Science.gov

Sample records for high wind penetration

  1. Impact of High Wind Power Penetration on Hydroelectric Unit Operations

    SciTech Connect

    Hodge, B. M.; Lew, D.; Milligan, M.

    2011-01-01

    The Western Wind and Solar Integration Study (WWSIS) investigated the operational impacts of very high levels of variable generation penetration rates (up to 35% by energy) in the western United States. This work examines the impact of this large amount of wind penetration on hydroelectric unit operations. Changes in hydroelectric unit operating unit patterns are examined for an aggregation of all hydro generators. The cost impacts of maintaining hydro unit flexibility are assessed and compared for a number of different modes of system operation.

  2. Microgrid optimal scheduling considering impact of high penetration wind generation

    NASA Astrophysics Data System (ADS)

    Alanazi, Abdulaziz

    The objective of this thesis is to study the impact of high penetration wind energy in economic and reliable operation of microgrids. Wind power is variable, i.e., constantly changing, and nondispatchable, i.e., cannot be controlled by the microgrid controller. Thus an accurate forecasting of wind power is an essential task in order to study its impacts in microgrid operation. Two commonly used forecasting methods including Autoregressive Integrated Moving Average (ARIMA) and Artificial Neural Network (ANN) have been used in this thesis to improve the wind power forecasting. The forecasting error is calculated using a Mean Absolute Percentage Error (MAPE) and is improved using the ANN. The wind forecast is further used in the microgrid optimal scheduling problem. The microgrid optimal scheduling is performed by developing a viable model for security-constrained unit commitment (SCUC) based on mixed-integer linear programing (MILP) method. The proposed SCUC is solved for various wind penetration levels and the relationship between the total cost and the wind power penetration is found. In order to reduce microgrid power transfer fluctuations, an additional constraint is proposed and added to the SCUC formulation. The new constraint would control the time-based fluctuations. The impact of the constraint on microgrid SCUC results is tested and validated with numerical analysis. Finally, the applicability of proposed models is demonstrated through numerical simulations.

  3. Operation of Power Grids with High Penetration of Wind Power

    NASA Astrophysics Data System (ADS)

    Al-Awami, Ali Taleb

    The integration of wind power into the power grid poses many challenges due to its highly uncertain nature. This dissertation involves two main components related to the operation of power grids with high penetration of wind energy: wind-thermal stochastic dispatch and wind-thermal coordinated bidding in short-term electricity markets. In the first part, a stochastic dispatch (SD) algorithm is proposed that takes into account the stochastic nature of the wind power output. The uncertainty associated with wind power output given the forecast is characterized using conditional probability density functions (CPDF). Several functions are examined to characterize wind uncertainty including Beta, Weibull, Extreme Value, Generalized Extreme Value, and Mixed Gaussian distributions. The unique characteristics of the Mixed Gaussian distribution are then utilized to facilitate the speed of convergence of the SD algorithm. A case study is carried out to evaluate the effectiveness of the proposed algorithm. Then, the SD algorithm is extended to simultaneously optimize the system operating costs and emissions. A modified multi-objective particle swarm optimization algorithm is suggested to identify the Pareto-optimal solutions defined by the two conflicting objectives. A sensitivity analysis is carried out to study the effect of changing load level and imbalance cost factors on the Pareto front. In the second part of this dissertation, coordinated trading of wind and thermal energy is proposed to mitigate risks due to those uncertainties. The problem of wind-thermal coordinated trading is formulated as a mixed-integer stochastic linear program. The objective is to obtain the optimal tradeoff bidding strategy that maximizes the total expected profits while controlling trading risks. For risk control, a weighted term of the conditional value at risk (CVaR) is included in the objective function. The CVaR aims to maximize the expected profits of the least profitable scenarios, thus

  4. High Wind Penetration Impact on U.S. Wind Manufacturing Capacity and Critical Resources

    SciTech Connect

    Laxson, A.; Hand, M. M.; Blair, N.

    2006-10-01

    This study used two different models to analyze a number of alternative scenarios of annual wind power capacity expansion to better understand the impacts of high levels of wind generated electricity production on wind energy manufacturing and installation rates.

  5. Impact of High Wind Power Penetration on Hydroelectric Unit Operations in the WWSIS

    SciTech Connect

    Hodge, B.-M.; Lew, D.; Milligan, M.

    2011-07-01

    This report examines the impact of this large amount of wind penetration on hydroelectric unit operations. Changes in hydroelectric unit operating patterns are examined both for an aggregation of all hydro generators and for select individual plants.

  6. Impact of High Wind Power Penetration on Hydroelectric Unit Operations: Preprint

    SciTech Connect

    Hodge, B. M.; Lew, D.; Milligan, M.

    2011-10-01

    This paper examines the impact of this large amount of wind penetration on hydroelectric unit operations. Changes in hydroelectric unit operating unit patterns are examined for an aggregation of all hydro generators.

  7. Reactive power planning under high penetration of wind energy using Benders decomposition

    DOE PAGESBeta

    Xu, Yan; Wei, Yanli; Fang, Xin; Li, Fangxing; Azim, Riyasat

    2015-11-05

    This study addresses the optimal allocation of reactive power volt-ampere reactive (VAR) sources under the paradigm of high penetration of wind energy. Reactive power planning (RPP) in this particular condition involves a high level of uncertainty because of wind power characteristic. To properly model wind generation uncertainty, a multi-scenario framework optimal power flow that considers the voltage stability constraint under the worst wind scenario and transmission N 1 contingency is developed. The objective of RPP in this study is to minimise the total cost including the VAR investment cost and the expected generation cost. Therefore RPP under this condition ismore » modelled as a two-stage stochastic programming problem to optimise the VAR location and size in one stage, then to minimise the fuel cost in the other stage, and eventually, to find the global optimal RPP results iteratively. Benders decomposition is used to solve this model with an upper level problem (master problem) for VAR allocation optimisation and a lower problem (sub-problem) for generation cost minimisation. Impact of the potential reactive power support from doubly-fed induction generator (DFIG) is also analysed. Lastly, case studies on the IEEE 14-bus and 118-bus systems are provided to verify the proposed method.« less

  8. Reactive power planning under high penetration of wind energy using Benders decomposition

    SciTech Connect

    Xu, Yan; Wei, Yanli; Fang, Xin; Li, Fangxing; Azim, Riyasat

    2015-11-05

    This study addresses the optimal allocation of reactive power volt-ampere reactive (VAR) sources under the paradigm of high penetration of wind energy. Reactive power planning (RPP) in this particular condition involves a high level of uncertainty because of wind power characteristic. To properly model wind generation uncertainty, a multi-scenario framework optimal power flow that considers the voltage stability constraint under the worst wind scenario and transmission N 1 contingency is developed. The objective of RPP in this study is to minimise the total cost including the VAR investment cost and the expected generation cost. Therefore RPP under this condition is modelled as a two-stage stochastic programming problem to optimise the VAR location and size in one stage, then to minimise the fuel cost in the other stage, and eventually, to find the global optimal RPP results iteratively. Benders decomposition is used to solve this model with an upper level problem (master problem) for VAR allocation optimisation and a lower problem (sub-problem) for generation cost minimisation. Impact of the potential reactive power support from doubly-fed induction generator (DFIG) is also analysed. Lastly, case studies on the IEEE 14-bus and 118-bus systems are provided to verify the proposed method.

  9. Effective Ancillary Services Market Designs on High Wind Power Penetration Systems: Preprint

    SciTech Connect

    Ela, E.; Kirby, B.; Navid, N.; Smith, J. C.

    2011-12-01

    This paper focuses on how the ancillary service market designs are implemented and how they may require changes on systems with greater penetrations of variable renewable energy suppliers, in particular wind power. Ancillary services markets have been developed in many of the restructured power system regions throughout the world. Ancillary services include the services that support the provision of energy to support power system reliability. The ancillary services markets are tied tightly to the design of the energy market and to the physics of the system and therefore careful consideration of power system economics and engineering must be considered in their design. This paper focuses on how the ancillary service market designs are implemented and how they may require changes on systems with greater penetrations of variable renewable energy suppliers, in particular wind power.

  10. Eastern Renewable Generation Integration Study: Flexibility and High Penetrations of Wind and Solar; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    Bloom, Aaron; Townsend, Aaron; Palchak, David

    2015-07-29

    Balancing wind and solar in a model is relatively easy. All you need to do is assume a very large system with infinite flexibility! But what if you don't have an infinitely flexible system? What if there are thousands of generators nestled in a handful of regions that are unlikely to change their operational practices? Would you still have enough flexibility to balance hundreds of gigawatts of wind and solar at a 5 minute level? At NREL, we think we can, and our industry partners agree. This presentation was presented at the IEEE Power and Energy Society General Meeting by Aaron Bloom, highlighting results of the Eastern Renewable Generation Integration Study.

  11. Penetration of wind electric conversion systems into the utility grid

    SciTech Connect

    Vachtsevanos, G.J.; Kalaitzakis, K.C.

    1985-07-01

    This paper is concerned with the development of appropriate models for the interconnected operation of wind generator clusters with an autonomous power system and simulation techniques for the study of the degree of penetration of such wind electric conversion devices when operating in parallel with the utility grid. The quality of the interconnected system performance is specified in terms of operational constraints and the resultant penetration strategy is implemented via a microprocessor-based control scheme. The strategy assures a satisfactory level of system performance while optimizing the available energy transfer from the wind generators to the utility grid.

  12. Flight penetration of wind shear: Control strategies

    NASA Technical Reports Server (NTRS)

    Joshi, Amit S.

    1988-01-01

    Wind shear is a dangerous condition where there is a sharp change in the direction and magnitude of the wind velocity over a short distance or time. This condition is especially dangerous to aircraft during landing and takeoff and can cause a sudden loss of lift and thereby height at a critical time. A numerical simulation showed the effective performance of the Linear Quadratic Regulator and the Nonlinear Inverse Dynamics controllers. The major conclusions are listed and discussed.

  13. Evaluation of Production Cost Savings from Consolidation of Balancing Authorities in the US Western Interconnection under High Wind and Solar Penetration

    SciTech Connect

    Nguyen, Tony B.; Samaan, Nader A.; Jin, Chunlian

    2014-12-24

    This paper introduces a comprehensive analysis to quantify the potential savings in production cost due to consolidation of 32 US western interconnection Balancing Authorities (BAs). Three simulation scenarios are developed: current Western Electricity Coordinating Council (WECC) BAs structure, full copper-sheet consolidation, and full consolidation with transmission congestion considered. The study uses WECC Transmission Expansion Planning Policy Committee (TEPPC) model that was developed for the year 2020. The model assumes 8% wind and 3% solar energy penetration as percentage of total WECC demand in 2020. Sensitivity analyses are carried out to assess the impact of transmission hurdle rates between WECC BAs on potential benefits. The study shows savings that ranges from $400 Million (2.4% of total one year production cost) to $600 Million (3.2%) per year in thermal units production cost due to consolidation can be achieved. The copper sheet consolidation scenario shows an extra savings of $240 Million (1.4%) per year.

  14. System-wide emissions implications of increased wind power penetration.

    SciTech Connect

    Valentino, L.; Valenzuela, V.; Botterud, A.; Zhou, Z.; Conzelmann, G.

    2012-01-01

    This paper discusses the environmental effects of incorporating wind energy into the electric power system. We present a detailed emissions analysis based on comprehensive modeling of power system operations with unit commitment and economic dispatch for different wind penetration levels. First, by minimizing cost, the unit commitment model decides which thermal power plants will be utilized based on a wind power forecast, and then, the economic dispatch model dictates the level of production for each unit as a function of the realized wind power generation. Finally, knowing the power production from each power plant, the emissions are calculated. The emissions model incorporates the effects of both cycling and start-ups of thermal power plants in analyzing emissions from an electric power system with increasing levels of wind power. Our results for the power system in the state of Illinois show significant emissions effects from increased cycling and particularly start-ups of thermal power plants. However, we conclude that as the wind power penetration increases, pollutant emissions decrease overall due to the replacement of fossil fuels.

  15. Jet penetration of high explosive

    SciTech Connect

    Poulsen, P

    1999-08-11

    It is found that a transition between two flow patterns takes place in thick HE targets. In this case, the jet will initially propagate into the HE at the same rate as into an inert material of the same density. The part of the jet that has stagnated and is flowing nearly co-axially with the incoming jet (but at a much lower speed) is being forced toward the surface of the incoming jet by the pressure of the reaction products but has not as yet made contact. After it makes contact, both axial and perpendicular momentum transfer takes place between the two jet components. After this transition, a new steady state will develop for the propagating jet, with the unperturbed front of the jet propagating at a slower rate than previously. The perturbed front of the jet is still propagating at or near the original rate, having had relatively little axial momentum exchange. However, it has acquired radial momentum and is spreading out as it is propagating; it is therefore becoming less capable of penetrating downstream targets. It is the unperturbed part of the jet that is capable of penetrating downstream targets. A calculational method for predicting this case is presented in this report.

  16. Sunshot Initiative High Penetration Solar Portal

    DOE Data Explorer

    The DOE SunShot Initiative is a collaborative national initiative to make solar energy cost-competitive with other forms of energy by the end of the decade. Reducing the installed cost of solar energy systems by about 75% will drive widespread large-scale adoption of this renewable energy and restore U.S. leadership in the global clean energy race. The High Penetration Solar Portal was created as a resource to aggregate the most relevant and timely information related to high penetration solar scenarios and integrating solar into the grid. The site is designed so that utilities, grant awardees, regulators, researchers, and other solar professionals can easily share data, case studies, lessons learned, and demonstration project findings. [from https://solarhighpen.energy.gov/about_the_high_penetration_solar_portal

  17. Sub-Hourly Impacts of High Solar Penetrations in the Western United States: Preprint

    SciTech Connect

    Lew, D.; Brinkman, G.; Ibanez, E.; Hummon, M.; Hodge, B. M.; Heaney, M.; King, J.

    2012-09-01

    This paper presents results of analysis on the sub-hourly impacts of high solar penetrations from the Western Wind and Solar Integration Study Phase 2. Extreme event analysis showed that most large ramps were due to sunrise and sunset events, which have a significant predictability component. Variability in general was much higher in the high-solar versus high-wind scenario. Reserve methodologies that had already been developed for wind were therefore modified to take into account the predictability component of solar variability.

  18. Final Technical Report: Distributed Controls for High Penetrations of Renewables

    SciTech Connect

    Byrne, Raymond H.; Neely, Jason C.; Rashkin, Lee J.; Trudnowski, Daniel J.; Wilson, David G.

    2015-12-01

    The goal of this effort was to apply four potential control analysis/design approaches to the design of distributed grid control systems to address the impact of latency and communications uncertainty with high penetrations of photovoltaic (PV) generation. The four techniques considered were: optimal fixed structure control; Nyquist stability criterion; vector Lyapunov analysis; and Hamiltonian design methods. A reduced order model of the Western Electricity Coordinating Council (WECC) developed for the Matlab Power Systems Toolbox (PST) was employed for the study, as well as representative smaller systems (e.g., a two-area, three-area, and four-area power system). Excellent results were obtained with the optimal fixed structure approach, and the methodology we developed was published in a journal article. This approach is promising because it offers a method for designing optimal control systems with the feedback signals available from Phasor Measurement Unit (PMU) data as opposed to full state feedback or the design of an observer. The Nyquist approach inherently handles time delay and incorporates performance guarantees (e.g., gain and phase margin). We developed a technique that works for moderate sized systems, but the approach does not scale well to extremely large system because of computational complexity. The vector Lyapunov approach was applied to a two area model to demonstrate the utility for modeling communications uncertainty. Application to large power systems requires a method to automatically expand/contract the state space and partition the system so that communications uncertainty can be considered. The Hamiltonian Surface Shaping and Power Flow Control (HSSPFC) design methodology was selected to investigate grid systems for energy storage requirements to support high penetration of variable or stochastic generation (such as wind and PV) and loads. This method was applied to several small system models.

  19. Shape optimization of high-speed penetrators: a review

    NASA Astrophysics Data System (ADS)

    Ben-Dor, Gabi; Dubinsky, Anatoly; Elperin, Tov

    2012-12-01

    In spite of a large number of publications on shape optimization of penetrating projectiles there are no dedicated surveys of these studies. The goal of the present review is to close this gap. The review includes more than 50 studies published since 1980 and devoted to solving particular problems of shape optimization of high-speed penetrators. We analyze publications which employed analytical and numerical method for shape optimization of high-speed penetrators against concrete, metal, fiber-reinforced plastic laminate and soil shields. We present classification of the mathematical models used for describing interaction between a penetrator and a shield. The reviewed studies are summarized in the table where we display the following information: the model; indicate whether the model accounts for or neglects friction at the surface of penetrator; criterion for optimization (depth of penetration into a semi-infinite shield, ballistic limit velocity for a shield having a finite thickness, several criteria); class of considered shapes of penetrators (bodies of revolution, different classes of 3-D bodies, etc.); method of solution (analytical or numerical); in comments we present additional information on formulation of the optimization problem. The survey also includes discussion on certain methodological facets in formulating shape optimization problems for high-speed penetrators.

  20. High Penetration Photovoltaic Case Study Report

    SciTech Connect

    Bank, J.; Mather, B.; Keller, J.; Coddington, M.

    2013-01-01

    Technical concerns with integrating higher penetrations of photovoltaic (PV) systems include grid stability, voltage regulation, power quality (voltage rise, sags, flicker, and frequency fluctuations), and protection and coordination. The current utility grid was designed to accommodate power flows from the central generation source to the transmission system and eventually to the distribution feeders. At the distribution level, the system was designed to carry power from the substation toward the load. Renewable distributed generation, particularly solar PV, provides power at the distribution level challenging this classical paradigm. As these resources become more commonplace the nature of the distribution network and its operation is changing to handle power flow in both directions. This report is focused on large PV installations in which penetration is significantly greater than 15% of maximum daytime feeder load. These case studies are intended to demonstrate success stories with integration of large PV plants at the distribution level as well as some of the solutions used by the utility to ensure safe, reliable operation of both the PV system and the distribution network.

  1. Grid-wide subdaily hydrologic alteration under massive wind power penetration in Chile.

    PubMed

    Haas, J; Olivares, M A; Palma-Behnke, R

    2015-05-01

    Hydropeaking operations can severely degrade ecosystems. As variable renewable sources (e.g. wind power) are integrated into a power grid, fluctuations in the generation-demand balance are expected to increase. In this context, compensating technologies, notably hydropower reservoir plants, could operate in a stronger peaking scheme. This issue calls for an integrated modeling of the entire power system, including not only hydropower reservoirs, but also all other plants. A novel methodology to study the link between the short-term variability of renewable energies and the subdaily hydrologic alteration, due to hydropower reservoir operations is presented. Grid operations under selected wind power portfolios are simulated using a short-term hydro-thermal coordination tool. The resulting turbined flows by relevant reservoir plants are then compared in terms of the Richard-Baker flashiness index to both the baseline and the natural flow regime. Those are then analyzed in order to: i) detect if there is a significant change in the degree of subdaily hydrologic alteration (SDHA) due to a larger wind penetration, and ii) identify which rivers are most affected. The proposed scheme is applied to Chile's Central Interconnect System (SIC) for scenarios up to 15% of wind energy penetration. Results show a major degree of SDHA under the baseline as compared to the natural regime. As wind power increases, so does the SDHA in two important rivers. This suggests a need for further ecological studies in those rivers, along with an analysis of operational constraints to limit the SDHA. PMID:25728917

  2. Impact of short-term storage on frequency response under increasing wind penetration

    NASA Astrophysics Data System (ADS)

    Krishnan, Venkat; Das, Trishna; McCalley, James D.

    2014-07-01

    In this paper, the effort is to study the impact of short-term storage technology in stabilizing the frequency response under increasing wind penetration. The frequency response is studied using Automatic Generation Control (AGC) module, and is quantified in terms of Control Performance Standards (CPS). The single area IEEE Reliability Test System (RTS) was chosen, and battery storage was integrated within the AGC. The battery proved to reduce the frequency deviations and provide good CPS scores with higher penetrations of wind. The results also discuss the ability of the short term storage to benefit the system by reducing the hourly regulation deployment and the cycling undergone by conventional units, by dint of their fast response; and sheds light on the economic implications of their benefits.

  3. Transmission System Performance Analysis for High-Penetration Photovoltaics

    SciTech Connect

    Achilles, S.; Schramm, S.; Bebic, J.

    2008-02-01

    This study is an assessment of the potential impact of high levels of penetration of photovoltaic (PV) generation on transmission systems. The effort used stability simulations of a transmission system with different levels of PV generation and load.

  4. A Lunar Penetrator to Determine Solar-wind-implanted Resources at Depth in the Lunar Regolith

    NASA Technical Reports Server (NTRS)

    Boynton, W.; Feldman, W.; Swindle, T.

    1992-01-01

    Several volatiles implanted into the lunar regolith by the solar wind are potentially important lunar resources. He-3 might be mined as a fuel for lunar nuclear fusion reactors. Even if the mining of He-3 turns out not to be feasible, several other elements commonly implanted by the solar wind (H,C, and N) could be important for life support and for propellant or fuel production for lunar bases. A simple penetrator-borne instrument package to measure the abundance of H at depth is proposed. Since solar-wind-implanted volatiles tend to correlate with one another, this can be used to estimate global inventories and to design extraction strategies for all of these species.

  5. Shielding materials for highly penetrating space radiations

    NASA Technical Reports Server (NTRS)

    Kiefer, Richard L.; Orwoll, Robert A.

    1995-01-01

    Interplanetary travel involves the transfer from an Earth orbit to a solar orbit. Once outside the Earth's magnetosphere, the major sources of particulate radiation are solar cosmic rays (SCR's) and galactic cosmic rays (GCR's). Intense fluxes of SCR's come from solar flares and consist primarily of protons with energies up to 1 GeV. The GCR consists of a low flux of nuclei with energies up to 10(exp 10) GeV. About 70 percent of the GCR are protons, but a small amount (0.6 percent) are nuclei with atomic numbers greater than 10. High energy charged particles (HZE) interact with matter by transferring energy to atomic electrons in a Coulomb process and by reacting with an atomic nucleus. Energy transferred in the first process increases with the square of the atomic number, so particles with high atomic numbers would be expected to lose large amounts of energy by this process. Nuclear reactions produced by (HZE) particles produce high-energy secondary particles which in turn lose energy to the material. The HZE nuclei are a major concern for radiation protection of humans during interplanetary missions because of the very high specific ionization of both primary and secondary particles. Computer codes have been developed to calculate the deposition of energy by very energetic charged particles in various materials. Calculations show that there is a significant buildup of secondary particles from nuclear fragmentation and Coulomb dissociation processes. A large portion of these particles are neutrons. Since neutrons carry no charge, they only lose energy by collision or reaction with a nucleus. Neutrons with high energies transfer large amounts of energy by inelastic collisions with nuclei. However, as the neutron energy decreases, elastic collisions become much more effective for energy loss. The lighter the nucleus, the greater the fraction of the neutron's kinetic energy that can be lost in an elastic collision. Thus, hydrogen-containing materials such as polymers

  6. PENETRATION OF COAL SLAGS INTO HIGH-CHROMIA REFRACTORIES

    SciTech Connect

    Longanbach, Sara C.; Matyas, Josef; Sundaram, S. K.

    2009-10-05

    Slagging coal gasifiers are used for the production of electricity and synthetic gases, as well as chemicals. High temperatures in the reaction chamber, typically between 1250ºC and 1600ºC, high pressure, generally greater than 400 psi, and corrosive slag place severe demands on the refractory materials. Slag produced during the combustion of coal flows over the refractory surface and penetrates the porous material. Slag penetration is typically followed by spalling of a brick that significantly decreases the service life of gasifier refractories. Laboratory tests were conducted to determine the penetration depth of slags into high-chromia refractories as a function of time and temperature for various refractory-slag combinations.

  7. Southern California Edison High Penetration Photovoltaic Project - Year 1

    SciTech Connect

    Mather, B.; Kroposki, B.; Neal, R.; Katiraei, F.; Yazdani, A.; Aguero, J. R.; Hoff, T. E.; Norris, B. L.; Parkins, A.; Seguin, R.; Schauder, C.

    2011-06-01

    This report discusses research efforts from the first year of a project analyzing the impacts of high penetration levels of photovoltaic (PV) resources interconnected onto Southern California Edison's (SCE's) distribution system. SCE will be interconnecting a total of 500 MW of commercial scale PV within their service territory by 2015. This Year 1 report describes the need for investigating high-penetration PV scenarios on the SCE distribution system; discusses the necessary PV system modeling and distribution system simulation advances; describes the available distribution circuit data for the two distribution circuits identified in the study; and discusses the additional inverter functionality that could be implemented in order to specifically mitigate some of the undesirable distribution system impacts caused by high-penetration PV installations.

  8. Photovoltaic (PV) Impact Assessment for Very High Penetration Levels

    SciTech Connect

    Cheng, Danling; Mather, Barry A.; Seguin, Richard; Hambrick, Joshua; Broadwater, Robert P.

    2016-01-01

    This paper describes a granular approach for investigating the impacts of very high photovoltaic (PV) generation penetration. Studies on two real-world distribution feeders connected to PV plants are presented. The studies include both steady-state and time-series power flow analyses, which include the effects of solar variability. The goal of the study is to predict the effects of increasing levels of PV generation as it reaches very high penetration levels. The loss and return of generation with and without regulation is simulated to capture short-term problems such as voltage fluctuations. Impact results from the analyses are described along with potential mitigations.

  9. Highly Alfvenic Slow Solar Wind

    NASA Technical Reports Server (NTRS)

    Roberts, D. Aaron

    2010-01-01

    It is commonly thought that fast solar wind tends to be highly Alfvenic, with strong correlations between velocity and magnetic fluctuations, but examples have been known for over 20 years in which slow wind is both Alfvenic and has many other properties more typically expected of fast solar wind. This paper will present a search for examples of such flows from more recent data, and will begin to characterize the general characteristics of them. A very preliminary search suggests that such intervals are more common in the rising phase of the solar cycle. These intervals are important for providing constraints on models of solar wind acceleration, and in particular the role waves might or might not play in that process.

  10. Penetration dynamics of a magnetic field pulse into high-? superconductors

    NASA Astrophysics Data System (ADS)

    Meerovich, V.; Sinder, M.; Sokolovsky, V.; Goren, S.; Jung, G.; Shter, G. E.; Grader, G. S.

    1996-12-01

    The penetration of a magnetic field pulse into a high-0953-2048/9/12/004/img9 superconducting plate is investigated experimentally and theoretically. It follows from our experiments that the threshold of penetration increases with increasing amplitude and/or decreasing duration of the applied pulse. The penetrating field continues to grow as the applied magnetic field decreases. The peculiarities observed are explained in the framework of the extended critical state model. It appears that the deviations from Bean's classical critical state model are characterized by a parameter equal to the square of the ratio of plate thickness to skin depth. The applicability of the classical critical state model is restricted by the condition that this parameter is much less than 1. This condition is also the criterion for the applicability of pulse methods of critical current measurements.

  11. Security, protection, and control of power systems with large-scale wind power penetration

    NASA Astrophysics Data System (ADS)

    Acharya, Naresh

    As the number of wind generation facilities in the utility system is fast increasing, many issues associated with their integration into the power system are beginning to emerge. Of the various issues, this dissertation deals with the development of new concepts and computational methods to handle the transmission issues and voltage issues caused by large-scale integration of wind turbines. This dissertation also formulates a probabilistic framework for the steady-state security assessment of wind power incorporating the forecast uncertainty and correlation. Transmission issues are mainly related to the overloading of transmission lines, when all the wind power generated cannot be delivered in full due to prior outage conditions. To deal with this problem, a method to curtail the wind turbine outputs through Energy Management System facilities in the on-line operational environment is proposed. The proposed method, which is based on linear optimization, sends the calculated control signals via the Supervisory Control and Data Acquisition system to wind farm controllers. The necessary ramping of the wind farm outputs is implemented either by the appropriate blade pitch angle control at the turbine level or by switching a certain number of turbines. The curtailment strategy is tested with an equivalent system model of MidAmerican Energy Company. The results show that the line overload in high wind areas can be alleviated by controlling the outputs of the wind farms step-by-step over an allowable period of time. A low voltage event during a system fault can cause a large number of wind turbines to trip, depending on voltages at the wind turbine terminals during the fault and the under-voltage protection setting of wind turbines. As a result, an N-1 contingency may evolve into an N-(K+1) contingency, where K is the number of wind farms tripped due to low voltage conditions. Losing a large amount of wind power following a line contingency might lead to system

  12. Topic 5: Power System Operation and Planning for Enhanced Wind Generation Penetration

    SciTech Connect

    Vittal, Vijay; Heydt, Gerald T; Ayyanar, Raja; McCalley, James D; Ajjarapu, V; Aliprantis, Dionysios

    2012-08-31

    This project dealt with the development of a range of educational resources dealing with wind energy and wind energy integration in the electric grid. These resources were developed for a variety of audiences including; a) high school student, b) undergraduate electrical engineering students, c) graduate electrical engineering students, and d) practicing engineers in industry. All the developed material is available publicly and the courses developed are being taught at the two participating universities, Arizona State University and Iowa State University.

  13. High Penetration PV Deployment in the Arizona Public Service System

    SciTech Connect

    Narang, D.; Hambrick, J.

    2011-01-01

    In an effort to better understand the impacts of high penetrations of photovoltaic (PV) generators on distribution systems, Arizona Public Service (APS) and its partners have begun work on a multi-year project to develop the tools and knowledgebase needed to safely and reliably integrate high penetrations of utility and residential scale PV. Building upon the APS Community Power Project - Flagstaff Pilot, this project will analyze the impact of PV on a representative feeder in northeast Flagstaff. To quantify and catalog the effects of the estimated 1.5 MW of PV that will be installed on the feeder (both smaller units at homes as well as large, centrally located systems), high-speed weather and electrical data acquisition systems and digital 'smart' meters are being designed and installed to facilitate monitoring and to build and validate comprehensive, high-resolution models of the distribution system. These models will be used to analyze the impacts of the PV on distribution circuit protection systems (including anti-islanding), predict voltage regulation and phase balance issues, and develop volt/var control schemes. The goal of this paper is to provide insight and lessons learned on the early stages of high penetration PV deployment. Primarily focusing on modeling and data acquisition, this paper describes the overall project, early results, and plans for future phases of the project.

  14. High Penetration PV: How High Can We Go?

    SciTech Connect

    2016-01-01

    Brochure highlighting NREL's partnership with SolarCity and Hawaiian Electric (HECO) to increase the penetration of solar photovoltaics on the electricity grid. To better understand the potential impact of transient overvoltages due to load rejection, NREL collaborated with SolarCity and HECO to run a series of tests measuring the magnitude and duration of load rejection overvoltage events and demonstrating the ability of advanced PV inverters to mitigate their impacts.

  15. Power oscillation suppression by robust SMES in power system with large wind power penetration

    NASA Astrophysics Data System (ADS)

    Ngamroo, Issarachai; Cuk Supriyadi, A. N.; Dechanupaprittha, Sanchai; Mitani, Yasunori

    2009-01-01

    The large penetration of wind farm into interconnected power systems may cause the severe problem of tie-line power oscillations. To suppress power oscillations, the superconducting magnetic energy storage (SMES) which is able to control active and reactive powers simultaneously, can be applied. On the other hand, several generating and loading conditions, variation of system parameters, etc., cause uncertainties in the system. The SMES controller designed without considering system uncertainties may fail to suppress power oscillations. To enhance the robustness of SMES controller against system uncertainties, this paper proposes a robust control design of SMES by taking system uncertainties into account. The inverse additive perturbation is applied to represent the unstructured system uncertainties and included in power system modeling. The configuration of active and reactive power controllers is the first-order lead-lag compensator with single input feedback. To tune the controller parameters, the optimization problem is formulated based on the enhancement of robust stability margin. The particle swarm optimization is used to solve the problem and achieve the controller parameters. Simulation studies in the six-area interconnected power system with wind farms confirm the robustness of the proposed SMES under various operating conditions.

  16. High-efficiency wind turbine

    NASA Technical Reports Server (NTRS)

    Hein, L. A.; Myers, W. N.

    1980-01-01

    Vertical axis wind turbine incorporates several unique features to extract more energy from wind increasing efficiency 20% over conventional propeller driven units. System also features devices that utilize solar energy or chimney effluents during periods of no wind.

  17. Penetration of Solar Wind Driven ULF Waves into the Earth's Inner Magnetosphere: Role in Radiation Belt and Ring Current Dynamics

    NASA Astrophysics Data System (ADS)

    Mann, Ian; Murphy, Kyle; Rae, Jonathan; Ozeke, Louis; Milling, David

    2013-04-01

    Ultra-low frequency (ULF) waves in the Pc4-5 band can be excited in the magnetosphere by the solar wind. Much recent work has shown how ULF wave power is strongly correlated with solar wind speed. However, little attention has been paid the dynamics of ULF wave power penetration onto low L-shells in the inner magnetosphere. We use more than a solar cycle of ULF wave data, derived from ground-based magnetometer networks, to examine this ULF wave power penetration and its dependence on solar wind and geomagnetic activity indices. In time domain data, we show very clearly that dayside ULF wave power, spanning more than 4 orders of magnitude, follows solar wind speed variations throughout the whole solar cycle - during periods of sporadic solar maximum ICMEs, during declining phase fast solar wind streams, and at solar minimum, alike. We also show that time domain ULF wave power increases during magnetic storms activations, and significantly demonstrate that a deeper ULF wave power penetration into the inner magnetosphere occurs during larger negative excursions in Dst. We discuss potential explanations for this low-L ULF wave power penetration, including the role of plasma mass density (such as during plasmaspheric erosion), or ring current ion instabilities during near-Earth ring current penetration. Interestingly, we also show that both ULF wave power and SAMPEX MeV electron flux show a remarkable similarity in their penetration to low-L, which suggests that ULF wave power penetration may be important for understanding and explaining radiation belt dynamics. Moreover, the correlation of ULF wave power with Dst, which peaks at one day lag, suggests the ULF waves might also be important for the inward transport of ions into the ring current. Current ring current models, which exclude long period ULF wave transport, under-estimate the ring current during fast solar wind streams which is consistent with a potential role for ULF waves in ring current energisation. The

  18. HOXB13 and other high penetrant genes for prostate cancer

    PubMed Central

    Pilie, Patrick G; Giri, Veda N; Cooney, Kathleen A

    2016-01-01

    Cancer initiation and progression is the result of an accumulation of mutations in key tumor suppressor genes, mismatch repair genes, or oncogenes, which impact cancer cell growth, death, and differentiation. Mutations occurring in cancer tissue are termed somatic; whereas, heritable mutations that may be passed onto subsequent generations occur in germline DNA. It is these germline mutations that can lead to cancer family syndromes whereby family members carrying a deleterious germline mutation have an increased susceptibility to certain cancer phenotypes. Common features of hereditary cancer syndromes include early age-of-onset, multiple affected generations, rare tumor types, and/or multiple primary malignancies. Approximately, 5%–10% of all common cancers, including prostate cancer, have a hereditary component and are attributable to highly penetrant germline mutations.1 Across all cancer types, known cancer susceptibility syndromes number >100; however, it is important to note that mutations in high-penetrance genes explain only a fraction of heritable cancers.2 Well-known examples of hereditary cancer syndromes include Lynch (HNPCC), Cowden (PHTS), Li-Fraumeni, and Hereditary Breast and Ovarian Cancer (HBOC) syndromes, which are attributable to mutations in mismatch repair genes, PTEN, p53, and BRCA1/2, respectively.3 PMID:27034017

  19. Changes in the Economic Value of Variable Generation at High Penetration Levels: A Pilot Case Study of California

    SciTech Connect

    Mills, Andrew; Wiser, Ryan

    2012-05-18

    We estimate the long-run economic value of variable renewable generation with increasing penetration using a unique investment and dispatch model that captures long-run investment decisions while also incorporating detailed operational constraints and hourly time resolution over a full year. High time resolution and the incorporation of operational constraints are important for estimating the economic value of variable generation, as is the use of a modeling framework that accommodates new investment decisions. The model is herein applied with a case study that is loosely based on California in 2030. Increasing amounts of wind, photovoltaics (PV), and concentrating solar power (CSP) with and without thermal energy storage (TES) are added one at a time. The marginal economic value of these renewable energy sources is estimated and then decomposed into capacity value, energy value, day-ahead forecast error cost, and ancillary services. The marginal economic value, as defined here, is primarily based on the combination of avoided capital investment cost and avoided variable fuel and operations and maintenance costs from other power plants in the power system. Though the model only captures a subset of the benefits and costs of renewable energy, it nonetheless provides unique insights into how the value of that subset changes with technology and penetration level. Specifically, in this case study implementation of the model, the marginal economic value of all three solar options is found to exceed the value of a flat-block of power (as well as wind energy) by \\$20--30/MWh at low penetration levels, largely due to the high capacity value of solar at low penetration. Because the value of CSP per unit of energy is found to be high with or without thermal energy storage at low penetration, we find little apparent incremental value to thermal storage at low solar penetration in the present case study analysis. The marginal economic value of PV and CSP without thermal

  20. 75 FR 47301 - Cedro Hill Wind LLC; Butler Ridge Wind Energy Center, LLC; High Majestic Wind Energy Center, LLC...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-05

    ...; EG10-36-000; EG10-37-000; EG10-38-000] Cedro Hill Wind LLC; Butler Ridge Wind Energy Center, LLC; High Majestic Wind Energy Center, LLC; Wessington Wind Energy Center, LLC; Juniper Canyon Wind Power LLC; Loraine Windpark Project, LLC; White Oak Energy LLC; Meadow Lake Wind Farm III LLC; Meadow Lake Wind...

  1. Environmental impacts of high penetration renewable energy scenarios for Europe

    NASA Astrophysics Data System (ADS)

    Berrill, Peter; Arvesen, Anders; Scholz, Yvonne; Gils, Hans Christian; Hertwich, Edgar G.

    2016-01-01

    The prospect of irreversible environmental alterations and an increasingly volatile climate pressurises societies to reduce greenhouse gas emissions, thereby mitigating climate change impacts. As global electricity demand continues to grow, particularly if considering a future with increased electrification of heat and transport sectors, the imperative to decarbonise our electricity supply becomes more urgent. This letter implements outputs of a detailed power system optimisation model into a prospective life cycle analysis framework in order to present a life cycle analysis of 44 electricity scenarios for Europe in 2050, including analyses of systems based largely on low-carbon fossil energy options (natural gas, and coal with carbon capture and storage (CCS)) as well as systems with high shares of variable renewable energy (VRE) (wind and solar). VRE curtailments and impacts caused by extra energy storage and transmission capabilities necessary in systems based on VRE are taken into account. The results show that systems based largely on VRE perform much better regarding climate change and other impact categories than the investigated systems based on fossil fuels. The climate change impacts from Europe for the year 2050 in a scenario using primarily natural gas are 1400 Tg CO2-eq while in a scenario using mostly coal with CCS the impacts are 480 Tg CO2-eq. Systems based on renewables with an even mix of wind and solar capacity generate impacts of 120-140 Tg CO2-eq. Impacts arising as a result of wind and solar variability do not significantly compromise the climate benefits of utilising these energy resources. VRE systems require more infrastructure leading to much larger mineral resource depletion impacts than fossil fuel systems, and greater land occupation impacts than systems based on natural gas. Emissions and resource requirements from wind power are smaller than from solar power.

  2. Analysis of Distribution Circuits with High Penetrations of Photo-Voltaic Generation and Progressive Steps to Enable Higher Penetrations

    NASA Astrophysics Data System (ADS)

    Payne, Joshua Daniel

    Concern for anthropogenic climate change has instigated an increase in renewable generation capacity, including photo-voltaic (PV) power generation in distribution circuits. Distribution circuits with relatively high penetrations of PV generation (High-Pen PV) exist today, but how much more generation can distribution systems handle? This research aims to approach this question by 1) analyzing and quantifying High-Pen PV limitations on the primary circuits of distribution systems and 2) propose and analyze progressive steps to enable higher penetrations of PV on distribution circuits. Utilizing connectivity and load demand measurements provided by Pacific Gas & Electric (PG&E), time-resolved three-phase balanced feeder models of a commercial and a residential circuit featuring High-Pen PV were developed and calibrated to the point of the sub-station. Once calibrated, the circuit performance was simulated with varying PV penetrations and spatial distributions for typical seasonal high and seasonal low load demand days. Circuit scenarios with the Generation Center located downstream of the Load Center and with high impedance distribution line in-between lead to high voltage conditions. High-Pen PV interacting with the sub-station Load Drop Compensation (LDC) resulted an increased number of equipment operations and low voltage conditions on the circuit. As PV penetration increased, sub-station power factor and line loss decreased until reverse power flow became dominant. These were observed characteristics of High-Pen PV circuits. To overcome the limitations stated above, practical steps, such as line re-conductoring, and progressive control and operation changes were introduced. The progressive changes included using a Voltage Rise Siting (VRS) score for planning and LDC Current Compensation control to enable higher penetrations of PV. It was shown that limitations of High-Pen PV on the primary side of distribution circuits may be overcome via these practical and

  3. Using Electric Vehicles to Mitigate Imbalance Requirements Associated with an Increased Penetration of Wind Generation

    SciTech Connect

    Tuffner, Francis K.; Kintner-Meyer, Michael CW

    2011-10-10

    The integration of variable renewable generation sources continues to be a significant area of focus for power system planning. Renewable portfolio standards and initiatives to reduce the dependency on foreign energy sources drive much of the deployment. Unfortunately, renewable energy generation sources like wind and solar tend to be highly variable in nature. To counter the energy imbalance caused by this variability, wind generation often requires additional balancing resources to compensate for the variability in the electricity production. With the expected electrification of transportation, electric vehicles may offer a new load resource for meeting all, or part, of the imbalance created by the renewable generation. This paper investigates a regulation-services-based battery charging method on a population of plug-in hybrid electric vehicles to meet the power imbalance requirements associated with the introduction of 11 GW of additional wind generation into the Northwest Power Pool. It quantifies the number of vehicles required to meet the imbalance requirements under various charging assumptions.

  4. High-Penetration PV Integration Handbook for Distribution Engineers

    SciTech Connect

    Seguin, Rich; Woyak, Jeremy; Costyk, David; Hambrick, Josh; Mather, Barry

    2016-01-01

    This handbook has been developed as part of a five-year research project which began in 2010. The National Renewable Energy Laboratory (NREL), Southern California Edison (SCE), Quanta Technology, Satcon Technology Corporation, Electrical Distribution Design (EDD), and Clean Power Research (CPR) teamed together to analyze the impacts of high-penetration levels of photovoltaic (PV) systems interconnected onto the SCE distribution system. This project was designed specifically to leverage the experience that SCE and the project team would gain during the significant installation of 500 MW of commercial scale PV systems (1-5 MW typically) starting in 2010 and completing in 2015 within SCE’s service territory through a program approved by the California Public Utility Commission (CPUC).

  5. A numerical test of a high-penetrability approximation for the one-dimensional penetrable-square-well model.

    PubMed

    Fantoni, Riccardo; Giacometti, Achille; Malijevský, Alexandr; Santos, Andrés

    2010-07-14

    The one-dimensional penetrable-square-well fluid is studied using both analytical tools and specialized Monte Carlo simulations. The model consists of a penetrable core characterized by a finite repulsive energy combined with a short-range attractive well. This is a many-body one-dimensional problem, lacking an exact analytical solution, for which the usual van Hove theorem on the absence of phase transition does not apply. We determine a high-penetrability approximation complementing a similar low-penetrability approximation presented in previous work. This is shown to be equivalent to the usual Debye-Hückel theory for simple charged fluids for which the virial and energy routes are identical. The internal thermodynamic consistency with the compressibility route and the validity of the approximation in describing the radial distribution function is assessed by a comparison against numerical simulations. The Fisher-Widom line separating the oscillatory and monotonic large-distance behaviors of the radial distribution function is computed within the high-penetrability approximation and compared with the opposite regime, thus providing a strong indication of the location of the line in all possible regimes. The high-penetrability approximation predicts the existence of a critical point and a spinodal line, but this occurs outside the applicability domain of the theory. We investigate the possibility of a fluid-fluid transition by the Gibbs ensemble Monte Carlo techniques, not finding any evidence of such a transition. Additional analytical arguments are given to support this claim. Finally, we find a clustering transition when Ruelle's stability criterion is not fulfilled. The consequences of these findings on the three-dimensional phase diagrams are also discussed. PMID:20632742

  6. CgWind: A high-order accurate simulation tool for wind turbines and wind farms

    SciTech Connect

    Chand, K K; Henshaw, W D; Lundquist, K A; Singer, M A

    2010-02-22

    CgWind is a high-fidelity large eddy simulation (LES) tool designed to meet the modeling needs of wind turbine and wind park engineers. This tool combines several advanced computational technologies in order to model accurately the complex and dynamic nature of wind energy applications. The composite grid approach provides high-quality structured grids for the efficient implementation of high-order accurate discretizations of the incompressible Navier-Stokes equations. Composite grids also provide a natural mechanism for modeling bodies in relative motion and complex geometry. Advanced algorithms such as matrix-free multigrid, compact discretizations and approximate factorization will allow CgWind to perform highly resolved calculations efficiently on a wide class of computing resources. Also in development are nonlinear LES subgrid-scale models required to simulate the many interacting scales present in large wind turbine applications. This paper outlines our approach, the current status of CgWind and future development plans.

  7. Renewable Electricity Futures Study. Volume 1. Exploration of High-Penetration Renewable Electricity Futures

    SciTech Connect

    Hand, M. M.; Baldwin, S.; DeMeo, E.; Reilly, J. M.; Mai, T.; Arent, D.; Porro, G.; Meshek, M.; Sandor, D.

    2012-06-15

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%–90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT). Learn more at the RE Futures website. http://www.nrel.gov/analysis/re_futures/

  8. Renewable Electricity Futures Study. Volume 1: Exploration of High-Penetration Renewable Electricity Futures

    SciTech Connect

    Mai, T.; Wiser, R.; Sandor, D.; Brinkman, G.; Heath, G.; Denholm, P.; Hostick, D.J.; Darghouth, N.; Schlosser, A.; Strzepek, K.

    2012-06-01

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

  9. On the Use of Energy Storage Technologies for Regulation Services in Electric Power Systems with Significant Penetration of Wind Energy

    SciTech Connect

    Yang, Bo; Makarov, Yuri V.; DeSteese, John G.; Vishwanathan, Vilanyur V.; Nyeng, Preben; McManus, Bart; Pease, John

    2008-05-27

    Energy produced by intermittent renewable resources is sharply increasing in the United States. At high penetration levels, volatility of wind power production could cause additional problems for the power system balancing functions such as regulation. This paper reports some partial results of a project work, recently conducted by the Pacific Northwest National Laboratory (PNNL) for Bonneville Power Administration (BPA). The project proposes to mitigate additional intermittency with the help of Wide Area Energy Management System (WAEMS) that would provide a two-way simultaneous regulation service for the BPA and California ISO systems by using a large energy storage facility. The paper evaluates several utility-scale energy storage technology options for their usage as regulation resources. The regulation service requires a participating resource to quickly vary its power output following the rapidly and frequently changing regulation signal. Several energy storage options have been analyzed based on thirteen selection criteria. The evaluation process resulted in the selection of flywheels, pumped hydro electric power (or conventional hydro electric power) plant and sodium sulfur or nickel cadmium batteries as candidate technologies for the WAEMS project. A cost benefit analysis should be conducted to narrow the choice to one technology.

  10. Production cost and air emissions impacts of coal cycling in power systems with large-scale wind penetration

    NASA Astrophysics Data System (ADS)

    Oates, David Luke; Jaramillo, Paulina

    2013-06-01

    Wind power introduces variability into electric power systems. Due to the physical characteristics of wind, most of this variability occurs at inter-hour time-scales and coal units are therefore technically capable of balancing wind. Operators of coal-fired units have raised concerns that additional cycling will be prohibitively costly. Using PJM bid-data, we observe that coal operators are likely systematically under-bidding their startup costs. We then consider the effects of a 20% wind penetration scenario in the coal-heavy PJM West area, both when coal units bid business as usual startup costs, and when they bid costs accounting for the elevated wear and tear that occurs during cycling. We conclude that while 20% wind leads to increased coal cycling and reduced coal capacity factors under business as usual startup costs, including full startup costs shifts the burden of balancing wind onto more flexible units. This shift has benefits for CO2, NOX, and SO2 emissions as well as for the profitability of coal plants, as calculated by our dispatch model.

  11. Improved Modeling Tools Development for High Penetration Solar

    SciTech Connect

    Washom, Byron

    2014-12-11

    One of the significant objectives of the High Penetration solar research is to help the DOE understand, anticipate, and minimize grid operation impacts as more solar resources are added to the electric power system. For Task 2.2, an effective, reliable approach to predicting solar energy availability for energy generation forecasts using the University of California, San Diego (UCSD) Sky Imager technology has been demonstrated. Granular cloud and ramp forecasts for the next 5 to 20 minutes over an area of 10 square miles were developed. Sky images taken every 30 seconds are processed to determine cloud locations and cloud motion vectors yielding future cloud shadow locations respective to distributed generation or utility solar power plants in the area. The performance of the method depends on cloud characteristics. On days with more advective cloud conditions, the developed method outperforms persistence forecasts by up to 30% (based on mean absolute error). On days with dynamic conditions, the method performs worse than persistence. Sky Imagers hold promise for ramp forecasting and ramp mitigation in conjunction with inverter controls and energy storage. The pre-commercial Sky Imager solar forecasting algorithm was documented with licensing information and was a Sunshot website highlight

  12. Water Impacts of High Solar PV Electricity Penetration

    SciTech Connect

    Macknick, Jordan; Cohen, Stuart

    2015-09-01

    This analysis provides a detailed national and regional description of the water-related impacts and constraints of high solar electricity penetration scenarios in the U.S. in 2030 and 2050. A modified version of the Regional Energy Deployment System (ReEDS) model that incorporates water resource availability and costs as a constraint in each of its 134 Balancing Area (BA) regions was utilized to explore national and regional differences in water use impacts and solar deployment locations under different solar energy cost and water availability scenarios (Macknick et al. 2015). Water resource availability and cost data are from recently completed research at Sandia National Laboratories (Tidwell et al. 2013a). Scenarios analyzed include two business-as-usual solar energy cost cases, one with and one without considering available water resources, and four solar energy cost cases that meet the SunShot cost goals (i.e., $1/watt for utility-scale PV systems), with varying levels of water availability restrictions. This analysis provides insight into the role solar energy technologies have in the broader electricity sector under scenarios of water constraints.

  13. Runs of homozygosity reveal highly penetrant recessive loci in schizophrenia

    PubMed Central

    Lencz, Todd; Lambert, Christophe; DeRosse, Pamela; Burdick, Katherine E.; Morgan, T. Vance; Kane, John M.; Kucherlapati, Raju; Malhotra, Anil K.

    2007-01-01

    Evolutionarily significant selective sweeps may result in long stretches of homozygous polymorphisms in individuals from outbred populations. We developed whole-genome homozygosity association (WGHA) methodology to characterize this phenomenon in healthy individuals and to use this genomic feature to identify genetic risk loci for schizophrenia (SCZ). Applying WGHA to 178 SCZ cases and 144 healthy controls genotyped at 500,000 markers, we found that runs of homozygosity (ROHs), ranging in size from 200 kb to 15 mb, were common in unrelated Caucasians. Properties of common ROHs in healthy subjects, including chromosomal location and presence of nonancestral haplotypes, converged with prior reports identifying regions under selective pressure. This interpretation was further supported by analysis of multiethnic HapMap samples genotyped with the same markers. ROHs were significantly more common in SCZ cases, and a set of nine ROHs significantly differentiated cases from controls. Four of these 9 “risk ROHs” contained or neighbored genes associated with SCZ (NOS1AP, ATF2, NSF, and PIK3C3). Several of these risk ROHs were very rare in healthy subjects, suggesting that recessive effects of relatively high penetrance may explain a proportion of the genetic liability for SCZ. Other risk ROHs feature haplotypes that are also common in healthy individuals, possibly indicating a source of balancing selection. PMID:18077426

  14. High Voltage Power Transmission for Wind Energy

    NASA Astrophysics Data System (ADS)

    Kim, Young il

    The high wind speeds and wide available area at sea have recently increased the interests on offshore wind farms in the U.S.A. As offshore wind farms become larger and are placed further from the shore, the power transmission to the onshore grid becomes a key feature. Power transmission of the offshore wind farm, in which good wind conditions and a larger installation area than an onshore site are available, requires the use of submarine cable systems. Therefore, an underground power cable system requires unique design and installation challenges not found in the overhead power cable environment. This paper presents analysis about the benefit and drawbacks of three different transmission solutions: HVAC, LCC/VSC HVDC in the grid connecting offshore wind farms and also analyzed the electrical characteristics of underground cables. In particular, loss of HV (High Voltage) subsea power of the transmission cables was evaluated by the Brakelmann's theory, taking into account the distributions of current and temperature.

  15. High-speed Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Ackeret, J

    1936-01-01

    Wind tunnel construction and design is discussed especially in relation to subsonic and supersonic speeds. Reynolds Numbers and the theory of compressible flows are also taken into consideration in designing new tunnels.

  16. Penetration of the solar wind electric field into the magnetosphere/ionosphere system

    NASA Astrophysics Data System (ADS)

    Kelley, Michael C.; Makela, Jonathan J.; Chau, Jorge L.; Nicolls, Michael J.

    2003-02-01

    On April 17, 2002 an intense, long duration electric field penetration event was captured by the Jicamarca incoherent scatter radar. Other radars in the U. S. chain detected the event as well, although not with as much clarity. The Interplanetary Electric Field (IEF) is available from the ACE satellite as well. The ratio of the dawn-to-dusk component of the IEF to the dawn-to-dusk electric field in the equatorial ionosphere for periods less than about two hours is 15:1. We suggest that this corresponds to the ratio of the size of the magnetosphere to the length of the connection line between the Interplanetary Magnetic Field (IMF) and the Earth's magnetic field. Simultaneous magnetic field measurements at Piura (off the magnetic equator) and at Jicamarca (under the magnetic equator) in Peru, reveal the same high frequency components and suggest that a chain of stations or an equatorial fleet of satellites in low earth orbit could be used to monitor the connection length continuously.

  17. Wind Erosion and Dune Formation on High Frozen Bluffs

    NASA Technical Reports Server (NTRS)

    Marsh, W. M.; Marsh, B. D.

    1984-01-01

    Frost penetration increases upslope on barren, windswept bluffs in cold environments. Along the south shore of Lake Superior, near the brow of 100 m high bluffs it typically exceeds 5 m. Frost increases the shear strength of damp sand to a level comparable to that of concrete, making winter slopes highly stable despite undercutting by waves and ground-water sapping along the footslope. Sublimation of interparticle ice in the slope face increases with wind speed and lower vapor pressures. The cold and dry winter winds of Lake Superior ablate these slopes through loss of binding ice. Wind erosion rates, based on measurements of sand accumulation on the forest floor downwind of the brow, show most airborne sand falls out within several meters of the brow, forming a berm 1 to 3 m high after many years. The spatial pattern of sand deposition, however, varies considerably over distances of several hundred meters along the top bluffs in response to frost conditions and the build-up of gravel lag on the slope face, sand exposure from mass movements, and local aerodynamics of the crest slope. The formation of perched sand dunes in the Great Lakes region is clearly related to wind erosion of sand from high bluffs in winter. Broadly similar processes may operate on Mars.

  18. High-pressure-induced water penetration into 3-isopropylmalate dehydrogenase

    SciTech Connect

    Nagae, Takayuki; Kawamura, Takashi; Chavas, Leonard M. G.; Niwa, Ken; Hasegawa, Masashi; Kato, Chiaki; Watanabe, Nobuhisa

    2012-03-01

    Structures of 3-isopropylmalate dehydrogenase were determined at pressures ranging from 0.1 to 650 MPa. Comparison of these structures gives a detailed picture of the swelling of a cavity at the dimer interface and the generation of a new cleft on the molecular surface, which are accompanied by water penetration. Hydrostatic pressure induces structural changes in proteins, including denaturation, the mechanism of which has been attributed to water penetration into the protein interior. In this study, structures of 3-isopropylmalate dehydrogenase (IPMDH) from Shewanella oneidensis MR-1 were determined at about 2 Å resolution under pressures ranging from 0.1 to 650 MPa using a diamond anvil cell (DAC). Although most of the protein cavities are monotonically compressed as the pressure increases, the volume of one particular cavity at the dimer interface increases at pressures over 340 MPa. In parallel with this volume increase, water penetration into the cavity could be observed at pressures over 410 MPa. In addition, the generation of a new cleft on the molecular surface accompanied by water penetration could also be observed at pressures over 580 MPa. These water-penetration phenomena are considered to be initial steps in the pressure-denaturation process of IPMDH.

  19. Results of analyses performed on soil adjacent to penetrators emplaced into sediments at McCook, Nebraska, January 1976. [simulated penetration into wind-deposited sediments on Martian plains

    NASA Technical Reports Server (NTRS)

    Blanchard, M.; Bunch, T.; Davis, A.; Kyte, F.; Shade, H.; Erlichman, J.; Polkowski, G.

    1977-01-01

    During 1976 several penetrators (full and 0.58 scale) were dropped into a test site McCook, Nebraska. The McCook site was selected because it simulated penetration into wind-deposited sediments (silts and sands) on Martian plains. The physical and chemical modifications found in the sediment after the penetrators' impact are described. Laboratory analyses have shown mineralogical and elemental changes are produced in the sediment next to the penetrator. Optical microscopy studies of material next to the skin of the penetrator revealed a layer of glassy material about 75 microns thick. Elemental analysis of a 0-1-mm layer of sediment next to the penetrator revealed increased concentrations for Cr, Fe, Ni, Mo, and reduced concentrations for Mg, Al Si, P, K, and Ca. The Cr, Fe, Ni, and Mo were in fragments abraded from the penetrator. Mineralogical changes occurring in the sediment next to the penetrator included the introduction of micron-size grains of alpha iron and several hydrated iron oxide minerals. The newly formed silicate minerals include metastable phases of silica (cristobalite, lechatelierite, and opal). The glassy material was mostly opal which formed when the host minerals (mica, calcite, and clay) decomposed. In summary, contaminants introduced by the penetrator occur up to 2 mm away from the penetrator's skin. Although volatile elements do migrate and new minerals are formed during the destruction of host minerals in the sediment, no changes were observed beyond the 2-mm distance. The analyses indicate 0.58-scale penetrators do effectively simulate full-scale testing for soil modification effects.

  20. High-frequency winds and eddy-resolving models

    NASA Astrophysics Data System (ADS)

    Klein, Patrice

    Wind energy input to oceanic near-inertial motions [estimated between 0.5 terawatt (TW) and 0.9 TW] is comparable to the work done by the steady large-scale winds on the general circulation of the ocean (estimated to be 1 TW). This energy input is the largest principally in the regions of atmospheric storm tracks. It is one of the main kinetic energy sources that may sustain the small-scale mixing at depth that is necessary to maintain the deep ocean stratification and therefore to close the total kinetic energy budget. But how much of this wind-driven near-inertial energy penetrates into the deep ocean interior, and where, is still a puzzle. In other words, what is the route to mixing from the surface to the deep interior followed by these motions? In this review, we present different pathways by which near-inertial energy ultimately can reach the deep interior and be available for mixing. The dominant pathway appears to be through the oceanic turbulent eddy fields at mid-latitudes. It makes a nonnegligible part of the near-inertial energy to penetrate into the deep interior with conspicuous maxima at depths as large as 2,500-3,000 m. However, we still lack a precise quantification of the contribution of the different pathways and, in particular, of the part of near-inertial energy used for mixing the upper layers relatively to that used for mixing the deeper layers. Eddy-resolving models at a basin scale (with adequate spatial resolution) forced by high-frequency winds should be able in the close future to explicitly represent the 3-D propagation of the near-inertial waves down to 5,000 m. A few process studies are still needed to parameterize mixing generated by these waves and, in particular, of those in the deep interior.

  1. High-Resolution Wind Measurements for Offshore Wind Energy Development

    NASA Technical Reports Server (NTRS)

    Nghiem, Son V.; Neumann, Gregory

    2011-01-01

    A mathematical transform, called the Rosette Transform, together with a new method, called the Dense Sampling Method, have been developed. The Rosette Transform is invented to apply to both the mean part and the fluctuating part of a targeted radar signature using the Dense Sampling Method to construct the data in a high-resolution grid at 1-km posting for wind measurements over water surfaces such as oceans or lakes.

  2. Optimizing the U.S. Electric System with a High Penetration of Renewables

    NASA Astrophysics Data System (ADS)

    Corcoran, B. A.; Jacobson, M. Z.

    2013-12-01

    As renewable energy generators are increasingly being installed throughout the U.S., there is growing interest in interconnecting diverse renewable generators (primarily wind and solar) across large geographic areas through an enhanced transmission system. This reduces variability in the aggregate power output, increases system reliability, and allows for the development of the best overall group of renewable technologies and sites to meet the load. Studies are therefore needed to determine the most efficient and economical plan to achieve large area interconnections in a future electric system with a high penetration of renewables. This research quantifies the effects of aggregating electric load together with diverse renewable generation throughout the ten Federal Energy Regulatory Commission (FERC) regions in the contiguous U.S. A deterministic linear program has been built in AMPL (A Mathematical Programming Language) to solve for the least-cost organizational structure and system (generators, transmission, and storage) for a highly renewable electric grid. The analysis will 1) examine a highly renewable 2006 electric system, including various sensitivity cases and additional system components such as additional load from electric vehicles, and 2) create a 'roadmap' from the existing 2006 system to a highly renewable system in 2030, accounting for projected price and demand changes and generator retirements based on age and environmental regulations. Ideally, results from this study will offer insight for a federal renewable energy policy (such as a renewable portfolio standard) and how to best organize U.S. regions for transmission planning.

  3. Total energy-rate feedback for automatic glide-slope tracking during wind-shear penetration

    NASA Technical Reports Server (NTRS)

    Belcastro, C. M.; Ostroff, A. J.

    1984-01-01

    Low-altitude wind shear is recognized as an infrequent but significant hazard to all aircraft during the take-off and landing phases of flight. A total energy-rate sensor was developed for measuring the specific total energy rate of an airplane with respect to the air mass. Control-system designs, both with and without energy-rate feedback, for the approach to landing of a transport airplane through a severe-wind-shear and gust environment are presented in order to evaluate this application of the sensor. A system model incorporates wind-shear-dynamics equations with the airplane equations of motion to permit analysis of the control systems under various wind-shear conditions. The control systems are designed using optimal-output feedback and are analyzed using frequency-domain control-theory techniques. Control-system performance is evaluated using a complete nonlinear simulation of the airplane combined with a severe-wind-shear and gust data package. This evaluation is concerned with control system stability and regulation capability only.

  4. Wind study for high altitude platform design

    NASA Technical Reports Server (NTRS)

    Strganac, T. W.

    1979-01-01

    An analysis of upper air winds was performed to define the wind environment at potential operating altitudes for high-altitude powered platform concepts. Expected wind conditions of the contiguous United States, Pacific area (Alaska to Sea of Japan), and European area (Norwegian and Mediterranean Seas) were obtained using a representative network of sites selected based upon adequate high-altitude sampling, geographic dispersion, and observed upper wind patterns. A data base of twenty plus years of rawinsonde gathered wind information was used in the analysis. Annual variations from surface to 10 mb (approximately 31 km) pressure altitude were investigated to encompass the practical operating range for the platform concepts. Parametric analysis for the United States and foreign areas was performed to provide a basis for vehicle system design tradeoffs. This analysis of wind magnitudes indicates the feasibility of annual operation at a majority of sites and more selective seasonal operation for the extreme conditions between the pressure altitudes of 100 to 25 mb based upon the assumed design speeds.

  5. Wind study for high altitude platform design

    NASA Technical Reports Server (NTRS)

    Strganac, T. W.

    1979-01-01

    An analysis of upper air winds was performed to define the wind environment at potential operating altitudes for high altitude powered platform concepts. Wind conditions of the continental United States, Pacific area (Alaska to Sea of Japan), and European area (Norwegian and Mediterranean Sea) were obtained using a representative network of sites selected based upon adequate high altitude sampling, geographic dispersion, and observed upper wind patterns. A data base of twenty plus years of rawinsonde gathered wind information was used in the analysis. Annual variations from surface to 10 mb pressure altitude were investigated to encompass the practical operating range for the platform concepts. Parametric analysis for the United States and foreign areas was performed to provide a basis for vehicle system design tradeoffs. This analysis of wind magnitudes indicates the feasibility of annual operation at a majority of sites and more selective seasonal operation for the extreme conditions between the pressure altitudes of 100 to 25 mb based upon the assumed design speeds.

  6. Design and integration of an isolated microgrid with a high penetration of renewable generation

    NASA Astrophysics Data System (ADS)

    Prull, Daniel Scott

    This dissertation addresses the design and integration of an isolated hybrid power system. More specifically, the goal of this work is to design a stationary electric power system for Necker Island that permits full operation and future expansion of the resort's facilities while drastically reducing the environmental impact of the current fossil fuel generation. The existing power system on Necker Island is a self-contained grid; with decentralized electricity loads, small-scale generation sources and a modest hot water demand. In this dissertation, the Necker Island power system is redesigned as a microgrid which integrates the Island's hot water, electrical and water desalination systems. This microgrid is designed via a combined optimization of performance and cost with a constraint on the Island's carbon emissions. A series of simulations are presented, comparing the performance and economics for various penetrations of renewable (wind and photovoltaic) generation. The results of each simulation are then evaluated by their cost-effectiveness at reducing CO2e emissions. The resulting microgrid design presented is a hybrid system consisting of multiple types of distributed generation, energy storage and controllable loads. Integrating high penetrations of stochastic renewable generation into a low-voltage grid is a difficult design challenge. For isolated systems, the balance between demand and generation must be met locally. The design presented in this dissertation utilizes an advanced battery to regulate the active and reactive power flows in the Necker Island microgrid system. Through the use of distributed control, each unit is able to float their frequency and voltage set-points in order to maintain system stability with changing demand and supply profiles. The new Necker Island microgrid system consists of diesel gen sets, wind turbines and photovoltaic arrays connected in a low-voltage radial network to meet the local electrical demand. Each of these

  7. High temperature co-axial winding transformers

    NASA Technical Reports Server (NTRS)

    Divan, Deepakraj M.; Novotny, Donald W.

    1993-01-01

    The analysis and design of co-axial winding transformers is presented. The design equations are derived and the different design approaches are discussed. One of the most important features of co-axial winding transformers is the fact that the leakage inductance is well controlled and can be made low. This is not the case in conventional winding transformers. In addition, the power density of co-axial winding transformers is higher than conventional ones. Hence, using co-axial winding transformers in a certain converter topology improves the power density of the converter. The design methodology used in meeting the proposed specifications of the co-axial winding transformer specifications are presented and discussed. The final transformer design was constructed in the lab. Co-axial winding transformers proved to be a good choice for high power density and high frequency applications. They have a more predictable performance compared with conventional transformers. In addition, the leakage inductance of the transformer can be controlled easily to suit a specific application. For space applications, one major concern is the extraction of heat from power apparatus to prevent excessive heating and hence damaging of these units. Because of the vacuum environment, the only way to extract heat is by using a cold plate. One advantage of co-axial winding transformers is that the surface area available to extract heat from is very large compared to conventional transformers. This stems from the unique structure of the co-axial transformer where the whole core surface area is exposed and can be utilized for cooling effectively. This is a crucial issue here since most of the losses are core losses.

  8. Analysis Methodology for Balancing Authority Cooperation in High Penetration of Variable Generation

    SciTech Connect

    Makarov, Yuri V.; Etingov, Pavel V.; Zhou, Ning; Ma, Jian; Samaan, Nader A.; Diao, Ruisheng; Malhara, Sunita V.; Guttromson, Ross T.; Du, Pengwei; Sastry, Chellury

    2010-02-01

    With the rapidly growing penetration level of wind and solar generation, the challenges of managing variability and the uncertainty of intermittent renewable generation become more and more significant. The problem of power variability and uncertainty gets exacerbated when each balancing authority (BA) works locally and separately to balance its own subsystem. The virtual BA concept means various forms of collaboration between individual BAs must manage power variability and uncertainty. The virtual BA will have a wide area control capability in managing its operational balancing requirements in different time frames. This coordination results in the improvement of efficiency and reliability of power system operation while facilitating the high level integration of green, intermittent energy resources. Several strategies for virtual BA implementation, such as ACE diversity interchange (ADI), wind only BA, BA consolidation, dynamic scheduling, regulation and load following sharing, extreme event impact study are discussed in this report. The objective of such strategies is to allow individual BAs within a large power grid to help each other deal with power variability. Innovative methods have been developed to simulate the balancing operation of BAs. These methods evaluate the BA operation through a number of metrics — such as capacity, ramp rate, ramp duration, energy and cycling requirements — to evaluate the performances of different virtual BA strategies. The report builds a systematic framework for evaluating BA consolidation and coordination. Results for case studies show that significant economic and reliability benefits can be gained. The merits and limitation of each virtual BA strategy are investigated. The report provides guidelines for the power industry to evaluate the coordination or consolidation method. The application of the developed strategies in cooperation with several regional BAs is in progress for several off-spring projects.

  9. Policies and Programs to Integrate High Penetrations of Variable Renewable Energy (Presentation)

    SciTech Connect

    Cochran, J.

    2012-06-01

    The goals of this project are to highlight the diverse approaches for enabling high renewable energy penetration; synthesize lessons on effective policies and programs and present avenues for action to energy ministers and other stakeholders.

  10. A Method for Load Frequency Control using Battery in Power System with Highly Penetrated Photovoltaic Generation

    NASA Astrophysics Data System (ADS)

    Nagoya, Hiroyuki; Komami, Shintaro; Ogimoto, Kazuhiko

    It is generally believed that a large amount of battery system will be needed to store surplus electric energy due to high penetration of renewable energy (RE) such as photovoltaic generation (PV). Since main objective of high penetration of REs is to reduce amount of CO2 emission, reducing kWh output of thermal generation that does emit large amount of CO2 in power system should be considered sufficiently. However, thermal generation takes a important role in load frequency control (LFC) of power system. Therefore, if LFC could be done with battery and hydro generation, kWh output of thermal generation would be reduced significantly. This paper presents a method for LFC using battery in power system with highly penetrated PVs. Assessment of the effect of the proposed method would be made considering mutual smoothing effect of highly penetrated PVs.

  11. Power System Planning: Emerging Practices Suitable for Evaluating the Impact of High-Penetration Photovoltaics

    SciTech Connect

    Bebic, J.

    2008-02-01

    This report explores the impact of high-penetration renewable generation on electric power system planning methodologies and outlines how these methodologies are evolving to enable effective integration of variable-output renewable generation sources.

  12. Estimation of friction velocity from the wind-wave spectrum at extremely high wind speeds

    NASA Astrophysics Data System (ADS)

    Takagaki, N.; Komori, S.; Suzuki, N.

    2016-05-01

    The equilibrium range of wind-waves at normal and extremely high wind speeds was investigated experimentally using a high-speed wind-wave tank together with field measurements at normal wind speeds. Water level fluctuations at normal and extremely high wind speeds were measured with resistance-type wave gauges, and the wind-wave spectrum and significant phase velocity were calculated. The equilibrium range constant was estimated from the wind-wave spectrum and showed the strong relationship with inverse wave age at normal and extremely high wind speeds. Using the strong relation between the equilibrium range constant and inverse wave age, a new method for estimating the wind speed at 10-m height (U 10) and friction velocity (u*) was proposed. The results suggest that U 10 and u* can be estimated from wave measurements alone at extremely high wind speeds in oceans under tropical cyclones.

  13. High Penetration of Electrical Vehicles in Microgrids: Threats and Opportunities

    NASA Astrophysics Data System (ADS)

    Khederzadeh, Mojtaba; Khalili, Mohammad

    2014-10-01

    Given that the microgrid concept is the building block of future electric distribution systems and electrical vehicles (EVs) are the future of transportation market, in this paper, the impact of EVs on the performance of microgrids is investigated. Demand-side participation is used to cope with increasing demand for EV charging. The problem of coordination of EV charging and discharging (with vehicle-to-grid (V2G) functionality) and demand response is formulated as a market-clearing mechanism that accepts bids from the demand and supply sides and takes into account the constraints put forward by different parts. Therefore, a day-ahead market with detailed bids and offers within the microgrid is designed whose objective is to maximize the social welfare which is the difference between the value that consumers attach to the electrical energy they buy plus the benefit of the EV owners participating in the V2G functionality and the cost of producing/purchasing this energy. As the optimization problem is a mixed integer nonlinear programming one, it is decomposed into one master problem for energy scheduling and one subproblem for power flow computation. The two problems are solved iteratively by interfacing MATLAB with GAMS. Simulation results on a sample microgrid with different residential, commercial and industrial consumers with associated demand-side biddings and different penetration level of EVs support the proposed formulation of the problem and the applied methods.

