of a transformer, with high voltages induced in a plurality of secondary windings. The high voltage secondary outputs are each solid-state rectified for passage to individual output loads. Multiple feedback loops control the operation of the chopper preregulator, one being responsive to the current through the primary winding and another responsive to the DC voltage level at a selected output.

  13. Studies of high-gain microchannel plate photomultipliers

    SciTech Connect

    Oba, K.; Rehak, P.

    1980-01-01

    The characteristics and performance of several kinds of high-gain micro-channel plate photomultipliers have been investigated. Special attention was directed toward (1) lifetime studies, (2) performance in the magnetic field, and (3) timing properties. Lifetime studies include separate investigations of the photocathode quantum efficiency degradation caused by ion feedback, and the deterioration of the micro-channel plate gain. The dependence of the micro-channel plate photomultiplier gain on the intensity and the direction of the magnetic field (up to 7 kGauss) is reported.

  14. Nano-engineered ultra-high-gain microchannel plates

    NASA Astrophysics Data System (ADS)

    Beaulieu, D. R.; Gorelikov, D.; de Rouffignac, P.; Saadatmand, K.; Stenton, K.; Sullivan, N.; Tremsin, A. S.

    2009-08-01

    Highly localized and very fast electron amplification of microchannel plates (MCPs) enables a large number of high-resolution and high-sensitivity detection technologies, which provide spatial and/or temporal information for each detected photon/electron/ion/neutron. Although there has been significant progress in photocathode and readout technologies the MCPs themselves have not evolved much from the technology developed several decades ago. Substantial increases in the gain of existing MCP technology have been accomplished by utilizing state-of-the-art processes developed for nano-engineered structures. The gain of treated MCPs with aspect ratio of 40:1 is reproducibly measured to reach unprecedented values of 2×10 5. This gain enhancement is shown to be stable during MCP operation. In addition, the initial experiments indicate improved stability of gain as a function of extracted charge and MCP storage conditions. We also present results from a fully independent thin-film process for manufacturing non-lead glass MCPs using engineered thin films for both the resistive and emissive layers. These substrate-independent MCPs show high gain, less gain degradation with extracted charge, and greater pore-to-pore and plate-to-plate uniformity than has been possible with conventional lead glass structures.

  15. Dynamics of laser-guided alternating current high voltage discharges

    NASA Astrophysics Data System (ADS)

    Daigle, J.-F.; Théberge, F.; Lassonde, P.; Kieffer, J.-C.; Fujii, T.; Fortin, J.; Châteauneuf, M.; Dubois, J.

    2013-10-01

    The dynamics of laser-guided alternating current high voltage discharges are characterized using a streak camera. Laser filaments were used to trigger and guide the discharges produced by a commercial Tesla coil. The streaking images revealed that the dynamics of the guided alternating current high voltage corona are different from that of a direct current source. The measured effective corona velocity and the absence of leader streamers confirmed that it evolves in a pure leader regime.

  16. Optical control system for high-voltage terminals

    DOEpatents

    Bicek, John J.

    1978-01-01

    An optical control system for the control of devices in the terminal of an electrostatic accelerator includes a laser that is modulated by a series of preselected codes produced by an encoder. A photodiode receiver is placed in the laser beam at the high-voltage terminal of an electrostatic accelerator. A decoder connected to the photodiode decodes the signals to provide control impulses for a plurality of devices at the high voltage of the terminal.

  17. High gain amplifiers: Power oscillations and harmonic generation

    SciTech Connect

    Dattoli, G.; Ottaviani, P. L.; Pagnutti, S.

    2007-08-01

    We discuss the power oscillations in saturated high gain free electron laser amplifiers and show that the relevant period can be written in terms of the gain length. We use simple arguments following from the solution of the pendulum equation in terms of Jacobi elliptic functions. Nontrivial effects due to nonlinear harmonic generation and inhomogeneous broadening are discussed too, as well as the saturated dynamics of short pulses.

  18. A high-voltage supply used on miniaturized RLG

    NASA Astrophysics Data System (ADS)

    Miao, Zhifei; Fan, Mingming; Wang, Yuepeng; Yin, Yan; Wang, Dongmei

    2016-01-01

    A high voltage power supply used in laser gyro is proposed in this paper. The power supply which uses a single DC 15v input and fly-back topology is adopted in the main circuit. The output of the power supply achieve high to 3.3kv voltage in order to light the RLG. The PFM control method is adopted to realize the rapid switching between the high voltage state and the maintain state. The resonant chip L6565 is used to achieve the zero voltage switching(ZVS), so the consumption is reduced and the power efficiency is improved more than 80%. A special circuit is presented in the control portion to ensure symmetry of the two RLG's arms current. The measured current accuracy is higher than 5‰ and the current symmetry of the two RLG's arms up to 99.2%.

  19. A compact 100 kV high voltage glycol capacitor

    NASA Astrophysics Data System (ADS)

    Wang, Langning; Liu, Jinliang; Feng, Jiahuai

    2015-01-01

    A high voltage capacitor is described in this paper. The capacitor uses glycerol as energy storage medium, has a large capacitance close to 1 nF, can hold off voltages of up to 100 kV for μs charging time. Allowing for low inductance, the capacitor electrode is designed as coaxial structure, which is different from the common structure of the ceramic capacitor. With a steady capacitance at different frequencies and a high hold-off voltage of up to 100 kV, the glycol capacitor design provides a potential substitute for the ceramic capacitors in pulse-forming network modulator to generate high voltage pulses with a width longer than 100 ns.

  20. Research on synchronization of 15 parallel high gain photoconductive semiconductor switches triggered by high power pulse laser diodes

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Xia, Liansheng; Chen, Yi; Liu, Yi; Yang, Chao; Ye, Mao; Deng, Jianjun

    2015-01-01

    The synchronization of 15 parallel high gain gallium arsenide photoconductive semiconductor switches (GaAs PCSS) has been researched aiming to get higher output voltage. Each PCSS is triggered independently by a high power pulse laser diode. The pulse width, energy, peak power, and central wavelength of the laser pulse are approximately 18 ns, 360 μJ, 20 kW, and 905 nm, respectively. In the stacked Blumlein transmission lines structure, the synchronous conduction of 15 parallel GaAs PCSSs has been achieved by offering optimized bias voltage and laser parameters. The method of synchronization calculation is given, and the synchronization of the 15 parallel GaAs PCSSs is measured as 775 ps. Furthermore, influences of the bias voltage, laser parameters on the synchronization are analyzed. In the output terminal, superimposed by the output voltages of 15 Blumlein transmission lines, the total output voltage reaches up to 328 kV, which is the highest output voltage of GaAs PCSSs that has been reported so far.

  1. High Input Voltage, Silicon Carbide Power Processing Unit Performance Demonstration

    NASA Technical Reports Server (NTRS)

    Bozak, Karin E.; Pinero, Luis R.; Scheidegger, Robert J.; Aulisio, Michael V.; Gonzalez, Marcelo C.; Birchenough, Arthur G.

    2015-01-01

    A silicon carbide brassboard power processing unit has been developed by the NASA Glenn Research Center in Cleveland, Ohio. The power processing unit operates from two sources: a nominal 300 Volt high voltage input bus and a nominal 28 Volt low voltage input bus. The design of the power processing unit includes four low voltage, low power auxiliary supplies, and two parallel 7.5 kilowatt (kW) discharge power supplies that are capable of providing up to 15 kilowatts of total power at 300 to 500 Volts (V) to the thruster. Additionally, the unit contains a housekeeping supply, high voltage input filter, low voltage input filter, and master control board, such that the complete brassboard unit is capable of operating a 12.5 kilowatt Hall effect thruster. The performance of the unit was characterized under both ambient and thermal vacuum test conditions, and the results demonstrate exceptional performance with full power efficiencies exceeding 97%. The unit was also tested with a 12.5kW Hall effect thruster to verify compatibility and output filter specifications. With space-qualified silicon carbide or similar high voltage, high efficiency power devices, this would provide a design solution to address the need for high power electric propulsion systems.

  2. High Input Voltage, Silicon Carbide Power Processing Unit Performance Demonstration

    NASA Technical Reports Server (NTRS)

    Bozak, Karin E.; Pinero, Luis R.; Scheidegger, Robert J.; Aulisio, Michael V.; Gonzalez, Marcelo C.; Birchenough, Arthur G.

    2015-01-01

    A silicon carbide brassboard power processing unit has been developed by the NASA Glenn Research Center in Cleveland, Ohio. The power processing unit operates from two sources - a nominal 300-Volt high voltage input bus and a nominal 28-Volt low voltage input bus. The design of the power processing unit includes four low voltage, low power supplies that provide power to the thruster auxiliary supplies, and two parallel 7.5 kilowatt power supplies that are capable of providing up to 15 kilowatts of total power at 300-Volts to 500-Volts to the thruster discharge supply. Additionally, the unit contains a housekeeping supply, high voltage input filter, low voltage input filter, and master control board, such that the complete brassboard unit is capable of operating a 12.5 kilowatt Hall Effect Thruster. The performance of unit was characterized under both ambient and thermal vacuum test conditions, and the results demonstrate the exceptional performance with full power efficiencies exceeding 97. With a space-qualified silicon carbide or similar high voltage, high efficiency power device, this design could evolve into a flight design for future missions that require high power electric propulsion systems.

  3. High-voltage virtual-cathode microwave simulations

    SciTech Connect

    Thode, L.; Snell, C.M.

    1991-01-01

    In contrast to a conventional microwave tube, a virtual-cathode device operates above the space-charge limit where the depth of the space-charge potential is sufficiently large to cause electron reflection. The region associated with electron reflection is referred to as a virtual cathode. Microwaves can be generated through oscillations in the position of the virtual cathode and by reflexing electrons trapped in the potential well formed between the real and virtual cathodes. A virtual-cathode device based on the first mechanism is a vircator while one based on latter mechanism is a reflex diode. A large number of low-voltage virtual-cathode microwave configurations have been investigated. Initial simulations of a high-voltage virtual-cathode device using a self-consistent particle-in-cell code indicated reasonable conversion efficiency with no frequency chirping. The nonchirping character of the high-voltage virtual-cathode device lead to the interesting possibility of locking four very-high-power microwave devices together using the four transmission lines available at Aurora. Subsequently, in support of two high-voltage experiments, simulations were used to investigate the effect of field-emission threshold and velvet position on the cathode; anode and cathode shape; anode-cathode gap spacing; output waveguide radius; diode voltage; a cathode-coaxial-cavity resonator; a high-frequency ac-voltage drive; anode foil scattering and energy loss; and ion emission on the microwave frequency and power. Microwave

  4. 30 CFR 75.822 - Underground high-voltage longwall cables.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Underground high-voltage longwall cables. 75... Distribution High-Voltage Longwalls § 75.822 Underground high-voltage longwall cables. In addition to the high-voltage cable design specifications in § 75.804 of this part, high-voltage cables for use on longwalls...

  5. 30 CFR 75.822 - Underground high-voltage longwall cables.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Underground high-voltage longwall cables. 75... Distribution High-Voltage Longwalls § 75.822 Underground high-voltage longwall cables. In addition to the high-voltage cable design specifications in § 75.804 of this part, high-voltage cables for use on longwalls...

  6. 30 CFR 75.822 - Underground high-voltage longwall cables.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Underground high-voltage longwall cables. 75... Distribution High-Voltage Longwalls § 75.822 Underground high-voltage longwall cables. In addition to the high-voltage cable design specifications in § 75.804 of this part, high-voltage cables for use on longwalls...

  7. High performance dc-dc conversion with voltage multipliers

    NASA Technical Reports Server (NTRS)

    Harrigill, W. T.; Myers, I. T.

    1974-01-01

    The voltage multipliers using capacitors and diodes first developed by Cockcroft and Walton in 1932 were reexamined in terms of state of the art fast switching transistors and diodes, and high energy density capacitors. Because of component improvements, the voltage multiplier, used without a transformer, now appears superior in weight to systems now in use for dc-dc conversion. An experimental 100-watt 1000-volt dc-dc converter operating at 100 kHz was built, with a component weight of about 1 kg/kW. Calculated and measured values of output voltage and efficiency agreed within experimental error.

  8. High voltage electrical amplifier having a short rise time

    DOEpatents

    Christie, David J.; Dallum, Gregory E.

    1991-01-01

    A circuit, comprising an amplifier and a transformer is disclosed that produces a high power pulse having a fast response time, and that responds to a digital control signal applied through a digital-to-analog converter. The present invention is suitable for driving a component such as an electro-optic modulator with a voltage in the kilovolt range. The circuit is stable at high frequencies and during pulse transients, and its impedance matching circuit matches the load impedance with the output impedance. The preferred embodiment comprises an input stage compatible with high-speed semiconductor components for amplifying the voltage of the input control signal, a buffer for isolating the input stage from the output stage; and a plurality of current amplifiers connected to the buffer. Each current amplifier is connected to a field effect transistor (FET), which switches a high voltage power supply to a transformer which then provides an output terminal for driving a load. The transformer comprises a plurality of transmission lines connected to the FETs and the load. The transformer changes the impedance and voltage of the output. The preferred embodiment also comprises a low voltage power supply for biasing the FETs at or near an operational voltage.

  9. Planar LTCC transformers for high voltage flyback converters: Part II.

    SciTech Connect

    Schofield, Daryl; Schare, Joshua M., Ph.D.; Slama, George; Abel, David

    2009-02-01

    This paper is a continuation of the work presented in SAND2007-2591 'Planar LTCC Transformers for High Voltage Flyback Converters'. The designs in that SAND report were all based on a ferrite tape/dielectric paste system originally developed by NASCENTechnoloy, Inc, who collaborated in the design and manufacturing of the planar LTCC flyback converters. The output/volume requirements were targeted to DoD application for hard target/mini fuzing at around 1500 V for reasonable primary peak currents. High voltages could be obtained but with considerable higher current. Work had begun on higher voltage systems and is where this report begins. Limits in material properties and processing capabilities show that the state-of-the-art has limited our practical output voltage from such a small part volume. In other words, the technology is currently limited within the allowable funding and interest.

  10. Design & Fabrication of a High-Voltage Photovoltaic Cell

    SciTech Connect

    Felder, Jennifer; /North Carolina State U. /SLAC

    2012-09-05

    Silicon photovoltaic (PV) cells are alternative energy sources that are important in sustainable power generation. Currently, applications of PV cells are limited by the low output voltage and somewhat low efficiency of such devices. In light of this fact, this project investigates the possibility of fabricating high-voltage PV cells on float-zone silicon wafers having output voltages ranging from 50 V to 2000 V. Three designs with different geometries of diffusion layers were simulated and compared in terms of metal coverage, recombination, built-in potential, and conduction current density. One design was then chosen and optimized to be implemented in the final device design. The results of the simulation serve as a feasibility test for the design concept and provide supportive evidence of the effectiveness of silicon PV cells as high-voltage power supplies.

  11. ZnO nanowire UV photodetectors with high internal gain.

    PubMed

    Soci, C; Zhang, A; Xiang, B; Dayeh, S A; Aplin, D P R; Park, J; Bao, X Y; Lo, Y H; Wang, D

    2007-04-01

    ZnO nanowire (NW) visible-blind UV photodetectors with internal photoconductive gain as high as G approximately 108 have been fabricated and characterized. The photoconduction mechanism in these devices has been elucidated by means of time-resolved measurements spanning a wide temporal domain, from 10-9 to 102 s, revealing the coexistence of fast (tau approximately 20 ns) and slow (tau approximately 10 s) components of the carrier relaxation dynamics. The extremely high photoconductive gain is attributed to the presence of oxygen-related hole-trap states at the NW surface, which prevents charge-carrier recombination and prolongs the photocarrier lifetime, as evidenced by the sensitivity of the photocurrrent to ambient conditions. Surprisingly, this mechanism appears to be effective even at the shortest time scale investigated of t < 1 ns. Despite the slow relaxation time, the extremely high internal gain of ZnO NW photodetectors results in gain-bandwidth products (GB) higher than approximately 10 GHz. The high gain and low power consumption of NW photodetectors promise a new generation of phototransistors for applications such as sensing, imaging, and intrachip optical interconnects. PMID:17358092

  12. Characteristics of current filamentation in high gain photoconductive semiconductor switching

    SciTech Connect

    Zutavern, F J; Loubriel, G M; O'Malley, M W; Helgeson, W D; McLaughlin, D L; Denison, G J

    1992-01-01

    Characteristics of current filamentation are reported for high gain photoconductive semiconductor switches (PCSS). Infrared photoluminescence is used to monitor carrier recombination radiation during fast initiation of high gain switching in large (1.5 cm gap) lateral GaAs PCSS. Spatial modulation of the optical trigger, a 200--300 ps pulse width laser, is examined. Effects on the location and number of current filaments, rise time, and delay to high gain switching, minimum trigger energy, and degradation of switch contacts are presented. Implications of these measurements for the theoretical understanding and practical development of these switches are discussed. Efforts to increase current density and reduce switch size and optical trigger energy requirements are described. Results from contact development and device lifetime testing are presented and the impact of these results on practical device applications is discussed.

  13. Surface effects in high voltage silicon solar cells

    NASA Technical Reports Server (NTRS)

    Meulenberg, A.; Arndt, R. A.

    1982-01-01

    The surface of low-resistivity silicon solar cells appears to be a major source of dark diffusion current. This region, consisting of the interface and the adjacent heavily doped layer, therefore, prevents attainment of the high open-circuit voltages expected from these cells. This paper describes the experimental effort carried out to reduce the various contributions of dark current from the surface. Analysis of results from this effort points to means of improving cell voltages by changing processing and structures.

  14. High voltage series connected tandem junction solar battery

    DOEpatents

    Hanak, Joseph J.

    1982-01-01

    A high voltage series connected tandem junction solar battery which comprises a plurality of strips of tandem junction solar cells of hydrogenated amorphous silicon having one optical path and electrically interconnected by a tunnel junction. The layers of hydrogenated amorphous silicon, arranged in a tandem configuration, can have the same bandgap or differing bandgaps. The tandem junction strip solar cells are series connected to produce a solar battery of any desired voltage.

  15. Caustic Singularities Of High-Gain, Dual-Shaped Reflectors

    NASA Technical Reports Server (NTRS)

    Galindo, Victor; Veruttipong, Thavath W.; Imbriale, William A.; Rengarajan, Sambiam

    1991-01-01

    Report presents study of some sources of error in analysis, by geometric theory of diffraction (GTD), of performance of high-gain, dual-shaped antenna reflector. Study probes into underlying analytic causes of singularity, with view toward devising and testing practical methods to avoid problems caused by singularity. Hybrid physical optics (PO) approach used to study near-field spillover or noise-temperature characteristics of high-gain relector antenna efficiently and accurately. Report illustrates this approach and underlying principles by presenting numerical results, for both offset and symmetrical reflector systems, computed by GTD, PO, and PO/GO methods.

  16. Effects of Displacement Damage on the Time-Resolved Gain and Bandwidth of a Low Breakdown Voltage Si Avalanche Photodiode

    NASA Technical Reports Server (NTRS)

    Laird, Jamie S.; Onoda, Shinobu; Hirao, Toshio; Becker, Heidi; Johnston, Allan; Laird, Jamie S.; Itoh, Hisayoshi

    2006-01-01

    Effects of displacement damage and ionization damage induced by gamma irradiation on the dark current and impulse response of a high-bandwidth low breakdown voltage Si Avalanche Photodiode has been investigated using picosecond laser microscopy. At doses as high as 10Mrad (Si) minimal alteration in the impulse response and bandwidth were observed. However, dark current measurements also performed with and without biased irradiation exhibit anomalously large damage factors for applied biases close to breakdown. The absence of any degradation in the impulse response is discussed as are possible mechanisms for higher dark current damage factors observed for biased irradiation.

  17. High voltage switch triggered by a laser-photocathode subsystem

    DOEpatents

    Chen, Ping; Lundquist, Martin L.; Yu, David U. L.

    2013-01-08

    A spark gap switch for controlling the output of a high voltage pulse from a high voltage source, for example, a capacitor bank or a pulse forming network, to an external load such as a high gradient electron gun, laser, pulsed power accelerator or wide band radar. The combination of a UV laser and a high vacuum quartz cell, in which a photocathode and an anode are installed, is utilized as triggering devices to switch the spark gap from a non-conducting state to a conducting state with low delay and low jitter.

  18. High gain proportional rf control stability at TESLA cavities

    NASA Astrophysics Data System (ADS)

    Vogel, Elmar

    2007-05-01

    Fast proportional rf control is used as the basis for rf field regulation in actual linear accelerator projects like the international linear collider (ILC) and the European x-ray free electron laser (XFEL) based on TESLA technology. Additional control loops improve the field regulation by treating repetitive effects and compensating the beam loading. Nevertheless, the ability for high gain operation of the fast loops is desirable for the strong suppression of nonpredictive and nonrepetitive disturbances. TESLA cavities host nine fundamental modes (FMs) where only one is used for beam acceleration. The unwanted FMs have a significant influence on the proportional rf control loop stability at high gains. Within this paper, the stability of proportional rf control loops taking the FMs and digitalization effects into account will be discussed in detail together with measures enabling a significant increase of the gain values.

  19. Investigation of high voltage spacecraft system interactions with plasma environments

    NASA Technical Reports Server (NTRS)

    Stevens, N. J.; Berkopec, F. D.; Purvis, C. K.; Grier, N.; Staskus, J.

    1978-01-01

    The exposure of high voltage spacecraft systems to the charged particle environment of space can produce interactions that will influence system operation. An experimental investigation of these interactions has been undertaken for insulator and conductor test surfaces biased up to plus or minus 1 kV in a simulated low earth orbit charged particle environment. It has been found that these interactions are controlled by the insulator surfaces surrounding the biased conductors. For positive applied voltages the electron current collection can be enhanced by the insulators. For negative applied voltages the insulator surface confines the voltage to the conductor region; this can cause arcing. Understanding these interactions and the technology to control their impact on system operation is essential to the design of solar cell arrays for ion drive propulsion applications that use direct drive power processing.

  20. High-Capacity, High-Voltage Composite Oxide Cathode Materials

    NASA Technical Reports Server (NTRS)

    Hagh, Nader M.

    2015-01-01

    This SBIR project integrates theoretical and experimental work to enable a new generation of high-capacity, high-voltage cathode materials that will lead to high-performance, robust energy storage systems. At low operating temperatures, commercially available electrode materials for lithium-ion (Li-ion) batteries do not meet energy and power requirements for NASA's planned exploration activities. NEI Corporation, in partnership with the University of California, San Diego, has developed layered composite cathode materials that increase power and energy densities at temperatures as low as 0 degC and considerably reduce the overall volume and weight of battery packs. In Phase I of the project, through innovations in the structure and morphology of composite electrode particles, the partners successfully demonstrated an energy density exceeding 1,000 Wh/kg at 4 V at room temperature. In Phase II, the team enhanced the kinetics of Li-ion transport and electronic conductivity at 0 degC. An important feature of the composite cathode is that it has at least two components that are structurally integrated. The layered material is electrochemically inactive; however, upon structural integration with a spinel material, the layered material can be electrochemically activated and deliver a large amount of energy with stable cycling.

  1. Gaseous insulators for high voltage electrical equipment

    DOEpatents

    Christophorou, Loucas G.; James, David R.; Pace, Marshall O.; Pai, Robert Y.

    1979-01-01

    Gaseous insulators comprise compounds having high attachment cross sections for electrons having energies in the 0-1.3 electron volt range. Multi-component gaseous insulators comprise compounds and mixtures having overall high electron attachment cross sections in the 0-1.3 electron volt range and moderating gases having high cross sections for inelastic interactions with electrons of energies 1-4 electron volts. Suitable electron attachment components include hexafluorobutyne, perfluorobutene-2, perfluorocyclobutane, perfluorodimethylcyclobutane, perfluorocyclohexene, perfluoromethylcyclohexane, hexafluorobutadiene, perfluoroheptene-1 and hexafluoroazomethane. Suitable moderating gases include N.sub.2, CO, CO.sub.2 and H.sub.2. The gaseous insulating mixture can also contain SF.sub.6, perfluoropropane and perfluorobenzene.

  2. Gaseous insulators for high voltage electrical equipment

    DOEpatents

    Christophorou, Loucas G.; James, David R.; Pace, Marshall O.; Pai, Robert Y.

    1981-01-01

    Gaseous insulators comprise compounds having high attachment cross sections for electrons having energies in the 0-1.3 electron volt range. Multi-component gaseous insulators comprise compounds and mixtures having overall high electron attachment cross sections in the 0-1.3 electron volt range and moderating gases having high cross sections for inelastic interactions with electrons of energies 1-4 electron volts. Suitable electron attachment components include hexafluorobutyne, perfluorobutene-2, perfluorocyclobutane, perfluorodimethylcyclobutane, perfluorocyclohexene, perfluoromethylcyclohexane, hexafluorobutadiene, perfluoroheptene-1 and hexafluoroazomethane. Suitable moderating gases include N.sub.2, CO, CO.sub.2 and H.sub.2. The gaseous insulating mixture can also contain SF.sub.6, perfluoropropane and perfluorobenzene.

  3. 30 CFR 77.807-1 - High-voltage powerlines; clearances above ground.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.807-1 High-voltage powerlines; clearances above ground. High-voltage powerlines located above driveways, haulageways, and railroad...

  4. 30 CFR 77.807-1 - High-voltage powerlines; clearances above ground.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.807-1 High-voltage powerlines; clearances above ground. High-voltage powerlines located above driveways, haulageways, and railroad...

  5. 30 CFR 77.807-1 - High-voltage powerlines; clearances above ground.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.807-1 High-voltage powerlines; clearances above ground. High-voltage powerlines located above driveways, haulageways, and railroad...

  6. 30 CFR 77.807-1 - High-voltage powerlines; clearances above ground.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.807-1 High-voltage powerlines; clearances above ground. High-voltage powerlines located above driveways, haulageways, and railroad...

  7. 30 CFR 77.807-1 - High-voltage powerlines; clearances above ground.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.807-1 High-voltage powerlines; clearances above ground. High-voltage powerlines located above driveways, haulageways, and railroad...

  8. A high voltage nanosecond pulser with independently adjustable output voltage, pulse width, and pulse repetition frequency

    NASA Astrophysics Data System (ADS)

    Prager, James; Ziemba, Timothy; Miller, Kenneth; Carscadden, John; Slobodov, Ilia

    2014-10-01

    Eagle Harbor Technologies (EHT) is developing a high voltage nanosecond pulser capable of generating microwaves and non-equilibrium plasmas for plasma medicine, material science, enhanced combustion, drag reduction, and other research applications. The EHT nanosecond pulser technology is capable of producing high voltage (up to 60 kV) pulses (width 20-500 ns) with fast rise times (<10 ns) at high pulse repetition frequency (adjustable up to 100 kHz) for CW operation. The pulser does not require the use of saturable core magnetics, which allows for the output voltage, pulse width, and pulse repetition frequency to be fully adjustable, enabling researchers to explore non-equilibrium plasmas over a wide range of parameters. A magnetic compression stage can be added to improve the rise time and drive lower impedance loads without sacrificing high pulse repetition frequency operation. Work supported in part by the US Navy under Contract Number N00014-14-P-1055 and the US Air Force under Contract Number FA9550-14-C-0006.

  9. High performance Si nanowire field-effect-transistors based on a CMOS inverter with tunable threshold voltage.

    PubMed

    Van, Ngoc Huynh; Lee, Jae-Hyun; Sohn, Jung Inn; Cha, Seung Nam; Whang, Dongmok; Kim, Jong Min; Kang, Dae Joon

    2014-05-21

    We successfully fabricated nanowire-based complementary metal-oxide semiconductor (NWCMOS) inverter devices by utilizing n- and p-type Si nanowire field-effect-transistors (NWFETs) via a low-temperature fabrication processing technique. We demonstrate that NWCMOS inverter devices can be operated at less than 1 V, a significantly lower voltage than that of typical thin-film based complementary metal-oxide semiconductor (CMOS) inverter devices. This low-voltage operation was accomplished by controlling the threshold voltage of the n-type Si NWFETs through effective management of the nanowire (NW) doping concentration, while realizing high voltage gain (>10) and ultra-low static power dissipation (≤3 pW) for high-performance digital inverter devices. This result offers a viable means of fabricating high-performance, low-operation voltage, and high-density digital logic circuits using a low-temperature fabrication processing technique suitable for next-generation flexible electronics. PMID:24727896

  10. E-beam high voltage switching power supply

    DOEpatents

    Shimer, Daniel W.; Lange, Arnold C.

    1997-01-01

    A high power, solid state power supply is described for producing a controllable, constant high voltage output under varying and arcing loads suitable for powering an electron beam gun or other ion source. The present power supply is most useful for outputs in a range of about 100-400 kW or more. The power supply is comprised of a plurality of discrete switching type dc-dc converter modules, each comprising a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, and an output rectifier for producing a dc voltage at the output of each module. The inputs to the converter modules are fed from a common dc rectifier/filter and are linked together in parallel through decoupling networks to suppress high frequency input interactions. The outputs of the converter modules are linked together in series and connected to the input of the transmission line to the load through a decoupling and line matching network. The dc-dc converter modules are phase activated such that for n modules, each module is activated equally 360.degree./n out of phase with respect to a successive module. The phased activation of the converter modules, combined with the square current waveforms out of the step up transformers, allows the power supply to operate with greatly reduced output capacitance values which minimizes the stored energy available for discharge into an electron beam gun or the like during arcing. The present power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle using simulated voltage feedback signals and voltage feedback loops. Circuitry is also provided for sensing incipient arc currents reflected at the output of the power supply and for simultaneously decoupling the power supply circuitry from the arcing load.

  11. E-beam high voltage switching power supply

    DOEpatents

    Shimer, D.W.; Lange, A.C.

    1997-03-11

    A high power, solid state power supply is described for producing a controllable, constant high voltage output under varying and arcing loads suitable for powering an electron beam gun or other ion source. The present power supply is most useful for outputs in a range of about 100-400 kW or more. The power supply is comprised of a plurality of discrete switching type dc-dc converter modules, each comprising a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, and an output rectifier for producing a dc voltage at the output of each module. The inputs to the converter modules are fed from a common dc rectifier/filter and are linked together in parallel through decoupling networks to suppress high frequency input interactions. The outputs of the converter modules are linked together in series and connected to the input of the transmission line to the load through a decoupling and line matching network. The dc-dc converter modules are phase activated such that for n modules, each module is activated equally 360{degree}/n out of phase with respect to a successive module. The phased activation of the converter modules, combined with the square current waveforms out of the step up transformers, allows the power supply to operate with greatly reduced output capacitance values which minimizes the stored energy available for discharge into an electron beam gun or the like during arcing. The present power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle using simulated voltage feedback signals and voltage feedback loops. Circuitry is also provided for sensing incipient arc currents reflected at the output of the power supply and for simultaneously decoupling the power supply circuitry from the arcing load. 7 figs.

  12. Dispersion relations for 1D high-gain FELs

    SciTech Connect

    Webb, S.D.; Litvinenko, V.N.

    2010-08-23

    We present analytical results for the one-dimensional dispersion relation for high-gain FELs. Using kappa-n distributions, we obtain analytical relations between the dispersion relations for various order kappa distributions. Since an exact solution exists for the kappa-1 (Lorentzian) distribution, this provides some insight into the number of modes on the way to the Gaussian distribution.

  13. Radiation Response of Emerging High Gain, Low Noise Detectors

    NASA Technical Reports Server (NTRS)

    Becker, Heidi N.; Farr, William H; Zhu, David Q.

    2007-01-01

    Data illustrating the radiation response of emerging high gain, low noise detectors are presented. Ionizing dose testing of silicon internal discrete avalanche photodiodes, and 51-MeV proton testing of InGaAs/InAlAs avalanche photodiodes operated in Geiger mode are discussed.

  14. On Point Designs for High Gain Fast Ignition

    SciTech Connect

    Key, M; Akli, K; Beg, F; Betti, R; Clark, D S; Chen, S N; Freeman, R R; Hansen, S; Hatchett, S P; Hey, D; King, J A; Kemp, A J; Lasinski, B F; Langdon, B; Ma, T; MacKinnon, A J; Meyerhofer, D; Patel, P K; Pasley, J; Phillips, T; Stephens, R B; Stoeckl, C; Foord, M; Tabak, M; Theobald, W; Storm, M; Town, R J; Wilks, S C; VanWoerkom, L; Wei, M S; Weber, R; Zhang, B

    2007-09-27

    Fast ignition research has reached the stage where point designs are becoming crucial to the identification of key issues and the development of projects to demonstrate high gain fast ignition. The status of point designs for cone coupled electron fast ignition and some of the issues they highlight are discussed.