  14. Integrating High Penetrations of PV into Southern California: Year 2 Project Update; Preprint

    SciTech Connect

    Mather, B.; Neal, R.

    2012-08-01

    Southern California Edison (SCE) is well into a five-year project to install a total of 500 MW of distributed photovoltaic (PV) energy within its utility service territory. Typical installations to date are 1-3 MW peak rooftop PV systems that interconnect to medium-voltage urban distribution circuits or larger (5 MW peak) ground-mounted systems that connect to medium-voltage rural distribution circuits. Some of the PV system interconnections have resulted in distribution circuits that have a significant amount of PV generation compared to customer load, resulting in high-penetration PV integration scenarios. The National Renewable Energy Laboratory (NREL) and SCE have assembled a team of distribution modeling, resource assessment, and PV inverter technology experts in order to investigate a few of the high-penetration PV distribution circuits. Currently, the distribution circuits being studied include an urban circuit with a PV penetration of approximately 46% and a rural circuit with a PV penetration of approximately 60%. In both cases, power flow on the circuit reverses direction, compared to traditional circuit operation, during periods of high PV power production and low circuit loading. Research efforts during year two of the five-year project were focused on modeling the distribution system level impacts of high-penetration PV integrations, the development and installation of distribution circuit data acquisition equipment appropriate for quantifying the impacts of high-penetration PV integrations, and investigating high-penetration PV impact mitigation strategies. This paper outlines these research efforts and discusses the following activities in more detail: the development of a quasi-static time-series test feeder for evaluating high-penetration PV integration modeling tools; the advanced inverter functions being investigated for deployment in the project's field demonstration and a power hardware-in-loop test of a 500-kW PV inverter implementing a

  15. High winds of Neptune - A possible mechanism

    NASA Astrophysics Data System (ADS)

    Suomi, V. E.; Limaye, S. S.; Johnson, D. R.

    1991-02-01

    Neptune receives only 1/900th of the earth's solar energy, but has wind speeds of nearly 600 meters per second. How the near-supersonic winds can be maintained has been a puzzle. A plausible mechanism, based on principles of angular momentum and energy conservation in conjunction with deep convection, leads to a regime of uniform angular momentum at low latitudes. In this model, the rapid retrograde winds observed are a manifestation of deep convection, and the high efficiency of the planet's heat engine is intrinsic from the room allowed at low latitudes for reversible processes, the high temperatures at which heat is added to the atmosphere, and the low temperatures at which heat is extracted.

  16. Highly Structured Wind in Vela X-1

    NASA Technical Reports Server (NTRS)

    Kreykenbohm, Ingo; Wilms, Joern; Kretschmar, Peter; Torrejon, Jose Miguel; Pottschmidt, Katja; Hanke, Manfred; Santangelo, Andrea; Ferrigno, Carlo; Staubert, Ruediger

    2008-01-01

    We present an in-depth analysis of the spectral and temporal behavior of a long almost uninterrupted INTEGRAL observation of Vela X-1 in Nov/Dec 2003. In addition to an already high activity level, Vela X-1 exhibited several very intense flares with a maximum intensity of more than 5 Crab in the 20 40 keV band. Furthermore Vela X-1 exhibited several off states where the source became undetectable with ISGRI. We interpret flares and off states as being due to the strongly structured wind of the optical companion: when Vela X-1 encounters a cavity in the wind with strongly reduced density, the flux will drop, thus potentially triggering the onset of the propeller effect which inhibits further accretion, thus giving rise to the off states. The required drop in density to trigger the propeller effect in Vela X-1 is of the same order as predicted by theoretical papers for the densities in the OB star winds. The same structured wind can give rise to the giant flares when Vela X-1 encounters a dense blob in the wind. Further temporal analysis revealed that a short lived QPO with a period of 6800 sec is present. The part of the light curve during which the QPO is present is very close to the off states and just following a high intensity state, thus showing that all these phenomena are related.

  17. High-energy trapped radiation penetrating the rings of Saturn

    SciTech Connect

    Chenette, D.L.; Cooper, J.F.; Eraker, J.H.; Pyle, K.R.; Simpson, J.A.

    1980-11-01

    Electrons and protons in the energy ranges 2--25 MeV and >67 MeV, respectively, have been discovered throughout the entire equatorial region inward from the outer edge of the A ring at L=2.3 to the periapsis of the Pioneer trajectory at Lapprox.1.3. The trapped radiation which populates Saturn's magnetosphere byond L=2.3 is totally absent in this region. The electron measurements include (1) a differential energy spectrum proportionalE/sup -0.6/, (2) an L dependence consistent with L/sup 2.8/, and (3) an intensity of approx.0.05 el/cm/sup 2/ s sr near L=2 for the energy range 7--17 MeV (a factor of 5 times the interplanetary quiettime flux in this energy range.) The proton measurements display an L dependence of L/sup 2/ with a flux level of approx.6 x 10/sup -2/ protons/cm/sup 2/ s sr above 67 MeV, just inside the edge of the A ring. The pitch angle distributions of both the electrons and protons are consistent with isotropy in the dipole magnetic field. It is argued from these results that the electrons and protons are trapped and thus penetrate the A-B-C rings. However, from the above experimental evidence it is concluded that this trapped radiation is not remnant radiation from the trapped radiation region beyond L=2.3. We find that these measurements are consistent with a model for spalsh albedo production of electrons and protons resulting from the bombardment of the atmosphere and/or rings of Saturn by cosmic ray protons with energies above the Stoermer cut-off at the magnetic latitudes of production. These secondary particles are then observed as trapped radiation propagating along the appropriate field lines crossing the ring plane. We also show that electron production may occur through ..pi../sup + -/..--> mu../sup + -/ ..-->..e/sup + -/ decay chain which yields an L dependence of L/sup 2.8/ for pions.

  18. A high resolution WRF model for wind energy forecasting

    NASA Astrophysics Data System (ADS)

    Vincent, Claire Louise; Liu, Yubao

    2010-05-01

    The increasing penetration of wind energy into national electricity markets has increased the demand for accurate surface layer wind forecasts. There has recently been a focus on forecasting the wind at wind farm sites using both statistical models and numerical weather prediction (NWP) models. Recent advances in computing capacity and non-hydrostatic NWP models means that it is possible to nest mesoscale models down to Large Eddy Simulation (LES) scales over the spatial area of a typical wind farm. For example, the WRF model (Skamarock 2008) has been run at a resolution of 123 m over a wind farm site in complex terrain in Colorado (Liu et al. 2009). Although these modelling attempts indicate a great hope for applying such models for detailed wind forecasts over wind farms, one of the obvious challenges of running the model at this resolution is that while some boundary layer structures are expected to be modelled explicitly, boundary layer eddies into the inertial sub-range can only be partly captured. Therefore, the amount and nature of sub-grid-scale mixing that is required is uncertain. Analysis of Liu et al. (2009) modelling results in comparison to wind farm observations indicates that unrealistic wind speed fluctuations with a period of around 1 hour occasionally occurred during the two day modelling period. The problem was addressed by re-running the same modelling system with a) a modified diffusion constant and b) two-way nesting between the high resolution model and its parent domain. The model, which was run with horizontal grid spacing of 370 m, had dimensions of 505 grid points in the east-west direction and 490 points in the north-south direction. It received boundary conditions from a mesoscale model of resolution 1111 m. Both models had 37 levels in the vertical. The mesoscale model was run with a non-local-mixing planetary boundary layer scheme, while the 370 m model was run with no planetary boundary layer scheme. It was found that increasing the

  19. An Analytical Means of Determining Mass Loss from High Velocity Rigid Penetrators based on the Thermodynamic and Mechanical Properties of the Penetrator and Target

    NASA Astrophysics Data System (ADS)

    Foster, Joseph C., Jr.; Jones, S. E.; Rule, William; Toness, Odin

    1999-06-01

    Sub-scale experimentation is commonly used as a cost-effective means of conducting terminal ballistics research. Analytical models of the penetration process focus on calculating the depth of penetration based on target density, target strength represented by the unconfined compressive-strength (f”c), the areal density of the penetrator (W/A), and the impact velocity.1 Forrestal, et. al. have documented the mass loss from the penetrator during the penetration process and employed improved equations of motion.2 Various researchers have investigated the upper limits of rigid body penetration and identified the onset of instabilities.3 In an effort to better understand the physical processes associated with this instability, experimental techniques have been developed to capture the details of the penetrator and target and subject them to microscopic analysis.4 These results have served as motivation to explore new forms for the physics included in the penetration equation as a means of identifying the processes associated with high velocity instability. We have included target shear and nose friction in the formulation of the fundamental load function expressions.5 When the resulting equations of motion are integrated and combined with the thermodynamics indicated by microscopic analysis, methods are identified to calculated penetrator mass loss. A comparison of results with experimental data serves as an indicator of the thermodynamic state variables associated with the quasi-steady state penetrator target interface conditions. 1 Young, C. W. , “Depth Predictions for Earth Penetrating Projectiles,” Journal of Soil Mechanics and Foundations, Division of ASCE, May 1998 pp 803-817 2. M.J. Forrestal, D.J. Frew, S.J. Hanchak, amd Brar, “ Pentration of Grout and Concrete Targets with Ogive-Nose Steel Projectiles,” Inrt. J. Impact Engng. Vol 18, pp. 465-476,1996 3. Andrew J. Piekutowski, Michael J. Forrestal, Kevin L. Poormon, and Thomas L. Warren, “Penetration

  20. Impact of High Solar Penetration in the Western Interconnection

    SciTech Connect

    Lew, D.; Miller, N.; Clark, K.; Jordan, G.; Gao, Z.

    2010-12-01

    This paper presents an overview of the variable characteristics of solar power, as well as the accompanying grid dynamic performance and operational economics for a system with significant solar generation. The paper will show results of economic operational simulations of a very high solar generation future for the western half of the United States.

  1. High-Penetration Photovoltaics Standards and Codes Workshop, Denver, Colorado, May 20, 2010: Workshop Proceedings

    SciTech Connect

    Coddington, M.; Kroposki, B.; Basso, T.; Lynn, K.; Herig, C.; Bower, W.

    2010-09-01

    Effectively interconnecting high-level penetration of photovoltaic (PV) systems requires careful technical attention to ensuring compatibility with electric power systems. Standards, codes, and implementation have been cited as major impediments to widespread use of PV within electric power systems. On May 20, 2010, in Denver, Colorado, the National Renewable Energy Laboratory, in conjunction with the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE), held a workshop to examine the key technical issues and barriers associated with high PV penetration levels with an emphasis on codes and standards. This workshop included building upon results of the High Penetration of Photovoltaic (PV) Systems into the Distribution Grid workshop held in Ontario California on February 24-25, 2009, and upon the stimulating presentations of the diverse stakeholder presentations.

  2. High-pressure-induced structural changes, amorphization and molecule penetration in MFI microporous materials: a review.

    PubMed

    Vezzalini, Giovanna; Arletti, Rossella; Quartieri, Simona

    2014-06-01

    This is a comparative study on the high-pressure behavior of microporous materials with an MFI framework type (i.e. natural mutinaite, ZSM-5 and the all-silica phase silicalite-1), based on in-situ experiments in which penetrating and non-penetrating pressure-transmitting media were used. Different pressure-induced phenomena and deformation mechanisms (e.g. pressure-induced over-hydration, pressure-induced amorphization) are discussed. The influence of framework and extra-framework composition and of the presence of silanol defects on the response to the high pressure of MFI-type zeolites is discussed. PMID:24892591

  3. High resolution wind measurements for offshore wind energy development

    NASA Technical Reports Server (NTRS)

    Nghiem, Son Van (Inventor); Neumann, Gregory (Inventor)

    2013-01-01

    A method, apparatus, system, article of manufacture, and computer readable storage medium provide the ability to measure wind. Data at a first resolution (i.e., low resolution data) is collected by a satellite scatterometer. Thin slices of the data are determined. A collocation of the data slices are determined at each grid cell center to obtain ensembles of collocated data slices. Each ensemble of collocated data slices is decomposed into a mean part and a fluctuating part. The data is reconstructed at a second resolution from the mean part and a residue of the fluctuating part. A wind measurement is determined from the data at the second resolution using a wind model function. A description of the wind measurement is output.

  4. Transient Stability of the US Western Interconnection with High Wind and Solar Generation

    SciTech Connect

    Clark, Kara; Miller, Nicholas W.; Shao, Miaolei; Pajic, Slobodan; D'Aquila, Robert

    2015-07-03

    The addition of large amounts of wind and solar generation to bulk power systems that are traditionally subject to operating constraints set by transient limitations is the subject of considerable concern in the industry. The US Western Interconnection (WI) is expected to experience substantial additional growth in both wind and solar generation. These plants will, to some extent, displace large central station thermal generation, both coal and gas-fired, which have traditionally helped maintain stability. This paper reports the results of a study that investigated the transient stability of the WI with high penetrations of wind and solar generation. The main goals of this work were to (1) create a realistic, baseline model of the WI, (2) test selected transient stability events, (3) investigate the impact of large amounts of wind and solar generation, and (4) examine means to improve performance.

  5. Solar wind and high energy particle effects in the middle atmosphere

    NASA Technical Reports Server (NTRS)

    Lastovicka, Jan

    1989-01-01

    The solar wind variability and high energy particle effects in the neutral middle atmosphere are not much known. These factors are important in the high latitude upper mesosphere, lower thermosphere energy budget. They influence temperature, composition (minor constituents of nitric oxide, ozone), circulation (wind system) and airflow. The vertical and latitudinal structures of such effects, mechanisms of downward penetration of energy and questions of energy abundance are largely to be solved. The most important recent finding seems to be the discovery of the role of highly relativistic electrons in the middle atmosphere at L = 3 - 8 (Baker et al., 1987). The solar wind and high energy particle flux variability appear to form a part of the chain of possible Sun-weather (climate) relationships. The importance of such studies in the nineties is emphasized by their role in big international programs STEP and IGBP - Global Change.

  6. Optimizing the U.S. Electric System with a High Penetration of Renewables

    NASA Astrophysics Data System (ADS)

    Corcoran, B. A.; Jacobson, M. Z.

    2012-12-01

    As renewable energy generators are increasingly being installed throughout the U.S., there is growing interest in interconnecting diverse renewable generators (primarily wind and solar) across large geographic areas through an enhanced transmission system. This reduces variability in the aggregate power output, increases system reliability, and allows for the development of the best overall group of renewable technologies and sites to meet the load. Studies are therefore needed to determine the most efficient and economical plan to achieve large area interconnections in a future electric system with a high penetration of renewables. This research quantifies the effects of aggregating electric load and, separately, electric load together with diverse renewable generation throughout the ten Federal Energy Regulatory Commission (FERC) regions in the contiguous U.S. The effects of aggregating electric load alone -- including generator capacity capital cost savings, load energy shift operating cost savings, reserve requirement cost savings, and transmission costs -- were calculated for various groupings of FERC regions using 2006 data. Transmission costs outweighed cost savings due to aggregation in nearly all cases. East-west transmission layouts had the highest overall cost, and interconnecting ERCOT to adjacent FERC regions resulted in increased costs, both due to limited existing transmission capacity. Scenarios consisting of smaller aggregation groupings had the lowest overall cost. This analysis found no economic case for further aggregation of load alone within the U.S., except possibly in the West and Northwest. If aggregation of electric load is desired, then small, regional consolidations yield the lowest overall system cost. Next, the effects of aggregating electric load together with renewable electricity generation are being quantified through the development and use of an optimization tool in AMPL (A Mathematical Programming Language). This deterministic

  7. Cavity dimensions for high velocity penetration events: A comparison of calculational results with data

    SciTech Connect

    Kmetyk, L.N.; Yarrington, P.

    1989-05-01

    Calculations were performed with the CTH and HULL finite difference wavecodes to evaluate computational capabilities for predicting depth and diameter of target cavities produced in high velocity penetration events. The calculations simulated selected tests in a set of armor penetration experiments conducted by the US Army Ballistic Research Laboratory and reported earlier in the literature. The tests and simulations involved penetration of semi-infinite targets by long rod projectiles over a range of impact velocities from 1.3 to 4.5 km/sec. Comparisons are made between the calculated and measured dimensions of the target cavities, and the sensitivity of the predicted results to target property variations is investigated. 9 refs., 18 figs., 3 tabs.

  8. Solar wind entry into the high-latitude terrestrial magnetosphere during geomagnetically quiet times.

    PubMed

    Shi, Q Q; Zong, Q-G; Fu, S Y; Dunlop, M W; Pu, Z Y; Parks, G K; Wei, Y; Li, W H; Zhang, H; Nowada, M; Wang, Y B; Sun, W J; Xiao, T; Reme, H; Carr, C; Fazakerley, A N; Lucek, E

    2013-01-01

    An understanding of the transport of solar wind plasma into and throughout the terrestrial magnetosphere is crucial to space science and space weather. For non-active periods, there is little agreement on where and how plasma entry into the magnetosphere might occur. Moreover, behaviour in the high-latitude region behind the magnetospheric cusps, for example, the lobes, is poorly understood, partly because of lack of coverage by previous space missions. Here, using Cluster multi-spacecraft data, we report an unexpected discovery of regions of solar wind entry into the Earth's high-latitude magnetosphere tailward of the cusps. From statistical observational facts and simulation analysis we suggest that these regions are most likely produced by magnetic reconnection at the high-latitude magnetopause, although other processes, such as impulsive penetration, may not be ruled out entirely. We find that the degree of entry can be significant for solar wind transport into the magnetosphere during such quiet times. PMID:23403567

  9. Observation of Penetration ``Track'' Formation in Silica Aerogel by High-Speed Camera

    NASA Astrophysics Data System (ADS)

    Okudaira, K.; Hasegawa, S.; Onose, N.; Yano, H.; Tabata, M.; Sugita, S.; Tsuchiyama, A.; Yamagishi, A.; Kawai, H.

    2012-05-01

    In this study, formation of penetration tracks in aerogel was observed and recorded by a high-speed camera. Excavation process of a single track, so-called a carrot track made by a 500 micron-alumina grain was observed.

  10. Renewable Electricity Futures. Operational Analysis of the Western Interconnection at Very High Renewable Penetrations

    SciTech Connect

    Brinkman, Gregory

    2015-09-01

    The Renewable Electricity Futures Study (RE Futures)--an analysis of the costs and grid impacts of integrating large amounts of renewable electricity generation into the U.S. power system--examined renewable energy resources, technical issues regarding the integration of these resources into the grid, and the costs associated with high renewable penetration scenarios. These scenarios included up to 90% of annual generation from renewable sources, although most of the analysis was focused on 80% penetration scenarios. Hourly production cost modeling was performed to understand the operational impacts of high penetrations. One of the conclusions of RE Futures was that further work was necessary to understand whether the operation of the system was possible at sub-hourly time scales and during transient events. This study aimed to address part of this by modeling the operation of the power system at sub-hourly time scales using newer methodologies and updated data sets for transmission and generation infrastructure. The goal of this work was to perform a detailed, sub-hourly analysis of very high penetration scenarios for a single interconnection (the Western Interconnection). It focused on operational impacts, and it helps verify that the operational results from the capacity expansion models are useful. The primary conclusion of this study is that sub-hourly operation of the grid is possible with renewable generation levels between 80% and 90%.

  11. Plasma Filaments in Dielectric Barrier Discharges Penetrating into High Aspect Ratio Cracks for Sterilization

    NASA Astrophysics Data System (ADS)

    Babaeva, Natalia Yu.; Kushner, Mark J.

    2012-10-01

    The ability of surface-hugging-plasmas, as produced in dielectric barrier discharges (DBDs), to penetrate into crevices, turn corners and navigate geometrical obstructions, is important in plasma-wound healing and sterilization. In this talk, we discuss results from a computational investigation of the plasma filaments produced in an air DBD and impinging on and penetrating into deep, high aspect ratio cracks in the bottom dielectric. The model used in this work, nonPDPSIM, is a plasma hydrodynamics model in which continuity, momentum and energy equations are solved for charged and neutral species with solution of Poisson's equation for the electric potential, concurrent with radiation transport. A Monte Carlo simulation is used to obtain ion energy distributions (IEDs) to surfaces. Cracks are 1 mm deep and 3 μm to 250 μm wide (aspect ratios of 333 to 4). We found that when impinging onto the cracked dielectric, the plasma filament conformally spreads over the surface. The conductive plasma transfers the applied potential to the opening of the crack. The width of the crack, w, then determines the penetration of the plasma. If w is large compared to the filament, the penetration is surface hugging. If w is commensurate with the filament, the plasma fills the crack. If the Debye length is about w or larger, there is not significant penetration. For the conditions investigated, penetration occurred for w > 5-6 μm. IEDs onto the surfaces of the trenches produce transient pulses of ions with energies >150 eV.

  12. Comparative analysis on penetrating depth of high-frequency Rayleigh and Love waves

    NASA Astrophysics Data System (ADS)

    Yin, Xiaofei; Xia, Jianghai; Shen, Chao; Xu, Hongrui

    2014-12-01

    A particular mode of surface waves possesses a unique phase velocity for each wavelength. Different wavelengths primarily reflect geological information at different depths. In practice, knowledge on penetrating depth of surface wave data is extremely important to define an earth model for inverting their phase velocities. For a layered model, we use the Jacobian matrix to investigate the relationship between wavelength and penetrating depth. The results show that a different mode of surface waves is sensitive to a different depth range. No matter for Rayleigh or Love waves, higher mode waves can penetrate deeper than fundamental mode waves do. For a normal model (S-wave velocity increases with depth) and given the same wavelength, the fundamental mode Rayleigh-wave data can 'see' 1.3-1.4 times deeper than that of Love waves. In addition, the higher-mode components of the two waves can penetrate the same depth. Our numerical studies based on sensitivity analysis of fundamental mode waves of two kinds of irregular models, HVL (high-velocity-layer model) and LVL (low-velocity-layer model), suggest that both Rayleigh and Love waves are insensitive to the layers beneath an HVL or LVL and the HVL itself. Therefore, wavelengths required for estimating S-wave velocity of these layers are much longer than the normal model.

  13. Ballistic penetration test results for Ductal and ultra-high performance concrete samples.

    SciTech Connect

    Reinhart, William Dodd; Thornhill, Tom Finley, III

    2010-03-01

    This document provides detailed test results of ballistic impact experiments performed on several types of high performance concrete. These tests were performed at the Sandia National Laboratories Shock Thermodynamic Applied Research Facility using a 50 caliber powder gun to study penetration resistance of concrete samples. This document provides test results for ballistic impact experiments performed on two types of concrete samples, (1) Ductal{reg_sign} concrete is a fiber reinforced high performance concrete patented by Lafarge Group and (2) ultra-high performance concrete (UHPC) produced in-house by DoD. These tests were performed as part of a research demonstration project overseen by USACE and ERDC, at the Sandia National Laboratories Shock Thermodynamic Applied Research (STAR) facility. Ballistic penetration tests were performed on a single stage research powder gun of 50 caliber bore using a full metal jacket M33 ball projectile with a nominal velocity of 914 m/s (3000 ft/s). Testing was observed by Beverly DiPaolo from ERDC-GSL. In all, 31 tests were performed to achieve the test objectives which were: (1) recovery of concrete test specimens for post mortem analysis and characterization at outside labs, (2) measurement of projectile impact velocity and post-penetration residual velocity from electronic and radiographic techniques and, (3) high-speed photography of the projectile prior to impact, impact and exit of the rear surface of the concrete construct, and (4) summarize the results.

  14. A high performance fiber optic pressure penetrator for use in the deep ocean

    NASA Astrophysics Data System (ADS)

    Cowen, S. J.

    1981-02-01

    This report describes results obtained in an FY 80 developmental program carried out at the Naval Ocean System Center, San Diego, under Independent Exploratory Development funding. The objective was to develop a robust, fully-demountable, high pressure penetrator design suitable for coupling light signals transmitted by optical fiber elements in an undersea cable operated at high ambient hydrostatic pressure into an electronics package or manned space. The feasibility of constructing such penetrators utilizing Graded Refractive Index (GRIN) rod lenses as combination pressure barriers and imaging devices has been demonstrated. Prototype realizations have exhibited excellent optical throughput performance and readily survive in excess of 10,000 psi pressure differential as well as tolerating a wide temperature range. The design lends itself to hermetic construction for applications requiring no vapor diffusion over long mission durations. Such devices exhibit excellent potential for satisfying SUBSAFE requirements for manned submarine applications.

  15. Measuring fuel contamination using high speed gas chromatography and cone penetration techniques

    SciTech Connect

    Farrington, S.P.; Bratton, W.L.; Akard, M.L.

    1995-10-01

    Decision processes during characterization and cleanup of hazardous waste sites are greatly retarded by the turnaround time and expense incurred through the use of conventional sampling and laboratory analyses. Furthermore, conventional soil and groundwater sampling procedures present many opportunities for loss of volatile organic compounds (VOC) by exposing sample media to the atmosphere during transfers between and among sampling devices and containers. While on-site analysis by conventional gas chromatography can reduce analytical turnaround time, time-consuming sample preparation procedures are still often required, and the potential for loss of VOC is not reduced. This report describes the development of a high speed gas chromatography and cone penetration testing system which can detect and measure subsurface fuel contamination in situ during the cone penetration process.

  16. A Preliminary Investigation of High-speed Impact: the Penetration of Small Spheres into Thick Copper Targets

    NASA Technical Reports Server (NTRS)

    Charters, A C; Locke, G S , Jr

    1958-01-01

    Small metal spheres of various densities were fired at high speed into thick targets of copper and lead. In general, it was found that all of the penetrations could be correlated quite well for engineering purposes by a function relating the depth of penetration to the impact momentum per unit volume.

  17. Plant Gas Exchange at High Wind Speeds 1

    PubMed Central

    Caldwell, Martyn M.

    1970-01-01

    High altitude Rhododendron ferrugineum L. and Pinus cembra L. seedlings were exposed to winds at 15 meters per second for 24-hour periods. Wind-sensitive stomata of Rhododendron seedlings immediately initiated a closing response which resulted in decreased photosynthesis and an even greater reduction in transpiration. Stomatal aperture and transpiration rates of P. cembra were only slightly reduced by high speed winds. However, photosynthesis was substantially reduced because of changes in needle display to available irradiation. PMID:16657501

  18. High-resolution sea wind hindcasts over the Mediterranean area

    NASA Astrophysics Data System (ADS)

    Menendez, M.; García-Díez, M.; Fita, L.; Fernández, J.; Méndez, F. J.; Gutiérrez, J. M.

    2014-04-01

    The goal of this study is to develop a high-resolution atmospheric hindcast over the Mediterranean area using the WRF-ARW model, focusing on offshore surface wind fields. In order to choose the most adequate model configuration, the study provides details on the calibration of the experimental saet-up through a sensitivity test considering the October-December 2001 period (the 2001 super-storm event in the West Mediterranean). A daily forecast outperforms the spectral technique of previous products and the boundary data from ERA-Interim reanalysis produces the most accurate estimates in terms of wind variability and hour-to-hour correspondence. According to the sensitivity test, two data sets of wind hindcast are produced: the SeaWind I (30-km horizontal resolution for a period of 60 years) and the SeaWind II (15-km horizontal resolution for 20 years). The validation of the resulting surface winds is undertaken considering two offshore observational datasets. On the one hand, hourly surface buoy stations are used to validate wind time series at specific locations; on the other hand, wind altimeter satellite observations are considered for spatial validation in the whole Mediterranean Sea. The results obtained from this validation process show a very good agreement with observations for the southern Europe region. Finally, SeaWind I and II are used to characterize offshore wind fields in the Mediterranean Sea. The statistical structure of sea surface wind is analyzed and the agreement with Weibull probability distribution is discussed. In addition, wind persistence and extreme wind speed (50 year return period) are characterized and relevant areas of wind power generation are described by estimating wind energy quantities.

  19. Pressure-induced penetration of guest molecules in high-silica zeolites: the case of mordenite.

    PubMed

    Arletti, R; Leardini, L; Vezzalini, G; Quartieri, S; Gigli, L; Santoro, M; Haines, J; Rouquette, J; Konczewicz, L

    2015-10-01

    A synthetic high-silica mordenite (HS-MOR) has been compressed in both non-penetrating (silicone oil, s.o.) and penetrating [methanol : ethanol : water (16 : 3 : 1) (m.e.w.), water : ethanol (3 : 1) (w.e.), and ethylene glycol (e.gl.)] pressure transmitting media (PTM). In situ high-pressure (HP) synchrotron X-ray powder diffraction (XRPD) experiments allowed the unit cell parameters to be followed up to 1.6, 1.8, 8.4, and 6.7 GPa in s.o., w.e., m.e.w., and e.gl., respectively. Moreover, e.gl. was also used as a PTM in in situ HP Raman and ex situ IR experiments. The structural refinement of HS-MOR compressed in e.gl. at 0.1 GPa - the lowest investigated pressure - revealed the presence of 3.5 ethylene glycol molecules per unit cell. The infrared spectrum of the recovered sample, after compression to 1 GPa, is consistent with the insertion of ethylene glycol molecules in the pores. XRPD and Raman spectroscopy experiments performed under pressure indicated the insertion of a small number of guest molecules. Ethylene glycol is partially retained inside mordenite upon pressure release. A symmetry lowering was observed in s.o. above 0.8 GPa, while above 1.6 GPa the patterns indicated a rapid loss of long range order. From ambient pressure (Pamb) to 1.6 GPa, a high cell volume contraction (ΔV = -9.5%) was determined. The patterns collected with penetrating PTM suggested the penetration of guest molecules into the porous host matrix, starting from a very low P regime. The entrapment of PTM molecules inside micropores contributes to the stiffening of the structure and, as a consequence, to the decrease of the compressibility with respect to that measured in s.o. From the structural point of view, HS-MOR reacts to compression and to the penetration of different guest species with appropriate framework deformations. Interestingly, ethylene glycol is partially retained inside mordenite upon pressure release, which is of importance for potential

  20. Penetrating Bladder Trauma: A High Risk Factor for Associated Rectal Injury

    PubMed Central

    Pereira, B. M.; Reis, L. O.; Calderan, T. R.; de Campos, C. C.; Fraga, G. P.

    2014-01-01

    Demographics and mechanisms were analyzed in prospectively maintained level one trauma center database 1990–2012. Among 2,693 trauma laparotomies, 113 (4.1%) presented bladder lesions; 51.3% with penetrating injuries (n = 58); 41.3% (n = 24) with rectal injuries, males corresponding to 95.8%, mean age 29.8 years; 79.1% with gunshot wounds and 20.9% with impalement; 91.6% arriving the emergence room awake (Glasgow 14-15), hemodynamically stable (average systolic blood pressure 119.5 mmHg); 95.8% with macroscopic hematuria; and 100% with penetrating stigmata. Physical exam was not sensitive for rectal injuries, showing only 25% positivity in patients. While 60% of intraperitoneal bladder injuries were surgically repaired, extraperitoneal ones were mainly repaired using Foley catheter alone (87.6%). Rectal injuries, intraperitoneal in 66.6% of the cases and AAST-OIS grade II in 45.8%, were treated with primary suture plus protective colostomy; 8.3% were sigmoid injuries, and 70.8% of all injuries had a minimum stool spillage. Mean injury severity score was 19; mean length of stay 10 days; 20% of complications with no death. Concomitant rectal injuries were not a determinant prognosis factor. Penetrating bladder injuries are highly associated with rectal injuries (41.3%). Heme-negative rectal examination should not preclude proctoscopy and eventually rectal surgical exploration (only 25% sensitivity). PMID:24527030

  1. DSCOVR High Time Resolution Solar Wind Measurements

    NASA Technical Reports Server (NTRS)

    Szabo, Adam

    2012-01-01

    The Deep Space Climate Observatory (DSCOVR), previously known as Triana, spacecraft is expected to be launched in late 2014. It will carry a fluxgate magnetometer, Faraday Cup solar wind detector and a top-hat electron electrostatic analyzer. The Faraday Cup will provide an unprecedented 10 vectors/sec time resolution measurement of the solar wind proton and alpha reduced distribution functions. Coupled with the 40 vector/sec vector magnetometer measurements, the identification of specific wave modes in the solar wind will be possible for the first time. The science objectives and data products of the mission will be discussed.

  2. Jet engine powers large, high-temperature wind tunnel

    NASA Technical Reports Server (NTRS)

    Benham, T. F.; Mulliken, S. R.

    1967-01-01

    Wind tunnel for large component testing uses a jet engine with afterburner to provide high temperatures /1200 degrees to 2000 degrees F/ and controlled high velocity gas. This economical wind tunnel can accommodate parts ten feet by ten feet or larger, and is a useful technique for qualitative information.

  3. Design and Performance of Solar Decathlon 2011 High-Penetration Microgrid: Preprint

    SciTech Connect

    Stafford, B.; Coddington, M.; Butt, R.; Solomon, S.; Wiegand, G.; Wagner, C.; Gonzalez, B.

    2012-04-01

    The U.S. Department of Energy Solar Decathlon challenges collegiate teams to design, build, and operate solar-powered houses that are cost-effective, energy-efficient, and attractive. The Solar Decathlon 2011 was held in Washington, D.C., from September 23 to October 2, 2011 . A high-penetration microgrid was designed, installed, and operated for the Solar Decathlon 2011 to grid-connect 19 highly energy-efficient, solar-powered competition houses to a single utility connection point. The capacity penetration of this microgrid (defined as maximum PV generation divided by maximum system load over a two-week period) was 74% based on 1-minute averaged data. Temporary, ground-laid conductors and electrical distribution equipment were installed to grid-connect the Solar Decathlon village, which included the houses as well as other electrical loads used by the event organizers. While 16 of the houses were connected to the 60 Hz microgrid, three houses from Belgium, China, and New Zealand were supplied with 50 Hz power. The design of the microgrid, including the connection of the houses powered by 50 Hz and a standby diesel generator, is discussed in this paper. In addition to the utility-supplied net energy meters at each house, a microgrid monitoring system was installed to measure and record energy consumption and PV energy production at 1-second intervals at each house. Bidirectional electronic voltage regulators were installed for groups of competition houses, which held the service voltage at each house to acceptable levels. The design and successful performance of this high-penetration microgrid is presented from the house, microgrid operator, and utility perspectives.

  4. Extended-Term Dynamic Simulations with High Penetrations of Photovoltaic Generation.

    SciTech Connect

    Concepcion, Ricky James; Elliott, Ryan Thomas; Donnelly, Matt; Sanchez-Gasca, Juan

    2016-01-01

    The uncontrolled intermittent availability of renewable energy sources makes integration of such devices into today's grid a challenge. Thus, it is imperative that dynamic simulation tools used to analyze power system performance are able to support systems with high amounts of photovoltaic (PV) generation. Additionally, simulation durations expanding beyond minutes into hours must be supported. This report aims to identify the path forward for dynamic simulation tools to accom- modate these needs by characterizing the properties of power systems (with high PV penetration), analyzing how these properties affect dynamic simulation software, and offering solutions for po- tential problems. We present a study of fixed time step, explicit numerical integration schemes that may be more suitable for these goals, based on identified requirements for simulating high PV penetration systems. We also present the alternative of variable time step integration. To help determine the characteristics of systems with high PV generation, we performed small signal sta- bility studies and time domain simulations of two representative systems. Along with feedback from stakeholders and vendors, we identify the current gaps in power system modeling including fast and slow dynamics and propose a new simulation framework to improve our ability to model and simulate longer-term dynamics.

  5. High-Penetration PV Deployment in the Arizona Public Service System, Phase 1 Update: Preprint

    SciTech Connect

    Hambrick, J.; Narang, D.

    2012-06-01

    In an effort to better understand the impacts of high penetrations of photovoltaic generators on distribution systems, Arizona Public Service and its partners have begun work on a multi-year project to develop the tools and knowledge base needed to safely and reliably integrate high penetrations of utility- and residential-scale photovoltaics (PV). Building upon the APS Community Power Project -- Flagstaff Pilot, this project will analyze the impact of PV on a representative feeder in northeast Flagstaff. To quantify and catalog the effects of the estimated 1.3 MW of PV that will be installed on the feeder (both smaller units at homes as well as large, centrally located systems), high-speed weather and electrical data acquisition systems and digital 'smart' meters are being designed and installed to facilitate monitoring and to build and validate comprehensive, high-resolution models of the distribution system. These models will be used to analyze the impacts of the PV on distribution circuit protection systems (including anti-islanding), predict voltage regulation and phase balance issues, and develop volt/var control schemes. This paper continues from a paper presented at the 2011 IEEE PVSC conference that introduces the project and describes some of the preliminary consideration, as well as project plans and early results. This paper gives a status update of the project and presents selected results from Phase 2 of the project. It discusses baseline feeder modeling, load allocation, data acquisition, utility-scale PV integration, preliminary model validation, and plans for future phases.

  6. Fatal Penetrating Injuries Sustained by High-pressure Water Jet Unit.

    PubMed

    Radojevic, Nemanja; Radnic, Bojana; Curovic, Ivana

    2015-11-01

    The high-pressure water jet unit is a generator of frequent burst of water jets. The water jet reaches very high speeds and is able to cause wounds similar to those of high-velocity projectiles. In the presented case, unusual fatal injuries sustained by water jet are presented. Operating with the unit, an untrained worker accidentally activated a high-pressure water jet unit, and the extremely high pressure of water liberated the jet unit from his hand and whirled it around him. A jet stream of water ran across his body and caused fatal penetrating injuries in the femoral region. The edges of the wound were mainly sharp with contusion rings on the skin beyond the edges. Exploring the inside of the canals during the autopsy, the left femoral artery and vein were found to be completely transected. The resemblance to a firearm entry wound and the severity of the internal injury make it a noteworthy entity. PMID:26250721

  7. Microwave (EPR) measurements of the penetration depth measurements of high-Tc superconductors

    NASA Technical Reports Server (NTRS)

    Dalal, N. S.; Rakvin, B.; Mahl, T. A.; Bhalla, A. S.; Sheng, Z. Z.

    1991-01-01

    The use is discussed of electron paramagnetic resonance (EPR) as a quick and easily accessible method for measuring the London penetration depth, lambda for the high T sub c superconductors. The method uses the broadening of the EPR signal, due to the emergence of the magnetic flux lattice, of a free radical adsorbed on the surface of the sample. The second moment, of the EPR signal below T sub c is fitted to the Brandt equation for a simple triangular lattice. The precision of this method compares quite favorably with those of the more standard methods such as micro sup(+)SR, neutron scattering, and magnetic susceptibility.

  8. Improving Ground Penetrating Radar Imaging in High Loss Environments by Coordinated System Development, Data Processing, Numerical Modeling, & Visualization

    SciTech Connect

    Wright, David L.

    2004-12-01

    Improving Ground Penetrating Radar Imaging in High Loss Environments by Coordinated System Development, Data Processing, Numerical Modeling, and Visualization Methods with Applications to Site Characterization EMSP Project 86992 Progress Report as of 9/2004.

  9. High resolution reanalysis of wind speeds over the British Isles for wind energy integration

    NASA Astrophysics Data System (ADS)

    Hawkins, Samuel Lennon

    The UK has highly ambitious targets for wind development, particularly offshore, where over 30GW of capacity is proposed for development. Integrating such a large amount of variable generation presents enormous challenges. Answering key questions depends on a detailed understanding of the wind resource and its temporal and spatial variability. However, sources of wind speed data, particularly offshore, are relatively sparse: satellite data has low temporal resolution; weather buoys and met stations have low spatial resolution; while the observations from ships and platforms are affected by the structures themselves. This work uses a state-of-the art mesoscale atmospheric model to produce a new high-resolution wind speed dataset over the British Isles and surrounding waters. This covers the whole region at a resolution of 3km for a period of eleven consecutive years, from 2000 to 2010 inclusive, and is thought to be the first high resolution re-analysis to represent a true historic time series, rather than a statistically averaged climatology. The results are validated against observations from met stations, weather buoys, offshore platforms and satellite-derived wind speeds, and model bias is reduced offshore using satellite derived wind speeds. The ability of the dataset to predict power outputs from current wind farms is demonstrated, and the expected patterns of power outputs from future onshore and offshore wind farms are predicted. Patterns of wind production are compared to patterns of electricity demand to provide the first conclusive combined assessment of the ability of future onshore and offshore wind generation meet electricity demand and contribute to secure energy supplies..

  10. Optimal Operation and Management for Smart Grid Subsumed High Penetration of Renewable Energy, Electric Vehicle, and Battery Energy Storage System

    NASA Astrophysics Data System (ADS)

    Shigenobu, Ryuto; Noorzad, Ahmad Samim; Muarapaz, Cirio; Yona, Atsushi; Senjyu, Tomonobu

    2016-04-01

    Distributed generators (DG) and renewable energy sources have been attracting special attention in distribution systems in all over the world. Renewable energies, such as photovoltaic (PV) and wind turbine generators are considered as green energy. However, a large amount of DG penetration causes voltage deviation beyond the statutory range and reverse power flow at interconnection points in the distribution system. If excessive voltage deviation occurs, consumer's electric devices might break and reverse power flow will also has a negative impact on the transmission system. Thus, mass interconnections of DGs has an adverse effect on both of the utility and the customer. Therefore, reactive power control method is proposed previous research by using inverters attached DGs for prevent voltage deviations. Moreover, battery energy storage system (BESS) is also proposed for resolve reverse power flow. In addition, it is possible to supply high quality power for managing DGs and BESSs. Therefore, this paper proposes a method to maintain voltage, active power, and reactive power flow at interconnection points by using cooperative controlled of PVs, house BESSs, EVs, large BESSs, and existing voltage control devices. This paper not only protect distribution system, but also attain distribution loss reduction and effectivity management of control devices. Therefore mentioned control objectives are formulated as an optimization problem that is solved by using the Particle Swarm Optimization (PSO) algorithm. Modified scheduling method is proposed in order to improve convergence probability of scheduling scheme. The effectiveness of the proposed method is verified by case studies results and by using numerical simulations in MATLAB®.

  11. High Kinetic Energy Penetrator Shielding and High Wear Resistance Materials Fabricated with Boron Nitride Nanotubes (BNNTS) and BNNT Polymer Composites

    NASA Technical Reports Server (NTRS)

    Kang, Jin Ho (Inventor); Park, Cheol (Inventor); Sauti, Godfrey (Inventor); Smith, Michael W. (Inventor); Jordan, Kevin C. (Inventor); Lowther, Sharon E. (Inventor); Bryant, Robert George (Inventor)

    2015-01-01

    Boron nitride nanotubes (BNNTs), boron nitride nanoparticles (BNNPs), carbon nanotubes (CNTs), graphites, or combinations, are incorporated into matrices of polymer, ceramic or metals. Fibers, yarns, and woven or nonwoven mats of BNNTs are used as toughening layers in penetration resistant materials to maximize energy absorption and/or high hardness layers to rebound or deform penetrators. They can be also used as reinforcing inclusions combining with other polymer matrices to create composite layers like typical reinforcing fibers such as Kevlar.RTM., Spectra.RTM., ceramics and metals. Enhanced wear resistance and usage time are achieved by adding boron nitride nanomaterials, increasing hardness and toughness. Such materials can be used in high temperature environments since the oxidation temperature of BNNTs exceeds 800.degree. C. in air. Boron nitride based composites are useful as strong structural materials for anti-micrometeorite layers for spacecraft and space suits, ultra strong tethers, protective gear, vehicles, helmets, shields and safety suits/helmets for industry.

  12. High Resolution Atmospheric Modeling for Wind Energy Applications

    SciTech Connect

    Simpson, M; Bulaevskaya, V; Glascoe, L; Singer, M

    2010-03-18

    The ability of the WRF atmospheric model to forecast wind speed over the Nysted wind park was investigated as a function of time. It was found that in the time period we considered (August 1-19, 2008), the model is able to predict wind speeds reasonably accurately for 48 hours ahead, but that its forecast skill deteriorates rapidly after 48 hours. In addition, a preliminary analysis was carried out to investigate the impact of vertical grid resolution on the forecast skill. Our preliminary finding is that increasing vertical grid resolution does not have a significant impact on the forecast skill of the WRF model over Nysted wind park during the period we considered. Additional simulations during this period, as well as during other time periods, will be run in order to validate the results presented here. Wind speed is a difficult parameter to forecast due the interaction of large and small length scale forcing. To accurately forecast the wind speed at a given location, the model must correctly forecast the movement and strength of synoptic systems, as well as the local influence of topography / land use on the wind speed. For example, small deviations in the forecast track or strength of a large-scale low pressure system can result in significant forecast errors for local wind speeds. The purpose of this study is to provide a preliminary baseline of a high-resolution limited area model forecast performance against observations from the Nysted wind park. Validating the numerical weather prediction model performance for past forecasts will give a reasonable measure of expected forecast skill over the Nysted wind park. Also, since the Nysted Wind Park is over water and some distance from the influence of terrain, the impact of high vertical grid spacing for wind speed forecast skill will also be investigated.

  13. Analysis of axial-induction-based wind plant control using an engineering and a high-order wind plant model

    SciTech Connect

    Annoni, Jennifer; Gebraad, Pieter M. O.; Scholbrock, Andrew K.; Fleming, Paul A.; Wingerden, Jan-Willem van

    2015-08-14

    Wind turbines are typically operated to maximize their performance without considering the impact of wake effects on nearby turbines. Wind plant control concepts aim to increase overall wind plant performance by coordinating the operation of the turbines. This paper focuses on axial-induction-based wind plant control techniques, in which the generator torque or blade pitch degrees of freedom of the wind turbines are adjusted. The paper addresses discrepancies between a high-order wind plant model and an engineering wind plant model. Changes in the engineering model are proposed to better capture the effects of axial-induction-based control shown in the high-order model.

  14. High-performance TSD bits improve penetration rate. [Thermally Stable Diamond

    SciTech Connect

    Cohen, J.H.; Maurer, W.C. ); Westcott, P.A. )

    1993-04-12

    Optimizing the number, size, and orientation of clutters on thermally stable diamond (TSD) bits increases penetration rate and extends bit life. The use of optimized TSD (also commonly referred to as thermally stable product or TSP) bits on high-power drilling motors can greatly reduce drilling time for harsh-environment wells, such as deep gas wells. The power delivered to the rock governs drilling rate, and at high speed the optimized TSD bits are capable of effectively delivering power to drill the rock. This article reviews a 3-year project to develop advanced thermally stable diamond bits that can operate at a power level 5-10 times greater than that typically delivered by conventional rotary drilling. These bits are designed to operate on advanced drilling motors that drill three to six times faster than rotary drilling. These advanced bits and motors are especially designed for use in slim-hole and horizontal drilling applications. The TSD bit design parameters which were varied during the tests were cutter size, shape, density (number of cutters), and orientation. Drilling tests in limestone, sandstone, marble, and granite blocks showed that these optimized bits drilled many of these rocks at 500-1,000 ft/hr compared to 50-100 ft/hr for conventional rotary drilling. A sensitivity model showed that doubling the rate of penetration significantly reduced the time to drill a well and reduced costs by 13 %.

  15. Identifying Highly Penetrant Disease Causal Mutations Using Next Generation Sequencing: Guide to Whole Process

    PubMed Central

    Erzurumluoglu, A. Mesut; Shihab, Hashem A.; Baird, Denis; Richardson, Tom G.; Day, Ian N. M.; Gaunt, Tom R.

    2015-01-01

    Recent technological advances have created challenges for geneticists and a need to adapt to a wide range of new bioinformatics tools and an expanding wealth of publicly available data (e.g., mutation databases, and software). This wide range of methods and a diversity of file formats used in sequence analysis is a significant issue, with a considerable amount of time spent before anyone can even attempt to analyse the genetic basis of human disorders. Another point to consider that is although many possess “just enough” knowledge to analyse their data, they do not make full use of the tools and databases that are available and also do not fully understand how their data was created. The primary aim of this review is to document some of the key approaches and provide an analysis schema to make the analysis process more efficient and reliable in the context of discovering highly penetrant causal mutations/genes. This review will also compare the methods used to identify highly penetrant variants when data is obtained from consanguineous individuals as opposed to nonconsanguineous; and when Mendelian disorders are analysed as opposed to common-complex disorders. PMID:26106619

  16. Advanced Inverter Technology for High Penetration Levels of PV Generation in Distribution Systems

    SciTech Connect

    Schauder, C.

    2014-03-01

    This subcontract report was completed under the auspices of the NREL/SCE High-Penetration Photovoltaic (PV) Integration Project, which is co-funded by the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) and the California Solar Initiative (CSI) Research, Development, Demonstration, and Deployment (RD&D) program funded by the California Public Utility Commission (CPUC) and managed by Itron. This project is focused on modeling, quantifying, and mitigating the impacts of large utility-scale PV systems (generally 1-5 MW in size) that are interconnected to the distribution system. This report discusses the concerns utilities have when interconnecting large PV systems that interconnect using PV inverters (a specific application of frequency converters). Additionally, a number of capabilities of PV inverters are described that could be implemented to mitigate the distribution system-level impacts of high-penetration PV integration. Finally, the main issues that need to be addressed to ease the interconnection of large PV systems to the distribution system are presented.

  17. Environmental acceptability of high-performance alternatives for depleted uranium penetrators

    SciTech Connect

    Kerley, C.R.; Easterly, C.E.; Eckerman, K.F.

    1996-08-01

    The Army`s environmental strategy for investigating material substitution and management is to measure system environmental gains/losses in all phases of the material management life cycle from cradle to grave. This study is the first in a series of new investigations, applying material life cycle concepts, to evaluate whether there are environmental benefits from increasing the use of tungsten as an alternative to depleted uranium (DU) in Kinetic Energy Penetrators (KEPs). Current military armor penetrators use DU and tungsten as base materials. Although DU alloys have provided the highest performance of any high-density alloy deployed against enemy heavy armor, its low-level radioactivity poses a number of environmental risks. These risks include exposures to the military and civilian population from inhalation, ingestion, and injection of particles. Depleted uranium is well known to be chemically toxic (kidney toxicity), and workplace exposure levels are based on its renal toxicity. Waste materials containing DU fragments are classified as low-level radioactive waste and are regulated by the Nuclear Regulatory Commission. These characteristics of DU do not preclude its use in KEPs. However, long-term management challenges associated with KEP deployment and improved public perceptions about environmental risks from military activities might be well served by a serious effort to identify, develop, and substitute alternative materials that meet performance objectives and involve fewer environmental risks. Tungsten, a leading candidate base material for KEPS, is potentially such a material because it is not radioactive. Tungsten is less well studied, however, with respect to health impacts and other environmental risks. The present study is designed to contribute to the understanding of the environmental behavior of tungsten by synthesizing available information that is relevant to its potential use as a penetrator.

  18. Effect of Impact and Penetration on Microstructural Evolution of High-performance Concretes

    SciTech Connect

    Ren, Fei; Mattus, Catherine H; Wang, Jy-An John; Dipaolo, Beverly P

    2013-01-01

    Due to the increased concern of public safety in recent years, blast resistance of infrastructures has become an emerging research focus in the cement and concrete industry. Ultra High Performance Concrete (UHPC) with fiber reinforcement usually possesses compressive strengths greater than 200 MPa, which makes them promising candidates for blast-resistant building materials. In the current project, two UHPC materials, Ductal and ERDC-M, were subject to projectile penetration testing. The microstructural evolution due to projectile impact was examined via scanning electron microscopy and X-ray diffraction. Possible phase changes were observed in the impact volume, which was likely a result of the high temperature and high pressure induced by the impact.

  19. Highly accurate and fast optical penetration-based silkworm gender separation system

    NASA Astrophysics Data System (ADS)

    Kamtongdee, Chakkrit; Sumriddetchkajorn, Sarun; Chanhorm, Sataporn

    2015-07-01

    Based on our research work in the last five years, this paper highlights our innovative optical sensing system that can identify and separate silkworm gender highly suitable for sericulture industry. The key idea relies on our proposed optical penetration concepts and once combined with simple image processing operations leads to high accuracy in identifying of silkworm gender. Inside the system, there are electronic and mechanical parts that assist in controlling the overall system operation, processing the optical signal, and separating the female from male silkworm pupae. With current system performance, we achieve a very highly accurate more than 95% in identifying gender of silkworm pupae with an average system operational speed of 30 silkworm pupae/minute. Three of our systems are already in operation at Thailand's Queen Sirikit Sericulture Centers.

  20. On High-Resolution Scatterometer Winds near the Coast

    NASA Astrophysics Data System (ADS)

    Stoffelen, Ad; Verhoef, Anton; Vogelzang, Jur; Portabella, Marcos; Figa, Julia

    2010-12-01

    The Advanced SCATterometer (ASCAT) operational processing uses spatial filtering with a Hamming window to avoid noise due to aliasing. The spatial extent of the Hamming windows prevents processing near the coast line. However, sea surface winds near the coast are very important, given that activities related to shipping and transport, off-shore resource exploitation, wind parks and tourism are most intense near the coast. Furthermore, coastal winds are also important for monitoring ecological and erosion processes. To provide ASCAT winds closer to the coast, three different products have been generated with spatial filtering over a circular box, and subjected to validation both in coastal and open ocean areas. The product made with a backscatter averaging cut-off radius Rmax = 15 km closely resembles the operational ASCAT 12.5-km product. However, the smaller spatial averaging extent of the box compared to the Hamming window, not only allows retrieving winds closer to the coast, but also captures smaller ocean wind variability and it is consequently providing greater consistency of the ASCAT backscatter triplet with the wind Geophysical Model Function (GMF), as observed by a reduced elimination of points by the Quality Control (QC). Due to the low noise observed in this product, we anticipate that in cases with high wind gradients, such as near tropical cyclones, even higher resolution winds than the ones presented here may be worthwhile retrieving.

  1. Transient Stability and Frequency Response of the US Western Interconnection under conditions of High Wind and Solar Generation

    SciTech Connect

    Clark, Kara; Miller, Nicholas W.; Shao, Miaolei; Pajic, Slobodan; D'Aquila, Robert

    2015-04-15

    Adding large amounts of wind and solar generation to bulk power systems that are traditionally subject to operating constraints set by transient stability and frequency response limitations is the subject of considerable concern in the industry. The US Western Interconnection (WI) is expected to experience substantial additional growth in both wind and solar generation. These plants will, to some extent, displace large central station thermal generation, both coal and gas-fired, which have traditionally helped maintain stability. Our paper reports the results of a study that investigated the transient stability and frequency response of the WI with high penetrations of wind and solar generation. Moreover, the main goals of this work were to (1) create a realistic, baseline model of the WI, (2) test selected transient stability and frequency events, (3) investigate the impact of large amounts of wind and solar generation, and (4) examine means to improve performance.

  2. High apparent dielectric constants in the interior of a protein reflect water penetration.

    PubMed Central

    Dwyer, J J; Gittis, A G; Karp, D A; Lattman, E E; Spencer, D S; Stites, W E; García-Moreno E, B

    2000-01-01

    A glutamic acid was buried in the hydrophobic core of staphylococcal nuclease by replacement of Val-66. Its pK(a) was measured with equilibrium thermodynamic methods. It was 4.3 units higher than the pK(a) of Glu in water. This increase was comparable to the DeltapK(a) of 4.9 units measured previously for a lysine buried at the same location. According to the Born formalism these DeltapK(a) are energetically equivalent to the transfer of a charged group from water to a medium of dielectric constant of 12. In contrast, the static dielectric constants of dry protein powders range from 2 to 4. In the crystallographic structure of the V66E mutant, a chain of water molecules was seen that hydrates the buried Glu-66 and links it with bulk solvent. The buried water molecules have never previously been detected in >20 structures of nuclease. The structure and the measured energetics constitute compelling and unprecedented experimental evidence that solvent penetration can contribute significantly to the high apparent polarizability inside proteins. To improve structure-based calculations of electrostatic effects with continuum methods, it will be necessary to learn to account quantitatively for the contributions by solvent penetration to dielectric effects in the protein interior. PMID:10969021

  3. Solar Forecasting Challenges and Opportunities for Enabling High Penetration of Solar Energy

    NASA Astrophysics Data System (ADS)

    Mishra, S.

    2015-12-01

    In 2011, DOE launched the SunShot Initiative to reduce the total cost of solar energy systems by about 75% to make them cost competitive with other forms of energy (without subsidies) by 2020. This translates to a total cost of installed solar energy at 1/Watt or 0.06/kWh, incentivizing high penetration of solar on the utility grid. In the past four years, the SunShot Initiative has catalyzed revolutionary advancements in solar technologies, stimulating significant growth and accelerating deployment of solar energy systems. However, as solar deployment increases, integrating solar energy into the utility grid poses difficult challenges due to the variability in solar resource and the impact of clouds and aerosols on surface irradiance. Accurate forecasting of solar resource and its variability at high temporal and spatial resolution at least a day ahead is crucial to large scale integration of solar energy into the utility grid. However, this is limited by current errors in forecasting that are as high as 25% for clear sky forecasts of Global Horizontal Irradiance (GHI), and as large as 40-80% for cloudy conditions. Forecasting errors are even higher for the direct normal irradiance (DNI). For solar energy to be seamlessly integrated into the utility grid under the scenarios of high penetration of solar, significant improvements in surface solar irradiance modeling and observations of both Global Horizontal Irradiance (GHI) and Direct Normal Irradiance (DNI) are essential to accurately predict power outputs from photovoltaic (PV) and concentrating solar power (CSP) systems. Furthermore, forecasting improvements have to be closely tied to utility needs and operation timelines. Details about the ongoing research efforts supported through the SunShot initiative and the challenges and needs for solar forecasting improvements in regards to the SunShot Initiative will be presented at the conference.

  4. A Determination Procedure for Element Elimination Criterion in Finite Element Analysis of High-Strain-Rate Impact/Penetration Phenomena

    NASA Astrophysics Data System (ADS)

    Shin, Hyunho; Lee, Hun-Joo; Yoo, Yo-Han; Lee, Woong

    A determination procedure for element elimination criterion in finite element simulation of high-strain-rate impact and penetration phenomena, occurring between tungsten heavy alloy long-rod penetrators and steel targets, has been presented with some demonstrations for the validity of the established criterion. The element elimination criterion for the two types of materials have been determined by comparing the simulated depth of penetration (DOP) and deformed shape of the penetrator with previously available experimental results. Although the criterion affects the simulated DOP significantly at the studied impact velocity of 1500m/s, once established, they are shown to be valid in predicting the DOP in the impact velocity range between 1100 and 1750m/s. The events of partial penetration with severe material deformation such as critical ricochet angle and ricochet phenomenology have also been successfully predicted using the established criterion in the similar impact velocity range. Thus it is suggested that the determination procedure for the suitable element erosion criterion is prerequisite in simulating high-strain-rate impact/penetration phenomena and the criterion established by the procedure is useful in fairly broad range of the velocity and for other similar high-strain-rate events.

  5. Validation of solar wind high-speed stream predictions

    NASA Astrophysics Data System (ADS)

    Reiss, Martin; Temmer, Manuela; Veronig, Astrid; Nikolic, Ljubomir; Schöngassner, Florian; Vennerstrøm, Susanne

    2016-04-01

    Solar wind high-speed streams emanating from coronal holes are frequently impinging on the Earth's magnetosphere causing recurrent, medium-level geomagnetic storm activity. As major contributors to space weather disturbances at times of low solar activity, prediction models of solar wind high-speed streams are becoming highly desirable. We present a verification analysis of two operational solar wind prediction models (empirical model, Wang-Sheeley-Arge like model) by comparing the model runs for the period 2011 to 2014 with in-situ plasma measurements from the ACE spacecraft located at 1 AU. We find that both prediction models achieve a similar accuracy but demonstrate the tendency to under-predict and over-predict events of solar wind high-speed streams, respectively. General advantages and disadvantages of both models are diagnosed and outlined.

  6. Eastern Wind Integration and Transmission Study: Executive Summary and Project Overview

    SciTech Connect

    none,

    2010-01-01

    This study evaluates the future operational and integration impacts of three different 20 percent wind energy penetration scenarios and one 30 percent wind penetration scenario, including a high-level analysis of transmission to deliver the wind energy to load centers, in the study year 2024.

  7. CONDITIONED ANALYSIS OF HIGH-LATITUDE SOLAR WIND INTERMITTENCY

    SciTech Connect

    D'Amicis, R.; Consolini, G.; Bavassano, B.; Bruno, R.

    2012-08-10

    The solar wind is a turbulent medium displaying intermittency. Its intermittent features have been widely documented and studied, showing how the intermittent character is different in fast and slow wind. In this paper, a statistical conditioned analysis of the solar wind intermittency for a period of high-latitude fast solar wind is presented. In particular, the intermittent features are investigated as a function of the Alfvenic degree of fluctuations at a given scale. The results show that the main contribution to solar wind intermittency is due to non-Alfvenic structures, while Alfvenic increments are found to be characterized by a smaller level of intermittency than the previous ones. Furthermore, the lifetime statistics of Alfvenic periods are discussed in terms of a multiscale texture of randomly oriented flux tubes.

  8. 622 Mbps High-speed satellite communication system for WINDS

    NASA Astrophysics Data System (ADS)

    Ogawa, Yasuo; Hashimoto, Yukio; Yoshimura, Naoko; Suzuki, Ryutaro; Gedney, Richard T.; Dollard, Mike

    2006-07-01

    WINDS is the experimental communications satellite currently under joint development by Japanese Aerospace Exploration Agency (JAXA) and the National Institute of Information and Communications Technology (NICT). The high-speed satellite communication system is very effective for quick deployment of high-speed networks economically. The WINDS will realize ultra high-speed networking and demonstrate operability of satellite communication systems in high-speed internet. NICT is now developing high-speed satellite communication system for WINDS. High-speed TDMA burst modem with high performance TPC error correction is underdevelopment. Up to the DAC on the transmitter and from the ADC on the receiver, all modem functions are performed in the digital processing technology. Burst modem has been designed for a user data rate up to 1244 Mbps. NICT is developing the digital terminal as a user interface and a network controller for this earth station. High compatibility with the Internet will be provided.

  9. NREL/SCE High Penetration PV Integration Project: FY13 Annual Report

    SciTech Connect

    Mather, B. A.; Shah, S.; Norris, B. L.; Dise, J. H.; Yu, L.; Paradis, D.; Katiraei, F.; Seguin, R.; Costyk, D.; Woyak, J.; Jung, J.; Russell, K.; Broadwater, R.

    2014-06-01

    In 2010, the National Renewable Energy Laboratory (NREL), Southern California Edison (SCE), Quanta Technology, Satcon Technology Corporation, Electrical Distribution Design (EDD), and Clean Power Research (CPR) teamed to analyze the impacts of high penetration levels of photovoltaic (PV) systems interconnected onto the SCE distribution system. This project was designed specifically to benefit from the experience that SCE and the project team would gain during the installation of 500 megawatts (MW) of utility-scale PV systems (with 1-5 MW typical ratings) starting in 2010 and completing in 2015 within SCE's service territory through a program approved by the California Public Utility Commission (CPUC). This report provides the findings of the research completed under the project to date.

  10. Monitoring infiltration processes with high-resolution surface-based Ground-Penetrating Radar

    NASA Astrophysics Data System (ADS)

    Klenk, P.; Jaumann, S.; Roth, K.

    2015-11-01

    In this study, we present a series of high resolution Ground-Penetrating Radar (GPR) measurements monitoring two artificially induced infiltration pulses into two different sands with dual-frequency ground-based GPR. After the application of the second infiltration pulse, the water table in the subsoil was raised by pumping in water from below. The longterm relaxation of the system was then monitored over the course of several weeks. We focused on the capillary fringe reflection and on observed variations in soil water content as derived from direct wave travel times. We discuss the advantages of this dual-frequency approach and show the attainable precision in longterm monitoring of such relaxation processes. Reaching a relative precision of better than 0.001 [-] in water content, we can clearly discern the relaxation of the two investigated sands.

  11. Use of high-resolution ground-penetrating radar in kimberlite delineation

    USGS Publications Warehouse

    Kruger, J.M.; Martinez, A.; Berendsen, P.

    1997-01-01

    High-resolution ground-penetrating radar (GPR) was used to image the near-surface extent of two exposed Late Cretaceous kimberlites intruded into lower Permian limestone and dolomite host rocks in northeast Kansas. Six parallel GPR profiles identify the margin of the Randolph 1 kimberlite by the up-bending and termination of limestone reflectors. Five radially-intersecting GPR profiles identify the elliptical margin of the Randolph 2 kimberlite by the termination of dolomite reflectors near or below the kimberlite's mushroom-shaped cap. These results suggest GPR may augment magnetic methods for the delineation of kimberlites or other forceful intrusions in a layered host rock where thick, conductive soil or shale is not present at the surface.

  12. The Wind Integration National Dataset (WIND) toolkit (Presentation)

    SciTech Connect

    Caroline Draxl: NREL

    2014-01-01

    Regional wind integration studies require detailed wind power output data at many locations to perform simulations of how the power system will operate under high penetration scenarios. The wind datasets that serve as inputs into the study must realistically reflect the ramping characteristics, spatial and temporal correlations, and capacity factors of the simulated wind plants, as well as being time synchronized with available load profiles.As described in this presentation, the WIND Toolkit fulfills these requirements by providing a state-of-the-art national (US) wind resource, power production and forecast dataset.

  13. Nonparametric analysis of high wind speed data

    NASA Astrophysics Data System (ADS)

    Francisco-Fernández, Mario; Quintela-del-Río, Alejandro

    2013-01-01

    In this paper, nonparametric curve estimation methods are applied to analyze time series of wind speeds, focusing on the extreme events exceeding a chosen threshold. Classical parametric statistical approaches in this context consist in fitting a generalized Pareto distribution (GPD) to the tail of the empirical cumulative distribution, using maximum likelihood or the method of the moments to estimate the parameters of this distribution. Additionally, confidence intervals are usually computed to assess the uncertainty of the estimates. Nonparametric methods to estimate directly some quantities of interest, such as the probability of exceedance, the quantiles or return levels, or the return periods, are proposed. Moreover, bootstrap techniques are used to develop pointwise and simultaneous confidence intervals for these functions. The proposed models are applied to wind speed data in the Gulf Coast of US, comparing the results with those using the GPD approach, by means of a split-sample test. Results show that nonparametric methods are competitive with respect to the standard GPD approximations. The study is completed generating synthetic data sets and comparing the behavior of the parametric and the nonparametric estimates in this framework.

  14. Nitrogen Dioxide Variations Caused by Penetration of Solar Protons into the High-Latitude Atmosphere

    NASA Astrophysics Data System (ADS)

    Kasatkina, E. A.; Shumilov, O. I.; Kyro, E.; Fadel, K.; Turyansky, V. A.; Kivi, R.

    2003-03-01

    The results of spectroscopic measurements of the NO2 total content during the solar proton event of the GLE (Ground Level Event) type on May 2, 1998, at the Murmansk (Φ" = 64.5°) and Sodankyla (Φ" = 63.7°) stations are presented. The vertical profiles of the nitrogen oxide (NO) distribution in the stratosphere according to the UARS satellite data during another GLE event on July 14, 2000, are also presented. It is shown that the high-energy solar protons penetrating into the atmosphere lead to a considerable increase in the nitrogen oxide concentration and the GLE on May 2, 1998, resulted in an increase of the NO2 total content according to the ground-based observations at high latitudes. It is worth noting that no decrease of the total ozone content (TOC) was recorded during these proton events according to the ground-based measurements at high latitudes. The corresponding calculations of the nitrogen oxide changes during proton events based on the homogeneous photochemical theory are presented. The interrelation between all the quantities measured, as well as their relation to the calculated values, is considered. It is shown that a considerable increase of nitrogen oxides in the atmosphere does not always result in an ozone concentration depletion. The results presented indicate a need to provide simultaneous ground-based and satellite measurements of nitrogen oxides and ozone at high latitudes.

  15. Energy storage requirements of dc microgrids with high penetration renewables under droop control

    SciTech Connect

    Weaver, Wayne W.; Robinett, Rush D.; Parker, Gordon G.; Wilson, David G.

    2015-01-09

    Energy storage is a important design component in microgrids with high penetration renewable sources to maintain the system because of the highly variable and sometimes stochastic nature of the sources. Storage devices can be distributed close to the sources and/or at the microgrid bus. In addition, storage requirements can be minimized with a centralized control architecture, but this creates a single point of failure. Distributed droop control enables a completely decentralized architecture but, the energy storage optimization becomes more difficult. Our paper presents an approach to droop control that enables the local and bus storage requirements to be determined. Given a priori knowledge of the design structure of a microgrid and the basic cycles of the renewable sources, we found that the droop settings of the sources are such that they minimize both the bus voltage variations and overall energy storage capacity required in the system. This approach can be used in the design phase of a microgrid with a decentralized control structure to determine appropriate droop settings as well as the sizing of energy storage devices.

  16. Design of High Resolution Soft X-Ray Microcalorimeters Using Magnetic Penetration Thermometers

    NASA Technical Reports Server (NTRS)

    Busch. Sarah; Balvin, Manuel; Bandler, Simon; Denis, Kevin; Finkbeiner, Fred; Porst, Jan-Patrick; Sadlier, Jack; Smith, Stephen; Stevenson, Thomas

    2012-01-01

    We have designed high-resolution soft x-ray microcalorimeters using magnetic penetration thermometers (MPTs) in an array of pixels covering a total of 2 square centimeters to have a resolving power of 300 at energies around 300 eV. This performance is desirable for studying the soft x-ray background from the warm hot intergalactic medium. MPT devices have small sensor heat capacity and high responsivities, which makes them excellent detector technology for attempting to attain sub-eV resolution. We are investigating the feasibility of pixels with absorbers that are 625 x 625 square micrometers, up to 1 x 1 square millimeters in area and 0.35 micrometer thick and thinner. Our tests have shown that suspended gold absorbers 0.35 micrometers thick (RRR = 6.7) are feasible to fabricate. We modeled the thermal diffusion from such thin gold over the size of a 625 x 625 square micrometer absorber, and conclude that the effect of the thermalization on the resolution of a 300 eV photon is an additional approximately 0.2 eV FWHM of broadening. We discuss the thermal effects of small absorber attachment sterns on solid substrate, as well as considerations for multiplexed readout. We will present the progress we have made towards building and testing this soft x-ray detector.

  17. Energy storage requirements of dc microgrids with high penetration renewables under droop control

    DOE PAGESBeta

    Weaver, Wayne W.; Robinett, Rush D.; Parker, Gordon G.; Wilson, David G.

    2015-01-09

    Energy storage is a important design component in microgrids with high penetration renewable sources to maintain the system because of the highly variable and sometimes stochastic nature of the sources. Storage devices can be distributed close to the sources and/or at the microgrid bus. In addition, storage requirements can be minimized with a centralized control architecture, but this creates a single point of failure. Distributed droop control enables a completely decentralized architecture but, the energy storage optimization becomes more difficult. Our paper presents an approach to droop control that enables the local and bus storage requirements to be determined. Givenmore » a priori knowledge of the design structure of a microgrid and the basic cycles of the renewable sources, we found that the droop settings of the sources are such that they minimize both the bus voltage variations and overall energy storage capacity required in the system. This approach can be used in the design phase of a microgrid with a decentralized control structure to determine appropriate droop settings as well as the sizing of energy storage devices.« less

  18. Snow fences on slopes at high wind speed: physical modelling in the CSTB cold wind tunnel

    NASA Astrophysics Data System (ADS)

    Naaim-Bouvet, F.; Naaim, M.; Michaux, J.-L.

    In order to determine the effect of steep slopes on snowdrift generated by snow fences, we have conducted physical modeling experiments in the CSTB (Centre Scientifique et Technique du Bâtiment) cold wind tunnel as part of the European project "Access to Large Facilities". After an overview of previous studies and an accurate description of the drifting snow process inside the experimental chamber, we present the main results obtained. (1) On flat areas, even for high wind speed, the acknowledged results for moderate wind are still valid: the porous snow fence (50%) is the most efficacious and the bottom gap increases the efficacy of the dense snow fence. (2) The steeper the slope is, the less effective all tested snow fences are. Their effectiveness decreases considerably: the snow catch is approximately divided by two for a slope of 10°. (3) Contrary to flat areas, on steep slopes, the "efficacy" is greater for a dense snow fence.