  15. Best Practices for Achieving High, Rapid Reading Gains

    ERIC Educational Resources Information Center

    Carbo, Marie

    2008-01-01

    The percentage of students who read at the proficient level on the National Assessment of Educational Progress (NAEP) has not improved, and is appallingly low. In order for students to achieve high reading gains and become life-long readers, reading comprehension and reading enjoyment must be the top two goals. This article presents several…

  16. High-voltage pulsed generator for dynamic fragmentation of rocks

    NASA Astrophysics Data System (ADS)

    Kovalchuk, B. M.; Kharlov, A. V.; Vizir, V. A.; Kumpyak, V. V.; Zorin, V. B.; Kiselev, V. N.

    2010-10-01

    A portable high-voltage (HV) pulsed generator has been designed for rock fragmentation experiments. The generator can be used also for other technological applications. The installation consists of low voltage block, HV block, coaxial transmission line, fragmentation chamber, and control system block. Low voltage block of the generator, consisting of a primary capacitor bank (300 μF) and a thyristor switch, stores pulse energy and transfers it to the HV block. The primary capacitor bank stores energy of 600 J at the maximum charging voltage of 2 kV. HV block includes HV pulsed step up transformer, HV capacitive storage, and two electrode gas switch. The following technical parameters of the generator were achieved: output voltage up to 300 kV, voltage rise time of ˜50 ns, current amplitude of ˜6 kA with the 40 Ω active load, and ˜20 kA in a rock fragmentation regime (with discharge in a rock-water mixture). Typical operation regime is a burst of 1000 pulses with a frequency of 10 Hz. The operation process can be controlled within a wide range of parameters. The entire installation (generator, transmission line, treatment chamber, and measuring probes) is designed like a continuous Faraday's cage (complete shielding) to exclude external electromagnetic perturbations.

  17. High voltage stability performance of a gamma ray detection device

    SciTech Connect

    Abdullah, Nor Arymaswati; Lombigit, Lojius; Rahman, Nur Aira Abd

    2014-02-12

    An industrial grade digital radiation survey meter device is currently being developed at Malaysian Nuclear Agency. This device used a cylindrical type Geiger Mueller (GM) which acts as a detector. GM detector operates at relatively high direct current voltages depend on the type of GM tube. This thin/thick walled cylindrical type of GM tube operates at 450-650 volts range. Proper value and stability performance of high voltage are important parameters to ensure that this device give a reliable radiation dose measurement. This paper will present an assessment of the stability and performance of the high voltage supply for radiation detector. The assessment is performed using System Identification tools box in MATLAB and mathematical statistics.

  18. Ultra-high gain diffusion-driven organic transistor

    NASA Astrophysics Data System (ADS)

    Torricelli, Fabrizio; Colalongo, Luigi; Raiteri, Daniele; Kovács-Vajna, Zsolt Miklós; Cantatore, Eugenio

    2016-02-01

    Emerging large-area technologies based on organic transistors are enabling the fabrication of low-cost flexible circuits, smart sensors and biomedical devices. High-gain transistors are essential for the development of large-scale circuit integration, high-sensitivity sensors and signal amplification in sensing systems. Unfortunately, organic field-effect transistors show limited gain, usually of the order of tens, because of the large contact resistance and channel-length modulation. Here we show a new organic field-effect transistor architecture with a gain larger than 700. This is the highest gain ever reported for organic field-effect transistors. In the proposed organic field-effect transistor, the charge injection and extraction at the metal-semiconductor contacts are driven by the charge diffusion. The ideal conditions of ohmic contacts with negligible contact resistance and flat current saturation are demonstrated. The approach is general and can be extended to any thin-film technology opening unprecedented opportunities for the development of high-performance flexible electronics.

  19. Ultra-high gain diffusion-driven organic transistor

    PubMed Central

    Torricelli, Fabrizio; Colalongo, Luigi; Raiteri, Daniele; Kovács-Vajna, Zsolt Miklós; Cantatore, Eugenio

    2016-01-01

    Emerging large-area technologies based on organic transistors are enabling the fabrication of low-cost flexible circuits, smart sensors and biomedical devices. High-gain transistors are essential for the development of large-scale circuit integration, high-sensitivity sensors and signal amplification in sensing systems. Unfortunately, organic field-effect transistors show limited gain, usually of the order of tens, because of the large contact resistance and channel-length modulation. Here we show a new organic field-effect transistor architecture with a gain larger than 700. This is the highest gain ever reported for organic field-effect transistors. In the proposed organic field-effect transistor, the charge injection and extraction at the metal–semiconductor contacts are driven by the charge diffusion. The ideal conditions of ohmic contacts with negligible contact resistance and flat current saturation are demonstrated. The approach is general and can be extended to any thin-film technology opening unprecedented opportunities for the development of high-performance flexible electronics. PMID:26829567

  20. High voltage electron microscopy of lunar samples

    NASA Technical Reports Server (NTRS)

    Fernandez-Moran, H.

    1973-01-01

    Lunar pyroxenes from Apollo 11, 12, 14, and 15 were investigated. The iron-rich and magnesium-rich pyroxene specimens were crushed to a grain size of ca. 50 microns and studied by a combination of X-ray and electron diffraction, electron microscopy, 57 Fe Mossbauer spectroscopy and X-ray crystallography techniques. Highly ordered, uniform electron-dense bands, corresponding to exsolution lamellae, with average widths of ca. 230A to 1000A dependent on the source specimen were observed. These were?qr separated by wider, less-dense interband spacings with average widths of ca. 330A to 3100A. In heating experiments, splitting of the dense bands into finer structures, leading finally to obliteration of the exsolution lamellae was recorded. The extensive exsolution is evidence for significantly slower cooling rates, or possibly annealing, at temperatures in the subsolidus range, adding evidence that annealing of rock from the surface of the moon took place at ca. 600 C. Correlation of the band structure with magnetic ordering at low temperatures and iron clustering within the bands was studied.

  1. Cleaning High-Voltage Equipment With Corncob Grit

    NASA Technical Reports Server (NTRS)

    Caveness, C.

    1986-01-01

    High electrical resistance of particles makes power shutdown unnecessary. New, inexpensive method of cleaning high-voltage electrical equipment uses plentiful agricultural product - corncob grit. Method removes dirt and debris from transformers, circuit breakers, and similar equipment. Suitable for utilities, large utility customers, and electrical-maintenance services.

  2. Direct experimental determination of voltage across high-low junctions

    NASA Technical Reports Server (NTRS)

    Daud, T.; Lindholm, F. A.

    1986-01-01

    High-low (HL) junctions form a part of many semiconductor devices, including back surface field solar cells. A first experimental determination and interpretation of the voltage across the HL junction under low- and high-injection conditions is presented as a function of the voltage across a nearby p/n junction. Theoretical analysis from first principles is shown to bear well on the experimental results. In addition, a test structure is proposed for measurement of the effective surface recombination velocity at the HL junctions.

  3. Partial discharge in a high voltage experimental test assembly

    SciTech Connect

    Koss, R.J.; Brainard, J.P.

    1998-07-01

    This study was initiated when a new type of breakdown occurred in a high voltage experimental test assembly. An anomalous current pulse was observed, which indicated partial discharges, some leading to total breakdowns. High voltage insulator defects are shown along with their effect on the electrostatic fields in the breakdown region. OPERA electromagnetic field modeling software is used to calculate the fields and present a cause for the discharge. Several design modifications are investigated and one of the simplest resulted in a 25% decrease in the field at the discharge surface.

  4. Multichannels high voltage programmable driver for piezoelectric transducer.

    PubMed

    Flaxer, Eli

    2008-03-01

    A complete design of a compact, high voltage, multichannel programmable waveform generator, using an 8 bit microcontroller, 12 bit digital to analog converter, and high voltage operation amplifier, is presented. The user can generate the waveform by several options: classic waveform, calculator, freehand drawing, and using excel or text file. All the waveform data are stored in a nonvolatile memory of the microcontroller. The generator can work as a stand-alone instrument or conjoined with a personal computer. We used this generator as a controller for piezoelectric inertial slider. PMID:18377042

  5. Multichannels high voltage programmable driver for piezoelectric transducer

    NASA Astrophysics Data System (ADS)

    Flaxer, Eli

    2008-03-01

    A complete design of a compact, high voltage, multichannel programmable waveform generator, using an 8bit microcontroller, 12bit digital to analog converter, and high voltage operation amplifier, is presented. The user can generate the waveform by several options: classic waveform, calculator, freehand drawing, and using excel or text file. All the waveform data are stored in a nonvolatile memory of the microcontroller. The generator can work as a stand-alone instrument or conjoined with a personal computer. We used this generator as a controller for piezoelectric inertial slider.

  6. Predicted and actual high voltage failure - A case history

    NASA Astrophysics Data System (ADS)

    Fowler, P. H.; Brent, D. A.; Sidio, G. J.

    In the process of re-developing a high voltage transformer for space use, excellent correlation was found between predicted mechanical failure, predicted partial discharge signature, and real behavior of the parts. Some useful design and inspection criteria for potted high voltage parts were developed on a consistent basis. It was found that partial discharge testing as normally implemented will not necessarily discern all life limiting defects. Three lines of investigation were followed: material properties and stress analysis, prediction of partial discharge signature as a function of defect size, and computer field stress analysis to predict which defects are capable of discharge.

  7. High-Voltage, Low-Power BNC Feedthrough Terminator

    NASA Technical Reports Server (NTRS)

    Bearden, Douglas

    2012-01-01

    This innovation is a high-voltage, lowpower BNC (Bayonet Neill-Concelman) feedthrough that enables the user to terminate an instrumentation cable properly while connected to a high voltage, without the use of a voltage divider. This feedthrough is low power, which will not load the source, and will properly terminate the instrumentation cable to the instrumentation, even if the cable impedance is not constant. The Space Shuttle Program had a requirement to measure voltage transients on the orbiter bus through the Ground Lightning Measurement System (GLMS). This measurement has a bandwidth requirement of 1 MHz. The GLMS voltage measurement is connected to the orbiter through a DC panel. The DC panel is connected to the bus through a nonuniform cable that is approximately 75 ft (approximately equal to 23 m) long. A 15-ft (approximately equal to 5-m), 50-ohm triaxial cable is connected between the DC panel and the digitizer. Based on calculations and simulations, cable resonances and reflections due to mismatched impedances of the cable connecting the orbiter bus and the digitizer causes the output not to reflect accurately what is on the bus. A voltage divider at the DC panel, and terminating the 50-ohm cable properly, would eliminate this issue. Due to implementation issues, an alternative design was needed to terminate the cable properly without the use of a voltage divider. Analysis shows how the cable resonances and reflections due to the mismatched impedances of the cable connecting the orbiter bus and the digitizer causes the output not to reflect accurately what is on the bus. After simulating a dampening circuit located at the digitizer, simulations were performed to show how the cable resonances were dampened and the accuracy was improved significantly. Test cables built to verify simulations were accurate. Since the dampening circuit is low power, it can be packaged in a BNC feedthrough.

  8. A method for encapsulating high voltage power transformers

    NASA Astrophysics Data System (ADS)

    Sanchez, Robert O.

    Voltage breakdowns become a major concern in reducing the size of high-voltage power converter transformers. Even the smallest of voids can provide a path for corona discharge which can cause a dielectric breakdown leading to a transformer failure. A method of encapsulating small high voltage transformers has been developed. The method virtually eliminates voids in the impregnation material, provides an exceptional dielectric between windings and provides a mechanically rugged package. The encapsulation material is a carboxyl terminated butadiene nitril (CTBN) modified mica filled epoxy. The method requires heat/vacuum to impregnate the coil and heat/pressure to cure the encapsulant. The transformer package utilizes a diallyl phthalate (DAP) contact assembly in which a coated core/coil assembly is mounted and soldered. This assembly is then loaded into an RTV mold and the encapsulation process begins.

  9. A method for encapsulating high voltage power transformers

    SciTech Connect

    Sanchez, R.O.

    1990-01-01

    Voltage breakdowns become a major concern in reducing the size of high-voltage power converter transformers. Even the smallest of voids can provide a path for corona discharge which can cause a dielectric breakdown leading to a transformer failure. A method of encapsulating small high voltage transformers has been developed. The method virtually eliminates voids in the impregnation material, provides an exceptional dielectric between windings and provides a mechanically rugged package. The encapsulation material is a CTBN modified mica filled epoxy. The method requires heat/vacuum to impregnate the coil and heat/pressure to cure the encapsulant. The transformer package utilizes a Diallyl Phthalate (DAP) contact assembly in which a coated core/coil assembly is mounted and soldered. This assembly is then loaded into an RTV mold and the encapsulation process begins.

  10. Sub-Poissonian shot noise of a high internal gain injection photon detector.

    PubMed

    Memis, Omer Gokalp; Katsnelson, Alex; Kong, Soon-Cheol; Mohseni, Hooman; Yan, Minjun; Zhang, Shuang; Hossain, Tim; Jin, Niu; Adesida, Ilesanmi

    2008-08-18

    The noise performance of an infrared injection photon detector with very high internal gain was investigated at a wavelength of 1.55 mum. The devices showed sub-Poissonian shot noise with Fano factors around 0.55 at 0.7 V at room temperature. Optical to electrical conversion factors of 3000 electrons per absorbed photon were recorded at 0.7 V. The change in noise-equivalent power with respect to bias voltage was evaluated. The optical to electrical conversion factor and Fano factor were measured under increasing illumination and compared to theoretical expectations. PMID:18711508

  11. Ultra-compact Marx-type high-voltage generator

    SciTech Connect

    Goerz, D.A.; Wilson, M.J.

    2000-05-09

    An ultra-compact Marx-type high-voltage generator includes individual high-performance components that are closely coupled and integrated into an extremely compact assembly. In one embodiment, a repetitively-switched, ultra-compact Marx generator includes low-profile, annular-shaped, high-voltage, ceramic capacitors with contoured edges and coplanar extended electrodes used for primary energy storage; low-profile, low-inductance, high-voltage, pressurized gas switches with compact gas envelopes suitably designed to be integrated with the annular capacitors; feed-forward, high-voltage, ceramic capacitors attached across successive switch-capacitor-switch stages to couple the necessary energy forward to sufficiently overvoltage the spark gap of the next in-line switch; optimally shaped electrodes and insulator surfaces to reduce electric field stresses in the weakest regions where dissimilar materials meet, and to spread the fields more evenly throughout the dielectric materials, allowing them to operate closer to their intrinsic breakdown levels; and uses manufacturing and assembly methods to integrate the capacitors and switches into stages that can be arranged into a low-profile Marx generator.

  12. Ultra-compact Marx-type high-voltage generator

    DOEpatents

    Goerz, David A.; Wilson, Michael J.

    2000-01-01

    An ultra-compact Marx-type high-voltage generator includes individual high-performance components that are closely coupled and integrated into an extremely compact assembly. In one embodiment, a repetitively-switched, ultra-compact Marx generator includes low-profile, annular-shaped, high-voltage, ceramic capacitors with contoured edges and coplanar extended electrodes used for primary energy storage; low-profile, low-inductance, high-voltage, pressurized gas switches with compact gas envelopes suitably designed to be integrated with the annular capacitors; feed-forward, high-voltage, ceramic capacitors attached across successive switch-capacitor-switch stages to couple the necessary energy forward to sufficiently overvoltage the spark gap of the next in-line switch; optimally shaped electrodes and insulator surfaces to reduce electric field stresses in the weakest regions where dissimilar materials meet, and to spread the fields more evenly throughout the dielectric materials, allowing them to operate closer to their intrinsic breakdown levels; and uses manufacturing and assembly methods to integrate the capacitors and switches into stages that can be arranged into a low-profile Marx generator.

  13. Cathode driven high gain crossed-field amplifier

    NASA Astrophysics Data System (ADS)

    1983-07-01

    The objective of this three-phase program is to achieve the design of a cathode driven high gain re-entrant Crossed Field Amplifier capable of meeting the parameters of Raytheon Company specification No. 968838 dated 10 May 1978. The effort includes the fabrication and test of three developmental and four final configuration tubes. One final configuration tube will be life tested and two will be delivered to the Navy. The tasks discussed during this report period relate to the cold tests performed on various subassemblies of model no. 4 and on the sealed-in model no. 4 of the S-band high gain cathode driven crossed field amplifier. Based on the performance of model no. 3 certain remedial measures have been implemented in model no. 4 that have resulted in the elimination of key resonances within the tube and an improvement in the isolation between the cathode and anode circuits.

  14. Development of the Fast Scintillation Detector with Programmable High Voltage Adjustment Suitable for Moessbauer Spectroscopy

    SciTech Connect

    Prochazka, R.; Frydrych, J.; Pechousek, J.

    2010-07-13

    This work is focused on a development of a compact fast scintillation detector suitable for Moessbauer spectroscopy (low energy X-ray/{gamma}-ray detection) where high counting rates are inevitable. Optimization of this part was necessary for a reliable function, better time resolution and to avoid a detector pulses pile-up effect. The pile-up effect decreases the measurement performance, significantly depends on the source activity and also on the pulse duration. Our new detection unit includes a fast scintillation crystal YAP:Ce, an R6095 photomultiplier tube, a high voltage power supply socket C9028-01 assembly, an AD5252 digital potentiometer with an I2C interface and an AD8000 ultra fast operation preamplifier. The main advantages of this solution lie in a short pulse duration (less than 200 ns), stable operation for high activities, programmable gain of the high voltage supply and compact design in the aluminum housing.

  15. High voltage pulse ignition of mercury discharge hollow cathodes

    NASA Technical Reports Server (NTRS)

    Wintucky, E. G.

    1973-01-01

    A high voltage pulse generated by a capacitor discharge into a step-up transformer has been demonstrated capable of consistently igniting hollow cathode mercury discharges at propellant flows and heater power levels much below those required by conventional cathode starting. Results are presented for 3.2-mm diameter enclosed and open keeper cathodes. Starting characteristics are shown to depend on keeper voltage, mercury flow rate, heater power, keeper orifice size, emissive materials, and electrode to which the pulse is applied. This starting technique has been used to start a cathode over 10,000 times without any degradation of starting capability.

  16. Study of a High Voltage Ion Engine Power Supply

    NASA Technical Reports Server (NTRS)

    Stuart, Thomas A.; King, Roger J.; Mayer, Eric

    1996-01-01

    A complete laboratory breadboard version of a ion engine power converter was built and tested. This prototype operated on a line voltage of 80-120 Vdc, and provided output ratings of 1100 V at 1.8 kW, and 250 V at 20 mA. The high-voltage (HV) output voltage rating was revised from the original value of 1350 V at the beginning of the project. The LV output was designed to hold up during a 1-A surge current lasting up to 1 second. The prototype power converter included a internal housekeeping power supply which also operated from the line input. The power consumed in housekeeping was included in the overall energy budget presented for the ion engine converter. HV and LV output voltage setpoints were commanded through potentiometers. The HV converter itself reached its highest power efficiency of slightly over 93% at low line and maximum output. This would dip below 90% at high line. The no-load (rated output voltages, zero load current) power consumption of the entire system was less than 13 W. A careful loss breakdown shows that converter losses are predominately Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET) conduction losses and HV rectifier snubbing losses, with the rectifier snubbing losses becoming predominant at high line. This suggests that further improvements in power efficiency could best be obtained by either developing a rectifier that was adequately protected against voltage overshoot with less snubbing, or by developing a pre-regulator to reduced the range of line voltage on the converter. The transient testing showed the converter to be fully protected against load faults, including a direct short-circuit from the HV output to the LV output terminals. Two currents sensors were used: one to directly detect any core ratcheting on the output transformer and re-initiate a soft start, and the other to directly detect a load fault and quickly shut down the converter for load protection. The finished converter has been extensively fault tested

  17. Development of Murray Loop Bridge for High Induced Voltage

    NASA Astrophysics Data System (ADS)

    Isono, Shigeki; Kawasaki, Katsutoshi; Kobayashi, Shin-Ichi; Ishihara, Hayato; Chiyajo, Kiyonobu

    In the case of the cable fault that ground fault resistance is less than 10MΩ, Murray Loop Bridge is excellent as a fault locator in location accuracy and the convenience. But, when the induction of several hundred V is taken from the single core cable which adjoins it, a fault location with the high voltage Murray Loop Bridge becomes difficult. Therefore, we developed Murray Loop Bridge, which could be applied even when the induced voltage of several hundred V occurs in the measurement cable. The evaluation of the fault location accuracy was done with the developed prototype by the actual line and the training equipment.

  18. Design issues for a laboratory high gain fusion facility

    SciTech Connect

    Hogan, W.J.

    1987-11-02

    In an inertial fusion laboratory high gain facility, experiments will be carried out with up to 1000 MJ of thermonuclear yield. The experiment area of such a facility will include many systems and structures that will have to operate successfully in the difficult environment created by the sudden large energy release. This paper estimates many of the nuclear effects that will occur, discusses the implied design issues and suggests possible solutions so that a useful experimental facility can be built. 4 figs.

  19. High gain preamplifier based on optical parametric amplification

    DOEpatents

    Jovanovic, Igor; Bonner, Randal A.

    2004-08-10

    A high-gain preamplifier based on optical parametric amplification. A first nonlinear crystal is operatively connected to a second nonlinear crystal. A first beam relay telescope is operatively connected to a second beam relay telescope, to the first nonlinear crystal, and to the second nonlinear crystal. A first harmonic beamsplitter is operatively connected to a second harmonic beamsplitter, to the first nonlinear crystal, to the second nonlinear crystal, to the first beam relay telescope, and to the second beam relay telescope.

  20. Laboratory 15 kV high voltage solar array facility

    NASA Technical Reports Server (NTRS)

    Kolecki, J. C.; Gooder, S. T.

    1976-01-01

    The laboratory high voltage solar array facility is a photoelectric power generating system. Consisting of nine modules with over 23,000 solar cells, the facility is capable of delivering more than a kilowatt of power. The physical and electrical characteristics of the facility are described.

  1. 59. View of high voltage (4160 volts alternating current) electric ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    59. View of high voltage (4160 volts alternating current) electric load center and motor control center at mezzanine level in transmitter building no. 102. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  2. Current isolating epitaxial buffer layers for high voltage photodiode array

    DOEpatents

    Morse, Jeffrey D.; Cooper, Gregory A.

    2002-01-01

    An array of photodiodes in series on a common semi-insulating substrate has a non-conductive buffer layer between the photodiodes and the semi-insulating substrate. The buffer layer reduces current injection leakage between the photodiodes of the array and allows optical energy to be converted to high voltage electrical energy.

  3. The design and development of a high voltage power supply

    NASA Technical Reports Server (NTRS)

    Ting, R.

    1974-01-01

    A high voltage circuit system was redesigned, breadboarded, and tested to meet revised specification requirements. Circuit component subassemblies are described and include the firing unit, regulator, dc to dc converter, and output and trigger circuits. Design changes, tests, and equipment fabrication are outlined chronologically by month. A list of design specifications is included.

  4. Scattering Efficiency of High-Voltage Tethers in Space

    NASA Technical Reports Server (NTRS)

    Krivorutsky, E. N.; Khazanov, G. V.; Gamayunov, K. V.; Avanov, L. A.

    2005-01-01

    Several concepts have been proposed to remediate the effect of artificial Radiation Belts (RB) in Space Plasma. Among them is the high-voltage electrostatic tether remediation technique. Preliminary analysis that has been carried out later by several groups showed, that this technique could be very efficient and is able to control relativistic electron energies of artificial RB population. The relativistic electron population is the one of the most important topic of US Space Weather studies and very dangerous to many civilian and military space assets, it is also important to study some fundamentals of scattering efficiency of high-voltage tethers in space plasma. There are several fundamental issues that should be examined in order to validate high-voltage tether artificial RB remediation concept. The most critical among them are: power consumption, the size and stability of the plasma sheath around the tether, and scattering efficiency of this high-voltage system that is ultimately related with the plasma sheath size. This study would be focused on the scattering process itself and artificial RB remediation assuming that power consumption and the size of the plasma sheath are known.

  5. High voltage gas insulated transmission line with continuous particle trapping

    DOEpatents

    Cookson, Alan H.; Dale, Steinar J.

    1983-01-01

    This invention provides a novel high voltage gas insulated transmission line utilizing insulating supports spaced at intervals with snap-in means for supporting a continuous trapping apparatus and said trapping apparatus having perforations and cutouts to facilitate trapping of contaminating particles and system flexibility.

  6. Deep Space One High-Voltage Bus Management

    NASA Technical Reports Server (NTRS)

    Rachocki, Ken; Nieraeth, Donald

    1999-01-01

    The design of the High Voltage Power Converter Unit on DS1 allows both the spacecraft avionics and ion propulsion to operate in a stable manner near the PPP of the solar array. This approach relies on a fairly well-defined solar array model to determine the projected PPP. The solar array voltage set-points have to be updated every week to maintain operation near PPP. Stable operation even to the LEFT of the Peak Power Point is achievable so long as you do not change the operating power level of the ion engine. The next step for this technology is to investigate the use of onboard autonomy to determine the optimum SA voltage regulation set-point (i.e. near the PPP); this is for future missions that have one or more ion propulsion subsystems.

  7. High resolution BPMS with integrated gain correction system

    SciTech Connect

    Wendt, M.; Briegel, C.; Eddy, N.; Fellenz, B.; Gianfelice, E.; Prieto, P.; Rechenmacher, R.; Voy, D.; Terunuma, N.; Urakawa, J.; /KEK, Tsukuba

    2009-08-01

    High resolution beam position monitors (BPM) are an essential tool to achieve and reproduce a low vertical beam emittance at the KEK Accelerator Test Facility (ATF) damping ring. The ATF damping ring (DR) BPMs are currently upgraded with new high resolution read-out electronics. Based on analog and digital down-conversion techniques, the upgrade includes an automatic gain calibration system to correct for slow drift effects and ensure high reproducible beam position readings. The concept and its technical realization, as well as preliminary results of beam studies are presented.

  8. High gain and low excess noise near infrared single photon avalanche detector

    NASA Astrophysics Data System (ADS)

    Linga, Krishna; Yevtukhov, Yuriy; Liang, Bing

    2009-05-01

    We present the discrete amplification approach used for development of a very high gain and low excess noise factor in the near infrared wavelength region. The devices have the following performance characteristics: gain > 2X105, excess noise factor < 1.05, rise time < 350ps, fall time < 500ps and operating voltage < 60V. In the photon counting mode, the devices can be operated in the non-gated mode under a constant DC bias and do not require any external quenching circuit. These devices are ideal for researchers in the fields of deep space optical communication, spectroscopy, industrial and scientific instrumentation, Ladar/Lidar, quantum cryptography, night vision and other military, defense and aerospace applications.

  9. 30 CFR 75.822 - Underground high-voltage longwall cables.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Underground high-voltage longwall cables. 75... MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Underground High-Voltage Distribution High-Voltage Longwalls § 75.822 Underground high-voltage longwall cables. In addition to the...

  10. 30 CFR 77.800 - High-voltage circuits; circuit breakers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-voltage circuits; circuit breakers. 77.800... COAL MINES Surface High-Voltage Distribution § 77.800 High-voltage circuits; circuit breakers. High-voltage circuits supplying power to portable or mobile equipment shall be protected by suitable...

  11. 30 CFR 77.800 - High-voltage circuits; circuit breakers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... devices to provide protection against under voltage, grounded phase, short circuit and overcurrent. High... 30 Mineral Resources 1 2011-07-01 2011-07-01 false High-voltage circuits; circuit breakers. 77.800... COAL MINES Surface High-Voltage Distribution § 77.800 High-voltage circuits; circuit breakers....

  12. Next generation KATRIN high precision voltage divider for voltages up to 65kV

    NASA Astrophysics Data System (ADS)

    Bauer, S.; Berendes, R.; Hochschulz, F.; Ortjohann, H.-W.; Rosendahl, S.; Thümmler, T.; Schmidt, M.; Weinheimer, C.

    2013-10-01

    The KATRIN (KArlsruhe TRItium Neutrino) experiment aims to determine the mass of the electron antineutrino with a sensitivity of 200 meV by precisely measuring the electron spectrum of the tritium beta decay. This will be done by the use of a retarding spectrometer of the MAC-E-Filter type. To achieve the desired sensitivity the stability of the retarding potential of -18.6 kV has to be monitored with a precision of 3 ppm over at least two months. Since this is not feasible with commercial devices, two ppm-class high voltage dividers were developed, following the concept of the standard divider for DC voltages of up to 100 kV of the Physikalisch-Technische Bundesanstalt (PTB). In order to reach such high accuracies different effects have to be considered. The two most important ones are the temperature dependence of resistance and leakage currents, caused by insulators or corona discharges. For the second divider improvements were made concerning the high-precision resistors and the thermal design of the divider. The improved resistors are the result of a cooperation with the manufacturer. The design improvements, the investigation and the selection of the resistors, the built-in ripple probe and the calibrations at PTB will be reported here. The latter demonstrated a stability of about 0.1 ppm/month over a period of two years.

  13. Development of high gain avalanche photodiodes for UV imaging applications

    NASA Astrophysics Data System (ADS)

    Sood, Ashok K.; Zeller, John W.; Welser, Roger E.; Puri, Yash R.; Dupuis, Russell D.; Ji, Mi-Hee; Kim, Jeomoh; Detchprohm, Theeradetch; Dhar, Nibir K.; Lewis, Jay S.; Peters, Roy L.

    2015-08-01

    High-resolution imaging in ultraviolet (UV) bands has many applications in defense and commercial systems. The shortest wavelength is desired for increased spatial resolution, which allows for small pixels and large formats. The next frontier is to develop UV avalanche photodiode (UV-APD) arrays with high gain to demonstrate high-resolution imaging. We compare performance characteristics of front-illuminated Al0.05Ga0.95N UV-APDs grown on a free-standing (FS) GaN substrate and a GaN/sapphire template. UV-APDs grown on a FS-GaN substrate show lower dark current densities for all fabricated mesa sizes than similar UV-APDs grown on a GaN/sapphire template. In addition, stable avalanche gain higher than 5×105 and a significant increase in the responsivity of UV-APDs grown on a FS-GaN substrate are observed as a result of avalanche multiplication at high reverse bias. We believe that the high crystalline quality of Al0.05Ga0.95N UVAPDs grown on a FS-GaN substrate with low dislocation density is responsible for the observed improvement of low leakage currents, high performance photodetector characteristics, and reliability of the devices.

  14. BANSHEE: High-voltage repetitively pulsed electron-beam driver

    SciTech Connect

    VanHaaften, F.

    1992-08-01

    BANSHEE (Beam Accelerator for a New Source of High-Energy Electrons) this is a high-voltage modulator is used to produce a high-current relativistic electron beam for high-power microwave tube development. The goal of the BANSHEE research is first to achieve a voltage pulse of 700--750 kV with a 1-{mu}s pulse width driving a load of {approximately}100 {Omega}, the pulse repetition frequency (PRF) of a few hertz. The ensuing goal is to increase the pulse amplitude to a level approaching 1 MV. We conducted tests using half the modulator with an output load of 200 {Omega}, up to a level of {approximately}650 kV at a PRF of 1 Hz and 525 kV at a PRF of 5 Hz. We then conducted additional testing using the complete system driving a load of {approximately}100 {Omega}.

  15. BANSHEE: High-voltage repetitively pulsed electron-beam driver

    SciTech Connect

    VanHaaften, F.

    1992-01-01

    BANSHEE (Beam Accelerator for a New Source of High-Energy Electrons) this is a high-voltage modulator is used to produce a high-current relativistic electron beam for high-power microwave tube development. The goal of the BANSHEE research is first to achieve a voltage pulse of 700--750 kV with a 1-{mu}s pulse width driving a load of {approximately}100 {Omega}, the pulse repetition frequency (PRF) of a few hertz. The ensuing goal is to increase the pulse amplitude to a level approaching 1 MV. We conducted tests using half the modulator with an output load of 200 {Omega}, up to a level of {approximately}650 kV at a PRF of 1 Hz and 525 kV at a PRF of 5 Hz. We then conducted additional testing using the complete system driving a load of {approximately}100 {Omega}.

  16. 76 FR 70721 - Voltage Coordination on High Voltage Grids; Notice of Staff Workshop

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-15

    ... software could improve reliability and market efficiency. The workshop will address how entities currently coordinate economic dispatch and voltage control and the capability of existing and emerging software to... interested in better understanding the interaction between voltage control, reliability, and...