  19. Ulysses Composition, Plasma and Magnetic Field Observations of High Speed Solar wind Streams

    NASA Technical Reports Server (NTRS)

    Smith, E. J.

    1997-01-01

    During 1992-3 as the Ulysses spacecraft passed in and out of the southern high speed solar wind stream, the Solar Wind Ion Spectrometer, SWICS made continuous composition and temperature measurements of all major solar wind ions.

  20. Analysis of Carbon Policies for Electricity Networks with High Penetration of Green Generation

    NASA Astrophysics Data System (ADS)

    Feijoo, Felipe A.

    In recent decades, climate change has become one of the most crucial challenges for humanity. Climate change has a direct correlation with global warming, caused mainly by the green house gas emissions (GHG). The Environmental Protection Agency in the U.S. (EPA) attributes carbon dioxide to account for approximately 82% of the GHG emissions. Unfortunately, the energy sector is the main producer of carbon dioxide, with China and the U.S. as the highest emitters. Therefore, there is a strong (positive) correlation between energy production, global warming, and climate change. Stringent carbon emissions reduction targets have been established in order to reduce the impacts of GHG. Achieving these emissions reduction goals will require implementation of policies like as cap-and-trade and carbon taxes, together with transformation of the electricity grid into a smarter system with high green energy penetration. However, the consideration of policies solely in view of carbon emissions reduction may adversely impact other market outcomes such as electricity prices and consumption. In this dissertation, a two-layer mathematical-statistical framework is presented, that serves to develop carbon policies to reduce emissions level while minimizing the negative impacts on other market outcomes. The bottom layer of the two layer model comprises a bi-level optimization problem. The top layer comprises a statistical model and a Pareto analysis. Two related but different problems are studied under this methodology. The first problem looks into the design of cap-and-trade policies for deregulated electricity markets that satisfy the interest of different market constituents. Via the second problem, it is demonstrated how the framework can be used to obtain levels of carbon emissions reduction while minimizing the negative impact on electricity demand and maximizing green penetration from microgrids. In the aforementioned studies, forecasts for electricity prices and production cost

  1. Subsurface Feature Mapping of Mars using a High Resolution Ground Penetrating Radar System

    NASA Astrophysics Data System (ADS)

    Wu, T. S.; Persaud, D. M.; Preudhomme, M. A.; Jurg, M.; Smith, M. K.; Buckley, H.; Tarnas, J.; Chalumeau, C.; Lombard-Poirot, N.; Mann, B.

    2015-12-01

    As the closest Earth-like, potentially life-sustaining planet in the solar system, Mars' future of human exploration is more a question of timing than possibility. The Martian surface remains hostile, but its subsurface geology holds promise for present or ancient astrobiology and future habitation, specifically lava tube (pyroduct) systems, whose presence has been confirmed by HiRISE imagery.The location and characterization of these systems could provide a basis for understanding the evolution of the red planet and long-term shelters for future manned missions on Mars. To detect and analyze the subsurface geology of terrestrial bodies from orbit, a novel compact (smallsat-scale) and cost-effective approach called the High-resolution Orbiter for Mapping gEology by Radar (HOMER) has been proposed. Adapting interferometry techniques with synthetic aperture radar (SAR) to a ground penetrating radar system, a small satellite constellation is able to achieve a theoretical resolution of 50m from low-Mars orbit (LMO). Alongside this initial prototype design of HOMER, proposed data processing methodology and software and a Mars mission design are presented. This project was developed as part of the 2015 NASA Ames Academy for Space Exploration.

  2. Distributed control of reactive power flow in a radial distribution circuit with high photovoltaic penetration

    SciTech Connect

    Chertkov, Michael; Turitsyn, Konstantin; Backhaus, Scott; Sule, Petr

    2009-01-01

    We show how distributed control of reactive power can serve to regulate voltage and minimize resistive losses in a distribution circuit that includes a significant level of photovoltaic (PV) generation. To demonstrate the technique, we consider a radial distribution circuit with a single branch consisting of sequentially-arranged residential-scale loads that consume both real and reactive power. In parallel, some loads also have PV generation capability. We postulate that the inverters associated with each PV system are also capable of limited reactive power generation or consumption, and we seek to find the optimal dispatch of each inverter's reactive power to both maintain the voltage within an acceptable range and minimize the resistive losses over the entire circuit. We assume the complex impedance of the distribution circuit links and the instantaneous load and PV generation at each load are known. We compare the results of the optimal dispatch with a suboptimal local scheme that does not require any communication. On our model distribution circuit, we illustrate the feasibility of high levels of PV penetration and a significant (20% or higher) reduction in losses.

  3. NREL/SCE High-Penetration PV Integration Project: Report on Field Demonstration of Advanced Inverter Functionality in Fontana, CA

    SciTech Connect

    Mather, B.

    2014-08-01

    The National Renewable Energy Laboratory/Southern California Edison High-Penetration PV Integration Project is (1) researching the distribution system level impacts of high-penetration photovoltaic (PV) integration, (2) determining mitigation methods to reduce or eliminate those impacts, and (3) seeking to demonstrate these mitigation methods on actual high-penetration PV distribution circuits. This report describes a field demonstration completed during the fall of 2013 on the Fontana, California, study circuit, which includes a total of 4.5 MW of interconnected utility-scale rooftop PV systems. The demonstration included operating a 2-MW PV system at an off-unity power factor that had been determined during previously completed distribution system modeling and PV impact assessment analyses. Data on the distribution circuit and PV system operations were collected during the 2-week demonstration period. This demonstration reinforces the findings of previous laboratory testing that showed that utility-scale PV inverters are capable of operating at off-unity power factor to mitigate PV impacts; however, because of difficulties setting and retaining PV inverter power factor set points during the field demonstration, it was not possible to demonstrate the effectiveness of off-unity power factor operation to mitigate the voltage impacts of high-penetration PV integration. Lessons learned from this field demonstration are presented to inform future field demonstration efforts.

  4. CFD based design and modelling of wind fence to mitigate high-speed wind loading on a modular data center

    NASA Astrophysics Data System (ADS)

    Gorrepati, Devi Prasad

    A Modular Data Center (MDC) is a portable method of deploying a data center's capacity. As an alternative to the traditional data center, an MDC can be placed anywhere data capacity is required. The purpose of this study is to reduce the damage or loss of performance caused to the data centers that use free cooling, by mitigating high-speed winds. The Modular Data centers which use free cooling and that are located in open regions are subjected to various environmental risks such as very high-speed winds. As this wind blows over these data centers, the pressure difference generated within and outside the enclosure can have a drastic effect on the free cooling. Therefore, by using a wind fence which basically acts as a barrier to the upstream wind and reduces the mean velocity of air downstream of the wind fence, we reduce the pressure difference created and also the wind induced loading on the objects situated behind the fence. Although wind fences are used in many agricultural and farming practices, their usage pertaining to MDCs is very limited. The challenge is to reduce wind speed from 100 mph to 10 mph. This has been achieved by iteratively designing and analyzing a wind fence using CFD simulations to come up with a few wind fence options that have defined properties such as height, perforation and location (distance from the inlet of MDC) of the wind fence.

  5. In vitro evaluation of the cutaneous penetration of sprayable sunscreen emulsions with high concentrations of UV filters.

    PubMed

    Durand, L; Habran, N; Henschel, V; Amighi, K

    2009-08-01

    The aim of this study was to evaluate the possible penetration through human skin of organic and inorganic filters contained in sunscreen emulsions packaged in aerosol cans, using an in vitro method. Experiments were carried out on two different types of emulsion: W/Si and W/O. This study was conducted using static diffusion cells (Franz cells). The determination of organic UV filters [Methylene Bis Benzotriazolyl Tetramethylbutylphenol (MBBT); Bis-Ethylhexyloxyphenol Methoxyphenyl Triazine (BEMT); Diethylamino Hydroxybenzoyl Hexyl Benzoate (DHHB); Ethylhexyl Methoxycinnamate (EMC); and 2-Ethylhexyl Dimethyl PABA (ED-PABA)] was performed by High Performance Liquid Chromatography (HPLC). Therefore, it was important to develop a single analytical method for the quantification of the five organic filters with the aim of facilitating the experiment. The determination of inorganic filters [titanium dioxide (TiO(2)) and zinc oxide (ZnO)] was performed using an emission spectrometric analysis method (ICP-OES). The HPLC and ICP-OES methods were validated. After a penetration test of 24 h duration, the results showed very low penetration only for two of the organic filters (maximum penetration of 1.21 microg cm(-2) h(-1) for EMC and 0.14 microg cm(-2) h(-1) for MBBT) and no penetration for the inorganic filters. Moreover, more than 50% of each sunscreen agent stayed on the surface on the skin. These results are consistent with those in the literature that presents similar experiments. This study showed that the sprayable sunscreen products developed, which contained high concentrations of UV filters, presented a low level of skin penetration. PMID:19496837

  6. Coronal Holes and Solar Wind High-Speed Streams: I. Forecasting the Solar Wind Parameters

    NASA Astrophysics Data System (ADS)

    Vršnak, Bojan; Temmer, Manuela; Veronig, Astrid M.

    2007-02-01

    We analyze the relationship between the coronal hole (CH) area/position and physical characteristics of the associated corotating high-speed stream (HSS) in the solar wind at 1 AU. For the analysis we utilize the data in the period DOY 25 125 of 2005, characterized by a very low coronal mass ejection (CME) activity. Distinct correlations between the daily averaged CH parameters and the solar wind characteristics are found, which allows us to forecast the solar wind velocity v, proton temperature T, proton density n, and magnetic field strength B, several days in advance in periods of low CME activity. The forecast is based on monitoring fractional areas A, covered by CHs in the meridional slices embracing the central meridian distance ranges [-40°,-20°], [-10°,10°], and [20°,40°]. On average, the peaks in the daily values of n, B, T, and v appear delayed by 1, 2, 3, and 4 days, respectively, after the area A attains its maximum in the central-meridian slice. The peak values of the solar wind parameters are correlated to the peak values of A, which provides also forecasting of the peak values of n, B, T, and v. The most accurate prediction can be obtained for the solar wind velocity, for which the average relative difference between the calculated and the observed peak values amounts to overline{\\vertδ\\vert}≈10 %. The forecast reliability is somewhat lower in the case of T, B, and n ( overline{\\vertδ\\vert}≈20 , 30, and 40%, respectively). The space weather implications are discussed, including the perspectives for advancing the real-time calculation of the Sun Earth transit times of coronal mass ejections and interplanetary shocks, by including more realistic real-time estimates of the solar wind characteristics.

  7. Ulysses solar wind plasma observations at high latitudes

    SciTech Connect

    Riley, P.; Bame, S.J.; Barraclough, B.L.

    1996-10-01

    Ulysses reached its peak northerly heliolatitude of 80.2{degrees}N on July 31, 1995, and now is moving towards aphelion at 5.41 AU which it will reach in May, 1998. We summarize measurements from the solar wind plasma experiment, SWOOPS, emphasizing northern hemispheric observations but also providing southern and equatorial results for comparison. The solar wind momentum flux during Ulysses` fast pole-to- pole transit at solar minimum was significantly higher over the poles than at near-equatorial latitudes, suggesting a non-circular cross section for the heliosphere. Furthermore, modest asymmetries in the wind speed, density, and mass flux were observed between the two hemispheres during the fast latitude scan. The solar wind was faster and less dense in the north than in the south. These asymmetries persist in the most recent high- and mid-latitude data but are less pronounced. As of July 1, 1996 the northern fast solar wind has lacked any strong stream interactions or shocks and, although a comprehensive search has not yet been made, no CMEs have yet been identified during this interval. On the other hand, Alfv{acute e}nic, compressional, and pressure balanced features are abundant at high latitudes. The most recent data, at 4 AU and 32{degrees}N, has begun to show the effects of solar rotation modulated features in the form of recurrent compressed regions.

  8. Groundwater penetrating radar and high resolution seismic for locating shallow faults in unconsolidated sediments

    SciTech Connect

    Wyatt, D.E. |; Waddell, M.G.; Sexton, B.G.

    1993-12-31

    Faults in shallow, unconsolidated sediments, particularly in coastal plain settings, are very difficult to discern during subsurface exploration yet have critical impact to groundwater flow, contaminant transport and geotechnical evaluations. This paper presents a case study using cross-over geophysical technologies in an area where shallow faulting is probable and known contamination exists. A comparison is made between Wenner and dipole-dipole resistivity data, ground penetrating radar, and high resolution seismic data. Data from these methods were verified with a cone penetrometer investigation for subsurface lithology and compared to existing monitoring well data. Interpretations from these techniques are compared with actual and theoretical shallow faulting found in the literature. The results of this study suggests that (1) the CPT study, combined with the monitoring well data may suggest that discontinuities in correlatable zones may indicate that faulting is present (2) the addition of the Wenner and dipole-dipole data may further suggest that offset zones exist in the shallow subsurface but not allow specific fault planes or fault stranding to be mapped (3) the high resolution seismic data will image faults to within a few feet of the surface but does not have the resolution to identify the faulting on the scale of our models, however it will suggest locations for upward continuation of faulted zones (4) offset 100 MHz and 200 MHz CMP GPR will image zones and features that may be fault planes and strands similar to our models (5) 300 MHz GPR will image higher resolution features that may suggest the presence of deeper faults and strands, and (6) the combination of all of the tools in this study, particularly the GPR and seismic may allow for the mapping of small scale, shallow faulting in unconsolidated sediments.

  9. A highly tumor-targeted nanoparticle of podophyllotoxin penetrated tumor core and regressed multidrug resistant tumors

    PubMed Central

    Roy, Aniruddha; Ernsting, Mark J.; Undzys, Elijus; Li, Shyh-Dar

    2015-01-01

    Podophyllotoxin (PPT) exhibited significant activity against P-glycoprotein mediated multidrug resistant (MDR) tumor cell lines; however, due to its poor solubility and high toxicity, PPT cannot be dosed systemically, preventing its clinical use for MDR cancer. We developed a nanoparticle dosage form of PPT by covalently conjugating PPT and polyethylene glycol (PEG) with acetylated carboxymethyl cellulose (CMC-Ac) using one-pot esterification chemistry. The polymer conjugates self-assembled into nanoparticles (NPs) of variable sizes (20–120 nm) depending on the PPT-to-PEG molar ratio (2–20). The conjugate with a low PPT/PEG molar ratio of 2 yielded NPs with a mean diameter of 20 nm and released PPT at ~5%/day in serum, while conjugates with increased PPT/PEG ratios (5 and 20) produced bigger particles (30 nm and 120 nm respectively) that displayed slower drug release (~2.5%/day and ~1%/day respectively). The 20 nm particles exhibited 2- to 5-fold enhanced cell killing potency and 5- to 20-fold increased tumor delivery compared to the larger NPs. The biodistribution of the 20 nm PPT-NPs was highly selective to the tumor with 8-fold higher accumulation than all other examined tissues, while the larger PPT-NPs (30 and 100 nm) exhibited increased liver uptake. Within the tumor, >90% of the 20 nm PPT-NPs penetrated to the hypovascular core, while the larger particles were largely restricted in the hypervascular periphery. The 20 nm PPT-NPs displayed significantly improved efficacy against MDR tumors in mice compared to the larger PPT-NPs, native PPT and the standard taxane chemotherapies, with minimal toxicity. PMID:25818440

  10. Microspheres for laser velocimetry in high temperature wind tunnel

    NASA Technical Reports Server (NTRS)

    Ghorieshi, Anthony

    1993-01-01

    The introduction of non-intrusive measurement techniques in wind tunnel experimentation has been a turning point in error free data acquisition. Laser velocimetry has been progressively implemented and utilized in various wind tunnels; e.g. subsonic, transonic, and supersonic. The success of the laser velocimeter technique is based on an accurate measurement of scattered light by seeding particles introduced into the flow stream in the wind tunnel. Therefore, application of appropriate seeding particles will affect, to a large extent the acquired data. The seeding material used depends on the type of experiment being run. Among the seeding material for subsonic tunnel are kerosene, Kaolin, and polystyrene. Polystyrene is known to be the best because of being solid particles, having high index of refraction, capable of being made both spherical and monodisperse. However for high temperature wind tunnel testing seeding material must have an additional characteristic that is high melting point. Typically metal oxide powders such as Al2O3 with melting point 3660 F are used. The metal oxides are, however polydispersed, have a high density, and a tendency to form large agglomerate that does not closely follow the flow velocity. The addition of flame phase silica to metal oxide helps to break up the agglomerates, yet still results in a narrow band of polydispersed seeding. The less desirable utility of metal oxide in high temperature wind tunnels necessitates the search for a better alternative particle seeding which this paper addresses. The Laser Velocimetry (LV) characteristic of polystyrene makes it a prime candidate as a base material in achieving the high temperature particle seeding inexpensively. While polystyrene monodisperse seeding particle reported has been successful in a subsonic wind tunnel, it lacks the high melting point and thus is not practically usable in a high temperature wind tunnel. It is well known that rise in melting point of polystyrene can be

  11. High-Energy 2-Micrometers Doppler Lidar for Wind Measurements

    NASA Technical Reports Server (NTRS)

    Koch, Grady J.; Beyon, Jeffrey Y.; Barnes, Bruce W.; Petros, Mulugeta; Yu, Jirong; Amzajerdian, Farzin; Kavaya, Michael J.; Singh, Upendra N.

    2006-01-01

    High-energy 2-micrometer wavelength lasers have been incorporated in a prototype coherent Doppler lidar to test component technologies and explore applications for remote sensing of the atmosphere. Design of the lidar is presented including aspects in the laser transmitter, receiver, photodetector, and signal processing. Calibration tests and sample atmospheric data are presented on wind and aerosol profiling.

  12. High-Resolution Simulations of Gas-Solids Jet Penetration Into a High Density Riser Flow

    SciTech Connect

    Li, Tingwen

    2011-05-01

    High-resolution simulations of a gas-solids jet in a 0.3 m diameter and 15.9 m tall circulating fluidized bed (CFB) riser were conducted with the open source software-MFIX. In the numerical simulations, both gas and solids injected through a 1.6 cm diameter radial-directed tube 4.3 m above the bottom distributor were tracked as tracers, which enable the analysis of the characteristics of a two-phase jet. Two jetting gas velocities of 16.6 and 37.2 m/s were studied with the other operating conditions fixed. Reasonable flow hydrodynamics with respect to overall pressure drop, voidage, and solids velocity distributions were predicted. Due to the different dynamic responses of gas and particles to the crossflow, a significant separation of gas and solids within the jet region was predicted for both cases. In addition, the jet characteristics based on tracer concentration and tracer mass fraction profiles at different downstream levels are discussed. Overall, the numerical predictions compare favorably to the experimental measurements made at NETL.

  13. Stability analyses of the mass abrasive projectile high-speed penetrating into concrete target. Part II: Structural stability analyses

    NASA Astrophysics Data System (ADS)

    Wu, Hao; Chen, Xiao-Wei; Fang, Qin; He, Li-Lin

    2014-12-01

    The initial oblique and attacking angles as well as the asymmetrical nose abrasion may lead to bending or even fracture of a projectile, and the penetration efficiency decreases distinctly. The structural stability of a high-speed projectile non-normally penetrating into concrete and the parametric influences involved are analyzed with the mass abrasion taken into account. By considering the symmetrical or asymmetrical nose abrasion as well as the initial oblique and attacking angles, both the axial and the transverse drag forces acting on the projectile are derived. Based on the ideal elastic-plastic yield criterion, an approach is proposed for predicting the limit striking velocity (LSV) that is the highest velocity at which no yielding failure has occurred and the projectile can still maintain its integral structural stability. Furthermore, some particular penetration scenarios are separately discussed in detail. Based on the engineering model for the mass loss and nose-blunting of ogive-nose projectiles established in Part I of this study, the above approach is validated by several high-speed penetration tests. The analysis on parametric influences indicates that the LSV is reduced with an increase in the asymmetrical nose abrasion, the length-diameter-ratio, and the concrete strength, as well as the oblique and attacking angles. Also, the LSV raises with an increase in the initial caliber-radius-head (CRH) and the dimensionless cartridge thickness of a projectile.

  14. Neutral winds above 200 km at high latitudes.

    NASA Technical Reports Server (NTRS)

    Meriwether, J. W.; Heppner, J. P.; Stolarik, J. D.; Wescott, E. M.

    1973-01-01

    Electrically neutral, luminous clouds are a by-product of chemical releases conducted to create barium ion clouds for the measurement of electric fields. Wind measurements provided by the motions of these clouds are particularly valuable in that the motions can be directly compared with convective ion drift motions to test the importance of ion drag forces. Motion from multiple releases between 200 and 300 km from 15 rockets launched from four high-latitude locations is analyzed in this paper. The observations in the evening and midnight hours at magnetic latitudes above 65 deg strongly suggest that in these regions ion drag is the dominant force in driving neutral winds between 200 and 300 km. In the morning sector, it is evident that neutral wind observations cannot be directly interpreted in terms of ion drag; other factors must be considered.

  15. Observations of the solar wind with high temporal resolution

    NASA Astrophysics Data System (ADS)

    Zastenker, G. N.; Yermolaev, Yu. I.; Pinter, S.; Nemechek, Z.; Shafrankova, Ia.; Belikova, A. B.; Leibov, A. V.; Prokhorenko, V. I.; Stefanovich, A. E.; Bedrikov, A. G.

    1982-11-01

    During 1980-1981, the joint Soviet-Czechoslovakian plasma spectrometer ('Monitor') aboard the Prognoz-8 satellite was used to carry out high-temporal-resolution observations of processes in the solar wind and earth's magnetosphere. The objective of the experiment was to obtain continuous data on basic parameters of the solar wind, i.e., velocity, ion temperature and density, and arrival angles of the flow; as well as to investigate fast variations of the energy spectrum of the ion component of the solar wind in the interplanetary medium and at characteristic boundaries of the earth's magnetosphere. This paper describes the method of the experiment, and discusses first results relating to ion spectra and magnetospheric boundaries.

  16. High Energy Emission from Pulsar Magnetospheres and Winds

    NASA Astrophysics Data System (ADS)

    Spitkovsky, Anatoly

    Recent gamma-ray observations of pulsars and their nebulae suggest an important role played by magnetic reconnection in determining the structure of the magnetosphere and the wind and in the acceleration of particles that lead to the high energy emission. Strong current sheets that are susceptible to magnetic dissipation are found near the light cylinder of the pulsar and persist throughout the wind. This proposal investigates the processes that occur in these current sheets, and determines their structure and particle acceleration properties. A suite of relativistic MHD and particle-in-cell kinetic simulations will be used to obtain the global 3D geometry of the magnetosphere, flow geometry in the current sheet, and calculate the dissipation of the current both near the pulsar and in the termination shock of the pulsar wind. The results will be applied to modeling the beaming in pulsar gamma-ray light curves, and to understanding particle acceleration in broadband and flaring nebular emission.

  17. A laboratory study of spray generation in high winds

    NASA Astrophysics Data System (ADS)

    Ortiz-Suslow, D. G.; Haus, B. K.; Mehta, S.; Laxague, N. J. M.

    2016-05-01

    Characterizing the vertical distribution of large spray particles (i.e., spume) in high wind conditions is necessary for better understanding of the development of the atmospheric boundary layer in extreme conditions. To this end a laboratory experiment was designed to observe the droplet concentration in the air above actively breaking waves. The experiments were carried out in hurricane force conditions (U 10 equivalent wind speed of 36 to 54 m/s) and using both fresh water and salt water. While small differences between fresh and salt water were observed in profiles of radius-integrated spray volume fraction, the profiles tend to converge as the wind forcing increases. This supports the assumption that the physical mechanism for spume production is not sensitive to salinity and its corresponding link to the bubble size distribution.

  18. Advancements in Wind Integration Study Data Modeling: The Wind Integration National Dataset (WIND) Toolkit; Preprint

    SciTech Connect

    Draxl, C.; Hodge, B. M.; Orwig, K.; Jones, W.; Searight, K.; Getman, D.; Harrold, S.; McCaa, J.; Cline, J.; Clark, C.

    2013-10-01

    Regional wind integration studies in the United States require detailed wind power output data at many locations to perform simulations of how the power system will operate under high-penetration scenarios. The wind data sets that serve as inputs into the study must realistically reflect the ramping characteristics, spatial and temporal correlations, and capacity factors of the simulated wind plants, as well as be time synchronized with available load profiles. The Wind Integration National Dataset (WIND) Toolkit described in this paper fulfills these requirements. A wind resource dataset, wind power production time series, and simulated forecasts from a numerical weather prediction model run on a nationwide 2-km grid at 5-min resolution will be made publicly available for more than 110,000 onshore and offshore wind power production sites.

  19. Quasi-static time-series simulation using OpenDSS in IEEE distribution feeder model with high PV penetration and its impact on solar forecasting

    NASA Astrophysics Data System (ADS)

    Mohammed, Touseef Ahmed Faisal

    Since 2000, renewable electricity installations in the United States (excluding hydropower) have more than tripled. Renewable electricity has grown at a compounded annual average of nearly 14% per year from 2000-2010. Wind, Concentrated Solar Power (CSP) and solar Photo Voltaic (PV) are the fastest growing renewable energy sectors. In 2010 in the U.S., solar PV grew over 71% and CSP grew by 18% from the previous year. Globally renewable electricity installations have more than quadrupled from 2000-2010. Solar PV generation grew by a factor of more than 28 between 2000 and 2010. The amount of CSP and solar PV installations are increasing on the distribution grid. These PV installations transmit electrical current from the load centers to the generating stations. But the transmission and distribution grid have been designed for uni-directional flow of electrical energy from generating stations to load centers. This causes imbalances in voltage and switchgear of the electrical circuitry. With the continuous rise in PV installations, analysis of voltage profile and penetration levels remain an active area of research. Standard distributed photovoltaic (PV) generators represented in simulation studies do not reflect the exact location and variability properties such as distance between interconnection points to substations, voltage regulators, solar irradiance and other environmental factors. Quasi-Static simulations assist in peak load planning hour and day ahead as it gives a time sequence analysis to help in generation allocation. Simulation models can be daily, hourly or yearly depending on duty cycle and dynamics of the system. High penetration of PV into the power grid changes the voltage profile and power flow dynamically in the distribution circuits due to the inherent variability of PV. There are a number of modeling and simulations tools available for the study of such high penetration PV scenarios. This thesis will specifically utilize OpenDSS, a open source

  20. High-pressure-induced water penetration into 3-­isopropylmalate dehydrogenase

    PubMed Central

    Nagae, Takayuki; Kawamura, Takashi; Chavas, Leonard M. G.; Niwa, Ken; Hasegawa, Masashi; Kato, Chiaki; Watanabe, Nobuhisa

    2012-01-01

    Hydrostatic pressure induces structural changes in proteins, including denaturation, the mechanism of which has been attributed to water penetration into the protein interior. In this study, structures of 3-isopropylmalate dehydrogenase (IPMDH) from Shewanella oneidensis MR-1 were determined at about 2 Å resolution under pressures ranging from 0.1 to 650 MPa using a diamond anvil cell (DAC). Although most of the protein cavities are monotonically compressed as the pressure increases, the volume of one particular cavity at the dimer interface increases at pressures over 340 MPa. In parallel with this volume increase, water penetration into the cavity could be observed at pressures over 410 MPa. In addition, the generation of a new cleft on the molecular surface accompanied by water penetration could also be observed at pressures over 580 MPa. These water-penetration phenomena are considered to be initial steps in the pressure-denaturation process of IPMDH. PMID:22349232

  1. Western Wind and Solar Integration Study Phase 2 (Fact Sheet)

    SciTech Connect

    Not Available

    2013-09-01

    This is one-page, two-sided fact sheet presents high-level summary results of the Western Wind and Solar Integration Study Phase 2, which examined operational impacts of high penetrations of variable renewable generation in the West.

  2. Liquid Fuel Emulsion Jet-in-Crossflow Penetration and Dispersion Under High Pressure Conditions

    NASA Astrophysics Data System (ADS)

    Gomez, Guillermo Andres

    The current work focuses on the jet-in-crossflow penetration and dispersion behavior of water-in-oil emulsions in a high pressure environment. Both fuel injection strategies of using a water-in-oil emulsion and a jet-in-crossflow have demonstrated unique benefits in improving gas turbine performance from an emissions and efficiency standpoint. A jet-in-crossflow is very practical for use in gas turbine engines, rocket propulsion, and aircraft engines since it utilizes already available crossflow air to atomize fuel. Injecting water into a combustion chamber in the form of a water-in-oil emulsion allows for pollutant emissions reduction while reducing efficiency loses that may result from using a separate water or steam injection circuit. Dispersion effects on oil droplets are expected, therefore investigating the distribution of both oil and water droplets in the crossflow is an objective in this work. Understanding the synchronization and injection behavior of the two strategies is of key interest due to their combined benefits. A water-to-oil ratio and an ambient pressure parameter are developed for emulsion jet-in-crossflow trajectories. To this end, a total of 24 emulsion jet-in-crossflow tests were performed with varying ambient pressures of 2-8 atm and momentum flux ratios of 50, 85, and 120. Sobel edge filtering was applied to each averaged image obtained from a high speed video of each test case. Averaged and filtered images were used to resolve top and bottom edges of the trajectory in addition to the overall peak intensity up to 40 mm downstream of the injection point. An optimized correlation was established and found to differ from literature based correlations obtained under atmospheric pressure conditions. Overall it was found that additional parameters were not necessary for the top edge and peak intensity correlations, but a need for a unique emulsion bottom edge and width trajectory correlation was recognized. In addition to investigating emulsion

  3. Trans-scleral diode laser cyclophotocoagulation for refractory glaucoma after high-risk penetrating keratoplasty.

    PubMed

    Rodríguez-García, Alejandro; González-González, Luis Alonso; Carlos Alvarez-Guzmán, J

    2016-06-01

    To analyze the intraocular pressure reduction, number of anti-glaucoma medications needed, and post-operative complications of trans-scleral diode laser cyclophotocoagulation (DCPC) in patients with high-risk penetrating keratoplasty (PKP) and secondary refractory glaucoma. Prospective interventional, longitudinal, non-comparative series of cases, including 16 eyes of 15 patient's post-PKP on maximal anti-glaucoma medical therapy with intraocular pressures above 22 mmHg. All patients received 18 shots, 360° peri-limbal (avoiding the long posterior ciliary nerves and arteries at 3 and 9 o'clock positions) of trans-scleral DCPC (2000 mW, time: 2.0 s/shot). There was a 55.5 % reduction (total of 14.0 mmHg) of the mean pre-operative IOP (31.5 mmHg) after the first diode laser application (p = 0.0020). Re-treatment was required in 31.2 % of eyes over a mean period of 10.7 months. In these five eyes, the mean pre-operative IOP was 40.4 mmHg, which decreased to 15.0 mmHg post-therapy, and a mean IOP reduction of 25.4 mmHg (p = 0.0218). There was a 51.0 % reduction in the mean number of medications used after the first, and a 57.1 % reduction after a second laser application. The incidence of failure (IOP ≥ 22 mmHg or need of additional medical therapy) from initial intervention to loss of follow-up was 1.3 % per person-month. DCPC effectively reduces the intraocular pressure and the number of anti-glaucoma medications with few complications in patients after high-risk PKP and secondary glaucoma. Only, one-third of the eyes needed a second intervention to control the intraocular pressure. Post-DCPC complications were limited to phthisis bulbi and endothelial dysfunction, one eye each. Please check and confirm the author names and initials are correct. Also, kindly confirm the details in the metadata are correct. PMID:26419547

  4. Large-scale, high-definition Ground Penetrating Radar prospection in archaeology

    NASA Astrophysics Data System (ADS)

    Trinks, I.; Kucera, M.; Hinterleitner, A.; Löcker, K.; Nau, E.; Neubauer, W.; Zitz, T.

    2012-04-01

    The future demands on professional archaeological prospection will be its ability to cover large areas in a time and cost efficient manner with very high spatial resolution and accuracy. The objective of the 2010 in Vienna established Ludwig Boltzmann Institute for Archaeological Prospection and Virtual Archaeology (LBI ArchPro) in collaboration with its eight European partner organisations is the advancement of state-of-the-art archaeological sciences. The application and specific further development of remote sensing, geophysical prospection and virtual reality applications, as well as of novel integrated interpretation approaches dedicated to non-invasive spatial archaeology combining near-surface prospection methods with advanced computer science is crucial for modern archaeology. Within the institute's research programme different areas for distinct case studies in Austria, Germany, Norway, Sweden and the UK have been selected as basis for the development and testing of new concepts for efficient and universally applicable tools for spatial, non-invasive archaeology. In terms of geophysical prospection the investigation of entire archaeological landscapes for the exploration and protection of Europe's buried cultural heritage requires new measurement devices, which are fast, accurate and precise. Therefore the further development of motorized, multichannel survey systems and advanced navigation solutions is required. The use of motorized measurement devices for archaeological prospection implicates several technological and methodological challenges. Latest multichannel Ground Penetrating Radar (GPR) arrays mounted in front off, or towed behind motorized survey vehicles permit large-scale GPR prospection surveys with unprecedented spatial resolution. In particular the motorized 16 channel 400 MHz MALÅ Imaging Radar Array (MIRA) used by the LBI ArchPro in combination with latest automatic data positioning and navigation solutions permits the reliable high

  5. Interconnection Assessment Methodology and Cost Benefit Analysis for High-Penetration PV Deployment in the Arizona Public Service System

    SciTech Connect

    Baggu, Murali; Giraldez, Julieta; Harris, Tom; Brunhart-Lupo, Nicholas; Lisell, Lars; Narang, David

    2015-06-14

    In an effort to better understand the impacts of high penetrations of photovoltaic (PV) generators on distribution systems, Arizona Public Service and its partners completed a multi-year project to develop the tools and knowledge base needed to safely and reliably integrate high penetrations of utility- and residential-scale PV. Building upon the APS Community Power Project-Flagstaff Pilot, this project investigates the impact of PV on a representative feeder in northeast Flagstaff. To quantify and catalog the effects of the estimated 1.3 MW of PV that will be installed on the feeder (both smaller units at homes and large, centrally located systems), high-speed weather and electrical data acquisition systems and digital 'smart' meters were designed and installed to facilitate monitoring and to build and validate comprehensive, high-resolution models of the distribution system. These models are being developed to analyze the impacts of PV on distribution circuit protection systems (including coordination and anti-islanding), predict voltage regulation and phase balance issues, and develop volt/VAr control schemes. This paper continues from a paper presented at the 2014 IEEE PVSC conference that described feeder model evaluation and high penetration advanced scenario analysis, specifically feeder reconfiguration. This paper presents results from Phase 5 of the project. Specifically, the paper discusses tool automation; interconnection assessment methodology and cost benefit analysis.

  6. Orbiting observatory SOHO finds source of high-speed "wind" blowing from the Sun

    NASA Astrophysics Data System (ADS)

    1999-02-01

    "The search for the source of the solar wind has been like the hunt for the source of the Nile," said Dr. Don Hassler of the Southwest Research Institute, Boulder, Colorado, lead author of the paper in Science. "For 30 years, scientists have observed high-speed solar wind coming from regions in the solar atmosphere with open magnetic field lines, called coronal holes. However, only recently, with the observations from SOHO, have we been able to measure the detailed structure of this source region". The solar wind comes in two varieties : high-speed and low-speed. The low-speed solar wind moves at "only" 1.5 million kilometres per hour, while the high-speed wind is even faster, moving at speeds as high as 3 million kilometres per hour. As it flows past Earth, the solar wind changes the shape and structure of the Earth's magnetic field. In the past, the solar wind didn't affect us directly, but as we become increasingly dependent on advanced technology, we become more susceptible to its effects. Researchers are learning that variations in the solar wind flow can cause dramatic changes in the shape of the Earth's magnetic field, which can damage satellites and disrupt communications and electrical power systems. The nature and origin of the solar wind is one of the main mysteries ESA's solar observatory SOHO was designed to solve. It has long been thought that the solar wind flows from coronal holes; what is new is the discovery that these outflows are concentrated in specific patches at the edges of the honeycomb-shaped magnetic fields. Just below the surface of the Sun there are large convection cells, and each cell has a magnetic field associated with it. "If one thinks of these cells as paving stones in a patio, then the solar wind is breaking through like grass around the edges, concentrated in the corners where the paving stones meet", said Dr. Helen Mason, University of Cambridge, England, and co-author of the paper to appear in Science. "However, at speeds

  7. Comparison Of High Winds Retrieved From RADARSAT 2 SAR Data With In Situ Buoy Data And QuikScat Wind Vectors

    NASA Astrophysics Data System (ADS)

    Xie, Tao; Perrie, Will

    2010-04-01

    Selected SAR images of high wind speeds have been obtained from RADARSAT-2 co-located with in situ observations from the HurricaneWatch program. In this presentation we use these RADARSAT-2 SAR images to retrieve ocean surface wind speeds, using CMOD_IFR, and modified algorithms. We compare these SAR- derived winds with in situ buoy data and QuikScat wind vectors. Results shows that SAR-derived wind speeds from CMOD5 are closer to the in situ buoy wind speeds than CMOD_IFR2 or CMOD4 winds. Moreover, these SAR-derived wind speeds are underestimates of the actual wind fields, especially in high wind conditions, whereas QuikScat wind vectors are overestimates. We also find that the wind speed discrepancies between buoy measurements and SAR-derived winds occurring in unstable atmosphere boundary conditions may be larger than those occurring in stable conditions.

  8. Low-cost solution to the grid reliability problem with 100% penetration of intermittent wind, water, and solar for all purposes

    PubMed Central

    Jacobson, Mark Z.; Delucchi, Mark A.; Cameron, Mary A.; Frew, Bethany A.

    2015-01-01

    This study addresses the greatest concern facing the large-scale integration of wind, water, and solar (WWS) into a power grid: the high cost of avoiding load loss caused by WWS variability and uncertainty. It uses a new grid integration model and finds low-cost, no-load-loss, nonunique solutions to this problem on electrification of all US energy sectors (electricity, transportation, heating/cooling, and industry) while accounting for wind and solar time series data from a 3D global weather model that simulates extreme events and competition among wind turbines for available kinetic energy. Solutions are obtained by prioritizing storage for heat (in soil and water); cold (in ice and water); and electricity (in phase-change materials, pumped hydro, hydropower, and hydrogen), and using demand response. No natural gas, biofuels, nuclear power, or stationary batteries are needed. The resulting 2050–2055 US electricity social cost for a full system is much less than for fossil fuels. These results hold for many conditions, suggesting that low-cost, reliable 100% WWS systems should work many places worldwide. PMID:26598655

  9. Low-cost solution to the grid reliability problem with 100% penetration of intermittent wind, water, and solar for all purposes.

    PubMed

    Jacobson, Mark Z; Delucchi, Mark A; Cameron, Mary A; Frew, Bethany A

    2015-12-01

    This study addresses the greatest concern facing the large-scale integration of wind, water, and solar (WWS) into a power grid: the high cost of avoiding load loss caused by WWS variability and uncertainty. It uses a new grid integration model and finds low-cost, no-load-loss, nonunique solutions to this problem on electrification of all US energy sectors (electricity, transportation, heating/cooling, and industry) while accounting for wind and solar time series data from a 3D global weather model that simulates extreme events and competition among wind turbines for available kinetic energy. Solutions are obtained by prioritizing storage for heat (in soil and water); cold (in ice and water); and electricity (in phase-change materials, pumped hydro, hydropower, and hydrogen), and using demand response. No natural gas, biofuels, nuclear power, or stationary batteries are needed. The resulting 2050-2055 US electricity social cost for a full system is much less than for fossil fuels. These results hold for many conditions, suggesting that low-cost, reliable 100% WWS systems should work many places worldwide. PMID:26598655

  10. Detection of 3D tree root systems using high resolution ground penetration radar

    NASA Astrophysics Data System (ADS)

    Altdorff, D.; Honds, M.; Botschek, J.; Van Der Kruk, J.

    2014-12-01

    Knowledge of root systems and its distribution are important for biomass estimation as well as for the prevention of subsurface distribution network damages. Ground penetration radar (GPR) is a promising technique that enables a non-invasive imaging of tree roots. Due to the polarisation-dependent reflection coefficients and complicated three-dimensional root structure, accurate measurements with perpendicularly polarized antennas are needed. In this study, we show GPR data from two planes and one chestnut at two locations with different soil conditions. Perpendicular 10 x 10 cm grid measurements were made with a shielded 250 MHz antenna in combination with a high precision self-tracking laser theodolite that provides geo-referenced traces with a spatial resolution of ~ 2 cm. After selecting potential root hyperbolas within the perpendicular GPR profiles, the corresponding three-dimensional coordinates were extracted and visualized in planar view to reveal any linear structure that indicates a possible tree root. The coordinates of the selected linear structures were projected back to the surface by means of the laser-theodolite to indicate the locations for groundtruthing. Additionally, we interpolated the measured data into a 3D cube where time slices confirmed the locations of linear reflection events. We validated the indicated predictions by excavation of the soil with a suction dredge. Subsequent georeferencing of the true root distribution and comparison with the selected linear events showed that the approach was able to identify the precise position of roots with a diameter between 3 and 10 cm and a depth of up to 70 cm. However, not all linear events were roots; also mouse channels were found in these depths, since they also generate GPR hyperbolas aligned in linear structures. Roots at a second location at depths of 1 to 1.20 m did not generate identifiable hyperboles, which was probably due to an increased electrical conductivity below 86 cm depth. The

  11. Oxidation of depleted uranium penetrators and aerosol dispersal at high temperatures

    SciTech Connect

    Elder, J.C.; Tinkle, M.C.

    1980-12-01

    Aerosols dispersed from depleted uranium penetrators exposed to air and air-CO/sub 2/ mixtures at temperatures ranging from 500 to 1000/sup 0/C for 2- or 4-h periods were characterized. These experiments indicated dispersal of low concentrations of aerosols in the respirable size range (typically <10/sup -3/% of penetrator mass at 223 cm/s (5 mph) windspeed). Oxidation was maximum at 700/sup 0/C in air and 800/sup 0/C in 50% air-50% CO/sub 2/, indicating some self-protection developed at higher temperatures. No evidence of self-sustained burning was observed, although complete oxidation can be expected in fires significantly exceeding 4 h, the longest exposure of this series. An outdoor burning experiment using 10 batches of pine wood and paper packing material as fuel caused the highest oxidation rate, probably accelerated by disruption of the oxide layer accompanying broad temperature fluctuation as each fuel batch was added.

  12. Wind resource quality affected by high levels of renewables

    DOE PAGESBeta

    Diakov, Victor

    2015-06-17

    For solar photovoltaic (PV) and wind resources, the capacity factor is an important parameter describing the quality of the resource. As the share of variable renewable resources (such as PV and wind) on the electric system is increasing, so does curtailment (and the fraction of time when it cannot be avoided). At high levels of renewable generation, curtailments effectively change the practical measure of resource quality from capacity factor to the incremental capacity factor. The latter accounts only for generation during hours of no curtailment and is directly connected with the marginal capital cost of renewable generators for a givenmore » level of renewable generation during the year. The Western U.S. wind generation is analyzed hourly for a system with 75% of annual generation from wind, and it is found that the value for the system of resources with equal capacity factors can vary by a factor of 2, which highlights the importance of using the incremental capacity factor instead. Finally, the effect is expected to be more pronounced in smaller geographic areas (or when transmission limitations imposed) and less pronounced at lower levels of renewable energy in the system with less curtailment.« less

  13. Wind resource quality affected by high levels of renewables

    SciTech Connect

    Diakov, Victor

    2015-06-17

    For solar photovoltaic (PV) and wind resources, the capacity factor is an important parameter describing the quality of the resource. As the share of variable renewable resources (such as PV and wind) on the electric system is increasing, so does curtailment (and the fraction of time when it cannot be avoided). At high levels of renewable generation, curtailments effectively change the practical measure of resource quality from capacity factor to the incremental capacity factor. The latter accounts only for generation during hours of no curtailment and is directly connected with the marginal capital cost of renewable generators for a given level of renewable generation during the year. The Western U.S. wind generation is analyzed hourly for a system with 75% of annual generation from wind, and it is found that the value for the system of resources with equal capacity factors can vary by a factor of 2, which highlights the importance of using the incremental capacity factor instead. Finally, the effect is expected to be more pronounced in smaller geographic areas (or when transmission limitations imposed) and less pronounced at lower levels of renewable energy in the system with less curtailment.

  14. WIND MEASUREMENTS WITH HIGH-ENERGY DOPPLER LIDAR

    NASA Technical Reports Server (NTRS)

    Koch, Grady J.; Kavaya, Michael J.; Barnes, Bruce W.; Beyon, Jeffrey Y.; Petros, Mulugeta; Jirong, Yu; Amzajerdian, Farzin; Slingh, Upendra N.

    2006-01-01

    Coherent lidars at 2-micron wavelengths from holmium or thulium solid-state lasers have been in use to measure wind for applications in meteorology, aircraft wake vortex tracking, and turbulence detection [1,2,3] These field-deployed lidars, however, have generally been of a pulse energy of a few millijoules, limiting their range capability or restricting operation to regions of high aerosol concentration such as the atmospheric boundary layer. Technology improvements in the form of high-energy pulsed lasers, low noise detectors, and high optical quality telescopes are being evaluated to make wind measurements to long ranges or low aerosol concentrations. This research is aimed at developing lidar technology for satellite-based observation of wind on a global scale. The VALIDAR project was initiated to demonstrate a high pulse energy coherent Doppler lidar. VALIDAR gets its name from the concept of validation lidar, in that it can serve as a calibration and validation source for future airborne and spaceborne lidar missions. VALIDAR is housed within a mobile trailer for field measurements.

  15. Winds, Bubbles, ...but Magnetized: Solutions for High Speed Post-AGB Winds and Their Extreme Collimation

    NASA Astrophysics Data System (ADS)

    García-Segura, G.; López, J. A.; Franco, J.

    2003-01-01

    This paper provides solutions for the origin of post-AGB winds, their acceleration up to high speed, and the subsequent formation of extremely collimated proto-planetary nebulae. Several wind models with terminal velocities from a few tens of km/s up to 10^3km/s are calculated, which produce proto-planetary nebulae with linear momenta in the range 10^36 to 10^40gcm/s and with kinetic energies in the range 10^42 to 10^47 erg. These results match available observations of proto-planetary nebulae. In the present simplistic scheme, the driver of the wind is just the magnetic pressure at the stellar surface. Other forces are not taken into account in this study, except gravity. We conclude that mass-loss rates of post-AGB stars and transition times from late AGB up to planetary nebula central stars could be directly linked with the production of magnetic field at the stellar core. As an example, mass-loss rates as large as 8×10^-5 M[ sun ]/yr and transition times as short as 5000 years are predicted.

  16. 11. INTERIOR VIEW OF 8FOOT HIGH SPEED WIND TUNNEL. SAME ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. INTERIOR VIEW OF 8-FOOT HIGH SPEED WIND TUNNEL. SAME CAMERA POSITION AS VA-118-B-10 LOOKING IN THE OPPOSITE DIRECTION. - NASA Langley Research Center, 8-Foot High Speed Wind Tunnel, 641 Thornell Avenue, Hampton, Hampton, VA

  17. Saltating Snow Mechanics: High Frequency Particle Response to Mountain Wind

    NASA Astrophysics Data System (ADS)

    Aksamit, N. O.; Pomeroy, J. W.

    2015-12-01

    Blowing snow transport theory is currently limited by its dependency on the coupling of time-averaged measurements of particle saltation and suspension and wind speed. Details of the stochastic process of particle transport and complex bed interactions in the saltation layer, along with the influence of boundary-layer turbulence are unobservable with classic measurement techniques. In contrast, recent advances in two-phase sand transport understanding have been spurred by development of high-frequency wind and particle velocity measurement techniques. To advance the understanding of blowing snow, laser illuminated high-speed videography and ultrasonic anemometry were deployed in a mountain environment to examine saltation of snow over a natural snowpack in detail. A saltating snow measurement site was established at the Fortress Mountain Snow Laboratory, Alberta, Canada and instrumented with two Campbell CSAT3 ultrasonic anemometers, four Campbell SR50 ultrasonic snow depth sounders and a two dimensional Particle Tracking Velocimetry (PTV) system. Measurements were collected during nighttime blowing snow events, quantifying snow particle response to high frequency wind gusts. This novel approach permits PTV to step beyond mean statistics of snow transport by identifying sub-species of saltation motion in the first 20 mm above the surface, as well as previously overlooked initiation processes, such as tumbling aggregate snow crystals ejecting smaller grains, then eventually disintegrating and bouncing into entrainment. Spectral characteristics of snow particle ejection and saltation dynamics were also investigated. These unique observations are starting to inform novel conceptualizations of saltating snow transport mechanisms.

  18. Observation of high-resolution wind fields and offshore wind turbine wakes using TerraSAR-X imagery

    NASA Astrophysics Data System (ADS)

    Gies, Tobias; Jacobsen, Sven; Lehner, Susanne; Pleskachevsky, Andrey

    2014-05-01

    1. Introduction Numerous large-scale offshore wind farms have been built in European waters and play an important role in providing renewable energy. Therefore, knowledge of behavior of wakes, induced by large wind turbines and their impact on wind power output is important. The spatial variation of offshore wind turbine wake is very complex, depending on wind speed, wind direction, ambient atmospheric turbulence and atmospheric stability. In this study we demonstrate the application of X-band TerraSAR-X (TS-X) data with high spatial resolution for studies on wind turbine wakes in the near and far field of the offshore wind farm Alpha Ventus, located in the North Sea. Two cases which different weather conditions and different wake pattern as observed in the TS-X image are presented. 2. Methods The space-borne synthetic aperture radar (SAR) is a unique sensor that provides two-dimensional information on the ocean surface. Due to their high resolution, daylight and weather independency and global coverage, SARs are particularly suitable for many ocean and coastal applications. SAR images reveal wind variations on small scales and thus represent a valuable means in detailed wind-field analysis. The general principle of imaging turbine wakes is that the reduced wind speed downstream of offshore wind farms modulates the sea surface roughness, which in turn changes the Normalized Radar Cross Section (NRCS, denoted by σ0) in the SAR image and makes the wake visible. In this study we present two cases at the offshore wind farm Alpha Ventus to investigate turbine-induced wakes and the retrieved sea surface wind field. Using the wind streaks, visible in the TS-X image and the shadow behind the offshore wind farm, induced by turbine wake, the sea surface wind direction is derived and subsequently the sea surface wind speed is calculated using the latest generation of wind field algorithm XMOD2. 3. Case study alpha ventus Alpha Ventus is located approximately 45 km from the

  19. SOWFA Super-Controller: A High-Fidelity Tool for Evaluating Wind Plant Control Approaches

    SciTech Connect

    Fleming, P.; Gebraad, P.; van Wingerden, J. W.; Lee, S.; Churchfield, M.; Scholbrock, A.; Michalakes, J.; Johnson, K.; Moriarty, P.

    2013-01-01

    This paper presents a new tool for testing wind plant controllers in the Simulator for Offshore Wind Farm Applications (SOWFA). SOWFA is a high-fidelity simulator for the interaction between wind turbine dynamics and the fluid flow in a wind plant. The new super-controller testing environment in SOWFA allows for the implementation of the majority of the wind plant control strategies proposed in the literature.

  20. Penetrative nature of high energy showers observed in Chacaltaya emulsion chamber

    NASA Technical Reports Server (NTRS)

    Funayama, Y.; Tamada, M.

    1985-01-01

    About 30% of single core showers with E (sup gamma) 10 TeV have stronger penetrating power than that expected from electromagnetic showers (e,gamma). On the other hand, their starting points of cascades in the chamber are found to be as shallow as those of (e,gamma) components. It is suggested that those showers are very collimated bundles of hadron and (e,gamma) component. Otherwise, it is assumed that the collision mean free path of those showers in the chamber is shorter than that of hadron with geometrical value.

  1. Pulsed high intensity focused ultrasound increases penetration and therapeutic efficacy of monoclonal antibodies in murine xenograft tumors

    PubMed Central

    Wang, Shutao; Shin, In Soo; Hancock, Hilary; Jang, Beom-su; Kim, Hyung-sub; Lee, Sang Myung; Zderic, Vesna; Frenkel, Victor; Pastan, Ira; Paik, Chang H.; Dreher, Matthew R.

    2014-01-01

    The success of radioimmunotherapy for solid tumors remains elusive due to poor biodistribution and insufficient tumor accumulation, in part, due to the unique tumor microenvironment resulting in heterogeneous tumor antibody distribution. Pulsed high intensity focused ultrasound (pulsed-HIFU) has previously been shown to increase the accumulation of 111In labeled B3 antibody (recognizes Lewisy antigen). The objective of this study was to investigate the tumor penetration and therapeutic efficacy of pulsed-HIFU exposures combined with 90Y labeled B3 mAb in an A431 solid tumor model. The ability of pulsed-HIFU (1 MHz, spatial averaged temporal peak intensity = 2685 Wcm−2; pulse repetition frequency = 1 Hz; duty cycle = 5%) to improve the tumor penetration and therapeutic efficacy of 90Y labeled B3 mAb (90Y-B3) was evaluated in Ley-positive A431 tumors. Antibody penetration from the tumor surface and blood vessel surface was evaluated with fluorescently labeled B3, epi-fluorescent microscopy, and custom image analysis. Tumor size was monitored to determine treatment efficacy, indicated by survival, following various treatments with pulsed-HIFU and/or 90Y-B3. The pulsed-HIFU exposures did not affect the vascular parameters including microvascular density, vascular size, and vascular architecture; although 1.6-fold more antibody was delivered to the solid tumors when combined with pulsed-HIFU. The distribution and penetration of the antibodies were significantly improved (p-value < 0.05) when combined with pulsed-HIFU, only in the tumor periphery. Pretreatment with pulsed-HIFU significantly improved (p-value < 0.05) survival over control treatments. PMID:22732476

  2. Western Wind and Solar Integration Study: Phase 2 (Presentation)

    SciTech Connect

    Lew, D.; Brinkman, G.; Ibanez, E.; Lefton, S.; Kumar, N.; Venkataraman, S.; Jordan, G.

    2013-09-01

    This presentation summarizes the scope and results of the Western Wind and Solar Integration Study Phase 2, which examined operational impacts of high penetrations of variable renewable generation in the West.

  3. High-energy flux evolution of Pulsar Wind Nebulae

    SciTech Connect

    Mattana, F.; Falanga, M.; Goetz, D.

    2008-12-24

    The very high energy {gamma}-ray spectra of Pulsar Wind Nebulae are interpreted as due to inverse Compton scattering of ultrarelativistic electrons on the ambient photons, whereas their X-ray spectra are due to synchrotron emission. We investigate the relation between the {gamma}- and X-ray emission and the pulsars' spin-down luminosity and characteristic age. We find that the {gamma}-to X-ray flux ratio of the nebulae is inversely proportional to the spin-down luminosity ({proportional_to}E{sup -1.9}) and to the characteristic age ({proportional_to}{tau}{sub c}{sup 2.2}) of the parent pulsar. We interpret these results as due to the evolution of the electron energy distribution and the nebular dynamics, supporting the idea of so-called relic pulsar wind nebulae. These empirical relations provide a new tool to classify unidentified diffuse {gamma}-ray sources and to estimate the spin-down luminosity and characteristic age for four rotation powered pulsars with no detected pulsation from the X- and {gamma}--ray properties of the associated pulsar wind nebulae.

  4. High amplitude waves in the expanding solar wind plasma

    SciTech Connect

    Schmidt, J. M.; Velli, M.; Grappin, R.

    1996-07-20

    We simulated the 1 D nonlinear time-evolution of high-amplitude Alfven, slow and fast magnetoacustic waves in the solar wind propagating outward at different angles to the mean magnetic (spiral) field, using the expanding box model. The simulation results for Alfven waves and fast magnetoacustic waves fit the observational constraints in the solar wind best, showing decreasing trends for energies and other rms-quantities due to expansion and the appearance of inward propagating waves as minor species in the wind. Inward propagating waves are generated by reflection of Alfven waves propagating at large angles to the magnetic field or they coincide with the occurrence of compressible fluctuations. It is the generation of sound due to ponderomotive forces of the Alfven wave which we can detect in the latter case. For slow magnetoacustic waves we find a kind of oscillation of the character of the wave between a sound wave and an Alfven wave. This is the more, the slow magnetoacustic wave is close to a sound wave in the beginning. On the other hand, fast magnetoacustic waves are much more dissipated than the other wave-types and their general behaviour is close to the Alfven. The normalized cross-helicity {sigma}{sub c} is close to one for Alfven-waves and this quantity is decreasing slightly when density-fluctuations are generated. {sigma}{sub c} decreases significantly when the waves are close to perpendicular propagation. Then, the waves are close to quasi-static structures.

  5. Renewable Energy and Efficiency Modeling Analysis Partnership: An Analysis of How Different Energy Models Addressed a Common High Renewable Energy Penetration Scenario in 2025

    SciTech Connect

    Blair, N.; Jenkin, T.; Milford, J.; Short, W.; Sullivan, P.; Evans, D.; Lieberman, E.; Goldstein, G.; Wright, E.; Jayaraman, K.; Venkatech, B.; Kleiman, G.; Namovicz, C.; Smith, B.; Palmer, K.; Wiser, R.; Wood, F.

    2009-09-30

    /or different answers in response to a set of focused energy-related questions. The focus was on understanding reasons for model differences, not on policy implications, even though a policy of high renewable penetration was used for the analysis. A group process was used to identify the potential question (or questions) to be addressed through the project. In late 2006, increasing renewable energy penetration in the electricity sector was chosen from among several options as the general policy to model. From this framework, the analysts chose a renewable portfolio standard (RPS) as the way to implement the required renewable energy market penetration in the models. An RPS was chosen because it was (i) of interest and represented the group's consensus choice, and (ii) tractable and not too burdensome for the modelers. Because the modelers and analysts were largely using their own resources, it was important to consider the degree of effort required. In fact, several of the modelers who started this process had to discontinue participation because of other demands on their time. Federal and state RPS policy is an area of active political interest and debate. Recognizing this, participants used this exercise to gain insight into energy model structure and performance. The results are not intended to provide any particular insight into policy design or be used for policy advocacy, and participants are not expected to form a policy stance based on the outcomes of the modeling. The goals of this REMAP project - in terms of the main topic of renewable penetration - were to: (1) Compare models and understand why they may give different results to the same question, (2) Improve the rigor and consistency of assumptions used across models, and (3) Evaluate the ability of models to measure the impacts of high renewable-penetration scenarios.

  6. Wind tunnel tests of two airfoils for wind turbines operating at high reynolds numbers

    SciTech Connect

    Sommers, D.; Tangler, J.

    2000-06-29

    The objectives of this study were to verify the predictions of the Eppler Airfoil Design and Analysis Code for Reynolds numbers up to 6 x 106 and to acquire the section characteristics of two airfoils being considered for large, megawatt-size wind turbines. One airfoil, the S825, was designed to achieve a high maximum lift coefficient suitable for variable-speed machines. The other airfoil, the S827, was designed to achieve a low maximum lift coefficient suitable for stall-regulated machines. Both airfoils were tested in the NASA Langley Low-Turbulence Pressure Tunnel (LTPT) for smooth, fixed-transition, and rough surface conditions at Reynolds numbers of 1, 2, 3, 4, and 6 x 106. The results show the maximum lift coefficient of both airfoils is substantially underpredicted for Reynolds numbers over 3 x 106 and emphasized the difficulty of designing low-lift airfoils for high Reynolds numbers.

  7. Concept for a high-resolution thermometer utilizing the temperature dependence of the magnetic penetration depth

    NASA Astrophysics Data System (ADS)

    Shirron, P. J.; Dipirro, M. J.

    1993-03-01

    A thermometer using the temperature dependence of the magnetic penetration depth in superconductors is described which has the potential for temperature resolution, when using a dc SQUID readout, on the order of 1 pK. One such device has been fabricated and characterized to demonstrate proof of concept. It consists of primary and secondary coils of NbTi wire wound on a copper toroidal core on which a thin layer of In (Tc = 3.4 K) has been deposited. The temperature dependence of the mutual inductance, M(T), or self-inductance, is used to detect changes in temperature. Measurements of M(T) have been made with an ac excitation of the primary for various frequencies and peak magnetic field strengths. Estimates of ultimate temperature resolution are given.

  8. Concept for a high-resolution thermometer utilizing the temperature dependence of the magnetic penetration depth

    NASA Technical Reports Server (NTRS)

    Shirron, P. J.; Dipirro, M. J.

    1993-01-01

    A thermometer using the temperature dependence of the magnetic penetration depth in superconductors is described which has the potential for temperature resolution, when using a dc SQUID readout, on the order of 1 pK. One such device has been fabricated and characterized to demonstrate proof of concept. It consists of primary and secondary coils of NbTi wire wound on a copper toroidal core on which a thin layer of In (Tc = 3.4 K) has been deposited. The temperature dependence of the mutual inductance, M(T), or self-inductance, is used to detect changes in temperature. Measurements of M(T) have been made with an ac excitation of the primary for various frequencies and peak magnetic field strengths. Estimates of ultimate temperature resolution are given.

  9. Grid Inertial Response-Based Probabilistic Determination of Energy Storage System Capacity Under High Solar Penetration

    DOE PAGESBeta

    Yue, Meng; Wang, Xiaoyu

    2015-07-01

    It is well-known that responsive battery energy storage systems (BESSs) are an effective means to improve the grid inertial response to various disturbances including the variability of the renewable generation. One of the major issues associated with its implementation is the difficulty in determining the required BESS capacity mainly due to the large amount of inherent uncertainties that cannot be accounted for deterministically. In this study, a probabilistic approach is proposed to properly size the BESS from the perspective of the system inertial response, as an application of probabilistic risk assessment (PRA). The proposed approach enables a risk-informed decision-making processmore » regarding (1) the acceptable level of solar penetration in a given system and (2) the desired BESS capacity (and minimum cost) to achieve an acceptable grid inertial response with a certain confidence level.« less

  10. Grid Inertial Response-Based Probabilistic Determination of Energy Storage System Capacity Under High Solar Penetration

    SciTech Connect

    Yue, Meng; Wang, Xiaoyu

    2015-07-01

    It is well-known that responsive battery energy storage systems (BESSs) are an effective means to improve the grid inertial response to various disturbances including the variability of the renewable generation. One of the major issues associated with its implementation is the difficulty in determining the required BESS capacity mainly due to the large amount of inherent uncertainties that cannot be accounted for deterministically. In this study, a probabilistic approach is proposed to properly size the BESS from the perspective of the system inertial response, as an application of probabilistic risk assessment (PRA). The proposed approach enables a risk-informed decision-making process regarding (1) the acceptable level of solar penetration in a given system and (2) the desired BESS capacity (and minimum cost) to achieve an acceptable grid inertial response with a certain confidence level.

  11. Incremental wind tunnel testing of high lift systems

    NASA Astrophysics Data System (ADS)

    Victor, Pricop Mihai; Mircea, Boscoianu; Daniel-Eugeniu, Crunteanu

    2016-06-01

    Efficiency of trailing edge high lift systems is essential for long range future transport aircrafts evolving in the direction of laminar wings, because they have to compensate for the low performance of the leading edge devices. Modern high lift systems are subject of high performance requirements and constrained to simple actuation, combined with a reduced number of aerodynamic elements. Passive or active flow control is thus required for the performance enhancement. An experimental investigation of reduced kinematics flap combined with passive flow control took place in a low speed wind tunnel. The most important features of the experimental setup are the relatively large size, corresponding to a Reynolds number of about 2 Million, the sweep angle of 30 degrees corresponding to long range airliners with high sweep angle wings and the large number of flap settings and mechanical vortex generators. The model description, flap settings, methodology and results are presented.

  12. Optimization of Sizing and Placement of Energy Storage Systems on an Islanded Grid with High Penetration of Renewables

    NASA Astrophysics Data System (ADS)

    Lim, M. M.

    This thesis seeks to find an optimized energy storage system (ESS) solution that reduces the effects of power variations and fluctuations from renewable energy sources like wind and solar. This study focuses on the effects of renewables at penetration levels larger than 20% for an isolated power grid. This optimized energy storage solution includes sizing the ESS appropriately while taking into account the economic cost of deploying the ESS. The ideal placement of the ESS on this grid seeks to reduce any impact on grid transmission congestion due to the ESS. Two configurations of the grid were modeled; the first is a simple load-frequency control model of the grid that only examines the effect of active power fluctuations from the renewables on the grid. The other model uses a one-line transmission line model of the isolated grid to model the transmission congestion in the grid. Modeling has shown that ESS systems are capable of reducing the frequency variations and reducing power fluctuations, however there is a trade off in economic cost.

  13. Airborne laser scan measurements of winter snow accumulation in high alpine catchments - hydrological implications and verification by ground penetrating radar at glacier surface

    NASA Astrophysics Data System (ADS)

    Helfricht, K.; Keuschnig, M.; Heilig, A.; Mayer, C.; Kuhn, M.

    2012-04-01

    The snow cover as storage of winter precipitation is a substantial source for runoff generation in high mountain catchments. Redistribution of solid precipitation, caused by wind and gravity, leads to a characteristic spatial distribution of snow accumulation which differs from simple model assumption of a homogenous snowpack increasing with altitude. Both, the distinct distribution of snow accumulation and the total amount of SWE stored in the snow cover, affect the magnitude and seasonality of melt water runoff. Complex relations exist between the spatial pattern of snow accumulation and the presence of glaciers and vice versa. For proper hydrological modeling in high mountain catchments, knowledge about snow cover distribution is an important requirement. To date, to evaluate modeling results, spatially insufficient point data on snow depths and SWE are usually available. On catchment scale, optical space-borne remote sensing techniques deliver areal extent of snow cover, but no snow depths and hence no volume of snow cover. Multi-temporal airborne laser scanning (ALS) is an active remote sensing method to obtain elevation changes extensively even in inaccessible alpine terrain. Before the start and at the end of accumulation season of winter 2010/2011, two airborne laser scan acquisitions were performed in the Ötztal Alps (Tirol, Austria). Differences of the respective digital elevation models were interpreted as snow depths and converted into SWE using a simple regression method between snow depths and snow density. Preferred snow accumulation areas were determined, e.g. wind sheltered depressions, the base of steep mountain walls and flat glacier surfaces. At catchment scale, solid precipitation is obviously redistributed from wind exposed mountain ridges to lower elevations, inducing characteristic elevations of maximum snow accumulation. Overall, catchment precipitation derived from snow accumulation is a valuable reference for precipitation approaches in

  14. Operating wind turbines in strong wind conditions by using feedforward-feedback control

    NASA Astrophysics Data System (ADS)

    Feng, Ju; Sheng, Wen Zhong

    2014-12-01

    Due to the increasing penetration of wind energy into power systems, it becomes critical to reduce the impact of wind energy on the stability and reliability of the overall power system. In precedent works, Shen and his co-workers developed a re-designed operation schema to run wind turbines in strong wind conditions based on optimization method and standard PI feedback control, which can prevent the typical shutdowns of wind turbines when reaching the cut-out wind speed. In this paper, a new control strategy combing the standard PI feedback control with feedforward controls using the optimization results is investigated for the operation of variable-speed pitch-regulated wind turbines in strong wind conditions. It is shown that the developed control strategy is capable of smoothening the power output of wind turbine and avoiding its sudden showdown at high wind speeds without worsening the loads on rotor and blades.

  15. Wind and water erosion on abandoned land in High Andalusia - First results of a portable combined wind and rainfall simulator

    NASA Astrophysics Data System (ADS)

    Iserloh, T.; Fister, W.; Marzen, M.; Ries, J. B.; Schmidt, R.-G.

    2009-04-01

    On abandoned land in semi-arid environments wind and water erosion are the main driving factors causing soil degradation. Recent research has proven the existence of very complex interactions between both processes. For in situ assessment of these interactions on soil erosion rates a portable combined wind and rainfall simulator was constructed and used in a field study in Andalusia. The main objective is to get first results for comparison of erosion rates with and without the influence of wind on plot scale on abandoned land in a semi-arid environment. The simulator is 4 m long, 0.7 m high, 0.7 m wide and rectangular in shape. A bounded plot of 2.2 m² can be irrigated by four downward spraying pressure nozzles (Lechler 460.608) in the roof of the tunnel producing a rainfall intensity of about 90 mm h-1. Approximate wind speed is 8 m s-1 free stream. For sediment collection a gutter system has been combined with two wedge-shaped sediment traps and a beam with four Modified Wilson & Cook Samplers. Runoff was collected with 0.5 l plastic bottles. Test duration is 30 min with measurement intervals of 2.5 min for surface runoff. The test runs were carried out with three variations in the following order on each plot: (1) single wind test run, (2) single rainfall test run and (3) simultaneous wind and rainfall test run. Runoff results show no distinctive differences between test runs without (2) and in combination with wind (3). The sediment loss seems to be higher with wind (3). This might indicate the influence of wind on the kinetic energy and impact angle of raindrops and consequently on the detachment and provision of soil particles. It could be argued that in addition to conventional rainfall simulations the inclusion of wind could assist a better understanding of soil erosion processes in the future.

  16. Penetration of High Intensity Radiated Fields (HIRF) Into General Aviation Aircraft

    NASA Technical Reports Server (NTRS)

    Balanis, Constantine A.; Birtcher, Craig R.; Georgakopoulos, Stavros V.; Panaretos, Anastasios H.

    2004-01-01

    The ability to design and achieve electromagnetic compatibility is becoming more challenging with the rapid development of new electronic products and technologies. The importance of electromagnetic interference (EMI) and electromagnetic compatibility (EMC) issues stems from the fact that the ambient electromagnetic environment has become very hostile; that is, it increases both in density and intensity, while the current trend in technology suggests the number of electronic devices increases in homes, businesses, factories, and transportation vehicles. Furthermore, the operating frequency of products coming into the market continuously increases. While cell phone technology has exceeded 1 GHz and Bluetooth operates at 2.4 GHz, products involving satellite communications operate near 10 GHz and automobile radar systems involve frequencies above 40 GHz. The concern about higher frequencies is that they correspond to smaller wavelengths, therefore electromagnetic waves are able to penetrate equipment enclosure through apertures or even small cracks more easily. In addition, electronic circuits have become small in size, and they are usually placed on motherboards or housed in boxes in very close proximity. Cosite interference and coupling in all electrical and electronic circuit assemblies are two essential issues that have to be examined in every design.

  17. Customized photorefractive keratectomy to correct high ametropia after penetrating keratoplasty: A pilot study

    PubMed Central

    De Rosa, Giuseppe; Boccia, Rosa; Santamaria, Carmine; Fabbozzi, Lorenzo; De Rosa, Luigi; Lanza, Michele

    2014-01-01

    Purpose To evaluate preliminarily the safety and efficacy of customized photorefractive keratectomy (PRK) to correct ametropia and irregular astigmatism after penetrating keratoplasty (PK). Methods This pilot study included five eyes of five patients with a mean spherical equivalent of −5.1 ± 1.46 D (range from −2.75 to −6.50 D). In all cases, ametropia and irregular astigmatism was corrected with topography-guided customized PRK. Ocular examinations with topographic analysis were performed preoperatively as well as at 1, 3 and 6 months after surgery. Results All eyes gained postoperatively at least three Snellen lines of uncorrected visual acuity. Mean refractive spherical equivalent was 0.62 ± 0.63 D (range from −0.25 to −1.75 D) at 6 months postoperatively. Conclusion Our pilot study suggests that customized PRK can be a safe and effective method for treating ametropia and irregular astigmatisms after PK. Future studies with larger samples and longer follow-ups should be performed to confirm these results. PMID:25151176

  18. The winds of high luminosity late-type bright stars

    NASA Technical Reports Server (NTRS)

    Stencel, Robert E.; Carpenter, K. G.

    1989-01-01

    The occurrence and characteristics of the Fe II line asymmetries were studied to determine the radial dependence of the wind velocity for each star. The dependence of the Fe II profiles on spectral type and luminosity class and thus the variation of the velocity fields with stellar type was also investigated. This allows the generality of the results reported for alpha Ori by Carpenter (1984b) to be judged. In addition, new atomic data was used along with observations of the C II (UV 0.01) multiplet to estimate N(sub e) in the stellar winds. Measures of relative Fe II fluxes can be used in a probability-of-escape model to determine the opacity and hydrogen column density versus height in the chromosphere of each star. Finally, analysis of the fluorescent Fe II lines (pumped by Ly alpha) near 2507 A will yield estimates of the intrinsic stellar Ly alpha flux that cannot be measured directly because of interstellar and circumstellar absorption. One important goal of the effort was to acquire high resolution spectra of the whole 2300 to 3200 A region of 13 luminous K and M stars as a data base that will be enormously valuable in planning observations with the Hubble Space Telescope High Resolution Spectrograph. It is also proposed to follow up the recent discovery of significant variations in the Fe II chromospheric emission line profiles from the M-giant Gamma Cru for the purpose of determining the underlying cause of the variations.