  17. Precision high voltage divider for the KATRIN experiment

    NASA Astrophysics Data System (ADS)

    Thümmler, Th; Marx, R.; Weinheimer, Ch

    2009-10-01

    The Karlsruhe Tritium Neutrino (KATRIN) experiment aims to determine the absolute mass of the electron antineutrino from a precise measurement of the tritium β-spectrum near its endpoint at 18.6 keV with a sensitivity of 0.2 eV c-2. KATRIN uses an electrostatic retardation spectrometer of MAC-E filter type for which it is crucial to monitor high voltages of up to 35 kV with a precision and long-term stability at the ppm level. Since devices capable of this precision are not commercially available, a new high voltage divider for direct voltages of up to 35 kV has been designed, following the new concept of the standard divider for direct voltages of up to 100 kV developed at the Physikalisch-Technische Bundesanstalt (PTB)PTB is the German National Metrology Institute providing scientific and technical services.. The electrical and mechanical design of the divider, the screening procedure for the selection of the precision resistors, and the results of the investigation and calibration at the PTB are reported here. During the latter, uncertainties at the low ppm level have been deduced for the new divider, thus qualifying it for the precision measurements of the KATRIN experiment.

  18. Current collection by high voltage anodes in near ionospheric conditions

    NASA Technical Reports Server (NTRS)

    Antoniades, John A.; Greaves, Rod G.; Boyd, D. A.; Ellis, R.

    1990-01-01

    The authors experimentally identified three distinct regimes with large differences in current collection in the presence of neutrals and weak magnetic fields. In magnetic field/anode voltage space the three regions are separated by very sharp transition boundaries. The authors performed a series of laboratory experiments to study the dependence of the region boundaries on several parameters, such as the ambient neutral density, plasma density, magnetic field strength, applied anode voltage, voltage pulsewidth, chamber material, chamber size and anode radius. The three observed regimes are: classical magnetic field limited collection; stable medium current toroidal discharge; and large scale, high current space glow discharge. There is as much as several orders of magnitude of difference in the amount of collected current upon any boundary crossing, particularly if one enters the space glow regime. They measured some of the properties of the plasma generated by the breakdown that is present in regimes II and III in the vicinity of the anode including the sheath modified electrostatic potential, I-V characteristics at high voltage as well as the local plasma density.

  19. Fast-Recovery, High-Voltage Power Diode

    NASA Technical Reports Server (NTRS)

    Sundberg, G.; Berman, A.; Balodis, V.; Gaugh, C.; Duffin, J.; Karatnicki, H.; Larson, E.

    1985-01-01

    New family of fast-recovery high-voltage power diodes compatible with D60T and D7ST transistors developed. Have wide range of applications in spacecraft and aircraft electrical distribution equipment, dc/dc inverters, and ac motor controllers for high-horsepower electric motors operating from 480-volt ac lines. Fast-Recovery 1,200-V Power Diodes use chip of hexagonal geometry to maximize effective silicon area.

  20. Innovative Field Emitters for High-Voltage Electronic Devices

    NASA Astrophysics Data System (ADS)

    Sominski, G. G.; Sezonov, V. E.; Taradaev, E. P.; Tumareva, T. A.; Zadiranov, Yu. M.; Kornishin, S. Yu.; Stepanova, A. N.

    2015-12-01

    We describe multitip field emitters with protective coatings, which were developed in Peter the Great St. Petersburg Polytechnic University. The coatings ensure long-term operation of the emitters under high currents and technical vacuum. Innovative multi-layer emitters composed of contacting nanolayers of materials with different work functions are presented as well. The possibility by using the developed emitters in high-voltage electronic devices is demonstrated.

  1. High-voltage pixel sensors for ATLAS upgrade

    NASA Astrophysics Data System (ADS)

    Perić, I.; Kreidl, C.; Fischer, P.; Bompard, F.; Breugnon, P.; Clemens, J.-C.; Fougeron, D.; Liu, J.; Pangaud, P.; Rozanov, A.; Barbero, M.; Feigl, S.; Capeans, M.; Ferrere, D.; Pernegger, H.; Ristic, B.; Muenstermann, D.; Gonzalez Sevilla, S.; La Rosa, A.; Miucci, A.; Nessi, M.; Iacobucci, G.; Backhaus, M.; Hügging, Fabian; Krüger, H.; Hemperek, T.; Obermann, T.; Wermes, N.; Garcia-Sciveres, M.; Quadt, A.; Weingarten, J.; George, M.; Grosse-Knetter, J.; Rieger, J.; Bates, R.; Blue, A.; Buttar, C.; Hynds, D.

    2014-11-01

    The high-voltage (HV-) CMOS pixel sensors offer several good properties: a fast charge collection by drift, the possibility to implement relatively complex CMOS in-pixel electronics and the compatibility with commercial processes. The sensor element is a deep n-well diode in a p-type substrate. The n-well contains CMOS pixel electronics. The main charge collection mechanism is drift in a shallow, high field region, which leads to a fast charge collection and a high radiation tolerance. We are currently evaluating the use of the high-voltage detectors implemented in 180 nm HV-CMOS technology for the high-luminosity ATLAS upgrade. Our approach is replacing the existing pixel and strip sensors with the CMOS sensors while keeping the presently used readout ASICs. By intelligence we mean the ability of the sensor to recognize a particle hit and generate the address information. In this way we could benefit from the advantages of the HV sensor technology such as lower cost, lower mass, lower operating voltage, smaller pitch, smaller clusters at high incidence angles. Additionally we expect to achieve a radiation hardness necessary for ATLAS upgrade. In order to test the concept, we have designed two HV-CMOS prototypes that can be readout in two ways: using pixel and strip readout chips. In the case of the pixel readout, the connection between HV-CMOS sensor and the readout ASIC can be established capacitively.

  2. Epitaxial design of ultra high power tunable laser gain section

    NASA Astrophysics Data System (ADS)

    Zhang, Yaping; Benson, Trevor M.

    2005-09-01

    High power widely tunable lasers are extremely desirable for telecom applications as a replacement for distributed feedback (DFB) lasers in wavelength division multiplexing (WDM) systems, due to their dynamic provision properties. They are also sought after for many other applications, such as phased radar systems, optical switching and routing. This paper introduces novel design ideas and approaches on how to achieve ultra high power in the design of an InGaAsP-InP based widely tunable laser gain section. The inventive ideas are basically composed of two parts. Firstly, to increase the facet optical output power by the inclusion of an InP spacer layer below the ridge and above the multiple quantum wells (MQWs) stack, in order to have extra freedom in the control of widening the single mode ridge width. Secondly, to reduce the free-carrier absorption loss by the inclusion of a bulk balance layer structure below the MQWs stack and above the buffer layer, so as to largely shift the optical mode distribution to the intrinsic and n-doped side of the epilayer structure where the free-carrier absorption loss is lower than that of the p-doped side. Simulation results show that the proposed epilayer designs of the ultra high power gain sections would greatly increase the facet optical output power of a tunable laser, by up to about 80%. It should be noted that these novel epilayer design ideas and approaches developed for the gain section are applicable to the designs of ultra high power DFB lasers and other InGaAsP-InP based lasers.

  3. High-voltage pulsed life of multistressed polypropylene capacitor dielectric

    SciTech Connect

    Laghari, J.R. )

    1992-02-01

    High-voltage polypropylene capacitors were aged under singular as well as simultaneous multiple stresses (electrical, thermal, and radiation) at the University of Buffalo's 2 MW thermal nuclear reactor. These stresses were combined neutron-gamma radiation with a total dose of 1.6 {times} 10{sup 6} rad, electrical stress at 40 V{sub rms}/{mu}m, and thermal stress at 90{degrees} C. After exposure, the polypropylene dielectric was tested for life (number of pulses to fail) under high-voltage high-repetition-rate (100 pps) pulses. Pulsed life data were also compared with ac life data. Results show that radiation stress causes the most degradation in life, either acting alone or in combination with other stresses. The largest reduction in life occurs when polypropylene is aged under simultaneous multiple stresses (electrical, thermal, and radiation). In this paper, it is shown that pulsed life can be equivalently compared with ac life.

  4. 30 CFR 75.800 - High-voltage circuits; circuit breakers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... with devices to provide protection against under-voltage grounded phase, short circuit, and overcurrent. ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false High-voltage circuits; circuit breakers. 75.800... § 75.800 High-voltage circuits; circuit breakers. High-voltage circuits entering the underground...

  5. 30 CFR 75.807 - Installation of high-voltage transmission cables.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Installation of high-voltage transmission...-Voltage Distribution § 75.807 Installation of high-voltage transmission cables. All underground high-voltage transmission cables shall be installed only in regularly inspected air courses and...

  6. Stable Josephson reference voltages between 0. 1 and 1. 3 V for high-precision voltage standards

    SciTech Connect

    Niemeyer, J.; Grimm, L.; Meier, W.; Hinken, J.H.; Vollmer, E.

    1985-12-01

    A new series array of 1440 Josephson tunnel junctions has been developed and tested as a reference voltage standard. It yields microwave induced quantized voltage steps up to 1.3 V. The steps are usually stable for more than 5 h with a microwave driving frequency of either 70 or 90 GHz. A high-resolution comparison of a constant voltage step at the 1-V level with the electromotive force of a saturated Weston cell is described. The comparison shows that the step voltage is constant to within +- 1 nV over the full step width.

  7. Stable Josephson reference voltages between 0.1 and 1.3 V for high precision voltage standards

    NASA Astrophysics Data System (ADS)

    Niemeyer, J.; Grimm, L.; Meier, W.; Hinken, J. H.; Vollmer, E.

    1985-12-01

    A new series array of 1440 Josephson tunnel junctions has been developed and tested as a reference voltage standard. It yields microwave induced quantized voltage steps up to 1.3 V. The steps are usually stable for more than 5 h with a microwave driving frequency of either 70 or 90 GHz. A high-resolution comparison of a constant voltage step at the 1-V level with the electromotive force of a saturated Weston cell is described. The comparison shows that the step voltage is constant to within + or - 1 nV over the full step width.

  8. Novel High-Voltage, High-Power Piezoelectric Transformer Developed and Demonstrated for Space Communications Applications

    NASA Technical Reports Server (NTRS)

    Carazo, Alfredo V.; Wintucky, Edwin G.

    2004-01-01

    Improvements in individual piezoelectric transformer (PT) performance and the combination of these PTs in a unique modular topology under a Phase I contract with the NASA Glenn Research Center have enabled for the first time the simultaneous achievement of both high voltage and high power at much higher levels than previously obtained with any PT. Feasibility was demonstrated by a prototype transformer (called a Tap-Soner), which is shown in the preceding photograph as part of a direct-current to direct-current (dc-dc) converter having two outputs rated at 1.5 kV/5 W and 4.5 kV/20 W. The power density of 3.5 W/cm3 is significantly lower than for magnetic transformers with the same voltage and power output. This development, which is being done under a Small Business Innovation Research (SBIR) contract by Face Electronics, LC (Norfolk, VA), is based on improvements in the materials and design of Face's basic patented Transoner-T3 PT, shown in the left in the following figure. The T3 PT is most simply described as a resonant multilayer transducer where electrical energy at the input section is efficiently mechanically coupled to the output section, which then vibrates in a fundamental longitudinal mode to generate a high gain in voltage. The piezoelectric material used is a modified lead-zirconium-titanate-based ceramic. One of the significant improvements in PT design was the incorporation of a symmetrical double input layer, shown on the right in the following figure, which eliminated the lossy bending vibration modes characteristic of a single input layer. The performance of the improved PT was optimized to 1.5 kV/5 W. The next step was devising a way to combine the individual PTs in a modular circuit topology needed to achieve the desired high voltage and power output. Since the optimum performance of the individual PT occurs at resonance, the most efficient operation of the modular transformer was achieved by using a separate drive circuit for each PT. The

  9. A high gain antenna system for airborne satellite communication applications

    NASA Technical Reports Server (NTRS)

    Maritan, M.; Borgford, M.

    1990-01-01

    A high gain antenna for commercial aviation satellites communication is discussed. Electromagnetic and practical design considerations as well as candidate systems implementation are presented. An evaluation of these implementation schemes is given, resulting in the selection of a simple top mounted aerodynamic phased array antenna with a remotely located beam steering unit. This concept has been developed into a popular product known as the Canadian Marconi Company CMA-2100. A description of the technical details is followed by a summary of results from the first production antennas.

  10. STARS A Two Stage High Gain Harmonic Generation FEL Demonstrator

    SciTech Connect

    M. Abo-Bakr; W. Anders; J. Bahrdt; P. Budz; K.B. Buerkmann-Gehrlein; O. Dressler; H.A. Duerr; V. Duerr; W. Eberhardt; S. Eisebitt; J. Feikes; R. Follath; A. Gaupp; R. Goergen; K. Goldammer; S.C. Hessler; K. Holldack; E. Jaeschke; Thorsten Kamps; S. Klauke; J. Knobloch; O. Kugeler; B.C. Kuske; P. Kuske; A. Meseck; R. Mitzner; R. Mueller; M. Neeb; A. Neumann; K. Ott; D. Pfluckhahn; T. Quast; M. Scheer; Th. Schroeter; M. Schuster; F. Senf; G. Wuestefeld; D. Kramer; Frank Marhauser

    2007-08-01

    BESSY is proposing a demonstration facility, called STARS, for a two-stage high-gain harmonic generation free electron laser (HGHG FEL). STARS is planned for lasing in the wavelength range 40 to 70 nm, requiring a beam energy of 325 MeV. The facility consists of a normal conducting gun, three superconducting TESLA-type acceleration modules modified for CW operation, a single stage bunch compressor and finally a two-stage HGHG cascaded FEL. This paper describes the faciliy layout and the rationale behind the operation parameters.

  11. Undulator interruption in high-gain free electron lasers

    SciTech Connect

    Kim, K.J.

    1997-10-01

    The effect of interrupting an undulator on the performance of high-gain free-electron lasers (FELs) is evaluated by analyzing 1-D Maxwell-Vlasov equations. It is found that the effect is small for a reasonable length of the interruptions for FEL parameters envisaged for short wavelength self-amplified spontaneous emission (SASE). Since the interruptions provide valuable space for quadrupoles and diagnostics, and at the same time permit a greater flexibility in mechanical design, the result of this paper is encouraging for construction of long undulator magnets required for SASE.

  12. Where do we stand with high gain FEL simulations?

    NASA Astrophysics Data System (ADS)

    Travish, Gil

    1997-06-01

    Computer technology improvements have allowed for more complete and detailed free electron laser simulations, yet the demands of the large number of new experiments and proposed projects has outpaced the capability and availability of present codes. This paper, based on a talk given at the conference of these proceedings, presents a brief assessment of Free Electron Laser (FEL) codes, their availability and features, as well as some opinions on what direction the FEL code community should take for the near future. The discussion of FEL codes is restricted here to ones for high gain amplifiers: no codes for oscillators, waveguides or exotic configurations are considered.

  13. High voltage dc--dc converter with dynamic voltage regulation and decoupling during load-generated arcs

    DOEpatents

    Shimer, D.W.; Lange, A.C.

    1995-05-23

    A high-power power supply produces a controllable, constant high voltage output under varying and arcing loads. The power supply includes a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, an output rectifier for producing a dc voltage at the output of each module, and a current sensor for sensing output current. The power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle and circuitry is provided for sensing incipient arc currents at the output of the power supply to simultaneously decouple the power supply circuitry from the arcing load. The power supply includes a plurality of discrete switching type dc--dc converter modules. 5 Figs.

  14. High voltage dc-dc converter with dynamic voltage regulation and decoupling during load-generated arcs

    DOEpatents

    Shimer, Daniel W.; Lange, Arnold C.

    1995-01-01

    A high-power power supply produces a controllable, constant high voltage output under varying and arcing loads. The power supply includes a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, an output rectifier for producing a dc voltage at the output of each module, and a current sensor for sensing output current. The power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle and circuitry is provided for sensing incipient arc currents at the output of the power supply to simultaneously decouple the power supply circuitry from the arcing load. The power supply includes a plurality of discrete switching type dc--dc converter modules.

  15. High power VCSEL device with periodic gain active region

    NASA Astrophysics Data System (ADS)

    Ning, Y. Q., II; Qin, L.; Sun, Y. F.; Li, T.; Cui, J. J.; Peng, B.; Liu, G. Y.; Zhang, Y.; Liu, Y.; Wang, L. J.; Cui, D. F.; Xu, Z. Y.

    2007-11-01

    High power vertical cavity surface emitting lasers with large aperture have been fabricated through improving passivation, lateral oxidation and heat dissipation techniques. Different from conventional three quantum well structure, a periodic gain active region with nine quantum wells was incorporated into the VCSEL structure, with which high efficiency and high power operation were expected. The nine quantum wells were divided into three groups with each of them located at the antinodes of the cavity to enhance the coupling between the optical field and the gain region. Large aperture and bottom-emitting configuration was used to improve the beam quality and the heat dissipation. A maximum output power of 1.4W was demonstrated at CW operation for a 400μm-diameter device. The lasing wavelength shifted to 995.5nm with a FWHM of 2nm at a current of 4.8A due to the internal heating and the absence of active water cooling. A ring-shape farfield pattern was induced by the non-homogeneous lateral current distribution in large diameter device. The light intensity at the center of the ring increased with increasing current. A symmetric round light spot at the center and single transverse mode operation with a divergence angle of 16° were observed with current beyond 4.8A.

  16. Disintegration of rocks based on magnetically isolated high voltage discharge

    NASA Astrophysics Data System (ADS)

    He, Mengbing; Jiang, Jinbo; Huang, Guoliang; Liu, Jun; Li, Chengzu

    2013-02-01

    Recently, a method utilizing pulsed power technology for disintegration of rocks arouses great interest of many researchers. In this paper, an improved method based on magnetic switch and the results shown that the uniform dielectrics like plastic can be broken down in water is presented, and the feasible mechanism explaining the breakdown of solid is proposed and proved experimentally. A high voltage pulse of 120 kV, rise time 0.2 μs was used to ignite the discharging channel in solids. When the plasma channel is formed in the solid, the resistance of the channel is quiet small; even if a relatively low voltage is applied on the channel on this occasion, it will produce high current to heat the plasma channel rapidly, and eventually disintegrate the solids. The feasibility of promising industrial application in the drilling and demolition of natural and artificial solid materials by the method we presented is verified by the experiment result in the paper.

  17. Test wire for high voltage power supply crowbar system

    SciTech Connect

    Bradley, J.T. III; Collins, M.

    1997-09-01

    The klystron microwave amplifier tubes used in the Low Energy Demonstration Accelerator (LEDA) and to be used in the Accelerator Production of Tritium (APT) plant have a strict upper limit on the amount of energy which can be safely dissipated within the klystron`s vacuum envelope during a high voltage arc. One way to prevent damage from occurring to the klystron microwave amplifier tube is through the use of a crowbar circuit which diverts the energy stored in the power supply filter capacitors from the tube arc. The crowbar circuit must be extremely reliable. To test the crowbar circuit, a wire that is designed to fuse when it absorbs a predetermined amount of energy is switched between the high voltage output terminals. The energy required to fuse the wire was investigated for a variety of circuits that simulated the power supply circuit. Techniques for calculating wire length and energy are presented along with verifying experimental data.

  18. High voltage processing of the SLC polarized electron gun

    SciTech Connect

    Saez, P.; Clendenin, J.; Garden, C.; Hoyt, E.; Klaisner, L.; Prescott, C.; Schultz, D.; Tang, H.

    1993-04-01

    The SLC polarized electron gun operates at 120 kV with very low dark current to maintain the ultra high vacuum (UHV). This strict requirement protects the extremely sensitive photocathode from contaminants caused by high voltage (HV) activity. Thorough HV processing is thus required x-ray sensitive photographic film, a nanoammeter in series with gun power supply, a radiation meter, a sensitive residual gas analyzer and surface x-ray spectrometry were used to study areas in the gun where HV activity occurred. By reducing the electric field gradients, carefully preparing the HV surfaces and adhering to very strict clean assembly procedures, we found it possible to process the gun so as to reduce both the dark current at operating voltage and the probability of HV discharge. These HV preparation and processing techniques are described.

  19. High voltage insulation of bushing for HTS power equipment

    NASA Astrophysics Data System (ADS)

    Kim, Woo-Jin; Choi, Jae-Hyeong; Kim, Sang-Hyun

    2012-12-01

    For the operation of high temperature superconducting (HTS) power equipments, it is necessary to develop insulating materials and high voltage (HV) insulation technology at cryogenic temperature of bushing. Liquid nitrogen (LN2) is an attractive dielectric liquid. Also, the polymer insulating materials are expected to be used as solid materials such as glass fiber reinforced plastic (GFRP), polytetra-fluoroethylene (PTFE, Teflon), Silicon (Si) rubber, aromatic polyamide (Nomex), EPDM/Silicon alloy compound (EPDM/Si). In this paper, the surface flashover characteristics of various insulating materials in LN2 are studied. These results are studied at both AC and impulse voltage under a non-uniform field. The use of GFRP and Teflon as insulation body for HTS bushing should be much desirable. Especially, GFRP is excellent material not only surface flashover characteristics but also mechanical characteristics at cryogenic temperature. The surface flashover is most serious problem for the shed design in LN2 and operation of superconducting equipments.

  20. Electrochemical Capacitors with High Output Voltages that Mimic Electric Eels.

    PubMed

    Sun, Hao; Fu, Xuemei; Xie, Songlin; Jiang, Yishu; Peng, Huisheng

    2016-03-01

    A new family of energy-storage devices is created by mimicking the electric eel to obtain a high output voltage. These novel energy-storage devices are flexible, stretchable, and weavable fibers, which satisfies the needs of next-generation portable and wearable electronics. The devices are fabricated via a continuous fabrication technology to effectively power electronic watches and light-emitting diodes as two examples. PMID:26766594

  1. Properties of UN Sintered by High Voltage Electric Discharge Consolidation

    NASA Astrophysics Data System (ADS)

    Yurlova, M.; Tarasov, B.; Shornikov, D.; Grigoryev, E.; Olevsky, E.

    In the present work, the opportunity of the consolidation of uranium nitride tablets by high voltage electric discharge consolidation (HVEDC) is considered. It is shown that the consolidation by HVEDC allows the prevention of the expansion of uranium nitride powders and renders pellets with relative density of up to 97%. The thermal stability of the obtained samples has been investigated. The analysis of the microstructure of the processed samples indicates the retention of the initial powder structure

  2. Avoiding Obstructions in Aiming a High-Gain Antenna

    NASA Technical Reports Server (NTRS)

    Edmonds, Karina

    2006-01-01

    The High Gain Antenna Pointing and Obstruction Avoidance software performs computations for pointing a Mars Rover high-gain antenna for communication with Earth while (1) avoiding line-of-sight obstructions (the Martian terrain and other parts of the Rover) that would block communication and (2) taking account of limits in ranges of motion of antenna gimbals and of kinematic singularities in gimbal mechanisms. The software uses simplified geometric models of obstructions and of the trajectory of the Earth in the Martian sky(see figure). It treats all obstructions according to a generalized approach, computing and continually updating the time remaining before interception of each obstruction. In cases in which the gimbal-mechanism design allows two aiming solutions, the algorithm chooses the solution that provides the longest obstruction-free Earth-tracking time. If the communication session continues until an obstruction is encountered in the current pointing solution and the other solution is now unobstructed, then the algorithm automatically switches to the other position. This software also notifies communication- managing software to cease transmission during the switch to the unobstructed position, resuming it when the switch is complete.

  3. Development and testing of an active high voltage saturation probe for characterization of ultra-high voltage silicon carbide semiconductor devices.

    PubMed

    Bilbao, Argenis V; Schrock, James A; Ray, William B; Kelley, Mitchell D; Holt, Shad L; Giesselmann, Michael G; Bayne, Stephen B

    2015-08-01

    Obtaining accurate collector to emitter voltage measurements when characterizing high voltage silicon carbide (SiC) devices requires the ability to measure voltages in the range of zero to 10 V while the device is in the on-state and the ability to withstand ultra-high voltages while the device is in the off-state. This paper presents a specialized voltage probe capable of accurately measuring the aforementioned range. A comparison is made between the proposed probe and other commonly used high voltage probe alternatives in relation to high voltage SiC device testing. Testing of the probe was performed to ensure linearity, high accuracy, and high bandwidth. PMID:26329230

  4. Improvement of a voltage multiplier for RSFQ-D/A converters with high output voltages

    NASA Astrophysics Data System (ADS)

    Hirayama, Fuminori; Maezawa, Masaaki; Suzuki, Motohiro

    2004-10-01

    Rapid single flux quantum (RSFQ) digital-to-analog (D/A) converters that synthesize arbitrary waveforms with metrological accuracy are under development. In the D/A converter, a magnetically coupled voltage multiplier (VM) is utilized as a precise frequency-to-voltage converter that generates a voltage proportional to the input frequency. To increase the output voltage of the VM, parameters that determine the cycle time of the VM cell were optimized. Experimental results obtained with 16-stage VMs showed that the maximum operating frequency of the new VM was 50 GHz, which is twice that of the previous type.

  5. Loss Reduction on Adoption of High Voltage LT Less Distribution

    NASA Astrophysics Data System (ADS)

    Tiwari, Deepika; Adhikari, Nikhileshwar Prasad; Gupta, Amit; Bajpai, Santosh Kumar

    2015-03-01

    In India there is a need to improve the quality of the electricity distribution process which has increased varying from year to year. In distribution networks, the limiting factor to load carrying capacity is generally the voltage reduction. High voltage distribution system (HVDS) is one of the steps to reduce line losses in electrical distribution network. It helps to reduce the length of low tension (LT) lines and makes the power available close to the users. The high voltage power distribution system reduces the probability of power theft by hooking HVDS suggests an increase in installation of small capacity single-phase transformers in the network which again save considerable energy. This paper is compared to existing conventional low tension distribution network with HVDS. The paper gives a clear picture of reduction in distribution losses with adoption of HVDS system. Losses Reduction of 11 kV Feeder in Nuniya (India) with adoption of HVDS have been worked out/ quantified and benefits thereby in generating capacity have discussed.

  6. Loss Reduction on Adoption of High Voltage LT Less Distribution

    NASA Astrophysics Data System (ADS)

    Tiwari, Deepika; Adhikari, Nikhileshwar Prasad; Gupta, Amit; Bajpai, Santosh Kumar

    2016-06-01

    In India there is a need to improve the quality of the electricity distribution process which has increased varying from year to year. In distribution networks, the limiting factor to load carrying capacity is generally the voltage reduction. High voltage distribution system (HVDS) is one of the steps to reduce line losses in electrical distribution network. It helps to reduce the length of low tension (LT) lines and makes the power available close to the users. The high voltage power distribution system reduces the probability of power theft by hooking HVDS suggests an increase in installation of small capacity single-phase transformers in the network which again save considerable energy. This paper is compared to existing conventional low tension distribution network with HVDS. The paper gives a clear picture of reduction in distribution losses with adoption of HVDS system. Losses Reduction of 11 kV Feeder in Nuniya (India) with adoption of HVDS have been worked out/ quantified and benefits thereby in generating capacity have discussed.

  7. Fiber optic current monitor for high-voltage applications

    DOEpatents

    Renda, G.F.

    1992-04-21

    A current monitor which derives its power from the conductor being measured for bidirectionally measuring the magnitude of current (from DC to above 50 khz) flowing through a conductor across which a relatively high level DC voltage is applied, includes a pair of identical transmitter modules connected in opposite polarity to one another in series with the conductor being monitored, for producing from one module a first light signal having an intensity directly proportional to the magnitude of current flowing in one direction through the conductor during one period of time, and from the other module a second light signal having an intensity directly proportional to the magnitude of current flowing in the opposite direction through the conductor during another period of time, and a receiver located in a safe area remote from the high voltage area for receiving the first and second light signals, and converting the same to first and second voltage signals having levels indicative of the magnitude of current being measured at a given time. 6 figs.

  8. Fiber optic current monitor for high-voltage applications

    DOEpatents

    Renda, George F.

    1992-01-01

    A current monitor which derives its power from the conductor being measured for bidirectionally measuring the magnitude of current (from DC to above 50 khz) flowing through a conductor across which a relatively high level DC voltage is applied, includes a pair of identical transmitter modules connected in opposite polarity to one another in series with the conductor being monitored, for producing from one module a first light signal having an intensity directly proportional to the magnitude of current flowing in one direction through the conductor during one period of time, and from the other module a second light signal having an intensity directly proportional to the magnitude of current flowing in the opposite direction through the conductor during another period of time, and a receiver located in a safe area remote from the high voltage area for receiving the first and second light signals, and converting the same to first and second voltage signals having levels indicative of the magnitude of current being measured at a given time.

  9. Advanced Gate Drive for the SNS High Voltage Converter Modulator

    SciTech Connect

    Nguyen, M.N.; Burkhart, C.; Kemp, M.A.; Anderson, D.E.; /Oak Ridge

    2009-05-07

    SLAC National Accelerator Laboratory is developing a next generation H-bridge switch plate [1], a critical component of the SNS High Voltage Converter Modulator [2]. As part of that effort, a new IGBT gate driver has been developed. The drivers are an integral part of the switch plate, which are essential to ensuring fault-tolerant, high-performance operation of the modulator. The redesigned driver improves upon the existing gate drive in several ways. The new gate driver has improved fault detection and suppression capabilities; suppression of shoot-through and over-voltage conditions, monitoring of dI/dt and Vce(sat) for fast over-current detection and suppression, and redundant power isolation are some of the added features. In addition, triggering insertion delay is reduced by a factor of four compared to the existing driver. This paper details the design and performance of the new IGBT gate driver. A simplified schematic and description of the construction are included. The operation of the fast over-current detection circuits, active IGBT over-voltage protection circuit, shoot-through prevention circuitry, and control power isolation breakdown detection circuit are discussed.

  10. High Voltage Coaxial Vacuum Gap Breakdown for Pulsed Power Liners

    NASA Astrophysics Data System (ADS)

    Cordaro, Samuel; Bott-Suzuki, Simon; Caballero Bendixsen, Luis Sebastian

    2015-11-01

    The dynamics of Magnetized Liner Inertial Fusion (MagLIF)1, are presently under detailed study at Sandia National Laboratories. Alongside this, a comprehensive analysis of the influence of the specific liner design geometry in the MagLIF system on liner initiation is underway in the academic community. Recent work at UC San Diego utilizes a high voltage pulsed system (25kV, 150ns) to analyze the vacuum breakdown stage of liner implosion. Such experimental analyses are geared towards determining how the azimuthal symmetry of coaxial gap breakdown affect plasma initiation within the liner. The final aim of the experimental analysis is to assess to what scale symmetry remains important at high (MV) voltages. An analysis of the above will utilize plasma self-emission via optical MCP, current measurements, voltage measurements near the gap, exact location of breakdown via 2D b-dot probe triangulation, as well as measuring the evolution of the B-field along the length of the liner via b-dot array. Results will be discussed along with analytical calculations of breakdown mechanisms

  11. Gate Controlled Photocurrent Generation Mechanisms in High-Gain In₂Se₃ Phototransistors.

    PubMed

    Island, J O; Blanter, S I; Buscema, M; van der Zant, H S J; Castellanos-Gomez, A

    2015-12-01

    Photocurrent in photodetectors incorporating van der Waals materials is typically produced by a combination of photocurrent generation mechanisms that occur simultaneously during operation. Because of this, response times in these devices often yield to slower, high gain processes, which cannot be turned off. Here we report on photodetectors incorporating the layered material In2Se3, which allow complete modulation of a high gain, photogating mechanism in the ON state in favor of fast photoconduction in the OFF state. While photoconduction is largely gate independent, photocurrent from the photogating effect is strongly modulated through application of a back gate voltage. By varying the back gate, we demonstrate control over the dominant mechanism responsible for photocurrent generation. Furthermore, because of the strong photogating effect, these direct-band gap, multilayer phototransistors produce ultrahigh gains of (9.8 ± 2.5) × 10(4) A/W and inferred detectivities of (3.3 ± 0.8) × 10(13) Jones, putting In2Se3 among the most sensitive 2D materials for photodetection studied to date. PMID:26540135

  12. Increase in the scattering of electric field lines in a new high voltage SOI MESFET

    NASA Astrophysics Data System (ADS)

    Anvarifard, Mohammad K.

    2016-09-01

    This paper illustrates a new efficient technique to enhance the critical features of a silicon-on-insulator metal-semiconductor field-effect transistor (SOI MESFET) applied in high voltage applications. The structure we proposed utilizes a new method to scatter the electric field lines along the channel region. Realization of two trenches with different materials, which a trench is created in the channel region and the other one is created in the buried oxide, helps the proposed structure to improve the breakdown voltage, driving current, drain-source conductance, minimum noise figure, unilateral power gain and output power density. Exploring the obtained results, the proposed structure has superior electrical performance in comparison to the conventional structure.

  13. High voltage design structure for high temperature superconducting device

    DOEpatents

    Tekletsadik, Kasegn D.

    2008-05-20

    In accordance with the present invention, modular corona shields are employed in a HTS device to reduce the electric field surrounding the HTS device. In a exemplary embodiment a fault current limiter module in the insulation region of a cryogenic cooling system has at least one fault current limiter set which employs a first corona shield disposed along the top portion of the fault current limiter set and is electrically coupled to the fault current limiter set. A second corona shield is disposed along the bottom portion of the fault current limiter set and is electrically coupled to the fault current limiter set. An insulation barrier is disposed within the insulation region along at least one side of the fault current limiter set. The first corona shield and the second corona shield act together to reduce the electric field surrounding the fault limiter set when voltage is applied to the fault limiter set.

  14. Intracavity gain shaping in millijoule-level, high gain Ho:YLF regenerative amplifiers.

    PubMed

    Murari, Krishna; Cankaya, Huseyin; Kroetz, Peter; Cirmi, Giovanni; Li, Peng; Ruehl, Axel; Hartl, Ingmar; Kärtner, Franz X

    2016-03-15

    We demonstrate intracavity gain shaping inside a 2 μm Ho:YLF regenerative amplifier with a spectral bandwidth of 2.9 nm broadened to 5.4 nm, corresponding to Fourier-limited pulses of 1 ps duration. The intracavity gain shaping is achieved by using a simple etalon, which acts as a frequency-selective filter. The output of the regenerative amplifier is amplified by a single-pass amplifier, and we achieve total energy of 2.2 mJ and pulse duration of 2.4 ps at 1 kHz with pulse fluctuations <1%. The amplifier chain is seeded by a home-built mode-locked holmium-doped fiber oscillator. PMID:26977647

  15. Switch contact device for interrupting high current, high voltage, AC and DC circuits

    DOEpatents

    Via, Lester C.; Witherspoon, F. Douglas; Ryan, John M.

    2005-01-04

    A high voltage switch contact structure capable of interrupting high voltage, high current AC and DC circuits. The contact structure confines the arc created when contacts open to the thin area between two insulating surfaces in intimate contact. This forces the arc into the shape of a thin sheet which loses heat energy far more rapidly than an arc column having a circular cross-section. These high heat losses require a dramatic increase in the voltage required to maintain the arc, thus extinguishing it when the required voltage exceeds the available voltage. The arc extinguishing process with this invention is not dependent on the occurrence of a current zero crossing and, consequently, is capable of rapidly interrupting both AC and DC circuits. The contact structure achieves its high performance without the use of sulfur hexafluoride.

  16. A magnesium-sodium hybrid battery with high operating voltage.

    PubMed

    Dong, Hui; Li, Yifei; Liang, Yanliang; Li, Guosheng; Sun, Cheng-Jun; Ren, Yang; Lu, Yuhao; Yao, Yan

    2016-07-01

    We report a high performance magnesium-sodium hybrid battery utilizing a magnesium-sodium dual-salt electrolyte, a magnesium anode, and a Berlin green cathode. The cell delivers an average discharge voltage of 2.2 V and a reversible capacity of 143 mA h g(-1). We also demonstrate the cell with an energy density of 135 W h kg(-1) and a high power density of up to 1.67 kW kg(-1). PMID:27284593

  17. Experimental validation of a high voltage pulse measurement method.

    SciTech Connect

    Cular, Stefan; Patel, Nishant Bhupendra; Branch, Darren W.

    2013-09-01

    This report describes X-cut lithium niobate's (LiNbO3) utilization for voltage sensing by monitoring the acoustic wave propagation changes through LiNbO3 resulting from applied voltage. Direct current (DC), alternating current (AC) and pulsed voltage signals were applied to the crystal. Voltage induced shift in acoustic wave propagation time scaled quadratically for DC and AC voltages and linearly for pulsed voltages. The measured values ranged from 10 - 273 ps and 189 ps - 2 ns for DC and non-DC voltages, respectively. Data suggests LiNbO3 has a frequency sensitive response to voltage. If voltage source error is eliminated through physical modeling from the uncertainty budget, the sensor's U95 estimated combined uncertainty could decrease to ~0.025% for DC, AC, and pulsed voltage measurements.

  18. Impact of Solar Array Designs on High Voltage Operations

    NASA Technical Reports Server (NTRS)

    Brandhorst, Henry W., Jr.; Ferguson, Dale; Piszczor, Mike; ONeill, Mark

    2006-01-01

    As power levels of advanced spacecraft climb above 25 kW, higher solar array operating voltages become attractive. Even in today s satellites, operating spacecraft buses at 100 V and above has led to arcing in GEO communications satellites, so the issue of spacecraft charging and solar array arcing remains a design problem. In addition, micrometeoroid impacts on all of these arrays can also lead to arcing if the spacecraft is at an elevated potential. For example, tests on space station hardware disclosed arcing at 75V on anodized A1 structures that were struck with hypervelocity particles in Low Earth Orbit (LEO) plasmas. Thus an understanding of these effects is necessary to design reliable high voltage solar arrays of the future, especially in light of the Vision for Space Exploration of NASA. In the future, large GEO communication satellites, lunar bases, solar electric propulsion missions, high power communication systems around Mars can lead to power levels well above 100 kW. As noted above, it will be essential to increase operating voltages of the solar arrays well above 80 V to keep the mass of cabling needed to carry the high currents to an acceptable level. Thus, the purpose of this paper is to discuss various solar array approaches, to discuss the results of testing them at high voltages, in the presence of simulated space plasma and under hypervelocity impact. Three different types of arrays will be considered. One will be a planar array using thin film cells, the second will use planar single or multijunction cells and the last will use the Stretched Lens Array (SLA - 8-fold concentration). Each of these has different approaches for protection from the space environment. The thin film cell based arrays have minimal covering due to their inherent radiation tolerance, conventional GaAs and multijunction cells have the traditional cerium-doped microsheet glasses (of appropriate thickness) that are usually attached with Dow Corning DC 93-500 silicone

  19. 76 FR 72203 - Voltage Coordination on High Voltage Grids; Notice of Reliability Workshop Agenda

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-22

    ... analysis evaluations are performed on the bulk electric system or on lower voltage systems to maximize... how these software products are evaluated and validated using a post analysis process. d. What effort... or tools are used to evaluate reactive or voltage support needs from this perspective? b....

  20. High Voltage Power Supply Design Guide for Space

    NASA Technical Reports Server (NTRS)

    Bever, Renate S.; Ruitberg, Arthur P.; Kellenbenz, Carl W.; Irish, Sandra M.

    2006-01-01

    This book is written for newcomers to the topic of high voltage (HV) in space and is intended to replace an earlier (1970s) out-of-print document. It discusses the designs, problems, and their solutions for HV, mostly direct current, electric power, or bias supplies that are needed for space scientific instruments and devices, including stepping supplies. Output voltages up to 30kV are considered, but only very low output currents, on the order of microamperes. The book gives a brief review of the basic physics of electrical insulation and breakdown problems, especially in gases. It recites details about embedment and coating of the supplies with polymeric resins. Suggestions on HV circuit parts follow. Corona or partial discharge testing on the HV parts and assemblies is discussed both under AC and DC impressed test voltages. Electric field analysis by computer on an HV device is included in considerable detail. Finally, there are many examples given of HV power supplies, complete with some of the circuit diagrams and color photographs of the layouts.

  1. Novel cryogenic high voltage insulation breaks with spiral channel

    NASA Astrophysics Data System (ADS)

    Bursikov, A. S.; Voronin, N. M.; Gavrilov, S. M.; Grinchenko, V. A.; Klimchenko, Yu. A.; Korsunskiy, V. A.; Kovalchuk, O. A.; Lancetov, A. A.; Marushin, E. L.; Mednikov, A. A.; Rodin, I. Yu.; Safonov, A. V.

    2014-01-01

    Insulation breaks are used in cryogenic lines with a gas or liquid at temperatures of 4.2-300 K and pressure up to 30 MPa to isolate the parts of electrophysical setup with different electrical potential. Novel cryogenic high voltage (HV) insulation breaks for the electrophysical equipment that uses the effect of superconductivity was developed in the D.V. Efremov Institute of Electrophysical Apparatus (NIIEFA). These insulation breaks consist of glass-reinforced plastic cylinder equipped with channel for cryoagent and stainless steel end fittings. The main design feature of new kind HV break is spiral channel instead of linear one. This approach allowed to increase the breakdown voltage and to decrease the overall dimensions of insulation breaks. The design length of the spiral channel depends on HV requirements and the kind of cryoagent. To provide the wide range of operating voltages, temperatures and pressures the insulation breaks with various dimensions were developed. To provide an acceptance test of breaks as manufactured the special test facility was prepared. Helium tightness test with a level 1.2ṡ10-11 m3ṡPa/s under up to 30 MPa, HV test up to 135 kV and different kinds of mechanical tests could be provided at room and liquid nitrogen temperatures.

  2. Possibility of a high-power, high-gain amplifier FEL

    SciTech Connect

    Nguyen, D. C.; Freund, H. P.

    2002-01-01

    High-gain amplifier FEL offer many unique advantages such as robust operation without a high-Q optical cavity and potentially high extraction eaciencies with the use of tapered wigglers. Although a high average power, cw amplifier FEL has not been demonstrated, many key physics issues such as electron beam brightness requirements, single-pass gains, saturation, etc. have been resolved. In this paper, we study the feasibility of a high-power FEL based on the high-gain amplifier concept. We show that with suitable electron beam parameters, i.e. high peak current, low emittance, low energy spread, and sufficient tapered wiggler length, peak output power of 1 QW and optical pulse energy of 8 mJ can be achieved. We also outline a possible configuration of a high-power, high-gain amplifier FEL with energy recovery.

  3. High-frequency voltage oscillations in cultured astrocytes

    PubMed Central

    Fleischer, Wiebke; Theiss, Stephan; Slotta, Johannes; Holland, Christine; Schnitzler, Alfons

    2015-01-01

    Because of their close interaction with neuronal physiology, astrocytes can modulate brain function in multiple ways. Here, we demonstrate a yet unknown astrocytic phenomenon: Astrocytes cultured on microelectrode arrays (MEAs) exhibited extracellular voltage fluctuations in a broad frequency spectrum (100–600 Hz) after electrical stimulation. These aperiodic high-frequency oscillations (HFOs) could last several seconds and did not spread across the MEA. The voltage-gated calcium channel antagonist cilnidipine dose-dependently decreased the power of the oscillations. While intracellular calcium was pivotal, incubation with bafilomycin A1 showed that vesicular release of transmitters played only a minor role in the emergence of HFOs. Gap junctions and volume-regulated anionic channels had just as little functional impact, which was demonstrated by the addition of carbenoxolone (100 μmol/L) and NPPB (100 μmol/L). Hyperpolarization with low potassium in the extracellular solution (2 mmol/L) dramatically raised oscillation power. A similar effect was seen when we added extra sodium (+50 mmol/L) or if we replaced it with NMDG+ (50 mmol/L). The purinergic receptor antagonist PPADS suppressed the oscillation power, while the agonist ATP (100 μmol/L) had only an increasing effect when the bath solution pH was slightly lowered to pH 7.2. From these observations, we conclude that astrocytic voltage oscillations are triggered by activation of voltage-gated calcium channels and driven by a downstream influx of cations through channels that are permeable for large ions such as NMDG+. Most likely candidates are subtypes of pore-forming P2X channels with a low affinity for ATP. PMID:25969464

  4. High gain antenna pointing on the Mars Exploration Rovers

    NASA Technical Reports Server (NTRS)

    Vanelli, C. Anthony; Ali, Khaled S.

    2005-01-01

    This paper describes the algorithm used to point the high gain antennae on NASA/JPL's Mars Exploration Rovers. The gimballed antennae must track the Earth as it moves across the Martian sky during communication sessions. The algorithm accounts for (1) gimbal range limitations, (2) obstructions both on the rover and in the surrounding environment, (3) kinematic singularities in the gimbal design, and (4) up to two joint-space solutions for a given pointing direction. The algorithm computes the intercept-times for each of the occlusions and chooses the jointspace solution that provides the longest track time before encountering an occlusion. Upon encountering an occlusion, the pointing algorithm automatically switches to the other joint-space solution if it is not also occluded. The algorithm has successfully provided flop-free pointing for both rovers throughout the mission.

  5. Low-dispersion, high-gain femtosecond optical pulse amplifier.

    PubMed

    Rodenberger, D C; Grossman, C H; Garito, A F

    1990-05-01

    We demonstrate a novel amplifier for femtosecond optical pulses. The output of a colliding-pulse mode-locked laser is amplified to 0.3 microJ per pulse at a repetition rate of 8 kHz by using 1 W of pump power from a copper-vapor laser. Our high-efficiency amplifier focuses the beam for four gain passes through a thin dye stream that uses a Z configuration with matched focusing. Because of low group-velocity dispersion, the output pulses are only slightly broadened, from 63 to 73 fsec, and may be used directly to generate a white-light continuum without pulse compression after amplification. PMID:19767988

  6. Progress on achieving the ICF conditions needed for high gain

    SciTech Connect

    Lindl, J.D.

    1988-12-23

    Progress during the past two years has moved us much closer to demonstrating the scientific and technological requirements for high gain ICF in the laboratory. This progress has been made possible by operating at the third harmonic of 1..mu..m light which dramatically reduces concern about hot electrons and by advances in diagnostics such as 100 ps x-ray framing cameras which greatly increase the data available from each experiment. Making use of many of these new capabilities, major improvements in confinement conditions have been achieved for ICF implosions. In particular, in an optimized hohlraum on Nova, radiation driven implosions with convergence ratio in excess of 30 (volume compression /approximately/3 /times/ 10/sup 4/) have performed essentially as predicted by spherical implosion calculations. This paper presents these results as well as examples of advances in several other areas and discusses the implications for the future of ICF with lasers and heavy ion beam drivers. 8 refs., 10 figs.

  7. High gain GaAs photoconductive semiconductor switches: Switch longevity

    SciTech Connect

    Loubriel, G.M.; Zutavern, F.J.; Mar, A.

    1998-07-01

    Optically activated, high gain GaAs switches are being tested for many different pulsed power applications that require long lifetime (longevity). The switches have p and n contact metallization (with intentional or unintentional dopants) configured in such a way as to produce p-i-n or n-i-n switches. The longevity of the switches is determined by circuit parameters and by the ability of the contacts to resist erosion. This paper will describe how the switches performed in test-beds designed to measure switch longevity. The best longevity was achieved with switches made with diffused contacts, achieving over 50 million pulses at 10 A and over 2 million pulses at 80 A.

  8. Pickup impact on high-voltage multifinger LDMOS-SCR with low trigger voltage and high failure current

    NASA Astrophysics Data System (ADS)

    Yang, Liu; Jin, Xiangliang; Wang, Yang; Zhou, Acheng

    2015-12-01

    The impact of inserting P+ pickup on high-voltage multi-finger laterally diffused metal-oxide-semiconductor-silicon-controlled rectifier (LDMOS-SCR) has been studied in this article. Four-finger LDMOS-SCR structures with finger length of 50 μm using 0.5 μm 18 V complementarily diffused metal oxide semiconductor (CDMOS) process were fabricated and tested. Theoretical analysis is carried out to make detailed comparisons between LDMOS-SCR with and without P+ pickup. It verifies that the multi-finger LDMOS-SCR with P+ pickup has greater electrostatic discharge (ESD) robustness and effectiveness. Furthermore, transmission line pulse (TLP) test has been done and the results show that the trigger voltage (Vt1) of the LDMOS-SCR with P+ pickup remarkably decreases from 46.19 to 35.39 V and the second breakdown current (It2) effectively increases from 8.13 to 10.08 A.

  9. High-voltage power supply with improved thermostability for Xenon gamma-ray spectrometer

    NASA Astrophysics Data System (ADS)

    Petrenko, D.; Uteshev, Z.; Novikov, A.; Shustov, A.; Vlasik, K.; Chernysheva, I.; Smirnova, M.; Krivova, K.; Dmitrenko, V.; Ulin, S.

    2016-02-01

    In this article the high voltage power supply for xenon spectrometer is described. Result of time simulation for output voltage at different temperatures was shown. The experimental data is confirming results of the time simulations. The experimental data showed breadboard model provides a stability of voltage better than 1% of the generated voltage at different temperatures

  10. Black Phosphorus Mid-Infrared Photodetectors with High Gain

    NASA Astrophysics Data System (ADS)

    Guo, Qiushi; Pospischil, Andreas; Bhuiyan, Maruf; Jiang, Hao; Tian, He; Farmer, Damon; Deng, Bingchen; Li, Cheng; Han, Shu-Jen; Wang, Han; Xia, Qiangfei; Ma, Tso-Ping; Mueller, Thomas; Xia, Fengnian

    2016-07-01

    Recently, black phosphorus (BP) has joined the two dimensional material family as a promising candidate for photonic applications, due to its moderate bandgap, high carrier mobility, and compatibility with a diverse range of substrates. Photodetectors are probably the most explored BP photonic devices, however, their unique potential compared with other layered materials in the mid-infrared wavelength range has not been revealed. Here, we demonstrate BP mid infrared detectors at 3.39 um with high internal gain, resulting in an external responsivity of 82 A/W. Noise measurements show that such BP photodetectors are capable of sensing low intensity mid-infrared light in the picowatt range. Moreover, the high photoresponse remains effective at kilohertz modulation frequencies, because of the fast carrier dynamics arising from BPs moderate bandgap. The high photoresponse at mid infrared wavelengths and the large dynamic bandwidth, together with its unique polarization dependent response induced by low crystalline symmetry, can be coalesced to promise photonic applications such as chip-scale mid-infrared sensing and imaging at low light levels.

  11. Black Phosphorus Mid-Infrared Photodetectors with High Gain.

    PubMed

    Guo, Qiushi; Pospischil, Andreas; Bhuiyan, Maruf; Jiang, Hao; Tian, He; Farmer, Damon; Deng, Bingchen; Li, Cheng; Han, Shu-Jen; Wang, Han; Xia, Qiangfei; Ma, Tso-Ping; Mueller, Thomas; Xia, Fengnian

    2016-07-13

    Recently, black phosphorus (BP) has joined the two-dimensional material family as a promising candidate for photonic applications due to its moderate bandgap, high carrier mobility, and compatibility with a diverse range of substrates. Photodetectors are probably the most explored BP photonic devices, however, their unique potential compared with other layered materials in the mid-infrared wavelength range has not been revealed. Here, we demonstrate BP mid-infrared detectors at 3.39 μm with high internal gain, resulting in an external responsivity of 82 A/W. Noise measurements show that such BP photodetectors are capable of sensing mid-infrared light in the picowatt range. Moreover, the high photoresponse remains effective at kilohertz modulation frequencies, because of the fast carrier dynamics arising from BP's moderate bandgap. The high photoresponse at mid-infrared wavelengths and the large dynamic bandwidth, together with its unique polarization dependent response induced by low crystalline symmetry, can be coalesced to promise photonic applications such as chip-scale mid-infrared sensing and imaging at low light levels. PMID:27332146

  12. DEMONSTRATION BULLETIN: HIGH VOLTAGE ELECTRON BEAM TECHNOLOGY - HIGH VOLTAGE ENVIRONMENTAL APPLICATIONS, INC.

    EPA Science Inventory

    The high energy electron beam irradiation technology is a low temperature method for destroying complex mixtures of hazardous organic chemicals in solutions containing solids. The system consists of a computer-automated, portable electron beam accelerator and a delivery system. T...

  13. Curing system for high voltage cross linked cables

    DOEpatents

    Bahder, George; Katz, Carlos; Bopp, Louis A.

    1978-01-01

    This invention makes extruded, vulcanized, high voltage cables insulated with thermosetting compounds at much higher rates of production and with superior insulation of reduced thickness and with reduced cavities or voids in the insulation. As the cable comes from an extruder, it passes into a curing chamber with a heat booster that quickly raises the insulation to a temperature at which it is cured much more quickly than with steam heating of the prior art. A high temperature liquid in contact with the insulation maintains the high temperature; and because of the greater curing heat, the cable can travel through the curing chamber at a faster rate and into a cooling tube where it contacts with a cooling liquid under high pressure. The insulation compound is treated to reduce the size of cavities; and the high pressure maintained by the curing and cooling mediums prevent expansion of cavities before the insulation is set.

  14. High Power, High Voltage FETs in Linear Applications: A User's Perspective

    SciTech Connect

    N. Greenough, E. Fredd, S. DePasquale

    2009-09-21

    The specifications of the current crop of highpower, high-voltage field-effect transistors (FETs) can lure a designer into employing them in high-voltage DC equipment. Devices with extremely low on-resistance and very high power ratings are available from several manufacturers. However, our experience shows that high-voltage, linear operation of these devices at near-continuous duty can present difficult reliability challenges at stress levels well-below their published specifications. This paper chronicles the design evolution of a 600 volt, 8 ampere shunt regulator for use with megawatt-class radio transmitters, and presents a final design that has met its reliability criteria.

  15. Self-monitoring high voltage transmission line suspension insulator

    DOEpatents

    Stemler, Gary E.; Scott, Donald N.

    1981-01-01

    A high voltage transmission line suspension insulator (18 or 22) which monitors its own dielectric integrity. A dielectric rod (10) has one larger diameter end fitting attachable to a transmission line and another larger diameter end fitting attachable to a support tower. The rod is enclosed in a dielectric tube (14) which is hermetically sealed to the rod's end fittings such that a liquidtight space (20) is formed between the rod and the tube. A pressurized dielectric liquid is placed within that space. A discoloring dye placed within this space is used to detect the loss of the pressurized liquid.

  16. Hazard classification assessment for the High Voltage Initiator

    SciTech Connect

    Cogan, J.D.

    1994-04-19

    An investigation was conducted to determine whether the High Voltage Initiator (Sandia p number 395710; Navy NAVSEA No. 6237177) could be assigned a Department of Transportation (DOT) hazard classification of ``IGNITERS, 1.4G, UN0325`` under Code of Federal Regulations, 49 CFR 173.101, when packaged per Mound drawing NXB911442. A hazard classification test was performed, and the test data led to a recommended hazard classification of ``IGNITERS, 1.4G, UN0325,`` based on guidance outlined in DOE Order 1540.2 and 49 CFR 173.56.

  17. Reproductive hazards among workers at high voltage substations

    SciTech Connect

    Nordstroem, S.; Birke, E.; Gustavsson, L.

    1983-01-01

    A retrospective study on reproductive hazards was performed among 542 employees at Swedish power plants. Questionnaires were answered by 89% of the employees. Data on pregnancies were checked by studying hospital case records. There was a statistically significant, decreased frequency of ''normal'' pregnancy outcome, almost exclusively due to an increased frequency of congenital malformations, when the father was a high-voltage switchyard worker. The differences in pregnancy outcome could not be explained by any of the confounding factors analyzed. The total number of children with malformations (26) and the total number of pregnancies in this study, however, were very small.

  18. High-voltage R-F feedthrough bushing

    DOEpatents

    Grotz, G.F.

    1982-09-03

    Described is a multi-element, high voltage radio frequency bushing for transmitting rf energy to an antenna located in a vacuum container. The bushing includes a center conductor of complex geometrical shape, an outer coaxial shield conductor, and a thin-walled hollow truncated cone insulator disposed between central and outer conductors. The shape of the center conductor, which includes a reverse curvature portion formed of a radially inwardly directed shoulder and a convex portion, controls the uniformity of the axial surface gradient on the insulator cone. The outer shield has a first substantially cylindrical portion and a second radially inwardly extending truncated cone portion.

  19. Preliminary chaotic model of snapover on high voltage solar cells

    NASA Technical Reports Server (NTRS)

    Mackey, Willie R.

    1995-01-01

    High voltage power systems in space will interact with the space plasma in a variety of ways. One of these, snapover, is characterized by sudden enlargement of the current collection area across normally insulating surfaces generating enhanced electron current collection. Power drain on solar array power systems results from this enhanced current collection. Optical observations of the snapover phenomena in the laboratory indicates a functional relation between glow area and bia potential as a consequence of the fold/cusp bifurcation in chaos theory. Successful characterizations of snapover as a chaotic phenomena may provide a means of snapover prevention and control through chaotic synchronization.

  20. Development of Isolated Travel Sensor for High-voltage Switchgear

    NASA Astrophysics Data System (ADS)

    Shiratsuki, Akihide; Mori, Tomohito; Kohyama, Haruhiko; Nakajima, Hajime; Nakashima, Toshiro; Oka, Toru; Sumi, Kazuhiko

    Because a contact travel can show a trend of operating condition of high voltage switchgears, it is utilized as an important parameter for not only monitoring or diagnostic system but also intelligent controls such as controlled switching systems to eliminate harmful switching transients. Potential meters or encoders are usually applied for this purpose, but it requires modification of moving parts that is not acceptable in some types of switchgears especially for retrofit work in fields. This paper describes a development of a compact and isolated type travel sensor, which can be easily installed in switchgear cabinets, and evaluation test results using prototype mounted in actual switchgear.

  1. High impedance fault detection in low voltage networks

    SciTech Connect

    Christie, R.D. . Dept. of Electrical Engineering); Zadehgol, H.; Habib, M.M. )

    1993-10-01

    High impedance faults are those with fault current magnitude similar to load currents. Experimental results were obtained that conform operating experience that such faults can occur in the low voltage (600V and below) underground distribution networks typically found in urban power systems. These faults produce current waveforms qualitatively similar to those found on overhead feeders, but quantitatively smaller. Loose connectors can produce similar, but cleaner current characteristics. Noisy loads remain a major impediment to reliable detection. Design and installation of an inexpensive prototype fault detector on the Seattle City Light street network is described.

  2. An accurate continuous calibration system for high voltage current transformer

    SciTech Connect

    Tong Yue; Li Binhong

    2011-02-15

    A continuous calibration system for high voltage current transformers is presented in this paper. The sensor of this system is based on a kind of electronic instrument current transformer, which is a clamp-shape air core coil. This system uses an optical fiber transmission system for its signal transmission and power supply. Finally the digital integrator and fourth-order convolution window algorithm as error calculation methods are realized by the virtual instrument with a personal computer. It is found that this system can calibrate a high voltage current transformer while energized, which means avoiding a long calibrating period in the power system and the loss of power metering expense. At the same time, it has a wide dynamic range and frequency band, and it can achieve a high accuracy measurement in a complex electromagnetic field environment. The experimental results and the on-site operation results presented in the last part of the paper, prove that it can reach the 0.05 accuracy class and is easy to operate on site.

  3. An accurate continuous calibration system for high voltage current transformer.

    PubMed

    Tong, Yue; Li, Bin Hong

    2011-02-01

    A continuous calibration system for high voltage current transformers is presented in this paper. The sensor of this system is based on a kind of electronic instrument current transformer, which is a clamp-shape air core coil. This system uses an optical fiber transmission system for its signal transmission and power supply. Finally the digital integrator and fourth-order convolution window algorithm as error calculation methods are realized by the virtual instrument with a personal computer. It is found that this system can calibrate a high voltage current transformer while energized, which means avoiding a long calibrating period in the power system and the loss of power metering expense. At the same time, it has a wide dynamic range and frequency band, and it can achieve a high accuracy measurement in a complex electromagnetic field environment. The experimental results and the on-site operation results presented in the last part of the paper, prove that it can reach the 0.05 accuracy class and is easy to operate on site. PMID:21361633

  4. Radiation damage in high voltage silicon solar cells

    NASA Technical Reports Server (NTRS)

    Weinberg, I.; Brandhorst, H., Jr.; Swartz, C. K.; Weizer, V. G.

    1980-01-01

    Three high open-circuit voltage cell designs based on 0.1 ohm-cm p-type silicon were irradiated with 1 MeV electrons and their performance determined to fluences as high as 10 to the 15th power/sq cm. Of the three cell designs, radiation induced degradation was greatest in the high-low emitter (HLE cell). The diffused and ion implanted cells degraded approximately equally but less than the HLE cell. Degradation was greatest in an HLE cell exposed to X-rays before electron irradiation. The cell regions controlling both short-circuit current and open-circuit voltage degradation were defined in all three cell types. An increase in front surface recombination velocity accompanied time dependent degradation of an HLE cell after X-irradiation. It was speculated that this was indirectly due to a decrease in positive charge at the silicon-oxide interface. Modifications aimed at reducing radiation induced degradation are proposed for all three cell types.

  5. High Voltage Breakdown Levels in Various EPC Potting Materials

    NASA Technical Reports Server (NTRS)

    Komm, David S.

    2006-01-01

    This viewgraph presentation reviews exploration activities at JPL into various potting materials. Since high power space-borne microwave transmitters invariably use a vacuum tube as a final power amplifier, and this tube requires high electrode voltages for operation. The associated high voltage insulation typically represents a significant fraction of the mass of the transmitter. Since mass is always a premium resource on board spacecraft, we have been investigating materials with the potential to reduce the mass required for our applications here at JPL. This paper describes electrical breakdown results obtained with various potting materials. Conathane EN-11 (polyurethane) is the traditional HVPS encapsulant at JPL, but due to temperature limitations and durability issues it was deemed inappropriate for the particular application (i.e., CloudSat radar). The choices for the best available materials were epoxies, or silicones. Epoxies are too rigid, and were deemed inadvisable. Two silicones were further investigated (i.e.,ASTM E595- 93e2: GE RTV566(R) and Dow Corning 93-500X(R), another compound was considered (i.e., DC material, Sylgard 184(R)). "Loading" (adding filler materials) the potting compound will frequently alter the final material properties. Powdered alumina and borosilicate glass known as "microballoons" were investigated as possible loading materials. The testing of the materials is described. Each of the two loading materials offers advantages and disadvantages. The advantages and disadvantages are described.

  6. 30 CFR 75.802 - Protection of high-voltage circuits extending underground.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... portable, mobile, or, stationary high-voltage equipment shall contain either a direct or derived neutral... authorized representative may permit ungrounded high-voltage circuits to be extended underground to...

  7. 30 CFR 75.802 - Protection of high-voltage circuits extending underground.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... portable, mobile, or, stationary high-voltage equipment shall contain either a direct or derived neutral... authorized representative may permit ungrounded high-voltage circuits to be extended underground to...

  8. 30 CFR 75.802 - Protection of high-voltage circuits extending underground.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... portable, mobile, or, stationary high-voltage equipment shall contain either a direct or derived neutral... authorized representative may permit ungrounded high-voltage circuits to be extended underground to...

  9. 30 CFR 75.802 - Protection of high-voltage circuits extending underground.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... portable, mobile, or, stationary high-voltage equipment shall contain either a direct or derived neutral... authorized representative may permit ungrounded high-voltage circuits to be extended underground to...

  10. 30 CFR 75.802 - Protection of high-voltage circuits extending underground.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... portable, mobile, or, stationary high-voltage equipment shall contain either a direct or derived neutral... authorized representative may permit ungrounded high-voltage circuits to be extended underground to...

  11. High voltage plasma sheath analysis related to TSS-1

    NASA Technical Reports Server (NTRS)

    Sheldon, John W.

    1990-01-01

    On the first mission of the Tethered Satellite System (TSS-1), a 1.8 m diameter spherical satellite will be deployed a distance of 20 km above the Space Shuttle Orbiter on an insulated conducting tether. The satellite will be held at electric potentials up to 5000 volts positive with respect to the ambient plasma. Due to the passage of the conducting tether through the Earth's magnetic field, an electromagnetic field (EMF) will be created, driving electrons down the tether to the Orbiter, out through an electron gun into the ionosphere and back into the positive-biased satellite. The main problem addressed here is the current-voltage characteristics of the ionospheric interaction with the satellite. The first problem is that while the satellite will be capable of measuring charged particle flow to the surface at several locations, the detectors have a limited range of acceptance angle. The second problem is that the angle of incidence of the incoming electrons will have to be relative to the local normal. This will be important in order to predict the magnitude of the detectable current at each detector location so the detector gain can be pre-set to the correct range. The plasma sheath was analyzed mathematically, and subroutines were written to solve relevant finite element, Taylor-Vlasov, and Poisson equations.