  19. Airfoil stall penetration at constant pitch rate and high Reynolds number

    NASA Technical Reports Server (NTRS)

    Lorber, Peter F.; Carta, Franklin O.

    1989-01-01

    The model wing consists of a set of fiberglass panels mounted on a steel spar that spans the 8 ft test section of the UTRC Large Subsonic Wind Tunnel. The first use of this system was to measure surface pressures and flow conditions for a series of constant pitch rate ramps and sinusoidal oscillations a Mach number range, a Reynolds number range, and a pitch angle range. It is concluded that an increased pitch rate causes stall events to be delayed, strengthening of the stall vortex, increase in vortex propagation, and increase in unsteady airloads. The Mach number range causes a supersonic zone near the leading edge, stall vortex to be weaker, and a reduction of unsteady airloads.

  20. Effects on electrical distribution networks of dispersed power generation at high levels of connection penetration

    SciTech Connect

    Longrigg, P

    1983-07-01

    The advent and deployment of significant levels of photovoltaic and wind energy generation in the spatially dispersed mode (i.e., residential and intermediate load centers) may have deleterious effects upon existing protective relay equipment and its time-current coordination on radial distribution circuits to which power conditioning equipment may be connected for power sell-back purposes. The problems that may arise involve harmonic injection from power conditioning inverters that can affect protective relays and cause excessive voltage and current from induced series and parallel resonances on feeders and connected passive equipment. Voltage regulation, var requirements, and consumer metering can also be affected by this type of dispersed generation. The creation of islands of supply is also possible, particularly on rural supply systems. This paper deals mainly with the effects of harmonics and short-circuit currents from wind energy conversion systems (WECS) and photovoltaic (PV) systems upon the operating characteristics of distribution networks and relays and other protective equipment designed to ensure the safety and supply integrity of electrical utility networks. Traditionally, electrical supply networks have been designed for one-way power flow-from generation to load, with a balance maintained between the two by means of automatic generation and load-frequency controls. Dispersed generation, from renewables like WECS or PV or from nonrenewable resources, can change traditional power flow. These changes must be dealt with effectively if renewable energy resources are to be integrated into the utility distribution system. This paper gives insight into these problems and proposes some solutions.

  1. DOE/NREL supported wind energy activities in Alaska

    SciTech Connect

    Drouilhet, S.

    1997-12-01

    This paper describes three wind energy projects implemented in Alaska. The first, a sustainable technology energy partnerships (STEP) wind energy deployment project in Kotzebue will install 6 AOC 15/50 wind turbines and connect to the existing village diesel grid, consisting of approximately 1 MW average load. It seeks to develop solutions to the problems of arctic wind energy installations (transport, foundations, erection, operation, and maintenance), to establish a wind turbine test site, and to establish the Kotzebue Electric Association as a training and deployment center for wind/diesel technology in rural Alaska. The second project, a large village medium-penetration wind/diesel system, also in Kotzebue, will install a 1-2 MW windfarm, which will supplement the AOC turbines of the STEP project. The program will investigate the impact of medium penetration wind energy on power quality and system stability. The third project, the Alaska high-penetration wind/diesel village power pilot project in Wales will install a high penetration (80-100%) wind/diesel system in a remote Alaskan village. The system will include about 180 kW installed wind capacity, meeting an average village load of about 60 kW. This program will provide a model for high penetration wind retrofits to village diesel power systems and build the capability in Alaska to operate, maintain, and replicate wind/diesel technology. The program will also address problems of: effective use of excess wind energy; reliable diesel-off operation; and the role of energy storage.

  2. Western Wind and Solar Integration Study (Fact Sheet)

    SciTech Connect

    Not Available

    2012-09-01

    Initiated in 2007 to examine the operational impact of up to 35% penetration of wind, photovoltaic (PV), and concentrating solar power (CSP) energy on the electric power system, the Western Wind and Solar Integration Study (WWSIS) is one of the largest regional wind and solar integration studies to date. The goal is to understand the effects of variability and uncertainty of wind, PV, and CSP on the grid. In the Western Wind and Solar Integration Study Phase 1, solar penetration was limited to 5%. Utility-scale PV was not included because of limited capability to model sub-hourly, utility-scale PV output . New techniques allow the Western Wind and Solar Integration Study Phase 2 to include high penetrations of solar - not only CSP and rooftop PV but also utility-scale PV plants.

  3. A survey of the three-dimensional high Reynolds number transonic wind tunnel

    NASA Technical Reports Server (NTRS)

    Takashima, K.; Sawada, H.; Aoki, T.

    1982-01-01

    The facilities for aerodynamic testing of airplane models at transonic speeds and high Reynolds numbers are surveyed. The need for high Reynolds number testing is reviewed, using some experimental results. Some approaches to high Reynolds number testing such as the cryogenic wind tunnel, the induction driven wind tunnel, the Ludwieg tube, the Evans clean tunnel and the hydraulic driven wind tunnel are described. The level of development of high Reynolds number testing facilities in Japan is discussed.

  4. Forest trees filter chronic wind-signals to acclimate to high winds.

    PubMed

    Bonnesoeur, Vivien; Constant, Thiéry; Moulia, Bruno; Fournier, Meriem

    2016-05-01

    Controlled experiments have shown that trees acclimate thigmomorphogenetically to wind-loads by sensing their deformation (strain). However, the strain regime in nature is exposed to a full spectrum of winds. We hypothesized that trees avoid overreacting by responding only to winds which bring information on local climate and/or wind exposure. Additionally, competition for light dependent on tree social status also likely affects thigmomorphogenesis. We monitored and manipulated quantitatively the strain regimes of 15 pairs of beech (Fagus sylvatica) trees of contrasting social status in an acclimated stand, and quantified the effects of these regimes on the radial growth over a vegetative season. Trees exposed to artificial bending, the intensity of which corresponds to the strongest wind-induced strains, enhanced their secondary growth by at least 80%. Surprisingly, this reaction was even greater - relatively - for suppressed trees than for dominant ones. Acclimated trees did not sense the different types of wind events in the same way. Daily wind speed peaks due to thermal winds were filtered out. Thigmomorphogenesis was therefore driven by intense storms. Thigmomorphogenesis is also likely to be involved in determining social status. PMID:26790391

  5. Utilizing the Upcoming Gravity Measurements from Cassini's Proximal Orbits for Studying the Atmospheric Dynamics of Saturn - How Deep Do the Winds Penetrate?

    NASA Astrophysics Data System (ADS)

    Kaspi, Y.; Galanti, E.

    2014-12-01

    At the end of the Cassini mission, the spacecraft will descend into close-by proximal orbits around Saturn. During those proximal orbits, Cassini will obtain high precision gravity measurements of the planet. In this talk, we will discuss how this data can be used to estimate the depth of the observed flows on the planet. This can be done in several ways: 1. measurements of the high order even harmonics which beyond J10 are dominated by the dynamics; 2. measurements of odd gravity harmonics which have no contribution from a static planet, and therefore are a pure signature of dynamics; 3. upper limits on the depth can be obtained by comparing low order even harmonics from dynamical models to the difference between the measured low order even harmonics and the largest possible values of a static planet; 4. direct latitudinally varying measurements of the gravity field exerted on the spacecraft. We will discuss how these methods may be applied and show that given the expected sensitivity of Cassini the odd harmonics J3 and J5 will have the best sensitivity to deep dynamics, allowing detection of winds reaching only O(100km) deep, if those exist on Saturn. We use a hierarchy of dynamical models ranging from full 3D dynamical circulation models to simplified dynamical models where the sensitivity of the gravity field to the dynamics can be explored. In order to invert the gravity field to be measured by Cassini into the depth dependent circulation, an adjoint inverse model is constructed for the dynamical models, thus allowing backward integration of the dynamical model. This tool can be used for examination of various scenarios, including cases in which the depth of the wind depends on latitudinal position. In summary, we expect that the very end of Cassini's tour holds an opportunity for gravity measurements that may finally allow answering one of the long-lasting puzzles in planetary science regarding the depth of the zonal jets on the gas giants. In fact, as Juno

  6. Mixer-Ejector Wind Turbine: Breakthrough High Efficiency Shrouded Wind Turbine

    SciTech Connect

    2010-02-22

    Broad Funding Opportunity Announcement Project: FloDesign Wind Turbine’s innovative wind turbine, inspired by the design of jet engines, could deliver 300% more power than existing wind turbines of the same rotor diameter by extracting more energy over a larger area. FloDesign Wind Turbine’s unique shrouded design expands the wind capture area, and the mixing vortex downstream allows more energy to flow through the rotor without stalling the turbine. The unique rotor and shrouded design also provide significant opportunity for mass production and simplified assembly, enabling mid-scale turbines (approximately 100 kW) to produce power at a cost that is comparable to larger-scale conventional turbines.

  7. Penetrating trauma

    PubMed Central

    Kuhajda, Ivan; Zarogoulidis, Konstantinos; Kougioumtzi, Ioanna; Huang, Haidong; Li, Qiang; Dryllis, Georgios; Kioumis, Ioannis; Pitsiou, Georgia; Machairiotis, Nikolaos; Katsikogiannis, Nikolaos; Papaiwannou, Antonis; Lampaki, Sofia; Zaric, Bojan; Branislav, Perin; Dervelegas, Konstantinos; Porpodis, Konstantinos

    2014-01-01

    Pneumothorax occurs when air enters the pleural space. Currently there is increasing incidence of road traffic accidents, increasing awareness of healthcare leading to more advanced diagnostic procedures, and increasing number of admissions in intensive care units are responsible for traumatic (non iatrogenic and iatrogenic) pneumothorax. Pneumothorax has a clinical spectrum from asymptomatic patient to life-threatening situations. Diagnosis is usually made by clinical examination and imaging techniques. In our current work we focus on the treatment of penetrating trauma. PMID:25337403

  8. Penetrating trauma.

    PubMed

    Kuhajda, Ivan; Zarogoulidis, Konstantinos; Kougioumtzi, Ioanna; Huang, Haidong; Li, Qiang; Dryllis, Georgios; Kioumis, Ioannis; Pitsiou, Georgia; Machairiotis, Nikolaos; Katsikogiannis, Nikolaos; Papaiwannou, Antonis; Lampaki, Sofia; Zaric, Bojan; Branislav, Perin; Dervelegas, Konstantinos; Porpodis, Konstantinos; Zarogoulidis, Paul

    2014-10-01

    Pneumothorax occurs when air enters the pleural space. Currently there is increasing incidence of road traffic accidents, increasing awareness of healthcare leading to more advanced diagnostic procedures, and increasing number of admissions in intensive care units are responsible for traumatic (non iatrogenic and iatrogenic) pneumothorax. Pneumothorax has a clinical spectrum from asymptomatic patient to life-threatening situations. Diagnosis is usually made by clinical examination and imaging techniques. In our current work we focus on the treatment of penetrating trauma. PMID:25337403

  9. Systematic variation of magnetic-field penetration depth in high-Tc superconductors studied by muon-spin relaxation

    NASA Technical Reports Server (NTRS)

    Uemura, Y. J.; Emery, V. J.; Moodenbaugh, A. R.; Suenaga, M.; Johnston, D. C.

    1988-01-01

    The muon relaxation rate (sigma) was measured in the high critical temperature superconductors YBa2Cu3O(x) for x = 6.66, 6.95, 7.0, and La1.85 SrO.15 CuO4 in transverse external magnetic fields 1 is approximately 4 kG. A simple relation is found which connects the transition temperature T(c), the magnetic field penetration depth lambda(L), the carrier concentration n(s) and the effective mass m* as T(c) varies as sigma which varies as 1/lambda(L) squared which varies as n(s)/m*. The linear dependence T(c) varies as n(s)/m* suggests a high energy scale for the coupling between superconducting carriers.

  10. Systematic variation of magnetic-field penetration depth in high-T(c) superconductors studied by muon spin relaxation

    NASA Technical Reports Server (NTRS)

    Uemura, Y. J.; Emery, V. J.; Moodenbaugh, A. R.; Suenaga, M.; Johnston, D. C.; Jacobson, A. J.; Lewandowski, J. T.; Brewer, J. H.; Kiefl, R. F.; Kreitzman, S. R.

    1988-01-01

    The muon relaxation rate (sigma) was measured in the high critical temperature superconductors YBa2Cu3O(x) for x = 6.66, 6.95, 7.0, and La1.85 Sr0.15 CuO4 in transverse external magnetic fields 1 is approximately 4kG. A simple relation is found which connects the transition temperature T(c), the magnetic field penetration depth lambda(L), the carrier concentration n(s) and the effective mass m* as T(c) varies as sigma which varies as 1/lambda(L) squared which varies as n(s)/m*. The linear dependence T(c) varies as n(s)/m* suggests a high energy scale for the coupling between superconducting carriers.

  11. Dielectric resonator for measuring the magnetic penetration depth at low temperature in high-Tc superconducting thin films

    NASA Astrophysics Data System (ADS)

    Mourachkine, A. P.

    1995-11-01

    Knowledge of magnetic penetration depth λ(T) at low temperatures allows one to determine the pairing state in the superconductors. A simple method for the evaluation of λ(T) of small (˜1 cmט1 cm), flat, high-Tc superconductive samples at low T is discussed. The resolution of the method is a few Å. In addition to high resolution, the method has several advantages including nondestructive analysis, flexibility in sample size, and minimal requirements on the dielectric resonator. The current distribution within the sample being tested can also be accurately calculated, the experimental setup is convenient, and the procedure is comparatively rapid and can be performed in the necktube of a liquid-helium storage Dewar. The measurements for YBCO thin films have been performed at 14.4 GHz.

  12. Modeling the Benefits of Storage Technologies to Wind Power

    SciTech Connect

    Sullivan, P.; Short, W.; Blair, N.

    2008-06-01

    Rapid expansion of wind power in the electricity sector is raising questions about how wind resource variability might affect the capacity value of wind farms at high levels of penetration. Electricity storage, with the capability to shift wind energy from periods of low demand to peak times and to smooth fluctuations in output, may have a role in bolstering the value of wind power at levels of penetration envisioned by a new Department of Energy report ('20% Wind by 2030, Increasing Wind Energy's Contribution to U.S. Electricity Supply'). This paper quantifies the value storage can add to wind. The analysis was done employing the Regional Energy Deployment System (ReEDS) model, formerly known as the Wind Deployment System (WinDS) model. ReEDS was used to estimate the cost and development path associated with 20% penetration of wind in the report. ReEDS differs from the WinDS model primarily in that the model has been modified to include the capability to build and use three storage technologies: pumped-hydroelectric storage (PHS), compressed-air energy storage (CAES), and batteries. To assess the value of these storage technologies, two pairs of scenarios were run: business-as-usual, with and without storage; 20% wind energy by 2030, with and without storage. This paper presents the results from those model runs.

  13. Enertech 2-kW high-reliability wind system. Phase II. Fabrication and testing

    SciTech Connect

    Cordes, J A; Johnson, B A

    1981-06-01

    A high-reliability wind machine rated for 2 kW in a 9 m/s wind has been developed. Activities are summarized that are centered on the fabrication and testing of prototypes of the wind machine. The test results verified that the wind machine met the power output specification and that the variable-pitch rotor effectively controlled the rotor speed for wind speeds up to 50 mph. Three prototypes of the wind machine were shipped to the Rocky Flats test center in September through November of 1979. Work was also performed to reduce the start-up wind speed. The start-up wind speed to the Enertech facility has been reduced to 4.5 m/s.

  14. Compact, High Energy 2-micron Coherent Doppler Wind Lidar Development for NASA's Future 3-D Winds Measurement from Space

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Koch, Grady; Yu, Jirong; Petros, Mulugeta; Beyon, Jeffrey; Kavaya, Michael J.; Trieu, Bo; Chen, Songsheng; Bai, Yingxin; Petzar, paul; Modlin, Edward A.; Barnes, Bruce W.; Demoz, Belay B.

    2010-01-01

    This paper presents an overview of 2-micron laser transmitter development at NASA Langley Research Center for coherent-detection lidar profiling of winds. The novel high-energy, 2-micron, Ho:Tm:LuLiF laser technology developed at NASA Langley was employed to study laser technology currently envisioned by NASA for future global coherent Doppler lidar winds measurement. The 250 mJ, 10 Hz laser was designed as an integral part of a compact lidar transceiver developed for future aircraft flight. Ground-based wind profiles made with this transceiver will be presented. NASA Langley is currently funded to build complete Doppler lidar systems using this transceiver for the DC-8 aircraft in autonomous operation. Recently, LaRC 2-micron coherent Doppler wind lidar system was selected to contribute to the NASA Science Mission Directorate (SMD) Earth Science Division (ESD) hurricane field experiment in 2010 titled Genesis and Rapid Intensification Processes (GRIP). The Doppler lidar system will measure vertical profiles of horizontal vector winds from the DC-8 aircraft using NASA Langley s existing 2-micron, pulsed, coherent detection, Doppler wind lidar system that is ready for DC-8 integration. The measurements will typically extend from the DC-8 to the earth s surface. They will be highly accurate in both wind magnitude and direction. Displays of the data will be provided in real time on the DC-8. The pulsed Doppler wind lidar of NASA Langley Research Center is much more powerful than past Doppler lidars. The operating range, accuracy, range resolution, and time resolution will be unprecedented. We expect the data to play a key role, combined with the other sensors, in improving understanding and predictive algorithms for hurricane strength and track. 1

  15. Manufactured Home Testing in Simulated and Naturally Occurring High Winds

    SciTech Connect

    W. D. Richins; T. K. Larson

    2006-08-01

    A typical double-wide manufactured home was tested in simulated and naturally occurring high winds to understand structural behavior and improve performance during severe windstorms. Seven (7) lateral load tests were conducted on a double-wide manufactured home at a remote field test site in Wyoming. An extensive instrumentation package monitored the overall behavior of the home and collected data vital to validating computational software for the manufactured housing industry. The tests were designed to approach the design load of the home without causing structural damage, thus allowing the behavior of the home to be accessed when the home was later exposed to high winds (to 80-mph). The data generally show near-linear initial system response with significant non-linear behavior as the applied loads increase. Load transfer across the marriage line is primarily compression. Racking, while present, is very small. Interface slip and shear displacement along the marriage line are nearly insignificant. Horizontal global displacements reached 0.6 inch. These tests were designed primarily to collect data necessary to calibrate a desktop analysis and design software tool, MHTool, under development at the Idaho National Laboratory specifically for manufactured housing. Currently available analysis tools are, for the most part, based on methods developed for “stick built” structures and are inappropriate for manufactured homes. The special materials utilized in manufactured homes, such as rigid adhesives used in the connection of the sheathing materials to the studs, significantly alter the behavior of manufactured homes under lateral loads. Previous full scale tests of laterally loaded manufactured homes confirm the contention that conventional analysis methods are not applicable. System behavior dominates the structural action of manufactured homes and its prediction requires a three dimensional analysis of the complete unit, including tiedowns. This project was

  16. The Effect of High-Pressure Devitrification and Densification on Ballistic-Penetration Resistance of Fused Silica

    NASA Astrophysics Data System (ADS)

    Grujicic, M.; Avuthu, V.; Snipes, J. S.; Ramaswami, S.; Galgalikar, R.

    2015-12-01

    Recent experimental and molecular-level computational analyses have indicated that fused silica, when subjected to pressures of several tens of GPa, can experience irreversible devitrification and densification. Such changes in the fused-silica molecular-level structure are associated with absorption and/or dissipation of the strain energy acquired by fused silica during high-pressure compression. This finding may have important practical consequences in applications for fused silica such as windshields and windows of military vehicles, portholes in ships, ground vehicles, spacecraft, etc. In the present work, our prior molecular-level computational results pertaining to the response of fused silica to high pressures (and shear stresses) are used to enrich a continuum-type constitutive model (that is, the so-called Johnson-Holmquist-2, JH2, model) for this material. Since the aforementioned devitrification and permanent densification processes modify the response of fused silica to the pressure as well as to the deviatoric part of the stress, changes had to be made in both the JH2 equation of state and the strength model. To assess the potential improvements in respect to the ballistic-penetration resistance of this material brought about by the fused-silica devitrification and permanent densification processes, a series of transient non-linear dynamics finite-element analyses of the transverse impact of a fused-silica test plate with a solid right-circular cylindrical steel projectile were conducted. The results obtained revealed that, provided the projectile incident velocity and, hence, the attendant pressure, is sufficiently high, fused silica can undergo impact-induced devitrification, which improves its ballistic-penetration resistance.

  17. Long range surface plasmon resonance with ultra-high penetration depth for self-referenced sensing and ultra-low detection limit using diverging beam approach

    SciTech Connect

    Isaacs, Sivan Abdulhalim, Ibrahim

    2015-05-11

    Using an insulator-metal-insulator structure with dielectric having refractive index (RI) larger than the analyte, long range surface plasmon (SP) resonance exhibiting ultra-high penetration depth is demonstrated for sensing applications of large bioentities at wavelengths in the visible range. Based on the diverging beam approach in Kretschmann-Raether configuration, one of the SP resonances is shown to shift in response to changes in the analyte RI while the other is fixed; thus, it can be used as a built in reference. The combination of the high sensitivity, high penetration depth and self-reference using the diverging beam approach in which a dark line is detected of the high sensitivity, high penetration depth, self-reference, and the diverging beam approach in which a dark line is detected using large number of camera pixels with a smart algorithm for sub-pixel resolution, a sensor with ultra-low detection limit is demonstrated suitable for large bioentities.

  18. High Resolution Wind and SST Coupling: Impacts on Ekman Upwelling

    NASA Astrophysics Data System (ADS)

    Bourassa, M. A.; Hughes, P. J.

    2014-12-01

    Satellite observations have revealed a small-scale (< 1000 km) air-sea coupling in regions of strong sea surface temperature (SST) fronts (e.g., currents, eddies, and tropical instability waves), where the surface wind and wind stress are altered by the underlying SST. Surface winds and wind stresses are persistently higher over the warm side of the SST front compared to the cool side, causing perturbations in the dynamically and thermodynamically curl and divergence fields. Capturing this small-scale SST-wind variability is important because it can significantly impact both local and remote (i.e., large scale) oceanic and atmospheric processes. The SST-wind relationship is not well represented in numerical weather prediction (NWP) and climate models, and the relative importance of the physical processes that are proposed to be responsible for this relationship is actively and vehemently debated. This study focuses on the physical mechanisms that are primarily responsible for the SST-induced changes in surface wind and wind stress, and on the physical implication on ocean forcing through Ekman pumping. This study shows that the baroclinic-related changes in Ekman pumping are significant (first-order) over a seasonal (2003 winter season) time scale and that the meso-scale impacts are quite important over larger spatial scales. These findings highlight the need to consider the small-scale SST-wind relationship even in coarser resolution model simulation, which may be feasible to parameterize because of the linear nature of the baroclinic-related effect.

  19. 78 FR 29364 - Exelon Corporation, Exelon Wind 1, LLC, Exelon Wind 2, LLC, Exelon Wind 3, LLC, Exelon Wind 4...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-20

    ...-005, QF07-257-004] Exelon Corporation, Exelon Wind 1, LLC, Exelon Wind 2, LLC, Exelon Wind 3, LLC, Exelon Wind 4, LLC, Exelon Wind 5, LLC, Exelon Wind 6, LLC, Exelon Wind 7, LLC, Exelon Wind 8, LLC, Exelon Wind 9, LLC, Exelon Wind 10, LLC, Exelon Wind 11, LLC, High Plains Wind Power, LLC v. Xcel...

  20. High frequency ultrasound penetration through concentric tubes: illustrating cooling effects and cavitation intensity

    NASA Astrophysics Data System (ADS)

    Rahimi, Masoud; Abolhasani, Mahdieh; Azimi, Neda

    2015-04-01

    Effective cooling of water by using high frequency ultrasound waves in two concentric straight tubes was investigated. The outer tube was equipped with eight 1.7 MHz ultrasound transducers. The cavitation intensity in both tubes was examined by employing the Weissler reaction. The experimental results showed that employing the 1.7 MHz ultrasound waves caused high temperature drop in the internal tube while no significant thermal effects occurred in the outer tube.

  1. High frequency ultrasound penetration through concentric tubes: illustrating cooling effects and cavitation intensity

    NASA Astrophysics Data System (ADS)

    Rahimi, Masoud; Abolhasani, Mahdieh; Azimi, Neda

    2014-10-01

    Effective cooling of water by using high frequency ultrasound waves in two concentric straight tubes was investigated. The outer tube was equipped with eight 1.7 MHz ultrasound transducers. The cavitation intensity in both tubes was examined by employing the Weissler reaction. The experimental results showed that employing the 1.7 MHz ultrasound waves caused high temperature drop in the internal tube while no significant thermal effects occurred in the outer tube.

  2. Automatic Detection Algorithm of the Solar Wind Dynamic Pressure Pulses with the Application to WIND High-resolution Data

    NASA Astrophysics Data System (ADS)

    Zuo, P.; Feng, X. S.

    2014-12-01

    Solar wind dynamic pressure pulses (DPPs), i.e. the abrupt change in solar wind dynamic pressure, can affect the energy and momentum transfer from the solar wind to the magnetosphere-ionosphere coupling system, and as a result, cause various types of disturbances. To detect the DPPs rapidly from the solar wind plasma data, an automated DPP-hunting computer code is developed. In order to meet the research requirements, it demands not only identify and isolate the special structure, but also automatically select appropriate preceding and succeeding reference data points, for which there are very small variations in solar wind dynamic pressure, to represent the plasma status before and after the pressure change, as well as determine the DPP fine ramp structure where the solar wind transits from one relatively quiet status to another. It indicates from the high-resolution measurements that the pressure changes can occur on time scale from a few seconds to many minutes. The code can be used to hunt DPPs of arbitrary ramp length and arbitrary pressure change amplitude by adjusting the criteria. It can be applied to variable data rates. The strong DPPs that have very large pressure change are most geoeffective so as to affect the near-Earth environment intensively. Thus the code also benefits the space weather warning or forecasting when applied to the real-time spacecraft data to hunt the large DPPs. Here we present the major algorithm to identify and define the upstream, downstream and the ramp region. The effectiveness of this code is tested on WIND high-resolution measurements covering the 23th solar cycle. We will show the test results during the interval of magnetic cloud (MC) and corotating interation region (CIR). The statistical results of DPPs in 23th solar cycle are also discussed.

  3. Edge technique lidar for high accuracy, high spatial resolution wind measurement in the Planetary Boundary Layer

    NASA Technical Reports Server (NTRS)

    Korb, C. L.; Gentry, Bruce M.

    1995-01-01

    The goal of the Army Research Office (ARO) Geosciences Program is to measure the three dimensional wind field in the planetary boundary layer (PBL) over a measurement volume with a 50 meter spatial resolution and with measurement accuracies of the order of 20 cm/sec. The objective of this work is to develop and evaluate a high vertical resolution lidar experiment using the edge technique for high accuracy measurement of the atmospheric wind field to meet the ARO requirements. This experiment allows the powerful capabilities of the edge technique to be quantitatively evaluated. In the edge technique, a laser is located on the steep slope of a high resolution spectral filter. This produces large changes in measured signal for small Doppler shifts. A differential frequency technique renders the Doppler shift measurement insensitive to both laser and filter frequency jitter and drift. The measurement is also relatively insensitive to the laser spectral width for widths less than the width of the edge filter. Thus, the goal is to develop a system which will yield a substantial improvement in the state of the art of wind profile measurement in terms of both vertical resolution and accuracy and which will provide a unique capability for atmospheric wind studies.

  4. Study on the operational safety of high-speed trains exposed to stochastic winds

    NASA Astrophysics Data System (ADS)

    Yu, Meng-Ge; Zhang, Ji-Ye; Zhang, Ke-Yue; Zhang, Wei-Hua

    2014-06-01

    The characteristic wind curve (CWC) was commonly used in the previous work to evaluate the operational safety of the high-speed trains exposed to crosswinds. However, the CWC only provide the dividing line between safety state and failure state of high-speed trains, which can not evaluate the risk of derailment of high-speed trains when exposed to natural winds. In the present paper, a more realistic approach taking into account the stochastic characteristics of natural winds is proposed, which can give a reasonable and effective assessment of the operational safety of high-speed trains under stochastic winds. In this approach, the longitudinal and lateral components of stochastic winds are simulated based on the Cooper theory and harmonic superposition. An algorithm is set up for calculating the unsteady aerodynamic forces (moments) of the high-speed trains exposed to stochastic winds. A multi-body dynamic model of the rail vehicle is established to compute the vehicle system dynamic response subjected to the unsteady aerodynamic forces (moments) input. Then the statistical method is used to get the mean characteristic wind curve (MCWC) and spread range of the high-speed trains exposed to stochastic winds. It is found that the CWC provided by the previous analytical method produces over-conservative limits. The methodology proposed in the present paper can provide more significant reference for the safety operation of high-speed trains exposed to stochastic winds.

  5. COMBINING PROXIMAL AND PENETRATING CONDUCTIVITY SENSORS FOR HIGH RESOLUTION SOIL MAPPING

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proximal ground conductivity sensors produce a high spatial resolution map that integrates the bulk electrical conductivity (ECa) of the soil profile. Variability in the conductivity map must either be inverted to estimate profile conductivity, or be directly calibrated to soil profile properties fo...

  6. Combining Proximal and Penetrating Soil Electrical Conductivity Sensors for High Resolution Digital Soil Mapping

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proximal ground conductivity sensors produce high spatial resolution maps that integrate the bulk electrical conductivity (ECa) of the soil profile. Variability in conductivity maps must either be inverted to profile conductivity, or be directly calibrated to profile properties for meaningful interp...

  7. Analysis of High-Penetration Levels of Photovoltaics into the Distribution Grid on Oahu, Hawaii: Detailed Analysis of HECO Feeder WF1

    SciTech Connect

    Stewart, E.; MacPherson, J.; Vasilic, S.; Nakafuji, D.; Aukai, T.

    2013-05-01

    Renewable generation is growing at a rapid rate due to the incentives available and the aggressive renewable portfolio standard targets implemented by state governments. Distributed generation in particular is seeing the fastest growth among renewable energy projects, and is directly related to the incentives. Hawaii has the highest electricity costs in the country due to the high percentage of oil burning steam generation, and therefore has some of the highest penetration of distributed PV in the nation. The High Penetration PV project on Oahu aims to understand the effects of high penetration PV on the distribution level, to identify penetration levels creating disturbances on the circuit, and to offer mitigating solutions based on model results. Power flow models are validated using data collected from solar resources and load monitors deployed throughout the circuit. Existing interconnection methods and standards are evaluated in these emerging high penetration scenarios. A key finding is a shift in the level of detail to be considered and moving away from steady-state peak time analysis towards dynamic and time varying simulations. Each level of normal interconnection study is evaluated and enhanced to a new level of detail, allowing full understanding of each issue.

  8. Systemic Immunosuppression in High-Risk Penetrating Keratoplasty: A Systematic Review.

    PubMed

    Bali, Shveta; Filek, Richard; Si, Francie; Hodge, William

    2016-04-01

    Cornea transplantation has a high success rate and typically only requires topical immunomodulation. However, in high-risk cases, systemic immunosuppression can be used. We conducted a systematic review on the efficacy and side effects of systemic immunosuppression for high-risk cornea transplantation. The study population was 18 years old or older with a high-risk transplant (two or more clock hours of cornea vascularization or a previous failed graft or a graft needed because of herpes simplex keratitis). A comprehensive search strategy was performed with the help of an information specialist and content experts from ophthalmology. All study designs were accepted for assessment. Level 1 and level 2 screening was performed by two reviewers followed by data abstraction. Forest plots were created whenever possible to synthesize treatment effects. Quality assessment was done with a Downs and Blacks score. From 1,150 articles, 29 were ultimately used for data abstraction. The odds ratios (ORs) for clear graft survival in cyclosporine and controls were 2.43 (95% CI: 1.00 - 5.88) and 3.64 (95% CI: 1.48 - 8.91) for rejection free episodes. Mycophenolate mofetil (MMF) significantly improved the rejection free graft survival rates at 1 year (OR: 4.05, 95% CI: 1.83 - 8.96). The overall results suggested that both systemic cyclosporine and MMF improved 1-year rejection free graft survival in high-risk keratoplasty. Cyclosporine also significantly improved clear graft survival rates at 1 year; however, there were insufficient data to analyze the same in the MMF group. Higher quality studies are needed to understand this issue better. PMID:26985246

  9. Systemic Immunosuppression in High-Risk Penetrating Keratoplasty: A Systematic Review

    PubMed Central

    Bali, Shveta; Filek, Richard; Si, Francie; Hodge, William

    2016-01-01

    Cornea transplantation has a high success rate and typically only requires topical immunomodulation. However, in high-risk cases, systemic immunosuppression can be used. We conducted a systematic review on the efficacy and side effects of systemic immunosuppression for high-risk cornea transplantation. The study population was 18 years old or older with a high-risk transplant (two or more clock hours of cornea vascularization or a previous failed graft or a graft needed because of herpes simplex keratitis). A comprehensive search strategy was performed with the help of an information specialist and content experts from ophthalmology. All study designs were accepted for assessment. Level 1 and level 2 screening was performed by two reviewers followed by data abstraction. Forest plots were created whenever possible to synthesize treatment effects. Quality assessment was done with a Downs and Blacks score. From 1,150 articles, 29 were ultimately used for data abstraction. The odds ratios (ORs) for clear graft survival in cyclosporine and controls were 2.43 (95% CI: 1.00 - 5.88) and 3.64 (95% CI: 1.48 - 8.91) for rejection free episodes. Mycophenolate mofetil (MMF) significantly improved the rejection free graft survival rates at 1 year (OR: 4.05, 95% CI: 1.83 - 8.96). The overall results suggested that both systemic cyclosporine and MMF improved 1-year rejection free graft survival in high-risk keratoplasty. Cyclosporine also significantly improved clear graft survival rates at 1 year; however, there were insufficient data to analyze the same in the MMF group. Higher quality studies are needed to understand this issue better. PMID:26985246

  10. Discovery of Isonicotinamides as Highly Selective, Brain Penetrable, and Orally Active Glycogen Synthase Kinase-3 Inhibitors.

    PubMed

    Luo, Guanglin; Chen, Ling; Burton, Catherine R; Xiao, Hong; Sivaprakasam, Prasanna; Krause, Carol M; Cao, Yang; Liu, Nengyin; Lippy, Jonathan; Clarke, Wendy J; Snow, Kimberly; Raybon, Joseph; Arora, Vinod; Pokross, Matt; Kish, Kevin; Lewis, Hal A; Langley, David R; Macor, John E; Dubowchik, Gene M

    2016-02-11

    GSK-3 is a serine/threonine kinase that has numerous substrates. Many of these proteins are involved in the regulation of diverse cellular functions, including metabolism, differentiation, proliferation, and apoptosis. Inhibition of GSK-3 may be useful in treating a number of diseases including Alzheimer's disease (AD), type II diabetes, mood disorders, and some cancers, but the approach poses significant challenges. Here, we present a class of isonicotinamides that are potent, highly kinase-selective GSK-3 inhibitors, the members of which demonstrated oral activity in a triple-transgenic mouse model of AD. The remarkably high kinase selectivity and straightforward synthesis of these compounds bode well for their further exploration as tool compounds and therapeutics. PMID:26751161

  11. Eulerian adaptive finite-difference method for high-velocity impact and penetration problems

    SciTech Connect

    Barton, Philip T.; Deiterding, Ralf; Meiron, Daniel I.; Pullin, Dale I

    2013-01-01

    Owing to the complex processes involved, faithful prediction of high-velocity impact events demands a simulation method delivering efficient calculations based on comprehensively formulated constitutive models. Such an approach is presented herein, employing a weighted essentially non-oscillatory (WENO) method within an adaptive mesh refinement (AMR) framework for the numerical solution of hyperbolic partial differential equations. Applied widely in computational fluid dynamics, these methods are well suited to the involved locally non-smooth finite deformations, circumventing any requirement for artificial viscosity functions for shock capturing. Application of the methods is facilitated through using a model of solid dynamics based upon hyper-elastic theory comprising kinematic evolution equations for the elastic distortion tensor. The model for finite inelastic deformations is phenomenologically equivalent to Maxwell s model of tangential stress relaxation. Closure relations tailored to the expected high-pressure states are proposed and calibrated for the materials of interest. Sharp interface resolution is achieved by employing level-set functions to track boundary motion, along with a ghost material method to capture the necessary internal boundary conditions for material interactions and stress-free surfaces. The approach is demonstrated for the simulation of high velocity impacts of steel projectiles on aluminium target plates in two and three dimensions.

  12. Seismic, high wind, tornado, and probabilistic risk assessments of the High Flux Isotope Reactor

    SciTech Connect

    Harris, S.P.; Stover, R.L.; Hashimoto, P.S.; Dizon, J.O.; Oak Ridge National Lab., TN; EQE, Inc., San Francisco, CA )

    1989-01-01

    Natural phenomena analyses were performed on the High Flux Isotope Reactor (HFIR) Deterministic and probabilistic evaluations were made to determine the risks resulting from earthquakes, high winds, and tornadoes. Analytic methods in conjunction with field evaluations and an earthquake experience data base evaluation methods were used to provide more realistic results in a shorter amount of time. Plant modifications completed in preparation for HFIR restart and potential future enhancements are discussed. 5 figs.

  13. High-frequency wave normals in the solar wind

    SciTech Connect

    Herbert, F.; Smith, L.D.; Sonett, C.P.

    1984-05-01

    High-frequency (0.01--0.04 Hz) magnetic fluctuations in 506 ten-minute intervals of contemporaneous Explorer 35 and Apollo 12 measurements made in the solar wind near the morning side of the Earth's bow shock show the presence of a large population of disturbances resembling Alfven waves. Each wavefront normal n is systematically aligned (median deviation = 35/sup 0/) with , the associated ten-minute average of the magnetic field. Because of variability in the direction of from one interval to another, the coupled distribution of n is nearly isotropic in solar ecliptic coordinates, in contrast with the results of other studies of waves at much lower frequency indicating outward propagation from the sun. Presumably the high frequency waves discussed here are stirred into isotropy (in solar ecliptic coordinates) by following the low frequency fluctuations. As these waves maintain their alignement of n with despite the great variation of , a strong physical alignment constraint is inferred.

  14. Penetrating abdominal gunshot wounds caused by high-velocity missiles: a review of 51 military injuries managed at a level-3 trauma center.

    PubMed

    Gorgulu, Semih; Gencosmanoglu, Rasim; Akaoglu, Cuneyt

    2008-01-01

    The aim of this study was to present the outcomes of military penetrating abdominal gunshot injuries, to identify factors that predict morbidity, and to compare the present results with those from two civilian trauma centers. Fifty-one consecutive patients who had suffered high-velocity gunshot wounds to the abdomen were assessed retrospectively. Penetrating abdominal trauma index, the number of injured organs, and the presence of colonic injury were significantly associated with high morbidity by univariate analysis. Multivariate analysis showed that only the number of organs injured and presence of colonic injury were independent predictors of morbidity. Our results showed that military rifle bullets do not cause greater tissue disruption than that found in wounds created by lower-velocity projectiles. The presence of colonic injury and the number of organs injured (more than three) seem to be important predictors of morbidity in penetrating abdominal gunshot wounds caused by high-velocity missiles. PMID:20085042

  15. High-speed solar wind streams and polar mesosphere winter echoes at Troll, Antarctica

    NASA Astrophysics Data System (ADS)

    Kirkwood, S.; Osepian, A.; Belova, E.; Lee, Y.-S.

    2015-06-01

    A small, 54 MHz wind-profiler radar, MARA, was operated at Troll, Antarctica (72° S, 2.5° E), continuously from November 2011 to January 2014, covering two complete Antarctic winters. Despite very low power, MARA observed echoes from heights of 55-80 km (polar mesosphere winter echoes, PMWE) on 60% of all winter days (from March to October). This contrasts with previous reports from radars at high northern latitudes, where PWME have been reported only by very high power radars or during rare periods of unusually high electron density at PMWE heights, such as during solar proton events. Analysis shows that PWME at Troll were not related to solar proton events but were often closely related to the arrival of high-speed solar wind streams (HSS) at the Earth, with PWME appearing at heights as low as 56 km and persisting for up to 15 days following HSS arrival. This demonstrates that HSS effects penetrate directly to below 60 km height in the polar atmosphere. Using local observations of cosmic-noise absorption (CNA), a theoretical ionization/ion-chemistry model and a statistical model of precipitating energetic electrons associated with HSS, the electron density conditions during the HSS events are estimated. We find that PMWE detectability cannot be explained by these variations in electron density and molecular-ion chemistry alone. PWME become detectable at different thresholds depending on solar illumination and height. In darkness, PWME are detected only when the modelled electron density is above a threshold of about 1000 cm-3, and only above 75 km height, where negative ions are few. In daylight, the electron density threshold falls by at least 2 orders of magnitude and PWME are found primarily below 75 km height, even in conditions when a large proportion of negative ions is expected. There is also a strong dawn-dusk asymmetry with PWME detected very rarely during morning twilight but often during evening twilight. This behaviour cannot be explained if PMWE

  16. Western Wind and Solar Integration Study Phase 3: Technical Overview

    SciTech Connect

    2015-11-01

    Technical fact sheet outlining the key findings of Phase 3 of the Western Wind and Solar Integration Study (WWSIS-3). NREL and GE find that with good system planning, sound engineering practices, and commercially available technologies, the Western grid can maintain reliability and stability during the crucial first minute after grid disturbances with high penetrations of wind and solar power.

  17. Effects of High-frequency Wind Sampling on Simulated Mixed Layer Depth and Upper Ocean Temperature

    NASA Technical Reports Server (NTRS)

    Lee, Tong; Liu, W. Timothy

    2005-01-01

    Effects of high-frequency wind sampling on a near-global ocean model are studied by forcing the model with a 12 hourly averaged wind product and its 24 hourly subsamples in separate experiments. The differences in mixed layer depth and sea surface temperature resulting from these experiments are examined, and the underlying physical processes are investigated. The 24 hourly subsampling not only reduces the high-frequency variability of the wind but also affects the annual mean wind because of aliasing. While the former effect largely impacts mid- to high-latitude oceans, the latter primarily affects tropical and coastal oceans. At mid- to high-latitude regions the subsampled wind results in a shallower mixed layer and higher sea surface temperature because of reduced vertical mixing associated with weaker high-frequency wind. In tropical and coastal regions, however, the change in upper ocean structure due to the wind subsampling is primarily caused by the difference in advection resulting from aliased annual mean wind, which varies with the subsampling time. The results of the study indicate a need for more frequent sampling of satellite wind measurement and have implications for data assimilation in terms of identifying the nature of model errors.

  18. Brushless exciters using a high temperature superconducting field winding

    DOEpatents

    Garces, Luis Jose; Delmerico, Robert William; Jansen, Patrick Lee; Parslow, John Harold; Sanderson, Harold Copeland; Sinha, Gautam

    2008-03-18

    A brushless exciter for a synchronous generator or motor generally includes a stator and a rotor rotatably disposed within the stator. The rotor has a field winding and a voltage rectifying bridge circuit connected in parallel to the field winding. A plurality of firing circuits are connected the voltage rectifying bridge circuit. The firing circuit is configured to fire a signal at an angle of less than 90.degree. or at an angle greater than 90.degree.. The voltage rectifying bridge circuit rectifies the AC voltage to excite or de-excite the field winding.

  19. Flow-Visualization Techniques Used at High Speed by Configuration Aerodynamics Wind-Tunnel-Test Team

    NASA Technical Reports Server (NTRS)

    Lamar, John E. (Editor)

    2001-01-01

    This paper summarizes a variety of optically based flow-visualization techniques used for high-speed research by the Configuration Aerodynamics Wind-Tunnel Test Team of the High-Speed Research Program during its tenure. The work of other national experts is included for completeness. Details of each technique with applications and status in various national wind tunnels are given.

  20. Cellulosic fibers with high aspect ratio from cornhusks via controlled swelling and alkaline penetration.

    PubMed

    Ma, Zhuanzhuan; Pan, Gangwei; Xu, Helan; Huang, Yiling; Yang, Yiqi

    2015-06-25

    Cellulosic fibers with high aspect ratio have been firstly obtained from cornhusks via controlled swelling in organic solvent and simultaneous tetramethylammonium hydroxide (TMAOH) post treatment within restricted depth. Cornhusks, with around 42% cellulose content, are a copious and inexpensive source for natural fibers. However, cornhusk fibers at 20tex obtained via small-molecule alkaline extraction were too coarse for textile applications. Continuous NaOH treatment would result in fine fibers but with length of about 0.5-1.5mm, too short for textile use. In this research, post treatment using TMAOH and under controlled swelling significantly reduced fineness of cornhusk fibers from 21.3±2.88 to 5.72±0.21tex. Fiber length was reduced from 105.47±10.03 to47.2±27.4mm. The cornhusk fibers had more oriented microstructures and cellulose content increased to 84.47%. Besides, cornhusk fibers had similar tenacity, longer elongation, and lower modulus compared to cotton and linen, which endowed them with durability and flexibility. PMID:25839793

  1. Tools for Enhanced Grid Operation and Optimized PV Penetration Utilizing Highly Distributed Sensor Data.

    SciTech Connect

    Reno, Matthew J.; Peppanen, Jouni; Seuss, John; Lave, Matthew Samuel; Broderick, Robert Joseph; Grijalva, Santiago

    2015-11-01

    Increasing number s of PV on distribution systems are creating more grid impacts , but it also provides more opportunities for measurement, sensing, and control of the grid in a distributed fashion. This report demonstrates three software tools for characterizing and controlling distribution feeders by utilizing large numbers of highly distributed current, voltage , and irradiance sensors. Instructions and a user manual is presented for each tool. First, the tool for distribution system secondary circuit parameter estimation is presented. This tool allows studying distribution system parameter estimation accuracy with user-selected active power, reactive power, and voltage measurements and measurement error levels. Second, the tool for multi-objective inverter control is shown. Various PV inverter control strategies can be selected to objectively compare their impact on the feeder. Third, the tool for energy storage for PV ramp rate smoothing is presented. The tool allows the user to select different storage characteristics (power and energy ratings) and control types (local vs. centralized) to study the tradeoffs between state-of-charge (SOC) management and the amount of ramp rate smoothing.

  2. The Importance of High Temporal Resolution in Modeling Renewable Energy Penetration Scenarios

    SciTech Connect

    Nicolosi, Marco; Mills, Andrew D; Wiser, Ryan H

    2010-10-08

    Traditionally, modeling investment and dispatch problems in electricity economics has been limited by computation power. Due to this limitation, simplifications are applied. One common practice, for example, is to reduce the temporal resolution of the dispatch by clustering similar load levels. The increase of intermittent electricity from renewable energy sources (RES-E) changes the validity of this assumption. RES-E already cover a certain amount of the total demand. This leaves an increasingly volatile residual demand to be matched by the conventional power market. This paper quantifies differences in investment decisions by applying three different time-resolution residual load patterns in an investment and dispatch power system model. The model optimizes investment decisions in five year steps between today and 2030 with residual load levels for 8760, 288 and 16 time slices per year. The market under consideration is the four zone ERCOT market in Texas. The results show that investment decisions significantly differ across the three scenarios. In particular, investments into base-load technologies are substantially reduced in the high resolution scenario (8760 residual load levels) relative to the scenarios with lower temporal resolution. Additionally, the amount of RES-E curtailment and the market value of RES-E exhibit noteworthy differences.

  3. Energy Loss of High Intensity Focused Proton Beams Penetrating Metal Foils

    NASA Astrophysics Data System (ADS)

    McGuffey, C.; Qiao, B.; Kim, J.; Beg, F. N.; Wei, M. S.; Evans, M.; Fitzsimmons, P.; Stephens, R. B.; Chen, S. N.; Fuchs, J.; Nilson, P. M.; Canning, D.; Mastrosimone, D.; Foord, M. E.

    2014-10-01

    Shortpulse-laser-driven intense ion beams are appealing for applications in probing and creating high energy density plasmas. Such a beam isochorically heats and rapidly ionizes any target it enters into warm dense matter with uncertain transport and stopping properties. Here we present experimental measurements taken with the 1.25 kJ, 10 ps OMEGA EP BL shortpulse laser of the proton and carbon spectra after passing through metal foils. The laser irradiated spherically curved C targets with intensity 4×1018 W/cm2, producing proton beams with 3 MeV slope temperature and a sharp low energy cutoff at 5 MeV which has not been observed on lower energy, shorter pulse intense lasers. The beam either diverged freely or was focused to estimated 1016 p +/cm2 ps by a surrounding structure before entering the metal foils (Al or Ag and a Cu tracer layer). The proton and ion spectra were altered by the foil depending on material and whether or not the beam was focused. Transverse proton radiography probed the target with ps temporal and 10 micron spatial resolution, indicating an electrostatic field on the foil may also have affected the beam. We present complementary particle-in-cell simulations of the beam generation and transport to the foils. This work was supported by the DOE/NNSA National Laser User Facility program, Contract DE-SC0001265.

  4. Kita Driven Expression of Oncogenic HRAS Leads to Early Onset and Highly Penetrant Melanoma in Zebrafish

    PubMed Central

    Santoriello, Cristina; Gennaro, Elisa; Anelli, Viviana; Distel, Martin; Kelly, Amanda; Köster, Reinhard W.; Hurlstone, Adam; Mione, Marina

    2010-01-01

    Background Melanoma is the most aggressive and lethal form of skin cancer. Because of the increasing incidence and high lethality of melanoma, animal models for continuously observing melanoma formation and progression as well as for testing pharmacological agents are needed. Methodology and Principal Findings Using the combinatorial Gal4 –UAS system, we have developed a zebrafish transgenic line that expresses oncogenic HRAS under the kita promoter. Already at 3 days transgenic kita-GFP-RAS larvae show a hyper-pigmentation phenotype as earliest evidence of abnormal melanocyte growth. By 2–4 weeks, masses of transformed melanocytes form in the tail stalk of the majority of kita-GFP-RAS transgenic fish. The adult tumors evident between 1–3 months of age faithfully reproduce the immunological, histological and molecular phenotypes of human melanoma, but on a condensed time-line. Furthermore, they show transplantability, dependence on mitfa expression and do not require additional mutations in tumor suppressors. In contrast to kita expressing melanocyte progenitors that efficiently develop melanoma, mitfa expressing progenitors in a second Gal4-driver line were 4 times less efficient in developing melanoma during the three months observation period. Conclusions and Significance This indicates that zebrafish kita promoter is a powerful tool for driving oncogene expression in the right cells and at the right level to induce early onset melanoma in the presence of tumor suppressors. Thus our zebrafish model provides a link between kita expressing melanocyte progenitors and melanoma and offers the advantage of a larval phenotype suitable for large scale drug and genetic modifier screens. PMID:21170325

  5. High-G accelerometer for earth-penetrator weapons applications. LDRD final report

    SciTech Connect

    Davies, B.R.; Montague, S.; Bateman, V.I.; Brown, F.A.; Chanchani, R.; Christenson, T.; Murray, J.R.; Rey, D.; Ryerson, D.

    1998-03-01

    Micromachining technologies, or Micro-Electro-Mechanical Systems (MEMS), enable the develop of low-cost devices capable of sensing motion in a reliable and accurate manner. Sandia has developed a MEMS fabrication process for integrating both the micromechanical structures and microelectronics circuitry of surface micromachined sensors, such as silicon accelerometers, on the same chip. Integration of the micromechanical sensor elements with microelectronics provides substantial performance and reliability advantages for MEMS accelerometers. A design team at Sandia was assembled to develop a micromachined silicon accelerometer capable of surviving and measuring very high accelerations (up to 50,000 times the acceleration due to gravity). The Sandia integrated surface micromachining process was selected for fabrication of the sensor due to the extreme measurement sensitivity potential associated with integrated microelectronics. Very fine measurement sensitivity was required due to the very small accelerometer proof mass (< 200 {times} 10{sup {minus}9} gram) obtainable with this surface micromachining process. The small proof mass corresponded to small sensor deflections which required very sensitive electronics to enable accurate acceleration measurement over a range of 1,000 to 50,000 times the acceleration due to gravity. Several prototype sensors, based on a suspended plate mass configuration, were developed and the details of the design, modeling, fabrication and validation of the device will be presented in this paper. The device was analyzed using both conventional lumped parameter modeling techniques and finite element analysis tools. The device was tested and performed well over its design range (the device was tested over a range of a few thousand G to 46,000 G, where 1 G equals the acceleration due to gravity).

  6. NIR-to-NIR two-photon excited CaF2:Tm3+,Yb3+ nanoparticles: multifunctional nanoprobes for highly penetrating fluorescence bio-imaging.

    PubMed

    Dong, Ning-Ning; Pedroni, Marco; Piccinelli, Fabio; Conti, Giamaica; Sbarbati, Andrea; Ramírez-Hernández, Juan Enrique; Maestro, Laura Martínez; Iglesias-de la Cruz, Maria Carmen; Sanz-Rodriguez, Francisco; Juarranz, Angeles; Chen, Feng; Vetrone, Fiorenzo; Capobianco, John A; Solé, José García; Bettinelli, Marco; Jaque, Daniel; Speghini, Adolfo

    2011-11-22

    In this study, we report on the remarkable two-photon excited fluorescence efficiency in the "biological window" of CaF(2):Tm(3+),Yb(3+) nanoparticles. On the basis of the strong Tm(3+) ion emission (at around 800 nm), tissue penetration depths as large as 2 mm have been demonstrated, which are more than 4 times those achievable based on the visible emissions in comparable CaF(2):Er(3+),Yb(3+) nanoparticles. The outstanding penetration depth, together with the fluorescence thermal sensitivity demonstrated here, makes CaF(2):Tm(3+),Yb(3+) nanoparticles ideal candidates as multifunctional nanoprobes for high contrast and highly penetrating in vivo fluorescence imaging applications. PMID:21957870

  7. Wind Measurements with High Energy 2 Micron Coherent Doppler Lidar

    NASA Technical Reports Server (NTRS)

    Barnes, Bruce W.; Koch, Grady J.; Petros, Mulugeta; Beyon, Jeffrey Y.; Amzajerdian, Farzin; Yu, Ji-Rong; Kavaya, Michael J.; Singh, Upendra N.

    2004-01-01

    A coherent Doppler lidar based on an injection seeded Ho:Tm:YLF pulsed laser was developed for wind measurements. A transmitted pulse energy over 75 mJ at 5 Hz repetition rate has been demonstrated. Designs are presented on the laser, injection seeding, receiver, and signal processing subsystems. Sample data of atmospheric measurements are presented including a wind profile extending from the atmospheric boundary layer (ABL) to the free troposphere.

  8. Evaluation and development of a high resolution wind model for wildfire applications in complex terrain

    NASA Astrophysics Data System (ADS)

    Wagenbrenner, Natalie Suzanne

    Accurate modeling of near-surface winds is important for wildfire applications, including wildfire behavior and spread as well as post-fire processes, including wind-driven dust and ash emissions from burned soils. The work presented in this dissertation investigates a high resolution wind model for use in wildfire applications in complex terrain and includes (1) an observational field study to collect high resolution surface wind data from two types of complex terrain features; (2) use of these observed data to evaluate a suite of Numerical Weather Prediction (NWP) model near surface wind predictions and dynamical downscaling of those predictions with a high resolution wind model; and (3) field quantification of wind erosion from soils burned by wildfire. Unique flow features, including upslope, downslope, and synoptically-driven flow events were presented for an isolated mountain and a steep river canyon. Evaluations with these observed datasets indicated that NWP surface winds can be improved in complex terrain via dynamic downscaling with a high resolution wind model, WindNinja, so long as the average approach flow to the area of interest can be reasonably defined (i.e., the initial wind field must be appropriately defined). The biggest improvements occurred during periods of synoptically-driven events when observed winds speeds exceeded 10 m s-1. Results from the post-fire field campaign demonstrated that post-fire landscapes can be significant sources of particulates and that dust emissions can persist for up to a year post-fire. Data collected during this study represents the first real-time measurements of PM10 fluxes from a burned landscape. These data will be useful in evaluating windblown dust emissions algorithms applied to burned landscapes.

  9. A highly penetrant form of childhood apraxia of speech due to deletion of 16p11.2.

    PubMed

    Fedorenko, Evelina; Morgan, Angela; Murray, Elizabeth; Cardinaux, Annie; Mei, Cristina; Tager-Flusberg, Helen; Fisher, Simon E; Kanwisher, Nancy

    2016-02-01

    Individuals with heterozygous 16p11.2 deletions reportedly suffer from a variety of difficulties with speech and language. Indeed, recent copy-number variant screens of children with childhood apraxia of speech (CAS), a specific and rare motor speech disorder, have identified three unrelated individuals with 16p11.2 deletions. However, the nature and prevalence of speech and language disorders in general, and CAS in particular, is unknown for individuals with 16p11.2 deletions. Here we took a genotype-first approach, conducting detailed and systematic characterization of speech abilities in a group of 11 unrelated children ascertained on the basis of 16p11.2 deletions. To obtain the most precise and replicable phenotyping, we included tasks that are highly diagnostic for CAS, and we tested children under the age of 18 years, an age group where CAS has been best characterized. Two individuals were largely nonverbal, preventing detailed speech analysis, whereas the remaining nine met the standard accepted diagnostic criteria for CAS. These results link 16p11.2 deletions to a highly penetrant form of CAS. Our findings underline the need for further precise characterization of speech and language profiles in larger groups of affected individuals, which will also enhance our understanding of how genetic pathways contribute to human communication disorders. PMID:26173965

  10. Study of High Robust Three Dimensional Finite Difference Time Domain (FDTD) Modeling of Ground Penetrating Radar for a Heterogeneous Environment

    NASA Astrophysics Data System (ADS)

    Eyuboglu, S.; Daniels, J. J.; Lee, R.; Yeh, J. T.

    2006-12-01

    Ground Penetrating Radar (GPR) is a non-invasive tool commonly used to characterize the physical properties of the subsurface. The translation of the physical measurements of geologic and hydrogeologic conditions is the culmination of many geophysical investigations. When numerical modeling is applied parallel to GPR data, it allows understanding of the effects of complex electromagnetic phenomena by defining and solving problems, as well as predicting the performance of radar in a complex heterogeneous environment. Finite difference time domain (FDTD) has been widely used for numerical modeling of GPR, but most of the previous algorithms are limited in their ability to model the electrical conductivity and permittivity. In this research, a highly efficient robust algorithm was developed to enhance the effectiveness of the FDTD forward modeling in surroundings characterized by an arbitrary distribution of all electrical properties in three dimensional space. In the first part of this research, two different FDTD codes which include different absorbing boundary conditions, Enquist and Majda absorbing boundary condition (ABC) and perfectly matched layer (PML), were used and compared. In the second part, the modeling algorithm was developed for a heterogeneous half-space medium to facilitate statistical modeling of complex distributions of electrical properties in the subsurface. The results produced by the simulation compared with real GPR results reveal high accuracy using the robust algorithm to optimize three dimensional FDTD forward modeling of GPR responses in heterogeneous surroundings.

  11. Development of a high power supercontinuum source in the 1.7 μm wavelength region for highly penetrative ultrahigh-resolution optical coherence tomography

    PubMed Central

    Kawagoe, H.; Ishida, S.; Aramaki, M.; Sakakibara, Y.; Omoda, E.; Kataura, H.; Nishizawa, N.

    2014-01-01

    We developed a high power supercontinuum source at a center wavelength of 1.7 μm to demonstrate highly penetrative ultrahigh-resolution optical coherence tomography (UHR-OCT). A single-wall carbon nanotube dispersed in polyimide film was used as a transparent saturable absorber in the cavity configuration and a high-repetition-rate ultrashort-pulse fiber laser was realized. The developed SC source had an output power of 60 mW, a bandwidth of 242 nm full-width at half maximum, and a repetition rate of 110 MHz. The average power and repetition rate were approximately twice as large as those of our previous SC source [20]. Using the developed SC source, UHR-OCT imaging was demonstrated. A sensitivity of 105 dB and an axial resolution of 3.2 μm in biological tissue were achieved. We compared the UHR-OCT images of some biological tissue samples measured with the developed SC source, the previous one, and one operating in the 1.3 μm wavelength region. We confirmed that the developed SC source had improved sensitivity and penetration depth for low-water-absorption samples. PMID:24688825

  12. Role of Concentrating Solar Power in Integrating Solar and Wind Energy: Preprint

    SciTech Connect

    Denholm, P.; Mehos, M.

    2015-06-03

    As wind and solar photovoltaics (PV) increase in penetration it is increasingly important to examine enabling technologies that can help integrate these resources at large scale. Concentrating solar power (CSP) when deployed with thermal energy storage (TES) can provide multiple services that can help integrate variable generation (VG) resources such as wind and PV. CSP with TES can provide firm, highly flexible capacity, reducing minimum generation constraints which limit penetration and results in curtailment. By acting as an enabling technology, CSP can complement PV and wind, substantially increasing their penetration in locations with adequate solar resource.

  13. Statistical features of the high-latitude ionospheric convection structure associated with enhanced solar wind fluctuations

    NASA Astrophysics Data System (ADS)

    Kim, H.; Lyons, L. R.; Ruohoniemi, J. M.; Frissell, N. A.

    2012-12-01

    While the IMF and solar wind dynamic pressure almost certainly play larger roles under most conditions, evidence has been recently found that Ultra Low Frequency (ULF) wave power in the solar wind has an additional substantial effect on the strength of convection within the polar caps, and on the nightside within both the aurora ionosphere and the plasma sheet. An initial study shows that the convection flows under enhanced solar wind fluctuations often appear to be more structured, with localized strong vortical features, than the convection under steady solar wind conditions. In this work, we statistically examine characteristic features of the ionospheric convection structure in terms of vortex patterns and how they are related to the convection enhancements during periods of enhanced solar wind fluctuations. Specifically, we examine whether enhanced solar wind ULF power will drive localized turbulence within enhanced convection cells while it increases convection strength at the same time. The results of this study will provide evidence for how solar wind ULF fluctuations can contribute to the solar wind energy transfer to the magnetosphere-ionosphere system. To determine the features of 2-D convection structure, we analyze the large-scale global convection maps derived from the SuperDARN observations with extensive radar echo coverage over a large portion of the high latitude ionosphere. Wind and ACE data are used for examination of solar wind and IMF conditions.

  14. The effect of high-pressure devitrification and densification on ballistic-penetration resistance of fused silica

    NASA Astrophysics Data System (ADS)

    Avuthu, Vasudeva Reddy

    perhaps alpha-quartz) within fused silica during ballistic impact. To rationalize the findings obtained, the all-atom molecular-level computational analysis is complemented by a series of quantum-mechanics density functional theory (DFT) computations. The latter computations enable determination of the relative potential energies of the fused silica, alpha-quartz and stishovite under ambient pressure (i.e. under their natural densities) as well as under imposed (as high as 50 GPa) pressures (i.e. under higher densities) and shear strains. In addition, the transition states associated with various fused-silica devitrification processes were identified. In the second part of the present work, the molecular-level computational results obtained in the first portion of the work are used to enrich a continuum-type constitutive model (that is, the so-called Johnson-Holmquist-2, JH2, model) for fused silica. Since the aforementioned devitrification and permanent-densification processes modify the response of fused silica to the pressure as well as to the deviatoric part of the stress, changes had to be made in both the JH2 equation of state and the strength model. To assess the potential improvements with respect to the ballistic-penetration resistance of this material brought about by the fused-silica devitrification and permanent-densification processes, a series of transient non-linear dynamics finite element analyses of the transverse impact of a fused-silica test plate with a solid right-circular cylindrical steel projectile was conducted. The results obtained revealed that, provided the projectile incident velocity and, hence, the attendant pressure, is sufficiently high, fused silica can undergo impact-induced energy-consuming devitrification, which improves its ballistic-penetration resistance.

  15. Comparison of HRDI wind measurements with radar and rocket observations. [High Resolution Doppler Imager

    NASA Technical Reports Server (NTRS)

    Burrage, M. D.; Skinner, W. R.; Marshall, A. R.; Hays, P. B.; Lieberman, R. S.; Franke, S. J.; Gell, D. A.; Ortland, D. A.; Morton, Y. T.; Schmidlin, F. J.

    1993-01-01

    Wind fields in the mesosphere and lower thermosphere are obtained with the High Resolution Doppler Imager (HRDI) on the Upper Atmosphere Research Satellite (UARS) by observing the Doppler shifts of emission lines in the O2 Atmospheric band. The validity of the measured winds depends on an accurate knowledge of the positions on the detector of the observed lines in the absence of a wind-induced Doppler shift. These positions have been determined to an accuracy of approximately 5 m/s from the comparison of winds measured by HRDI with those obtained by MF radars. Excellent agreement is found between HRDI measured winds and winds observed with radars and rockets. In addition, the sensitivity of HRDI to migrating tides and other large scale waves is demonstrated.

  16. Convective transport of highly plasma protein bound drugs facilitates direct penetration into deep tissues after topical application

    PubMed Central

    Dancik, Yuri; Anissimov, Yuri G; Jepps, Owen G; Roberts, Michael S

    2012-01-01

    AIMS To relate the varying dermal, subcutaneous and muscle microdialysate concentrations found in man after topical application to the nature of the drug applied and to the underlying physiology. METHODS We developed a physiologically based pharmacokinetic model in which transport to deeper tissues was determined by tissue diffusion, blood, lymphatic and intersitial flow transport and drug properties. The model was applied to interpret published human microdialysis data, estimated in vitro dermal diffusion and protein binding affinity of drugs that have been previously applied topically in vivo and measured in deep cutaneous tissues over time. RESULTS Deeper tissue microdialysis concentrations for various drugs in vivo vary widely. Here, we show that carriage by the blood to the deeper tissues below topical application sites facilitates the transport of highly plasma protein bound drugs that penetrate the skin, leading to rapid and significant concentrations in those tissues. Hence, the fractional concentration for the highly plasma protein bound diclofenac in deeper tissues is 0.79 times that in a probe 4.5 mm below a superficial probe whereas the corresponding fractional concentration for the poorly protein bound nicotine is 0.02. Their corresponding estimated in vivo lag times for appearance of the drugs in the deeper probes were 1.1 min for diclofenac and 30 min for nicotine. CONCLUSIONS Poorly plasma protein bound drugs are mainly transported to deeper tissues after topical application by tissue diffusion whereas the transport of highly plasma protein bound drugs is additionally facilitated by convective blood, lymphatic and interstitial transport to deep tissues. PMID:21999217

  17. Coupling of the high-latitude thermospheric wind with magnetospheric drivers

    NASA Astrophysics Data System (ADS)

    Förster, Matthias; Haaland, Stein E.; Doornbos, Eelco

    The high-latitude thermospheric wind is strongly influenced by varying solar wind conditions via electromagnetic coupling with the magnetosphere. In this study we present a statistical study of both magnetospheric plasma convection measured by the EDI instruments on board Cluster and neutral wind measurements obtained from cross-track acceleration measurements of the CHAMP satellite at high geomagnetic latitudes. These data sets are analyzed in their dependence on the strength and orientation of the interplanetary magnetic field (IMF). The spatially distributed Cluster/EDI measurements are mapped to a common reference level at ionospheric F-region heights in a magnetic latitude/MLT grid at both hemispheres. The cross-track wind component observations of CHAMP are similarly sampled and binned into the high-latitude geomagnetic grid for the Northern and Southern hemisphere separately. Thus, we obtained both regular thermospheric wind and plasma drift patterns in their dependence on the different solar wind IMF conditions. Vorticity analyses of these 2D vector patterns reveal the close relation between the ionospheric plasma convection and neutral wind via collisional coupling between the ions and neutrals (ion drag). The magnetospheric driving processes are mediated via field-aligned current (FAC) re-sponses to magnetic reconnection in terms of the vorticity of the ionospheric plasma convection. Similar pattern can be seen in the high-latitude neutral wind vorticity and its IMF dependency. FAC closure in the ionosphere further acts via Joule heating as an important energy source of the whole magnetosphere-ionosphere-thermosphere system.

  18. 76 FR 56735 - Small Takes of Marine Mammals Incidental to Specified Activities; Cape Wind's High Resolution...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-14

    ...NMFS has received a complete and adequate application from Cape Wind Associates for an Incidental Harassment Authorization (IHA) to take marine mammals, by harassment, incidental to pre-construction high resolution survey activities. Pursuant to the Marine Mammal Protection Act (MMPA), NMFS is proposing to issue an IHA to Cape Wind Associates to incidentally harass, by Level B harassment, five......

  19. Wind-tunnel tests and modeling indicate that aerial dispersant delivery operations are highly accurate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The United States Department of Agriculture’s high-speed wind tunnel facility in College Station, Texas, USA was used to determine droplet size distributions generated by dispersant delivery nozzles at wind speeds comparable to those used in aerial dispersant application. A laser particle size anal...

  20. Evaluation of the SWEEP model during high winds on the Columbia Plateau

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A standalone version of the WEPS erosion submodel, the Single-event Wind Erosion Evaluation Program (SWEEP), was released in 2007. A limited number of studies have evaluated SWEEP in simulating soil loss under high winds. The objective of this study was to test SWEEP under conventional and undercut...

  1. Wind Tunnel Studies in Aerodynamic Phenomena at High Speed

    NASA Technical Reports Server (NTRS)

    Caldwell, F W; Fales, E N

    1921-01-01

    A great amount of research and experimental work has been done and fair success obtained in an effort to place airplane and propeller design upon an empirical basis. However, one can not fail to be impressed by the apparent lack of data available toward establishing flow phenomena upon a rational basis, such that they may be interpreted in terms of the laws of physics. With this end in view it was the object of the authors to design a wind tunnel differing from the usual type especially in regard to large power and speed of flow. This report describes the wind tunnel at Mccook Field and gives the results of experiments conducted in testing the efficiency of the wind tunnel.

  2. Stability analyses of the mass abrasive projectile high-speed penetrating into a concrete target Part III: Terminal ballistic trajectory analyses

    NASA Astrophysics Data System (ADS)

    Wu, H.; Chen, X. W.; Fang, Q.; Kong, X. Z.; He, L. L.

    2015-08-01

    During the high-speed penetration of projectiles into concrete targets (the impact velocity ranges from 1.0 to 1.5 km/s), important factors such as the incident oblique and attacking angles, as well as the asymmetric abrasions of the projectile nose induced by the target-projectile interactions, may lead to obvious deviation of the terminal ballistic trajectory and reduction of the penetration efficiency. Based on the engineering model for the mass loss and nose-blunting of ogive-nosed projectiles established, by using the Differential Area Force Law (DAFL) method and semi-empirical resistance function, a finite differential approach was programmed (PENTRA2D) for predicting the terminal ballistic trajectory of mass abrasive high-speed projectiles penetrating into concrete targets. It accounts for the free-surface effects on the drag force acting on the projectile, which are attributed to the oblique and attacking angles, as well as the asymmetric nose abrasion of the projectile. Its validation on the prediction of curvilinear trajectories of non-normal high-speed penetrators into concrete targets is verified by comparison with available test data. Relevant parametric influential analyses show that the most influential factor for the stability of terminal ballistic trajectories is the attacking angle, followed by the oblique angle, the discrepancy of asymmetric nose abrasion, and the location of mass center of projectile. The terminal ballistic trajectory deviations are aggravated as the above four parameters increase.

  3. Low-Cost Superconducting Wire for Wind Generators: High Performance, Low Cost Superconducting Wires and Coils for High Power Wind Generators

    SciTech Connect

    2012-01-01

    REACT Project: The University of Houston will develop a low-cost, high-current superconducting wire that could be used in high-power wind generators. Superconducting wire currently transports 600 times more electric current than a similarly sized copper wire, but is significantly more expensive. The University of Houston’s innovation is based on engineering nanoscale defects in the superconducting film. This could quadruple the current relative to today’s superconducting wires, supporting the same amount of current using 25% of the material. This would make wind generators lighter, more powerful and more efficient. The design could result in a several-fold reduction in wire costs and enable their commercial viability of high-power wind generators for use in offshore applications.

  4. Wind tunnel results of the high-speed NLF(1)-0213 airfoil

    NASA Technical Reports Server (NTRS)

    Sewall, William G.; Mcghee, Robert J.; Hahne, David E.; Jordan, Frank L., Jr.