  12. High-gain inverters based on WSe2 complementary field-effect transistors.

    PubMed

    Tosun, Mahmut; Chuang, Steven; Fang, Hui; Sachid, Angada B; Hettick, Mark; Lin, Yongjing; Zeng, Yuping; Javey, Ali

    2014-05-27

    In this work, the operation of n- and p-type field-effect transistors (FETs) on the same WSe2 flake is realized,and a complementary logic inverter is demonstrated. The p-FET is fabricated by contacting WSe2 with a high work function metal, Pt, which facilities hole injection at the source contact. The n-FET is realized by utilizing selective surface charge transfer doping with potassium to form degenerately doped n+ contacts for electron injection. An ON/OFF current ratio of >10(4) is achieved for both n- and p-FETs with similar ON current densities. A dc voltage gain of >12 is measured for the complementary WSe2 inverter. This work presents an important advance toward realization of complementary logic devices based on layered chalcogenide semiconductors for electronic applications. PMID:24684575

  13. High-Gain Avalanche Rushing amorphous Photoconductor (HARP) detector

    NASA Astrophysics Data System (ADS)

    Tanioka, K.

    2009-09-01

    We have been studying a very sensitive image sensor since the early 1980s. In 1985, the author found for the first time that an experimental pickup tube with an amorphous selenium photoconductive target exhibits high sensitivity with excellent picture quality because of a continuous and stable avalanche multiplication phenomenon. We named the pickup tube with an amorphous photoconductive layer operating in the avalanche-mode "HARP": High-gain Avalanche Rushing amorphous Photoconductor. A color camera equipped with the HARP pickup tubes has a maximum sensitivity of 11 lx at F8. This means that the HARP camera is about 100 times as sensitive as that of CCD camera for broadcasting. This ultrahigh-sensitivity HARP pickup tube is a powerful tool for reporting breaking news at night and other low-light conditions, the production of scientific programs, and numerous other applications, including medical diagnoses, biotech research, and nighttime surveillance. In addition, since the HARP target can convert X-rays into electrons directly, it should be possible to exploit this capability to produce X-ray imaging devices with unparalleled levels of resolution and sensitivity.

  14. Longevity of optically activated, high gain GaAs photoconductive semiconductor switches

    SciTech Connect

    Loubriel, G.M.; Zutavern, F.J.; Mar, A.

    1997-08-01

    The longevity of high gain GaAs photoconductive semiconductor switches (PCSS) has been extended to well over 10 million pulses by reducing the density of carriers at the semiconductor to metal interface. This was achieved by reducing the density in the vertical and lateral directions. The first was achieved by varying the spatial distribution of the trigger light thereby widening the current filaments that are characteristic of the high gain switches. The authors reduced the carrier density in the vertical direction by using ion implantation. These results were obtained for currents of about 10 A, current duration of 3.5 ns, and switched voltage of {approximately}2 kV. At currents of {approximately}70 A, the switches last for 0.6 million pulses. In order to improve the performance at high currents new processes such as deep diffusion and epitaxial growth of contacts are being pursued. To guide this effort the authors measured a carrier density of 6 x 10{sup 18} electrons (or holes)/cm{sup 3} in filaments that carry a current of 5 A.

  15. Mixed voltage VLSI design

    NASA Technical Reports Server (NTRS)

    Panwar, Ramesh; Rennels, David; Alkalaj, Leon

    1993-01-01

    A technique for minimizing the power dissipated in a Very Large Scale Integration (VLSI) chip by lowering the operating voltage without any significant penalty in the chip throughput even though low voltage operation results in slower circuits. Since the overall throughput of a VLSI chip depends on the speed of the critical path(s) in the chip, it may be possible to sustain the throughput rates attained at higher voltages by operating the circuits in the critical path(s) with a high voltage while operating the other circuits with a lower voltage to minimize the power dissipation. The interface between the gates which operate at different voltages is crucial for low power dissipation since the interface may possibly have high static current dissipation thus negating the gains of the low voltage operation. The design of a voltage level translator which does the interface between the low voltage and high voltage circuits without any significant static dissipation is presented. Then, the results of the mixed voltage design using a greedy algorithm on three chips for various operating voltages are presented.

  16. Response sensitivity and voltage gain of the rod- and cone-bipolar cell synapses in dark-adapted tiger salamander retina.

    PubMed

    Yang, X L; Wu, S M

    1997-11-01

    Response sensitivity and voltage gain of the rod- and cone-bipolar cell synapses in dark-adapted tiger salamander retina. J. Neurophysiol. 78: 2662-2673, 1997. Rods, cones, and bipolar cells were recorded in superfused, flat-mounted isolated retinas of the larval tiger salamander, Ambystoma tigrinum, under dark-adapted conditions. Voltage responses of 24 rods, 15 cones, and 41 bipolar cells in dark-adapted retinas to 500 nm light steps of various intensities were listed and fitted with hyperbolic functions, and their step sensitivities and relative sensitivities (log sigma) were estimated. In the linear response-intensity ranges, the step sensitivity of rods, SS(rod), is -1.0 mV photon-1 micron2 s or 0.034 mV Rh*-1 s rod and that of the cones, SS(cone), is approximately 0. 00146 mV photon-1 micron2 s or 0.000048 mV Rh*-1 s rod. The rod and cone responses were relatively homogenous with little variations in response amplitude and sensitivity. In contrast, bipolar cell responses were heterogenous with large variations in response amplitude and sensitivity. The maximum response amplitude of bipolar cells varied from 5 to 25 mV, and the relative response sensitivity (log sigma) varied >6 log units (-8.11 to -2.32). The step sensitivity of bipolar cells in the linear response-intensity range varied from 0.0000438 to 51.82 mV photon-1 micron2 s. Bipolar cells in dark-adapted tiger salamander retinas fell into two groups according to their relative sensitivities with very few cells falling in the intermediate light intensity region. The mixed bipolar cells (DBCM and HBCM) exhibited relative response sensitivity ranged from -8.11 to -5.54, and step sensitivity ranged from 1.22 to 51.82 mV photon-1 micron2 s. The cone-driven bipolar cells (DBCC and HBCC) exhibited relative response sensitivity ranged from -3.45 to -2.32, and step sensitivity ranged from 0.0000438 to 0. 00201 mV photon-1 micron2 sec. The chord voltage gain of the rod-DBCM or rod-HBCM synapses near the rod

  17. Ultra-low-voltage CMOS-based current bleeding mixer with high LO-RF isolation.

    PubMed

    Tan, Gim Heng; Sidek, Roslina Mohd; Ramiah, Harikrishnan; Chong, Wei Keat; Lioe, De Xing

    2014-01-01

    This journal presents an ultra-low-voltage current bleeding mixer with high LO-RF port-to-port isolation, implemented on 0.13 μm standard CMOS technology for ZigBee application. The architecture compliments a modified current bleeding topology, consisting of NMOS-based current bleeding transistor, PMOS-based switching stage, and integrated inductors achieving low-voltage operation and high LO-RF isolation. The mixer exhibits a conversion gain of 7.5 dB at the radio frequency (RF) of 2.4 GHz, an input third-order intercept point (IIP3) of 1 dBm, and a LO-RF isolation measured to 60 dB. The DC power consumption is 572 µW at supply voltage of 0.45 V, while consuming a chip area of 0.97 × 0.88 mm(2). PMID:25197694

  18. Magnetic shielding of Hall thrusters at high discharge voltages

    SciTech Connect

    Mikellides, Ioannis G. Hofer, Richard R.; Katz, Ira; Goebel, Dan M.

    2014-08-07

    A series of numerical simulations and experiments have been performed to assess the effectiveness of magnetic shielding in a Hall thruster operating in the discharge voltage range of 300–700 V (I{sub sp} ≈ 2000–2700 s) at 6 kW, and 800 V (I{sub sp} ≈ 3000) at 9 kW. At 6 kW, the magnetic field topology with which highly effective magnetic shielding was previously demonstrated at 300 V has been retained for all other discharge voltages; only the magnitude of the field has been changed to achieve optimum thruster performance. It is found that magnetic shielding remains highly effective for all discharge voltages studied. This is because the channel is long enough to allow hot electrons near the channel exit to cool significantly upon reaching the anode. Thus, despite the rise of the maximum electron temperature in the channel with discharge voltage, the electrons along the grazing lines of force remain cold enough to eliminate or reduce significantly parallel gradients of the plasma potential near the walls. Computed maximum erosion rates in the range of 300–700 V are found not to exceed 10{sup −2} mm/kh. Such rates are ∼3 orders of magnitude less than those observed in the unshielded version of the same thruster at 300 V. At 9 kW and 800 V, saturation of the magnetic circuit did not allow for precisely the same magnetic shielding topology as that employed during the 6-kW operation since this thruster was not designed to operate at this condition. Consequently, the maximum erosion rate at the inner wall is found to be ∼1 order of magnitude higher (∼10{sup −1} mm/kh) than that at 6 kW. At the outer wall, the ion energy is found to be below the sputtering yield threshold so no measurable erosion is expected.

  19. Test results of high-voltage, high-power, solid-state remote power controllers

    NASA Technical Reports Server (NTRS)

    Johnson, Yvette Binford; Kapustka, Robert E.

    1988-01-01

    This report discusses the results of testing high-voltage, high-power, solid-state remote power controllers (RPC) using RPCs designed and built by John C. Sturman at the Lewis Research Center, Cleveland, Ohio, and utilizing the Autonomously Managed Power Systems (AMPS) breadboard/test facility. These test results are used to determine usefulness of the RPCs for future applications in high-voltage direct-current space power.

  20. Disintegration of rocks based on magnetically isolated high voltage discharge.

    PubMed

    He, Mengbing; Jiang, Jinbo; Huang, Guoliang; Liu, Jun; Li, Chengzu

    2013-02-01

    Recently, a method utilizing pulsed power technology for disintegration of rocks arouses great interest of many researchers. In this paper, an improved method based on magnetic switch and the results shown that the uniform dielectrics like plastic can be broken down in water is presented, and the feasible mechanism explaining the breakdown of solid is proposed and proved experimentally. A high voltage pulse of 120 kV, rise time 0.2 μs was used to ignite the discharging channel in solids. When the plasma channel is formed in the solid, the resistance of the channel is quiet small; even if a relatively low voltage is applied on the channel on this occasion, it will produce high current to heat the plasma channel rapidly, and eventually disintegrate the solids. The feasibility of promising industrial application in the drilling and demolition of natural and artificial solid materials by the method we presented is verified by the experiment result in the paper. PMID:23464235

  1. Understanding High Voltage Vacuum Insulators for Microsecond Pulses

    SciTech Connect

    J.B., J; D.A., G; T.L., H; E.J., L; R.D., S; L.K., T; G.E., V

    2007-08-15

    High voltage insulation is one of the main areas of pulsed power research and development since the surface of an insulator exposed to vacuum can fail electrically at an applied field more than an order or magnitude below the bulk dielectric strength of the insulator. This is troublesome for applications where high voltage conditioning of the insulator and electrodes is not practical and where relatively long pulses, on the order of several microseconds, are required. Here we give a summary of our approach to modeling and simulation efforts and experimental investigations for understanding flashover mechanism. The computational work is comprised of both filed and particle-in-cell modeling with state-of-the-art commercial codes. Experiments were performed in using an available 100-kV, 10-{micro}s pulse generator and vacuum chamber. The initial experiments were done with polyethylene insulator material in the shape of a truncated cone cut at +45{sup o} angle between flat electrodes with a gap of 1.0 cm. The insulator was sized so there were no flashovers or breakdowns under nominal operating conditions. Insulator flashover or gap closure was induced by introducing a plasma source, a tuft of velvet, in proximity to the insulator or electrode.

  2. Research of position measuring system for high voltage switchgear

    NASA Astrophysics Data System (ADS)

    Ji, Yilin; Qian, Zheng; Pan, Kaikai

    2016-01-01

    The contact position's accurate measurement is the key part of the realization of high voltage switchgear's on-line monitoring. Based on the position measurement, the speed and trip of the switchgear could also be obtained. Thus, the health level and the operation status can be evaluated. The insulation condition and the fault symptom can also be identified. In this paper, the on-line measuring principle for the contact position is presented at first. The indirect measuring method is adopted, and the incremental photoelectric encoder is utilized to realize the measurement of angular displacement. The position could be calculated by establishing the relationship between the angular displacement and the contact's linear displacement. After that, the technical difficulties of the on-line measuring system are demonstrated. The selection of encoder, the difficult parts of hardware design and software design are all discussed deeply. The lab test of the whole measuring system is processed at last, and the measuring results are satisfactory. It will provide powerful support for the realization of on-line monitoring equipment of the high voltage switchgear.

  3. 30 CFR 77.804 - High-voltage trailing cables; minimum design requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-voltage trailing cables; minimum design... LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.804 High-voltage trailing...

  4. 30 CFR 77.804 - High-voltage trailing cables; minimum design requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false High-voltage trailing cables; minimum design... LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.804 High-voltage trailing...

  5. 30 CFR 77.804 - High-voltage trailing cables; minimum design requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false High-voltage trailing cables; minimum design... LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.804 High-voltage trailing...

  6. 30 CFR 77.804 - High-voltage trailing cables; minimum design requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false High-voltage trailing cables; minimum design... LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.804 High-voltage trailing...

  7. 30 CFR 75.511 - Low-, medium-, or high-voltage distribution circuits and equipment; repair.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Low-, medium-, or high-voltage distribution... Electrical Equipment-General § 75.511 Low-, medium-, or high-voltage distribution circuits and equipment; repair. No electrical work shall be performed on low-, medium-, or high-voltage distribution circuits...

  8. 30 CFR 75.810 - High-voltage trailing cables; splices.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false High-voltage trailing cables; splices. 75.810... § 75.810 High-voltage trailing cables; splices. In the case of high-voltage cables used as trailing cables, temporary splices shall not be used and all permanent splices shall be made in accordance...

  9. 30 CFR 75.810 - High-voltage trailing cables; splices.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false High-voltage trailing cables; splices. 75.810... § 75.810 High-voltage trailing cables; splices. In the case of high-voltage cables used as trailing cables, temporary splices shall not be used and all permanent splices shall be made in accordance...

  10. 30 CFR 75.810 - High-voltage trailing cables; splices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-voltage trailing cables; splices. 75.810... § 75.810 High-voltage trailing cables; splices. In the case of high-voltage cables used as trailing cables, temporary splices shall not be used and all permanent splices shall be made in accordance...

  11. 30 CFR 75.810 - High-voltage trailing cables; splices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false High-voltage trailing cables; splices. 75.810... § 75.810 High-voltage trailing cables; splices. In the case of high-voltage cables used as trailing cables, temporary splices shall not be used and all permanent splices shall be made in accordance...

  12. 30 CFR 75.812 - Movement of high-voltage power centers and portable transformers; permit.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Movement of high-voltage power centers and... Underground High-Voltage Distribution § 75.812 Movement of high-voltage power centers and portable transformers; permit. Power centers and portable transformers shall be deenergized before they are moved...

  13. 30 CFR 75.812-2 - High-voltage power centers and transformers; record of examination.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false High-voltage power centers and transformers; record of examination. 75.812-2 Section 75.812-2 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... High-Voltage Distribution § 75.812-2 High-voltage power centers and transformers; record of...

  14. 30 CFR 75.812-2 - High-voltage power centers and transformers; record of examination.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-voltage power centers and transformers; record of examination. 75.812-2 Section 75.812-2 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... High-Voltage Distribution § 75.812-2 High-voltage power centers and transformers; record of...

  15. 30 CFR 75.812 - Movement of high-voltage power centers and portable transformers; permit.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Movement of high-voltage power centers and... Underground High-Voltage Distribution § 75.812 Movement of high-voltage power centers and portable transformers; permit. Power centers and portable transformers shall be deenergized before they are moved...

  16. 30 CFR 75.812-2 - High-voltage power centers and transformers; record of examination.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false High-voltage power centers and transformers; record of examination. 75.812-2 Section 75.812-2 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... High-Voltage Distribution § 75.812-2 High-voltage power centers and transformers; record of...

  17. 30 CFR 75.812-2 - High-voltage power centers and transformers; record of examination.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false High-voltage power centers and transformers; record of examination. 75.812-2 Section 75.812-2 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... High-Voltage Distribution § 75.812-2 High-voltage power centers and transformers; record of...

  18. 30 CFR 75.812-2 - High-voltage power centers and transformers; record of examination.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false High-voltage power centers and transformers; record of examination. 75.812-2 Section 75.812-2 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... High-Voltage Distribution § 75.812-2 High-voltage power centers and transformers; record of...

  19. 30 CFR 75.812 - Movement of high-voltage power centers and portable transformers; permit.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Movement of high-voltage power centers and... Underground High-Voltage Distribution § 75.812 Movement of high-voltage power centers and portable transformers; permit. Power centers and portable transformers shall be deenergized before they are moved...

  20. 30 CFR 75.812 - Movement of high-voltage power centers and portable transformers; permit.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Movement of high-voltage power centers and... Underground High-Voltage Distribution § 75.812 Movement of high-voltage power centers and portable transformers; permit. Power centers and portable transformers shall be deenergized before they are moved...

  1. 30 CFR 75.812 - Movement of high-voltage power centers and portable transformers; permit.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Movement of high-voltage power centers and... Underground High-Voltage Distribution § 75.812 Movement of high-voltage power centers and portable transformers; permit. Power centers and portable transformers shall be deenergized before they are moved...

  2. 30 CFR 75.800 - High-voltage circuits; circuit breakers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-voltage circuits; circuit breakers. 75.800... § 75.800 High-voltage circuits; circuit breakers. High-voltage circuits entering the underground area of any coal mine shall be protected by suitable circuit breakers of adequate interrupting...

  3. 30 CFR 75.705-1 - Work on high-voltage lines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Work on high-voltage lines. 75.705-1 Section 75... AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Grounding § 75.705-1 Work on high-voltage lines. (a) Section 75.705 specifically prohibits work on energized high-voltage lines underground;...

  4. 30 CFR 77.704-1 - Work on high-voltage lines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Work on high-voltage lines. 77.704-1 Section 77... AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Grounding § 77.704-1 Work on high-voltage lines. (a) No high-voltage line shall be regarded...

  5. 30 CFR 75.705-1 - Work on high-voltage lines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Work on high-voltage lines. 75.705-1 Section 75... AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Grounding § 75.705-1 Work on high-voltage lines. (a) Section 75.705 specifically prohibits work on energized high-voltage lines underground;...

  6. 30 CFR 75.705-1 - Work on high-voltage lines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Work on high-voltage lines. 75.705-1 Section 75... AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Grounding § 75.705-1 Work on high-voltage lines. (a) Section 75.705 specifically prohibits work on energized high-voltage lines underground;...

  7. 30 CFR 77.704-1 - Work on high-voltage lines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Work on high-voltage lines. 77.704-1 Section 77... AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Grounding § 77.704-1 Work on high-voltage lines. (a) No high-voltage line shall be regarded...

  8. 30 CFR 77.704-1 - Work on high-voltage lines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Work on high-voltage lines. 77.704-1 Section 77... AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Grounding § 77.704-1 Work on high-voltage lines. (a) No high-voltage line shall be regarded...

  9. 30 CFR 75.705-2 - Repairs to energized surface high-voltage lines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Repairs to energized surface high-voltage lines... Repairs to energized surface high-voltage lines. An energized high-voltage surface line may be repaired... description of the nature and location of the damage or defect to be repaired; (2) The general plan to...

  10. 30 CFR 75.705-2 - Repairs to energized surface high-voltage lines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Repairs to energized surface high-voltage lines... Repairs to energized surface high-voltage lines. An energized high-voltage surface line may be repaired... description of the nature and location of the damage or defect to be repaired; (2) The general plan to...

  11. 30 CFR 75.705-2 - Repairs to energized surface high-voltage lines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Repairs to energized surface high-voltage lines... Repairs to energized surface high-voltage lines. An energized high-voltage surface line may be repaired... description of the nature and location of the damage or defect to be repaired; (2) The general plan to...

  12. 30 CFR 75.705-2 - Repairs to energized surface high-voltage lines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Repairs to energized surface high-voltage lines... Repairs to energized surface high-voltage lines. An energized high-voltage surface line may be repaired... description of the nature and location of the damage or defect to be repaired; (2) The general plan to...

  13. 30 CFR 75.705-2 - Repairs to energized surface high-voltage lines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Repairs to energized surface high-voltage lines... Repairs to energized surface high-voltage lines. An energized high-voltage surface line may be repaired... description of the nature and location of the damage or defect to be repaired; (2) The general plan to...

  14. 30 CFR 75.511 - Low-, medium-, or high-voltage distribution circuits and equipment; repair.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Low-, medium-, or high-voltage distribution... Electrical Equipment-General § 75.511 Low-, medium-, or high-voltage distribution circuits and equipment; repair. No electrical work shall be performed on low-, medium-, or high-voltage distribution circuits...

  15. Compact high voltage, high peak power, high frequency transformer for converter type modulator applications.

    PubMed

    Reghu, T; Mandloi, V; Shrivastava, Purushottam

    2016-04-01

    The design and development of a compact high voltage, high peak power, high frequency transformer for a converter type modulator of klystron amplifiers is presented. The transformer has been designed to operate at a frequency of 20 kHz and at a flux swing of ±0.6 T. Iron (Fe) based nanocrystalline material has been selected as a core for the construction of the transformer. The transformer employs a specially designed solid Teflon bobbin having 120 kV insulation for winding the high voltage secondary windings. The flux swing of the core has been experimentally found by plotting the hysteresis loop at actual operating conditions. Based on the design, a prototype transformer has been built which is per se a unique combination of high voltage, high frequency, and peak power specifications. The transformer was able to provide 58 kV (pk-pk) at the secondary with a peak power handling capability of 700 kVA. The transformation ratio was 1:17. The performance of the transformer is also presented and discussed. PMID:27131709

  16. Compact high voltage, high peak power, high frequency transformer for converter type modulator applications

    NASA Astrophysics Data System (ADS)

    Reghu, T.; Mandloi, V.; Shrivastava, Purushottam

    2016-04-01

    The design and development of a compact high voltage, high peak power, high frequency transformer for a converter type modulator of klystron amplifiers is presented. The transformer has been designed to operate at a frequency of 20 kHz and at a flux swing of ±0.6 T. Iron (Fe) based nanocrystalline material has been selected as a core for the construction of the transformer. The transformer employs a specially designed solid Teflon bobbin having 120 kV insulation for winding the high voltage secondary windings. The flux swing of the core has been experimentally found by plotting the hysteresis loop at actual operating conditions. Based on the design, a prototype transformer has been built which is per se a unique combination of high voltage, high frequency, and peak power specifications. The transformer was able to provide 58 kV (pk-pk) at the secondary with a peak power handling capability of 700 kVA. The transformation ratio was 1:17. The performance of the transformer is also presented and discussed.

  17. Integration Test of the High Voltage Hall Accelerator System Components

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Haag, Thomas; Huang, Wensheng; Pinero, Luis; Peterson, Todd; Dankanich, John

    2013-01-01

    NASA Glenn Research Center is developing a 4 kilowatt-class Hall propulsion system for implementation in NASA science missions. NASA science mission performance analysis was completed using the latest high voltage Hall accelerator (HiVHAc) and Aerojet-Rocketdyne's state-of-the-art BPT-4000 Hall thruster performance curves. Mission analysis results indicated that the HiVHAc thruster out performs the BPT-4000 thruster for all but one of the missions studied. Tests of the HiVHAc system major components were performed. Performance evaluation of the HiVHAc thruster at NASA Glenn's vacuum facility 5 indicated that thruster performance was lower than performance levels attained during tests in vacuum facility 12 due to the lower background pressures attained during vacuum facility 5 tests when compared to vacuum facility 12. Voltage-Current characterization of the HiVHAc thruster in vacuum facility 5 showed that the HiVHAc thruster can operate stably for a wide range of anode flow rates for discharge voltages between 250 and 600 volts. A Colorado Power Electronics enhanced brassboard power processing unit was tested in vacuum for 1,500 hours and the unit demonstrated discharge module efficiency of 96.3% at 3.9 kilowatts and 650 volts. Stand-alone open and closed loop tests of a VACCO TRL 6 xenon flow control module were also performed. An integrated test of the HiVHAc thruster, brassboard power processing unit, and xenon flow control module was performed and confirmed that integrated operation of the HiVHAc system major components. Future plans include continuing the maturation of the HiVHAc system major components and the performance of a single-string integration test.

  18. Low Power, High Voltage Power Supply with Fast Rise/Fall Time

    NASA Technical Reports Server (NTRS)

    Bearden, Douglas B. (Inventor)

    2007-01-01

    A low power, high voltage power supply system includes a high voltage power supply stage and a preregulator for programming the power supply stage so as to produce an output voltage which is a predetermined fraction of a desired voltage level. The power supply stage includes a high voltage, voltage doubler stage connected to receive the output voltage from the preregulator and for, when activated, providing amplification of the output voltage to the desired voltage level. A first feedback loop is connected between the output of the preregulator and an input of the preregulator while a second feedback loop is connected between the output of the power supply stage and the input of the preregulator.

  19. Low power, high voltage power supply with fast rise/fall time

    NASA Technical Reports Server (NTRS)

    Bearden, Douglas B. (Inventor)

    2007-01-01

    A low power, high voltage power supply system includes a high voltage power supply stage and a preregulator for programming the power supply stage so as to produce an output voltage which is a predetermined fraction of a desired voltage level. The power supply stage includes a high voltage, voltage doubler stage connected to receive the output voltage from the preregulator and for, when activated, providing amplification of the output voltage to the desired voltage level. A first feedback loop is connected between the output of the preregulator and an input of the preregulator while a second feedback loop is connected between the output of the power supply stage and the input of the preregulator.

  20. A High Voltage Ratio and Low Ripple Interleaved DC-DC Converter for Fuel Cell Applications

    PubMed Central

    Chang, Long-Yi; Chao, Kuei-Hsiang; Chang, Tsang-Chih

    2012-01-01

    This paper proposes a high voltage ratio and low ripple interleaved boost DC-DC converter, which can be used to reduce the output voltage ripple. This converter transfers the low DC voltage of fuel cell to high DC voltage in DC link. The structure of the converter is parallel with two voltage-doubler boost converters by interleaving their output voltages to reduce the voltage ripple ratio. Besides, it can lower the current stress for the switches and inductors in the system. First, the PSIM software was used to establish a proton exchange membrane fuel cell and a converter circuit model. The simulated and measured results of the fuel cell output characteristic curve are made to verify the correctness of the established simulation model. In addition, some experimental results are made to validate the effectiveness in improving output voltage ripple of the proposed high voltage ratio interleaved boost DC-DC converters. PMID:23365536

  1. A high voltage ratio and low ripple interleaved DC-DC converter for fuel cell applications.

    PubMed

    Chang, Long-Yi; Chao, Kuei-Hsiang; Chang, Tsang-Chih

    2012-01-01

    This paper proposes a high voltage ratio and low ripple interleaved boost DC-DC converter, which can be used to reduce the output voltage ripple. This converter transfers the low DC voltage of fuel cell to high DC voltage in DC link. The structure of the converter is parallel with two voltage-doubler boost converters by interleaving their output voltages to reduce the voltage ripple ratio. Besides, it can lower the current stress for the switches and inductors in the system. First, the PSIM software was used to establish a proton exchange membrane fuel cell and a converter circuit model. The simulated and measured results of the fuel cell output characteristic curve are made to verify the correctness of the established simulation model. In addition, some experimental results are made to validate the effectiveness in improving output voltage ripple of the proposed high voltage ratio interleaved boost DC-DC converters. PMID:23365536

  2. Design of a high-power, high-gain, 2nd harmonic, 22.848 GHz gyroklystron

    NASA Astrophysics Data System (ADS)

    Veale, M.; Purohit, P.; Lawson, W.

    2013-08-01

    In this paper we consider the design of a four-cavity, high-gain K-band gyroklystron experiment for high gradient structure testing. The frequency doubling gyroklystron utilizes a beam voltage of 500 kV and a beam current of 200 A from a magnetron injection gun (MIG) originally designed for a lower-frequency device. The microwave circuit features input and gain cavities in the circular TE011 mode and penultimate and output cavities that operate at the second harmonic in the TE021 mode. We investigate the MIG performance and study the behavior of the circuit for different values of perpendicular to parallel velocity ratio (α = V⊥ / Vz). This microwave tube is expected to be able to produce at least 20 MW of power in 1μs pulses at a repetition rate of at least 120 Hz. A maximum efficiency of 26% and a large signal gain of 58 dB under zero-drive stable conditions were simulated for a velocity ratio equal to 1.35.

  3. Design of a high-power, high-gain, 2nd harmonic, 22.848 GHz gyroklystron

    SciTech Connect

    Veale, M.; Purohit, P.; Lawson, W.

    2013-08-15

    In this paper we consider the design of a four-cavity, high-gain K-band gyroklystron experiment for high gradient structure testing. The frequency doubling gyroklystron utilizes a beam voltage of 500 kV and a beam current of 200 A from a magnetron injection gun (MIG) originally designed for a lower-frequency device. The microwave circuit features input and gain cavities in the circular TE{sub 011} mode and penultimate and output cavities that operate at the second harmonic in the TE{sub 021} mode. We investigate the MIG performance and study the behavior of the circuit for different values of perpendicular to parallel velocity ratio (α= V{sub ⊥}/ V{sub z}). This microwave tube is expected to be able to produce at least 20 MW of power in 1μs pulses at a repetition rate of at least 120 Hz. A maximum efficiency of 26% and a large signal gain of 58 dB under zero-drive stable conditions were simulated for a velocity ratio equal to 1.35.

  4. High-gain nonlinear observer for simple genetic regulation process

    NASA Astrophysics Data System (ADS)

    Torres, L. A.; Ibarra-Junquera, V.; Escalante-Minakata, P.; Rosu, H. C.

    2007-07-01

    High-gain nonlinear observers occur in the nonlinear automatic control theory and are in standard usage in chemical engineering processes. We apply such a type of analysis in the context of a very simple one-gene regulation circuit. In general, an observer combines an analytical differential-equation-based model with partial measurement of the system in order to estimate the non-measured state variables. We use one of the simplest observers, that of Gauthier et al., which is a copy of the original system plus a correction term which is easy to calculate. For the illustration of this procedure, we employ a biological model, recently adapted from Goodwin's old book by De Jong, in which one plays with the dynamics of the concentrations of the messenger RNA coding for a given protein, the protein itself, and a single metabolite. Using the observer instead of the metabolite, it is possible to rebuild the non-measured concentrations of the mRNA and the protein.

  5. Fast ignition integrated experiments and high-gain point design

    NASA Astrophysics Data System (ADS)

    Shiraga, H.; Nagatomo, H.; Theobald, W.; Solodov, A. A.; Tabak, M.

    2014-05-01

    Integrated fast ignition experiments were performed at ILE, Osaka, and LLE, Rochester, in which a nanosecond driver laser implodes a deuterated plastic shell in front of the tip of a hollow metal cone and an intense ultrashort-pulse laser is injected through the cone to heat the compressed plasma. Based on the initial successful results of fast electron heating of cone-in-shell targets, large-energy short-pulse laser beam lines were constructed and became operational: OMEGA-EP at Rochester and LFEX at Osaka. Neutron enhancement due to heating with a ˜kJ short-pulse laser has been demonstrated in the integrated experiments at Osaka and Rochester. The neutron yields are being analysed by comparing the experimental results with simulations. Details of the fast electron beam transport and the electron energy deposition in the imploded fuel plasma are complicated and further studies are imperative. The hydrodynamics of the implosion was studied including the interaction of the imploded core plasma with the cone tip. Theory and simulation studies are presented on the hydrodynamics of a high-gain target for a fast ignition point design.

  6. Fast ignition integrated experiments and high-gain point design

    SciTech Connect

    Shiraga, H.; Nagatomo, H.; Theobald, W.; Solodov, A. A.; Tabak, M.

    2014-04-17

    Here, integrated fast ignition experiments were performed at ILE, Osaka, and LLE, Rochester, in which a nanosecond driver laser implodes a deuterated plastic shell in front of the tip of a hollow metal cone and an intense ultrashort-pulse laser is injected through the cone to heat the compressed plasma. Based on the initial successful results of fast electron heating of cone-in-shell targets, large-energy short-pulse laser beam lines were constructed and became operational: OMEGA-EP at Rochester and LFEX at Osaka. Neutron enhancement due to heating with a ~kJ short-pulse laser has been demonstrated in the integrated experiments at Osaka and Rochester. The neutron yields are being analyzed by comparing the experimental results with simulations. Details of the fast electron beam transport and the electron energy deposition in the imploded fuel plasma are complicated and further studies are imperative. The hydrodynamics of the implosion was studied including the interaction of the imploded core plasma with the cone tip. Theory and simulation studies are presented on the hydrodynamics of a high-gain target for a fast ignition point design.

  7. High-gain reverse guide field free electron lasers

    SciTech Connect

    Tsui, K.H.

    1995-10-01

    Electron beam trajectories under circularly polarized external wigglers in free electron laser devices with axial guide fields are reconsidered by introducing the self-fields of the electron beam. The competition between the self-fields and the wiggler field plus the action of the guide field are not only responsible for the known positive guide field singularity, but also the new reverse guide field singularity. The physics of the new reverse field singularity relies on the fact that an azimuthal magnetic field uniform in {ital z} is able to generate steady-state helical beam orbits just as if it were a transverse wiggler. According to this theory, the handness of the circularly polarized microwave should depend on the guide field configuration. High-gain strong pump equations coupled to these trajectories are used to account for the Massachusetts Institute of Technology reverse guide field results [Phys. Rev. Lett. {bold 67}, 3082 (1991)]. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  8. Propylene based systems for high voltage cable insulation applications

    NASA Astrophysics Data System (ADS)

    Hosier, I. L.; Cozzarini, L.; Vaughan, A. S.; Swingler, S. G.

    2009-08-01

    Crosslinked polyethylene (XLPE) remains the material of choice for extruded high voltage cables, possessing excellent thermo-mechanical and electrical properties. However, it is not easily recyclable posing questions as to its long term sustainability. Whilst both polyethylene and polypropylene are widely recycled and provide excellent dielectric properties, polypropylene has significantly better mechanical integrity at high temperatures than polyethylene. However, while isotactic polypropylene is too stiff at room temperature for incorporation into a cable system, previous studies by the authors have indicated that this limitation can be overcome by using a propylene-ethylene copolymer. Whilst these previous studies considered unrelated systems, the current study aims to quantify the usefulness of a series of related random propylene-ethylene co-polymers and assesses their potential for replacing XLPE.

  9. High-voltage scanning ion microscope: Beam optics and design

    NASA Astrophysics Data System (ADS)

    Magilin, D.; Ponomarev, A.; Rebrov, V.; Ponomarov, A.

    2015-05-01

    This article is devoted to the conceptual design of a compact high-voltage scanning ion microscope (HVSIM). In an HVSIM design, the ion optical system is based on a high-brightness ion source. Specifically, the ion optical system is divided into two components: an ion injector and a probe-forming system (PFS) that consists of an accelerating tube and a multiplet of quadrupole lenses. The crossover is formed and controlled by the injector, which acts as an object collimator, and is focused on the image plane by the PFS. The ion microprobe has a size of 0.1 μm and an energy of 2 MeV. When the influence of the chromatic and third-order aberrations is theoretically taken into account, the HVSIM forms an ion microprobe.

  10. A high voltage electrical burn of lung parenchyma.

    PubMed

    Masanès, M J; Gourbière, E; Prudent, J; Lioret, N; Febvre, M; Prévot, S; Lebeau, B

    2000-11-01

    High voltage electrical trauma may cause severe visceral injuries. We report a case of direct electrical injury to the lung parenchyma, without evidence of any thoracic wall contact injury, in an electrician who sustained a 20 kV-electrical shock while working in a substation cubicle. The diagnosis of a true electrical burn of the left lower lobe was suggested early on by imaging and then confirmed by surgical exploration, histological findings and the significant improvement of the patient's condition following resection of the infarcted lobe. All possible causes of bronchial and pulmonary pathologies in such a context were ruled out. The fatal outcome of two previous similar cases and the generally high mortality of any electrical visceral injury support early surgical management as the only rational life-saving treatment. Current pathophysiological knowledge substantiates the theory of an isolated visceral injury located far away from the contact wounds. However, the pathogenesis of such severe injuries is not entirely understood. PMID:10925192

  11. High-voltage atmospheric breakdown across intervening rutile dielectrics.

    SciTech Connect

    Williamson, Kenneth Martin; Simpson, Sean; Coats, Rebecca Sue; Jorgenson, Roy Eberhardt; Hjalmarson, Harold Paul; Pasik, Michael Francis

    2013-09-01

    This report documents work conducted in FY13 on electrical discharge experiments performed to develop predictive computational models of the fundamental processes of surface breakdown in the vicinity of high-permittivity material interfaces. Further, experiments were conducted to determine if free carrier electrons could be excited into the conduction band thus lowering the effective breakdown voltage when UV photons (4.66 eV) from a high energy pulsed laser were incident on the rutile sample. This report documents the numerical approach, the experimental setup, and summarizes the data and simulations. Lastly, it describes the path forward and challenges that must be overcome in order to improve future experiments for characterizing the breakdown behavior for rutile.

  12. High Voltage Dielectrophoretic and Magnetophoretic Hybrid Integrated Circuit / Microfluidic Chip

    PubMed Central

    Issadore, David; Franke, Thomas; Brown, Keith A.; Hunt, Thomas P.; Westervelt, Robert M.

    2010-01-01

    A hybrid integrated circuit (IC) / microfluidic chip is presented that independently and simultaneously traps and moves microscopic objects suspended in fluid using both electric and magnetic fields. This hybrid chip controls the location of dielectric objects, such as living cells and drops of fluid, on a 60 × 61 array of pixels that are 30 × 38 μm2 in size, each of which can be individually addressed with a 50 V peak-to-peak, DC to 10 MHz radio frequency voltage. These high voltage pixels produce electric fields above the chip’s surface with a magnitude , resulting in strong dielectrophoresis (DEP) forces . Underneath the array of DEP pixels there is a magnetic matrix that consists of two perpendicular sets of 60 metal wires running across the chip. Each wire can be sourced with 120 mA to trap and move magnetically susceptible objects using magnetophoresis (MP). The DEP pixel array and magnetic matrix can be used simultaneously to apply forces to microscopic objects, such as living cells or lipid vesicles, that are tagged with magnetic nanoparticles. The capabilities of the hybrid IC / microfluidic chip demonstrated in this paper provide important building blocks for a platform for biological and chemical applications. PMID:20625468

  13. A new class of high force, low-voltage, compliant actuation system

    SciTech Connect

    RODGERS,M. STEVEN; KOTA,SRIDHAR; HETRICK,JOEL; LI,ZHE; JENSEN,BRIAN D.; KRYGOWSKI,THOMAS W.; MILLER,SAMUEL L.; BARNES,STEPHEN MATTHEW; BURG,MICHAEL STANLEY

    2000-04-10

    Although many actuators employing electrostatic comb drives have been demonstrated in a laboratory environment, widespread acceptance in mass produced microelectromechanical systems (MEMS) may be limited due to issues associated with low drive force, large real estate demands, high operating voltages, and reliability concerns due to stiction. On the other hand, comb drives require very low drive currents, offer predictable response, and are highly compatible with the fabrication technology. The expand the application space and facilitate the widespread deployment of self-actuated MEMS, a new class of advanced actuation systems has been developed that maintains the highly desirable aspects of existing components, while significantly diminishing the issues that could impede large scale acceptance. In this paper, the authors will present low-voltage electrostatic actuators that offer a dramatic increase in force over conventional comb drive designs. In addition, these actuators consume only a small fraction of the chip area previously used, yielding significant gains in power density. To increase the stroke length of these novel electrostatic actuators, the authors have developed highly efficient compliant stroke amplifiers. The coupling of compact, high-force actuators with fully compliant displacement multipliers sets a new paradigm for highly integrated microelectromechanical systems.

  14. Piezoelectric transformer and modular connections for high power and high voltage power supplies

    NASA Technical Reports Server (NTRS)

    Vazquez Carazo, Alfredo (Inventor)

    2006-01-01

    A modular design for combining piezoelectric transformers is provided for high voltage and high power conversion applications. The input portions of individual piezoelectric transformers are driven for a single power supply. This created the vibration and the conversion of electrical to electrical energy from the input to the output of the transformers. The output portions of the single piezoelectric transformers are combining in series and/or parallel to provide multiple outputs having different rating of voltage and current.

  15. Understanding and Improving High Voltage Vacuum Insulators for Microsecond Pulses

    SciTech Connect

    Javedani, J B; Goerz, D A; Houck, T L; Lauer, E J; Speer, R D; Tully, L K; Vogtlin, G E; White, A D

    2007-03-05

    High voltage insulation is one of the main areas of pulsed power research and development, and dielectric breakdown is usually the limiting factor in attaining the highest possible performance in pulsed power devices. For many applications the delivery of pulsed power into a vacuum region is the most critical aspect of operation. The surface of an insulator exposed to vacuum can fail electrically at an applied field more than an order or magnitude below the bulk dielectric strength of the insulator. This mode of breakdown, called surface flashover, imposes serious limitations on the power flow into a vacuum region. This is especially troublesome for applications where high voltage conditioning of the insulator and electrodes is not practical and for applications where relatively long pulses, on the order of several microseconds, are required. The goal of this project is to establish a sound fundamental understanding of the mechanisms that lead to surface flashover, and then evaluate the most promising techniques to improve vacuum insulators and enable high voltage operation at stress levels near the intrinsic bulk breakdown limits of the material. The approach we proposed and followed was to develop this understanding through a combination of theoretical and computation methods coupled with experiments to validate and quantify expected behaviors. In this report we summarize our modeling and simulation efforts, theoretical studies, and experimental investigations. The computational work began by exploring the limits of commercially available codes and demonstrating methods to examine field enhancements and defect mechanisms at microscopic levels. Plasma simulations with particle codes used in conjunction with circuit models of the experimental apparatus enabled comparisons with experimental measurements. The large scale plasma (LSP) particle-in-cell (PIC) code was run on multiprocessor platforms and used to simulate expanding plasma conditions in vacuum gap regions

  16. High-Voltage Pulsed Current Electrical Stimulation in Wound Treatment

    PubMed Central

    Polak, Anna; Franek, Andrzej; Taradaj, Jakub

    2014-01-01

    Significance: A range of studies point to the efficacy of electrical stimulation (ES) in wound treatment, but the methodology of its application has not been determined to date. This article provides a critical review of the results of clinical trials published by researchers using high-voltage pulsed current (HVPC) to treat chronic wounds. In describing the methodology of the trials, the article gives special attention to electric stimulus parameters, the frequency of procedures and total treatment duration. Recent Advances: HVPC is a monophasic pulsed electric current that consists of double-peaked impulses (5–200 μs), at very high peak-current amplitude (2–2.5 A), and high voltage (up to 500 V), at a frequency of 1–125 pulses per second. HVPC can activate “skin battery” and cellular galvanotaxis, and improves blood flow and capillary density. Critical Issues: HVPC efficacy was evaluated in conservatively treated patients with diabetic foot, venous leg and pressure ulcers (PUs), and in some patients with surgically treated venous insufficiency. Future Directions: The efficacy of HVPC as one of several biophysical energies promoting venous leg ulcer (VLU) and PU healing has been confirmed. Additional studies are needed to investigate its effect on the healing of other types of soft tissue defects. Other areas that require more research include the identification of the therapeutic effect of HVPC on infected wounds, the determination of the efficacy of cathodal versus anodal stimulation, and the minimal daily/weekly duration of HVPC required to ensure optimal promotion of wound healing. PMID:24761351

  17. Experimental Study of Arcing on High-voltage Solar Arrays

    NASA Technical Reports Server (NTRS)

    Vayner, Boris; Galofaro, Joel; Ferguson, Dale

    2005-01-01

    The main obstacle to the implementation of a high-voltage solar array in space is arcing on the conductor-dielectric junctions exposed to the surrounding plasma. One obvious solution to this problem would be the installation of fully encapsulated solar arrays which were not having exposed conductors at all. However, there are many technological difficulties that must be overcome before the employment of fully encapsulated arrays will turn into reality. An alternative solution to raise arc threshold by modifications of conventionally designed solar arrays looks more appealing, at least in the nearest future. A comprehensive study of arc inception mechanism [1-4] suggests that such modifications can be done in the following directions: i) to insulate conductor-dielectric junction from a plasma environment (wrapthrough interconnects); ii) to change a coverglass geometry (overhang); iii) to increase a coverglass thickness; iiii) to outgas areas of conductor-dielectric junctions. The operation of high-voltage array in LEO produces also the parasitic current power drain on the electrical system. Moreover, the current collected from space plasma by solar arrays determines the spacecraft floating potential that is very important for the design of spacecraft and its scientific apparatus. In order to verify the validity of suggested modifications and to measure current collection five different solar array samples have been tested in large vacuum chamber. Each sample (36 silicon based cells) consists of three strings containing 12 cells connected in series. Thus, arc rate and current collection can be measured on every string independently, or on a whole sample when strings are connected in parallel. The heater installed in the chamber provides the possibility to test samples under temperature as high as 80 C that simulates the LEO operational temperature. The experimental setup is described below.

  18. High-Voltage Pulsed Current Electrical Stimulation in Wound Treatment.

    PubMed

    Polak, Anna; Franek, Andrzej; Taradaj, Jakub

    2014-02-01

    Significance: A range of studies point to the efficacy of electrical stimulation (ES) in wound treatment, but the methodology of its application has not been determined to date. This article provides a critical review of the results of clinical trials published by researchers using high-voltage pulsed current (HVPC) to treat chronic wounds. In describing the methodology of the trials, the article gives special attention to electric stimulus parameters, the frequency of procedures and total treatment duration. Recent Advances: HVPC is a monophasic pulsed electric current that consists of double-peaked impulses (5-200 μs), at very high peak-current amplitude (2-2.5 A), and high voltage (up to 500 V), at a frequency of 1-125 pulses per second. HVPC can activate "skin battery" and cellular galvanotaxis, and improves blood flow and capillary density. Critical Issues: HVPC efficacy was evaluated in conservatively treated patients with diabetic foot, venous leg and pressure ulcers (PUs), and in some patients with surgically treated venous insufficiency. Future Directions: The efficacy of HVPC as one of several biophysical energies promoting venous leg ulcer (VLU) and PU healing has been confirmed. Additional studies are needed to investigate its effect on the healing of other types of soft tissue defects. Other areas that require more research include the identification of the therapeutic effect of HVPC on infected wounds, the determination of the efficacy of cathodal versus anodal stimulation, and the minimal daily/weekly duration of HVPC required to ensure optimal promotion of wound healing. PMID:24761351

  19. Hybrid-PIC Modeling of a High-Voltage, High-Specific-Impulse Hall Thruster

    NASA Technical Reports Server (NTRS)

    Smith, Brandon D.; Boyd, Iain D.; Kamhawi, Hani; Huang, Wensheng

    2013-01-01

    The primary life-limiting mechanism of Hall thrusters is the sputter erosion of the discharge channel walls by high-energy propellant ions. Because of the difficulty involved in characterizing this erosion experimentally, many past efforts have focused on numerical modeling to predict erosion rates and thruster lifespan, but those analyses were limited to Hall thrusters operating in the 200-400V discharge voltage range. Thrusters operating at higher discharge voltages (V(sub d) >= 500 V) present an erosion environment that may differ greatly from that of the lower-voltage thrusters modeled in the past. In this work, HPHall, a well-established hybrid-PIC code, is used to simulate NASA's High-Voltage Hall Accelerator (HiVHAc) at discharge voltages of 300, 400, and 500V as a first step towards modeling the discharge channel erosion. It is found that the model accurately predicts the thruster performance at all operating conditions to within 6%. The model predicts a normalized plasma potential profile that is consistent between all three operating points, with the acceleration zone appearing in the same approximate location. The expected trend of increasing electron temperature with increasing discharge voltage is observed. An analysis of the discharge current oscillations shows that the model predicts oscillations that are much greater in amplitude than those measured experimentally at all operating points, suggesting that the differences in oscillation amplitude are not strongly associated with discharge voltage.

  20. LEO high voltage solar array arcing response model, continuation 5

    NASA Technical Reports Server (NTRS)

    Metz, Roger N.

    1989-01-01

    The modeling of the Debye Approximation electron sheaths in the edge and strip geometries was completed. Electrostatic potentials in these sheaths were compared to NASCAP/LEO solutions for similar geometries. Velocity fields, charge densities and particle fluxes to the biased surfaces were calculated for all cases. The major conclusion to be drawn from the comparisons of our Debye Approximation calculations with NASCAP-LEO output is that, where comparable biased structures can be defined and sufficient resolution obtained, these results are in general agreement. Numerical models for the Child-Langmuir, high-voltage electron sheaths in the edge and strip geometries were constructed. Electrostatic potentials were calculated for several cases in each of both geometries. Velocity fields and particle fluxes were calculated. The self-consistent solution process was carried through one cycle and output electrostatic potentials compared to NASCAP-type input potentials.

  1. High voltage transmission microscopy of Surveyor 3 camera shrouds

    NASA Technical Reports Server (NTRS)

    Fisher, R. M.; Duff, W. R.; Thomas, L. E.; Radcliffe, S. V.

    1972-01-01

    The internal structure of painted and unpainted aluminum alloy sheet samples from the TV camera shrouds were examined by high-voltage transmission electron microscopy. No clear-cut evidence of radiation damage effects was observed. Noticeable differences in microstructures between the upper visor and the sides and bottom of the lower shroud suggest different thermal histories, and the maximum temperatures due to solar heating are estimated to be between 164 and 319 C. Some correlation between microstructures and maximum estimated temperature is noted. It is felt that the apparent temperature rise due to solar heating will not affect the structural integrity of spacecraft components except possibly for very long periods of exposure. However, substantial thermal diffusion could affect interpretation of solar wind rare gas studies.

  2. Monolithic high voltage nonlinear transmission line fabrication process

    DOEpatents

    Cooper, Gregory A.

    1994-01-01

    A process for fabricating sequential inductors and varactor diodes of a monolithic, high voltage, nonlinear, transmission line in GaAs is disclosed. An epitaxially grown laminate is produced by applying a low doped active n-type GaAs layer to an n-plus type GaAs substrate. A heavily doped p-type GaAs layer is applied to the active n-type layer and a heavily doped n-type GaAs layer is applied to the p-type layer. Ohmic contacts are applied to the heavily doped n-type layer where diodes are desired. Multiple layers are then either etched away or Oxygen ion implanted to isolate individual varactor diodes. An insulator is applied between the diodes and a conductive/inductive layer is thereafter applied on top of the insulator layer to complete the process.

  3. High-voltage, low-inductance gas switch

    DOEpatents

    Gruner, Frederick R.; Stygar, William A.

    2016-03-22

    A low-inductance, air-insulated gas switch uses a de-enhanced annular trigger ring disposed between two opposing high voltage electrodes. The switch is DC chargeable to 200 kilovolts or more, triggerable, has low jitter (5 ns or less), has pre-fire and no-fire rates of no more than one in 10,000 shots, and has a lifetime of greater than 100,000 shots. Importantly, the switch also has a low inductance (less than 60 nH) and the ability to conduct currents with less than 100 ns rise times. The switch can be used with linear transformer drives or other pulsed-power systems.

  4. Preliminary Chaotic Model of Snapover on High Voltage Solar Cells

    NASA Technical Reports Server (NTRS)

    Mackey, Willie R.

    1995-01-01

    High voltage power systems in space will interact with the space plasma in a variety of ways. One of these, Snapover, is characterized by a sudden enlargement of the electron current collection area across normally insulating surfaces. A power drain on solar array power systems will results from this enhanced current collection. Optical observations of the snapover phenomena in the laboratory indicates a functional relation between bia potential and surface glow area. This paper shall explore the potential benefits of modeling the relation between current and bia potential as an aspect of bifurcation analysis in chaos theory. Successful characterizations of snapover as a chaotic phenomena may provide a means of snapover prevention and control through chaotic synchronization.

  5. Residential proximity to high voltage transmission lines and depressive symptomatology

    SciTech Connect

    McMahan, S.G.

    1992-01-01

    A number of epidemiological studies indicate an association between depression and proximity to high voltage transmission lines. These studies have been criticized, however, for using surrogate measures of electromagnetic fields (EMFs) and unstandardized measures of depression. In an effort to overcome these limitations, the Center for Epidemiological Studies Depression (CES-D) scale was administered to 152 women living either adjacent to a transmission line or one block away. Results indicate that homes adjacent to the transmission lines have an average EMF level of 4.86 milligauss at their front door and those one block away have an average of 0.68 milligauss. There was no significant difference in CES-D scores between the groups, controlling for demographic variables. There appeared to be an increase in other health effects, including cancer and miscarriages, but these findings were preliminary and need further investigation.

  6. Monolithic high voltage nonlinear transmission line fabrication process

    DOEpatents

    Cooper, G.A.

    1994-10-04

    A process for fabricating sequential inductors and varistor diodes of a monolithic, high voltage, nonlinear, transmission line in GaAs is disclosed. An epitaxially grown laminate is produced by applying a low doped active n-type GaAs layer to an n-plus type GaAs substrate. A heavily doped p-type GaAs layer is applied to the active n-type layer and a heavily doped n-type GaAs layer is applied to the p-type layer. Ohmic contacts are applied to the heavily doped n-type layer where diodes are desired. Multiple layers are then either etched away or Oxygen ion implanted to isolate individual varistor diodes. An insulator is applied between the diodes and a conductive/inductive layer is thereafter applied on top of the insulator layer to complete the process. 6 figs.

  7. Voltage spike detection in high field superconducting accelerator magnets

    SciTech Connect

    Orris, D.F.; Carcagno, R.; Feher, S.; Makulski, A.; Pischalnikov, Y.M.; /Fermilab

    2004-12-01

    A measurement system for the detection of small magnetic flux changes in superconducting magnets, which are due to either mechanical motion of the conductor or flux jump, has been developed at Fermilab. These flux changes are detected as small amplitude, short duration voltage spikes, which are {approx}15mV in magnitude and lasts for {approx}30 {micro}sec. The detection system combines an analog circuit for the signal conditioning of two coil segments and a fast data acquisition system for digitizing the results, performing threshold detection, and storing the resultant data. The design of the spike detection system along with the modeling results and noise analysis will be presented. Data from tests of high field Nb{sub 3}Sn magnets at currents up to {approx}20KA will also be shown.

  8. Remote renewable energy resources; Long-distance high voltage interconnections

    SciTech Connect

    Hammons, T.J. )

    1992-06-01

    This paper discusses international perspectives on remote energy made possible by high-voltage interconnections. It will discuss large-scale conversion, transfer, and utilization of renewable energy as a strategy to counter environmental problems caused by the combustion of fossil fuels. Potential development of huge renewable hydro resources in Africa, South America, North America, Eastern Siberia, Australia, and South East China, as well as potential development of geothermal and solar energy sources, will also be discussed. These include the proposed 30 GW Inga hydro power complex in Zaire, Central Africa, along the Congo River, where power will be exported to Southern Europe over a distance of 7000 Km, in Columbia with electrical ties through Central America linking South America with the electricity demand in North America, and developments in Siberia linked by cable across the Bering Strait to Alaska, Quebec to New England, Manitoba to midwest United States, Iceland to the United Kingdom, and in the Persian Gulf States.

  9. Architecture for a High-to-Medium-Voltage Power Converter

    NASA Technical Reports Server (NTRS)

    Vorpenian, Vatche

    2008-01-01

    A power converter now undergoing development is required to operate at a DC input potential ranging between 5.5 and 10 kV and a DC output potential of 400 V at a current up to 25 A. This power converter is also required to be sufficiently compact and reliable to fit and operate within the confines of a high-pressure case to be lowered to several miles (approx.5 km) below the surface of the ocean. The architecture chosen to satisfy these requirements calls for a series/ parallel arrangement of 48 high-frequency, pulse-width-modulation (PWM), transformer-isolation DC-to-DC power converter blocks. The input sides of the converter blocks would be connected in series so that the input potential would be divided among them, each of them being exposed to an input potential of no more than 10 kV/48 . 210 V. The series connection of inputs would also enforce a requirement that all the converter blocks operate at the same input current. The outputs of the converter blocks would be connected in a matrix comprising 6 parallel legs, each leg being a cascade of eight outputs wired in series (see figure). All the converter blocks would be identical within the tolerances of the values of their components. A single voltage feedback loop would regulate the output potential. All the converter blocks would be driven by the same PWM waveform generated by this feedback loop. The power transformer of each converter block would have a unity turns ratio and would be capable of withstanding as much as 10 kVDC between its primary and secondary windings. (Although, in general, the turns ratio could be different from unity, the simplest construction for minimizing leakage and maximizing breakdown voltage is attained at a turns ratio of unity.)

  10. Plasma Interaction with International Space Station High Voltage Solar Arrays

    NASA Technical Reports Server (NTRS)

    Heard, John W.

    2002-01-01

    The International Space Station (ISS) is presently being assembled in low-earth orbit (LEO) operating high voltage solar arrays (-160 V max, -140 V typical with respect to the ambient atmosphere). At the station's present altitude, there exists substantial ambient plasma that can interact with the solar arrays. The biasing of an object to an electric potential immersed in plasma creates a plasma "sheath" or non-equilibrium plasma around the object to mask out the electric fields. A positively biased object can collect electrons from the plasma sheath and the sheath will draw a current from the surrounding plasma. This parasitic current can enter the solar cells and effectively "short out" the potential across the cells, reducing the power that can be generated by the panels. Predictions of collected current based on previous high voltage experiments (SAMPIE (Solar Array Module Plasma Interactions Experiment), PASP+ (Photovoltaic Array Space Power) were on the order of amperes of current. However, present measurements of parasitic current are on the order of several milliamperes, and the current collection mainly occurs during an "eclipse exit" event, i.e., when the space station comes out of darkness. This collection also has a time scale, t approx. 1000 s, that is much slower than any known plasma interaction time scales. The reason for the discrepancy between predictions and present electron collection is not understood and is under investigation by the PCU (Plasma Contactor Unit) "Tiger" team. This paper will examine the potential structure within and around the solar arrays, and the possible causes and reasons for the electron collection of the array.

  11. Battery-Operated High-Voltage Power Supply

    NASA Technical Reports Server (NTRS)

    Ruitberg, A. P., Kennethm.

    1985-01-01

    Circuitry allows large multiplication of voltage. Filament voltage is -80kV. Potential difference between terminals P3 and P4 adjusted to make grid 80 to 150 volts more negative than filament enabling grid to focus electrons from filament into stream impinging on anode, which then emits x-rays. Circuitry provides independently adjustable voltages in kilovolt range for x-ray tubes and other instruments.

  12. High-voltage supply for neutron tubes in well-logging applications

    DOEpatents

    Humphreys, D.R.

    1982-09-15

    A high voltage supply is provided for a neutron tube used in well logging. The biased pulse supply of the invention combines DC and full pulse techniques and produces a target voltage comprising a substantial negative DC bias component on which is superimposed a pulse whose negative peak provides the desired negative voltage level for the neutron tube. The target voltage is preferably generated using voltage doubling techniques and employing a voltage source which generates bipolar pulse pairs having an amplitude corresponding to the DC bias level.

  13. Rectangular-bore, high-gain laser plasma tube

    NASA Technical Reports Server (NTRS)

    Mollo, R. A.

    1969-01-01

    Rectangular-bore tube improves population inversion obtained from upper and terminal laser states, resulting in a significant increase in unsaturated gain factor. Radial field produces efficient pumping of upper laser state. Narrow tube dimensions cause increased diffusion flow of neon is metastable states to tube walls.

  14. High voltage and high specific capacity dual intercalating electrode Li-ion batteries

    NASA Technical Reports Server (NTRS)

    West, William C. (Inventor); Blanco, Mario (Inventor)

    2010-01-01

    The present invention provides high capacity and high voltage Li-ion batteries that have a carbonaceous cathode and a nonaqueous electrolyte solution comprising LiF salt and an anion receptor that binds the fluoride ion. The batteries can comprise dual intercalating electrode Li ion batteries. Methods of the present invention use a cathode and electrode pair, wherein each of the electrodes reversibly intercalate ions provided by a LiF salt to make a high voltage and high specific capacity dual intercalating electrode Li-ion battery. The present methods and systems provide high-capacity batteries particularly useful in powering devices where minimizing battery mass is important.

  15. Circuit for monitoring temperature of high-voltage equipment

    DOEpatents

    Jacobs, Martin E.

    1976-01-01

    This invention relates to an improved circuit for measuring temperature in a region at high electric potential and generating a read-out of the same in a region at lower potential. The circuit is specially designed to combine high sensitivity, stability, and accuracy. A major portion of the circuit situated in the high-potential region can take the form of an integrated circuit. The preferred form of the circuit includes an input section which is situated in the high-potential region and comprises a temperature-compensated thermocouple circuit for sensing temperature, an oscillator circuit for generating a train of ramp voltages whose rise time varies inversely with the thermocouple output, a comparator and switching circuit for converting the oscillator output to pulses whose frequency is proportional to the thermocouple output, and a light-emitting diode which is energized by these pulses. An optical coupling transmits the light pulses generated by the diode to an output section of the circuit, situated in a region at ground. The output section comprises means for converting the transmitted pulses to electrical pulses of corresponding frequency, means for amplifying the electrical pulses, and means for displaying the frequency of the same. The preferred embodiment of the overall circuit is designed so that the frequency of the output signal in hertz and tenths of hertz is equal to the sensed temperature in degrees and tenths of degrees.

  16. High-Voltage-Input Level Translator Using Standard CMOS

    NASA Technical Reports Server (NTRS)

    Yager, Jeremy A.; Mojarradi, Mohammad M.; Vo, Tuan A.; Blalock, Benjamin J.

    2011-01-01

    proposed integrated circuit would translate (1) a pair of input signals having a low differential potential and a possibly high common-mode potential into (2) a pair of output signals having the same low differential potential and a low common-mode potential. As used here, "low" and "high" refer to potentials that are, respectively, below or above the nominal supply potential (3.3 V) at which standard complementary metal oxide/semiconductor (CMOS) integrated circuits are designed to operate. The input common-mode potential could lie between 0 and 10 V; the output common-mode potential would be 2 V. This translation would make it possible to process the pair of signals by use of standard 3.3-V CMOS analog and/or mixed-signal (analog and digital) circuitry on the same integrated-circuit chip. A schematic of the circuit is shown in the figure. Standard 3.3-V CMOS circuitry cannot withstand input potentials greater than about 4 V. However, there are many applications that involve low-differential-potential, high-common-mode-potential input signal pairs and in which standard 3.3-V CMOS circuitry, which is relatively inexpensive, would be the most appropriate circuitry for performing other functions on the integrated-circuit chip that handles the high-potential input signals. Thus, there is a need to combine high-voltage input circuitry with standard low-voltage CMOS circuitry on the same integrated-circuit chip. The proposed circuit would satisfy this need. In the proposed circuit, the input signals would be coupled into both a level-shifting pair and a common-mode-sensing pair of CMOS transistors. The output of the level-shifting pair would be fed as input to a differential pair of transistors. The resulting differential current output would pass through six standoff transistors to be mirrored into an output branch by four heterojunction bipolar transistors. The mirrored differential current would be converted back to potential by a pair of diode-connected transistors

  17. Low-profile high-voltage compact gas switch

    SciTech Connect

    Goerz, D.A.; Wilson, M.J.; Speer, R.D.

    1997-06-30

    This paper discusses the development and testing of a low-profile, high-voltage, spark-gap switch designed to be closely coupled with other components into an integrated high-energy pulsed-power source. The switch is designed to operate at 100 kV using SF6 gas pressurized to less than 0.7 MPa. The volume of the switch cavity region is less than 1.5 cm3, and the field stress along the gas-dielectric interface is as high as 130 kV/cm. The dielectric switch body has a low profile that is only I -cm tall at its greatest extent and nominally 2-mm thick over most of its area. This design achieves a very low inductance of less than 5 nH, but results in field stresses exceeding 500 kV/cm in the dielectric material. Field modeling was done to determine the appropriate shape for the highly stressed insulator and electrodes, and special manufacturing techniques were employed to mitigate the usual mechanisms that induce breakdown and failure in solid dielectrics. Static breakdown tests verified that the switch operates satisfactorily at 100 kV levels. The unit has been characterized with different shaped electrodes having nominal gap spacings of 2.0, 2.5, and 3.0 mm. The relationship between self-break voltage and operating pressure agrees well with published data on gas properties, accounting for the field enhancements of the electrode shapes being used. Capacitor discharge tests in a low inductance test fixture exhibited peak currents up to 25 kA with characteristic frequencies of the ringdown circuit ranging from 10 to 20 MHz. The ringdown waveforms and scaling of measured parameters agree well with circuit modeling of the switch and test fixture. Repetitive operation has been demonstrated at moderate rep-rates up to 15 Hz, limited by the power supply being used. Preliminary tests to evaluate lifetime of the compact switch assembly have been encouraging. In one case, after more than 7,000 high-current ringdown tests with approximately 30 C of total charge transferred, the

  18. Evaluation of high temperature dielectric films for high voltage power electronic applications

    NASA Technical Reports Server (NTRS)

    Suthar, J. L.; Laghari, J. R.