    1987-01-01

    Wind tunnel tests were conducted to evaluate a natural laminar flow airfoil designed for the high speed jet aircraft in general aviation. The airfoil, designated as the High Speed Natural Laminar Flow (HSNLF)(1)-0213, was tested in two dimensional wind tunnels to investigate the performance of the basic airfoil shape. A three dimensional wing designed with this airfoil and a high lift flap system is also being evaluated with a full size, half span model.

  5. MAVEN observations of solar wind hydrogen deposition in the atmosphere of Mars

    NASA Astrophysics Data System (ADS)

    Halekas, J. S.; Lillis, R. J.; Mitchell, D. L.; Cravens, T. E.; Mazelle, C.; Connerney, J. E. P.; Espley, J. R.; Mahaffy, P. R.; Benna, M.; Jakosky, B. M.; Luhmann, J. G.; McFadden, J. P.; Larson, D. E.; Harada, Y.; Ruhunusiri, S.

    2015-11-01

    Mars Atmosphere and Volatile EvolutioN mission (MAVEN) observes a tenuous but ubiquitous flux of protons with the same energy as the solar wind in the Martian atmosphere. During high flux intervals, we observe a corresponding negative hydrogen population. The correlation between penetrating and solar wind fluxes, the constant energy, and the lack of a corresponding charged population at intermediate altitudes implicate products of hydrogen energetic neutral atoms from charge exchange between the upstream solar wind and the exosphere. These atoms, previously observed in neutral form, penetrate the magnetosphere unaffected by electromagnetic fields (retaining the solar wind velocity), and some fraction reconvert to charged form through collisions with the atmosphere. MAVEN characterizes the energy and angular distributions of both penetrating and backscattered particles, potentially providing information about the solar wind, the hydrogen corona, and collisional interactions in the atmosphere. The accretion of solar wind hydrogen may provide an important source term to the Martian atmosphere over the planet's history.

  6. Differential impact of high and low penetrance TNFRSF1A gene mutations on conventional and regulatory CD4+ T cell functions in TNFR1-associated periodic syndrome.

    PubMed

    Pucino, Valentina; Lucherini, Orso Maria; Perna, Francesco; Obici, Laura; Merlini, Giampaolo; Cattalini, Marco; La Torre, Francesco; Maggio, Maria Cristina; Lepore, Maria Teresa; Magnotti, Flora; Galgani, Mario; Galeazzi, Mauro; Marone, Gianni; De Rosa, Veronica; Talarico, Rosaria; Cantarini, Luca; Matarese, Giuseppe

    2016-05-01

    TNFR-associated periodic syndrome is an autoinflammatory disorder caused by autosomal-dominant mutations in TNFRSF1A, the gene encoding for TNFR superfamily 1A. The lack of knowledge in the field of TNFR-associated periodic syndrome biology is clear, particularly in the context of control of immune self-tolerance. We investigated how TNF-α/TNFR superfamily 1A signaling can affect T cell biology, focusing on conventional CD4(+)CD25(-) and regulatory CD4(+)CD25(+) T cell functions in patients with TNFR-associated periodic syndrome carrying either high or low penetrance TNFRSF1A mutations. Specifically, we observed that in high penetrance TNFR-associated periodic syndrome, at the molecular level, these alterations were secondary to a hyperactivation of the ERK1/2, STAT1/3/5, mammalian target of rapamycin, and NF-κB pathways in conventional T cells. In addition, these patients had a lower frequency of peripheral regulatory T cells, which also displayed a defective suppressive phenotype. These alterations were partially found in low penetrance TNFR-associated periodic syndrome, suggesting a specific link between the penetrance of the TNFRSF1A mutation and the observed T cell phenotype. Taken together, our data envision a novel role for adaptive immunity in the pathogenesis of TNFR-associated periodic syndrome involving both CD4(+) conventional T cells and Tregs, suggesting a novel mechanism of inflammation in the context of autoinflammatory disorders. PMID:26598380

  7. Novel Low Cost, High Reliability Wind Turbine Drivetrain

    SciTech Connect

    Chobot, Anthony; Das, Debarshi; Mayer, Tyler; Markey, Zach; Martinson, Tim; Reeve, Hayden; Attridge, Paul; El-Wardany, Tahany

    2012-09-13

    Clipper Windpower, in collaboration with United Technologies Research Center, the National Renewable Energy Laboratory, and Hamilton Sundstrand Corporation, developed a low-cost, deflection-compliant, reliable, and serviceable chain drive speed increaser. This chain and sprocket drivetrain design offers significant breakthroughs in the areas of cost and serviceability and addresses the key challenges of current geared and direct-drive systems. The use of gearboxes has proven to be challenging; the large torques and bending loads associated with use in large multi-MW wind applications have generally limited demonstrated lifetime to 8-10 years [1]. The large cost of gearbox replacement and the required use of large, expensive cranes can result in gearbox replacement costs on the order of $1M, representing a significant impact to overall cost of energy (COE). Direct-drive machines eliminate the gearbox, thereby targeting increased reliability and reduced life-cycle cost. However, the slow rotational speeds require very large and costly generators, which also typically have an undesirable dependence on expensive rare-earth magnet materials and large structural penalties for precise air gap control. The cost of rare-earth materials has increased 20X in the last 8 years representing a key risk to ever realizing the promised cost of energy reductions from direct-drive generators. A common challenge to both geared and direct drive architectures is a limited ability to manage input shaft deflections. The proposed Clipper drivetrain is deflection-compliant, insulating later drivetrain stages and generators from off-axis loads. The system is modular, allowing for all key parts to be removed and replaced without the use of a high capacity crane. Finally, the technology modularity allows for scalability and many possible drivetrain topologies. These benefits enable reductions in drivetrain capital cost by 10.0%, levelized replacement and O&M costs by 26.7%, and overall cost of

  8. The Western Wind and Solar Integration Study Phase 2

    SciTech Connect

    Lew, D.; Brinkman, G.; Ibanez, E.; Hodge, B. M.; Hummon, M.; Florita, A.; Heaney, M.

    2013-09-01

    The electric grid is a highly complex, interconnected machine, and changing one part of the grid can have consequences elsewhere. Adding wind and solar affects the operation of the other power plants and adding high penetrations can induce cycling of fossil-fueled generators. Cycling leads to wear-and-tear costs and changes in emissions. Phase 2 of the Western Wind and Solar Integration Study (WWSIS-2) evaluated these costs and emissions and simulated grid operations for a year to investigate the detailed impact of wind and solar on the fossil-fueled fleet. This built on Phase 1, one of the largest wind and solar integration studies ever conducted, which examined operational impacts of high wind and solar penetrations in the West.

  9. The Western Wind and Solar Integration Study Phase 2

    SciTech Connect

    Lew, Debra; Brinkman, Greg; Ibanez, E.; Florita, A.; Heaney, M.; Hodge, B. -M.; Hummon, M.; Stark, G.; King, J.; Lefton, S. A.; Kumar, N.; Agan, D.; Jordan, G.; Venkataraman, S.

    2013-09-01

    The electric grid is a highly complex, interconnected machine, and changing one part of the grid can have consequences elsewhere. Adding wind and solar affects the operation of the other power plants and adding high penetrations can induce cycling of fossil-fueled generators. Cycling leads to wear-and-tear costs and changes in emissions. Phase 2 of the Western Wind and Solar Integration Study (WWSIS-2) evaluated these costs and emissions and simulated grid operations for a year to investigate the detailed impact of wind and solar on the fossil-fueled fleet. This built on Phase 1, one of the largest wind and solar integration studies ever conducted, which examined operational impacts of high wind and solar penetrations in the West(GE Energy 2010).

  10. Wind Resource Assessment in Complex Terrain with a High-Resolution Numerical Weather Prediction Model

    NASA Astrophysics Data System (ADS)

    Gruber, Karin; Serafin, Stefano; Grubišić, Vanda; Dorninger, Manfred; Zauner, Rudolf; Fink, Martin

    2014-05-01

    A crucial step in planning new wind farms is the estimation of the amount of wind energy that can be harvested in possible target sites. Wind resource assessment traditionally entails deployment of masts equipped for wind speed measurements at several heights for a reasonably long period of time. Simplified linear models of atmospheric flow are then used for a spatial extrapolation of point measurements to a wide area. While linear models have been successfully applied in the wind resource assessment in plains and offshore, their reliability in complex terrain is generally poor. This represents a major limitation to wind resource assessment in Austria, where high-altitude locations are being considered for new plant sites, given the higher frequency of sustained winds at such sites. The limitations of linear models stem from two key assumptions in their formulation, the neutral stratification and attached boundary-layer flow, both of which often break down in complex terrain. Consequently, an accurate modeling of near-surface flow over mountains requires the adoption of a NWP model with high horizontal and vertical resolution. This study explores the wind potential of a site in Styria in the North-Eastern Alps. The WRF model is used for simulations with a maximum horizontal resolution of 800 m. Three nested computational domains are defined, with the innermost one encompassing a stretch of the relatively broad Enns Valley, flanked by the main crest of the Alps in the south and the Nördliche Kalkalpen of similar height in the north. In addition to the simulation results, we use data from fourteen 10-m wind measurement sites (of which 7 are located within valleys and 5 near mountain tops) and from 2 masts with anemometers at several heights (at hillside locations) in an area of 1600 km2 around the target site. The potential for wind energy production is assessed using the mean wind speed and turbulence intensity at hub height. The capacity factor is also evaluated

  11. Transformer winding defects identification based on a high frequency method

    NASA Astrophysics Data System (ADS)

    Florkowski, Marek; Furgał, Jakub

    2007-09-01

    The transformer diagnostic methods are systematically being improved and extended due to growing requirements for reliability of power systems in terms of uninterrupted power supply and avoidance of blackouts. Those methods are also driven by longer lifetime of transformers and demand for reduction of transmission and distribution costs. Hence, the detection of winding faults in transformers, both in exploitation or during transportation is an important aspect of power transformer failure prevention. The frequency response analysis method (FRA), more and more frequently used in electric power engineering, has been applied for investigations and signature analysis based on the admittance and transfer function. The paper presents a novel approach to the identification of typical transformer winding problems such as axial or radial movements or turn-to-turn faults. The proposed transfer function discrimination (TFD) criteria are based on the derived transfer function ratios, manifesting higher sensitivity.

  12. High Resolution Surface Backscatter Measurements with the SeaWinds Scatterometer

    NASA Technical Reports Server (NTRS)

    Spencer, M. W.; Wu, C.; Long, D. G.

    1998-01-01

    A technique employed to extract higher resolution backscatter measurements from the SeaWinds pencil-beam scatterometer system is described. The unique methodology necessary to achieve very high radiometric accuracy for such measurements is discussed.

  13. Biomechanics of penetrating trauma.

    PubMed

    Yoganandan, N; Pintar, F A

    1997-01-01

    It is well known that injuries and deaths due to penetrating projectiles have become a national and an international epidemic in Western society. The application of biomedical engineering to solve day-to-day problems has produced considerable advances in safety and mitigation/prevention of trauma. The study of penetrating trauma has been largely in the military domain where war-time specific applications were advanced with the use of high-velocity weapons. With the velocity and weapon caliber in the civilian population at half or less compared with the military counterpart, wound ballistics is a largely different problem in today's trauma centers. The principal goal of the study of penetrating injuries in the civilian population is secondary prevention and optimized emergency care after occurrence. A thorough understanding of the dynamic biomechanics of penetrating injuries quantifies missile type, caliber, and velocity to hard and soft tissue damage. Such information leads to a comprehensive assessment of the acute and long-term treatment of patients with penetrating injuries. A review of the relevant military research applied to the civilian domain and presentation of new technology in the biomechanical study of these injuries offer foundation to this field. Relevant issues addressed in this review article include introduction of the military literature, the need for secondary prevention, environmental factors including projectile velocity and design, experimental studies with biological tissues and physical models, and mathematical simulations and analyses. Areas of advancement are identified that enables the pursuit of biomechanics research in order to arrive at better secondary prevention strategies. PMID:9719858

  14. Cryogenic wind tunnels for high Reynolds number testing

    NASA Technical Reports Server (NTRS)

    Lawing, P. L.; Kilgore, R. A.; Mcguire, P. D.

    1986-01-01

    A compilation of lectures presented at various Universities over a span of several years is discussed. A central theme of these lectures has been to present the research facility in terms of the service it provides to, and its potential effect on, the entire community, rather than just the research community. This theme is preserved in this paper which deals with the cryogenic transonic wind tunnels at Langley Research Center. Transonic aerodynamics is a focus both because of its crucial role in determining the success of aeronautical systems and because cryogenic wind tunnels are especially applicable to the transonics problem. The paper also provides historical perspective and technical background for cryogenic tunnels, culminating in a brief review of cryogenic wind tunnel projects around the world. An appendix is included to provide up to date information on testing techniques that have been developed for the cryogenic tunnels at Langley Research Center. In order to be as inclusive and as current as possible, the appendix is less formal than the main body of the paper. It is anticipated that this paper will be of particular value to the technical layman who is inquisitive as to the value of, and need for, cryogneic tunnels.

  15. High frequency and reduced penetrance of LRRK2 G2019S mutation among Parkinson's disease patients in Cantabria (Spain).

    PubMed

    Sierra, María; González-Aramburu, Isabel; Sánchez-Juan, Pascual; Sánchez-Quintana, Coro; Polo, José Miguel; Berciano, José; Combarros, Onofre; Infante, Jon

    2011-11-01

    The frequency and penetrance of the LRRK2 G2019S mutation varies considerably in different Parkinson disease (PD) populations. This information is essential both for clinical purposes and genetic counseling. The objective of this study was to estimate the prevalence and penetrance of the G2019S mutation of the LRRK2 gene in a small region in northern Spain (Cantabria). The G2019S mutation was tested in 367 consecutive patients with PD attended as outpatients in a tertiary Hospital in Northern Spain, and 126 at-risk family members of probands were also investigated for G2019S mutation and disease status. The gene penetrance was estimated in terms of cumulative age-specific incidence of PD by the Kaplan-Meier method. Thirty-two PD patients (8.7%) carried the G2019S mutation. Penetrance estimation of the G2019S mutation was 2% at 50 years, 12% at 60 years, 26% at 70 years, and 47% at 80 years. The frequency of the G2019S mutation of the LRRK2 gene in PD patients from Cantabria is among the highest reported so far after North African Arabs and Ashkenazi Jews. At the age of 80 years only one-half of G2019S mutation carriers manifest motor symptoms of PD. PMID:21954089

  16. Adaptation and penetration of resin-based root canal sealers in root canals irradiated with high-intensity lasers

    NASA Astrophysics Data System (ADS)

    Moura-Netto, Cacio; Mello-Moura, Anna Carolina Volpi; Palo, Renato Miotto; Prokopowitsch, Igor; Pameijer, Cornelis H.; Marques, Marcia Martins

    2015-03-01

    This research analyzed the quality of resin-based sealer adaptation after intracanal laser irradiation. Extracted teeth (n=168) were root canal treated and divided into four groups, according to dentin surface treatment: no laser; Nd:YAG laser (1.5 W, 100 mJ, 15 Hz) diode laser (2.5 W in CW), and Er:YAG laser (1 W, 100 mJ, 10 Hz). The teeth were divided into four subgroups according to the sealer used: AH Plus, EndoREZ, Epiphany, and EpiphanySE. For testing the sealing after root canal obturation, the penetration of silver nitrate solution was measured, whereas to evaluate the adaptation and penetration of the sealer into the dentin, environmental scanning electron microscopy (ESEM) was used. The ESEM images were analyzed using a four-grade criteria score by three evaluators. The inter-examiner agreement was confirmed by Kappa test and the scores statistically compared by the Kruskal-Wallis' test (p<0.05). Both adaptation and sealer penetration in root canals were not affected by the laser irradiation. Nd:YAG and diode laser decreased the tracer penetration for AH Plus, whereas EndoREZ and EpiphanySE performances were affected by Nd:YAG irradiation (p<0.05). It can be concluded that intracanal laser irradiation can be used as an adjunct in endodontic treatment; however, the use of hydrophilic resin sealers should be avoided when root canals were irradiated with Nd:YAG laser.

  17. Benefit of Regional Energy Balancing Service on Wind Integration in the Western Interconnection of the United States: Preprint

    SciTech Connect

    Milligan, M.; Kirby, B.; King, J.; Beuning, S.

    2010-10-01

    This analysis indicates the extent to which pooled regional dispatch for matching generation to load mitigates the costs and improves associated reliability, particularly in scenarios with high penetration of variable output resources, such as wind

  18. Characteristic Paths of Extratropical Cyclones that Cause High Wind Events in the Northeast United States

    NASA Astrophysics Data System (ADS)

    Booth, J. F.; Rieder, H. E.; Lee, D.; Kushnir, Y.

    2014-12-01

    This study analyzes the association between wintertime high wind events (HWEs) in the northeast United States US and extratropical cyclones. Sustained wind maxima in the Daily Summary Data from the National Climatic Data Center's Integrated Surface Database are analyzed for 1979-2012. For each station, a Generalized Pareto Distribution (GPD) is fit to the upper tail of the daily maximum wind speed data, and probabilistic return levels at intervals of 1, 3 and 5-years are derived from the GPD fit. At each interval, wind events meeting the return level criteria are termed HWEs. The HWEs occurring on the same day are grouped into multi-station events allowing the association with extratropical cyclones, which are tracked in the European Center for Medium-Range Weather Forecast ERA-Interim reanalysis. Using hierarchical clustering analysis, this study finds that the HWEs are most often associated with cyclones travelling from southwest to northeast, usually originating west of the Appalachian Mountains. The results show that a storm approaching from the southwest is four times more likely to cause strong surface winds than a Nor'easter. A series of sensitivity analyses confirms the robustness of this result. Next, the relationship between the strength of the wind events and the corresponding storm minimum sea level pressure is analyzed. No robust relationship between these quantities is found for strong wind events. Nevertheless, subsequent analysis shows that a relationship between deeper storms and stronger winds emerges if the analysis is extended to the entire set of wintertime storms.

  19. Probing the clumpy winds of giant stars with high mass X-ray binaries

    NASA Astrophysics Data System (ADS)

    Grinberg, Victoria; Hell, Natalie; Hirsch, Maria; Garcia, Javier; Huenemoerder, David; Leutenegger, Maurice A.; Nowak, Michael; Pottschmidt, Katja; Schulz, Norbert S.; Sundqvists, Jon O.; Townsend, Richard D.; Wilms, Joern

    2016-04-01

    Line-driven winds from early type stars are structured, with small, overdense clumps embedded in tenuous hot gas. High mass X-ray binaries (HMXBs), systems where a neutron star or a black hole accretes from the line-driven stellar wind of an O/B-type companion, are ideal for studying such winds: the wind drives the accretion onto the compact object and thus the X-ray production. The radiation from close to the compact object is quasi-pointlike and effectively X-rays the wind.We used RXTE and Chandra-HETG observations of two of the brightest HMXBs, Cyg X-1 and Vela X-1, to decipher their wind structure. In Cyg X-1, we show that the orbital variability of absorption can be only explained by a clumpy wind model and constrain the porosity of the wind as well as the onion-like structure of the clumps. In Vela X-1 we show, using the newest reference energies for low ionization Si-lines obtained with LLNL’s EBIT-I, that the ionized phase of the circumstellar medium and the cold clumps have different velocities.

  20. Present and future near-surface wind climate of Greenland from high resolution regional climate modelling

    NASA Astrophysics Data System (ADS)

    Gorter, W.; van Angelen, J. H.; Lenaerts, J. T. M.; van den Broeke, M. R.

    2014-03-01

    The present and twenty-first century near-surface wind climate of Greenland is presented using output from the regional atmospheric climate model RACMO2. The modelled wind variability and wind distribution compare favourably to observations from three automatic weather stations in the ablation zone of southwest Greenland. The Weibull shape parameter is used to classify the wind climate. High values (κ > 4) are found in northern Greenland, indicative of uniform winds and a dominant katabatic forcing, while lower values (κ < 3) are found over the ocean and southern Greenland, where the synoptic forcing dominates. Very high values of the shape parameter are found over concave topography where confluence strengthens the katabatic circulation, while very low values are found in a narrow band along the coast due to barrier winds. To simulate the future (2081-2098) wind climate RACMO2 was forced with the HadGEM2-ES general circulation model using a scenario of mid-range radiative forcing of +4.5 W m-2 by 2100. For the future simulated climate, the near-surface potential temperature deficit reduces in all seasons in regions where the surface temperature is below the freezing point, indicating a reduction in strength of the near-surface temperature inversion layer. This leads to a wind speed reduction over the central ice sheet where katabatic forcing dominates, and a wind speed increase over steep coastal topography due to counteracting effects of thermal and katabatic forcing. Thermally forced winds over the seasonally sea ice covered region of the Greenland Sea are reduced by up to 2.5 m s-1.

  1. Large-scale jets in the magnetosheath and plasma penetration across the magnetopause: THEMIS observations

    NASA Astrophysics Data System (ADS)

    Dmitriev, A. V.; Suvorova, A. V.

    2015-06-01

    Time History of Events and Macroscale Interactions during Substorms multipoint observation of the plasma and magnetic fields, conducted simultaneously in the dayside magnetosheath and magnetosphere, were used to collect 646 large-scale magnetosheath plasma jets interacting with the magnetopause. The jets were identified as dense and fast streams of the magnetosheath plasma whose energy density is higher than that of the upstream solar wind. The jet interaction with the magnetopause was revealed from sudden inward motion of the magnetopause and an enhancement in the geomagnetic field. The penetration was determined as appearance of the magnetosheath plasma against the background of the hot magnetospheric particle population. We found that almost 60% of the jets penetrated through the magnetopause. Vast majority of the penetrating jets was characterized by high velocities V > 220 km/s and kinetic βk > 1 that corresponded to a combination of finite Larmor radius effect with a mechanism of impulsive penetration. The average plasma flux in the penetrating jets was found to be 1.5 times larger than the average plasma flux of the solar wind. The average rate of jet-related penetration of the magnetosheath plasma into the dayside magnetosphere was estimated to be ~1029 particles/d. The rate varies highly with time and can achieve values of 1.5 × 1029 particles/h that is comparable with estimates of the total amount of plasma entering the dayside magnetosphere.

  2. A Diagnostic Diagram to Understand the Marine Atmospheric Boundary Layer at High Wind Speeds

    NASA Astrophysics Data System (ADS)

    Kettle, Anthony

    2014-05-01

    Long time series of offshore meteorological measurements in the lower marine atmospheric boundary layer show dynamical regimes and variability that are forced partly by interaction with the underlying sea surface and partly by the passage of cloud systems overhead. At low wind speeds, the dynamics and stability structure of the surface layer depend mainly on the air-sea temperature difference and the measured wind speed at a standard height. The physical processes are mostly understood and the quantified through Monin-Obukhov (MO) similarity theory. At high wind speeds different dynamical regimes become dominant. Breaking waves contribute to the atmospheric loading of sea spray and water vapor and modify the character of air-sea interaction. Downdrafts and boundary layer rolls associated with clouds at the top of the boundary layer impact vertical heat and momentum fluxes. Data from offshore meteorological monitoring sites will typically show different behavior and the regime shifts depending on the local winds and synoptic conditions. However, the regular methods to interpret time series through spectral analysis give only a partial view of dynamics in the atmospheric boundary layer. Also, the spectral methods have limited use for boundary layer and mesoscale modellers whose geophysical diagnostics are mostly anchored in directly measurable quantities: wind speed, temperature, precipitation, pressure, and radiation. Of these, wind speed and the air-sea temperature difference are the most important factors that characterize the dynamics of the lower atmospheric boundary layer and they provide a dynamical and thermodynamic constraint to frame observed processes, especially at high wind speeds. This was recognized in the early interpretation of the Froya database of gale force coastal winds from mid-Norway (Andersen, O.J. and J. Lovseth, Gale force maritime wind. The Froya data base. Part 1: Sites and instrumentation. Review of the data base, Journal of Wind

  3. High altitude bird migration at temperate latitudes: a synoptic perspective on wind assistance.

    PubMed

    Dokter, Adriaan M; Shamoun-Baranes, Judy; Kemp, Michael U; Tijm, Sander; Holleman, Iwan

    2013-01-01

    At temperate latitudes the synoptic patterns of bird migration are strongly structured by the presence of cyclones and anticyclones, both in the horizontal and altitudinal dimensions. In certain synoptic conditions, birds may efficiently cross regions with opposing surface wind by choosing a higher flight altitude with more favourable wind. We observed migratory passerines at mid-latitudes that selected high altitude wind optima on particular nights, leading to the formation of structured migration layers at varying altitude up to 3 km. Using long-term vertical profiling of bird migration by C-band Doppler radar in the Netherlands, we find that such migration layers occur nearly exclusively during spring migration in the presence of a high-pressure system. A conceptual analytic framework providing insight into the synoptic patterns of wind assistance for migrants that includes the altitudinal dimension has so far been lacking. We present a simple model for a baroclinic atmosphere that relates vertical profiles of wind assistance to the pressure and temperature patterns occurring at temperate latitudes. We show how the magnitude and direction of the large scale horizontal temperature gradient affects the relative gain in wind assistance that migrants obtain through ascending. Temperature gradients typical for northerly high-pressure systems in spring are shown to cause high altitude wind optima in the easterly sectors of anticyclones, thereby explaining the frequent observations of high altitude migration in these synoptic conditions. Given the recurring synoptic arrangements of pressure systems across temperate continents, the opportunities for exploiting high altitude wind will differ between flyways, for example between easterly and westerly oceanic coasts. PMID:23300969

  4. High Altitude Bird Migration at Temperate Latitudes: A Synoptic Perspective on Wind Assistance

    PubMed Central

    Dokter, Adriaan M.; Shamoun-Baranes, Judy; Kemp, Michael U.; Tijm, Sander; Holleman, Iwan

    2013-01-01

    At temperate latitudes the synoptic patterns of bird migration are strongly structured by the presence of cyclones and anticyclones, both in the horizontal and altitudinal dimensions. In certain synoptic conditions, birds may efficiently cross regions with opposing surface wind by choosing a higher flight altitude with more favourable wind. We observed migratory passerines at mid-latitudes that selected high altitude wind optima on particular nights, leading to the formation of structured migration layers at varying altitude up to 3 km. Using long-term vertical profiling of bird migration by C-band Doppler radar in the Netherlands, we find that such migration layers occur nearly exclusively during spring migration in the presence of a high-pressure system. A conceptual analytic framework providing insight into the synoptic patterns of wind assistance for migrants that includes the altitudinal dimension has so far been lacking. We present a simple model for a baroclinic atmosphere that relates vertical profiles of wind assistance to the pressure and temperature patterns occurring at temperate latitudes. We show how the magnitude and direction of the large scale horizontal temperature gradient affects the relative gain in wind assistance that migrants obtain through ascending. Temperature gradients typical for northerly high-pressure systems in spring are shown to cause high altitude wind optima in the easterly sectors of anticyclones, thereby explaining the frequent observations of high altitude migration in these synoptic conditions. Given the recurring synoptic arrangements of pressure systems across temperate continents, the opportunities for exploiting high altitude wind will differ between flyways, for example between easterly and westerly oceanic coasts. PMID:23300969

  5. Interdisciplinary design study of a high-rise integrated roof wind energy system

    NASA Astrophysics Data System (ADS)

    Dekker, R. W. A.; Ferraro, R. M.; Suma, A. B.; Moonen, S. P. G.

    2012-10-01

    Today's market in micro-wind turbines is in constant development introducing more efficient solutions for the future. Besides the private use of tower supported turbines, opportunities to integrate wind turbines in the built environment arise. The Integrated Roof Wind Energy System (IRWES) presented in this work is a modular roof structure integrated on top of existing or new buildings. IRWES is build up by an axial array of skewed shaped funnels used for both wind inlet and outlet. This inventive use of shape and geometry leads to a converging air capturing inlet to create high wind mass flow and velocity toward a Vertical Axis Wind Turbine (VAWT) in the center-top of the roof unit for the generation of a relatively high amount of energy. The scope of this research aims to make an optimized structural design of IRWES to be placed on top of the Vertigo building in Eindhoven; analysis of the structural performance; and impact to the existing structure by means of Finite Element Modeling (FEM). Results show that the obvious impact of wind pressure to the structural design is easily supported in different configurations of fairly simple lightweight structures. In particular, the weight addition to existing buildings remains minimal.

  6. Low frequency variability of Climate-Related-Energy penetration in Europe

    NASA Astrophysics Data System (ADS)

    Raynaud, Damien; Baptiste, François; Hingray, Benoit; Creutin, Jean-Dominique

    2016-04-01

    The penetration rate of Climate Related Energy sources like solar-power, wind-power and hydro-power source measures the mismatch between the energy availability from those fatal productions and the energy demand which may be also partly dependent on the climate. The penetration rate is a key factor - with potentially large technical and economic implications, to be accounted for in public policies and private initiatives for a massive integration of renewables in the classical energy system. For a given region, it is classically estimated from high resolution time series of energy productions and energy demand derived from times series of their driving climatic variables (temperature, wind, radiation, precipitation). The penetration rate obviously highly depends on the seasonal and also high frequency time variability of these climatic variables (François et al. 2016). A less studied aspect of this penetration rate is its dependence to low frequency variability of climate, from annual to pluriannual time scales. We here explore this dependence for a set of 12 contrasted hydroclimatic regions in Europe with long time series of weather variables reconstructed for the whole 20th century. We discuss the interannual, and interdecadal variability of the penetration rate for the solar-power, wind-power and run-of-the river energy sources taken individually and for different mixes. We discuss how it can be increased / stabilized with local energy storage. Reference : François, B, Hingray, B., Raynaud, R., Borga, M. and Creutin, J.D., 2016. Increasing Climate-Related-Energy penetration by integrating run-of-the river hydropower to wind/solar mix. Renewable Energy. 87(1), pp.686-696. doi:10.1016/j.renene.2015.10.064 This work is part of the COMPLEX Project (European Collaborative Project FP7-ENV-2012 number: 308601; http://www.complex.ac.uk/).

  7. A high performance finite element model for wind farm modeling in forested areas

    NASA Astrophysics Data System (ADS)

    Owen, Herbert; Avila, Matias; Folch, Arnau; Cosculluela, Luis; Prieto, Luis

    2015-04-01

    Wind energy has grown significantly during the past decade and is expected to continue growing in the fight against climate change. In the search for new land where the impact of the wind turbines is small several wind farms are currently being installed in forested areas. In order to optimize the distribution of the wind turbines within the wind farm the Reynolds Averaged Navier Stokes equations are solved over the domain of interest using either commercial or in house codes. The existence of a canopy alters the Atmospheric Boundary Layer wind profile close to the ground. Therefore in order to obtain a more accurate representation of the flow in forested areas modification to both the Navier Stokes and turbulence variables equations need to be introduced. Several existing canopy models have been tested in an academic problem showing that the one proposed by Sogachev et. al gives the best results. This model has been implemented in an in house CFD solver named Alya. It is a high performance unstructured finite element code that has been designed from scratch to be able to run in the world's biggest supercomputers. Its scalabililty has recently been tested up to 100000 processors in both American and European supercomputers. During the past three years the code has been tuned and tested for wind energy problems. Recent efforts have focused on the canopy model following industry needs. In this work we shall benchmark our results in a wind farm that is currently being designed by Scottish Power and Iberdrola in Scotland. This is a very interesting real case with extensive experimental data from five different masts with anemometers at several heights. It is used to benchmark both the wind profiles and the speed up obtained between different masts. Sixteen different wind directions are simulated. The numerical model provides very satisfactory results for both the masts that are affected by the canopy and those that are not influenced by it.

  8. Penetrative Convection and Zonal Flow on Jupiter

    PubMed

    Zhang; Schubert

    1996-08-16

    Measurements by the Galileo probe support the possibility that the zonal winds in Jupiter's atmosphere originate from convection that takes place in the deep hydrogen-helium interior. However, according to models based on recent opacity data and the probe's temperature measurements, there may be radiative and nonconvective layers in the outer part of the jovian interior, raising the question of how deep convection could extend to the surface. A theoretical model is presented to demonstrate that, because of predominant rotational effects and spherical geometry, thermal convection in the deep jovian interior can penetrate into any outer nonconvective layer. These penetrative convection rolls interact nonlinearly and efficiently in the model to generate and sustain a mean zonal wind with a larger amplitude than that of the nonaxisymmetric penetrative convective motions, a characteristic of the wind field observed at the cloud level on Jupiter. PMID:8688074

  9. Penetrating cardiac injuries.

    PubMed

    Mittal, V; McAleese, P; Young, S; Cohen, M

    1999-05-01

    Our objective was to determine the influence of several clinical factors on the survival of patients with penetrating wounds to the heart. A retrospective review of 80 consecutive penetrating cardiac injuries treated in a Level II urban trauma center from 1980 through 1994 were examined. Thirty-six patients (45%) had gunshot wounds (including 1 shotgun wound), and 44 (55%) had stab wounds. Intervention consisted of emergency room (ER) or operating room thoracotomy. We measured the effect of several clinical factors on morbidity and patient survival. Survival rate was 17 of 36 (47%) in gunshot injuries and 35 of 44 (80%) in stab injuries, with an overall survival rate of 52 of 80 patients (65%). The average age was 24 years (range, 9-53), and there were 3 female patients. Twelve patients (15%) had multiple cardiac injuries, and 63 (79%) had other associated injuries. Fourteen patients (17%) presented with no blood pressure, and 55 (69%) were hypotensive on admission. ER thoracotomy was performed on 7 of 52 survivors (13%) and 24 of 28 nonsurvivors (86%). Survival after ER thoracotomy was 7 of 31 patients (22%). A selective approach is recommended, because ER thoracotomy has a limited role in penetrating cardiac injury. A high index of suspicion, prompt resuscitation, and immediate definitive surgical management resulted in a high survival rate for these frequently lethal injuries. PMID:10231214

  10. Compositional Variability of the Solar Wind: The Need for an Ultra-High Temporal Resolution Mass Spectrometer for Studies of Solar Wind and Coronal Mass Ejection Boundaries

    NASA Astrophysics Data System (ADS)

    Adrian, M. L.; Sheldon, R. B.; Vaisberg, O.; Suess, S. T.; Gallagher, D. L.; Craven, P. D.; Hamilton, D. C.

    2004-05-01

    Current state-of-the-art solar wind mass spectroscopy has clearly demonstrated the compositional uniqueness between slow/fast solar wind streams and slow/fast coronal mass ejections (CMEs). As such, solar wind composition measurements serve as an indicator of the sub-coronal and coronal processes responsible for the formation of these heliospheric features. While current instrumentation have identified temporal variations in solar wind/CME composition on the order of 10's of minutes, these detections have occurred during relatively quiescent periods, such as within the magnetic cloud portion of a CME, when temporal variations of the collective solar wind (including magnetic field variations) occur over periods in excess of the current minimum instrumental duty cycle of 5-minutes. Consequently, the compositional markers of the microphysics responsible for the formation of highly variable solar wind flows and for CME/prominence formation remain overlooked. To address the need for greater temporal resolution in solar wind compositional measurements, we have undertaken the development of a novel ultra-high temporal resolution ion mass spectrometer utilizing a helical ion path time-of-flight (TOF) system within a compact, low-mass, low-power instrument. The instrument is designed specifically to measure solar wind 3He+2 < M/q < 56Fe+6 ion plasmas from 0.3-20.0 keV/q with an order of magnitude greater geometric factor than current solar wind ion mass spectrometers, and produce 1-10 ms mass spectra with a mass resolution of M/Δ M ~ 200 or greater, all within a duty cycle of < 90-s. These characteristics achieve a resolution sufficient to probe spatial/temporal dimensions down to an ion gyroradius in solar wind flow boundaries at 1 AU. This paper presents an overview of solar wind mass spectroscopy results to date, justification for solar wind composition measurements of greater temporal resolution, and an introduction to the helical ion path mass spectrometer (HIPS

  11. ANTHEM simulations of the early time magnetic field penetration of the plasma surrounding a high density Z-pinch

    SciTech Connect

    Mason, R.J. )

    1989-12-01

    The early time penetration of magnetic field into the low density coronal plasma of a Z-pinch fiber is studied with the implict plasma simulation code ANTHEM. Calculations show the emission of electrons from the cathode, pinching of the electron flow, magnetic insulation of the electrons near the anode, and low density ion blow off. PIC-particle ion calculations show a late time clumping of the ion density not seen with a fluid ion treatment.

  12. ANTHEM simulation of the early time magnetic field penetration of the plasma surrounding a high density Z-pinch

    SciTech Connect

    Mason, R.J.

    1989-01-01

    The early time penetration of magnetic field into the low density coronal plasma of a Z-pinch fiber is studied with the implicit plasma simulation code ANTHEM. Calculations show the emission of electrons from the cathode, pinching of the electron flow, magnetic insulation of the electrons near the anode, and low density ion blow off. PIC-particle ion calculations show a late time clumping of the ion density not seen with a fluid ion treatment. 4 refs., 4 figs.

  13. Application of LES Technique to Diagnosis of Wind Farm by Using High Resolution Elevation Data

    NASA Astrophysics Data System (ADS)

    Uchida, Takanori; Ohya, Yuji

    We are developing the numerical model called the RIAM-COMPACT (Research Institute for Applied Mechanics, Kyushu University, Computational Prediction of Airflow over Complex Terrain). The object domain of this numerical model is from several m to several km, and can predict the airflow and the gas diffusion over complex terrain with high precision. The RIAM-COMPACT has already been marketed by certain tie-up companies. The estimation of the annual electrical power output is also possible now based on the field observation data. In the present study, wind simulation of an actual wind farm was executed using the high resolution elevation data. As a result, an appropriate point and an inappropriate point for locating a wind turbine generator were shown based on the numerical results obtained. This cause was found to be a topographical irregularity in front of the wind turbine generator.

  14. N-acetylcysteine enhances cystic fibrosis sputum penetration and airway gene transfer by highly compacted DNA nanoparticles.

    PubMed

    Suk, Jung Soo; Boylan, Nicholas J; Trehan, Kanika; Tang, Benjamin C; Schneider, Craig S; Lin, Jung-Ming G; Boyle, Michael P; Zeitlin, Pamela L; Lai, Samuel K; Cooper, Mark J; Hanes, Justin

    2011-11-01

    For effective airway gene therapy of cystic fibrosis (CF), inhaled gene carriers must first penetrate the hyperviscoelastic sputum covering the epithelium. Whether clinically studied gene carriers can penetrate CF sputum remains unknown. Here, we measured the diffusion of a clinically tested nonviral gene carrier, composed of poly-l-lysine conjugated with a 10 kDa polyethylene glycol segment (CK(30)PEG(10k)). We found that CK(30)PEG(10k)/DNA nanoparticles were trapped in CF sputum. To improve gene carrier diffusion across sputum, we tested adjuvant regimens consisting of N-acetylcysteine (NAC), recombinant human DNase (rhDNase) or NAC together with rhDNase. While rhDNase alone did not enhance gene carrier diffusion, NAC and NAC + rhDNase increased average effective diffusivities by 6-fold and 13-fold, respectively, leading to markedly greater fractions of gene carriers that may penetrate sputum layers. We further tested the adjuvant effects of NAC in the airways of mice with Pseudomonas aeruginosa lipopolysaccharide (LPS)-induced mucus hypersecretion. Intranasal dosing of NAC prior to CK(30)PEG(10k)/DNA nanoparticles enhanced gene expression by up to ~12-fold compared to saline control, reaching levels observed in the lungs of mice without LPS challenge. Our findings suggest that a promising synthetic nanoparticle gene carrier may transfer genes substantially more effectively to lungs of CF patients if administered following adjuvant mucolytic therapy with NAC or NAC + rhDNase. PMID:21829177

  15. N-acetylcysteine Enhances Cystic Fibrosis Sputum Penetration and Airway Gene Transfer by Highly Compacted DNA Nanoparticles

    PubMed Central

    Suk, Jung Soo; Boylan, Nicholas J; Trehan, Kanika; Tang, Benjamin C; Schneider, Craig S; Lin, Jung-Ming G; Boyle, Michael P; Zeitlin, Pamela L; Lai, Samuel K; Cooper, Mark J; Hanes, Justin

    2011-01-01

    For effective airway gene therapy of cystic fibrosis (CF), inhaled gene carriers must first penetrate the hyperviscoelastic sputum covering the epithelium. Whether clinically studied gene carriers can penetrate CF sputum remains unknown. Here, we measured the diffusion of a clinically tested nonviral gene carrier, composed of poly--lysine conjugated with a 10 kDa polyethylene glycol segment (CK30PEG10k). We found that CK30PEG10k/DNA nanoparticles were trapped in CF sputum. To improve gene carrier diffusion across sputum, we tested adjuvant regimens consisting of N-acetylcysteine (NAC), recombinant human DNase (rhDNase) or NAC together with rhDNase. While rhDNase alone did not enhance gene carrier diffusion, NAC and NAC + rhDNase increased average effective diffusivities by 6-fold and 13-fold, respectively, leading to markedly greater fractions of gene carriers that may penetrate sputum layers. We further tested the adjuvant effects of NAC in the airways of mice with Pseudomonas aeruginosa lipopolysaccharide (LPS)-induced mucus hypersecretion. Intranasal dosing of NAC prior to CK30PEG10k/DNA nanoparticles enhanced gene expression by up to ~12-fold compared to saline control, reaching levels observed in the lungs of mice without LPS challenge. Our findings suggest that a promising synthetic nanoparticle gene carrier may transfer genes substantially more effectively to lungs of CF patients if administered following adjuvant mucolytic therapy with NAC or NAC + rhDNase. PMID:21829177

  16. Wind energy.

    PubMed

    Leithead, W E

    2007-04-15

    From its rebirth in the early 1980s, the rate of development of wind energy has been dramatic. Today, other than hydropower, it is the most important of the renewable sources of power. The UK Government and the EU Commission have adopted targets for renewable energy generation of 10 and 12% of consumption, respectively. Much of this, by necessity, must be met by wind energy. The US Department of Energy has set a goal of 6% of electricity supply from wind energy by 2020. For this potential to be fully realized, several aspects, related to public acceptance, and technical issues, related to the expected increase in penetration on the electricity network and the current drive towards larger wind turbines, need to be resolved. Nevertheless, these challenges will be met and wind energy will, very likely, become increasingly important over the next two decades. An overview of the technology is presented. PMID:17272245

  17. High-R Walls for New Construction Structural Performance: Wind Pressure Testing

    SciTech Connect

    DeRenzis, A.; Kochkin, V.

    2013-01-01

    This technical report is focused primarily on laboratory testing that evaluates wind pressure performance characteristics for wall systems constructed with exterior insulating sheathing. This research and test activity will help to facilitate the ongoing use of non-structural sheathing options and provide a more in-depth understanding of how wall system layers perform in response to high wind perturbations normal to the surface.

  18. High-R Walls for New Construction Structural Performance. Wind Pressure Testing

    SciTech Connect

    DeRenzis, A.; Kochkin, V.

    2013-01-01

    This technical report is focused primarily on laboratory testing that evaluates wind pressure performance characteristics for wall systems constructed with exterior insulating sheathing. This research and test activity will help to facilitate the ongoing use of non-structural sheathing options and provide a more in-depth understanding of how wall system layers perform in response to high wind perturbations normal to the surface.

  19. A high time resolution study of the solar wind-magnetosphere energy coupling function

    NASA Technical Reports Server (NTRS)

    Akasofu, S.-I.; Carbary, J. F.; Meng, C.-I.; Sullivan, J. P.; Lepping, R. P.

    1982-01-01

    A high time resolution study of the relationships between the solar wind-magnetosphere energy coupling function and the total energy dissipation rate of the magnetosphere is made using 5-min average values of solar wind data and of the geomagnetic indices AE and Dst. All the results are essentially the same as those obtained by the earlier studies which were based on the hourly average data set. Therefore, it is confirmed that the magnetosphere is primarily a driven system

  20. A global wind resource atlas including high-resolution terrain effects

    NASA Astrophysics Data System (ADS)

    Hahmann, Andrea; Badger, Jake; Olsen, Bjarke; Davis, Neil; Larsen, Xiaoli; Badger, Merete

    2015-04-01

    Currently no accurate global wind resource dataset is available to fill the needs of policy makers and strategic energy planners. Evaluating wind resources directly from coarse resolution reanalysis datasets underestimate the true wind energy resource, as the small-scale spatial variability of winds is missing. This missing variability can account for a large part of the local wind resource. Crucially, it is the windiest sites that suffer the largest wind resource errors: in simple terrain the windiest sites may be underestimated by 25%, in complex terrain the underestimate can be as large as 100%. The small-scale spatial variability of winds can be modelled using novel statistical methods and by application of established microscale models within WAsP developed at DTU Wind Energy. We present the framework for a single global methodology, which is relative fast and economical to complete. The method employs reanalysis datasets, which are downscaled to high-resolution wind resource datasets via a so-called generalization step, and microscale modelling using WAsP. This method will create the first global wind atlas (GWA) that covers all land areas (except Antarctica) and 30 km coastal zone over water. Verification of the GWA estimates will be done at carefully selected test regions, against verified estimates from mesoscale modelling and satellite synthetic aperture radar (SAR). This verification exercise will also help in the estimation of the uncertainty of the new wind climate dataset. Uncertainty will be assessed as a function of spatial aggregation. It is expected that the uncertainty at verification sites will be larger than that of dedicated assessments, but the uncertainty will be reduced at levels of aggregation appropriate for energy planning, and importantly much improved relative to what is used today. In this presentation we discuss the methodology used, which includes the generalization of wind climatologies, and the differences in local and spatially

  1. The cryogenic wind tunnel concept for high Reynolds number testing

    NASA Technical Reports Server (NTRS)

    Kilgore, R. A.; Goodyer, M. J.; Adcock, J. B.; Davenport, E. E.

    1974-01-01

    Theoretical considerations indicate that cooling the wind-tunnel test gas to cryogenic temperatures will provide a large increase in Reynolds number with no increase in dynamic pressure while reducing the tunnel drive-power requirements. Studies were made to determine the expected variations of Reynolds number and other parameters over wide ranges of Mach number, pressure, and temperature, with due regard to avoiding liquefaction. Practical operational procedures were developed in a low-speed cryogenic tunnel. Aerodynamic experiments in the facility demonstrated the theoretically predicted variations in Reynolds number and drive power. The continuous-flow-fan-driven tunnel is shown to be particularly well suited to take full advantage of operating at cryogenic temperatures.

  2. Aerodynamic Characteristics of High Speed Trains under Cross Wind Conditions

    NASA Astrophysics Data System (ADS)

    Chen, W.; Wu, S. P.; Zhang, Y.

    2011-09-01

    Numerical simulation for the two models in cross-wind was carried out in this paper. The three-dimensional compressible Reynolds-averaged Navier-Stokes equations(RANS), combined with the standard k-ɛ turbulence model, were solved on multi-block hybrid grids by second order upwind finite volume technique. The impact of fairing on aerodynamic characteristics of the train models was analyzed. It is shown that, the flow separates on the fairing and a strong vortex is generated, the pressure on the upper middle car decreases dramatically, which leads to a large lift force. The fairing changes the basic patterns around the trains. In addition, formulas of the coefficient of aerodynamic force at small yaw angles up to 24° were expressed.

  3. Research of Stability Problems on Ankara-Konya High Speed Railway Line (Turkey) using Ground Penetrating Radar and Petrographical Methods

    NASA Astrophysics Data System (ADS)

    Kadioglu, S.; Kadioglu, Y. K.

    2012-04-01

    The aim of the study is to research the stability problems according to rock properties and their discontinuities such as fractures, faults and karstic cavities on the new high-speed railway line between the capital city Ankara and the largest city Konya in Turkey. The Ankara-Konya high speed railway including a tunnel managed from The Turkish State Railways (TCDD). Geological surveys, polarizing microscope and confocal Raman spectrometry studies were used to determine rock properties. Ground penetrating radar (GPR) method was used to determine faults, fractures and karstic cavities. The railway line has been mainly constructed on inner Tauride Ocean suture of the Central Anatolia. The basement unit of the railway line mainly has been composed of ophiolitic complex of the inner Tauride Ocean. The main lithology of this ophiolitic complex has been formed by radiolarite, pelagic sediments, dolarite, gabbro, serpentinized peridotite and limestone blocks. The Jurassic alloctonous limestone which has been thrust on the ophiolitic complex. Neogene cover young units with minor amount of Alluvium deposits have been formed by the upper litholgy in the region. The serpentinite and altered radiolarite formation are formed by lubricous ground for the railway line in the region. A RAMAC CUII GPR system was used with a bi-static 100 MHz center band shielded antenna to acquire profile data. Totaly 35 km was surveyed on different parts of the railway line by considering the results of the geologic research and petrograpical studies. When we started to study, rail construction of some parts of the line had already been completed. Therefore, during studies, we gathered the data on the backfilled way on the three parallel profiles spaced 1m apart or on the service way next to the railway line. There was a tunnel on the line. We also gathered two parallel profiles data on the tunnel and four profiles data next to the tunnel to evaluate the stability according to the discontinuities

  4. Cooperative Transmembrane Penetration of Nanoparticles

    PubMed Central

    Zhang, Haizhen; Ji, Qiuju; Huang, Changjin; Zhang, Sulin; Yuan, Bing; Yang, Kai; Ma, Yu-qiang

    2015-01-01

    Physical penetration of lipid bilayer membranes presents an alternative pathway for cellular delivery of nanoparticles (NPs) besides endocytosis. NPs delivered through this pathway could reach the cytoplasm, thereby opening the possibility of organelle-specific targeting. Herein we perform dissipative particle dynamics simulations to elucidate the transmembrane penetration mechanisms of multiple NPs. Our simulations demonstrate that NPs’ translocation proceeds in a cooperative manner, where the interplay of the quantity and surface chemistry of the NPs regulates the translocation efficiency. For NPs with hydrophilic surfaces, the increase of particle quantity facilitates penetration, while for NPs with partly or totally hydrophobic surfaces, the opposite highly possibly holds. Moreover, a set of interesting cooperative ways, such as aggregation, aggregation-dispersion, and aggregation-dispersion-reaggregation of the NPs, are observed during the penetration process. We find that the penetration behaviors of multiple NPs are mostly dominated by the changes of the NP-membrane force components in the membrane plane direction, in addition to that in the penetration direction, suggesting a different interaction mechanism between the multiple NPs and the membrane compared with the one-NP case. These results provide a fundamental understanding in the underlying mechanisms of cooperative penetration of NPs, and shed light on the NP-based drug and gene delivery. PMID:26013284

  5. CONSTRAINING HIGH-SPEED WINDS IN EXOPLANET ATMOSPHERES THROUGH OBSERVATIONS OF ANOMALOUS DOPPLER SHIFTS DURING TRANSIT

    SciTech Connect

    Miller-Ricci Kempton, Eliza; Rauscher, Emily

    2012-06-01

    Three-dimensional (3D) dynamical models of hot Jupiter atmospheres predict very strong wind speeds. For tidally locked hot Jupiters, winds at high altitude in the planet's atmosphere advect heat from the day side to the cooler night side of the planet. Net wind speeds on the order of 1-10 km s{sup -1} directed towards the night side of the planet are predicted at mbar pressures, which is the approximate pressure level probed by transmission spectroscopy. These winds should result in an observed blueshift of spectral lines in transmission on the order of the wind speed. Indeed, Snellen et al. recently observed a 2 {+-} 1 km s{sup -1} blueshift of CO transmission features for HD 209458b, which has been interpreted as a detection of the day-to-night (substellar to anti-stellar) winds that have been predicted by 3D atmospheric dynamics modeling. Here, we present the results of a coupled 3D atmospheric dynamics and transmission spectrum model, which predicts the Doppler-shifted spectrum of a hot Jupiter during transit resulting from winds in the planet's atmosphere. We explore four different models for the hot Jupiter atmosphere using different prescriptions for atmospheric drag via interaction with planetary magnetic fields. We find that models with no magnetic drag produce net Doppler blueshifts in the transmission spectrum of {approx}2 km s{sup -1} and that lower Doppler shifts of {approx}1 km s{sup -1} are found for the higher drag cases, results consistent with-but not yet strongly constrained by-the Snellen et al. measurement. We additionally explore the possibility of recovering the average terminator wind speed as a function of altitude by measuring Doppler shifts of individual spectral lines and spatially resolving wind speeds across the leading and trailing terminators during ingress and egress.

  6. Structural response measurements to insure penetrator data integrity

    SciTech Connect

    Bateman, V.I.; Mayes, R.L.; James, G.H. III

    1993-09-01

    Measurements made by a penetrator structure penetration of some medium may not measure the penetration environment directly. In general, the measurements quantify the penetrator`s structural response to the penetrator force environment. This paper reports laboratory testing and analysis techniques that have been used to identify and/or remove highly nonlinear responses which can mask the penetration environments one desires to measure. Results for two penetrator structures are presented. For the first penetrator, shock testing was conducted to determine the cause of accelerometer failure during field tests. For a second penetrator, shock testing was conducted to assist with the interpretation of accelerometer measurements made during field tests for which the penetrator was instrumented with one axial accelerometer. Very high acceleration levels for a data bandwidth of DC to 70 kHz were recorded in these field tests. The laboratory test results for these two penetrators are presented and discussed.

  7. The importance of combined cycle generating plants in integrating large levels of wind power generation

    SciTech Connect

    Puga, J. Nicolas

    2010-08-15

    Integration of high wind penetration levels will require fast-ramping combined cycle and steam cycles that, due to higher operating costs, will require proper pricing of ancillary services or other forms of compensation to remain viable. Several technical and policy recommendations are presented to help realign the generation mix to properly integrate the wind. (author)

  8. Penetration boundary of solar cosmic rays into the earth's magnetosphere during magnetically quiet times

    SciTech Connect

    Biryukov, A.S.; Ivanova, T.A.; Kovrygina, L.M.; Kudels, K.; Kuznetsov, S.N.; Sosnovets, E.N.; Tuerskaya, L.V.

    1984-05-01

    Data is used from the satellites Interkosmos-17 and Kosmos-900 to determine penetration boundaries at high latitudes in the earth's magnetosphere. Considered are the results of observations of the penetration boundary of solar cosmic ray (SCR) protons and electrons during an SCR increase on November 22-25, 1977. The position of the SCR penetration boundary during a single increase at practically all values of MLT in quiet conditions is examined. Magnetospheric structure is determined in the region of closed drift shells where the magnetic field is asymmetric. The authors can estimate how the solar wind pressure affects the magnetosphere by using data on the penetration boundaries of solar protons obtained during quiet geomagnetic conditions.

  9. On the Accuracy of Stratospheric Meteorological Reanalyses Using Wind Measurements at High Altitude in the Stratosphere

    NASA Astrophysics Data System (ADS)

    Huret, N.; Duruisseau, F.; Andral, A.

    2015-09-01

    This study is motivated by the improvement of the knowledge of stratospheric dynamics and the evaluation of the ability of models to represent wind variability in the stratosphere. We deduce from the Zero Pressure Balloons trajectories, operated by CNES during the last decade, zonal and meridional wind to provide a unique database in the altitude range [25-40] km. The collected data are associated with ZBP flights launch during winter and summer in polar region above the Esrange (Sweden) launch base and in equatorial region above the Teresina (Brazil) during easterly and westerly Quasibiennal Oscillation phase. We performed systematic comparisons between wind measurements and ERA—interim reanalysis from ECMWF (European Centre for Medium-Range Weather Forecasts) and present the vertical profile of biases for both wind component in winter at high latitude. The biases and the standard deviation obtained increase with altitude.

  10. ON THE OCCURRENCE OF THE THIRD-ORDER SCALING IN HIGH LATITUDE SOLAR WIND

    SciTech Connect

    Marino, R.; D'Amicis, R.; Bruno, R.; Sorriso-Valvo, L.; Carbone, V.; Veltri, P.

    2012-05-01

    The occurrence and nature of a nonlinear energy cascade within the intermediate scales of solar wind Alfvenic turbulence represents an important open issue. Using in situ measurements of fast, high latitude solar wind taken by the Ulysses spacecraft at solar minima, it is possible to show that a nonlinear energy cascade of imbalanced turbulence is only observed when the solar wind owns peculiar properties. These are the reduction of the local correlation between velocity and magnetic field (weak cross-helicity); the presence of large-scale velocity shears; and the steepening and extension down to low frequencies of the turbulent spectra. Our observations suggest the important role of both large-scale velocity and Alfvenicity of the field fluctuations for the validation of the Yaglom law in solar wind turbulence.

  11. A new high-density (25 electrodes/mm2) penetrating microelectrode array for recording and stimulating sub-millimeter neuroanatomical structures

    NASA Astrophysics Data System (ADS)

    Wark, H. A. C.; Sharma, R.; Mathews, K. S.; Fernandez, E.; Yoo, J.; Christensen, B.; Tresco, P.; Rieth, L.; Solzbacher, F.; Normann, R. A.; Tathireddy, P.

    2013-08-01

    Objective. Among the currently available neural interface devices, there has been a need for a penetrating electrode array with a high electrode-count and high electrode-density (the number of electrodes/mm2) that can be used for electrophysiological studies of sub-millimeter neuroanatomical structures. We have developed such a penetrating microelectrode array with both a high electrode-density (25 electrodes/mm2) and high electrode-count (up to 96 electrodes) for small nervous system structures, based on the existing Utah Slanted Electrode Array (USEA). Such high electrode-density arrays are expected to provide greater access to nerve fibers than the conventionally spaced USEA especially in small diameter nerves. Approach. One concern for such high density microelectrode arrays is that they may cause a nerve crush-type injury upon implantation. We evaluated this possibility during acute (<10 h) in vivo experiments with electrode arrays implanted into small diameter peripheral nerves of anesthetized rats (sciatic nerve) and cats (pudendal nerve). Main results. Successful intrafascicular implantation and viable nerve function was demonstrated via microstimulation, single-unit recordings and histological analysis. Measurements of the electrode impedances and quantified electrode dimensions demonstrated fabrication quality. The results of these experiments show that such high density neural interfaces can be implanted acutely into neural tissue without causing a complete nerve crush injury, while mediating intrafascicular access to fibers in small diameter peripheral nerves. Significance. This new penetrating microelectrode array has characteristics un-matched by other neural interface devices currently available for peripheral nervous system neurophysiological research.

  12. The donor star winds in High-Mass X-ray Binaries

    NASA Astrophysics Data System (ADS)

    Oskinova, Lida

    2014-10-01

    High-mass X-ray binaries (HMXBs) are essential astrophysical laboratories. These objects represent an advanced stage in the evolution of massive binary systems, after the initially more massive star has already collapsed in a supernova explosion, but its remnant, a neutron star or black hole, remains gravitationally bound. The stellar wind from the OB-type donor is partially accreted onto its compact companion powering its relatively high X-ray luminosity. Since HMXBs accrete from the stellar wind, parameters such as the donor's mass-loss rate, the velocity of the wind, and its clumpiness are of fundamental importance.This proposal takes advantage of the unique capabilities of HST/STIS for UV spectroscopy. We focus on the most populous in the Galaxy class of those HMXBs where the stellar wind of the OB donor is directly accreted onto a neutron star. Recently, a new sub-class of HMXBs - "supergiant fast X-ray transients" - was discovered. It has been proposed that these enigmatic objects can be explained by the specific properties of their donor-star winds. The only way to validate or disprove this hypothesis is by a studying the wind diagnostics lines in the UV spectra of donor stars. The observations proposed here will, for the first time, provide the UV spectra of this important new type of accreting binaries. Our state-of-the art non-LTE expanding stellar atmospheres and 3-D stellar wind simulations allow thorough exploitation of the STIS spectra. As a result we will obtain the wind parameters for a representative sample of six Galactic HMXBs, thus heightening our knowledge thereof considerably.

  13. The Inland Penetration of Atmospheric Rivers over Western North America: A Lagrangian Analysis

    NASA Astrophysics Data System (ADS)

    Rutz, J. J.; Steenburgh, W. J.; Ralph, F. M.

    2014-12-01

    Although atmospheric rivers (ARs) typically weaken following landfall, those that penetrate inland can contribute to heavy precipitation and high-impact weather within the interior of western North America. In this paper, we examine the evolution of ARs over western North America using trajectories released at 950 and 700 hPa within cool-season ARs along the Pacific coast. These trajectories are classified as coastal decaying, inland penetrating, or interior penetrating based on whether they remain within an AR upon reaching selected transects over western North America. Interior-penetrating AR trajectories most frequently make landfall along the Oregon coast, but the greatest fraction of landfalling AR trajectories that eventually penetrate into the interior is found along the Baja Peninsula. In contrast, interior-penetrating trajectories rarely traverse the southern "high" Sierra. At landfall, interior-penetrating trajectories are associated with a more amplified flow pattern, more southwesterly (vs. westerly) flow along the Pacific coast, and larger water vapor transport (qu). The larger initial qu of interior-penetrating trajectories is due primarily to larger initial water vapor (q) and wind speed (u) for those initiated at 950 and 700 hPa, respectively. Inland- and interior-penetrating AR trajectories maintain large qu over the interior due partially to increases in u that offset decreases in q, particularly in the vicinity of topographical barriers. Therefore, synoptic conditions and trajectory pathways favoring larger initial qu at the coast, limited water vapor depletion by orographic precipitation, and increases in u over the interior are keys to differentiating interior-penetrating from coastal-decaying AR trajectories.

  14. Measurement and modeling of the low-temperature penetration-depth anomaly in high-quality MgB2 thin films

    NASA Astrophysics Data System (ADS)

    Agassi, Y. D.; Oates, D. E.; Moeckly, B. H.

    2012-10-01

    Based on our measurements of intermodulation distortion in MgB2, we have previously proposed that the π energy-gap in MgB2 entails six nodal lines [Y.D. Agassi, D.E. Oates, and B.H. Moeckly, Phys. Rev. B 80 (2009) 174522]. Here we report high-precision measurements in MgB2 stripline resonators that show an increase of the penetration depth as the temperature is decreased below 5 K. This increase is consistent with the ℓ = 6 symmetry of the π energy gap that we have proposed. We interpret the increase as a manifestation of Andreev surface-attached states that are associated with the nodal lines of the π energy gap. Penetration-depth calculations are in good agreement with our data. To reconcile the present interpretation with existing literature, we review other penetration-depth data, magnetic-impurity and tunneling experiments, and data on the paramagnetic Meissner effect. We conclude that these data do not rule out the interpretation of our experimental data based on a nodal π energy gap.

  15. Investigation of a recent extreme-high temperature event in the Tokyo metropolitan are using numerical simulations: the potential role of a 'hybrid' foehn wind

    NASA Astrophysics Data System (ADS)

    Takane, Yuya; Kusaka, Hiroyuki; Kondo, Hiroaki

    2015-04-01

    A record-breaking high surface air temperature in Japan of 39.8 °C occurred at 1420 Japan Standard Time (JST) 24 June 2011 in Kumagaya located 60-km northwest of central Tokyo. This extreme temperature, the third-highest ever recorded in Kumagaya, forced 70 people in the local prefecture to be rushed to hospitals due to heat stroke. The day had westerly winds in the inland area of Tokyo and localized rainfall in the windward direction over the Chubu Mountains. Thus, the extreme high temperature (EHT) may have been influenced by a traditional foehn wind. But, as in Takane and Kusaka (2011), other EHT event occurred in 2007 may have been caused by a complex mechanism involving a combination of several types of foehn winds. Determining the mechanism requires the use of extensive observations and numerical simulations. The purpose of this study is to clarify quantitatively the mechanism of the EHT event on 24 June 2011, with a particular focus on the possible contributions of several combinations of foehn wind types. The contributions to temperature increase are analysed using a heat budget analysis of the control volume, a backward trajectory analysis, a Lagrangian energy budget analysis, an Eulerian forward tracer analysis, and an analysis of diabatic heating from the surface. In 2011 EHT event, surface air temperatures exceeding 37.0 °C were recorded in and around Kumagaya, an area just north of the convergence line between westerly winds from the Chubu Mountains (complex terrains) and southwesterly sea breeze from the Pacific Ocean. To determine the mechanism of this EHT event, we applied various analyses using the Weather Research and Forecasting (WRF) model Version 3.1.1. The WRF model successfully reproduces the physical features of the wind and temperature distributions and diurnal variations. To quantitatively evaluate the mechanism underlying the temperature change in the mixed layer on high-temperature area, we analyze the heat budget of a control volume

  16. North Wind Power Company 2-kilowatt high-reliability wind system. Phase I. Design and analysis. Technical report

    SciTech Connect

    Mayer, D J; Norton, Jr, J H

    1981-07-01

    Results are presented of Phase I of a program to design a 2kW high reliability wind turbine for use in remote locations and harsh environments. In phase I of the program, a predecessor of the proposed design was procured and tested in a wind tunnel and in the freestream to observe operational characteristics. An analytical procedure was developed for designing and modelling the proposed variable axis rotor control system (VARCS). This was then verified by extensive mobile testing of pre-prototype components. A low speed three phase alternator with a Lundel type rotor was designed. Prototypes were fabricated and tested to refine calculation procedures and develop an effective alternator with appropriate characteristics. A solid state field switching regulator was designed and tested successfully. All necessary support elements were designed and engineered. A complete analysis of system reliability was conducted including failure mode and effects analyses and reliability, maintenance and safety analyses. Cost estimates were performed for a mature product in production rates of 1000 per year. Analysis and testing conducted throughout the first phase is included.

  17. North Wind Power Company 2-kilowatt high-reliability wind system. Phase I: design and analysis executive summary

    SciTech Connect

    Mayer, D J; Norton, Jr, J H

    1981-07-01

    The results of Phase I of a program to design a 2kw high reliability wind turbine for use in remote locations and harsh environments are presented. A predecessor of the proposed design was procured and tested in a wind tunnel and in the freestream to observe operational characteristics. An analytical procedure was developed for designing and modelling the proposed variable axis rotor control system (VARCS). This was then verified by extensive mobile testing of pre-prototype components. A new low speed three phase alternator with a Lundel type rotor was designed. Prototypes were fabricated and tested to refine calculation procedures and develop an effective alternator with appropriate characteristics. A solid state field switching regulator was designed and tested successfully. All necessary support elements were designed and engineered. A complete analysis of system reliability was conducted, including failure mode and effects analyses and reliability, maintenance and safety analyses. Cost estimates were made for a mature product in production rates of 1000 per year. Analysis and testing conducted throughout the first phase is included in this report. Final prototype fabrication and testing will be covered in a subsequent Phase II report.

  18. Numerical Study of the High-Speed Leg of a Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Nayani, Sudheer; Sellers, William L., III; Brynildsen, Scott E.; Everhart, Joel L.

    2015-01-01

    The paper describes the numerical study of the high-speed leg of the NASA Langley 14 by 22-foot Low Speed Wind Tunnel. The high-speed leg consists of the Settling Chamber, Contraction, Test Section, and First Diffuser. Results are shown comparing two different exit boundary conditions and two different methods of determining the surface geometry.

  19. Comparison of Drop and Wind-Tunnel Experiments on Bomb Drag at High Subsonic Speeds

    NASA Technical Reports Server (NTRS)

    Gothert, B.

    1948-01-01

    The drag coefficients of bombs at high velocities velocity of fall was 97 percent of the speed of sound) (the highest are determined by drop tests and compared with measurements taken in the DVL high-speed closed wind tunnel and the open jet at AVA - Gottingen.

  20. High speed wind tunnel tests of the PTA aircraft. [Propfan Test Assessment Program

    NASA Technical Reports Server (NTRS)

    Aljabri, A. S.; Little, B. H., Jr.

    1986-01-01

    Propfans, advanced highly-loaded propellers, are proposed to power transport aircraft that cruise at high subsonic speeds, giving significant fuel savings over the equivalent turbofan-powered aircraft. NASA is currently sponsoring the Propfan Test Assessment Program (PTA) to provide basic data on the structural integrity and acoustic performance of the propfan. The program involves installation design, wind-tunnel tests, and flight tests of the Hamilton Standard SR-7 propfan in a wing-mount tractor installation on the Gulfstream II aircraft. This paper reports on the high-speed wind-tunnel tests and presents the computational aerodynamic methods that were employed in the analyses, design, and evaluation of the configuration. In spite of the complexity of the configuration, these methods provide aerodynamic predictions which are in excellent agreement with wind-tunnel data.

  1. On transpolar arc formation correlated with solar wind entry at high latitude magnetosphere

    NASA Astrophysics Data System (ADS)

    Mailyan, B. G.; Shi, Q.; Maggiolo, R.; Zong, Q.; Fu, S.; Zhang, Y.; Yao, Z.; Sun, W.

    2014-12-01

    Recently, Cluster observations revealed the existence of new regions of solar wind plasma entry at the high latitudes of the Earth's magnetosphere, at the lobes tailward of the cusp region, mostly during periods of northward IMF. Such periods of northward IMF are associated with the presence of transpolar arcs. Observations from Global Ultraviolet Imager (GUVI) instrument onboard TIMED spacecraft are used to investigate a possible link between solar wind entry in the high latitude magnetosphere and the formation of transpolar arcs. Data from IMAGE and DMSP spacecraft are also used to investigate the time evolution and particle characteristics of the transpolar arc.We present a case study of a theta aurora correlated with the solar wind entry. The observations show a simultaneous occurrence of aurora activity at the magnetotail and high latitudes, suggesting two-part structure of the apparent continuous band of the transpolar arc.

  2. Wind Plant Ramping Behavior

    SciTech Connect

    Ela, E.; Kemper, J.

    2009-12-01

    With the increasing wind penetrations, utilities and operators (ISOs) are quickly trying to understand the impacts on system operations and planning. This report focuses on ramping imapcts within the Xcel service region.

  3. High-resolution wind hindcast over the Bohai Sea and the Yellow Sea in East Asia: Evaluation and wind climatology analysis

    NASA Astrophysics Data System (ADS)

    Li, Delei; Storch, Hans; Geyer, Beate

    2016-01-01

    A 34 year (1979-2012) high-resolution (7 km grid) atmospheric hindcast over the Bohai Sea and the Yellow Sea (BYS) has been performed using COSMO-CLM (CCLM) forced by ERA-Interim reanalysis data (ERA-I). The accuracy of CCLM in surface wind reproduction and the added value of dynamical downscaling to ERA-I have been investigated through comparisons with the QuikSCAT Level2B 12.5 km version 3 (L2B12v3) swath data and in situ observations. The results revealed that CCLM has a reliable ability to reproduce the regional wind characteristics over the BYS. Added value to ERA-I has been detected in the coastal areas with complex orography. CCLM wind quality had strong seasonal variability, with better performance in the summer relative to ERA-I, even in the offshore areas. CCLM was better able to represent light and moderate winds but had even more added value for strong winds relative to ERA-I. The spatial digital filter method was used to investigate the scale of the added value, and the results show that CCLM adds value to ERA-I mainly in medium scales of wind variability. Furthermore, wind climatology was investigated, and significant increasing trends in the south Yellow Sea especially in winter and spring were found for seasonal mean wind speeds.

  4. Influence of Geomagnetic and IMF conditions on High Latitude Upper Atmospheric winds and Temperatures

    NASA Astrophysics Data System (ADS)

    Dhadly, M. S.; Conde, M.; Emmert, J. T.

    2015-12-01

    We analyzed the climatological behavior of upper atmospheric winds (horizontal and vertical) and temperatures above Alaska by combining line-of-sight Doppler shifts of 630 nm optical emissions recorded during the 2011 and 2012 winters using a ground based all-sky wavelength scanning Doppler Fabry-Perot interferometer (SDI) located at Poker Flat (65.12N, 147.47W). The wide field of view covered a large geographic region above Alaska. This field was divided in software into multiple zones (115 used here), allowing independent spectra to be sampled from many directions simultaneously. As a result, it is capable of recording the wind field's spatial variations over a wide geographic region with high spatial resolution, and to resolve these variations over time. Although such climatological studies have been performed previously using satellites, models, and narrow field Fabry-Perot interferometers, there are no published climatological studies of thermospheric winds and temperatures using either SDI data or any other technique with comparable geographic coverage and resolution. Wind summary dial plots were produced to depict the climatology of the horizontal winds and temperatures for different geomagnetic conditions and orientation of interplanetary magnetic field (IMF). Results show that horizontal winds and temperatures had a strong dependence on geospace activity and orientation of IMF. The latitudinal shears in horizontal winds were stronger when geomagnetic conditions were active compared to the latitudinal shears for quiet conditions. Also, shears appeared earlier over Poker Flat when geomagnetic conditions were active. The latitudinal shears showed more dependence on IMF when geomagnetic conditions were active than they did during quieter conditions. F-region temperatures were higher under active geomagnetic conditions than during quiet conditions. They were also observed to be higher in pre-magnetic midnight sector (duskside) than they were post

  5. The effects of the stellar wind and orbital motion on the jets of high-mass microquasars

    NASA Astrophysics Data System (ADS)

    Bosch-Ramon, V.; Barkov, M. V.