    1992-01-01

    Three high temperature films, polyimide, Teflon perfluoroalkoxy and poly-P-xylene, were evaluated for possible use in high voltage power electronic applications, such as in high energy density capacitors, cables and microelectronic circuits. The dielectric properties, including permittivity and dielectric loss, were obtained in the frequency range of 50 Hz to 100 kHz at temperatures up to 200 C. The dielectric strengths at 60 Hz were determined as a function of temperature to 250 C. Confocal laser microscopy was performed to diagnose for voids and microimperfections within the film structure. The results obtained indicate that all films evaluated are capable of maintaining their high voltage properties, with minimal degradation, at temperatures up to 200 C. However, above 200 C, they lose some of their electrical properties. These films may therefore become viable candidates for high voltage power electronic applications at high temperatures.

  19. Perovskite solar cells: High voltage from ordered fullerenes

    NASA Astrophysics Data System (ADS)

    Yan, Yanfa

    2016-01-01

    The open-circuit voltage is one of the parameters determining the efficiency of solar cells in converting solar radiation to electricity. Reducing the structural disorder in fullerene electron-transport layers is now shown to significantly improve the open-circuit voltage of perovskite solar cells.

  20. Electrochemical capacitance voltage measurements in highly doped silicon and silicon-germanium alloys

    NASA Astrophysics Data System (ADS)

    Sermage, B.; Essa, Z.; Taleb, N.; Quillec, M.; Aubin, J.; Hartmann, J. M.; Veillerot, M.

    2016-04-01

    The electrochemical capacitance voltage technique has been used on highly boron doped SiGe and Si layers. Although the boron concentration is constant over the space charge depth, the 1/C2 versus voltage curves are not linear. They indeed present a negative curvature. This can be explained by the existence of deep acceptors which ionise under a high electric field (large inverse voltage) and not at a low inverse voltage. The measured doping concentration in the electrochemical capacitance voltage increases strongly as the inverse voltage increases. Thanks to a comparison with the boron concentration measured by secondary ions mass spectrometry, we show that the relevant doping concentrations in device layers are obtained for small inverse voltage in agreement with the existence of deep acceptors. At the large inverse voltage, the measured doping can be more than twice larger than the boron concentration measured with a secondary ion mass spectroscopy.

  1. Radiation Dose Testing on Juno High Voltage Cables

    NASA Technical Reports Server (NTRS)

    Green, Nelson W.; Kirkham, Harold; Kim, Wousik; McAlpine, Bill

    2008-01-01

    The Juno mission to Jupiter will have a highly elliptical orbit taking the spacecraft through the radiation belts surrounding the planet. During these passes through the radiation belts, the spacecraft will be subject to high doses of radiation from energetic electrons and protons with energies ranging from 10 keV to 1 GeV. While shielding within the spacecraft main body will reduce the total absorbed dose to much of the spacecraft electronics, instruments and cables on the outside of the spacecraft will receive much higher levels of absorbed dose. In order to estimate the amount of degradation to two such cables, testing has been performed on two coaxial cables intended to provide high voltages to three of the instruments on Juno. Both cables were placed in a vacuum of 5x10(exp -6) torr and cooled to -50(deg)C prior to exposure to the radiation sources. Measurements of the coaxial capacitance per unit length and partial discharge noise floor indicate that increasing levels of radiation make measurable but acceptably small changes to the F EP Teflon utilized in the construction of these cables. In addition to the radiation dose testing, observations were made on the internal electrostatic charging characteristics of these cables and multiple discharges were recorded.

  2. Radiation Dose Testing on Juno High Voltage Cables

    NASA Technical Reports Server (NTRS)

    Green, Nelson W.; Kirkham, Harold; Kim, Wousik; McAlpine, Bill

    2008-01-01

    The Juno mission to Jupiter will have a highly elliptical orbit taking the spacecraft through the radiation belts surrounding the planet. During these passes through the radiation belts, the spacecraft will be subject to high doses of radiation from energetic electrons and protons with energies ranging from 10 keV to 1 GeV. While shielding within the spacecraft main body will reduce the total absorbed dose to much of the spacecraft electronics, instruments and cables on the outside of the spacecraft will receive much higher levels of absorbed dose. In order to estimate the amount of degradation to two such cables, testing has been performed on two coaxial cables intended to provide high voltages to three of the instruments on Juno. Both cables were placed in a vacuum of 5x10-6 torr and cooled to -50 C prior to exposure to the radiation sources. Measurements of the coaxial capacitance per unit length and partial discharge noise floor indicate that increasing levels of radiation make measurable but acceptably small changes to the F EP Teflon utilized in the construction of these cables. In addition to the radiation dose testing, observations were made on the internal electrostatic charging characteristics of these cables and multiple discharges were recorded.

  3. Telescope considered as a very high gain antenna

    NASA Astrophysics Data System (ADS)

    Detaille, Michel; Houmault, Patrice

    1990-07-01

    A design concept for an optical-antenna telescope to be used in intersatellite communication (in the framework of the ESA SILEX project) is presented. The main technical requirements for a SILEX transmit-receive antennna telescope are reviewed, and a Cassegrain configuration based on a parabolic primary mirror, a hyperbolic secondary mirror, and a five-lense collimator (with baffles to limit stray light) is shown in diagrams and discussed in detail, with particular attention to local angular distortion and transmission-antenna gain. Results from tests on a breadboard version are presented in tables and graphs, including transmission of 92.6 percent at 820 nm, rms wavefront error less than lambda/28, optical gain 114.47 dB, backscattered energy 1.7 x 10 to the -6th at 838 nm, and stray-light intensity slightly above specification at sun aspect angles less than 4.5 deg.

  4. High gain fusion in a Staged Z-pinch

    NASA Astrophysics Data System (ADS)

    Ney, Paul; Rahman, Hafiz; Wessel, Frank; Presura, Radu

    2013-10-01

    The implosion of a Staged Z-pinch is simulated for the Sandia National Laboratories, ZR accelerator. The pinch is comprised of a silver (Ag) plasma shell, 3-mm outer radius, 0.01-cm thick, imploding onto a uniform fill (target) of deuterium-tritium (DT); the Z-R parameters are: 130 ns, 27 MA, 22 MJ; the 2-1/2 D, radiation-MHD code is MACH2. Magnetosonic shock waves generated during implosion propagate at different speeds in the liner and target, producing a shock front at the interface, and a conduction channel ahead of the liner. The interface remains stable even as the outer-surface of the liner is RT unstable. At peak compression target plasma hot spots trigger ignition with a fusion yield of 200 MJ and a net-energy gain approaching 10. The stability remains robust and the gain is unaffected for perturbations ranging from 2-5%.

  5. A gain-of-function voltage-gated sodium channel 1.8 mutation drives intense hyperexcitability of A- and C-fiber neurons

    PubMed Central

    Garrison, Sheldon R.; Weyer, Andy D.; Barabas, Marie E.; Beutler, Bruce A.; Stucky, Cheryl L.

    2014-01-01

    Therapeutic use of general sodium channel blockers, such as lidocaine, can substantially reduce the enhanced activity in sensory neurons that accompanies chronic pain after nerve or tissue injury. However, because these general blockers have significant side effects, there is great interest in developing inhibitors that specifically target subtypes of sodium channels. Moreover, some idiopathic small-fiber neuropathies are driven by gain-of-function mutations in specific sodium channel subtypes. In the current study we focus on one subtype, the voltage-gated sodium channel 1.8 (Nav1.8). Nav1.8 is preferentially expressed in nociceptors and gain-of-function mutations in Nav1.8 result in painful mechanical hypersensitivity in humans. Here, we used the recently developed gain-of-function Nav1.8 transgenic mouse strain, Possum, to investigate Nav1.8-mediated peripheral afferent hyperexcitability. This gain-of-function mutation resulted in increased mechanically-evoked action potential firing in subclasses of Aβ, Aδ and C-fibers. Moreover, mechanical stimuli initiated bursts of action potential firing in specific subpopulations that continued for minutes after removal of the force and were not susceptible to conduction failure. Surprisingly, despite the intense afferent firing, the behavioral effects of the Nav1.8 mutation were quite modest as only frankly noxious stimuli elicited enhanced pain behavior. These data demonstrate that a Nav1.8 gain-of-function point mutation contributes to intense hyperexcitability along the afferent axon within distinct sensory neuron subtypes. PMID:24447515

  6. Micalastic high-voltage insulation: Design features and experience

    NASA Astrophysics Data System (ADS)

    Wichmann, A.

    1981-12-01

    High-quality mica, carefully selected epoxy resins and a well-matched vacuum/pressure impregnation process determine the characteristics of the MICALASTIC insulation for large turbine-generators. Logical development and process manufacturing quality control have led to an insulation system of high quality and operating reliability. The first winding of a turbine-generator being impregnated and cured under vacuum with solvent-free synthetic resin in 1958 was designed for 10.5 kV rated voltage. Ever since, Siemens AG and Kraftwerk Union AG have used this type of insulation for all direct-cooled windings and also for an increasing number of indirect-cooled windings. At present, 240 turbine-generators with a total of more than 115,000 MVA output have been built. Since 1960, this insulation system has been registered for Siemens AG under the trade name MICALASTIC. The stator windings of the largest, single-shaft generators to date, rated 1560 MVA, 27 kV, has been built with MICALASTIC insulation.

  7. Interaction of high voltage surfaces with the space plasma

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Robinson, R. S.

    1980-01-01

    High voltage solar arrays provide spacecraft power while optimizing mass and power efficiency. Operating such arrays in the space plasma environment can result in anomalously large currents being collected through insulation defects. Two thicknesses of the insulating material were tested, with no effect found due to insulator thickness. In these tests the polyimide thickness was always much less than the pinhole diameter. The pinhole area was varied over an area range of more than 30:1. It was found that the current collected was independent of the pinhole area for hole diameters from 0.35 to 2.0 mm. Two types of adhesives were tried in two different configurations. The adhesives were chosen for their extreme difference in vacuum qualifications. Neither adhesive types nor configuration made a significant difference in current collection. The temperature of the insulating material was also varied. It was found that current collection decreased with increasing temperature. Tests were conducted to see if pinhole current collection decreased with time, as was indicated by the effects of several short tests. Current was collected for over four hours while the conductor potential was held constant at 1000 volts. A smooth decrease with time was not observed, but rather a roughly constant current collection with brief surges to high values. Tests were also conducted with the simulated solar cell biased negative. The current was found to be proportional to pinhole area.

  8. Improved High-Voltage Gas Isolator for Ion Thruster

    NASA Technical Reports Server (NTRS)

    Banks, Bruce

    2007-01-01

    A report describes an improved high-voltage isolator for preventing electrical discharge along the flow path of a propellant gas being fed from a supply at a spacecraft chassis electrical potential to an ion thruster at a potential as high as multiple kilovolts. The isolator must survive launch vibration and must remain electrically nonconductive for thousands of hours under conditions that, in the absence of proper design, would cause formation of electrically conductive sputtered metal, carbon, and/or decomposed hydrocarbons on its surfaces. The isolator includes an alumina cylinder containing a spiral channel filled with a porous medium made from alumina microbeads fired together with an alumina slurry. Connections to gas-transport tubes are made at both ends of the alumina cylinder by means of metal caps containing fine-mesh screens to prevent passage of loose alumina particles. The outer surface of the alumina cylinder is convoluted to lengthen the electrical path between the metal caps and to afford shadow shielding to minimize the probability of formation of a continuous deposit that would electrically connect the ends. A flanged cylindrical metal cap that surrounds the alumina cylinder without touching one of the ends provides additional shadow shielding.

  9. High k dielectric elastomeric materials for low voltage applications

    NASA Astrophysics Data System (ADS)

    Walder, C.; Molberg, M.; Opris, D. M.; Nüesch, F. A.; Löwe, C.; Plummer, C. J. G.; Leterrier, Y.; Månson, J.-A. E.

    2009-03-01

    In principle EAP technology could potentially replace common motion-generating mechanisms in positioning, valve control, pump and sensor applications, where designers are seeking quieter, power efficient devices to replace conventional electrical motors and drive trains. Their use as artificial muscles is of special interest due to their similar properties in terms of stress and strain, energy and power densities or efficiency. A broad application of dielectric elastomer actuators (DEA) is limited by the high voltage necessary to drive such devices. The development of novel elastomers offering better intrinsic electromechanical properties is one way to solve the problem. We prepared composites from cross-linked silicone elastomers or thermoplastic elastomers (TPE) by blending them with organic fillers exhibiting a high dielectric constant. Well characterized monomeric phthalocyanines and modified doped polyaniline (PANI) were used as filler materials. In addition, blends of TPE and an inorganic filler material PZT were characterized as well. We studied the influence of the filler materials onto the mechanical and electromechanical properties of the resulting mixtures. A hundredfold increase of the dielectric constant was already observed for blends of an olefin based thermoplastic elastomer and PANI.

  10. High voltage power supply with modular series resonant inverters

    DOEpatents

    Dreifuerst, Gary R.; Merritt, Bernard T.

    1995-01-01

    A relatively small and compact high voltage, high current power supply for a laser utilizes a plurality of modules containing series resonant half bridge inverters. A pair of reverse conducting thyristors are incorporated in each series resonant inverter module such that the series resonant inverter modules are sequentially activated in phases 360.degree./n apart, where n=number of modules for n>2. Selective activation of the modules allows precise output control reducing ripple and improving efficiency. Each series resonant half bridge inverter module includes a transformer which has a cooling manifold for actively circulating a coolant such as water, to cool the transformer core as well as selected circuit elements. Conductors connecting and forming various circuit components comprise hollow, electrically conductive tubes such as copper. Coolant circulates through the tubes to remove heat. The conductive tubes act as electrically conductive lines for connecting various components of the power supply. Where it is desired to make electrical isolation breaks, tubes comprised of insulating material such as nylon are used to provide insulation and continue the fluid circuit.

  11. High voltage power supply with modular series resonant inverters

    DOEpatents

    Dreifuerst, G.R.; Merritt, B.T.

    1995-07-18

    A relatively small and compact high voltage, high current power supply for a laser utilizes a plurality of modules containing series resonant half bridge inverters. A pair of reverse conducting thyristors are incorporated in each series resonant inverter module such that the series resonant inverter modules are sequentially activated in phases 360{degree}/n apart, where n=number of modules for n>2. Selective activation of the modules allows precise output control reducing ripple and improving efficiency. Each series resonant half bridge inverter module includes a transformer which has a cooling manifold for actively circulating a coolant such as water, to cool the transformer core as well as selected circuit elements. Conductors connecting and forming various circuit components comprise hollow, electrically conductive tubes such as copper. Coolant circulates through the tubes to remove heat. The conductive tubes act as electrically conductive lines for connecting various components of the power supply. Where it is desired to make electrical isolation breaks, tubes comprised of insulating material such as nylon are used to provide insulation and continue the fluid circuit. 11 figs.

  12. Efficient high voltage pulser for piezoelectric air coupled transducer.

    PubMed

    Svilainis, Linas; Chaziachmetovas, Andrius; Dumbrava, Vytautas

    2013-01-01

    The design of high voltage pulser for air coupled ultrasound imaging is presented. It is dedicated for air-coupled ultrasound applications when piezoelectric transducer design is used. Two identical N-channel MOSFETs are used together with 1200V high and low side driver IC. Simple driving pulses' delay and skew circuit is used to reduce the cross-conduction. Analysis of switch peak current and channel resistance relation to maximum operation frequency and load capacitance is given. PSPICE simulation was used to analyze the gate driver resistance, gate pulse skew, pulse amplitude influence on energy consumption when loaded by capacitive load. Experimental investigation was verified against simulation and theoretical predictions. For 500pF capacitance, which is most common for piezoelectric air coupled transducers, pulser consumes 650μJ at 1kV pulse and 4μJ at 50V. Pulser is capable to produce up to 1MHz pulse trains with positive 50V-1kV pulses with up to 10A peak output current. When loaded by 200kHz transducer at 1kV pulse amplitude rise time is 40ns and fall time is 32ns which fully satisfies desired 1MHz bandwidth. PMID:22742963

  13. Photoconductivity of high-voltage space insulating materials

    NASA Technical Reports Server (NTRS)

    Coffey, H. T.; Nanevicz, J. E.; Adamo, R. C.

    1975-01-01

    The dark and photoconductivities of four high voltage spacecraft insulators, Kapton-H, FEP Teflon, Parylene, and fused quartz, were studied under a variety of conditions intended to simulate a space environment. All measurements were made in a vacuum of less than .00001 torr while the temperature was varied from 22 C to 100 C. Some of the samples used employed conventional deposited metal electrodes--others employed electrodes composed either of an electron beam or a plasma formed by ionization of the residual gas in the test chamber. Test results show: (1) Kapton had unusual conduction properties; it conductivity decreased by more than an order of magnitude when heated at 100 C in a vacuum, but ultimately attained a stable and reproducible value. (2) Both Teflon and fused quartz had high dark resistivities but low photoresistivities when exposed to UV. Optical-density measurements revealed that both materials transmitted UV with little attenuation. (3) Parylene was found to have a low but relatively stable resistivity--comparatively minor changes occurred upon heating or illuminating the sample. Optical-density measurements showed that Parylene was absorbent in the UV and would prevent photoemission from the metal electrode on the back surface.

  14. Improvement of high-voltage staircase drive circuit waveform for high-intensity therapeutic ultrasound

    NASA Astrophysics Data System (ADS)

    Tamano, Satoshi; Jimbo, Hayato; Azuma, Takashi; Yoshizawa, Shin; Fujiwara, Keisuke; Itani, Kazunori; Umemura, Shin-Ichiro

    2016-07-01

    Recently, in the treatment of diseases such as cancer, noninvasive or low-invasive modality, such as high-intensity focused ultrasound (HIFU), has been put into practice as an alternative to open surgery. HIFU induces thermal ablation of the target tissue to be treated. To improve the efficiency of HIFU, we have proposed a “triggered-HIFU” technique, which uses the combination of a short-duration, high-voltage transmission and a long-duration, medium-voltage transmission. In this method, the transmission device must endure high peak voltage for the former and the high time-average power for the latter. The triggered-HIFU sequence requires electronic scanning of the HIFU focus to maximize its thermal efficiency. Therefore, the transmission device must drive an array transducer with the number of elements on the order of a hundred or more, which requires that each part of the device that drives each element must be compact. The purpose of this work is to propose and construct such a transmission device by improving the staircase drive circuit, which we previously proposed. The main point of improvement is that both N and P MOSFETs are provided for each staircase voltage level instead of only one of them. Compared with the previous ultrasonic transmission circuit, high-voltage spikes were significantly reduced, the power consumption was decreased by 26.7%, and the transmission circuit temperature rise was decreased by 14.5 °C in the triggered-HIFU heating mode.

  15. Control of Analyte Electrolysis in Electrospray Ionization Mass Spectrometry Using Repetitively Pulsed High Voltage

    SciTech Connect

    Kertesz, Vilmos; Van Berkel, Gary J

    2011-01-01

    Analyte electrolysis using a repetitively pulsed high voltage ion source was investigated and compared to that using a regular, continuously operating direct current high voltage ion source in electrospray ionization mass spectrometry. The extent of analyte electrolysis was explored as a function of the length and frequency of the high voltage pulse using the model compound reserpine in positive ion mode. Using +5 kV as the maximum high voltage amplitude, reserpine was oxidized to its 2, 4, 6 and 8-electron oxidation products when direct current high voltage was employed. In contrast, when using a pulsed high voltage, oxidation of reserpine was eliminated by employing the appropriate high voltage pulse length and frequency. This effect was caused by inefficient mass transport of the analyte to the electrode surface during the duration of the high voltage pulse and the subsequent relaxation of the emitter electrode/ electrolyte interface during the time period when the high voltage was turned off. This mode of ESI source operation allows for analyte electrolysis to be quickly and simply switched on or off electronically via a change in voltage pulse variables.

  16. Evaluation of Epoxy Nanocomposites for High Voltage Insulation

    NASA Astrophysics Data System (ADS)

    Iyer, Ganpathy

    Polymeric materials containing nanometer (nm) size particles are being introduced to provide compact shapes for low and medium voltage insulation equipment. The nanocomposites may provide superior electrical performance when compared with those available currently, such as lower dielectric losses and increased dielectric strength, tracking and erosion resistance, and surface hydrophobicity. All of the above mentioned benefits can be achieved at a lower filler concentration (< 10%) than conventional microfillers (40-60%). Also, the uniform shapes of nanofillers provide a better electrical stress distribution as compared to irregular shaped microcomposites which can have high internal electric stress, which could be a problem for devices with active electrical parts. Improvement in electrical performance due to addition of nanofillers in an epoxy matrix has been evaluated in this work. Scanning Electron Microscopy (SEM) was done on the epoxy samples to confirm uniform dispersion of nano-sized fillers as good filler dispersion is essential to realize the above stated benefits. Dielectric spectroscopy experiments were conducted over a wide range of frequencies as a function of temperature to understand the role of space charge and interfaces in these materials. The experiment results demonstrate significant reduction in dielectric losses in samples containing nanofillers. High voltage experiments such as corona resistance tests were conducted over 500 hours to monitor degradation in the samples due to corona. These tests revealed improvements in partial discharge endurance of nanocomposite samples. These improvements could not be adequately explained using a macroscopic quantity such as thermal conductivity. Thermo gravimetric analysis (TGA) showed higher weight loss initiation temperatures for nanofilled samples which is in agreement with the corona resistance experimental results. Theoretical models have also been developed in this work to complement the results of

  17. A resonant high voltage converter with C-type output filter

    SciTech Connect

    Viejo, C.B.; Garcia, M.A.P.; Secades, M.R.; Antolin, J.U.

    1995-12-31

    The delay line of a Traveling Wave Tube (TWT) needs a high dc voltage. A power converter with high transformation ratio is necessary to obtain high output voltage from low input voltage. As a result, a large number of turns is necessary for secondary windings and large leakage inductance and large parasitic capacitor appear. Thus, it is usual to design a resonant converter to include both leakage inductance and capacitance in the power topology. The present paper presents the design of a high voltage power supply for the delay line of a TWT using a resonant converter. All elements of the power supply (high voltage transformer, rectifier, filter and control) are designed taking high voltage and high frequency problems into account.

  18. Note: Complementary metal-oxide-semiconductor high voltage pulse generation circuits

    NASA Astrophysics Data System (ADS)

    Sun, Jiwei; Wang, Pingshan

    2013-10-01

    We present two types of on-chip pulse generation circuits. The first is based on CMOS pulse-forming-lines (PFLs). It includes a four-stage charge pump, a four-stacked-MOSFET switch and a 5 mm long PFL. The circuit is implemented in a 0.13 μm CMOS process. Pulses of ˜1.8 V amplitude with ˜135 ps duration on a 50 Ω load are obtained. The obtained voltage is higher than 1.6 V, the rated operating voltage of the process. The second is a high-voltage Marx generator which also uses stacked MOSFETs as high voltage switches. The output voltage is 11.68 V, which is higher than the highest breakdown voltage (˜10 V) of the CMOS process. These results significantly extend high-voltage pulse generation capabilities of CMOS technologies.

  19. Note: Complementary metal-oxide-semiconductor high voltage pulse generation circuits.

    PubMed

    Sun, Jiwei; Wang, Pingshan

    2013-10-01

    We present two types of on-chip pulse generation circuits. The first is based on CMOS pulse-forming-lines (PFLs). It includes a four-stage charge pump, a four-stacked-MOSFET switch and a 5 mm long PFL. The circuit is implemented in a 0.13 μm CMOS process. Pulses of ~1.8 V amplitude with ~135 ps duration on a 50 Ω load are obtained. The obtained voltage is higher than 1.6 V, the rated operating voltage of the process. The second is a high-voltage Marx generator which also uses stacked MOSFETs as high voltage switches. The output voltage is 11.68 V, which is higher than the highest breakdown voltage (~10 V) of the CMOS process. These results significantly extend high-voltage pulse generation capabilities of CMOS technologies. PMID:24182184

  20. Novel bandgap-based under-voltage-lockout methods with high reliability

    NASA Astrophysics Data System (ADS)

    Yongrui, Zhao; Xinquan, Lai

    2013-10-01

    Highly reliable bandgap-based under-voltage-lockout (UVLO) methods are presented in this paper. The proposed under-voltage state to signal conversion methods take full advantages of the high temperature stability characteristics and the enhancement low-voltage protection methods which protect the core circuit from error operation; moreover, a common-source stage amplifier method is introduced to expand the output voltage range. All of these methods are verified in a UVLO circuit fabricated with a 0.5 μm standard BCD process technology. The experimental result shows that the proposed bandgap method exhibits a good temperature coefficient of 20 ppm/°C, which ensures that the UVLO keeps a stable output until the under-voltage state changes. Moreover, at room temperature, the high threshold voltage VTH+ generated by the UVLO is 12.3 V with maximum drift voltage of ±80 mV, and the low threshold voltage VTH- is 9.5 V with maximum drift voltage of ±70 mV. Also, the low voltage protection method used in the circuit brings a high reliability when the supply voltage is very low.

  1. High voltage thermally diffused p(+)n solar cells

    NASA Technical Reports Server (NTRS)

    Faur, M.; Faur, M.; Flood, D. J.; Brinker, D. J.; Weinberg, I.; Goradia, C.; Fatemi, N.; Goradia, M.; Thesling, W.

    1991-01-01

    The possibility of fabricating thermally diffused p(+)n InP solar-cells with high open-circuit voltage without sacrificing the short circuit current is discussed. The p(+)n InP junctions were formed by Cd and Zn diffusion through a 3-5-nm-thick anodic or chemical phosphorus-rich oxide cap layer grown on n:InP:S (with ND-NA = 3.5 x 10 exp 16 and 4.5 x 10 exp 17/cu cm) Czochralski LEC-grown substrates. After thinning the emitter from its initial thickness of 1 to 2.5 micron down to 0.06-0.15 micron, the maximum efficiency was found when the emitter was 0.2 to 0.3 micron thick. Typical AM0, 25 C values of 854-860 mV were achieved for Voc, Jsc values were from 25.9 to 29.1 mA/sq cm using only the P-rich passivating layer left after the thinning process as an antireflection coating.

  2. An isolated data acquisition system for high voltage applications

    SciTech Connect

    Waitz, A.; Donaldson, A.

    1985-10-01

    This report describes the design and operation of a microcomputer controlled system for acquisition of both analog and binary data within the high voltage stages of a linac modulator. The system is comprised of a microprocessor Controller which communicates with the remote data Acquisition circuits via an optical bus. The bus, which uses a 1 MHz Manchester II format, is configured as a loop, starting at the Controller, daisy-chaining the remote cards and terminating back at the Controller. Upon receiving a linac timing pulse, the Controller sends addressed commands to the individual remote cards and receives data back. It then passes this data to the linac control system through a Multibus connection. Each remote circuit can return 16 binary sense and 7 (12 bit) analog parameters within 270 us. This speed is possible because of a pipelined design where one word is transmitted while another is being converted. A data conversion cycle is initiated when a remote data acquisition card receives the proper command and address from the controller.

  3. Isolated data acquisition system for high voltage applications

    SciTech Connect

    Waitz, A.; Donaldson, A.

    1985-06-01

    This report describes the design and operation of a microcomputer controlled system for acquisition of both analog and binary data within the high voltage stages of a linac modulator. The system is comprised of a microprocessor Controller which communicates with the remote data Acquisition circuits via an optical bus. The bus, which uses a 1 MHz Manchester II format, is configured as a loop, starting at the Controller, daisy-chaining the remote cards and terminating back at the Controller. Upon receiving a linac timing pulse, the Controller sends addressed commands to the individual remote cards and receives data back. It then passes this data to the linac control system through a Multibus connection. Each remote circuit can return 16 binary sense and 7 (12 bit) analog parameters within 270 us. This speed is possible because of a pipelined design where one word is transmitted while another is being converted. A data conversion cycle is initiated when a remote data acquisition card receives the proper command and address from the controller.

  4. Application of high voltage electric field (HVEF) drying technology in potato chips

    NASA Astrophysics Data System (ADS)

    Bai, Yaxiang; Shi, Hua; Yang, Yaxin

    2013-03-01

    In order to improve the drying efficiency and qualities of vegetable by high voltage electric field (HVEF), potato chips as a representative of vegetable was dried using a high voltage electric drying systems at 20°C. The shrinkage rate, water absorption and rehydration ratio of dried potato chips were measured. The results indicated that the drying rate of potato chips was significantly improved in the high voltage electric drying systems. The shrinkage rate of potato chips dried by high voltage electric field was 1.1% lower than that by oven drying method. And the rehydration rate of high voltage electric field was 24.6% higher than that by oven drying method. High voltage electric field drying is very advantageous and can be used as a substitute for traditional drying method.

  5. A new aluminium-ion battery with high voltage, high safety and low cost.

    PubMed

    Sun, Haobo; Wang, Wei; Yu, Zhijing; Yuan, Yan; Wang, Shuai; Jiao, Shuqiang

    2015-07-28

    A new kind of Al-ion battery with carbon paper as the cathode, high-purity Al foil as the anode and ionic liquid as the electrolyte is proposed in this work. The significance of the presented battery is going to be an extremely high average voltage plateau of ca. 1.8 V vs. Al(3+)/Al. PMID:26114195

  6. Design, conditioning, and performance of a high voltage, high brightness dc photoelectron gun with variable gap

    SciTech Connect

    Maxson, Jared; Bazarov, Ivan; Dunham, Bruce; Dobbins, John; Liu, Xianghong; Smolenski, Karl

    2014-09-15

    A new high voltage photoemission gun has been constructed at Cornell University which features a segmented insulator and a movable anode, allowing the cathode-anode gap to be adjusted. In this work, we describe the gun's overall mechanical and high voltage design, the surface preparation of components, as well as the clean construction methods. We present high voltage conditioning data using a 50 mm cathode-anode gap, in which the conditioning voltage exceeds 500 kV, as well as at smaller gaps. Finally, we present simulated emittance results obtained from a genetic optimization scheme using voltage values based on the conditioning data. These results indicate that for charges up to 100 pC, a 30 mm gap at 400 kV has equal or smaller 100% emittance than a 50 mm gap at 450 kV, and also a smaller core emittance, when placed as the source for the Cornell energy recovery linac photoinjector with bunch length constrained to be <3 ps rms. For 100 pC up to 0.5 nC charges, the 50 mm gap has larger core emittance than the 30 mm gap, but conversely smaller 100% emittance.

  7. Method and apparatus for connecting high voltage leads to a high temperature super-conducting transformer

    DOEpatents

    Golner, Thomas M.; Mehta, Shirish P.

    2005-07-26

    A method and apparatus for connecting high voltage leads to a super-conducting transformer is provided that includes a first super-conducting coil set, a second super-conducting coil set, and a third super-conducting coil set. The first, second and third super-conducting coil sets are connected via an insulated interconnect system that includes insulated conductors and insulated connectors that are utilized to connect the first, second, and third super-conducting coil sets to the high voltage leads.

  8. A 3.01-3.82 GHz CMOS LC voltage-controlled oscillator with 6.29% VCO-gain variation for WLAN applications

    NASA Astrophysics Data System (ADS)

    Xiaolong, Liu; Lei, Zhang; Li, Zhang; Yan, Wang; Zhiping, Yu

    2014-07-01

    A wideband low-phase-noise LC voltage-controlled oscillator (VCO) with low VCO gain (KVCO) variation for WLAN fractional-N frequency synthesizer application is proposed and designed on a 0.13-μm CMOS process. In order to achieve a low KVCO variation, an extra switched varactor array was added to the LC tank with the conventional switched capacitor array. Based on the proposed switched varactor array compensation technique, the measured KVCO is 43 MHz/V with only 6.29% variation across the entire tuning range. The proposed VCO provides a tuning range of 23.7% from 3.01 to 3.82 GHz, while consuming 9 mA of quiescent current from a 2.3 V supply. The VCO shows a low phase noise of -121.94 dBc/Hz at 1 MHz offset, from the 3.6 GHz carrier.

  9. Software reconfigurable highly flexible gain switched optical frequency comb source.

    PubMed

    Pascual, M Deseada Gutierrez; Zhou, Rui; Smyth, Frank; Anandarajah, Prince M; Barry, Liam P

    2015-09-01

    The authors present the performance and noise properties of a software reconfigurable, FSR and wavelength tunable gain switched optical frequency comb source. This source, based on the external injection of a temperature tuned Fabry-Pérot laser diode, offers quasi-continuous wavelength tunability over the C-band (30nm) and FSR tunability ranging from 6 to 14GHz. The results achieved demonstrate the excellent spectral quality of the comb tones (RIN ~-130dB/Hz and low phase noise of 300kHz) and its outstanding stability (with fluctuations of the individual comb tones of less than 0.5dB in power and 5pm in wavelength, characterized over 24hours) highlighting its suitability for employment in next generation flexible optical transmission networks. PMID:26368425

  10. NUTRIENT REQUIREMENTS OF HIGH-LEAN GAIN SWINE AT A HIGH ENVIRONMENTAL TEMPERATURE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High-lean gain swine initially averaging 85 kg were assigned to 96 individual pens and given one of six diets ranging in the ratio of Total Ileal Digestible (TID) Lysine:Metabolizable Energy (ME) of 1.23 to 2.28 g/MCal. Pigs and feed intake were weighed weekly and backfat was measured on two week i...

  11. High gain ytterbium doped Ge pedestal large pitch fiber

    NASA Astrophysics Data System (ADS)

    Gaida, Christian; Stutzki, Fabian; Jansen, Florian; Otto, Hans-Jürgen; Eidam, Tino; Jauregui, Cesar; Limpert, Jens; Tünnermann, Andreas

    2014-03-01

    Large mode area rod-type fibers have enabled amplification of ultra-short pulses to mJ pulse energy and MW peak powers. For very large mode field areas, fibers have to be designed as rigid rods with typical fiber lengths of around 1 m for efficient operation. A shorter fiber length can be desirable to reduce the packaging size of commercial systems and to decrease the impact of parasitic nonlinear effects for peakpower scaling. The fiber design presented here is based on a modified large-pitch fiber with an effectively higher ytterbium concentration in the fiber core. To achieve index matching the cladding index needs to be changed. In this contribution we propose to co-dope the passive host material with germanium to match both indices and to obtain a higher Yb-concentration within the active core. Compared to standard LPF, where the core index is reduced by co-doping the core with Flourine, the ytterbium doping concentration of this novel germanium-pedestal LPF is doubled. A detailed numerical and experimental investigation shows that with short fiber lengths <40cm is feasible to achieve output powers beyond 100W with 10W seed. Significantly higher gains, of nearly 30 dB, can be achieved for fiber lengths in the order of 60cm. A similar gain can be expected in a conventional LPF with 1.20 m length. In conclusion, we demonstrate a fiber design for significantly enhanced energy storage per fiber length and improved pump absorption. This concept will notably reduce the footprint of ultra-short fiber laser systems.

  12. High voltage holding in the negative ion sources with cesium deposition

    NASA Astrophysics Data System (ADS)

    Belchenko, Yu.; Abdrashitov, G.; Ivanov, A.; Sanin, A.; Sotnikov, O.

    2016-02-01

    High voltage holding of the large surface-plasma negative ion source with cesium deposition was studied. It was found that heating of ion-optical system electrodes to temperature >100 °C facilitates the source conditioning by high voltage pulses in vacuum and by beam shots. The procedure of electrode conditioning and the data on high-voltage holding in the negative ion source with small cesium seed are described. The mechanism of high voltage holding improvement by depletion of cesium coverage is discussed.

  13. High voltage holding in the negative ion sources with cesium deposition.

    PubMed

    Belchenko, Yu; Abdrashitov, G; Ivanov, A; Sanin, A; Sotnikov, O

    2016-02-01

    High voltage holding of the large surface-plasma negative ion source with cesium deposition was studied. It was found that heating of ion-optical system electrodes to temperature >100 °C facilitates the source conditioning by high voltage pulses in vacuum and by beam shots. The procedure of electrode conditioning and the data on high-voltage holding in the negative ion source with small cesium seed are described. The mechanism of high voltage holding improvement by depletion of cesium coverage is discussed. PMID:26932002

  14. Chandra Probes High-Voltage Auroras on Jupiter

    NASA Astrophysics Data System (ADS)

    2005-03-01

    Scientists have obtained new insight into the unique power source for many of Jupiter's auroras, the most spectacular and active auroras in the Solar System. Extended monitoring of the giant planet with NASA's Chandra X-ray Observatory detected the presence of highly charged particles crashing into the atmosphere above its poles. X-ray spectra measured by Chandra showed that the auroral activity was produced by ions of oxygen and other elements that were stripped of most of their electrons. This implies that these particles were accelerated to high energies in a multimillion-volt environment above the planet's poles. The presence of these energetic ions indicates that the cause of many of Jupiter's auroras is different from auroras produced on Earth or Saturn. Chandra X-ray Image of Jupiter Chandra X-ray Image of Jupiter "Spacecraft have not explored the region above the poles of Jupiter, so X-ray observations provide one of the few ways to probe that environment," said Ron Elsner of the NASA Marshall Space Flight Center in Huntsville, Alabama, and lead author on a recently published paper describing these results in the Journal for Geophysical Research. "These results will help scientists to understand the mechanism for the power output from Jupiter's auroras, which are a thousand times more powerful than those on Earth." Electric voltages of about 10 million volts, and currents of 10 million amps - a hundred times greater than the most powerful lightning bolts - are required to explain the X-ray observations. These voltages would also explain the radio emission from energetic electrons observed near Jupiter by the Ulysses spacecraft. Schematic of Jupiter's Auroral Activity Production Schematic of Jupiter's Auroral Activity Production On Earth, auroras are triggered by solar storms of energetic particles, which disturb Earth's magnetic field. Gusts of particles from the Sun can also produce auroras on Jupiter, but unlike Earth, Jupiter has another way of producing

  15. STABILITY OF HIGH VOLTAGE MODULATORS FOR NONLINEAR LOADS

    SciTech Connect

    PAWLEY,J.C; TOOKER,J; PEAVY,J; CARY,W.P; NEREM,A; HOYT,D; LOHR,J

    2003-10-01

    OAK-B135 Gyrotrons have a nonlinear voltage--current characteristic such that the small signal or ac impedance changes as operational voltage and currents are reached. The ac impedance determines the stability of a voltage or current control system. this can become particularly challenging when several gyrotron are connected in parallel to a single modulator. With all gyrotrons hooked to a common ground, large current loops can be generated as well as non-canceling currents in individual coaxial lines. These inequalities can provide the required feedback impulse to start an oscillation condition in the power system for the tubes. Recent operation of two CPI 110 GHz gyrotrons in the MN class from a single modulator on DIII-D has shown instability in the power system. An oscillation in the drive current occurs at various points in the ramp up and flat top portions of the 80 kV voltage pulse with each tube drawing 40 A at full voltage. Efforts to stabilize these instabilities are presented along with some modeling and examination of the issues for gyrotron modulators.

  16. The thermal regime around buried submarine high-voltage cables

    NASA Astrophysics Data System (ADS)

    Emeana, C. J.; Hughes, T. J.; Dix, J. K.; Gernon, T. M.; Henstock, T. J.; Thompson, C. E. L.; Pilgrim, J. A.

    2016-08-01

    The expansion of offshore renewable energy infrastructure and the need for trans-continental shelf power transmission require the use of submarine high-voltage (HV) cables. These cables have maximum operating surface temperatures of up to 70 °C and are typically buried 1-2 m beneath the seabed, within the wide range of substrates found on the continental shelf. However, the heat flow pattern and potential effects on the sedimentary environments around such anomalously high heat sources in the near-surface sediments are poorly understood. We present temperature measurements from a 2-D laboratory experiment representing a buried submarine HV cable, and identify the thermal regimes generated within typical unconsolidated shelf sediments-coarse silt, fine sand and very coarse sand. We used a large (2 × 2.5 m2) tank filled with water-saturated spherical glass beads (ballotini) and instrumented with a buried heat source and 120 thermocouples to measure the time-dependent 2-D temperature distributions. The observed and corresponding Finite Element Method simulations of the steady state heat flow regimes and normalized radial temperature distributions were assessed. Our results show that the heat transfer and thus temperature fields generated from submarine HV cables buried within a range of sediments are highly variable. Coarse silts are shown to be purely conductive, producing temperature increases of >10 °C up to 40 cm from the source of 60 °C above ambient; fine sands demonstrate a transition from conductive to convective heat transfer between cf. 20 and 36 °C above ambient, with >10 °C heat increases occurring over a metre from the source of 55 °C above ambient; and very coarse sands exhibit dominantly convective heat transfer even at very low (cf. 7 °C) operating temperatures and reaching temperatures of up to 18 °C above ambient at a metre from the source at surface temperatures of only 18 °C. These findings are important for the surrounding near

  17. The thermal regime around buried submarine high voltage cables

    NASA Astrophysics Data System (ADS)

    Emeana, C. J.; Hughes, T. J.; Dix, J. K.; Gernon, T. M.; Henstock, T. J.; Thompson, C. E. L.; Pilgrim, J. A.

    2016-05-01

    The expansion of offshore renewable energy infrastructure and the need for trans-continental shelf power transmission require the use of submarine High Voltage (HV) cables. These cables have maximum operating surface temperatures of up to 70°C and are typically buried 1-2 m beneath the seabed, within the wide range of substrates found on the continental shelf. However, the heat flow pattern and potential effects on the sedimentary environments around such anomalously high heat sources in the near surface sediments are poorly understood. We present temperature measurements from a 2D laboratory experiment representing a buried submarine HV cable, and identify the thermal regimes generated within typical unconsolidated shelf sediments-coarse silt, fine sand and very coarse sand. We used a large (2 × 2.5 m) tank filled with water-saturated spherical glass beads (ballotini) and instrumented with a buried heat source and 120 thermocouples, to measure the time-dependent 2D temperature distributions. The observed and corresponding Finite Element Method (FEM) simulations of the steady state heat flow regimes, and normalised radial temperature distributions were assessed. Our results show that the heat transfer and thus temperature fields generated from submarine HV cables buried within a range of sediments are highly variable. Coarse silts are shown to be purely conductive, producing temperature increases of >10°C up to 40 cm from the source of 60°C above ambient; fine sands demonstrate a transition from conductive to convective heat transfer between c. 20°C and 36°C above ambient, with >10°C heat increases occurring over a metre from the source of 55°C above ambient; and very coarse sands exhibit dominantly convective heat transfer even at very low (c. 7°C) operating temperatures and reaching temperatures of up to 18°C above ambient at a metre from the source at surface temperatures of only 18°C. These findings are important for the surrounding near surface

  18. 30 CFR 56.12071 - Movement or operation of equipment near high-voltage power lines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Movement or operation of equipment near high... NONMETAL MINES Electricity § 56.12071 Movement or operation of equipment near high-voltage power lines. When equipment must be moved or operated near energized high-voltage powerlines (other than...

  19. 30 CFR 56.12071 - Movement or operation of equipment near high-voltage power lines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Movement or operation of equipment near high... NONMETAL MINES Electricity § 56.12071 Movement or operation of equipment near high-voltage power lines. When equipment must be moved or operated near energized high-voltage powerlines (other than...

  20. 30 CFR 57.12071 - Movement or operation of equipment near high-voltage powerlines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Movement or operation of equipment near high... AND NONMETAL MINES Electricity Surface Only § 57.12071 Movement or operation of equipment near high-voltage powerlines. When equipment must be moved or operated near energized high-voltage powerlines...

  1. 30 CFR 56.12071 - Movement or operation of equipment near high-voltage power lines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Movement or operation of equipment near high... NONMETAL MINES Electricity § 56.12071 Movement or operation of equipment near high-voltage power lines. When equipment must be moved or operated near energized high-voltage powerlines (other than...

  2. 30 CFR 57.12071 - Movement or operation of equipment near high-voltage powerlines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Movement or operation of equipment near high... AND NONMETAL MINES Electricity Surface Only § 57.12071 Movement or operation of equipment near high-voltage powerlines. When equipment must be moved or operated near energized high-voltage powerlines...

  3. 30 CFR 57.12071 - Movement or operation of equipment near high-voltage powerlines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Movement or operation of equipment near high... AND NONMETAL MINES Electricity Surface Only § 57.12071 Movement or operation of equipment near high-voltage powerlines. When equipment must be moved or operated near energized high-voltage powerlines...

  4. High gain, low noise, fully complementary logic inverter based on bi-layer WSe2 field effect transistors

    NASA Astrophysics Data System (ADS)

    Das, Saptarshi; Dubey, Madan; Roelofs, Andreas

    2014-08-01

    In this article, first, we show that by contact work function engineering, electrostatic doping and proper scaling of both the oxide thickness and the flake thickness, high performance p- and n-type WSe2 field effect transistors (FETs) can be realized. We report record high drive current of 98 μA/μm for the electron conduction and 110 μA/μm for the hole conduction in Schottky barrier WSe2 FETs. Then, we combine high performance WSe2 PFET with WSe2 NFET in double gated transistor geometry to demonstrate a fully complementary logic inverter. We also show that by adjusting the threshold voltages for the NFET and the PFET, the gain and the noise margin of the inverter can be significantly enhanced. The maximum gain of our chemical doping free WSe2 inverter was found to be ˜25 and the noise margin was close to its ideal value of ˜2.5 V for a supply voltage of VDD = 5.0 V.

  5. High gain, low noise, fully complementary logic inverter based on bi-layer WSe{sub 2} field effect transistors

    SciTech Connect

    Das, Saptarshi; Roelofs, Andreas; Dubey, Madan

    2014-08-25

    In this article, first, we show that by contact work function engineering, electrostatic doping and proper scaling of both the oxide thickness and the flake thickness, high performance p- and n-type WSe{sub 2} field effect transistors (FETs) can be realized. We report record high drive current of 98 μA/μm for the electron conduction and 110 μA/μm for the hole conduction in Schottky barrier WSe{sub 2} FETs. Then, we combine high performance WSe{sub 2} PFET with WSe{sub 2} NFET in double gated transistor geometry to demonstrate a fully complementary logic inverter. We also show that by adjusting the threshold voltages for the NFET and the PFET, the gain and the noise margin of the inverter can be significantly enhanced. The maximum gain of our chemical doping free WSe{sub 2} inverter was found to be ∼25 and the noise margin was close to its ideal value of ∼2.5 V for a supply voltage of V{sub DD} = 5.0 V.

  6. Observation of Dust Stream Formation Produced by Low Current, High Voltage Cathode Spots

    NASA Technical Reports Server (NTRS)

    Foster, John E.

    2004-01-01

    Macro-particle acceleration driven by low current, high voltage cathode spots has been investigated. The phenomenon was observed to occur when nanometer and micrometer-sized particles in the presence of a discharge plasma were exposed to a high voltage pulse. The negative voltage pulse initiates the formation of multiple, high voltage, low current cathode spots which provides the mechanism of actual acceleration of the charged dust particles. Dust streams generated by this process were detected using laser scattering techniques. The particle impact craters observed at the surface of downstream witness badges were documented using SEM and light microscopy.

  7. Large-Scale High-Resolution Simulations of High Gain Direct-Drive ICF targets

    NASA Astrophysics Data System (ADS)

    Schmitt, Andrew J.

    2003-10-01

    High gain directly-driven targets have been designed using new concepts that mitigate the Richtmyer-Meshkov (RM) and Rayleigh-Taylor (RT) instabilities. Two-dimensional simulations of pellets using these techniques (e.g., "picket" laser pulses) show that high (>100) gain can survive in the face of the hydro instabilities seeded by laser and pellet imperfections. These new designs appear to be substantially more robust than earlier designs. We are using the highly-parallelized sliding-zone Eulerian FAST radiation hydrocode to study yield degradation in these designs. The special challenge in performing these simulations for direct-drive laser ICF is that both high resolution and large dynamic range are needed. High resolution of the whole target is needed to represent all of the scales important during the implosion. A large dynamic range is required to resolve the initially tiny surface and imprint perturbations that grow exponentially during acceleration. We find that the rapid growth of the shell perturbations during the acceleration phase is in good agreement with simple RT modeling before significant nonlinearity occurs. However, the Richtmyer-Meshkov growth during the early pellet compression phase poses a challenge particularly for multimode simulations because of the extremely small initial amplitude for each mode. We will present the results from large-scale pellet implosion simulations, and discuss the challenges and progress achieved in the numerical modeling of these high gain designs.

  8. Fast Rise Time and High Voltage Nanosecond Pulses at High Pulse Repetition Frequency

    NASA Astrophysics Data System (ADS)

    Miller, Kenneth E.; Ziemba, Timothy; Prager, James; Picard, Julian; Hashim, Akel

    2015-09-01

    Eagle Harbor Technologies (EHT), Inc. is conducting research to decrease the rise time and increase the output voltage of the EHT Nanosecond Pulser product line, which allows for independently, user-adjustable output voltage (0 - 20 kV), pulse width (20 - 500 ns), and pulse repetition frequency (0 - 100 kHz). The goals are to develop higher voltage pulses (50 - 60 kV), decrease the rise time from 20 to below 10 ns, and maintain the high pulse repetition capabilities. These new capabilities have applications to pseudospark generation, corona production, liquid discharges, and nonlinear transmission line driving for microwave production. This work is supported in part by the US Navy SBIR program.

  9. High-voltage, high-power, solid-state remote power controllers for aerospace applications

    NASA Technical Reports Server (NTRS)

    Sturman, J. C.

    1985-01-01

    Two general types of remote power controller (RPC) that combine the functions of a circuit breaker and a switch were developed for use in direct-current (dc) aerospace systems. Power-switching devices used in these designs are the relatively new gate-turnoff thyristor (GTO) and poweer metal-oxide-semiconductor field-effect transistors (MOSFET). The various RPC's can switch dc voltages to 1200 V and currents to 100 A. Seven different units were constructed and subjected to comprehensive laboratory and thermal vacuum testing. Two of these were dual units that switch both positive and negative voltages simultaneously. The RPC's using MOSFET's have slow turnon and turnoff times to limit voltage spiking from high di/dt. The GTO's have much faster transition times. All RPC's have programmable overload tripout and microsecond tripout for large overloads. The basic circuits developed can be used to build switchgear limited only by the ratings of the switching device used.

  10. ASE suppression in high-gain solid-state amplifiers by a leak method

    NASA Astrophysics Data System (ADS)

    Zhang, Yongliang; Ye, Haixian; Li, Mingzhong; Zheng, Jiangang; Wei, Xiaofeng; Gao, Song; Deng, Qinghua; Jiang, Xinying; Yan, Xiongwei; Wang, Zhenguo

    2013-07-01

    A leak method was developed to suppress amplified spontaneous emission (ASE) in large-aperture high-gain solid-state amplifiers. The gain medium edges are processed into an arris. The ASE ray will undergo reflection several times at the arris surface when it propagates to the gain medium edges, and most of its power will leak out. This leak method was tested in an experiment, in which a piece of commonly used gain medium was processed for contrast. The maximal increase of the gain value was 5.26% with the maximal pump power.

  11. An S-band high gain relativistic klystron amplifier with high phase stability

    SciTech Connect

    Wu, Y.; Li, Z. H.; Xu, Z.; Ma, Q. S.; Xie, H. Q.

    2014-11-15

    For the purpose of coherent high power microwave combining, an S-band high gain relativistic klystron amplifier with high phase stability is presented and studied. By the aid of 3D particle-in-cell code and circuit simulation software, the mechanism of parasitic oscillation in the device is investigated. And the RF lossy material is adopted in the simulation and experiment to suppress the oscillation. The experimental results show that with an input RF power of 10 kW, a microwave pulse with power of 1.8 GW is generated with a gain of 52.6 dB. And the relative phase difference fluctuation between output microwave and input RF signal is less than ±10° in 90 ns.

  12. Radio-frequency powered glow discharge device and method with high voltage interface

    DOEpatents

    Duckworth, Douglas C.; Marcus, R. Kenneth; Donohue, David L.; Lewis, Trousdale A.

    1994-01-01

    A high voltage accelerating potential, which is supplied by a high voltage direct current power supply, is applied to the electrically conducting interior wall of an RF powered glow discharge cell. The RF power supply desirably is electrically grounded, and the conductor carrying the RF power to the sample held by the probe is desirably shielded completely excepting only the conductor's terminal point of contact with the sample. The high voltage DC accelerating potential is not supplied to the sample. A high voltage capacitance is electrically connected in series between the sample on the one hand and the RF power supply and an impedance matching network on the other hand. The high voltage capacitance isolates the high DC voltage from the RF electronics, while the RF potential is passed across the high voltage capacitance to the plasma. An inductor protects at least the RF power supply, and desirably the impedance matching network as well, from a short that might occur across the high voltage capacitance. The discharge cell and the probe which holds the sample are configured and disposed to prevent the probe's components, which are maintained at ground potential, from bridging between the relatively low vacuum region in communication with the glow discharge maintained within the cell on the one hand, and the relatively high vacuum region surrounding the probe and cell on the other hand. The probe and cell also are configured and disposed to prevent the probe's components from electrically shorting the cell's components.

  13. Radio-frequency powered glow discharge device and method with high voltage interface

    DOEpatents

    Duckworth, D.C.; Marcus, R.K.; Donohue, D.L.; Lewis, T.A.

    1994-06-28

    A high voltage accelerating potential, which is supplied by a high voltage direct current power supply, is applied to the electrically conducting interior wall of an RF powered glow discharge cell. The RF power supply desirably is electrically grounded, and the conductor carrying the RF power to the sample held by the probe is desirably shielded completely excepting only the conductor's terminal point of contact with the sample. The high voltage DC accelerating potential is not supplied to the sample. A high voltage capacitance is electrically connected in series between the sample on the one hand and the RF power supply and an impedance matching network on the other hand. The high voltage capacitance isolates the high DC voltage from the RF electronics, while the RF potential is passed across the high voltage capacitance to the plasma. An inductor protects at least the RF power supply, and desirably the impedance matching network as well, from a short that might occur across the high voltage capacitance. The discharge cell and the probe which holds the sample are configured and disposed to prevent the probe's components, which are maintained at ground potential, from bridging between the relatively low vacuum region in communication with the glow discharge maintained within the cell on the one hand, and the relatively high vacuum region surrounding the probe and cell on the other hand. The probe and cell also are configured and disposed to prevent the probe's components from electrically shorting the cell's components. 11 figures.

  14. Development of a novel voltage divider for measurement of sub-nanosecond rise time high voltage pulses

    NASA Astrophysics Data System (ADS)

    Mitra, S.; Senthil, K.; Singh, S. K.; Kumar, Ranjeet; Sharma, Archana

    2016-02-01

    This paper is about the development of a copper sulphate based aqueous-electrolytic voltage divider for the measurement of high voltage pulses, 100 kV, with pulse widths of 1-2 ns and rise time <1 ns. Novel features are incorporated in the design of the divider, to meet the performance requirements for the application. Analytical calculations to justify design are described. Structural simulation of the divider is carried out using field wave simulation software to verify the effectiveness. A calibration procedure has been developed to calibrate the divider. Results obtained during calibration are subjected to statistical analysis to determine the confidence of measurement. Details of design, analysis, and simulation are described in this paper.

  15. Performance of a remote High Voltage power supply for the Phase II upgrade of the ATLAS Tile Calorimeter

    NASA Astrophysics Data System (ADS)

    Vazeille, F.

    2016-02-01

    The experience gained in the operation of the present High Voltage system of the Tile calorimeter in the ATLAS detector and the new HL-LHC constraints, in particular the increase of the radiation, lead to the proposal of changing the currently embedded regulation system to be a remote system in the counting room, by adding easily new functionalities. The system described in this note is using the same regulation scheme as the current one and distributes the individual High Voltage settings with 100 m long multi-conductor cables. The tests show that it reaches the same good performance in terms of regulation stability and noise, while allowing a permanent access to the electronics.

  16. Unlikely Combination of Experiments with a Novel High-Voltage CIGS Photovoltaic Array (Presentation)

    SciTech Connect

    del Cueto, J. A.; Sekulic, B. R.

    2006-05-01

    The goals of this study are to: (1) parameterize current-voltage (I-V) performance over a wide range of illumination and temperatures: (a) 50-1150 W/m{sup 2} irradiance, 5-65 C; (b) obtain array temperature coefficients; and (c) quantify energy production; (2) investigate high-voltage leakage currents from the CIS modules in a high-voltage array: determine dependence on moisture, temperature, and voltage bias and ascertain corrosion problems if any; and (3) study long-term power and energy production stability.

  17. 30 CFR 18.54 - High-voltage continuous mining machines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false High-voltage continuous mining machines. 18.54..., EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Construction and Design Requirements § 18.54 High-voltage continuous mining machines. (a) Separation of...

  18. 30 CFR 18.54 - High-voltage continuous mining machines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false High-voltage continuous mining machines. 18.54..., EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Construction and Design Requirements § 18.54 High-voltage continuous mining machines. (a) Separation of...

  19. 30 CFR 18.54 - High-voltage continuous mining machines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false High-voltage continuous mining machines. 18.54..., EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Construction and Design Requirements § 18.54 High-voltage continuous mining machines. (a) Separation of...

  20. 30 CFR 75.705 - Work on high-voltage lines; deenergizing and grounding.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... grounding. 75.705 Section 75.705 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Grounding § 75.705 Work on high-voltage lines; deenergizing and grounding. High-voltage lines, both on the surface...

  1. 30 CFR 75.811 - High-voltage underground equipment; grounding.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false High-voltage underground equipment; grounding. 75.811 Section 75.811 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... Distribution § 75.811 High-voltage underground equipment; grounding. Frames, supporting structures...

  2. 30 CFR 75.705 - Work on high-voltage lines; deenergizing and grounding.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... grounding. 75.705 Section 75.705 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Grounding § 75.705 Work on high-voltage lines; deenergizing and grounding. High-voltage lines, both on the surface...

  3. 30 CFR 77.802 - Protection of high-voltage circuits; neutral grounding resistors; disconnecting devices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... grounding resistors; disconnecting devices. 77.802 Section 77.802 Mineral Resources MINE SAFETY AND HEALTH... of high-voltage circuits; neutral grounding resistors; disconnecting devices. High-voltage circuits... grounded through a suitable resistor at the source transformers, and a grounding circuit, originating...

  4. 30 CFR 77.704 - Work on high-voltage lines; deenergizing and grounding.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Work on high-voltage lines; deenergizing and grounding. 77.704 Section 77.704 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF... OF UNDERGROUND COAL MINES Grounding § 77.704 Work on high-voltage lines; deenergizing and...

  5. 30 CFR 75.811 - High-voltage underground equipment; grounding.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-voltage underground equipment; grounding. 75.811 Section 75.811 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... Distribution § 75.811 High-voltage underground equipment; grounding. Frames, supporting structures...

  6. 30 CFR 77.704 - Work on high-voltage lines; deenergizing and grounding.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Work on high-voltage lines; deenergizing and grounding. 77.704 Section 77.704 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF... OF UNDERGROUND COAL MINES Grounding § 77.704 Work on high-voltage lines; deenergizing and...

  7. 30 CFR 77.802 - Protection of high-voltage circuits; neutral grounding resistors; disconnecting devices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... grounding resistors; disconnecting devices. 77.802 Section 77.802 Mineral Resources MINE SAFETY AND HEALTH... of high-voltage circuits; neutral grounding resistors; disconnecting devices. High-voltage circuits... grounded through a suitable resistor at the source transformers, and a grounding circuit, originating...

  8. 30 CFR 57.12071 - Movement or operation of equipment near high-voltage powerlines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... AND NONMETAL MINES Electricity Surface Only § 57.12071 Movement or operation of equipment near high-voltage powerlines. When equipment must be moved or operated near energized high-voltage powerlines (other... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Movement or operation of equipment near...

  9. 30 CFR 57.12071 - Movement or operation of equipment near high-voltage powerlines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... AND NONMETAL MINES Electricity Surface Only § 57.12071 Movement or operation of equipment near high-voltage powerlines. When equipment must be moved or operated near energized high-voltage powerlines (other... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Movement or operation of equipment near...

  10. High voltage transformers. (Latest citations from the Inspec database). NewSearch

    SciTech Connect

    Not Available

    1994-11-01

    The bibliography contains citations concerning materials and performance of insulators used for high voltage transformers. Topics examine use of mica-fibers, gases, mica filled epoxies, and ceramics. Effects of insulation aging are reviewed, and acceptance testing of high voltage power transformers and apparatus is also examined. (Contains a minimum of 104 citations and includes a subject term index and title list.)

  11. 30 CFR 77.807 - Installation of high-voltage transmission cables.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Installation of high-voltage transmission cables. 77.807 Section 77.807 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF... transmission cables. High-voltage transmission cables shall be installed or placed so as to afford...

  12. 21 CFR 892.1700 - Diagnostic x-ray high voltage generator.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Diagnostic x-ray high voltage generator. 892.1700 Section 892.1700 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... generator. (a) Identification. A diagnostic x-ray high voltage generator is a device that is intended...

  13. 21 CFR 892.1700 - Diagnostic x-ray high voltage generator.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Diagnostic x-ray high voltage generator. 892.1700 Section 892.1700 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... generator. (a) Identification. A diagnostic x-ray high voltage generator is a device that is intended...

  14. 21 CFR 892.1700 - Diagnostic x-ray high voltage generator.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Diagnostic x-ray high voltage generator. 892.1700 Section 892.1700 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... generator. (a) Identification. A diagnostic x-ray high voltage generator is a device that is intended...

  15. 21 CFR 892.1700 - Diagnostic x-ray high voltage generator.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Diagnostic x-ray high voltage generator. 892.1700 Section 892.1700 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... generator. (a) Identification. A diagnostic x-ray high voltage generator is a device that is intended...

  16. 21 CFR 892.1700 - Diagnostic x-ray high voltage generator.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Diagnostic x-ray high voltage generator. 892.1700 Section 892.1700 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... generator. (a) Identification. A diagnostic x-ray high voltage generator is a device that is intended...

  17. 49 CFR 229.85 - High voltage markings: doors, cover plates, or barriers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false High voltage markings: doors, cover plates, or barriers. 229.85 Section 229.85 Transportation Other Regulations Relating to Transportation (Continued... Requirements Electrical System § 229.85 High voltage markings: doors, cover plates, or barriers. All...

  18. 49 CFR 229.85 - High voltage markings: doors, cover plates, or barriers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false High voltage markings: doors, cover plates, or barriers. 229.85 Section 229.85 Transportation Other Regulations Relating to Transportation (Continued... Requirements Electrical System § 229.85 High voltage markings: doors, cover plates, or barriers. All...

  19. 49 CFR 229.85 - High voltage markings: doors, cover plates, or barriers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false High voltage markings: doors, cover plates, or barriers. 229.85 Section 229.85 Transportation Other Regulations Relating to Transportation (Continued... Requirements Electrical System § 229.85 High voltage markings: doors, cover plates, or barriers. All...

  20. High voltage bus and auxiliary heater control system for an electric or hybrid vehicle

    SciTech Connect

    Murty, B.V.

    2000-03-21

    A control system for an electric or hybrid electric vehicle includes a vehicle system controller and a control circuit having an electric immersion heater. The heater is electrically connected to the vehicle's high voltage bus and is thermally coupled to a coolant loop containing a heater core for the vehicle's climate control system. The system controller responds to cabin heat requests from the climate control system by generating a pulse width modulated signal that is used by the control circuit to operate the heater at a duty cycle appropriate for the amount of cabin heating requested. The control system also uses the heater to dissipate excess energy produced by an auxiliary power unit and to provide electric braking when regenerative braking is not desirable and manual braking is not necessary. The control system further utilizes the heater to provide a safe discharge of a bank of energy storage capacitors following disconnection of the battery or one of the high voltage connectors used to transmit high voltage operating power to the various vehicle systems. The control circuit includes a high voltage clamping circuit that monitors the voltage on the bus and operates the heater to clamp down the bus voltage when it exceeds a pre-selected maximum voltage. The control system can also be used to phase in operation of the heater when the bus voltage exceeds a lower threshold voltage and can be used to phase out the auxiliary power unit charging and regenerative braking when the battery becomes fully charged.