    2016-05-01

    Context. High-mass microquasar jets propagate under the effect of the wind from the companion star, and the orbital motion of the binary system. The stellar wind and the orbit may be dominant factors determining the jet properties beyond the binary scales. Aims: This is an analytical study, performed to characterise the effects of the stellar wind and the orbital motion on the jet properties. Methods: Accounting for the wind thrust transferred to the jet, we derive analytical estimates to characterise the jet evolution under the impact of the stellar wind. We include the Coriolis force effect, induced by orbital motion and enhanced by the wind's presence. Large-scale evolution of the jet is sketched, accounting for wind-to-jet thrust transfer, total energy conservation, and wind-jet flow mixing. Results: If the angle of the wind-induced jet bending is larger than its half-opening angle, the following is expected: (i) a strong recollimation shock; (ii) bending against orbital motion, caused by Coriolis forces and enhanced by the wind presence; and (iii) non-ballistic helical propagation further away. Even if disrupted, the jet can re-accelerate due to ambient pressure gradients, but wind entrainment can weaken this acceleration. On large scales, the opening angle of the helical structure is determined by the wind-jet thrust relation, and the wind-loaded jet flow can be rather slow. Conclusions: The impact of stellar winds on high-mass microquasar jets can yield non-ballistic helical jet trajectories, jet partial disruption and wind mixing, shocks, and possibly non-thermal emission. Among other observational diagnostics, such as radiation variability at any band, the radio morphology on milliarcsecond scales can be informative on the wind-jet interaction.

  6. All-fiber upconversion high spectral resolution wind lidar using a Fabry-Perot interferometer.

    PubMed

    Shangguan, Mingjia; Xia, Haiyun; Wang, Chong; Qiu, Jiawei; Shentu, Guoliang; Zhang, Qiang; Dou, Xiankang; Pan, Jian-Wei

    2016-08-22

    An all-fiber, micro-pulse and eye-safe high spectral resolution wind lidar (HSRWL) at 1.5 μm is proposed and demonstrated by using a pair of upconversion single-photon detectors and a fiber Fabry-Perot scanning interferometer (FFP-SI). In order to improve the optical detection efficiency, both the transmission spectrum and the reflection spectrum of the FFP-SI are used for spectral analyses of the aerosol backscatter and the reference laser pulse. Taking advantages of high signal-to-noise ratio of the detectors and high spectral resolution of the FFP-SI, the center frequencies and the bandwidths of spectra of the aerosol backscatter are obtained simultaneously. Continuous LOS wind observations are carried out on two days at Hefei (31.843 °N, 117.265 °E), China. The horizontal detection range of 4 km is realized with temporal resolution of 1 minute. The spatial resolution is switched from 30 m to 60 m at distance of 1.8 km. In a comparison experiment, LOS wind measurements from the HSRWL show good agreement with the results from an ultrasonic wind sensor (Vaisala windcap WMT52). An empirical method is adopted to evaluate the precision of the measurements. The standard deviation of the wind speed is 0.76 m/s at 1.8 km. The standard deviation of bandwidth variation is 2.07 MHz at 1.8 km. PMID:27557211

  7. Numerical modeling of solar wind influences on the dynamics of the high-latitude upper atmosphere

    NASA Astrophysics Data System (ADS)

    Förster, M.; Prokhorov, B. E.; Namgaladze, A. A.; Holschneider, M.

    2012-09-01

    Neutral thermospheric wind patterns at high latitudes obtained from cross-track acceleration measurements of the CHAMP satellite above both polar regions are used to deduce statistical neutral wind vorticity distributions and were analyzed in their dependence on the Interplanetary Magnetic Field (IMF). The average pattern confirms the large duskside anticyclonic vortex seen in the average wind pattern and reveals a positive (cyclonic) vorticity on the dawnside, which is almost equal in magnitude to the duskside negative one. The IMF dependence of the vorticity pattern resembles the characteristic field-aligned current (FAC) and ionospheric plasma drift pattern known from various statistical studies obtained under the same sorting conditions as, e.g., the EDI Cluster statistical drift pattern. There is evidence for hemispheric differences in the average magnitudes of the statistical patterns both for plasma drift and even more for the neutral wind vorticity. The paper aims at a better understanding of the globally interconnected complex plasma physical and electrodynamic processes of Earth's upper atmosphere by means of first-principle numerical modeling using the Upper Atmosphere Model (UAM). The simulations of, e.g., thermospheric neutral wind and mass density at high latitudes are compared with CHAMP observations for varying IMF conditions. They show an immediate response of the upper atmosphere and its high sensitivity to IMF changes in strength and orientation.

  8. Penetration of concrete targets

    SciTech Connect

    Forrestal, M.J.; Cargile, J.D.; Tzou, R.D.Y.

    1993-08-01

    We developed penetration equations for ogive-nosed projectiles that penetrated concrete targets after normal impact. Our penetration equations predict axial force on the projectile nose, rigid-body motion, and final penetration depth. For target constitutive models, we conducted triaxial material experiments to confining pressures of 600 MPa and curve-fit these data with a linear pressure-volumetric strain relation and with a linear Mohr-Coulomb, shear strength-pressure relation. To verify our penetration equations, we conducted eleven penetration experiments with 0.90 kg, 26.9-mm-diameter, ogive-nosed projectiles into 1.37-m-diameter concrete targets with unconfined compressive strengths between 32-40 MPa. Predictions from our penetration equation are compared with final penetration depth measurements for striking velocities between 280--800 m/s.

  9. Development of an Apparatus for Wind Tunnel Dynamic Experiments at High-alpha

    NASA Technical Reports Server (NTRS)

    Pedreiro, Nelson

    1997-01-01

    A unique experimental apparatus that allows a wind tunnel model two degrees of freedom has been designed and built. The apparatus was developed to investigate the use of new methods to augment aircraft control in the high angle of attack regime. The model support system provides a platform in which the roll-yaw coupling at high angles of attack can be studied in a controlled environment. Active cancellation of external effects is used to provide a system in which the dynamics are dominated by the aerodynamic loads acting on the wind tunnel model.

  10. A Transverse Flux High-Temperature Superconducting Generator Topology for Large Direct Drive Wind Turbines

    NASA Astrophysics Data System (ADS)

    Keysan, Ozan; Mueller, Markus A.

    The cost and mass of an offshore wind turbine power-train can be reduced by using high-temperature superconducting generators, but for a successful commercial design the superconducting generator should be as reliable as its alternatives. In this paper, we present a novel transverse flux superconducting generator topology which is suitable for low-speed, high-torque applications. The generator is designed with a stationary superconducting field winding and a variable reluctance claw pole motor for simplified mechanical structure and maximum reliability. 3D FEA simulation results of a 70 kW prototype is presented.

  11. A High-Resolution Merged Wind Dataset for DYNAMO: Progress and Future Plans

    NASA Technical Reports Server (NTRS)

    Lang, Timothy J.; Mecikalski, John; Li, Xuanli; Chronis, Themis; Castillo, Tyler; Hoover, Kacie; Brewer, Alan; Churnside, James; McCarty, Brandi; Hein, Paul; Rutledge, Steve; Dolan, Brenda; Matthews, Alyssa; Thompson, Elizabeth

    2015-01-01

    In order to support research on optimal data assimilation methods for the Cyclone Global Navigation Satellite System (CYGNSS), launching in 2016, work has been ongoing to produce a high-resolution merged wind dataset for the Dynamics of the Madden Julian Oscillation (DYNAMO) field campaign, which took place during late 2011/early 2012. The winds are produced by assimilating DYNAMO observations into the Weather Research and Forecasting (WRF) three-dimensional variational (3DVAR) system. Data sources from the DYNAMO campaign include the upper-air sounding network, radial velocities from the radar network, vector winds from the Advanced Scatterometer (ASCAT) and Oceansat-2 Scatterometer (OSCAT) satellite instruments, the NOAA High Resolution Doppler Lidar (HRDL), and several others. In order the prep them for 3DVAR, significant additional quality control work is being done for the currently available TOGA and SMART-R radar datasets, including automatically dealiasing radial velocities and correcting for intermittent TOGA antenna azimuth angle errors. The assimilated winds are being made available as model output fields from WRF on two separate grids with different horizontal resolutions - a 3-km grid focusing on the main DYNAMO quadrilateral (i.e., Gan Island, the R/V Revelle, the R/V Mirai, and Diego Garcia), and a 1-km grid focusing on the Revelle. The wind dataset is focused on three separate approximately 2-week periods during the Madden Julian Oscillation (MJO) onsets that occurred in October, November, and December 2011. Work is ongoing to convert the 10-m surface winds from these model fields to simulated CYGNSS observations using the CYGNSS End-To-End Simulator (E2ES), and these simulated satellite observations are being compared to radar observations of DYNAMO precipitation systems to document the anticipated ability of CYGNSS to provide information on the relationships between surface winds and oceanic precipitation at the mesoscale level. This research will

  12. Stellar Winds and High-Energy Radiation: Evolution and influences on planetary atmospheres

    NASA Astrophysics Data System (ADS)

    Johnstone, C.; Tu, L.; Güdel, M.; Lüftinger, T.; Lammer, H.; Kislyakova, K.; Fichtinger, B.

    2015-10-01

    As part of the Austrian research network "Pathways to Habitability: From Disks to Active Stars, Planets and Life" (path.univie.ac.at), we study the evolution of stellar output (e.g. winds, high-energy radiation) over the lifetimes of solar-like stars and the influence of stellar output on the development of habitable planetary environments. We have developed a coupled stellar rotation-wind-radiation model that describes the long term evolution of stellar output over the course of a star's life. We show that the initial rotation rate of a star can significantly influence the evolution of winds and high-energy radiation and therefore the development of planetary atmospheres.

  13. Transpolar arc observation after solar wind entry into the high-latitude magnetosphere

    NASA Astrophysics Data System (ADS)

    Mailyan, B.; Shi, Q. Q.; Kullen, A.; Maggiolo, R.; Zhang, Y.; Fear, R. C.; Zong, Q.-G.; Fu, S. Y.; Gou, X. C.; Cao, X.; Yao, Z. H.; Sun, W. J.; Wei, Y.; Pu, Z. Y.

    2015-05-01

    Recently, Cluster observations have revealed the presence of new regions of solar wind plasma entry at the high-latitude magnetospheric lobes tailward of the cusp region, mostly during periods of northward interplanetary magnetic field. In this study, observations from the Global Ultraviolet Imager (GUVI) experiment on board the TIMED spacecraft and Wideband Imaging Camera imager on board the IMAGE satellite are used to investigate a possible link between solar wind entry and the formation of transpolar arcs in the polar cap. We focus on a case when transpolar arc formation was observed twice right after the two solar wind entry events were detected by the Cluster spacecraft. In addition, GUVI and IMAGE observations show a simultaneous occurrence of auroral activity at low and high latitudes after the second entry event, possibly indicating a two-part structure of the continuous band of the transpolar arc.

  14. Cement penetration after patella venting.

    PubMed

    Jones, Christopher W; Lam, Li-On; Butler, Adam; Wood, David J; Walsh, William R

    2009-01-01

    There is a high rate of patellofemoral complications following total knee arthroplasty. Optimization of the cement-bone interface by venting and suction of the tibial plateau has been shown to improve cement penetration. Our study was designed to investigate if venting the patella prior to cementing improved cement penetration. Ten paired cadaver patellae were allocated prior to resurfacing to be vented or non-vented. Bone mineral density (BMD) was measured by DEXA scanning. In vented specimens, a 1.6 mm Kirschner wire was used to breach the anterior cortex at the center. Specimens were resurfaced with standard Profix instrumentation and Versabond bone cement (Smith and Nephew PLC, UK). Cement penetration was assessed from Faxitron and sectioned images by a digital image software package (ImageJ V1.38, NIH, USA). Wilcoxon rank sum test was used to assess the difference in cement penetration between groups. The relationship between BMD and cement penetration was analyzed by Pearson correlation coefficient. There was a strong negative correlation between peak BMD and cement penetration when analyzed independent of experimental grouping (r(2)=-0.812, p=0.004). Wilcoxon rank sum testing demonstrated no significant difference (rank sum statistic W=27, p=0.579) in cement penetration between vented (10.53%+/-4.66; mean+/-std dev) and non-vented patellae (11.51%+/-6.23; mean+/-std dev). Venting the patella using a Kirschner wire does not have a significant effect on the amount of cement penetration achieved in vitro using Profix instrumentation and Versabond cement. PMID:19010682

  15. Demonstration of survivable space penetrator

    NASA Astrophysics Data System (ADS)

    Church, Philip; Huntington-Thresher, William; Bruce, Alan; Penny, Nick; Smith, Alan; Gowan, Rob

    2012-03-01

    This work was performed in support of MoonLITE which is a proposed UK space mission to the moon. The basic premise is to deploy 4 instrumented penetrators, one each on the near-side, farside and at the poles of the moon, with an impact velocity of approximately 300m/s. The primary science aims are to set up a passive seismometer network, investigate the presence of water and volatiles and determine thermal gradients in the lunar soil (i.e. regolith). A key requirement is that the penetrator shell survives the impact together with the instrument payload and supporting subsystems. The material chosen for the penetrator shell was 7075 aluminium alloy, which is a good compromise between high compressive strength and low mass. The baseline penetrator design was evaluated and refined using the DYNA3D hydrocode to determine the survivability of the penetrator in sand at an impact velocity of 300m/s and an attack angle of 8°. The simulations predicted that the penetrator design would survive this severe impact condition which was confirmed by experiments on the Pendine rocket test track.

  16. Evaluation of High-Resolution Ocean Surface Vector Winds Measured by QuikSCAT Scatterometer in Coastal Regions

    NASA Technical Reports Server (NTRS)

    Tang, Wenqing; Liu, W. Timothy; Stiles, Bryan W.

    2004-01-01

    The SeaWinds scatterometer onboard QuikSCAT covers approximately 90% of the global ocean under clear and cloudy condition in 24 h, and the standard data product has 25-km spatial resolution. Such spatial resolution is not sufficient to resolve small-scale processes, especially in coastal oceans. Based on range-compressed normalized backscatter and a modified wind retrieval algorithm, a coastal wind dataset at 12.5-km resolution was produced. Even with larger error, the high-resolution winds, in medium to high strength, would still be useful over coastal ocean. Using measurements from moored buoys from the National Buoy Data Center, the high-resolution QuikSCAT wind data are found to have similar accuracy as standard data in the open ocean. The accuracy of both high- and standard-resolution winds, particularly in wind directions, is found to degrade near shore. The increase in error is likely caused by the inadequacy of the geophysical model function/ambiguity removal scheme in addressing coastal conditions and light winds situations. The modified algorithm helps to bring the directional accuracy of the high-resolution winds to the accuracy of the standard-resolution winds in near-shore regions, particularly in the nadir and far zones across the satellite track.

  17. Folic Acid-Targeted and Cell Penetrating Peptide-Mediated Theranostic Nanoplatform for High-Efficiency Tri-Modal Imaging-Guided Synergistic Anticancer Phototherapy.

    PubMed

    Li, Na; Li, Tingting; Liu, Chen; Ye, Shiyi; Liang, Jiangong; Han, Heyou

    2016-05-01

    A novel nanomaterial with precisely-defined size and shape, biocompatible composition, and excellent stability, which can integrate multi modal targeted imaging and therapy into a single system for visualized therapeutics, has recently attracted significant research interest. Here, we developed a multifunctional nanoplatform based on silica-coated 4-mercaptobenzoic acid-modified gold nanorods (Au NRs) decorated with gold nanoclusters rich in the photosensitizer Ce6 (Au-Ce6 NCs). The nanoparticles also comprised folic acid and cell penetrating peptide molecules anchored on the surface, obtaining the Au@SiO2@Au-cell penetrating peptide nanocomposite. The Au-Ce6 NCs enhanced the photophysical stability, provided numerous bonding sites and offered a large surface-area and interior space to achieve a high drug loading efficiency (up to 55%). The anchored folic acid and cell penetrating peptide synergistically enhanced the efficiency of uptake of nanocomposites by HeLa cells (up to 70.7%) and improved therapeutic efficacy. The nanocomposite also has good water-solubility, excellent biocompatibility, and long-term stability against illumination and exposure to pH 3-12, thus facilitating their bioapplications in cancer theranostics. Here, the nanocomposite was established for high-resolution and noninvasive tri-modal surface-enhanced Raman spectrum/dark-field/fluorescence imaging-guided high-efficiency synergistic photodynamic/photothermal therapy of cancer. Our studies demonstrate that the multifunctional nanocomposite has the potential as a novel and sensitive contrast agent for complementary and synergistic theranostics in the clinic. PMID:27305812

  18. Development of the NASA High-Altitude Imaging Wind and Rain Airborne Profiler

    NASA Technical Reports Server (NTRS)

    Li, Lihua; Heymsfield, Gerald; Carswell, James; Schaubert, Dan; McLinden, Matthew; Vega, Manuel; Perrine, Martin

    2011-01-01

    The scope of this paper is the development and recent field deployments of the High-Altitude Imaging Wind and Rain Airborne Profiler (HIWRAP), which was funded under the NASA Instrument Incubator Program (IIP) [1]. HIWRAP is a dual-frequency (Ka- and Ku-band), dual-beam (300 and 400 incidence angles), conical scanning, Doppler radar system designed for operation on the NASA high-altitude (65,000 ft) Global Hawk Unmanned Aerial System (UAS). It utilizes solid state transmitters along with a novel pulse compression scheme that results in a system with compact size, light weight, less power consumption, and low cost compared to radars currently in use for precipitation and Doppler wind measurements. By combining measurements at Ku- and Ka-band, HIWRAP is able to image winds through measuring volume backscattering from clouds and precipitation. In addition, HIWRAP is also capable of measuring surface winds in an approach similar to SeaWinds on QuikScat. To this end, HIWRAP hardware and software development has been completed. It was installed on the NASA WB57 for instrument test flights in March, 2010 and then deployed on the NASA Global Hawk for supporting the Genesis and Rapid Intensification Processes (GRIP) field campaign in August-September, 2010. This paper describes the scientific motivations of the development of HIWRAP as well as system hardware, aircraft integration and flight missions. Preliminary data from GRIP science flights is also presented.

  19. Initial investigations of transonic turbine aerodynamics using the Carleton University High-Speed Wind Tunnel

    NASA Astrophysics Data System (ADS)

    Jeffries, Michael Scott

    In recent years, Carleton University has been commissioning a high-speed blow down wind tunnel. The wind tunnel was commissioned to support on-going axial turbine research efforts and to provide a facility for transonic turbine cascade research. Much effort has been made at Carleton to investigate the performance of axial turbines at off-design conditions and to develop correlations to be used for predicting turbine off-design performance. The current study was a contribution to the off-design work being done at Carleton. This thesis describes the first transonic turbine cascade study conducted using the Carleton University High-Speed Wind Tunnel. To document the Carleton wind tunnel capabilities, cascade measurements were taken and compared to four European wind tunnels using the same cascade at equivalent conditions. The development of experimental procedures used at Carleton and estimates of measurement uncertainties are also presented in this text. Measurements at off-design incidences were made using a transonic turbine cascade to increase the body of published data on off-design turbine performance.

  20. Evaluation of ground penetrating radar and resistivity profilings for characterizing lithology and moisture content changes: a case study of the high-conductivity United Kingdom Triassic sandstones

    NASA Astrophysics Data System (ADS)

    Hossain, Delwar

    2013-12-01

    High-resolution geophysical techniques can be employed as a means of characterizing the lithological changes within materials frequently known to be variable. Ground penetrating radar (GPR) profiling using 50, 100, 200, and 400 MHz antennae and electrical resistivity imaging have been used to investigate high-conductivity United Kingdom Triassic sandstone lithology and moisture content changes. The investigation site is located outside the School of Geography, Earth and Environmental Sciences at the University of Birmingham on a gentle grassy slope. Three GPR and electrical imaging lines were completed over this site. The results of the observations reveal a higher degree of both vertical and lateral heterogeneity of the highly conductive sandstones. The results obtained using these two high-resolution geophysical tools agree reasonably well with each other. These techniques appear to be useful for high resolution and continuous mapping of the subsurface sediments.

  1. X-ray wind tomography of the highly absorbed HMXB IGR J17252-3616

    NASA Astrophysics Data System (ADS)

    Manousakis, A.; Walter, R.

    2011-02-01

    Context. About ten persistently highly absorbed super-giant high-mass X-ray binaries (sgHMXB) have been discovered by INTEGRAL as bright hard X-ray sources lacking bright X-ray counterparts. Besides IGR J16318-4848, which has peculiar characteristics, the other members of this family share many properties with the classical wind-fed sgHMXB systems. Aims: Our goal is to understand the characteristics of highly absorbed sgHMXB and in particular the companion stellar wind, which is thought to be responsible for the strong absorption. Methods: We monitored IGR J17252-3616, a highly absorbed system featuring eclipses, with XMM-Newton to study the variability of the column density and the Fe Kα emission line along the orbit and during the eclipses. We also compiled a 3D model of the stellar wind to reproduce the observed variability. Results: We first derive a refined orbital solution based on INTEGRAL, RXTE, and XMM-Newton data. We find that the XMM-Newton monitoring campaign reveals significant variations in the intrinsic absorbing column density along the orbit and the Fe Kα line equivalent width around the eclipse. The origin of the soft X-ray absorption is associated with a dense and extended hydrodynamical tail, trailing the neutron star. This structure extends along most of the orbit, indicating that the stellar wind has been strongly disrupted. The variability of the absorbing column density suggests that the wind velocity is smaller (\\upsilon∞ ≈ 400 km s-1) than observed in classical systems. This may also explain the much stronger density perturbation inferred from the observations. Most of the Fe Kα emission is generated in the innermost region of the hydrodynamical tail. This region, which extends over a few accretion radii, is ionized and does not contribute to the soft X-ray absorption. Conclusions: We present a qualitative model of the stellar wind of IGR J17252-3616 that can represent the observations, and we suggest that highly absorbed systems

  2. High-penetration imaging of retinal and choroidal pathologies by 1 μm swept-source OCT and optical coherence angiography

    NASA Astrophysics Data System (ADS)

    Yasuno, Yoshiaki; Miura, Masahiro; Okamoto, Fumiki; Hong, Youngjoo

    2008-02-01

    Two pathologic cases are evaluated by high-penetration optical coherence tomography (HP-OCT) to demonstrate its clinical significance. The HP-OCT is based on a swept-source OCT (SS-OCT) technology with a probe wavelength of 1.06 μm. The depth resolution is 10.4 μm in tissue, and the measurement speed is 28,000 depth-scans/sec. A single case of age-related macular degeneration and a single case of Vogt-Koyanagi-Harada disease are examined by HP-OCT.

  3. Fluorescent penetrant inspection

    NASA Technical Reports Server (NTRS)

    Sastri, Sankar

    1990-01-01

    The purpose of this experiment is to familiarize the student with fluorescent penetrant inspection and to relate it to classification of various defects. The penetrant method of nondestructive testing is a method for finding discontinuities open to the surface in solids and essentially nonporous bodies. The method employs a penetrating liquid which is applied over the surface and enters the discontinuity or crack. After the excess of penetrant has been cleaned from the surface, the penetrant which exudes or is drawn back out of the crack indicates the presence and location of a discontinuity. The experimental procedure is described.

  4. FAA fluorescent penetrant activities

    SciTech Connect

    Moore, D.G.; Larson, B.F.

    1997-11-01

    The Federal Aviation Administration`s Airworthiness Assurance NDI Validation Center (AANC) and the Center for Aviation Systems Reliability (CASR) are currently working to develop a liquid penetrant inspection (LPI) system evaluation capability that will support the needs of the penetrant manufacturers, commercial airline industry and the FAA. The main focus of this facility is to support the evaluation of penetrant inspection materials, penetrant systems and to apply resources to support industry needs. This paper discusses efforts to create such a facility and an initial project to produce fatigue crack specimens for evaluation of Type 1 penetrant sensitivities.

  5. Solar wind decrease at high heliographic latitudes detected from Prognoz interplanetary Lyman alpha mapping

    SciTech Connect

    Lallement, R.; Bertaux, J.L.; Kurt, V.G.

    1985-02-01

    New evidence for a latitudinal decrease of the solar wind mass flux is presented from observations of the interplanetary Lyman alpha emission collected in 1976 and 1977 with satellites Prognoz 5 and 6. The flow of interstellar hydrogen atoms in the solar system is ionized by EUV solar radiation and charge exchange with solar wind protons which accounts for about 80% of the total ionization rate. The resulting gradual decrease of the neutral H density from the upwind region down to the downwind region observed from Ly ..cap alpha.. intensity measurements allowed the determination of the absolute value of the total ionization rate ..beta.. for one H atom at 1 AU against ionization. Collected in 1976 and 1977 at five places in the solar system, The measurements are first compared to a model which assumes isotropy of the EUV and solar wind. Strong departures are obvious toward high-latitude regions, especially when the observer is in the downwind region where the solar wind ionization has had more time to act (cumulative effect). A model was constructed which include a decrease of the ionization rate with heliographic latitude. The adjustment of data allowed for the measurement of the absolute value of the total ionization rate and implies a 50% latitude decrease of the ionization rate due to charge exchange with the solar wind, from ..beta../sub s//sub w/ = (3.9 +- 0.5) x 10/sup -8/ s/sup -1/ at the equator to ..beta../sub s//sub w/ = (2.0 +- 0.5) x 10/sup -8/ s/sup -1/ at the pole. The corresponding absolute value of the solar wind proton flux is (2.4-3.6) x 10/sup 8/ cm/sup -2/ s/sup -1/ at the equator and twice less at the pole if a constant velocity is assumed for the solar wind.

  6. Singular year of high geomagnetic responses to the same solar wind input

    NASA Astrophysics Data System (ADS)

    Yamauchi, Masatoshi; Olsthoorn, Bart; Nicolaou, Georgios

    2016-04-01

    Using high-resolution (5 min) solar wind data and westward auroral electrojet index (AL) index since 1981, temporal variation of the Sun-Earth coupling efficiency (AL response to the solar wind electromagnetic energy/flux input) was examined. To separate the seasonal variation, 3-month averaged statistics is used. (1) The Sun-Earth coupling efficiency for moderate solar wind input occasionally increased beyond the seasonal variation for about half a year during the declining phase of solar cycles; (2) Excluding these singular years and seasonal variation, the Sun-Earth coupling efficiency for moderate or low solar wind input continuously decreased over the past three decades; (3) These temporal variations do not correlate with F10.7 index (proxy for the Solar UV flux). The results confirm some of the previous study using 1-hour resolution data with a better accuracy, and suggest that the existence of additional controlling mechanisms either at the Sun (e.g., magnetic field or solar cycle strength) or solar wind-magnetosphere-ionosphere coupling (e.g., through the solar wind composition). On the other hand, the Sun-Earth coupling efficiency for large solar wind input is very variable and the present correlation method is not sufficient to determine the conditions for large AL activities and its temporal variation. Acknowledgement: Auroral electrojet (AE) indices and sunspot numbers (RI) are official IAGA and IAA endorsed indices that are provided by World Data Center for Geomagnetism, Kyoto University, Japan (AE) and the Royal Observatory of Belgium, Brussels (RI). Including these indices, all data in 5-minutes values are obtained from NASA-GSFC/SPDF through OMNIWeb (http://omniweb.gsfc.nasa.gov/ow.html).

  7. Maternal high-fat diet interacts with embryonic Cited2 genotype to reduce Pitx2c expression and enhance penetrance of left-right patterning defects.

    PubMed

    Bentham, Jamie; Michell, Anna C; Lockstone, Helen; Andrew, Daniel; Schneider, Jürgen E; Brown, Nigel A; Bhattacharya, Shoumo

    2010-09-01

    Deficiency of the transcription factor Cited2 in mice results in cardiac malformation, adrenal agenesis, neural tube, placental defects and partially penetrant cardiopulmonary laterality defects resulting from an abnormal Nodal->Pitx2c pathway. Here we show that a maternal high-fat diet more than doubles the penetrance of laterality defects and, surprisingly, induces palatal clefting in Cited2-deficient embryos. Both maternal diet and Cited2 deletion reduce embryo weight and kidney and thymus volume. Expression profiling identified 40 embryonic transcripts including Pitx2 that were significantly affected by embryonic genotype-maternal diet interaction. We show that a high-fat diet reduces Pitx2c levels >2-fold in Cited2-deficient embryos. Taken together, these results define a novel interaction between maternal high-fat diet and embryonic Cited2 deficiency that affects Pitx2c expression and results in abnormal laterality. They suggest that appropriate modifications of maternal diet may prevent such defects in humans. PMID:20566713

  8. MODELING HIGH-VELOCITY QSO ABSORBERS WITH PHOTOIONIZED MAGNETOHYDRODYNAMIC DISK WINDS

    SciTech Connect

    Fukumura, Keigo; Kazanas, Demosthenes; Behar, Ehud

    2010-11-10

    We extend our modeling of the ionization structure of magnetohydrodynamic (MHD) accretion-disk winds, previously applied to Seyfert galaxies, to a population of quasi-stellar objects (QSOs) of much lower X-ray-to-UV flux ratios, i.e., smaller {alpha}{sub ox} index, motivated by UV/X-ray ionized absorbers with extremely high outflow velocities in UV-luminous QSOs. We demonstrate that magnetically driven winds ionized by a spectrum with {alpha}{sub ox} {approx_equal} -2 can produce the charge states responsible for C IV and Fe XXV/Fe XXVI absorption in wind regions with corresponding maximum velocities of v(C IV) {approx_lt}0.1c and v(Fe XXV) {approx_lt} 0.6c (where c is the speed of light) and column densities N {sub H} {approx} 10{sup 23}-10{sup 24} cm{sup -2}, in general agreement with observations. In contrast to the conventional radiation-driven wind models, high-velocity flows are always present in our MHD-driven winds but manifest in the absorption spectra only for {alpha}{sub ox} {approx_lt} -2, as larger {alpha}{sub ox} values ionize the wind completely out to radii too large to demonstrate the presence of these high velocities. We thus predict increasing velocities of these ionized absorbers with decreasing (steeper) {alpha}{sub ox}, a quantity that emerges as the defining parameter in the kinematics of the active galactic nucleus UV/X-ray absorbers.

  9. Atomization, drop size, and penetration for cross-stream water injection at high-altitude reentry conditions with application to the RAM C-1 and C-3 flights

    NASA Technical Reports Server (NTRS)

    Gooderum, P. B.; Bushnell, D. M.

    1972-01-01

    Atomization, drop size, and penetration data are presented for cross stream water injection at conditions simulating high altitude reentry (low Weber number, high static temperature, high Knudsen number, and low static pressure). These results are applied to the RAM C-1 and C-3 flights. Two primary breakup modes are considered, vapor pressure or flashing and aerodynamic atomization. Results are given for breakup boundaries and mean drop size for each of these atomization mechanisms. Both standard and flight orifice geometries are investigated. The data were obtained in both a static environment and in conventional aerodynamic facilities at Mach numbers of 4.5 and 8. The high temperature aspects of reentry were simulated in a Mach 5.5 cyanogen-oxygen tunnel with total temperature of 4500 K.

  10. Field Wind Tunnel Testing of Two Silt Loam Soils in the North American Central High Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The change from conventional tillage to no-till cropping systems and the emergence of cropping systems with fewer and shorter fallow periods has resulted in reduced wind erosion on the North American Central High Plains. This reduction has been attributed primarily to increased surface coverage by ...

  11. The George C. Marshall Space Flight Center High Reynolds Number Wind Tunnel Technical Handbook

    NASA Technical Reports Server (NTRS)

    Gwin, H. S.

    1975-01-01

    The High Reynolds Number Wind Tunnel at the George C. Marshall Space Flight Center is described. The following items are presented to illustrate the operation and capabilities of the facility: facility descriptions and specifications, operational and performance characteristics, model design criteria, instrumentation and data recording equipment, data processing and presentation, and preliminary test information required.

  12. 78 FR 7402 - Small Takes of Marine Mammals Incidental to Specified Activities; Cape Wind's High Resolution...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-01

    ...NMFS has received an application from Cape Wind Associates (CWA) for an Incidental Harassment Authorization (IHA) to take marine mammals, by harassment, incidental to pre-construction high resolution survey activities. CWA began pre-construction activities last year, but was unable to complete the entire survey. Pursuant to the Marine Mammal Protection Act (MMPA), NMFS is requesting comments......

  13. Gas transfer under high wind and its dependence on wave breaking and sea state

    NASA Astrophysics Data System (ADS)

    Brumer, Sophia; Zappa, Christopher; Fairall, Christopher; Blomquist, Byron; Brooks, Ian; Yang, Mingxi

    2016-04-01

    Quantifying greenhouse gas fluxes on regional and global scales relies on parameterizations of the gas transfer velocity K. To first order, K is dictated by wind speed (U) and is typically parameterized as a non-linear functions of U. There is however a large spread in K predicted by the traditional parameterizations at high wind speed. This is because a large variety of environmental forcing and processes (Wind, Currents, Rain, Waves, Breaking, Surfactants, Fetch) actually influence K and wind speed alone cannot capture the variability of air-water gas exchange. At high wind speed especially, breaking waves become a key factor to take into account when estimating gas fluxes. The High Wind Gas exchange Study (HiWinGS) presents the unique opportunity to gain new insights on this poorly understood aspects of air-sea interaction under high winds. The HiWinGS cruise took place in the North Atlantic during October and November 2013. Wind speeds exceeded 15 m s‑1 25% of the time, including 48 hrs with U10 > 20 m s‑1. Continuous measurements of turbulent fluxes of heat, momentum, and gas (CO2, DMS, acetone and methanol) were taken from the bow of the R/V Knorr. The wave field was sampled by a wave rider buoy and breaking events were tracked in visible imagery was acquired from the port and starboard side of the flying bridge during daylight hours at 20Hz. Taking advantage of the range of physical forcing and wave conditions sampled during HiWinGS, we test existing parameterizations and explore ways of better constraining K based on whitecap coverage, sea state and breaking statistics contrasting pure windseas to swell dominated periods. We distinguish between windseas and swell based on a separation algorithm applied to directional wave spectra for mixed seas, system alignment is considered when interpreting results. The four gases sampled during HiWinGS ranged from being mostly waterside controlled to almost entirely airside controlled. While bubble-mediated transfer

  14. a New Method to Detect Regions Endangered by High Wind Speeds

    NASA Astrophysics Data System (ADS)

    Fischer, P.; Ehrensperger, S.; Krauß, T.

    2016-06-01

    In this study we evaluate whether the methodology of Boosted Regression Trees (BRT) suits for accurately predicting maximum wind speeds. As predictors a broad set of parameters derived from a Digital Elevation Model (DEM) acquired within the Shuttle Radar Topography Mission (SRTM) is used. The derived parameters describe the surface by means of quantities (e.g. slope, aspect) and quality (landform classification). Furthermore land cover data from the CORINE dataset is added. The response variable is maximum wind speed, measurements are provided by a network of weather stations. The area of interest is Switzerland, a country which suits perfectly for this study because of its highly dynamic orography and various landforms.

  15. High-speed-propeller wind-tunnel aeroacoustic results

    NASA Technical Reports Server (NTRS)

    Jeracki, R. J.; Dittmar, J. H.

    1980-01-01

    Some aerodynamic concepts are presented together with an explanation of how these concepts are applied to advanced propeller design. The unique features of this propulsion system are addressed with emphasis on the design concepts being considered for the high speed turboprop. More particular emphasis is given to the blade sweep, long blade chords, and the large number of blades.

  16. Solar wind suprathermal electron Stahl widths across high-speed stream structures

    SciTech Connect

    Skoug, Ruth M; Steinberg, John T; Goodrich, Katherine A; Anderson, Brett R

    2011-01-03

    Suprathermal electrons (100-1500 eV) observed in the solar wind typically show a strahl distribution, that is, a beam directed away from the Sun along the magnetic field direction. The strahl width observed at 1 AU is highly variable, ranging from 10-70 degrees. The obsenred finite width of the strahl results from the competition between beam focusing as the interplanetary magnetic field strength drops with distance from the Sun, and pitch-angle scattering as the beam interacts with the solar wind plasma in transit from the sun. Here we examine strahl width, observed with ACE SWEPAM across high-speed stream structures to investigate variations in electron scattering as a function of local plasma characteristics. We find that narrow strahls (less than 20 degrees wide), indicating reduced scattering, are observed within high-speed streams. Narrow strahls are also observed in both very low temperature solar wind, in association with ICMEs. Case studies of high-speed streams typically show the strahl narrowing at the leading edge of the stream. In some cases, the strahl narrows at the reverse shock or pressure wave, in other cases at the stream interface. The narrowing can either occur discontinuously or gradually over a period of hours. Within the high-speed wind, the strahl remains narrow for a period of hours to days, and then gradually broadens. The strahl width is roughly constant at all energies across these structures. For some fraction of high-speed streams, counterstreaming is associated with passage of the corotating interaction region. In these cases, we find the widths of the two counterstreaming beams frequently differ by more than 40 degrees. This dramatic difference in strahl width contrasts with observations in the solar wind as a whole, in which counterstreaming strahls typically differ in width by less than 20 degrees.

  17. Effect of viscosity on wind-tunnel wall interference for airfoils at high lift

    NASA Technical Reports Server (NTRS)

    Olson, L. E.; Stridsberg, S.

    1979-01-01

    The effect of the walls of a wind tunnel on the subsonic, two-dimensional flow past airfoils at high angles of attack is studied theoretically and experimentally. The computerized analysis, which is based on iteratively coupled potential-flow, boundary-layer, and separated-flow analyses, includes determining the effect of viscosity and flow separation on the airfoil/wall interaction. Predictions of the effects of wind-tunnel wall on the lift of airfoils are compared with wall corrections based on inviscid image analyses, and with experimental data. These comparisons are made for airfoils that are large relative to the size of the test section of the wind tunnel. It is shown that the inviscid image modeling of the wind-tunnel interaction becomes inaccurate at lift coefficients near maximum lift or when the airfoil/wall interaction is particularly strong. It is also shown that the present method of analysis (which includes boundary-layer and flow-separation effects) will provide accurate wind-tunnel wall corrections for lift coefficients up to maximum lift.

  18. Stellar wind in state transitions of high-mass X-ray binaries

    NASA Astrophysics Data System (ADS)

    Čechura, J.; Hadrava, P.

    2015-03-01

    Aims: We have developed a new code for the three-dimensional time-dependent raditation hydrodynamic simulation of the stellar wind in interacting binaries to improve models of accretion in high-mass X-ray binaries and to quantitatively clarify the observed variability of these objects. We used the code to test the influence of various parameters on the structure and properties of circumstellar matter. Methods: Our code takes into account acceleration of the wind due to the Roche effective potential, Coriolis force, gas pressure, and (CAK-) radiative pressure in the lines and continuum of the supergiant radiation field that is modulated by its gravity darkening and by the photo-ionization caused by X-ray radiation from the compact companion. The parameters of Cygnus X-1 were used to test the properties of our model. Results: Both two- and three-dimensional numerical simulations show that the Coriolis force substantially influences the mass loss and consequently the accretion rate onto the compact companion. The gravitational field of the compact companion focuses the stellar wind, which leads to the formation of a curved cone-like gaseous tail behind the companion. The changes of X-ray photo-ionization of the wind material during X-ray spectral-state transitions significantly influence the wind structure and offer an explanation of the variability of Cygnus X-1 in optical observations (the Hα emission).

  19. On the high correlation between long-term averages of solar wind speed and geomagnetic activity

    NASA Technical Reports Server (NTRS)

    Crooker, N. U.; Feynman, J.; Gosling, J. T.

    1977-01-01

    Six-month and yearly averages of solar-wind speed from 1962 to 1975 are shown to be highly correlated with geomagnetic activity as measured by averages of the Ap index. On the same time scale the correlation between the southward component of the interplanetary magnetic field and geomagnetic activity is poor. Previous studies with hourly averages gave opposite results. The better correlation with the southward component on an hourly time scale is explained by its large variation compared with the relatively constant solar-wind speed. However, on a yearly time scale the magnitude of the variations in both parameters are about the same. This problem can be solved by invoking an energy transfer mechanism which is proportional to the first power of the southward component and a higher power of the solar-wind speed.

  20. High-velocity tails on the velocity distribution of solar wind ions

    NASA Technical Reports Server (NTRS)

    Ogilvie, K. W.; Geiss, J.; Gloeckler, G.; Berdichevsky, D.; Wilken, B.

    1993-01-01

    Recent observations of the solar wind using the SWICS instrument on the Ulysses spacecraft have shown the presence of high-velocity 'tails' on the velocity distribution of protons. Similar features have also been observed on the velocity distributions of helium and oxygen ions. Of the order of 1 percent of the solar wind density is involved in these tails, which are approximately exponential in shape and persist to V = V(B) + 10V(th) or beyond, where VB is the bulk velocity and V(th) the thermal velocity of the solar wind. This paper contains a preliminary description of the phenomenon. It is clear that it is ultimately connected with the passage of interplanetary shocks past the spacecraft and that particle acceleration at oblique shocks is involved.

  1. Ramping Performance Analysis of the Kahuku Wind-Energy Battery Storage System

    SciTech Connect

    Gevorgian, V.; Corbus, D.

    2013-11-01

    High penetrations of wind power on the electrical grid can introduce technical challenges caused by resource variability. Such variability can have undesirable effects on the frequency, voltage, and transient stability of the grid. Energy storage devices can be an effective tool in reducing variability impacts on the power grid in the form of power smoothing and ramp control. Integrating anenergy storage system with a wind power plant can help smooth the variable power produced from wind. This paper explores the fast-response, megawatt-scale, wind-energy battery storage systems that were recently deployed throughout the Hawaiian islands to support wind and solar projects.

  2. When Physics Meets Biology: Low and High-Velocity Penetration, Blunt Impact, and Blast Injuries to the Brain

    PubMed Central

    Young, Leanne; Rule, Gregory T.; Bocchieri, Robert T.; Walilko, Timothy J.; Burns, Jennie M.; Ling, Geoffrey

    2015-01-01

    The incidence of traumatic brain injuries (TBI) in the US has reached epidemic proportions with well over 2 million new cases reported each year. TBI can occur in both civilians and warfighters, with head injuries occurring in both combat and non-combat situations from a variety of threats, including ballistic penetration, acceleration, blunt impact, and blast. Most generally, TBI is a condition in which physical loads exceed the capacity of brain tissues to absorb without injury. More specifically, TBI results when sufficient external force is applied to the head and is subsequently converted into stresses that must be absorbed or redirected by protective equipment. If the stresses are not sufficiently absorbed or redirected, they will lead to damage of extracranial soft tissue and the skull. Complex interactions and kinematics of the head, neck and jaw cause strains within the brain tissue, resulting in structural, anatomical damage that is characteristic of the inciting insult. This mechanical trauma then initiates a neuro-chemical cascade that leads to the functional consequences of TBI, such as cognitive impairment. To fully understand the mechanisms by which TBI occurs, it is critically important to understand the effects of the loading environments created by these threats. In the following, a review is made of the pertinent complex loading conditions and how these loads cause injury. Also discussed are injury thresholds and gaps in knowledge, both of which are needed to design improved protective systems. PMID:25999910

  3. When physics meets biology: low and high-velocity penetration, blunt impact, and blast injuries to the brain.

    PubMed

    Young, Leanne; Rule, Gregory T; Bocchieri, Robert T; Walilko, Timothy J; Burns, Jennie M; Ling, Geoffrey

    2015-01-01

    The incidence of traumatic brain injuries (TBI) in the US has reached epidemic proportions with well over 2 million new cases reported each year. TBI can occur in both civilians and warfighters, with head injuries occurring in both combat and non-combat situations from a variety of threats, including ballistic penetration, acceleration, blunt impact, and blast. Most generally, TBI is a condition in which physical loads exceed the capacity of brain tissues to absorb without injury. More specifically, TBI results when sufficient external force is applied to the head and is subsequently converted into stresses that must be absorbed or redirected by protective equipment. If the stresses are not sufficiently absorbed or redirected, they will lead to damage of extracranial soft tissue and the skull. Complex interactions and kinematics of the head, neck and jaw cause strains within the brain tissue, resulting in structural, anatomical damage that is characteristic of the inciting insult. This mechanical trauma then initiates a neuro-chemical cascade that leads to the functional consequences of TBI, such as cognitive impairment. To fully understand the mechanisms by which TBI occurs, it is critically important to understand the effects of the loading environments created by these threats. In the following, a review is made of the pertinent complex loading conditions and how these loads cause injury. Also discussed are injury thresholds and gaps in knowledge, both of which are needed to design improved protective systems. PMID:25999910

  4. Automated monitoring of subglacial hydrological processes with ground-penetrating radar (GPR) at high temporal resolution: scope and potential pitfalls

    NASA Astrophysics Data System (ADS)

    Kulessa, B.; Booth, A. D.; Hobbs, A.; Hubbard, A. L.

    2008-12-01

    We demonstrate that automated GPR techniques can monitor, at repeat timescales of minutes, hydrological processes beneath glaciers experiencing perennial surface melting. At Grubengletscher, Swiss Alps, melt penetrates into porous near-surface ice during the day, modifying the transmitted radar energy and thus the amplitudes of the targeted subglacial reflections. Normalising these reflections by early-time radar arrivals, integrated over a suitable time window, minimises such artefacts. In mid afternoon peak surface ablation, a diagnostic pulse in englacial reflectivity, sharp increases in subglacial reflectivity and glacier surface uplift precede the onset of transient glacier acceleration. Sliding terminates as the glacier surface lowers and the magnitude of subglacial reflectivity decreases. We infer a prominent episode of basal sliding as subglacial water pressure rises rapidly in response to englacially-routed melt delivery, jacking the glacier off its bed and modifying the observed reflectivity. Quantification of such processes is pertinent for any measurement and interpretation of basal reflection strength or bed reflection power from a GPR dataset.

  5. Wind tunnel tests of high-lift systems for advanced transports using high-aspect-ratio supercritical wings

    NASA Technical Reports Server (NTRS)

    Allen, J. B.; Oliver, W. R.; Spacht, L. A.

    1982-01-01

    The wind tunnel testing of an advanced technology high lift system for a wide body and a narrow body transport incorporating high aspect ratio supercritical wings is described. This testing has added to the very limited low speed high Reynolds number data base for this class or aircraft. The experimental results include the effects on low speed aerodynamic characteristics of various leading and trailing edge devices, nacelles and pylons, ailerons, and spoilers, and the effects of Mach and Reynolds numbers.

  6. Monolithic ballasted penetrator

    DOEpatents

    Hickerson, Jr., James P.; Zanner, Frank J.; Baldwin, Michael D.; Maguire, Michael C.

    2001-01-01

    The present invention is a monolithic ballasted penetrator capable of delivering a working payload to a hardened target, such as reinforced concrete. The invention includes a ballast made from a dense heavy material insert and a monolithic case extending along an axis and consisting of a high-strength steel alloy. The case includes a nose end containing a hollow portion in which the ballast is nearly completely surrounded so that no movement of the ballast relative to the case is possible during impact with a hard target. The case is cast around the ballast, joining the two parts together. The ballast may contain concentric grooves or protrusions that improve joint strength between the case and ballast. The case further includes a second hollow portion; between the ballast and base, which has a payload fastened within this portion. The penetrator can be used to carry instrumentation to measure the geologic character of the earth, or properties of arctic ice, as they pass through it.

  7. Western Wind and Solar Integration Study Phase 3 -- Frequency Response and Transient Stability (Report and Executive Summary)

    SciTech Connect

    Miller, N. W.; Shao, M.; Pajic, S.; D'Aquila, R.

    2014-12-01

    The primary objectives of Phase 3 of the Western Wind and Solar Integration Study (WWSIS-3) were to examine the large-scale transient stability and frequency response of the Western Interconnection with high wind and solar penetration, and to identify means to mitigate any adverse performance impacts via transmission reinforcements, storage, advanced control capabilities, or other alternatives.

  8. Impact of Distribution-Connected Large-Scale Wind Turbines on Transmission System Stability during Large Disturbances: Preprint

    SciTech Connect

    Zhang, Y.; Allen, A.; Hodge, B. M.

    2014-02-01

    This work examines the dynamic impacts of distributed utility-scale wind power during contingency events on both the distribution system and the transmission system. It is the first step toward investigating high penetrations of distribution-connected wind power's impact on both distribution and transmission stability.

  9. Techno-economic Modeling of the Integration of 20% Wind and Large-scale Energy Storage in ERCOT by 2030

    SciTech Connect

    Baldick, Ross; Webber, Michael; King, Carey; Garrison, Jared; Cohen, Stuart; Lee, Duehee

    2012-12-21

    This study's objective is to examine interrelated technical and economic avenues for the Electric Reliability Council of Texas (ERCOT) grid to incorporate up to and over 20% wind generation by 2030. Our specific interests are to look at the factors that will affect the implementation of both high level of wind power penetration (> 20% generation) and installation of large scale storage.

  10. On ultra-high energy cosmic ray acceleration at the termination shock of young pulsar winds

    NASA Astrophysics Data System (ADS)

    Lemoine, Martin; Kotera, Kumiko; Pétri, Jérôme

    2015-07-01

    Pulsar wind nebulae (PWNe) are outstanding accelerators in Nature, in the sense that they accelerate electrons up to the radiation reaction limit. Motivated by this observation, this paper examines the possibility that young pulsar wind nebulae can accelerate ions to ultra-high energies at the termination shock of the pulsar wind. We consider here powerful PWNe, fed by pulsars born with ~ millisecond periods. Assuming that such pulsars exist, at least during a few years after the birth of the neutron star, and that they inject ions into the wind, we find that protons could be accelerated up to energies of the order of the Greisen-Zatsepin-Kuzmin cut-off, for a fiducial rotation period P ~ 1 msec and a pulsar magnetic field Bstar ~ 1013 G, implying a fiducial wind luminosity Lp ~ 1045 erg/s and a spin-down time tsd ~ 3× 107 s. The main limiting factor is set by synchrotron losses in the nebula and by the size of the termination shock; ions with Z>= 1 may therefore be accelerated to even higher energies. We derive an associated neutrino flux produced by interactions in the source region. For a proton-dominated composition, our maximum flux lies slightly below the 5-year sensitivity of IceCube-86 and above the 3-year sensitivity of the projected Askaryan Radio Array. It might thus become detectable in the next decade, depending on the exact level of contribution of these millisecond pulsar wind nebulae to the ultra-high energy cosmic ray flux.

  11. Development and testing of a risk reduction high energy laser transmitter for high spectral resolution lidar and Doppler winds lidar

    NASA Astrophysics Data System (ADS)

    Wang, Jinxue; Leyva, Victor; Hovis, Floyd E.

    2007-09-01

    Spaceborne 3-dimensional winds lidar and spaceborne High Spectral Resolution Lidar (HSRL) for aerosol and clouds are among the high priority future space missions recommended by the recent National Research Council (NRC) Decadal Review. They are expected to provide the important three dimensional winds data and aerosol data critically needed to improve climate models and numerical weather forecasting. HSRL and winds lidar have a common requirement for high energy solid-state lasers with output wavelengths at 1064nm, 532nm and 355nm, which can be achieved with Nd:YAG lasers and 2nd and 3rd harmonic generations. For direct detection winds lidar, only the 355nm output is needed. One of the key development needs is the demonstration of laser transmitter subsystem. Top issues include power and thermal management, lifetime, high energy UV operations, damage and contamination. Raytheon and its partner, Fibertek, have designed and built a space-qualifiable high energy Nd:YAG laser transmitter with funding from Raytheon Internal Research and Development (IR&D). It is intended to serve as a risk-reduction engineering unit and a test bed for the spaceborne HRSL and direct-detection Doppler winds Lidar missions. Close to 900 mJ/pulse at1064nm and a wall-plug efficiency of 6.5% have been achieved with our risk reduction laser. It is currently being characterized and tested at Raytheon Space and Airborne Systems. In this paper, we will discuss the design, build and testing results of this risk reduction high energy laser transmitter.

  12. The role of microphysics in the development of mesoscale areas of high winds around occluded cyclones

    NASA Astrophysics Data System (ADS)

    Baker, T. P.; Knippertz, P.; Blyth, A.

    2012-04-01

    Extratropical cyclones are an integral part of the weather in north-western Europe and can be associated with heavy precipitation and strong winds. While synoptic-scale aspects of these storms are often satisfactorily forecast several days in advance, mesoscale features within these systems such as bands of heavy rain or localized wind maxima, which are often the cause of the most damaging effects, are significantly less well understood and predicted by operational forecasts. Accurate predictions of the location, timing and intensity of these features are, however, highly important for the mitigation of the adverse effects that they bring. This is one of the motivations for the UK consortium DIAMET (DIAbatic influences on Mesoscale structures in ExtraTropical storms) that is focused on improving the understanding and predictability of these potentially damaging mesoscale features embedded within larger synoptic-scale extratropical storms. The project is based around a number of field campaigns using the Facility for Airborne Atmospheric Measurements (FAAM) BAe146 research aircraft along with other remote and in-situ measurements. An overview of the project will be presented by Geraint Vaughan in this session. This study analyses the effects of microphysics on the mesoscale dynamics within extratropical storms, in particular the high wind areas around occluded fronts wrapped around the core of a matured cyclonic storm. It has been hypothesized that evaporation and melting of hydrometeors in this region can lead to downward momentum transport and thereby increase near-surface winds (sometimes referred to as sting jets). The main tool for this study is the Weather Research and Forecasting (WRF) model. High-resolution simulations are run for several cases from the DIAMET field campaigns to examine how the development of strong winds around occluded fronts is affected by the microphysics. The model results using different microphysics schemes are compared with the

  13. Design and synthesis of a novel 2-oxindole scaffold as a highly potent and brain-penetrant phosphodiesterase 10A inhibitor.

    PubMed

    Yoshikawa, Masato; Kamisaki, Haruhi; Kunitomo, Jun; Oki, Hideyuki; Kokubo, Hironori; Suzuki, Akihiro; Ikemoto, Tomomi; Nakashima, Kosuke; Kamiguchi, Naomi; Harada, Akina; Kimura, Haruhide; Taniguchi, Takahiko

    2015-11-15

    Highly potent and brain-penetrant phosphodiesterase 10A (PDE10A) inhibitors based on the 2-oxindole scaffold were designed and synthesized. (2-Oxo-1,3-oxazolidin-3-yl)phenyl derivative 1 showed the high P-glycoprotein (P-gp) efflux (efflux ratio (ER)=6.2) despite the potent PDE10A inhibitory activity (IC50=0.94 nM). We performed an optimization study to improve both the P-gp efflux ratio and PDE10A inhibitory activity by utilizing structure-based drug design (SBDD) techniques based on the X-ray crystal structure with PDE10A. Finally, 1-(cyclopropylmethyl)-4-fluoro-5-[5-methoxy-4-oxo-3-(1-phenyl-1H-pyrazol-5-yl)pyridazin-1(4H)-yl]-3,3-dimethyl-1,3-dihydro-2H-indol-2-one (19e) was identified with improved P-gp efflux (ER=1.4) and an excellent PDE10A inhibitory activity (IC50=0.080 nM). Compound 19e also exhibited satisfactory brain penetration, and suppressed PCP-induced hyperlocomotion with a minimum effective dose of 0.3mg/kg by oral administration in mice. PMID:26494583

  14. On-line air-tightness and insertion loss simultaneous detection method of high air-tightness fiber optic penetration connector

    NASA Astrophysics Data System (ADS)

    Zhang, Jingchuan; Yang, Xiaoning; Wang, Jing; Jiang, Junfeng

    2015-08-01

    The high air-tightness multicore fiber optic penetration connector is a core component for the optical fiber sensing and communication technologies applied in the space environment simulator under the vacuum thermal environment. High air-tightness and insertion loss are the two key indexes of the fiber optic penetration connector. The air-tightness and insertion loss on-line synchronous detection method was proposed. First, established hardware-in-the-loop testing platform by using the vacuum pumping system, the vacuum vessel, the helium mass spectrometer leak detector and optical time-domain reflectmeter, then, described the air tightness and insertion loss on-line detection principle, finally, designed a detection test scheme and air-tightness and insertion loss were tested. Experimental results indicate that the leakage rate is lower than 1.0×10-7Pa•L/S, the minimum of which is1.0×10-10Pa•L/S and the insertion loss at wave length window 1550 nm is +/-0.07db, which is less than +/-0.1db. It can lay the data basis for the design of opto-mechanical combination and later period fine processing.

  15. High winds induce nitrogen loss from US Pacific Northwest agricultural lands

    NASA Astrophysics Data System (ADS)

    Sharratt, B. S.; Graves, L.; Pressley, S. N.

    2012-12-01

    High winds common to the Pacific Northwest region of the USA have resulted in massive loss of topsoil from agricultural fields that are primarily managed in a winter wheat / summer fallow rotation. This topsoil contains nitrogen (N), an essential nutrient required for growth and development of plants. Loss of N from soils can cause degradation of air and water quality and also is an economic concern to farmers because depletion of nutrients from soils results in lower crop yield. Flux of windblown sediment moving across eroding fields was measured during high wind events between 1999 and 2006 in eastern Washington. Samplers were deployed to trap sediment that was creeping along or in saltation/suspension at various heights above fields that were in the summer fallow phase of the rotation. Windblown sediment was weighed and analyzed for N content by combustion and a thermal conductivity analyzer. Enrichment, or the ratio of N in the windblown sediment to soil of greater than one, was observed in about half of the years. For nearly all high wind events, N content of sediment transported by creep was greater than sediment transported by saltation or suspension. This study suggests that wind erosion can result in loss of N from agricultural soils.

  16. Freestanding Flag-Type Triboelectric Nanogenerator for Harvesting High-Altitude Wind Energy from Arbitrary Directions.

    PubMed

    Zhao, Zhenfu; Pu, Xiong; Du, Chunhua; Li, Linxuan; Jiang, Chunyan; Hu, Weiguo; Wang, Zhong Lin

    2016-02-23

    Wind energy at a high altitude is far more stable and stronger than that near the ground, but it is out of reach of the wind turbine. Herein, we develop an innovative freestanding woven triboelectric nanogenerator flag (WTENG-flag) that can harvest high-altitude wind energy from arbitrary directions. The wind-driven fluttering of the woven unit leads to the current generation by a coupled effect of contact electrification and electrostatic induction. Systematic study is conducted to optimize the structure/material parameters of the WTENG-flag to improve the power output. This 2D WTENG-flag can also be stacked in parallel connections in many layers for a linearly increased output. Finally, a self-powered high-altitude platform with temperature/humidity sensing/telecommunicating capability is demonstrated with the WTENG-flag as a power source. Due to the light weight, low cost, and easy scale-up, this WTENG-flag has great potential for applications in weather/environmental sensing/monitoring systems. PMID:26738695

  17. Solar Wind Charge Exchange Studies Of Highly Charged Ions On Atomic Hydrogen

    NASA Astrophysics Data System (ADS)

    Draganić, I. N.; Seely, D. G.; McCammon, D.; Havener, C. C.

    2011-06-01

    Accurate studies of low-energy charge exchange (CX) are critical to understanding underlying soft X-ray radiation processes in the interaction of highly charged ions from the solar wind with the neutral atoms and molecules in the heliosphere, cometary comas, planetary atmospheres, interstellar winds, etc.. Particularly important are the CX cross sections for bare, H-like, and He-like ions of C, N, O and Ne, which are the dominant charge states for these heavier elements in the solar wind. Absolute total cross sections for single electron capture by H-like ions of C, N, O and fully-stripped O ions from atomic hydrogen have been measured in an expanded range of relative collision energies (5 eV/u-20 keV/u) and compared to previous H-oven measurements. The present measurements are performed using a merged-beams technique with intense highly charged ion beams extracted from a 14.5 GHz ECR ion source installed on a high voltage platform at the Oak Ridge National Laboratory. For the collision energy range of 0.3 keV/u-3.3 keV/u, which corresponds to typical ion velocities in the solar wind, the new measurements are in good agreement with previous H-oven measurements. The experimental results are discussed in detail and compared with theoretical calculations where available.

  18. Solar Wind Charge Exchange Studies of Highly Charged Ions on Atomic Hydrogen

    SciTech Connect

    Draganic, Ilija N; Seely, D. G.; McCammon, D; Havener, Charles C

    2011-01-01

    Accurate studies of low energy charge exchange (CX) are critical to understanding underlying soft X ray radiation processes in the interaction of highly charged ions from the solar wind with the neutral atoms and molecules in the heliosphere, cometary comas, planetary atmospheres, interstellar winds, etc.. Particularly important are the CX cross sections for bare, H like, and He like ions of C, N, O and Ne, which are the dominant charge states for these heavier elements in the solar wind. Absolute total cross sections for single electron capture by H like ions of C, N, O and fully stripped O ions from atomic hydrogen have been measured in an expanded range of relative collision energies (5 eV u 20 keV u) and compared to previous H oven measurements. The present measurements are performed using a merged beams technique with intense highly charged ion beams extracted from a 14.5 GHz ECR ion source installed on a high voltage platform at the Oak Ridge National Laboratory. For the collision energy range of 0.3 keV u 3.3 keV u, which corresponds to typical ion velocities in the solar wind, the new measurements are in good agreement with previous H oven measurements. The experimental results are discussed in detail and compared with theoretical calculations where available.

  19. Parameterizations in high resolution isopycanl wind-driven ocean models

    SciTech Connect

    Jensen, T.G.; Randall, D.A.

    1993-01-01

    For the CHAMMP project, we proposed to implement and test new numerical schemes, parameterizations of boundary layer flow and development and implement mixed layer physics in an existing isopycnal models. The objectives for the proposed research were; implement the Arakawa and Hsu, scheme in an existing isopycnal model of the Indian Ocean; recode the new model for a highly parallel architecture; determine effects of various parameterizations of islands; determine the correct lateral boundary condition for boundary layer currents, as for instance the Gulf Stream and other western boundary currents.; and incorporate a oceanic mixed layer on top of the isopycnal deep layers. This is, primarily a model development project, with emphasis on determining the influence and parameterization of narrow flows along continents and through chains of small islands on the large scale oceanic circulation, which is resolved by climate models. The new model is based on the multi-layer FSU Indian Ocean model. Our research strategy is to; recode a one-layer version of the Indian Ocean Model for a highly parallel computer; add thermodynamics to a rectangular domain version of the new model; implement the irregular domain from the Indian Ocean Model into the box model; change the numerical scheme for the continuity equation to the scheme proposed by; perform parameterization experiments with various coast line and island geometries. This report discusses project progress for period August 1, 1992 through December 31, 1992.

  20. Innovative Power-Augmentation-Guide-Vane Design of Wind-Solar Hybrid Renewable Energy Harvester for Urban High Rise Application

    NASA Astrophysics Data System (ADS)

    Tong, Chong Wen; Zainon, M. Z.; Chew, Poh Sin; Kui, Soo Chun; Keong, Wee Seng; Chen, Pan Kok

    2010-06-01

    To generate greater quantities of energy from wind, the most efficient solution would be by increasing the wind speed. Also, due to the decreasing number of economic wind energy sites, there are plans to place wind turbines closer to populated areas. To site wind turbines out from rural areas, the current problems of wind turbines need to be resolved, especially visual impact, poor starting behaviour in low wind speeds, noise and danger caused by blade failure. In this paper, a patented wind-solar hybrid renewable energy harvester is introduced. It is a compact system that integrates and optimizes several green elements and can be built on the top (or between upper levels) of high rise buildings or structures. This system can be used in remote and urban areas, particularly at locations where the wind speed is lower and more turbulent. It overcomes the inferior aspect on the low wind speed by guiding and increasing the speed of the high altitude free-stream wind through fixed or yaw-able power-augmentation-guide-vane (PAGV) before entering the wind turbine (straight-bladed vertical axis wind turbine, VAWT in this project) at center portion. PAGV is a new and innovative design where its appearance or outer design can be blended into the building architecture without negative visual impact. From the studies, it is shown that the wind speed increment in the PAGV can be produced according to the Bernoulli's principle. Computational fluid dynamics (CFD) simulation is used to optimize the geometry of the PAGV and the simulation results demonstrated the technical possibility of this innovative concept. The PAGV replaces the free air-stream from wind by multiple channels of speed-increased and directional-controlled air-stream. With the PAGV, this lift-type VAWT can be self-started and its size can be reduced for a given power output. The design is also safer since the VAWT is enclosed by the PAGV. By integrating the PAGV with the VAWT (the diameter and height of PAGV are 2

  1. The Western Wind and Solar Integration Study Phase 2 (Executive Summary)

    SciTech Connect

    Lew, Debra; Brinkman, Greg

    2013-09-01

    The electric grid is a highly complex, interconnected machine, and changing one part of the grid can have consequences elsewhere. Adding wind and solar affects the operation of the other power plants and adding high penetrations can induce cycling of fossil-fueled generators. Cycling leads to wear-and-tear costs and changes in emissions. Phase 2 of the Western Wind and Solar Integration Study (WWSIS-2) evaluated these costs and emissions and simulated grid operations for a year to investigate the detailed impact of wind and solar on the fossil-fueled fleet. This built on Phase 1, one of the largest wind and solar integration studies ever conducted, which examined operational impacts of high wind and solar penetrations in the West(GE Energy 2010).

  2. Pose measurement method and experiments for high-speed rolling targets in a wind tunnel.

    PubMed

    Jia, Zhenyuan; Ma, Xin; Liu, Wei; Lu, Wenbo; Li, Xiao; Chen, Ling; Wang, Zhengqu; Cui, Xiaochun

    2014-01-01

    High-precision wind tunnel simulation tests play an important role in aircraft design and manufacture. In this study, a high-speed pose vision measurement method is proposed for high-speed and rolling targets in a supersonic wind tunnel. To obtain images with high signal-to-noise ratio and avoid impacts on the aerodynamic shape of the rolling targets, a high-speed image acquisition method based on ultrathin retro-reflection markers is presented. Since markers are small-sized and some of them may be lost when the target is rolling, a novel markers layout with which markers are distributed evenly on the surface is proposed based on a spatial coding method to achieve highly accurate pose information. Additionally, a pose acquisition is carried out according to the mentioned markers layout after removing mismatching points by Case Deletion Diagnostics. Finally, experiments on measuring the pose parameters of high-speed targets in the laboratory and in a supersonic wind tunnel are conducted to verify the feasibility and effectiveness of the proposed method. Experimental results indicate that the position measurement precision is less than 0.16 mm, the pitching and yaw angle precision less than 0.132° and the roll angle precision 0.712°. PMID:25615732

  3. Pose Measurement Method and Experiments for High-Speed Rolling Targets in a Wind Tunnel

    PubMed Central

    Jia, Zhenyuan; Ma, Xin; Liu, Wei; Lu, Wenbo; Li, Xiao; Chen, Ling; Wang, Zhengqu; Cui, Xiaochun

    2014-01-01

    High-precision wind tunnel simulation tests play an important role in aircraft design and manufacture. In this study, a high-speed pose vision measurement method is proposed for high-speed and rolling targets in a supersonic wind tunnel. To obtain images with high signal-to-noise ratio and avoid impacts on the aerodynamic shape of the rolling targets, a high-speed image acquisition method based on ultrathin retro-reflection markers is presented. Since markers are small-sized and some of them may be lost when the target is rolling, a novel markers layout with which markers are distributed evenly on the surface is proposed based on a spatial coding method to achieve highly accurate pose information. Additionally, a pose acquisition is carried out according to the mentioned markers layout after removing mismatching points by Case Deletion Diagnostics. Finally, experiments on measuring the pose parameters of high-speed targets in the laboratory and in a supersonic wind tunnel are conducted to verify the feasibility and effectiveness of the proposed method. Experimental results indicate that the position measurement precision is less than 0.16 mm, the pitching and yaw angle precision less than 0.132° and the roll angle precision 0.712°. PMID:25615732

  4. Investigation on Thawing and Freezing Processes Using High-frequency Ground Penetrating Radar in Amdo catchment, Central Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Ma, Yingzhao; Zubrzycki, Sebastian

    2014-05-01

    We have applied 250MHz ground penetrating radar (GPR) to investigate subsurface thawing and freezing processes in Amdo catchment, central Tibetan Plateau. Also, the topography and geography environments were surveyed to better understand the regional thaw/freeze cycles. Generally, the GPR images clearly illustrated the development of thawing and freezing events, which would be learned from the CMP soundings and reflection profiles. Our results showed that a strong lower EM velocity of upper layers was detected in the thawing conditions, while a rather higher velocity could be monitored in the frozen grounds, which was mainly based on the large contrast in dielectric permittivity between liquid water and ice. In addition, on the north-facing slopes, the EM velocity was smaller than that of sunny slopes in thawing and freezing periods on the whole, which illustrated that the average soil moisture in the upper subsurface was higher in north-facing slopes than the opposite side. Furthermore, during the thawing periods, both of the velocity and thawing depth decreased as the slope became deeper on the south-facing slope basically; on the shade side, the velocity increased slightly when the slope got sharper, but the thawed depth had no obvious trend. As for the freezing periods, both the velocity and frozen depth were not found clear tendency on both sides. Moreover, the subsurface thawing and freezing developments were significantly affected by local surface environments (e.g, stream, grassland or bare soil) though in similar topographic conditions. In all, the non-invasive GPR technique allowed the interpretation of spatial and temporal thaw/freeze processes, which played an important role on hydrothermal regimes in cold regions.

  5. High Intra-abdominal Pressure Enhances the Penetration and Antitumor Effect of Intraperitoneal Cisplatin on Experimental Peritoneal Carcinomatosis

    PubMed Central

    Esquis, Philippe; Consolo, David; Magnin, Guy; Pointaire, Philippe; Moretto, Philippe; Ynsa, Maria Dolores; Beltramo, Jean-Luc; Drogoul, Carole; Simonet, Michel; Benoit, Laurent; Rat, Patrick; Chauffert, Bruno

    2006-01-01

    Objective: To investigate the role of increased intra-abdominal pressure (IAP) on the intratumoral accumulation and the antitumor effect of intraperitoneal cisplatin in rats with advanced peritoneal carcinomatosis. To evaluate the tolerance of IAP in pigs, as it is a large animal with a body size equivalent to humans. Summary Background Data: To investigate if an active convection, driven by a positive IAP, increases cisplatin penetration and antitumor effectiveness in a model of advanced peritoneal carcinomatosis in rats. Experimental Design: BDIX rats with macroscopic peritoneal tumors received cisplatin administered as intravenous injection (IV), conventional intraperitoneal injection (IP), or sustained intraperitoneal injection of cisplatin given in a large volume of solvent for maintaining IAP for 1 hour. Platinum tissue concentration was measured by atomic absorption spectroscopy (AAS), and platinum distribution into the tumor nodules was assessed by the particular-induced x-ray emission (PIXE) method. The antitumor effect was assessed in a survival experiment. The hemodynamic, local, and systemic tolerance of IAP, with or without cisplatin, was evaluated in Large White pigs. Results: The maximum tolerated IAP was 22 mm Hg for 1 hour in nonventilated rats. IAP, in comparison with IV or conventional IP injections, resulted in the increased concentration and depth of diffusion of platinum into diaphragm and peritoneal tumor nodules. Consequently, IAP treatment induced an extended survival of rats treated at an advanced stage of carcinomatosis. In 7 50- to 70-kg ventilated pigs, a 40-mm Hg IAP was well tolerated when maintained stable for 2 hours. Renal failure occurred in pigs receiving a total dose of 200 and 400 mg of cisplatin with IAP, but a dose of 100 mg was well tolerated. Conclusions: Intraperitoneal chemotherapy with increased IAP, in comparison with conventional IP or IV chemotherapy, improved the tumor accumulation and the antitumor effect of

  6. Evaluation of the effect of media velocity on filter efficiency and most penetrating particle size of nuclear grade high-efficiency particulate air filters.

    PubMed

    Alderman, Steven L; Parsons, Michael S; Hogancamp, Kristina U; Waggoner, Charles A

    2008-11-01

    High-efficiency particulate air (HEPA) filters are widely used to control particulate matter emissions from processes that involve management or treatment of radioactive materials. Section FC of the American Society of Mechanical Engineers AG-1 Code on Nuclear Air and Gas Treatment currently restricts media velocity to a maximum of 2.5 cm/sec in any application where this standard is invoked. There is some desire to eliminate or increase this media velocity limit. A concern is that increasing media velocity will result in higher emissions of ultrafine particles; thus, it is unlikely that higher media velocities will be allowed without data to demonstrate the effect of media velocity on removal of ultrafine particles. In this study, the performance of nuclear grade HEPA filters, with respect to filter efficiency and most penetrating particle size, was evaluated as a function of media velocity. Deep-pleat nuclear grade HEPA filters (31 cm x 31 cm x 29 cm) were evaluated at media velocities ranging from 2.0 to 4.5 cm/sec using a potassium chloride aerosol challenge having a particle size distribution centered near the HEPA filter most penetrating particle size. Filters were challenged under two distinct mass loading rate regimes through the use of or exclusion of a 3 microm aerodynamic diameter cut point cyclone. Filter efficiency and most penetrating particle size measurements were made throughout the duration of filter testing. Filter efficiency measured at the onset of aerosol challenge was noted to decrease with increasing media velocity, with values ranging from 99.999 to 99.977%. The filter most penetrating particle size recorded at the onset of testing was noted to decrease slightly as media velocity was increased and was typically in the range of 110-130 nm. Although additional testing is needed, these findings indicate that filters operating at media velocities up to 4.5 cm/sec will meet or exceed current filter efficiency requirements. Additionally

  7. High Tumor Penetration of Paclitaxel Loaded pH Sensitive Cleavable Liposomes by Depletion of Tumor Collagen I in Breast Cancer.

    PubMed

    Zhang, Li; Wang, Yang; Yang, Yuting; Liu, Yayuan; Ruan, Shaobo; Zhang, Qianyu; Tai, Xiaowei; Chen, Jiantao; Xia, Tai; Qiu, Yue; Gao, Huile; He, Qin

    2015-05-13

    The network of collagen I in tumors could prevent the penetration of drugs loaded in nanoparticles, and this would lead to impaired antitumor efficacy. In this study, free losartan (an angiotensin inhibitor) was injected before treatment to reduce the level of collagen I, which could facilitate the penetration of nanoparticles. Then the pH-sensitive cleavable liposomes (Cl-Lip) were injected subsequently to exert the antitumor effect. The Cl-Lip was constituted by PEG(5K)-Hydrazone-PE and DSPE-PEG(2K)-R8. When the Cl-Lip reached to the tumor site by the enhanced permeability and retention (EPR) effect, PEG(5K)-Hydrazone-PE was hydrolyzed from the Cl-Lip under the low extra-cellular pH conditions of tumors, then the R8 peptide was exposed, and finally liposomes could be internalized into tumor cells by the mediation of R8 peptide. In vitro experiments showed both the cellular uptake of Cl-Lip by 4T1 cells and cytotoxicity of paclitaxel loaded Cl-Lip (PTX-Cl-Lip) were pH sensitive. In vivo experiments showed the Cl-Lip had a good tumor targeting ability. After depletion of collagen I, Cl-Lip could penetrate into the deep place of tumors, the tumor accumulation of Cl-Lip was further increased by 22.0%, and the oxygen distributed in tumor tissues was also enhanced. The antitumor study indicated free losartan in combination with PTX-Cl-Lip (59.8%) was more effective than injection with PTX-Cl-Lip only (37.8%) in 4T1 tumor bearing mice. All results suggested that depletion of collagen I by losartan dramatically increased the penetration of PTX-Cl-Lip and combination of free losartan and PTX-CL-Lip could lead to better antitumor efficacy of chemical drugs. Thus, the combination strategy might be a promising tactic for better treatment of solid tumors with a high level of collagen I. PMID:25845545

  8. Analysis of Near Simultaneous Jimsphere and AMPS High Resolution Wind Profiles

    NASA Technical Reports Server (NTRS)

    Adelfang, S. I.

    2003-01-01

    The high-resolution wind profile of the Automated Meteorological Profiling System (HRAMPS) is the proposed replacement for the Jimsphere measurement system used to support NASA Shuttle launches from the Eastern Test Range (ETR). Samples of twenty-six ETR near simultaneous Jimsphere and HRAMPS wind profiles were obtained for Shuttle program HRAMPS certification studies. Shuttle systems engineering certification is to ensure that spacecraft and launch vehicle systems performance and safety evaluations for each launch (derived from flight simulations with Jimsphere wind profile data bases) retain their validity when HRAMPS profiles are used on day-of-launch (DOL) in trajectory and loads simulations to support the commit-to-launch decision. This paper describes a statistical analysis of the near simultaneous profiles. In principle the differences between a Jimsphere profile and an HRAMPS profile should be attributed to tracking technology (radar versus GPS tracking of a Jimsphere flight element) and the method for derivation of wind vectors from the raw tracking data. In reality, it is not technically feasible to track the same Jimsphere balloon with the two systems. The aluminized Mylar surface of the standard Jimsphere flight element facilitates radar tracking, but it interferes with HRAMPS during simultaneous tracking. Suspending a radar reflector from an HRAMPS flight element (Jimsphere without aluminized coating) does not produce satisfactory Jimsphere profiles because of intermittent radar returns. Thus, differences between the Jimsphere and HRAMPS profiles are also attributed to differences in the trajectories of separate flight elements. Because of small sample size and a test period limited to one winter season, test measurements during extreme high winds aloft could not have been expected and did not occur. It is during the highest winds that the largest differences between Jimsphere and HRAMPS would occur because the distance between flight elements would be

  9. Solar-wind-magnetosphere coupling, including relativistic electron energization, during high-speed streams

    NASA Astrophysics Data System (ADS)

    Lyons, L. R.; Lee, D.-Y.; Kim, H.-J.; Hwang, J. A.; Thorne, R. M.; Horne, R. B.; Smith, A. J.

    2009-07-01

    High geomagnetic activity occurs continuously during high-speed solar wind streams, and fluxes of relativistic electrons observed at geosynchronous orbit enhance significantly. High-speed streams are preceded by solar wind compression regions, during which time there are large losses of relativistic electrons from geosynchronous orbit. Weak to moderate geomagnetic storms often occur during the passage of these compression regions; however, we find that the phenomena that occur during the ensuing high-speed streams do not depend on whether or not a preceding storm develops. Large-amplitude Alfvén waves occur within the high-speed solar wind streams, which are expected to lead to intermittent intervals of significantly enhanced magnetospheric convection and to thus also lead to repetitive substorms due to repetitively occurring reductions in the strength of convection. We find that such repetitive substorms are clearly discernible in the LANL geosynchronous energetic particle data during high-speed stream intervals. Global auroral images are found to show unambiguously that these events are indeed classical substorms, leading us to conclude that substorms are an important contributor to the enhanced geomagnetic activity during high-speed streams. We used the onsets of these substorms as indicators of preceding periods of enhanced convection and of reductions in convection, and we have used ground-based chorus observations from the VELOX instrument at Halley station as an indicator of magnetospheric chorus intensities. These data show evidence that it is the periods of enhanced convection that precede substorm expansions, and not the expansions themselves, that lead to the enhanced dawn-side chorus wave intensity that has been postulated to cause the energization of relativistic electrons. If this inference is correct, and if it is chorus that energizes the relativistic electrons, then high-speed solar wind streams lead to relativistic electron flux enhancements

  10. Development of tunable high pressure CO2 laser for lidar measurements of pollutants and wind velocities

    NASA Technical Reports Server (NTRS)

    Levine, J. S.; Guerra, M.; Javan, A.

    1980-01-01

    The problem of laser energy extraction at a tunable monochromatic frequency from an energetic high pressure CO2 pulsed laser plasma, for application to remote sensing of atmospheric pollutants by Differential Absorption Lidar (DIAL) and of wind velocities by Doppler Lidar, was investigated. The energy extraction principle analyzed is based on transient injection locking (TIL) at a tunable frequency. Several critical experiments for high gain power amplification by TIL are presented.

  11. Characteristics of satellite accelerometer measurements of thermospheric neutral winds at high latitudes

    NASA Astrophysics Data System (ADS)

    Doornbos, E.; Ridley, A. J.; Cnossen, I.; Aruliah, A. L.; Foerster, M.

    2015-12-01

    Thermospheric neutral winds play an important part in the coupled thermosphere-ionosphere system at high latitudes. Neutral wind speeds have been derived from the CHAMP and GOCE satellites, which carried precise accelerometers in low Earth orbits. Due to the need to simultaneously determine thermosphere neutral density from the accelerometer in-track measurements, only information on the wind component in the cross-track direction, perpendicular to the flight direction can be derived. However, contrary to ground-based Fabry-Perot interferometer and scanning Doppler imager observations of the thermosphere wind, these satellite-based measurements provide equally distributed coverage over both hemispheres. The sampling of seasonal and local time variations depend on the precession rate of the satellite's orbital plane, with CHAMP covering about 28 cycles of 24-hour local solar time coverage, during its 10 year mission (2000-2010), while the near sun-synchronous orbit of GOCE resulted in a much more limited local time coverage ranging from 6:20 to 8:00 (am and pm), during a science mission duration of 4 years (2009-2013). For this study, the wind data from both CHAMP and GOCE have been analysed in terms of seasonal variations and geographic and geomagnetic local solar time and latitude coordinates, in order to make statistical comparisons for both the Northern and Southern polar areas. The wind data from both satellites were studied independently and in combination, in order to investigate how the strengths and weaknesses of the instruments and orbit parameters of these missions affect investigations of interhemispheric differences. Finally, the data have been compared with results from coupled ionosphere-thermosphere models and from ground-based FPI and SDI measurements.

  12. A High-Efficiency Wind Energy Harvester for Autonomous Embedded Systems.

    PubMed

    Brunelli, Davide

    2016-01-01

    Energy harvesting is currently a hot research topic, mainly as a consequence of the increasing attractiveness of computing and sensing solutions based on small, low-power distributed embedded systems. Harvesting may enable systems to operate in a deploy-and-forget mode, particularly when power grid is absent and the use of rechargeable batteries is unattractive due to their limited lifetime and maintenance requirements. This paper focuses on wind flow as an energy source feasible to meet the energy needs of a small autonomous embedded system. In particular the contribution is on the electrical converter and system integration. We characterize the micro-wind turbine, we define a detailed model of its behaviour, and then we focused on a highly efficient circuit to convert wind energy into electrical energy. The optimized design features an overall volume smaller than 64 cm³. The core of the harvester is a high efficiency buck-boost converter which performs an optimal power point tracking. Experimental results show that the wind generator boosts efficiency over a wide range of operating conditions. PMID:26959018

  13. AC loss in high-temperature superconducting conductors, cables and windings for power devices

    NASA Astrophysics Data System (ADS)

    Oomen, M. P.; Rieger, J.; Hussennether, V.; Leghissa, M.

    2004-05-01

    High-temperature superconducting (HTS) transformers and reactor coils promise decreased weight and volume and higher efficiency. A critical design parameter for such devices is the AC loss in the conductor. The state of the art for AC-loss reduction in HTS power devices is described, starting from the loss in the single HTS tape. Improved tape manufacturing techniques have led to a significant decrease in the magnetization loss. Transport-current loss is decreased by choosing the right operating current and temperature. The role of tape dimensions, filament twist and resistive matrix is discussed and a comparison is made between state-of-the-art BSCCO and YBCO tapes. In transformer and reactor coils the AC loss in the tape is influenced by adjacent tapes in the coil, fields from other coils, overcurrents and higher harmonics. These factors are accounted for by a new AC-loss prediction model. Field components perpendicular to the tape are minimized by optimizing the coil design and by flux guidance pieces. High-current windings are made of Roebel conductors with transposed tapes. The model iteratively finds the temperature distribution in the winding and predicts the onset of thermal instability. We have fabricated and tested several AC windings and used them to validate the model. Now we can confidently use the model as an engineering tool for designing HTS windings and for determining the necessary tape properties.

  14. A High-Efficiency Wind Energy Harvester for Autonomous Embedded Systems

    PubMed Central

    Brunelli, Davide

    2016-01-01

    Energy harvesting is currently a hot research topic, mainly as a consequence of the increasing attractiveness of computing and sensing solutions based on small, low-power distributed embedded systems. Harvesting may enable systems to operate in a deploy-and-forget mode, particularly when power grid is absent and the use of rechargeable batteries is unattractive due to their limited lifetime and maintenance requirements. This paper focuses on wind flow as an energy source feasible to meet the energy needs of a small autonomous embedded system. In particular the contribution is on the electrical converter and system integration. We characterize the micro-wind turbine, we define a detailed model of its behaviour, and then we focused on a highly efficient circuit to convert wind energy into electrical energy. The optimized design features an overall volume smaller than 64 cm3. The core of the harvester is a high efficiency buck-boost converter which performs an optimal power point tracking. Experimental results show that the wind generator boosts efficiency over a wide range of operating conditions. PMID:26959018

  15. Wind tunnel interference factors for high-lift wings in closed wind tunnels. Ph.D. Thesis - Princeton Univ.

    NASA Technical Reports Server (NTRS)

    Joppa, R. G.

    1973-01-01

    A problem associated with the wind tunnel testing of very slow flying aircraft is the correction of observed pitching moments to free air conditions. The most significant effects of such corrections are to be found at moderate downwash angles typical of the landing approach. The wind tunnel walls induce interference velocities at the tail different from those induced at the wing, and these induced velocities also alter the trajectory of the trailing vortex system. The relocated vortex system induces different velocities at the tail from those experienced in free air. The effect of the relocated vortex and the walls is to cause important changes in the measured pitching moments in the wind tunnel.

  16. Kinetic and Potential Sputtering of Lunar Regolith: The Contribution of the Heavy Highly Charged (Minority) Solar Wind Ions

    NASA Technical Reports Server (NTRS)

    Meyer, F. W.; Barghouty, A. F.

    2012-01-01

    Solar wind sputtering of the lunar surface helps determine the composition of the lunar exosphere and contributes to surface weathering. To date, only the effects of the two dominant solar wind constituents, H+ and He+, have been considered. The heavier, less abundant solar wind constituents have much larger sputtering yields because they have greater mass (kinetic sputtering) and they are highly charged (potential sputtering) Their contribution to total sputtering can therefore be orders of magnitude larger than their relative abundances would suggest

  17. IMF dependence of high-latitude thermospheric wind pattern derived from CHAMP cross-track measurements

    NASA Astrophysics Data System (ADS)

    Förster, M.; Rentz, S.; Köhler, W.; Liu, H.; Haaland, S. E.

    2008-06-01

    Neutral thermospheric wind pattern at high latitudes obtained from cross-track acceleration measurements of the CHAMP satellite above both North and South polar regions are statistically analyzed in their dependence on the Interplanetary Magnetic Field (IMF) direction in the GSM y-z plane (clock angle). We compare this dependency with magnetospheric convection pattern obtained from the Cluster EDI plasma drift measurements under the same sorting conditions. The IMF-dependency shows some similarity with the corresponding high-latitude plasma convection insofar that the larger-scale convection cells, in particular the round-shaped dusk cell for ByIMF+ (ByIMF-) conditions at the Northern (Southern) Hemisphere, leave their marks on the dominant general transpolar wind circulation from the dayside to the nightside. The direction of the transpolar circulation is generally deflected toward a duskward flow, in particular in the evening to nighttime sector. The degree of deflection correlates with the IMF clock angle. It is larger for ByIMF+ than for ByIMF- and is systematically larger (~5°) and appear less structured at the Southern Hemisphere compared with the Northern. Thermospheric cross-polar wind amplitudes are largest for BzIMF-/ByIMF- conditions at the Northern Hemisphere, but for BzIMF-/ByIMF+ conditions at the Southern because the magnetospheric convection is in favour of largest wind accelerations over the polar cap under these conditions. The overall variance of the thermospheric wind magnitude at Southern high latitudes is larger than for the Northern. This is probably due to a larger "stirring effect" at the Southern Hemisphere because of the larger distance between the geographic and geomagnetic frameworks.

  18. Relative Contributions of Heating and Momentum Forcing to High-Latitude Lower Thermospheric Winds

    NASA Astrophysics Data System (ADS)

    Kwak, Y. S.; Richmond, A. D.

    2015-12-01

    At high latitudes the thermospheric dynamics are gov­erned by various heat and momentum sources. Recently several modeling studies have been attempt­ed to understand the physical process that control the high-latitude lower thermospheric dynamics. Kwak and Richmond [2007] and Kwak et al. [2007] studied the momentum forcing bal­ance that are mainly responsible for maintaining the high-latitude lower thermospheric wind system by using the National Center for Atmospheric Research Thermo­sphere Ionosphere Electrodynamics General Circulation Model (NCAR TIE-GCM). Kwak and Richmond [2014] analyzed the divergence and vorticity of the high-latitude neutral wind field in the lower thermosphere during the south­ern summertime. In this study, we extend previous works by Kwak and Rich­mond [2007, 2014] and Kwak et al. [2007], which helped to better understand the physical processes maintaining thermospheric dynamics at high latitudes, and here perform a "term analysis of the potential vorticity equation" for the high-latitude neu­tral wind field in the lower thermosphere, on the basis of numerical simulations using the NCAR TIE-GCM. These analyses can provide insight into the relative strength of the heating and the momentum forcing responsible for driving rotational winds at the high-latitude lower thermosphere. The heating is the net heat including the heat transfer by downward molecular and eddy heat conduction, the absorption of solar ultraviolet (UV) and extreme ultraviolet (EUV) ra­diation, auroral heating by particles, Joule dissipation of ionospheric currents, release of chemical energy by the atomic oxygen recombination, and radiative CO2, NO and O infrared emissions. The momentum forcing is associated with the viscous force and the frictional drag force from convecting ions.

  19. Field Demonstration of Using Advanced PV Inverter Functionality to Mitigate the Impacts of High-Penetration PV Grid Integration on the Distribution System

    SciTech Connect

    Mather, Barry; Gebeyehu, Araya

    2015-06-14

    This paper describes a field demonstration that was completed to show the ability of currently installed PV inverters to implement advanced PV inverter functionality and that such functionality was effective at reducing the voltage-related PV impacts of high-penetration PV integration. A distribution circuit was instrumented and then tested for a two week period using off-unity power factor operation. Specifically, an inductive power factor of -0.95 was demonstrated. The results show that the PV inverters were capable of such operation and that the use of off-unity power factor operation was highly effective at reducing the voltage-related impacts of the PV systems interconnected to the circuits used in the demonstration. The impacts of using off-unity power factor operation - resulting in additional reactive current flow on the distribution circuit - are also presented and analyzed.

  20. Resuscitative thoracotomy in penetrating trauma.

    PubMed

    Fairfax, Lindsay M; Hsee, Li; Civil, Ian D

    2015-06-01

    The resuscitative thoracotomy (RT) is an important procedure in the management of penetrating trauma. As it is performed only in patients with peri-arrest physiology or overt cardiac arrest, survival is low. Experience is also quite variable depending on volume of penetrating trauma in a particular region. Survival ranges from 0% to as high as 89% depending on patient selection, available resources, and location of RT (operating or emergency rooms). In this article, published guidelines are reviewed as well as outcomes. Technical considerations of RT and well as proper training, personnel, and location are also discussed. PMID:25342073

  1. Solar wind-magnetosphere coupling leading to relativistic electron energization during high-speed streams

    NASA Astrophysics Data System (ADS)

    Lyons, L. R.; Lee, D.-Y.; Thorne, R. M.; Horne, R. B.; Smith, A. J.

    2005-11-01

    Enhancements in relativistic electron fluxes in the outer radiation belt often occur following magnetic storms and have been suggested to result from resonant interactions with enhanced whistler-mode chorus emissions observed on the dawnside. Using observations during a period of persistent high-speed, corotating, solar wind streams, we investigate the aspects of solar wind-magnetosphere coupling that lead to these enhanced chorus emissions. We find that relativistic electron energization occurs in association with large-amplitude Alfvén waves within the high-speed streams. These waves last for multiday periods and cause multiday intervals having intermittent periods of significantly enhanced convection. The enhanced convection periods are followed by repetitive substorm onsets caused by the Alfvén wave related repetitive reductions in convection. We use these substorm onsets, identified using geosynchronous particles and midlatitude H components, as indicators of preceding periods of enhanced convection and of reductions in convection. We use ground-based chorus observations from the Halley station VLF/ELF Logger Experiment (VELOX) instrument to indicate magnetospheric chorus intensities. These data give evidence that the periods of enhanced convection that precede substorm expansions lead to the enhanced dawnside chorus wave. We also see that the enhanced solar wind densities nsw ahead of high-speed streams are associated with significant energetic electron loss at geosynchronous orbit and that the subsequent flux increases appear to not begin until nsw drops below ˜5 cm-3 even if the solar wind speed increases earlier. The sequence of loss during the leading interval of high nsw, followed by energization during high-speed streams, occurs whether or not the high nsw interval leads to a magnetic storm.

  2. Clumpy wind accretion in supergiant neutron star high mass X-ray binaries

    NASA Astrophysics Data System (ADS)

    Bozzo, E.; Oskinova, L.; Feldmeier, A.; Falanga, M.

    2016-04-01

    The accretion of the stellar wind material by a compact object represents the main mechanism powering the X-ray emission in classical supergiant high mass X-ray binaries and supergiant fast X-ray transients. In this work we present the first attempt to simulate the accretion process of a fast and dense massive star wind onto a neutron star, taking into account the effects of the centrifugal and magnetic inhibition of accretion ("gating") due to the spin and magnetic field of the compact object. We made use of a radiative hydrodynamical code to model the nonstationary radiatively driven wind of an O-B supergiant star and then place a neutron star characterized by a fixed magnetic field and spin period at a certain distance from the massive companion. Our calculations follow, as a function of time (on a total timescale of several hours), the transitions of the system through all different accretion regimes that are triggered by the intrinsic variations in the density and velocity of the nonstationary wind. The X-ray luminosity released by the system is computed at each time step by taking into account the relevant physical processes occurring in the different accretion regimes. Synthetic lightcurves are derived and qualitatively compared with those observed from classical supergiant high mass X-ray binaries and supergiant fast X-ray transients. Although a number of simplifications are assumed in these calculations, we show that taking into account the effects of the centrifugal and magnetic inhibition of accretion significantly reduces the average X-ray luminosity expected for any neutron star wind-fed binary. The present model calculations suggest that long spin periods and stronger magnetic fields are favored in order to reproduce the peculiar behavior of supergiant fast X-ray transients in the X-ray domain.

  3. Long range wind lidars based on novel high spectral brilliance all-fibered sources

    NASA Astrophysics Data System (ADS)

    Lombard, L.; Dolfi-Bouteyre, A.; Besson, C.; Augère, B.; Bourdon, P.; Durécu, A.; Goular, D.; Le Gouët, J.; Planchat, C.; Renard, W.; Valla, M.; Canat, G.

    2015-10-01

    New Lidar applications related to aircraft safety in the area of an airport include mapping wind velocity and monitoring turbulences within a radius longer than 8km in a short acquisition time (360° map in 1 minute). During landing and takeoff, a minimal distance separation between aircrafts is set by referring to wake turbulence categories. However, it was shown that wake vortices can dissipate quicker because of atmospheric turbulence (characterized by eddy dissipation rate - EDR) or can be transported out of the way on oncoming traffic by cross-winds. Long range scanning Lidars provide radial wind data that can be used to calculate EDR. To reach long range within a short acquisition time, coherent wind Lidars require high power (~kW), narrow linewidth (few MHz) pulsed laser sources with nearly TF limited pulse duration (~1μs). Eyesafe, all-fiber laser sources based on MOPFA (master oscillator, power fiber amplifier) architecture offer many advantages over bulk sources such as low sensitivity to vibrations, efficiency and versatility. However, narrow linewidth pulsed fiber lasers and amplifiers are usually limited by nonlinear effects such as stimulated Brillouin scattering (SBS) to 300W with commercial fibers. We investigated various solutions to push this limit further. For example, a source based on a new fiber composition yielded a peak power of 1120W for 650ns pulse duration with excellent beam quality. Based on these innovative solutions we built a Lidar with a record range of 16km in 0.1s averaging time. In this proceeding, we present some recent results obtained with our wind Lidars based on these high power sources with record ranges. EDR measurements using the developed algorithm based on structure function calculation are presented, as well as its validation with simulations and measurements campaign results.

  4. Clumpy wind accretion in supergiant neutron star high mass X-ray binaries

    NASA Astrophysics Data System (ADS)

    Bozzo, E.; Oskinova, L.; Feldmeier, A.; Falanga, M.

    2016-05-01

    The accretion of the stellar wind material by a compact object represents the main mechanism powering the X-ray emission in classical supergiant high mass X-ray binaries and supergiant fast X-ray transients. In this work we present the first attempt to simulate the accretion process of a fast and dense massive star wind onto a neutron star, taking into account the effects of the centrifugal and magnetic inhibition of accretion ("gating") due to the spin and magnetic field of the compact object. We made use of a radiative hydrodynamical code to model the nonstationary radiatively driven wind of an O-B supergiant star and then place a neutron star characterized by a fixed magnetic field and spin period at a certain distance from the massive companion. Our calculations follow, as a function of time (on a total timescale of several hours), the transitions of the system through all different accretion regimes that are triggered by the intrinsic variations in the density and velocity of the nonstationary wind. The X-ray luminosity released by the system is computed at each time step by taking into account the relevant physical processes occurring in the different accretion regimes. Synthetic lightcurves are derived and qualitatively compared with those observed from classical supergiant high mass X-ray binaries and supergiant fast X-ray transients. Although a number of simplifications are assumed in these calculations, we show that taking into account the effects of the centrifugal and magnetic inhibition of accretion significantly reduces the average X-ray luminosity expected for any neutron star wind-fed binary. The present model calculations suggest that long spin periods and stronger magnetic fields are favored in order to reproduce the peculiar behavior of supergiant fast X-ray transients in the X-ray domain.

  5. Field wind tunnel testing of two silt loam soils on the North American Central High Plains

    NASA Astrophysics Data System (ADS)

    Scott Van Pelt, R.; Baddock, Matthew C.; Zobeck, Ted M.; Schlegel, Alan J.; Vigil, Merle F.; Acosta-Martinez, Veronica

    2013-09-01

    Wind erosion is a soil degrading process that threatens agricultural sustainability and environmental quality globally. Protecting the soil surface with cover crops and plant residues, practices common in no-till and reduced tillage cropping systems, are highly effective methods for shielding the soil surface from the erosive forces of wind and have been credited with beneficial increases of chemical and physical soil properties including soil organic matter, water holding capacity, and wet aggregate stability. Recently, advances in biofuel technology have made crop residues valuable feed stocks for ethanol production. Relatively little is known about cropping systems effects on intrinsic soil erodibility, the ability of the soil without a protective cover to resist the erosive force of wind. We tested the bare, uniformly disturbed, surface of long-term tillage and crop rotation research plots containing silt loam soils in western Kansas and eastern Colorado with a portable field wind tunnel. Total Suspended Particulate (TSP) were measured using glass fiber filters and respirable dust, PM10 and PM2.5, were measured using optical particle counters sampling the flow to the filters. The results were highly variable and TSP emission rates varied from less than 0.5 mg m-2 s-1 to greater than 16.1 mg m-2 s-1 but all the results indicated that cropping system history had no effect on intrinsic erodibility or dust emissions from the soil surfaces. We conclude that prior best management practices will not protect the soil from the erosive forces of wind if the protective mantle of crop residues is removed.

  6. Detection of a second high-velocity component in the highly ionized wind from PG 1211+143

    NASA Astrophysics Data System (ADS)

    Pounds, Ken; Lobban, Andrew; Reeves, James; Vaughan, Simon

    2016-04-01

    An extended XMM-Newton observation of the luminous narrow line Seyfert galaxy PG1211+143 in 2014 has revealed a more complex highly ionized, high-velocity outflow. The detection of previously unresolved spectral structure in Fe K absorption finds a second outflow velocity component of the highly ionized wind, with an outflow velocity of v ˜ 0.066 ± 0.003c, in addition to a still higher velocity outflow of v ˜ 0.129 ± 0.002c consistent with that first seen in 2001. We note that chaotic accretion, consisting of many prograde and retrograde events, offers an intriguing explanation of the dual velocity wind. In that context the persisting outflow velocities could relate to physically distinct orientations of the inner accretion flow, with prograde accretion yielding a higher launch velocity than retrograde accretion in a ratio close to that observed.

  7. Advancements in Wind Integration Study Input Data Modeling: The Wind Integration National Dataset (WIND) Toolkit

    NASA Astrophysics Data System (ADS)

    Hodge, B.; Orwig, K.; McCaa, J. R.; Harrold, S.; Draxl, C.; Jones, W.; Searight, K.; Getman, D.

    2013-12-01

    Regional wind integration studies in the United States, such as the Western Wind and Solar Integration Study (WWSIS), Eastern Wind Integration and Transmission Study (EWITS), and Eastern Renewable Generation Integration Study (ERGIS), perform detailed simulations of the power system to determine the impact of high wind and solar energy penetrations on power systems operations. Some of the specific aspects examined include: infrastructure requirements, impacts on grid operations and conventional generators, ancillary service requirements, as well as the benefits of geographic diversity and forecasting. These studies require geographically broad and temporally consistent wind and solar power production input datasets that realistically reflect the ramping characteristics, spatial and temporal correlations, and capacity factors of wind and solar power plant production, and are time-synchronous with load profiles. The original western and eastern wind datasets were generated independently for 2004-2006 using numerical weather prediction (NWP) models run on a ~2 km grid with 10-minute resolution. Each utilized its own site selection process to augment existing wind plants with simulated sites of high development potential. The original dataset also included day-ahead simulated forecasts. These datasets were the first of their kind and many lessons were learned from their development. For example, the modeling approach used generated periodic false ramps that later had to be removed due to unrealistic impacts on ancillary service requirements. For several years, stakeholders have been requesting an updated dataset that: 1) covers more recent years; 2) spans four or more years to better evaluate interannual variability; 3) uses improved methods to minimize false ramps and spatial seams; 4) better incorporates solar power production inputs; and 5) is more easily accessible. To address these needs, the U.S. Department of Energy (DOE) Wind and Solar Programs have funded two

  8. Penetrating abdominal trauma.

    PubMed

    Henneman, P L

    1989-08-01

    The management of patients with penetrating abdominal trauma is outlined in Figure 1. Patients with hemodynamic instability, evisceration, significant gastrointestinal bleeding, peritoneal signs, gunshot wounds with peritoneal violation, and type 2 and 3 shotgun wounds should undergo emergency laparotomy. The initial ED management of these patients includes airway management, monitoring of cardiac rhythm and vital signs, history, physical examination, and placement of intravenous lines. Blood should be obtained for initial hematocrit, type and cross-matching, electrolytes, and an alcohol level or drug screen as needed. Initial resuscitation should utilize crystalloid fluid replacement. If more than 2 liters of crystalloid are needed to stabilize an adult (less in a child), blood should be given. Group O Rh-negative packed red blood cells should be immediately available for a patient in impending arrest or massive hemorrhage. Type-specific blood should be available within 15 minutes. A patient with penetrating thoracic and high abdominal trauma should receive a portable chest x-ray, and a hemo- or pneumothorax should be treated with tube thoracostomy. An unstable patient with clinical signs consistent with a pneumothorax, however, should receive a tube thoracostomy prior to obtaining roentgenographic confirmation. If time permits, a nasogastric tube and Foley catheter should be placed, and the urine evaluated for blood (these procedures can be performed in the operating room). If kidney involvement is suspected because of hematuria or penetrating trauma in the area of a kidney or ureter in a patient requiring surgery, a single-shot IVP should be performed either in the ED or the operating room. An ECG is important in patients with possible cardiac involvement and in patients over the age of 40 going to the operating room. Tetanus status should be updated, and appropriate antibiotics covering bowel flora should be given. Operative management should rarely be delayed

  9. BeamDyn: A High-Fidelity Wind Turbine Blade Solver in the FAST Modular Framework: Preprint

    SciTech Connect

    Wang, Q.; Sprague, M.; Jonkman, J.; Johnson, N.

    2015-01-01

    BeamDyn, a Legendre-spectral-finite-element implementation of geometrically exact beam theory (GEBT), was developed to meet the design challenges associated with highly flexible composite wind turbine blades. In this paper, the governing equations of GEBT are reformulated into a nonlinear state-space form to support its coupling within the modular framework of the FAST wind turbine computer-aided engineering (CAE) tool. Different time integration schemes (implicit and explicit) were implemented and examined for wind turbine analysis. Numerical examples are presented to demonstrate the capability of this new beam solver. An example analysis of a realistic wind turbine blade, the CX-100, is also presented as validation.

  10. Comparative Assessment of Direct Drive High Temperature Superconducting Generators in Multi-Megawatt Class Wind Turbines

    SciTech Connect

    Maples, B.; Hand, M.; Musial, W.

    2010-10-01

    This paper summarizes the work completed under the CRADA between NREL and American Superconductor (AMSC). The CRADA combined NREL and AMSC resources to benchmark high temperature superconducting direct drive (HTSDD) generator technology by integrating the technologies into a conceptual wind turbine design, and comparing the design to geared drive and permanent magnet direct drive (PMDD) wind turbine configurations. Analysis was accomplished by upgrading the NREL Wind Turbine Design Cost and Scaling Model to represent geared and PMDD turbines at machine ratings up to 10 MW and then comparing cost and mass figures of AMSC's HTSDD wind turbine designs to theoretical geared and PMDD turbine designs at 3.1, 6, and 10 MW sizes. Based on the cost and performance data supplied by AMSC, HTSDD technology has good potential to compete successfully as an alternative technology to PMDD and geared technology turbines in the multi megawatt classes. In addition, data suggests the economics of HTSDD turbines improve with increasing size, although several uncertainties remain for all machines in the 6 to 10 MW class.

  11. High-fidelity Modeling of Local Effects of Damage for Derated Offshore Wind Turbines

    NASA Astrophysics Data System (ADS)

    Richards, Phillip W.; Griffith, D. Todd; Hodges, Dewey H.

    2014-06-01

    Offshore wind power production is an attractive clean energy option, but the difficulty of access can lead to expensive and rare opportunities for maintenance. As part of the Structural Health and Prognostics Management (SHPM) project at Sandia National Laboratories, smart loads management (controls) are investigated for their potential to increase the fatigue life of offshore wind turbine rotor blades. Derating refers to altering the rotor angular speed and blade pitch to limit power production and loads on the rotor blades. High- fidelity analysis techniques like 3D finite element modeling (FEM) should be used alongside beam models of wind turbine blades to characterize these control strategies in terms of their effect to mitigate fatigue damage and extend life of turbine blades. This study will consider a commonly encountered damage type for wind turbine blades, the trailing edge disbond, and show how FEM can be used to quantify the effect of operations and control strategies designed to extend the fatigue life of damaged blades. The Virtual Crack Closure Technique (VCCT) will be used to post-process the displacement and stress results to provide estimates of damage severity/criticality and provide a means to estimate the fatigue life under a given operations and control strategy.

  12. High-Resolution Spectroscopy of Winds Associated with T Tauri Stars

    NASA Astrophysics Data System (ADS)

    Iguchi, Naoto; Itoh, Yoichi

    2016-02-01

    We carried out optical high-resolution spectroscopy of T Tauri stars using the Subaru Telescope. Using archived data from the Keck Telescope and the Very Large Telescope, we detected forbidden lines of [S II] at 4069 Å, in addition to those of [O I] at 5577 Å and 6300 Å, for 13 T Tauri stars. We consider that low-velocity components of these forbidden lines emanate from the wind associated with T Tauri stars. Using two flux ratios of the three lines, we simultaneously determined the hydrogen density and temperature of the winds. The winds of T Tauri stars have a hydrogen density of 2.5 × 106 cm-3 - 2.5 × 109 cm-3 and a temperature of 10800 -18 000 K. The mass loss rates by the wind are estimated to lie in the range from 2.0 × 10-10 M⊙ yr-1 to 1.4 × 10-9 M⊙ yr-1. The mass loss rates are found to increase with increasing mass accretion rates. The ratio of the mass loss rate to the mass accretion rate is 0.001-0.1 for classical T Tauri stars and 0.1-1 for transitional disk objects.

  13. High-energy particle transport in three-dimensional hydrodynamic models of colliding-wind binaries

    SciTech Connect

    Reitberger, K.; Kissmann, R.; Reimer, A.; Reimer, O.; Dubus, G.

    2014-02-20

    Massive stars in binary systems (such as WR 140, WR 147, or η Carinae) have long been regarded as potential sources of high-energy γ-rays. The emission is thought to arise in the region where the stellar winds collide and produce relativistic particles that subsequently might be able to emit γ-rays. Detailed numerical hydrodynamic simulations have already offered insight into the complex dynamics of the wind collision region (WCR), while independent analytical studies, albeit with simplified descriptions of the WCR, have shed light on the spectra of charged particles. In this paper, we describe a combination of these two approaches. We present a three-dimensional hydrodynamical model for colliding stellar winds and compute spectral energy distributions of relativistic particles for the resulting structure of the WCR. The hydrodynamic part of our model incorporates the line-driven acceleration of the winds, gravity, orbital motion, and the radiative cooling of the shocked plasma. In our treatment of charged particles, we consider diffusive shock acceleration in the WCR and the subsequent cooling via inverse Compton losses (including Klein-Nishina effects), bremsstrahlung, collisions, and other energy loss mechanisms.

  14. Analytical aerodynamic model of a high alpha research vehicle wind-tunnel model

    NASA Technical Reports Server (NTRS)

    Cao, Jichang; Garrett, Frederick, Jr.; Hoffman, Eric; Stalford, Harold

    1990-01-01

    A 6 DOF analytical aerodynamic model of a high alpha research vehicle is derived. The derivation is based on wind-tunnel model data valid in the altitude-Mach flight envelope centered at 15,000 ft altitude and 0.6 Mach number with Mach range between 0.3 and 0.9. The analytical models of the aerodynamics coefficients are nonlinear functions of alpha with all control variable and other states fixed. Interpolation is required between the parameterized nonlinear functions. The lift and pitching moment coefficients have unsteady flow parts due to the time range of change of angle-of-attack (alpha dot). The analytical models are plotted and compared with their corresponding wind-tunnel data. Piloted simulated maneuvers of the wind-tunnel model are used to evaluate the analytical model. The maneuvers considered are pitch-ups, 360 degree loaded and unloaded rolls, turn reversals, split S's, and level turns. The evaluation finds that (1) the analytical model is a good representation at Mach 0.6, (2) the longitudinal part is good for the Mach range 0.3 to 0.9, and (3) the lateral part is good for Mach numbers between 0.6 and 0.9. The computer simulations show that the storage requirement of the analytical model is about one tenth that of the wind-tunnel model and it runs twice as fast.

  15. High-energy Particle Transport in Three-dimensional Hydrodynamic Models of Colliding-wind Binaries

    NASA Astrophysics Data System (ADS)

    Reitberger, K.; Kissmann, R.; Reimer, A.; Reimer, O.; Dubus, G.

    2014-02-01

    Massive stars in binary systems (such as WR 140, WR 147, or η Carinae) have long been regarded as potential sources of high-energy γ-rays. The emission is thought to arise in the region where the stellar winds collide and produce relativistic particles that subsequently might be able to emit γ-rays. Detailed numerical hydrodynamic simulations have already offered insight into the complex dynamics of the wind collision region (WCR), while independent analytical studies, albeit with simplified descriptions of the WCR, have shed light on the spectra of charged particles. In this paper, we describe a combination of these two approaches. We present a three-dimensional hydrodynamical model for colliding stellar winds and compute spectral energy distributions of relativistic particles for the resulting structure of the WCR. The hydrodynamic part of our model incorporates the line-driven acceleration of the winds, gravity, orbital motion, and the radiative cooling of the shocked plasma. In our treatment of charged particles, we consider diffusive shock acceleration in the WCR and the subsequent cooling via inverse Compton losses (including Klein-Nishina effects), bremsstrahlung, collisions, and other energy loss mechanisms.

  16. Low-wind/high particulate matter episodes in the Calexico/Mexicali region.

    PubMed

    Kelly, Kerry E; Jaramillo, Isabel C; Quintero-Núñez, Margarito; Wagner, David A; Collins, Kimberly; Meuzelaar, Henk L C; Lighty, JoAnn S

    2010-12-01

    The U.S. Environmental Protection Agency (EPA) currently classifies Imperial County, CA, as a nonattainment area for PM10 (particulate matter [PM] < or = 10 microm in diameter), and this region suffers from high rates of chronic bronchitis and childhood asthma. Although high annual and daily average PM levels can have negative health and economic effects, recent studies have identified an association between adverse health effects and short-term PM spikes of tens of micrograms per cubic meter. This study identified PM episodes in Calexico/Mexicali that involve PM concentration spikes with concentrations up to 10 times greater than those reported to cause adverse health effects. These episodes appear to be relatively common during the winter months, are associated with wind speeds below 2 m/sec and stable boundary level heights below 500 m, and can comprise a large portion of the 24-hr PM levels. The organic composition of the PM10 samples collected during the low-wind/ high-PM episodes differed from that collected at other times. However, a preliminary source attribution identified only one significant difference between the source classes: agricultural burning accounted for 6.7% of organic-fraction PM10 for low-wind/high-PM episodes versus 0.25% at other times. This preliminary source attribution also revealed that motor vehicles were the most important relative contributor to organic PM10. PMID:21243902

  17. Air/sea DMS gas transfer in the North Atlantic: evidence for limited interfacial gas exchange at high wind speed

    NASA Astrophysics Data System (ADS)

    Bell, T. G.; De Bruyn, W.; Miller, S. D.; Ward, B.; Christensen, K.; Saltzman, E. S.

    2013-05-01

    Shipboard measurements of eddy covariance DMS air/sea fluxes and seawater concentration were carried out in the North Atlantic bloom region in June/July 2011. Gas transfer coefficients (k660) show a linear dependence on mean horizontal wind speed at wind speeds up to 11 m s-1. At higher wind speeds the relationship between k660 and wind speed weakens. At high winds, measured DMS fluxes were lower than predicted based on the linear relationship between wind speed and interfacial stress extrapolated from low to intermediate wind speeds. In contrast, the transfer coefficient for sensible heat did not exhibit this effect. The apparent suppression of air/sea gas flux at higher wind speeds appears to be related to sea state, as determined from shipboard wave measurements. These observations are consistent with the idea that long waves suppress near surface water side turbulence, and decrease interfacial gas transfer. This effect may be more easily observed for DMS than for less soluble gases, such as CO2, because the air/sea exchange of DMS is controlled by interfacial rather than bubble-mediated gas transfer under high wind speed conditions.

  18. The effect of welding parameters on penetration in GTA welds

    SciTech Connect

    Shirali, A.A. ); Mills, K.C. )

    1993-07-01

    The effect of various welding parameters on the penetration of GTA welds has been investigated. Increases in welding speed were found to reduce penetration; however, increases in welding current were observed to increase the penetration in high sulfur (HS) casts and decrease penetration in low sulfur (LS) steels. Plots of penetration as a function of increasing linear energy (the heat supplied per unit length of weld) revealed a similar trend with increased penetration in HS casts, but the penetration in LS casts was unaffected by increases in linear energy. These results support the Burgardt-Heiple proposition that changes in welding parameters on penetration can be explained in terms of their effect, sequentially, on the temperature gradient and the Marangoni forces operating in the weld pool. Increases in arc length were found to decrease weld penetration regardless of the sulfur concentration of the steel, and the effects of electrode geometry and welding position on weld penetration were also investigated.

  19. Session: Hard Rock Penetration

    SciTech Connect

    Tennyson, George P. Jr.; Dunn, James C.; Drumheller, Douglas S.; Glowka, David A.; Lysne, Peter

    1992-01-01

    This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of five presentations: ''Hard Rock Penetration - Summary'' by George P. Tennyson, Jr.; ''Overview - Hard Rock Penetration'' by James C. Dunn; ''An Overview of Acoustic Telemetry'' by Douglas S. Drumheller; ''Lost Circulation Technology Development Status'' by David A. Glowka; ''Downhole Memory-Logging Tools'' by Peter Lysne.

  20. Proton-driven electromagnetic instabilities in high-speed solar wind streams

    NASA Technical Reports Server (NTRS)

    Abraham-Shrauner, B.; Asbridge, J. R.; Bame, S. J.; Feldman, W. C.

    1979-01-01

    Electromagnetic instabilities of the field-aligned, right-hand circularly polarized magnetosonic wave and the left-hand circularly polarized Alfven wave driven by two drifted proton components are analyzed for model parameters determined from Imp 7 solar wind proton data measured during high-speed flow conditions. Growth rates calculated using bi-Lorentzian forms for the main and beam proton as well as core and halo electron velocity distributions do not differ significantly from those calculated using bi-Maxwellian forms. Using distribution parameters determined from 17 measured proton spectra, we show that considering the uncertainties the magnetosonic wave may be linearly stable and the Alfven wave is linearly unstable. Because proton velocity distribution function shapes are observed to persist for times long compared to the proton gyroperiod, the latter result suggests that linear stability theory fails for proton-driven ion cyclotron waves in the high-speed solar wind.

  1. Development of a procedure to model high-resolution wind profiles from smoothed or low-frequency data

    NASA Technical Reports Server (NTRS)

    Camp, D. W.

    1977-01-01

    The derivation of simulated Jimsphere wind profiles from low-frequency rawinsonde data and a generated set of white noise data are presented. A computer program is developed to model high-resolution wind profiles based on the statistical properties of data from the Kennedy Space Center, Florida. Comparison of the measured Jimsphere data, rawinsonde data, and the simulated profiles shows excellent agreement.

  2. High-time resolution measurements of solar wind heavy ions with SOHO/CELIAS/CTOF

    NASA Astrophysics Data System (ADS)

    Janitzek, N. P.; Taut, A.; Berger, L.; Bochsler, P.; Drews, C.; Klecker, B.; Wimmer-Schweingruber, R. F.

    2016-03-01

    The Charge Time-Of-Flight (CTOF) mass spectrometer as part of the Charge, ELement and Isotope Analysis System (CELIAS) onboard the SOlar and Heliospheric Observatory (SOHO) is designed to measure the kinetic properties and elemental/ionic composition of solar wind ions heavier than protons, which we refer to as heavy ions. This is achieved by the combined measurements of the energy-per-charge, the time-of-flight and the energy of incident ions. The CTOF instrument combines a remarkable time-of-flight resolution with a large effective area and a high measurement cadence. This allows to determine the Velocity Distribution Functions (VDFs) of a wide range of heavy ions with 5-minute time resolution which ensures that the complete VDF is measured under nearly identical solar wind and magnetic field conditions. For the measurement period between Day Of Year (DOY) 150 and 220 in 1996, which covers a large part of the instrument's short life time, we analyzed VDFs of solar wind iron Fe8+, Fe9+ and Fe10+ for differential streaming relative to the solar wind proton speed measured simultaneously with the CELIAS Proton Monitor (PM). We find an increasing differential streaming with increasing solar wind proton speed for all investigated ions up to ion-proton velocity differences of 30 - 50 km s-1 at proton velocities of 500 km s-1, which is contradictory to an earlier CTOF study by [7]. We believe this difference is because in this study we used raw Pulse Height Analysis (PHA) data with a significantly increased mass and mass-per-charge resolution compared to the earlier used onboard preprocessed data.

  3. Key Topics for High-Lift Research: A Joint Wind Tunnel/Flight Test Approach

    NASA Technical Reports Server (NTRS)

    Fisher, David; Thomas, Flint O.; Nelson, Robert C.

    1996-01-01

    Future high-lift systems must achieve improved aerodynamic performance with simpler designs that involve fewer elements and reduced maintenance costs. To expeditiously achieve this, reliable CFD design tools are required. The development of useful CFD-based design tools for high lift systems requires increased attention to unresolved flow physics issues. The complex flow field over any multi-element airfoil may be broken down into certain generic component flows which are termed high-lift building block flows. In this report a broad spectrum of key flow field physics issues relevant to the design of improved high lift systems are considered. It is demonstrated that in-flight experiments utilizing the NASA Dryden Flight Test Fixture (which is essentially an instrumented ventral fin) carried on an F-15B support aircraft can provide a novel and cost effective method by which both Reynolds and Mach number effects associated with specific high lift building block flows can be investigated. These in-flight high lift building block flow experiments are most effective when performed in conjunction with coordinated ground based wind tunnel experiments in low speed facilities. For illustrative purposes three specific examples of in-flight high lift building block flow experiments capable of yielding a high payoff are described. The report concludes with a description of a joint wind tunnel/flight test approach to high lift aerodynamics research.

  4. Monitoring the rotation status of wind turbine blades using high-speed camera system

    NASA Astrophysics Data System (ADS)

    Zhang, Dongsheng; Chen, Jubing; Wang, Qiang; Li, Kai

    2013-06-01

    The measurement of the rotating object is of great significance in engineering applications. In this study, a high-speed dual camera system based on 3D digital image correlation has been developed in order to monitor the rotation status of the wind turbine blades. The system allows sequential images acquired at a rate of 500 frames per second (fps). An improved Newton-Raphson algorithm has been proposed which enables detection movement including large rotation and translation in subpixel precision. The simulation experiments showed that this algorithm is robust to identify the movement if the rotation angle is less than 16 degrees between the adjacent images. The subpixel precision is equivalent to the normal NR algorithm, i.e.0.01 pixels in displacement. As a laboratory research, the high speed camera system was used to measure the movement of the wind turbine model which was driven by an electric fan. In the experiment, the image acquisition rate was set at 387 fps and the cameras were calibrated according to Zhang's method. The blade was coated with randomly distributed speckles and 7 locations in the blade along the radial direction were selected. The displacement components of these 7 locations were measured with the proposed method. Conclusion is drawn that the proposed DIC algorithm is suitable for large rotation detection, and the high-speed dual camera system is a promising, economic method in health diagnose of wind turbine blades.

  5. Ion energy equation for the high-speed solar wind: Ulysses observations

    SciTech Connect

    Feldman, W.C.; Barraclough, B.L.; Gosling, J.T.; McComas, D.J.; Riley, P.; Goldstein, B.E.; Balogh, A.

    1998-07-01

    Ulysses data in the high-speed solar wind that cover a wide range of latitudes centered on the solar poles were studied to test whether a polytrope law can be used to close the ion energy equation. Three approaches were taken. We determined the correlation between proton temperature and density (1) in the free expansion of the high-speed solar wind between 1.5 and 4.8 AU, (2) in steepened microstreams at high latitudes, and (3) at the edges of the equatorial band of solar wind variability. Strong correlations were observed in all data subsets that are consistent with a single polytrope relation, T{sub p}=aN{sub p}{sup ({gamma}{sup {asterisk}}{minus}1)}, where our best estimate for {gamma}{sup {asterisk}} is between 1.5 and 1.7. The best fitting relation is T{sub p}=(2.0{plus_minus}0.13){times}10{sup 5} N{sub p}{sup 0.57}. {copyright} 1998 American Geophysical Union

  6. A CME-driven solar wind distrubance observed at both low and high heliographic latitudes

    SciTech Connect

    Gosling, J.T.; McComas, D.J.; Phillips, J.L.

    1995-07-01

    A solar wind disturbance produced by a fast coronal mass ejection, CME, that departed from the Sun on Feburary 20, 1994 was observed in the ecliptic plane at 1 AU by IMP 8 and at high heliographic latitudes at 3.53 AU by Ulysses. In the ecliptic the disturbance included a strong forward shock but no reverse shock, while at high latitudes the disturbance was bounded by a relatively weak forward-reverse shock pair. It is clear that the disturbance in the ecliptic plane was driven primarily by the relative speed between the CME and a slower ambient solar wind ahead, whereas at higher latitudes the disturbance was driven by expansion of the CME. The combined IMP 8 and Ulysses observations thus provide a graphic illustration of how a single fast CME can produce very different types of solar wind disturbances at low and high heliographic latitudes. Simple numerical simulations help explain observed differences at the two spacecraft. 12 refs., 3 figs.

  7. AE Geomagnetic Index Predictability for High Speed Solar Wind Streams: A Wavelet Decomposition Technique

    NASA Technical Reports Server (NTRS)

    Guarnieri, Fernando L.; Tsurutani, Bruce T.; Hajra, Rajkumar; Echer, Ezequiel; Gonzalez, Walter D.; Mannucci, Anthony J.

    2014-01-01

    High speed solar wind streams cause geomagnetic activity at Earth. In this study we have applied a wavelet interactive filtering and reconstruction technique on the solar wind magnetic field components and AE index series to allowed us to investigate the relationship between the two. The IMF Bz component was found as the most significant solar wind parameter responsible by the control of the AE activity. Assuming magnetic reconnection associated to southward directed Bz is the main mechanism transferring energy into the magnetosphere, we adjust parameters to forecast the AE index. The adjusted routine is able to forecast AE, based only on the Bz measured at the L1 Lagrangian point. This gives a prediction approximately 30-70 minutes in advance of the actual geomagnetic activity. The correlation coefficient between the observed AE data and the forecasted series reached values higher than 0.90. In some cases the forecast reproduced particularities observed in the signal very well.The high correlation values observed and the high efficacy of the forecasting can be taken as a confirmation that reconnection is the main physical mechanism responsible for the energy transfer during HILDCAAs. The study also shows that the IMF Bz component low frequencies are most important for AE prediction.

  8. A 3-D High Speed Photographic Survey For Bomb Dropping In The Wind Tunnel

    NASA Astrophysics Data System (ADS)

    Junren, Chen; Liangyi, Chen; Yuxian, Nie; Wenxing, Chen

    1989-06-01

    High speed Stereophotography may obtain 3-D information of the motion object. This paper deals with a high speed stereophotographic survey of dropping bomb in wind tunnel and measurement of its displacement, velocity, acceleration, angle of attack and yaw angle. Two high speed cinecameras are used, the two optical axes of the cameras are perpendicular to each other and in a plane being vertical to the plumb line. The optical axis of a camera (front camera) is parallel with the aircraft body, and the another (side camera) is perpendicular. Before taking the object and image distance of the two cameras must be measured by photographic method. The photographic rate is 304 fps.

  9. Wind tunnel investigation of a high lift system with pneumatic flow control

    NASA Astrophysics Data System (ADS)

    Victor, Pricop Mihai; Mircea, Boscoianu; Daniel-Eugeniu, Crunteanu

    2016-06-01

    Next generation passenger aircrafts require more efficient high lift systems under size and mass constraints, to achieve more fuel efficiency. This can be obtained in various ways: to improve/maintain aerodynamic performance while simplifying the mechanical design of the high lift system going to a single slotted flap, to maintain complexity and improve the aerodynamics even more, etc. Laminar wings have less efficient leading edge high lift systems if any, requiring more performance from the trailing edge flap. Pulsed blowing active flow control (AFC) in the gap of single element flap is investigated for a relatively large model. A wind tunnel model, test campaign and results and conclusion are presented.

  10. Solar Wind Influence on the Oxygen Content of Ion Outflow in the High Altitude Polar Cap During Solar Minimum Conditions

    NASA Technical Reports Server (NTRS)

    Elliott, Heather A.; Comfort, Richard H.; Craven, Paul D.; Chandler, Michael O.; Moore, Thomas E.

    2000-01-01

    We correlate solar wind and IMF properties with the properties of O(+) and H(+) in the polar cap in early 1996 during solar minimum conditions at altitudes between 5.5 and 8.9 Re geocentric using the Thermal Ion Dynamics Experiment (TIDE) on the POLAR satellite. Throughout the high altitude polar cap, we observe H(+) to be more abundant than O(+). H(+) is a significant fraction of both the ionosphere and the solar wind, and O(+) is not a significant species in the solar wind. O(+) is the major species in the ionosphere so the faction of O(+) present in the magnetosphere is commonly used as a measure of the ionospheric contribution to the magnetosphere. For these reasons, 0+ is of primary interest in this study. We observe O(+) to be most abundant at lower latitudes when the solar wind speed is low (and low Kp), and at higher solar wind speeds (and high Kp) O(+) is observed across most of the polar cap. We also find that O(+) density and parallel flux are well organized by solar wind dynamic pressure; they both increase with solar wind dynamic pressure. H(+) is not as highly correlated with solar wind and IMF parameters, but H(+) density and parallel flux have some negative correlation with IMF By, and some positive correlation with VswBIMF. In this solar minimum data set, H(+) is dominant so that contributions of this plasma to the plasma sheet would have a very low O(+) to H(+) ratio.

  11. In-place HEPA filter penetration test

    SciTech Connect

    Bergman, W.; Wilson, K.; Elliott, J.

    1997-08-01

    We have demonstrated the feasibility of conducting penetration tests on high efficiency particulate air (HEPA) filters as installed in nuclear ventilation systems. The in-place penetration test, which is designed to yield equivalent penetration measurements as the standard DOP efficiency test, is based on measuring the aerosol penetration of the filter installation as a function of particle size using a portable laser particle counter. This in-place penetration test is compared to the current in-place leak test using light scattering photometers for single HEPA filter installations and for HEPA filter plenums using the shroud method. Test results show the in-place penetration test is more sensitive than the in-place leak test, has a similar operating procedure, but takes longer to conduct. Additional tests are required to confirm that the in-place penetration test yields identical results as the standard dioctyl phthalate (DOP) penetration test for HEPA filters with controlled leaks in the filter and gasket and duct by-pass leaks. Further development of the procedure is also required to reduce the test time before the in-place penetration test is practical. 14 refs., 14 figs., 3 tabs.

  12. Integrating Wind and Solar Energy in the U.S. Bulk Power System: Lessons from Regional Integration Studies

    SciTech Connect

    Bird, L.; Lew, D.

    2012-09-01

    Two recent studies sponsored by the U.S. Department of Energy (DOE) and the National Renewable Energy Laboratory (NREL) have examined the impacts of integrating high penetrations of wind and solar energy on the Eastern and Western electric grids. The Eastern Wind Integration and Transmission Study (EWITS), initiated in 2007, examined the impact on power system operations of reaching 20% to 30% wind energy penetration in the Eastern Interconnection. The Western Wind and Solar Integration Study (WWSIS) examined the operational implications of adding up to 35% wind and solar energy penetration to the Western Interconnect. Both studies examined the costs of integrating variable renewable energy generation into the grid and transmission and operational changes that might be necessary to address higher penetrations of wind or solar generation. This paper identifies key insights from these regional studies for integrating high penetrations of renewables in the U.S. electric grid. The studies share a number of key findings, although in some instances the results vary due to differences in grid operations and markets, the geographic location of the renewables, and the need for transmission.

  13. Ceramic and coating applications in the hostile environment of a high temperature hypersonic wind tunnel. [Langley 8-foot high temperature structures tunnel

    NASA Technical Reports Server (NTRS)

    Puster, R. L.; Karns, J. R.; Vasquez, P.; Kelliher, W. C.

    1981-01-01

    A Mach 7, blowdown wind tunnel was used to investigate aerothermal structural phenomena on large to full scale high speed vehicle components. The high energy test medium, which provided a true temperature simulation of hypersonic flow at 24 to 40 km altitude, was generated by the combustion of methane with air at high pressures. Since the wind tunnel, as well as the models, must be protected from thermally induced damage, ceramics and coatings were used extensively. Coatings were used both to protect various wind tunnel components and to improve the quality of the test stream. Planned modifications for the wind tunnel included more extensive use of ceramics in order to minimize the number of active cooling systems and thus minimize the inherent operational unreliability and cost that accompanies such systems. Use of nonintrusive data acquisition techniques, such as infrared radiometry, allowed more widespread use of ceramics for models to be tested in high energy wind tunnels.

  14. Investigation of a wind tunnel model high aspect ratio wing fracture

    SciTech Connect

    Gutierrez, W.T.; Tate, R.E.; Fell, H.P.

    1994-06-01

    A preliminary design and feasibility analysis on the aerodynamic performance characteristics of an experimental flight vehicle was conducted by Sandia National Laboratories. During a routine force and moment, static wind tunnel test in a blow down facility, one section of the high aspect ratio wing fractured outboard of the critical static stress location. Initially, a combination of material and aeroelastic analyses provided insight into the problem, but eventually proved inconclusive. After returning to the wind tunnel with a near identical model, instrumented with strain gages and accelerometers, and viewed with high speed video, the definitive mode of failure was discovered. It was determined that the first torsional mode of the wing was excited over a discrete angle of attack band, over the tested Mach number range of 0.5--0.9. Major flow separation on the airfoil occurred at the same time that flutter initiated, and was repeatable with a smaller scale model (geometrically similar, but 22% scale relative to the larger model) tested in a smaller test section wind tunnel. Data acquired during the stall flutter confirmed stress levels and numbers of cycles worked consistent with low cycle fatigue.

  15. Ionospheric Heating Rates Associated with Solar Wind Forcing: Ejecta flow, High Speed Flow and Slow Flow

    NASA Astrophysics Data System (ADS)

    Knipp, D. J.; Kasprzak, B.; Richardson, I.; Paige, T.; Evans, D.

    2001-12-01

    We present estimates of global ionospheric Joule and particle heating as a function of solar wind flow types over solar cycles 21, 22 and the first half of solar cycle 23. Richardson et al., [JGR, 2000] used a variety of techniques to categorize the solar wind flow as ejecta, high-speed stream or slow flow. Their work provides the basis for our catigorization of heating by flow type. The estimates of Joule heating are based on output of the Assimilative Mapping of Ionospheric Electrodynamics (AMIE) procedure, and fits to the Polar Cap Index [Chun et al., GRL, 1999]. Estimates of particle heating are derived from polar orbiting satellites. Although ejecta only account for 19% of the solar wind flow, they account for 27% of the Joule heating. High-speed stream flow accounts for 47% of the flow occurrence and 44% of the Joule heating. We will show similar comparisons for particle heating. Our solar cycle statistics indicate that Joule heating produces a yearly average hemispheric heating rate of 53 GW while particles produce a hemispheric heating rate of 38 GW. Joule heating exhibits more variability than particle heating. During solar cycle maximum years Joule heating accounts for twice the heating associated with particles heating.

  16. Application of Rapid Prototyping Methods to High-Speed Wind Tunnel Testing

    NASA Technical Reports Server (NTRS)

    Springer, A. M.

    1998-01-01

    This study was undertaken in MSFC's 14-Inch Trisonic Wind Tunnel to determine if rapid prototyping methods could be used in the design and manufacturing of high speed wind tunnel models in direct testing applications, and if these methods would reduce model design/fabrication time and cost while providing models of high enough fidelity to provide adequate aerodynamic data, and of sufficient strength to survive the test environment. Rapid prototyping methods utilized to construct wind tunnel models in a wing-body-tail configuration were: fused deposition method using both ABS plastic and PEEK as building materials, stereolithography using the photopolymer SL-5170, selective laser sintering using glass reinforced nylon, and laminated object manufacturing using plastic reinforced with glass and 'paper'. This study revealed good agreement between the SLA model, the metal model with an FDM-ABS nose, an SLA nose, and the metal model for most operating conditions, while the FDM-ABS data diverged at higher loading conditions. Data from the initial SLS model showed poor agreement due to problems in post-processing, resulting in a different configuration. A second SLS model was tested and showed relatively good agreement. It can be concluded that rapid prototyping models show promise in preliminary aerodynamic development studies at subsonic, transonic, and supersonic speeds.

  17. Ultra-high-energy cosmic rays in a galactic wind and its termination shock

    NASA Technical Reports Server (NTRS)

    Jokipii, J. R.; Morfill, G.

    1987-01-01

    Results are reported from numerical modeling of the acceleration and transport of ultra-high-energy cosmic rays in a galactic wind and its termination shock. A two-dimensional (azimuthally symmetric) wind and spiral magnetic field, with a spherical termination shock, where the velocity drops suddenly, is assumed. The time-dependent cosmic-ray transport equation, including all major transport effects is solved using an implicit finite-difference scheme. Particles are injected as the shock of low energy, and the subsequent evolution of the distribution function is followed. Iron nuclei are readily accelerated at the shock to energies up to 100 billion GeV, and protons to 10 billion GeV. A major effect aiding the acceleration of these particles is the spiral of the magnetic field carried out by the wind, caused by the rotation of the Galaxy, with the result that the shock is nearly normal over most of its area. Increasing the magnetic field or rotation rate increases the maximum energy attainable. Anisotropies and energy densities of the particles are also discussed. It is concluded that the process is consistent with observations of ultra-high-energy cosmic rays.

  18. Development of a High Accuracy Angular Measurement System for Langley Research Center Hypersonic Wind Tunnel Facilities

    NASA Technical Reports Server (NTRS)

    Newman, Brett; Yu, Si-bok; Rhew, Ray D. (Technical Monitor)

    2003-01-01

    Modern experimental and test activities demand innovative and adaptable procedures to maximize data content and quality while working within severely constrained budgetary and facility resource environments. This report describes development of a high accuracy angular measurement capability for NASA Langley Research Center hypersonic wind tunnel facilities to overcome these deficiencies. Specifically, utilization of micro-electro-mechanical sensors including accelerometers and gyros, coupled with software driven data acquisition hardware, integrated within a prototype measurement system, is considered. Development methodology addresses basic design requirements formulated from wind tunnel facility constraints and current operating procedures, as well as engineering and scientific test objectives. Description of the analytical framework governing relationships between time dependent multi-axis acceleration and angular rate sensor data and the desired three dimensional Eulerian angular state of the test model is given. Calibration procedures for identifying and estimating critical parameters in the sensor hardware is also addressed.

  19. Transport of aurorally produced N/2D/ by winds in the high latitude thermosphere

    NASA Technical Reports Server (NTRS)

    Gerard, J.-C.; Roble, R. G.

    1982-01-01

    A time-dependent, two-dimensional model is developed for describing the meridional circulation of thermospheric odd nitrogen species produced in the auroral zone. The model is based on a previous model by Roble and Gary (1979) extended to upper altitude transport of the nitrogen species. Assumptions made include the existence of a steady neutral wind flowing from low to high latitudes, and an initial background due to scattered Lyman-beta and nightglow emissions. The aurora is also assumed as steady, along with a constant ion production. Predictions made using the model are compared with observations with the Atmosphere Explorer C spacecraft and rocket sounding measurements of the 5200 A distribution near the day-side polar cusp. The model requires thermospheric winds of 100-200 m/sec, flowing from day to nightside. Convective velocities near 1000 m/sec were detected by the Explorer spacecraft, as well as a day-to-nightside flow at the cusp.

  20. An Experimental Device for Generating High Frequency Perturbations in Supersonic Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Melcher, Kevin J.; Ibrahim, Mounir B.

    1996-01-01

    This paper describes the analytical study of a device that has been proposed as a mechanism for generating gust-like perturbations in supersonic wind tunnels. The device is envisioned as a means to experimentally validate dynamic models and control systems designed for high-speed inlets. The proposed gust generator is composed of two flat trapezoidal plates that modify the properties of the flow ingested by the inlet. One plate may be oscillated to generate small perturbations in the flow. The other plate is held stationary to maintain a constant angle-of-attack. Using an idealized approach, design equations and performance maps for the new device were developed from the compressible flow relations. A two-dimensional CFD code was used to confirm the correctness of these results. The idealized approach was then used to design and evaluate a new gust generator for a 3.05-meter by 3.05-meter (10-foot by 10-foot) supersonic wind tunnel.

  1. Solar Wind Turbulence from MHD to Sub-ion Scales: High-resolution Hybrid Simulations

    NASA Astrophysics Data System (ADS)

    Franci, Luca; Verdini, Andrea; Matteini, Lorenzo; Landi, Simone; Hellinger, Petr

    2015-05-01

    We present results from a high-resolution and large-scale hybrid (fluid electrons and particle-in-cell protons) two-dimensional numerical simulation of decaying turbulence. Two distinct spectral regions (separated by a smooth break at proton scales) develop with clear power-law scaling, each one occupying about a decade in wavenumbers. The simulation results simultaneously exhibit several properties of the observed solar wind fluctuations: spectral indices of the magnetic, kinetic, and residual energy spectra in the magnetohydrodynamic (MHD) inertial range along with a flattening of the electric field spectrum, an increase in magnetic compressibility, and a strong coupling of the cascade with the density and the parallel component of the magnetic fluctuations at sub-proton scales. Our findings support the interpretation that in the solar wind, large-scale MHD fluctuations naturally evolve beyond proton scales into a turbulent regime that is governed by the generalized Ohm’s law.

  2. Highly sensitive HPLC-DAD method for the assay of gefitinib in patient plasma and cerebrospinal fluid: application to a blood-brain barrier penetration study.

    PubMed

    Fang, Luo; Song, Yu; Weng, Xu; Li, Fanzhu; Xu, Yaping; Lin, Nengming

    2015-12-01

    The quantification of intracranial gefitinib (GEF) exposure is limited owing to the sensitivity of analytical equipment. Although mass spectrometry (MS) is the preferred method because of its high sensitivity, the equipment is not available in many laboratories, especially in developing Asian countries. In this paper, we developed a highly sensitive high performance liquid chromatography-diode array detector (HPLC-DAD) method for the assay of GEF in human cerebrospinal fluid (CSF) and plasma. GEF was extracted from CSF and plasma by solid-phase extraction and liquid-liquid extraction, respectively. The chromatographic separation was performed on a C18 column with gradient elution of 0.1% triethylamine solution and acetonitrile, then finally detected at 344 nm. This method was validated and proved to be highly sensitive with a lower limit of quantitation value of 0.11 ng/mL in CSF and 11 ng/mL in plasma. The blood-brain barrier penetration ratio of GEF ranged from 1.48 to 2.41%. This method provides a reliable MS-independent solution for the quantitation of GEF in patients' CSF and plasma. PMID:26014887

  3. Source Tracking Aerosols Released from Land-Applied Class B Biosolids during High-Wind Events▿

    PubMed Central

    Baertsch, Carolina; Paez-Rubio, Tania; Viau, Emily; Peccia, Jordan

    2007-01-01

    DNA-based microbial source tracking (MST) methods were developed and used to specifically and sensitively track the unintended aerosolization of land-applied, anaerobically digested sewage sludge (biosolids) during high-wind events. Culture and phylogenetic analyses of bulk biosolids provided a basis for the development of three different MST methods. They included (i) culture- and 16S rRNA gene-based identification of Clostridium bifermentans, (ii) direct PCR amplification and sequencing of the 16S rRNA gene for an uncultured bacterium of the class Chloroflexi that is commonly present in anaerobically digested biosolids, and (iii) direct PCR amplification of a 16S rRNA gene of the phylum Euryarchaeota coupled with terminal restriction fragment length polymorphism to distinguish terminal fragments that are unique to biosolid-specific microorganisms. Each method was first validated with a broad group of bulk biosolids and soil samples to confirm the target's exclusive presence in biosolids and absence in soils. Positive responses were observed in 100% of bulk biosolid samples and in less than 11% of the bulk soils tested. Next, a sampling campaign was conducted in which all three methods were applied to aerosol samples taken upwind and downwind of fields that had recently been land applied with biosolids. When average wind speeds were greater than 5 m/s, source tracking results confirmed the presence of biosolids in 56% of the downwind samples versus 3% of the upwind samples. During these high-wind events, the biosolid concentration in downwind aerosols was between 0.1 and 2 μg/m3. The application of DNA-based source tracking to aerosol samples has confirmed that wind is a possible mechanism for the aerosolization and off-site transport of land-applied biosolids. PMID:17513591

  4. Source tracking aerosols released from land-applied class B biosolids during high-wind events.

    PubMed

    Baertsch, Carolina; Paez-Rubio, Tania; Viau, Emily; Peccia, Jordan

    2007-07-01

    DNA-based microbial source tracking (MST) methods were developed and used to specifically and sensitively track the unintended aerosolization of land-applied, anaerobically digested sewage sludge (biosolids) during high-wind events. Culture and phylogenetic analyses of bulk biosolids provided a basis for the development of three different MST methods. They included (i) culture- and 16S rRNA gene-based identification of Clostridium bifermentans, (ii) direct PCR amplification and sequencing of the 16S rRNA gene for an uncultured bacterium of the class Chloroflexi that is commonly present in anaerobically digested biosolids, and (iii) direct PCR amplification of a 16S rRNA gene of the phylum Euryarchaeota coupled with terminal restriction fragment length polymorphism to distinguish terminal fragments that are unique to biosolid-specific microorganisms. Each method was first validated with a broad group of bulk biosolids and soil samples to confirm the target's exclusive presence in biosolids and absence in soils. Positive responses were observed in 100% of bulk biosolid samples and in less than 11% of the bulk soils tested. Next, a sampling campaign was conducted in which all three methods were applied to aerosol samples taken upwind and downwind of fields that had recently been land applied with biosolids. When average wind speeds were greater than 5 m/s, source tracking results confirmed the presence of biosolids in 56% of the downwind samples versus 3% of the upwind samples. During these high-wind events, the biosolid concentration in downwind aerosols was between 0.1 and 2 microg/m3. The application of DNA-based source tracking to aerosol samples has confirmed that wind is a possible mechanism for the aerosolization and off-site transport of land-applied biosolids. PMID:17513591

  5. The Generation of Smooth High Speed Solar Wind from Plume-Interplume Mixing

    NASA Technical Reports Server (NTRS)

    Parhi, Shyamsundar; Suess, Steven T.; Sulkanen, Martin E.

    1998-01-01

    Plumes and rays are magnetic field aligned density striations in coronal holes with different values of plasma beta. The overall plasma beta is very small in the low corona but exceeds unity beyond 15-20 solar radius. High speed solar wind reported beyond 0.3 AU is relatively smooth and uniform and known to originate from the much filamented coronal hole. Thus the obvious question is how to generate a smooth solar wind from seemingly filamentary structure. Hence one has to find a mechanism to substantiate this apparent observed (Ulysses) phenomenon. To do this we model plumes as jets (or wakes) of plasma emitted from the solar surface. The shear between a jet and its ambient is known to become unstable to the MHD Kelvin-Helmholtz ("KH") instability if the Alfven Mach number of the jet is greater than one and the uniform external magnetic field is small. Starting with a simple configuration we consider a jet of half thickness R, having uniform density and uniform internal magnetic field. The external medium has also a uniform density and uniform magnetic field. The jet is perturbed at the boundary with a linear amplitude and fixed frequency. We simulate the coronal jet using the 3D ZEUS code. The first results indicate the slab jet is unstable to the MHD KH instability at 5-10 solar radius for some angle of wave propagation. The propagating instability may smooth the filamented flow. It may also produce the entrained Alfvenic fluctuations observed by Ulysses in the high speed wind. We are at present determining the parameters which induce large growth rate. This may clarify the mystery behind the emergence of fast smooth solar wind from very filamentary structures in coronal holes. Also, using the dispersion relation already available for such a flow we obtain some general description of the instability criteria for the KH instability at a jet interface.

  6. Geosynchronous Relativistic Electron Events Associated with High-Speed Solar Wind Streams in 2006

    NASA Astrophysics Data System (ADS)

    Lee, Sungeun; Hwang, Junga; Lee, Jae-Jin; Cho, Kyung-Suk; Kim, Khan-Hyuk; Yi, Yu

    2009-12-01

    Recurrent enhancements of relativistic electron events at geosynchronous orbit (GREEs) were observed in 2006. These GREE enhancements were associated with high-speed solar wind streams coming from the same coronal hole. For the first six months of 2006, the occurrence of GREEs has 27 day periodicity and the GREEs were enhanced with various flux levels. Several factors have been studied to be related to GREEs: (1) High speed stream, (2) Pc5 ULF wave activity, (3) Southward IMF Bz, (4) substorm occurrence, (5) Whistler mode chorus wave, and (6) Dynamic pressure. In this paper, we have examined the effectiveness about those parameters in selected periods.

  7. High Response Dew Point Measurement System for a Supersonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Blumenthal, Philip Z.

    1996-01-01

    A new high response on-line measurement system has been developed to continuously display and record the air stream dew point in the NASA Lewis 10 x 10 supersonic wind tunnel. Previous instruments suffered from such problems as very slow response, erratic readings, and high susceptibility to contamination. The system operates over the entire pressure level range of the 10 x 10 SWT, from less than 2 psia to 45 psia, without the need for a vacuum pump to provide sample flow. The system speeds up tunnel testing, provides large savings in tunnel power costs and provides the dew point input for the data-reduction subroutines which calculate test section conditions.

  8. Numerical Study of the High-Speed Leg of a Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Nayani, Sudheer; Sellers, William L, III; Brynildsen, Scott E.; Everhart, Joel L.

    2015-01-01

    The paper describes a numerical study of the high-speed leg of the NASA Langley 14 x 22-ft Low-Speed Wind Tunnel. The high-speed leg consists of the settling chamber, contraction, test section, and first diffuser. Results are shown comparing two different sources of surface geometry, and two different unstructured grid solvers for the flow characteristics. Numerical simulations of the flow on the tunnel centerline, boundary layer profiles on the floor, and wall static pressures have been compared with experiment. Flow angularities along the test section length have also been determined.

  9. Coronal mass ejections in the solar wind at high solar latitudes: An overview

    NASA Technical Reports Server (NTRS)

    Gosling, Jack T.

    1994-01-01

    Ulysses provided the first direct measurements of coronal mass ejections (CME's) in the solar wind at high heliographic latitudes. An overview of new results from the plasma experiment on Ulysses and magnetic field measurements, during the spacecraft's first excursion to high solar latitudes are summarized. A striking aspect of the high-latitude CME's observed is that they all had high speeds, with the overall average speed being 730 km/sec. A new class of forward-reverse shock pairs, associated with expansion of CME's was discovered at high latitudes. Of six certain CME's observed at high latitudes, three have associated shock pairs of this nature. Combined Ulysses and Yohkoh observations suggest that the flux rope topology characteristic of some CME's results from reconnection within the legs of neighboring magnetic loops embedded within the escaping CME's.

  10. Coronal mass ejections in the solar wind at high solar latitudes: An overview

    SciTech Connect

    Gosling, J.T.

    1994-10-01

    Ulysses has provided the first direct measurements of coronal mass ejections, CMES, in the solar wind at high heliographic latitudes. This paper provides an overview of new and unexpected results from the plasma experiment on Ulysses, supplemented with magnetic field measurements, during the spacecraft`s first excursion to high solar latitudes. A striking aspect of the high-latitude CMEs observed is that they all had high speeds, with the overall average speed being 730 km s{sup {minus}1}. A new class of forward-reverse shock pairs, associated with expansion of CMES, has been discovered at high latitudes. Of six certain CMEs observed at high latitudes, three have associated shock pairs of this nature. Combined Ulysses and Yohkoh observations suggest that the flux rope topology characteristic of some CMEs results from reconnection within the legs of neighboring magnetic loops embedded within the escaping CMES.

  11. The Western Wind and Solar Integration Study Phase 2 (Fact Sheet)

    SciTech Connect

    2013-09-01

    This fact sheet is a basic overview of the Western Wind and Solar Integration Study, Phase 2. The electric grid is a highly complex, interconnected machine, and changing one part of the grid can have consequences elsewhere. Adding wind and solar affects the operation of the other power plants and adding high penetrations can induce cycling of fossil-fueled generators. Cycling leads to wear-and-tear costs and changes in emissions.

  12. All-fiber upconversion high spectral resolution wind lidar using a Fabry-Perot interferometer

    NASA Astrophysics Data System (ADS)

    Shangguan, Mingjia; Xia, Haiyun; Wang, Chong; Qiu, Jiawei; Shentu, Guoliang; Zhang, Qiang; Dou, Xiankang; Pan, Jian-wei

    2016-08-01

    An all-fiber, micro-pulse and eye-safe high spectral resolution wind lidar (HSRWL) at 1550nm is proposed and demonstrated by using a pair of upconversion single-photon detectors and a fiber Fabry-Perot scanning interferometer (FFP-SI). In order to improve the optical detection efficiency, both the transmission spectrum and the reflection spectrum of the FFP-SI are used for spectral analyses of the aerosol backscatter and the reference laser pulse. The reference signal is tapped from the outgoing laser and served as a zero velocity indicator. The Doppler shift is retrieved from a frequency response function Q, which is defined as the ratio of difference of the transmitted signal and the reflected signal to their sum. Taking advantages of high signal-to-noise ratio of the detectors and high spectral resolution of the FFP-SI, the Q spectra of the aerosol backscatter are reconstructed along the line-of-sight (LOS) of the telescope. By applying a least squares fit procedure to the measured Q spectra, the center frequencies and the bandwidths are obtained simultaneously. And then the Doppler shifts are determined relative to the center frequency of the reference signal. To eliminate the influence of temperature fluctuations on the FFP-SI, the FFP-SI is cased in a chamber with temperature stability of 0.001 during the measurement. Continuous LOS wind observations are carried out on two days at Hefei (31.843 N, 117.265 E), China. In the meantime, LOS wind measurements from the HSRWL show good agreement with the results from an ultrasonic wind sensor (Vaisala windcap WMT52). Due to the computational expensive of the convolution operation of the Q function, an empirical method is adopted to evaluate the quality of the measurements. The standard deviation of the wind speed is 0.76 m/s at the 1.8 km. The standard deviation of the retrieved bandwidth variation is 2.07 MHz at the 1.8 km.

  13. Stability analyses of the mass abrasive projectile high-speed penetrating into concrete target. Part I: Engineering model for the mass loss and nose-blunting of ogive-nosed projectiles

    NASA Astrophysics Data System (ADS)

    Wu, Hao; Chen, Xiao-Wei; He, Li-Lin; Fang, Qin

    2014-12-01

    The mass loss and nose blunting of a projectile during high-speed deep penetration into concrete target may cause structural destruction and ballistic trajectory instability of the penetrator, obviously reducing the penetration efficiency of penetrator. Provided that the work of friction between projectile and target is totally transformed into the heat to melt penetrator material at its nose surface, an engineering model is established for the mass loss and nose-blunting of the ogive-nosed projectile. A dimensionless formula for the relative mass loss of projectile is obtained by introducing the dimensionless impact function I and geometry function N of the projectile. The critical value V {0/c} of the initial striking velocity is formulated, and the mass loss of projectile tends to increase weakly nonlinearly with I/ N when V 0 < V {0/c}, whilst the mass loss is proportional to the initial kinetic energy of projectile when V 0 < V {0/c}. The theoretical prediction of V {0/c} is further confirmed to be very close to the experimental value of 1.0 km/s based on 11 sets of different penetration tests. Also the validity of the proposed expressions of mass loss and nose-blunting coefficients of a projectile are verified by the tests. Therefore, a theoretical basis is for the empirical conclusions drawn in previous publications. Regarding the completely empirical determinations of the mass loss and nose-blunting coefficients given in previous papers, the present analysis reveals its physical characteristic and also guarantees its prediction accuracy. The engineering model established in the present paper forms the basis for further discussions on the structural stability and the terminal ballistic stability of ogive-nosed projectiles high-speed penetrating into concrete targets, which will respectively be elaborated in Part II and Part III of the present study.

  14. High Resolution ground penetrating radar (GPR) measurements at the laboratory scale to model porosity and permeability in the Miami Limestone in South Florida.

    NASA Astrophysics Data System (ADS)

    Mount, G. J.; Comas, X.

    2015-12-01

    Subsurface water flow within the Biscayne aquifer is controlled by the heterogeneous distribution of porosity and permeability in the karst Miami Limestone and the presence of numerous dissolution and mega-porous features. The dissolution features and other high porosity areas can create preferential flow paths and direct recharge to the aquifer, which may not be accurately conceptualized in groundwater flow models. As hydrologic conditions are undergoing restoration in the Everglades, understanding the distribution of these high porosity areas within the subsurface would create a better understanding of subsurface flow. This research utilizes ground penetrating radar to estimate the spatial variability of porosity and dielectric permittivity of the Miami Limestone at centimeter scale resolution at the laboratory scale. High frequency GPR antennas were used to measure changes in electromagnetic wave velocity through limestone samples under varying volumetric water contents. The Complex Refractive Index Model (CRIM) was then applied in order to estimate porosity and dielectric permittivity of the solid phase of the limestone. Porosity estimates ranged from 45.2-66.0% from the CRIM model and correspond well with estimates of porosity from analytical and digital image techniques. Dielectric permittivity values of the limestone solid phase ranged from 7.0 and 13.0, which are similar to values in the literature. This research demonstrates the ability of GPR to identify the cm scale spatial variability of aquifer properties that influence subsurface water flow which could have implications for groundwater flow models in the Biscayne and potentially other shallow karst aquifers.

  15. Conditional deletion of p53 and Rb in the renin-expressing compartment of the pancreas leads to a highly penetrant metastatic pancreatic neuroendocrine carcinoma

    PubMed Central

    Glenn, Sean T.; Jones, Craig A.; Sexton, Sandra; LeVea, Charles M.; Caraker, Susan M.; Hajduczok, George; Gross, Kenneth W.

    2014-01-01

    Efforts to model human pancreatic neuroendocrine tumors (PanNET) in animals have been moderately successful, with minimal evidence for glucagonomas or metastatic spread. The renin gene while classically associated with expression in the kidney is also expressed in many other extra-renal tissues including the pancreas. To induce tumorigenesis within renin specific tissues, floxed alleles of p53 and Rb were selectively abrogated using Cre-recombinase driven by the renin promoter. The primary neoplasm generated is a highly metastatic islet cell carcinoma of the pancreas. Lineage tracing identifies descendants of renin-expressing cells as pancreatic alpha cells despite a lack of active renin expression in the mature pancreas. Both primary and metastatic tumors express high levels of glucagon, furthermore an increased level of glucagon is found in the serum identifying the pancreatic cancer as a functional glucagonoma. This new model is highly penetrant and exhibits robust frequency of metastases to lymph nodes and liver, mimicking human disease and provides a useful platform for better understanding pancreatic endocrine differentiation and development, as well as islet cell carcinogenesis. The use of fluorescent reporters for lineage tracing of the cells contributing to disease initiation and progression provides a unique opportunity to dissect the timeline of disease, examining mechanisms of the metastatic process, as well as recovering primary and metastatic cells for identifying co-operating mutations that are necessary for progression of disease. PMID:24292676

  16. NT113, a pan-ERBB Inhibitor with High Brain Penetrance, Inhibits the Growth of Glioblastoma Xenografts with EGFR Amplification

    PubMed Central

    Yoshida, Yasuyuki; Ozawa, Tomoko; Yao, Tsun-Wen; Shen, Wang; Brown, Dennis; Parsa, Andrew T.; Raizer, Jeffrey J.; Cheng, Shi-Yuan; Stegh, Alexander H.; Mazar, Andrew P.; Giles, Francis J.; Sarkaria, Jann N.; Butowski, Nicholas; Nicolaides, Theodore; James, C. David

    2014-01-01

    This report describes results from our analysis of the activity and biodistribution of a novel pan-ERBB inhibitor, NT113, when used in treating mice with intracranial glioblastoma (GBM) xenografts. Approaches used in this investigation include: bioluminescence imaging (BLI) for monitoring intracranial tumor growth and response to therapy; determination of survival benefit from treatment; analysis of tumor immunohistochemical (IHC) reactivity for indication of treatment effect on proliferation and apoptotic response; western blot for determination of effects of treatment on ERBB and ERBB signaling mediator activation; and high performance liquid chromatography for determination of NT113 concentration in tissue extracts from animals receiving oral administration of inhibitor. Our results show that NT113 is active against GBM xenografts in which wild-type EGFR or EGFRvIII is highly expressed. In experiments including lapatinib and/or erlotinib, NT113 treatment was associated with the most substantial improvement in survival, as well as the most substantial tumor growth inhibition, as indicated by BLI and IHC results. Western blot results indicated that NT113 has inhibitory activity, both in vivo and in vitro, on ERBB family member phosphorylation, as well as on the phosphorylation of downstream signaling mediator Akt. Results from the analysis of animal tissues revealed significantly higher NT113 normal brain-to-plasma and intracranial tumor-to-plasma ratios for NT113, relative to erlotinib, indicating superior NT113 partitioning to intracranial tissue compartments. These data provide a strong rationale for the clinical investigation of NT113, a novel ERBB inhibitor, in treating patients with GBM. PMID:25313012

  17. NT113, a pan-ERBB inhibitor with high brain penetrance, inhibits the growth of glioblastoma xenografts with EGFR amplification.

    PubMed

    Yoshida, Yasuyuki; Ozawa, Tomoko; Yao, Tsun-Wen; Shen, Wang; Brown, Dennis; Parsa, Andrew T; Raizer, Jeffrey J; Cheng, Shi-Yuan; Stegh, Alexander H; Mazar, Andrew P; Giles, Francis J; Sarkaria, Jann N; Butowski, Nicholas; Nicolaides, Theodore; James, C David

    2014-12-01

    This report describes results from our analysis of the activity and biodistribution of a novel pan-ERBB inhibitor, NT113, when used in treating mice with intracranial glioblastoma (GBM) xenografts. Approaches used in this investigation include: bioluminescence imaging (BLI) for monitoring intracranial tumor growth and response to therapy; determination of survival benefit from treatment; analysis of tumor IHC reactivity for indication of treatment effect on proliferation and apoptotic response; Western blot analysis for determination of effects of treatment on ERBB and ERBB signaling mediator activation; and high-performance liquid chromatography for determination of NT113 concentration in tissue extracts from animals receiving oral administration of inhibitor. Our results show that NT113 is active against GBM xenografts in which wild-type EGFR or EGFRvIII is highly expressed. In experiments including lapatinib and/or erlotinib, NT113 treatment was associated with the most substantial improvement in survival, as well as the most substantial tumor growth inhibition, as indicated by BLI and IHC results. Western blot analysis results indicated that NT113 has inhibitory activity, both in vivo and in vitro, on ERBB family member phosphorylation, as well as on the phosphorylation of downstream signaling mediator Akt. Results from the analysis of animal tissues revealed significantly higher NT113 normal brain-to-plasma and intracranial tumor-to-plasma ratios for NT113, relative to erlotinib, indicating superior NT113 partitioning to intracranial tissue compartments. These data provide a strong rationale for the clinical investigation of NT113, a novel ERBB inhibitor, in treating patients with GBM. PMID:25313012

  18. First observation of mesospheric wind shear as high as 330 m s-1 km-1

    NASA Astrophysics Data System (ADS)

    Wu, Yong-Fu; Widdel, H.-U.; Offermann, D.

    1995-09-01

    Mesospheric wind profiles with an altitude resolution of 25 m have been obtained by means of radar tracking of foil chaff clouds. Such experiments were performed during winter 1990 at Biscarrosse, France (44°N, 1°W). On one flight, a wind shear as high as 330 m s-1 km-1 at 87.4 km and a region of dynamical instability between 86 and 88 km was measured. This wind shear is believed to be the largest value ever measured in the mesosphere. The region of dynamical instability results from a superposition of two wave motions, and is found to link well with enhanced turbulence and small-scale wave activity. Acknowledgements. I thank D. R. McDiarmid of the Herzberg Institute of Astrophysics, National Research Council, Canada, for important ideas and discussions during the development of this work. I thank the referees for useful comments which have improved the paper. I also thank E.M. Poulter of NIWA for helpful suggestions, and for reading the manuscript and making useful comments. The work was supported by contract CO1309 of the New Zealand Foundation for Research, Science and Technology. Topical Editor C.-G. Fälthammar thanks K. Mursula and W. J. Hughes for their help in evaluating this paper.--> Correspondence to: W. Allan-->

  19. Quasi-periodic (~mHz) dayside auroral brightennings associated with high-speed solar wind

    NASA Astrophysics Data System (ADS)

    Liou, K.

    2013-12-01

    It has been reported that dayside auroral pulsations of a few mHz frequency can occur when variations of solar wind dynamic pressure at the same frequency appear. Magnetospheric compression/decompression is attributed to the auroral pulsations. Here we report another type of dayside auroral pulsations not associated with solar wind dynamic pressure changes by using global auroral images acquired from the Ultraviolet Imager (UVI) on board the Polar satellite. From one periodic (~2 - 8 mHz) auroral event that occurred on February 8, 2000, it is found that the auroral enhancements covered most of the day (~05 - 16 MLT) sector and did not show a latitudinal dependence. Based on in situ particle data from DMSP SSJ/4, the brightennings were associated mainly with enhanced particle precipitations from the central plasma sheet (i.e., diffuse aurora). There was no geomagnetic pulsation on the ground and in the dawn sector of the magnetosheath as indicated by the Geotail measurements. While the auroral pulsations occurred during high solar wind speed (> 600 km/s), they commenced when the interplanetary magnetic field turned northward, suggesting the Kelvin-Helmholtz instability being a source of the pulsations. We will present detail analysis results and discuss other possible mechanisms in the context of current theories.

  20. Wind-jet interaction in high-mass X-ray binaries

    NASA Astrophysics Data System (ADS)

    Zdziarski, Andrzej

    2016-07-01

    Jets in high-mass X-ray binaries can strongly interact with the stellar wind from the donor. The interaction leads, in particular, to formation of recollimation shocks. The shocks can then accelerate electrons in the jet and lead to enhanced emission, observable in the radio and gamma-ray bands. DooSoo, Zdziarski & Heinz (2016) have formulated a condition on the maximum jet power (as a function of the jet velocity and wind rate and velocity) at which such shocks form. This criterion can explain the large difference in the radio and gamma-ray loudness between Cyg X-1 and Cyg X-3. The orbital modulation of radio emission observed in Cyg X-1 and Cyg X-3 allows a measurement of the location of the height along the jet where the bulk of emission at a given frequency occurs. Strong absorption of X-rays in the wind of Cyg X-3 is required to account for properties of the correlation of the radio emission with soft and hard X-rays. That absorption can also account for the unusual spectral and timing X-ray properties of this source.

  1. Very high energy emission as a probe of relativistic magnetic reconnection in pulsar winds

    NASA Astrophysics Data System (ADS)

    Mochol, Iwona; Pétri, Jérôme

    2015-04-01

    The population of gamma-ray pulsars, including Crab observed in the TeV range, and Vela detected above 50 GeV, challenges existing models of pulsed high-energy emission. Such models should be universally applicable, yet they should account for spectral differences among the pulsars. We show that the gamma-ray emission of Crab and Vela can be explained by synchrotron radiation from the current sheet of a striped wind, expanding with a modest Lorentz factor Γ ≲ 100 in the Crab case, and Γ ≲ 50 in the Vela case. In the Crab spectrum, a new synchrotron self-Compton component is expected to be detected by the upcoming experiment CTA. We suggest that the gamma-ray spectrum directly probes the physics of relativistic magnetic reconnection in the striped wind. In the most energetic pulsars, like Crab, with dot{E}_{38}^{3/2}/P_{-2}≳ 0.002 (where dot{E} is the spin-down power, P is the pulsar period, and X = Xi × 10i in CGS units), reconnection proceeds in the radiative cooling regime and results in a soft power-law distribution of cooling particles; in less powerful pulsars, like Vela, particle energization is limited by the current sheet size, and a hard particle spectrum reflects the acceleration mechanism. A strict lower limit on the number density of radiating particles corresponds to emission close to the light cylinder, and, in units of the GJ density, it is ≳ 0.5 in the Crab wind, and κ ≳ 0.05 in the Vela wind.

  2. On the Origin of Highly Alfvénic Slow Solar Wind

    NASA Astrophysics Data System (ADS)

    D'Amicis, R.; Bruno, R.

    2015-05-01

    Alfvénic fluctuations are a common feature in the solar wind and are found especially in the trailing edges of fast wind streams. The slow wind usually has a lower degree of Alfvénicity, being more strongly intermixed with structures of non-Alfvénic nature. In the present paper we show the first evidence in the interplanetary space of two different kinds of slow solar wind: one coming from coronal streamers or active regions and characterized by non-Alfvénic structures and the other one being highly Alfvénic and originating from the boundary of coronal holes. The Alfvénic character of fluctuations, either outward or inward, can be studied by means of the normalized cross-helicity, {{σ }C}, which is an indicator of the {\\boldsymbol{v}} -{\\boldsymbol{b}} alignment. The evolution of {{σ }C} toward lower values with increasing radial distance is interpreted both as a decrease of the presence of the outward modes and as a continuous production of inward modes within those regions such as stream shears where some plasma instability is active. On the other hand, the decrease of {{σ }C} is often related also to magnetic field and/or density enhancements which specifically act on the destruction of the {\\boldsymbol{v}} -{\\boldsymbol{b}} alignment. In the present analysis we study the role of compressibility presenting both case studies and a statistical analysis over different phases of solar cycle 23. Our findings indicate that the presence of regions of magnetic field compression generally play a major role in the depletion of {{σ }C} and thus in the destruction of the {\\boldsymbol{v}} -{\\boldsymbol{b}} alignment.

  3. Exploring and Modeling High-excitation Emission in the Ejecta and the Wind of Eta Carinae

    NASA Astrophysics Data System (ADS)

    Mehner, Andrea

    Eta Carinae is the most massive, most luminous star in our region of the Galaxy. It is an evolved massive star and therefore provides many clues to the fate of the most massive stars. In the 1840s its unstable nature culminated in the Great Eruption when it briefly became the second brightest star in the sky and ejected more than ten solar masses, which today enshroud the surviving star as a bipolar nebula. Every 5.54 years Eta Car's photometry and spectra show dramatic changes which last for several months. Combining data from HST/STIS, Gemini-S/GMOS, and VLT/UVES from 1998 to 2010, I analyzed two spectroscopic cycles. Observations with a variety of different slit position angles made it possible to map the emission across the nebula and the complex outer ejecta of Eta Car permit to observe the star at different stellar latitudes via reflected light. The spectroscopic cycles are thought to be regulated by a hot companion star and therefore give us information to the nature and orbit of the stars hidden behind Eta Car's opaque wind. The observations, covering more than 10 years, made it also possible to observe the ongoing long-term recovery from the Great Eruption. Topics covered in this thesis include: 1) spatial and temporal behavior of the high-excitation emission lines, 2) parameters of the secondary star, 3) He II 4687 emission during the 2009 "Event," 4) changing wind structure during the 2009 "Event," 5) origin of the He I lines, and 6) major changes in the broad-line wind spectrum indicating a decrease in Eta Car's wind density.

  4. World's first telepathology experiments employing WINDS ultra-high-speed internet satellite, nicknamed “KIZUNA”

    PubMed Central

    Sawai, Takashi; Uzuki, Miwa; Miura, Yasuhiro; Kamataki, Akihisa; Matsumura, Tsubasa; Saito, Kenji; Kurose, Akira; Osamura, Yoshiyuki R.; Yoshimi, Naoki; Kanno, Hiroyuki; Moriya, Takuya; Ishida, Yoji; Satoh, Yohichi; Nakao, Masahiro; Ogawa, Emiko; Matsuo, Satoshi; Kasai, Hiroyuki; Kumagai, Kazuhiro; Motoda, Toshihiro; Hopson, Nathan

    2013-01-01

    Background: Recent advances in information technology have allowed the development of a telepathology system involving high-speed transfer of high-volume histological figures via fiber optic landlines. However, at present there are geographical limits to landlines. The Japan Aerospace Exploration Agency (JAXA) has developed the “Kizuna” ultra-high speed internet satellite and has pursued its various applications. In this study we experimented with telepathology in collaboration with JAXA using Kizuna. To measure the functionality of the Wideband InterNet working engineering test and Demonstration Satellite (WINDS) ultra-high speed internet satellite in remote pathological diagnosis and consultation, we examined the adequate data transfer speed and stability to conduct telepathology (both diagnosis and conferencing) with functionality, and ease similar or equal to telepathology using fiber-optic landlines. Materials and Methods: We performed experiments for 2 years. In year 1, we tested the usability of the WINDS for telepathology with real-time video and virtual slide systems. These are state-of-the-art technologies requiring massive volumes of data transfer. In year 2, we tested the usability of the WINDS for three-way teleconferencing with virtual slides. Facilities in Iwate (northern Japan), Tokyo, and Okinawa were connected via the WINDS and voice conferenced while remotely examining and manipulating virtual slides. Results: Network function parameters measured using ping and Iperf were within acceptable limits. However; stage movement, zoom, and conversation suffered a lag of approximately 0.8 s when using real-time video, and a delay of 60-90 s was experienced when accessing the first virtual slide in a session. No significant lag or inconvenience was experienced during diagnosis and conferencing, and the results were satisfactory. Our hypothesis was confirmed for both remote diagnosis using real-time video and virtual slide systems, and also for

  5. High resolution observations of the near-surface wind field over an isolated mountain and in a steep river canyon

    NASA Astrophysics Data System (ADS)

    Butler, B. W.; Wagenbrenner, N. S.; Forthofer, J. M.; Lamb, B. K.; Shannon, K. S.; Finn, D.; Eckman, R. M.; Clawson, K.; Bradshaw, L.; Sopko, P.; Beard, S.; Jimenez, D.; Wold, C.; Vosburgh, M.

    2014-06-01

    A number of numerical wind flow models have been developed for simulating wind flow at relatively fine spatial resolutions (e.g., ∼100 m); however, there are very limited observational data available for evaluating these high resolution models. This study presents high-resolution surface wind datasets collected from an isolated mountain and a steep river canyon. The wind data are presented in terms of four flow regimes: upslope, afternoon, downslope, and a synoptically-driven regime. There were notable differences in the data collected from the two terrain types. For example, wind speeds collected on the isolated mountain increased with distance upslope during upslope flow, but generally decreased with distance upslope at the river canyon site during upslope flow. Wind speed did not have a simple, consistent trend with position on the slope during the downslope regime on the isolated mountain, but generally increased with distance upslope at the river canyon site. The highest measured speeds occurred during the passage of frontal systems on the isolated mountain. Mountaintop winds were often twice as high as wind speeds measured on the surrounding plain. The highest speeds measured in the river canyon occurred during late morning hours and were from easterly downcanyon flows, presumably associated with surface pressure gradients induced by formation of a regional thermal trough to the west and high pressure to the east. Under periods of weak synoptic forcing, surface winds tended to be decoupled from large-scale flows, and under periods of strong synoptic forcing, variability in surface winds was sufficiently large due to terrain-induced mechanical effects (speed-up over ridges and decreased speeds on leeward sides of terrain obstacles) that a large-scale mean flow would not be representative of surface winds at most locations on or within the terrain feature. These findings suggest that traditional operational weather model (i.e., with numerical grid

  6. The future of Antarctica's surface winds simulated by a high-resolution global climate model: 1. Model description and validation

    NASA Astrophysics Data System (ADS)

    Bintanja, R.; Severijns, C.; Haarsma, R.; Hazeleger, W.

    2014-06-01

    One of the key components of Antarctica's harsh climate is its renowned katabatic winds, which are among the fiercest surface winds on Earth. Caused primarily by strong surface cooling over the sloping ice surface, these semipermanent winds result primarily from the strong surface temperature inversion and associated temperature deficit between the surface layer and the free atmosphere aloft. Katabatic winds exert a strong effect on the mass budget of the Antarctic ice sheet by affecting snowdrift (sublimation) and by (partially) regulating the net atmospheric moisture transports toward the Antarctic. It has been suggested that greenhouse warming may lead to reduced surface cooling and weakened katabatic winds. This is tested by using a global climate model (EC-Earth) in prescribed sea surface temperature simulations of the present-day (2002-2006) and future (2094-2098) climates. Because simulated topographically induced katabatic winds are likely to depend on the model grid, we employ two model resolutions: (1) T159L62 (~100 km, 62 vertical levels) and (2) T799L91 (~20 km, 91 vertical levels). It is shown here that present-day surface winds over Antarctica in high resolution are generally stronger than in low resolution, especially in the escarpment region with its steep orography. Simulated surface winds are generally underestimated with respect to observations, in particular the strongest winds (occurring over steep slopes), and especially in low resolution. The seasonal cycle in surface winds is simulated fairly accurately. Surface temperatures are also relatively well simulated (when corrected for elevation differences), especially in high resolution.

  7. Penetration below a convective zone

    NASA Astrophysics Data System (ADS)

    Hurlburt, Neal E.; Toomre, Juri; Massaguer, Josep M.; Zahn, Jean-Paul

    1994-01-01

    Two-dimensional numerical simulations are used to investigate how fully compressible nonlinear convection penetrates into a stably stratified zone beneath a stellar convection zone. Estimates are obtained of the extent of penetration as the relative stability S of the stable to the unstable zone is varied over a broad range. The model deals with a perfect gas possessing a constant dynamic viscosity. The dynamics is dominated by downward-directed plumes which can extend far into the stable material and which can lead to the excitation of a broad spectrum of internal gravity waves in the lower stable zone. The convection is highly time dependent, with the close coupling between the lateral swaying of the plumes and the internal gravity waves they generate serving to modulate the strength of the convection. The depth of penetration delta, determined by the position where the time-averaged kinetic flux has its first zero in the stable layer, is controlled by a balance between the kinetic energy carried into the stable layer by the plumes and the buoyancy braking they experience there. A passive scalar is introduced into the unstable layer to evaluate the transport of chemical species downward. Such a tracer is effectively mixed within a few convective overturning times down to a depth of delta within the stable layer. Analytical estimates based on simple scaling laws are used to interpret the variation of delta with S, showing that it first involves an interval of adiabatic penetration if the local Peclet number of the convection exceeds unity, followed by a further thermal adjustment layer, the depths of each interval scaling in turn as S-1 and S-1/4. These estimates are in accord with the penetration results from the simulations.

  8. Top Sounder Ice Penetration

    NASA Astrophysics Data System (ADS)

    Porter, D. L.; Goemmer, S. A.; Sweeney, J. H.

    2014-12-01

    Ice draft measurements are made as part of normal operations for all US Navy submarines operating in the Arctic Ocean. The submarine ice draft data are unique in providing high resolution measurements over long transects of the ice covered ocean. The data has been used to document a multidecadal drop in ice thickness, and for validating and improving numerical sea-ice models. A submarine upward-looking sonar draft measurement is made by a sonar transducer mounted in the sail or deck of the submarine. An acoustic beam is transmitted upward through the water column, reflecting off the bottom of the sea ice and returning to the transducer. Ice thickness is estimated as the difference between the ship's depth (measured by pressure) and the acoustic range to the bottom of the ice estimated from the travel time of the sonar pulse. Digital recording systems can provide the return off the water-ice interface as well as returns that have penetrated the ice. Typically, only the first return from the ice hull is analyzed. Information regarding ice flow interstitial layers provides ice age information and may possibly be derived with the entire return signal. The approach being investigated is similar to that used in measuring bottom sediment layers and will involve measuring the echo level from the first interface, solving the reflection loss from that transmission, and employing reflection loss versus impedance mismatch to ascertain ice structure information.

  9. Weld penetration and defect control

    SciTech Connect

    Chin, B.A.

    1992-05-15

    Highly engineered designs increasingly require the use of improved materials and sophisticated manufacturing techniques. To obtain optimal performance from these engineered products, improved weld properties and joint reliability are a necessarily. This requirement for improved weld performance and reliability has led to the development of high-performance welding systems in which pre-programmed parameters are specified before any welding takes place. These automated systems however lack the ability to compensate for perturbations which arise during the welding process. Hence the need for systems which monitor and control the in-process status of the welding process. This report discusses work carried out on weld penetration indicators and the feasibility of using these indicators for on-line penetration control.

  10. Kansas Wind Energy Consortium

    SciTech Connect

    Gruenbacher, Don

    2015-12-31

    This project addresses both fundamental and applied research problems that will help with problems defined by the DOE “20% Wind by 2030 Report”. In particular, this work focuses on increasing the capacity of small or community wind generation capabilities that would be operated in a distributed generation approach. A consortium (KWEC – Kansas Wind Energy Consortium) of researchers from Kansas State University and Wichita State University aims to dramatically increase the penetration of wind energy via distributed wind power generation. We believe distributed generation through wind power will play a critical role in the ability to reach and extend the renewable energy production targets set by the Department of Energy. KWEC aims to find technical and economic solutions to enable widespread implementation of distributed renewable energy resources that would apply to wind.

  11. Evolution of a highly dilatant fault zone in the grabens of Canyonlands National Park, Utah, USA - integrating fieldwork, ground-penetrating radar and airborne imagery analysis

    NASA Astrophysics Data System (ADS)

    Kettermann, M.; Grützner, C.; van Gent, H. W.; Urai, J. L.; Reicherter, K.; Mertens, J.

    2015-07-01

    The grabens of Canyonlands National Park are a young and active system of sub-parallel, arcuate grabens, whose evolution is the result of salt movement in the subsurface and a slight regional tilt of the faulted strata. We present results of ground-penetrating radar (GPR) surveys in combination with field observations and analysis of high-resolution airborne imagery. GPR data show intense faulting of the Quaternary sediments at the flat graben floors, implying a more complex fault structure than visible at the surface. Direct measurements of heave and throw at several locations to infer fault dips at depth, combined with observations of primary joint surfaces in the upper 100 m, suggest a highly dilatant fault geometry. Sinkholes observed in the field as well as in airborne imagery give insights in local dilatancy and show where water and sediments are transported underground. Based on correlations of paleosols observed in outcrops and GPR profiles, we argue that either the grabens in Canyonlands National Park are older than previously assumed or that sedimentation rates were much higher in the Pleistocene.

  12. Ulysses observations of a recurrent high speed solar wind stream and the heliomagnetic streamer belt

    NASA Technical Reports Server (NTRS)

    Bame, S. J.; Goldstein, B. E.; Gosling, J. T.; Harvey, J. W.; Mccomas, D. J.; Neugebauer, M.; Phillips, J. L.

    1993-01-01

    Near-ecliptic solar wind observations by Ulysses on its way to the polar regions of the Sun, compared with those from IMP 8 at 1 AU, showed that high-speed streams decay and broaden with heliocentric distance from IMP 8 to Ulysses, as expected. In July 1992 while traveling south at approximately 13 deg S and 5.3 AU, Ulysses encountered a recurrent high-speed stream, that may also have been observed at IMP 8. The stream has been observed a total of 14 times, once in each solar rotation through June 1993 at approximately 34 deg S. The source of the high-speed stream is an equatorward extension of the south polar coronal hole. From July 1992 through June 1993, averages of solar wind peak speed increased while density decreased with heliographic latitude. Both the stream and a low-speed, high-density flow, presumably associated with the heliomagnetic (coronal) streamer belt encircling the heliomagnetic equator, crossed Ulysses with the solar rotation period until April 1993 when the spacecraft was at approximately 29 deg S heliographic latitude. After this time, as the spacecraft climbed to higher latitudes, the central portion of the streamer belt with lowest speed and highest density disappeared. Therefore, at its maximum inclination, the belt was tilted at approximately 29 deg to the heliographic equator at this point in the solar cycle.

  13. Ulysses observations of a recurrent high speed solar wind stream and the heliomagnetic streamer belt

    SciTech Connect

    Bame, S.J.; Gosling, J.T.; McComas, D.J.; Phillips, J.L. ); Goldstein, B.E.; Neugebauer, M. ); Harvey, J.W.

    1993-11-05

    Near-ecliptic solar wind observations by Ulysses on its way to the polar regions of the Sun, compared with those from IMP 8 at 1 AU, showed that high-speed streams decay and broaden with heliocentric distance from IMP 8 to Ulysses, as expected. In July 1992 while travelling south at [approximately]13[degrees]S and 5.3 AU, Ulysses encountered a recurrent high-speed stream, that may also have been observed at IMP 8. The stream has been observed a total of 14 times, once in each solar rotation through June 1993 at [approximately]34[degrees]S. The source of the high-speed stream is an equatorward extension of the south polar coronal hole. From July 1992 through June 1993, averages of solar wind peak speed increased while density decreased with heliographic latitude. Both the stream and a low-speed, high-density flow, presumably associated with the heliomagnetic (coronal) streamer belt encircling the heliomagnetic equator, crossed Ulysses with the solar rotation period until April 1993 when the spacecraft was at [approximately]29[degrees]S heliographic latitude. After this time, as the spacecraft climbed to higher latitudes, the central portion of the streamer belt with lowest speed and highest density disappeared. Therefore, at its maximum inclination, the belt was tilted at [approximately]29[degrees] to the heliographic equator at this point in the solar cycle. 11 refs., 5 figs.

  14. High pressure hypervelocity electrothermal wind tunnel performance study and subscale tests

    NASA Technical Reports Server (NTRS)

    Rizkalla, Oussama F.; Chinitz, Wallace; Witherspoon, F. D.; Burton, Rodney L.

    1992-01-01

    The feasibility of a Mach 10 to 20, high pressure electrothermal wind tunnel was assessed. A heater based on a continuous high power electric arc discharge capable of heating air to temperatures above 10,000 K and pressures of 15,000 atm is the key element of this wind tunnel. Results of analytical study indicate that the facility is capable of simulation conditions suitable for hypervelocity airbreathing propulsion testing up to Mach 16. In this case simulation was limited by pressure containment, high nozzle throat heat flux rates, and chemical freezing in the nozzle. The high total pressure capability improved the recombination chemistry in the facility nozzle as chemical equilibrium prevailed to the freezing point. Steady arc discharges were observed with liquid nitrogen flowing into the arc chamber during tests based on the two millisecond test facility. The measured steady pressure in the arc chamber was 4559 psi, which is two times greater than maximum total pressure obtainable in conventional arc heaters.

  15. Wind tunnel wall interference in V/STOL and high lift testing: A selected, annotated bibliography

    NASA Technical Reports Server (NTRS)

    Tuttle, M. H.; Mineck, R. E.; Cole, K. L.

    1986-01-01

    This bibliography, with abstracts, consists of 260 citations of interest to persons involved in correcting aerodynamic data, from high lift or V/STOL type configurations, for the interference arising from the wind tunnel test section walls. It provides references which may be useful in correcting high lift data from wind tunnel to free air conditions. References are included which deal with the simulation of ground effect, since it could be viewed as having interference from three tunnel walls. The references could be used to design tests from the standpoint of model size and ground effect simulation, or to determine the available testing envelope with consideration of the problem of flow breakdown. The arrangement of the citations is chronological by date of publication in the case of reports or books, and by date of presentation in the case of papers. Included are some documents of historical interest in the development of high lift testing techniques and wall interference correction methods. Subject, corporate source, and author indices, by citation numbers, have been provided to assist the users. The appendix includes citations of some books and documents which may not deal directly with high lift or V/STOL wall interference, but include additional information which may be helpful.

  16. High-resolution mapping of soil moisture at the field scale using ground-penetrating radar for improving remote sensing data products

    NASA Astrophysics Data System (ADS)

    Lambot, Sébastien; Mahmoudzadeh, Mohammad Reza; Phuong Tran, Anh; Nottebaere, Martijn; Leonard, Aline; Defourny, Pierre; Neyt, Xavier

    2014-05-01

    Characterizing the spatiotemporal distribution of soil moisture at various scales is essential in agricultural, hydrological, meteorological, and climatological research and applications. Soil moisture determines the boundary condition between the soil and the atmosphere and governs key processes of the hydrological cycle such as infiltration, runoff, root water uptake, evaporation, as well as energy exchanges between the Earth's surface and the atmosphere. In that respect, ground-penetrating radar (GPR) is of particular interest for field-scale soil moisture mapping as soil moisture is highly correlated to its permittivity, which controls radar wave propagation in the soil. Yet, accurate determination of the electrical properties of a medium using GPR requires full-wave inverse modeling, which has remained a major challenge in applied geophysics for many years. We present a new near-field radar modeling approach for wave propagation in layered media. Radar antennas are modeled using an equivalent set of infinitesimal electric dipoles and characteristic, frequency-dependent, global reflection and transmission coefficients. These coefficients determine wave propagation between the radar reference plane, point sources, and field points. The interactions between the antenna and the soil are inherently accounted for. The fields are calculated using three-dimensional Green's functions. We validated the model using both time and frequency domain radars. The radars were mounted on a quad and controlled by a computer for real-time radar and dGPS data acquisition. Several fields were investigated and time-lapse measurements were performed on some of them to analyze temporal stability in soil moisture patterns and the repeatability of the measurements. The results were compared to ground-truths. The proposed technique is presently being applied to improve space-borne remote sensing data products for soil moisture by providing high-resolution observational information that

  17. Ground-penetrating radar as a tool for characterizing ground ice in the Canadian High Arctic: Implications for future Mars based radar investigations

    NASA Astrophysics Data System (ADS)

    Thomson, L. I.; Osinski, G.

    2010-12-01

    On Earth, ground-penetrating radar (GPR) is commonly used for the detection of ground ice in permafrost regions preceding infrastructure development and for unveiling paleoclimate conditions. Elsewhere in our solar system, other icy bodies, whether they make up an entire satellite or are intermittent subsurface deposits, are increasingly of scientific interest. This curiosity concerning the origins and nature of this ice is motivated by our drive to understand both the evolution of volatile materials through our solar system, and the climate processes that defined the cold and dry neighbouring Mars we observe today. What are implications for climate and potential for life in the event of discovering segregation, polygon-wedge, buried sea, glacial, or lake ice on another planet? This study is motivated by our desire to determine the properties, and subsequently the nature, of extraterrestrial ice by remote sensing means. We have developed a technique to test the aptitude of high-frequency ground penetrating radar (GPR) systems for applications in the characterization of sub-surface ice deposits. This technique follows from the hypothesis that chemical and bulk properties of the ground ice can be characterized according to the electrical properties of the ice and its inclusions. Field based research followed remote sensing practices, which identified of terrains capable of hosting subsurface ice. At sites in the Canadian High Arctic Islands of Axel Heiberg, Ellesmere, and Devon, surface radar surveys confirmed the existence of ice predicted from remote sensing work, then common offset, common-midpoint and cross-polarimetric surveys over the deposit were collected both atop the active layer and on the ice surface itself. We explored three methods of measuring radar velocity. Of these methods, two follow from modified survey design, and one stems from a geophysical post-processing technique involving the theoretical removal of adverse overburden affects. Following the

  18. A simple and specific high performance liquid chromatography method for the assay of a series of novel dermal penetration enhancers.

    PubMed

    Michniak, B B; Seyda, K L

    1993-02-01

    Synopsis A series of clofibric acid amides has been synthesized and previously reported by the authors as possessing enhancer activity in vitro in athymic nude mouse skin against model drugs, hydrocortisone-21-acetate and beta-methasone-17-valerate. An assay was required for each of these enhancers however, which would be specific for each compound and would also separate model drugs and their metabolite peaks. This study reports reverse phase high performance liquid chromatography assays for clofibric acid amide and seven derivatives (Ia-Ig). All enhancers showed maximum absorption at 232 nm, betamethasone (BM) and its valerate (BMV) at 238 nm, and hydrocortisone (HC) and its acetate (HCA) at 242 nm. Practical units of detection for the amides were 0.46-2.8 mug ml(-1) and peaks were sharp and well-separated from steroid peaks in three vehicles - methanol alone. Franz diffusion cell receptor phase samples (isotonic phosphate buffer), and full-thickness athymic nude mouse skin extracts in methanol. Mobile phases consisted of various proportions of acetonitrile and water, some with 2-propanol. The octyl amide for example, with mobile phase CH(3)CN: H(2)O (85:15) at 1 ml min(-1) had a retention time (t(R)) of 7.9 mins. Under the same conditions, retention times for the steroids were HC, t(R)= 3.3 mins; HCA, t(R)= 4.3 mins; BM, t(R)= 3.4 mins; BMV, t(R)= 4.6 mins. Résumé Les auteurs avaient démontré dans un article précédent le pouvoir accélérateur de pénétration dermique in vitro d'une gamme d'amides d'acide clofibrique sur la peau de souris sans poils, et sans thymus avec des médicaments types tels que l'acetate 21 d'hydrocortisone et le valerate 17 de beta-metasone. Il a cependant été requis, pour chacun de ces accélérateurs, un test spécifique pour chaque composition, permettant de séparer chaque médicament et les pics des métabolites. Cette étude décrit des tests par chromatographie liquide à haute performance en phase inverse pour l

  19. Simulating three-dimensional nonthermal high-energy photon emission in colliding-wind binaries

    SciTech Connect

    Reitberger, K.; Kissmann, R.; Reimer, A.; Reimer, O.

    2014-07-01

    Massive stars in binary systems have long been regarded as potential sources of high-energy γ rays. The emission is principally thought to arise in the region where the stellar winds collide and accelerate relativistic particles which subsequently emit γ rays. On the basis of a three-dimensional distribution function of high-energy particles in the wind collision region—as obtained by a numerical hydrodynamics and particle transport model—we present the computation of the three-dimensional nonthermal photon emission for a given line of sight. Anisotropic inverse Compton emission is modeled using the target radiation field of both stars. Photons from relativistic bremsstrahlung and neutral pion decay are computed on the basis of local wind plasma densities. We also consider photon-photon opacity effects due to the dense radiation fields of the stars. Results are shown for different stellar separations of a given binary system comprising of a B star and a Wolf-Rayet star. The influence of orbital orientation with respect to the line of sight is also studied by using different orbital viewing angles. For the chosen electron-proton injection ratio of 10{sup –2}, we present the ensuing photon emission in terms of two-dimensional projections maps, spectral energy distributions, and integrated photon flux values in various energy bands. Here, we find a transition from hadron-dominated to lepton-dominated high-energy emission with increasing stellar separations. In addition, we confirm findings from previous analytic modeling that the spectral energy distribution varies significantly with orbital orientation.

  20. Langevin power curve analysis for numerical wind energy converter models with new insights on high frequency power performance

    NASA Astrophysics Data System (ADS)

    Mücke, Tanja A.; Wächter, Matthias; Milan, Patrick; Peinke, Joachim

    2015-11-01

    Based on the Langevin equation it has been proposed to obtain power curves for wind turbines from high frequency data of wind speed measurements u(t) and power output P (t). The two parts of the Langevin approach, power curve and drift field, give a comprehensive description of the conversion dynamic over the whole operating range of the wind turbine. The method deals with high frequent data instead of 10 min means. It is therefore possible to gain a reliable power curve already from a small amount of data per wind speed. Furthermore, the method is able to visualize multiple fixed points, which is e.g. characteristic for the transition from partial to full load or in case the conversion process deviates from the standard procedures. In order to gain a deeper knowledge it is essential that the method works not only for measured data but also for numerical wind turbine models and synthetic wind fields. Here, we characterize the dynamics of a detailed numerical wind turbine model and calculate the Langevin power curve for different data samplings. We show, how to get reliable results from synthetic data and verify the applicability of the method for field measurements with ultra-sonic, cup and Lidar measurements. The independence of the fixed points on site specific turbulence effects is also confirmed with the numerical model. Furthermore, we demonstrate the potential of the Langevin approach to detect failures in the conversion process and thus show the potential of the Langevin approach for a condition monitoring system.

  1. Electron heating within interaction zones of simple high-speed solar wind streams

    NASA Technical Reports Server (NTRS)

    Feldman, W. C.; Asbridge, J. R.; Bame, S. J.; Gosling, J. T.; Lemons, D. S.

    1978-01-01

    In the present paper, electron heating within the high-speed portions of three simple stream-stream interaction zones is studied to further our understanding of the physics of heat flux regulation in interplanetary space. To this end, the thermal signals present in the compressions at the leading edges of the simple high-speed streams are analyzed, showing that the data are inconsistent with the Spitzer conductivity. Instead, a polynomial law is found to apply. Its implication concerning the mechanism of interplanetary heat conduction is discussed, and the results of applying this conductivity law to high-speed flows inside of 1 AU are studied. A self-consistent model of the radial evolution of electrons in the high-speed solar wind is proposed.

  2. Error propagation equations for estimating the uncertainty in high-speed wind tunnel test results

    SciTech Connect

    Clark, E.L.

    1994-07-01

    Error propagation equations, based on the Taylor series model, are derived for the nondimensional ratios and coefficients most often encountered in high-speed wind tunnel testing. These include pressure ratio and coefficient, static force and moment coefficients, dynamic stability coefficients, and calibration Mach number. The error equations contain partial derivatives, denoted as sensitivity coefficients, which define the influence of free-steam Mach number, M{infinity}, on various aerodynamic ratios. To facilitate use of the error equations, sensitivity coefficients are derived and evaluated for five fundamental aerodynamic ratios which relate free-steam test conditions to a reference condition.

  3. High speed civil transport in 14x22 foot wind tunnel

    NASA Technical Reports Server (NTRS)

    1993-01-01

    NASA technician Michael E. Ramsey inspects a high speed civil transport model between wind tunnel tests at NASA's Langley Research Center, Hampton, Virginia. Aerodynamic tests of the 19-foot (5.7 meters) model in the 14x22 foot subsonic tunnel simulate takeoff and landing of a 300 passenger supersonic commercial transport that would cruise at Mach 2.4 (approximately 1,600 mph/2,560kph). Designated Reference H, the concept was designed by Boeing and presently serves as a common configuration for government-industry technology studies.

  4. High-resolution daily gridded datasets of air temperature and wind speed for Europe

    NASA Astrophysics Data System (ADS)

    Brinckmann, S.; Krähenmann, S.; Bissolli, P.

    2015-08-01

    New high-resolution datasets for near surface daily air temperature (minimum, maximum and mean) and daily mean wind speed for Europe (the CORDEX domain) are provided for the period 2001-2010 for the purpose of regional model validation in the framework of DecReg, a sub-project of the German MiKlip project, which aims to develop decadal climate predictions. The main input data sources are hourly SYNOP observations, partly supplemented by station data from the ECA&D dataset (http://www.ecad.eu). These data are quality tested to eliminate erroneous data and various kinds of inhomogeneities. Grids in a resolution of 0.044° (5 km) are derived by spatial interpolation of these station data into the CORDEX area. For temperature interpolation a modified version of a regression kriging method developed by Krähenmann et al. (2011) is used. At first, predictor fields of altitude, continentality and zonal mean temperature are chosen for a regression applied to monthly station data. The residuals of the monthly regression and the deviations of the daily data from the monthly averages are interpolated using simple kriging in a second and third step. For wind speed a new method based on the concept used for temperature was developed, involving predictor fields of exposure, roughness length, coastal distance and ERA Interim reanalysis wind speed at 850 hPa. Interpolation uncertainty is estimated by means of the kriging variance and regression uncertainties. Furthermore, to assess the quality of the final daily grid data, cross validation is performed. Explained variance ranges from 70 to 90 % for monthly temperature and from 50 to 60 % for monthly wind speed. The resulting RMSE for the final daily grid data amounts to 1-2 °C and 1-1.5 m s-1 (depending on season and parameter) for daily temperature parameters and daily mean wind speed, respectively. The datasets presented in this article are published at http://dx.doi.org/10.5676/DWD_CDC/DECREG0110v1.

  5. 2.5 MHz Line-Width High-energy, 2 Micrometer Coherent Wind Lidar Transmitter

    NASA Technical Reports Server (NTRS)

    Petros, Mulugeta; Yu, Jirong; Trieu, Bo; Bai, Yingxin; Petzar, Paul; Singh, Upendra N.; Reithmaier, Karl

    2007-01-01

    2 micron solid-state lasers are the primary choice for coherent Doppler wind detection. As wind lidars, they are used for wake vortex and clear air turbulence detection providing air transport safety. In addition, 2 micron lasers are one of the candidates for CO2 detection lidars. The rich CO2 absorption line around 2 micron, combined with the long upper state life of time, has made Ho based 2 micron lasers a viable candidate for CO2 sensing DIAL instrument. The design and fabrication of a compact coherent laser radar transmitter for Troposphere wind sensing is under way. This system is hardened for ground as well as airborne applications. As a transmitter for a coherent wind lidar, this laser has stringent spectral line width and beam quality requirements. Although the absolute wavelength does not have to be fixed for wind detection, to maximize return signal, the output wavelength should avoid atmospheric CO2 and H2O absorption lines. The base line laser material is Ho:Tm:LuLF which is an isomorph of Ho:Tm:YLF. LuLF produces 20% more output power than Ho:Tm:YLF. In these materials the Tm absorption cross-section, the Ho emission cross-section, the Tm to Ho energy transfer parameters and the Ho (sup 5) I (sub 7) radiative life time are all identical. However, the improved performance of the LuLF is attributed to the lower thermal population in the (sup 5) I (sub 8) manifold. It also provides higher normal mode to Q-switch conversion than YLF at high pump energy indicating a lower up-conversion. The laser architecture is composed of a seed laser, a ring oscillator, and a double pass amplifier. The seed laser is a single longitudinal mode with a line width of 13 KHz. The 100mJ class oscillator is stretched to 3 meters to accommodate the line-width requirement without compromising the range resolution of the instrument. The amplifier is double passed to produce greater than 300mJ energy.

  6. Wind Profiling from a High Energy, Pulsed, 2-Micron, Coherent-Detection Doppler Lidar during Field Campaign

    NASA Astrophysics Data System (ADS)

    Singh, U. N.; Koch, G. J.; Kavaya, M. J.; Yu, J.; Beyon, J. Y.; Demoz, B.

    2009-12-01

    NASA Langley Research Center has a long history of developing 2-micron laser transmitter for wind sensing. With support from NASA Laser Risk Reduction Program (LRRP) and Instrument Incubator Program (IIP), NASA Langley Research Center has developed a state-of-the-art compact lidar transceiver for a pulsed coherent Doppler lidar system for wind measurement. The transmitter portion of the transceiver employs the high-pulse-energy, Ho:Tm:LuLiF, partially conductively cooled laser technology developed at NASA Langley. The transceiver is capable of 250 mJ pulses at 10 Hz. It is very similar to the technology envisioned for coherent Doppler lidar wind measurements from Earth and Mars orbit. The transceiver is coupled to the large optics and data acquisition system in the NASA Langley VALIDAR mobile trailer. The large optics consists of a 15-cm off-axis beam expanding telescope, and a full-hemispheric scanner. Vertical and horizontal vector winds are measured, as well as relative backscatter. The data acquisition system employs frequency domain velocity estimation and pulse accumulation. It permits real-time display of the processed winds and archival of all data. The LaRC mobile lidar was deployed at Howard University facility in Beltsville, Maryland as part of NASA HQ funded (ROSES-2007, Wind Lidar Science Proposal entitled “Intercomparison of Multiple Lidars for Wind Measurements). During the campaign, testing of the lidar was combined with a field campaign to operate a 2-μm coherent lidar alongside a 355-nm direct detection lidar to demonstrate the hybrid wind lidar concept. Besides lidar, many other meteorological sensors were located at the campaign site, including wind measuring balloon sondes, sonic and propeller anemometers mounted on a tower, and a 915-MHz radio acoustic sounding system. Comparisons among these wind measurement sensors are currently being analyzed and should be available for presentation at the Conference.

  7. Basic concepts, status, opportunities, and challenges of electrical machines utilizing high-temperature superconducting (HTS) windings

    NASA Astrophysics Data System (ADS)

    Frauenhofer, J.; Grundmann, J.; Klaus, G.; Nick, W.

    2008-02-01

    An overview of the different approaches towards achieving a marketable application of a superconducting electrical machine, either as synchronous motor or generator, will be given. This field ranges from relatively small industrial drives to utility generators with large power ratings, from the low speed and high torque of wind power generators and ship propulsion motors, to high speed generators attached to turbines. Essentially HTS machine technology offers several advantages such as compactness (weight and volume reduction), increased efficiency, and other operational benefits. The machine features have to be optimized with regard to the specific application, and different concepts were developed by internationally competing teams, with Siemens being one of them. The achieved status in these fields will be summarized, pointing to the specific technical challenges to overcome. For this purpose we have not only to consider the technology of manufacturing the HTS rotor winding itself, but also to check requirements and availability of supporting technologies. This ranges from new challenges posed to the non-superconducting ("conventional") components of such innovative HTS machines, manufacturing superconducting material in the coming transition from 1st to 2nd generation HTS tape, cryogenic technology including material behavior, to new and challenging tasks in simulating and predicting the performance of such machines by computational tools. The question of market opportunities for this technology obviously is a function of all these aspects; however, a strong tendency for the near future is seen in the area of high-torque ship propulsion.

  8. Deployable Wireless Camera Penetrators

    NASA Technical Reports Server (NTRS)

    Badescu, Mircea; Jones, Jack; Sherrit, Stewart; Wu, Jiunn Jeng

    2008-01-01

    A lightweight, low-power camera dart has been designed and tested for context imaging of sampling sites and ground surveys from an aerobot or an orbiting spacecraft in a microgravity environment. The camera penetrators also can be used to image any line-of-sight surface, such as cliff walls, that is difficult to access. Tethered cameras to inspect the surfaces of planetary bodies use both power and signal transmission lines to operate. A tether adds the possibility of inadvertently anchoring the aerobot, and requires some form of station-keeping capability of the aerobot if extended examination time is required. The new camera penetrators are deployed without a tether, weigh less than 30 grams, and are disposable. They are designed to drop from any altitude with the boost in transmitting power currently demonstrated at approximately 100-m line-of-sight. The penetrators also can be deployed to monitor lander or rover operations from a distance, and can be used for surface surveys or for context information gathering from a touch-and-go sampling site. Thanks to wireless operation, the complexity of the sampling or survey mechanisms may be reduced. The penetrators may be battery powered for short-duration missions, or have solar panels for longer or intermittent duration missions. The imaging device is embedded in the penetrator, which is dropped or projected at the surface of a study site at 90 to the surface. Mirrors can be used in the design to image the ground or the horizon. Some of the camera features were tested using commercial "nanny" or "spy" camera components with the charge-coupled device (CCD) looking at a direction parallel to the ground. Figure 1 shows components of one camera that weighs less than 8 g and occupies a volume of 11 cm3. This camera could transmit a standard television signal, including sound, up to 100 m. Figure 2 shows the CAD models of a version of the penetrator. A low-volume array of such penetrator cameras could be deployed from an

  9. Akon - A Penetrator for Europa

    NASA Astrophysics Data System (ADS)

    Jones, Geraint

    2016-04-01

    Jupiter's moon Europa is one of the most intriguing objects in our Solar System. This 2000km-wide body has a geologically young solid water ice crust that is believed to cover a global ocean of liquid water. The presence of this ocean, together with a source of heating through tidal forces, make Europa a conceivable location for extraterrestrial life. The science case for exploring all aspects of this icy world is compelling. NASA has selected the Europa Mission (formerly Europa Clipper) to study Europa in detail in the 2020s through multiple flybys, and ESA's JUICE mission will perform two flybys of the body in the 2030s. The US agency has extended to the European Space Agency an invitation to provide a contribution to their mission. European scientists interested in Europa science and exploration are currently organizing themselves, in the framework of a coordinated Europa M5 Inititative to study concurrently the main options for this ESA contribution, from a simple addition of individual instruments to the NASA spacecraft, to a lander to investigate Europa's surface in situ. A high speed lander - a penetrator - is by far the most promising technology to achieve this latter option within the anticipated mass constraints, and studies of such a hard lander, many funded by ESA, are now at an advanced level. An international team to formally propose an Europa penetrator to ESA in response to the anticipated ESA M5 call is growing. The working title of this proposal is Akon (Άκων), named after the highly accurate javelin gifted to Europa by Zeus in ancient Greek mythology. We present plans for the Akon penetrator, which would impact Europa's surface at several hundred metres per second, and travel up to several metres into the moon's subsurface. To achieve this, the penetrator would be delivered to the surface by a dedicated descent module, to be destroyed on impact following release of the penetrator above the surface. It is planned that the instruments to be

  10. Rotation and Winds of Exoplanet HD 189733 b Measured with High-dispersion Transmission Spectroscopy

    NASA Astrophysics Data System (ADS)

    Brogi, M.; de Kok, R. J.; Albrecht, S.; Snellen, I. A. G.; Birkby, J. L.; Schwarz, H.

    2016-02-01

    Giant exoplanets orbiting very close to their parent star (hot Jupiters) are subject to tidal forces expected to synchronize their rotational and orbital periods on short timescales (tidal locking). However, spin rotation has never been measured directly for hot Jupiters. Furthermore, their atmospheres can show equatorial super-rotation via strong eastward jet streams, and/or high-altitude winds flowing from the day- to the night-side hemisphere. Planet rotation and atmospheric circulation broaden and distort the planet spectral lines to an extent that is detectable with measurements at high spectral resolution. We observed a transit of the hot Jupiter HD 189733 b around 2.3 μm and at a spectral resolution of R˜105 with CRIRES at the ESO Very Large Telescope. After correcting for the stellar absorption lines and their distortion during transit (the Rossiter-McLaughlin effect), we detect the absorption of carbon monoxide and water vapor in the planet transmission spectrum by cross-correlating with model spectra. The signal is maximized (7.6σ) for a planet rotational velocity of ({3.4}-2.1+1.3) km s-1, corresponding to a rotational period of ({1.7}-0.4+2.9) days. This is consistent with the planet orbital period of 2.2 days, and therefore with tidal locking. We find that the rotation of HD 189733 b is longer than 1 day (3σ). The data only marginally (1.5σ) prefer models with rotation versus models without rotation. We measure a small day- to night-side wind speed of (-{1.7}-1.2+1.1) km s-1. Compared to the recent detection of sodium blueshifted by (8+/- 2) km s-1, this likely implies a strong vertical wind shear between the pressures probed by near-infrared and optical transmission spectroscopy.

  11. Dispersion modeling of particulate matter containing hexavalent chromium during high winds in southern Iraq.

    PubMed

    Zannetti, Paolo; Daly, Aaron D; Freedman, Frank R

    2015-02-01

    The aim of this paper is to describe a scientific methodology (i.e., the combination of different well-established modeling techniques) and its application to a real case scenario of contaminated dust emissions in high winds. This scenario addresses potential air pollution problems at the water treatment plant (WTP) at Qarmat-Ali, Basra, Iraq, during 2003. Workplace practices at the WTP before 2003 resulted in sodium dichromate contamination in the area. Looting at the site in early 2003 also contributed to this contamination. Individuals who were assigned to provide security at the site in 2003 have claimed adverse health effects caused by exposure to dust containing hexavalent chromium [Cr(VI)]. This report presents our modeling study with respect to these claims in relation to (1) amount of Cr(VI) present in the soil, (2) wind erosion episodes, and (3) possible long-term (e.g., annual average) Cr(VI) concentrations inhaled by different people while at the site. Our modeling approach included (1) the analysis of Cr(VI) soil measurements to assess the degree of contamination in different areas of the plant at different times; (2) the use of DUSTRAN model equations to calculate the emission rate of particulate matter (PM) less than 10 µm in diameter (PM10) during high-wind episodes; (3) the use of the U.S. Environmental Protection Agency (EPA) AERMOD modeling system to estimate Cr(VI) concentrations at the site; and (4) the calculation of modeling results in the form of both contour lines of average Cr(VI) concentrations at the site, and specific concentration values for selected individuals, based upon their recollection of their visits to the site. PMID:25947053

  12. Co-existence of whistler waves with kinetic Alfven wave turbulence for the high-beta solar wind plasma

    SciTech Connect

    Mithaiwala, Manish; Crabtree, Chris; Ganguli, Gurudas; Rudakov, Leonid

    2012-10-15

    It is shown that the dispersion relation for whistler waves is identical for a high or low beta plasma. Furthermore, in the high-beta solar wind plasma, whistler waves meet the Landau resonance with electrons for velocities less than the thermal speed, and consequently, the electric force is small compared to the mirror force. As whistlers propagate through the inhomogeneous solar wind, the perpendicular wave number increases through refraction, increasing the Landau damping rate. However, the whistlers can survive because the background kinetic Alfven wave (KAW) turbulence creates a plateau by quasilinear (QL) diffusion in the solar wind electron distribution at small velocities. It is found that for whistler energy density of only {approx}10{sup -3} that of the kinetic Alfven waves, the quasilinear diffusion rate due to whistlers is comparable to KAW. Thus, very small amplitude whistler turbulence can have a significant consequence on the evolution of the solar wind electron distribution function.

  13. A three-dimensional sharp interface Cartesian grid method for solving high speed multi-material impact, penetration and fragmentation problems

    NASA Astrophysics Data System (ADS)

    Kapahi, A.; Sambasivan, S.; Udaykumar, H. S.

    2013-05-01

    This work presents a three-dimensional, Eulerian, sharp interface, Cartesian grid technique for simulating the response of elasto-plastic solid materials to hypervelocity impact, shocks and detonations. The mass, momentum and energy equations are solved along with evolution equations for deviatoric stress and plastic strain using a third-order finite difference scheme. Material deformation occurs with accompanying nonlinear stress wave propagation; in the Eulerian framework the boundaries of the deforming material are tracked in a sharp fashion using level-sets and the conditions on the immersed boundaries are applied by suitable modifications of a ghost fluid approach. The dilatational response of the material is modeled using the Mie-Gruneisen equation of state and the Johnson-Cook model is employed to characterize the material response due to rate-dependent plastic deformation. Details are provided on the treatment of the deviatoric stress ghost state so that physically correct boundary conditions can be applied at the material interfaces. An efficient parallel algorithm is used to handle computationally intensive three-dimensional problems. The results demonstrate the ability of the method to simulate high-speed impact, penetration and fragmentation phenomena in three dimensions.

  14. Estimating porosity and solid dielectric permittivity in the Miami Limestone using high-frequency ground penetrating radar (GPR) measurements at the laboratory scale

    NASA Astrophysics Data System (ADS)

    Mount, Gregory J.; Comas, Xavier

    2014-10-01

    Subsurface water flow in South Florida is largely controlled by the heterogeneous nature of the karst limestone in the Biscayne aquifer and its upper formation, the Miami Limestone. These heterogeneities are amplified by dissolution structures that induce changes in the aquifer's material and physical properties (i.e., porosity and dielectric permittivity) and create preferential flow paths. Understanding such patterns are critical for the development of realistic groundwater flow models, particularly in the Everglades, where restoration of hydrological conditions is intended. In this work, we used noninvasive ground penetrating radar (GPR) to estimate the spatial variability in porosity and the dielectric permittivity of the solid phase of the limestone at centimeter-scale resolution to evaluate the potential for field-based GPR studies. A laboratory setup that included high-frequency GPR measurements under completely unsaturated and saturated conditions was used to estimate changes in electromagnetic wave velocity through Miami Limestone samples. The Complex Refractive Index Model was used to derive estimates of porosity and dielectric permittivity of the solid phase of the limestone. Porosity estimates of the samples ranged between 45.2 and 66.0% and showed good correspondence with estimates of porosity using analytical and digital image techniques. Solid dielectric permittivity values ranged between 7.0 and 13.0. This study shows the ability of GPR to image the spatial variability of porosity and dielectric permittivity in the Miami Limestone and shows potential for expanding these results to larger scales and other karst aquifers.

  15. Prevalence and correlates of receiving and sharing high-penetrance cancer genetic test results: Findings from the Health Information National Trends Survey

    PubMed Central

    Taber, Jennifer M.; Chang, Christine Q.; Lam, Tram Kim; Gillanders, Elizabeth M.; Hamilton, Jada G.; Schully, Sheri D.

    2015-01-01

    Background/Aims The aim of this study was to explore the prevalence and correlates of receiving and sharing high-penetrance cancer genetic test results. Methods Participants completed the population-based, cross-sectional 2013 Health Information National Trends Survey. We examined sociodemographic characteristics of participants reporting having had BRCA1/2 or Lynch syndrome genetic testing, and sociodemographic and psychosocial correlates of sharing test results with health professionals and family members. Results Participants who underwent BRCA1/2 or Lynch syndrome genetic testing (n=77; 2.42% of respondents) were more likely to be female and to have a family or personal cancer history than those not undergoing testing. Approximately three-quarters of participants shared results with health professionals and three-quarters with their family; only 4% did not share results with anyone. Participants who shared results with health professionals reported greater optimism, self-efficacy for health management, and trust in information from their doctors. Participants who shared results with family were more likely to be female and to have a personal cancer history, and had greater self-efficacy for health management, perceived less ambiguity in cancer prevention recommendations, and lower cancer prevention fatalism. Conclusions We identified several novel psychosocial correlates of sharing genetic information. Health professionals may use this information to identify patients less likely to share information with at-risk family members. PMID:25427996

  16. Towards the modelling of pedestrian wind speed using high-resolution digital surface models and statistical methods

    NASA Astrophysics Data System (ADS)

    Johansson, Lars; Onomura, Shiho; Lindberg, Fredrik; Seaquist, Jonathan

    2016-04-01

    Wind is a complex phenomenon and a critical factor in assessing climatic conditions and pedestrian comfort within cities. To obtain spatial information on near-ground wind speed, 3D computational fluid dynamics (CFD) modelling is often used. This is a computationally intensive method which requires extensive computer resources and is time consuming. By using a simpler 2D method, larger areas can be processed and less time is required. This study attempts to model the relationship between near-ground wind speed and urban geometry using 2.5D raster data and variable selection methods. Such models can be implemented in a geographic information system (GIS) to assess the spatial distribution of wind speed at street level in complex urban environments at scales from neighbourhood to city. Wind speed data, 2 m above ground, is obtained from simulations by CFD modelling and used as a response variable. A number of derivatives calculated from high-resolution digital surface models (DSM) are used as potential predictors. A sequential variable selection algorithm followed by all-possible subset regression was used to select candidate models for further evaluation. The results show that the selected models explain general spatial wind speed pattern characteristics but the prediction errors are large, especially so in areas with high wind speeds. However, all selected models did explain 90 % of the wind speed variability (R 2 ≈ 0.90). Predictors adding information on width and height ratio and alignment of street canyons with respect to wind direction are suggested for improving model performance. To assess the applicability of any derived model, the results of the CFD model should be thoroughly evaluated against field measurements.

  17. Discovery and optimization of a novel series of highly CNS penetrant M4 PAMs based on a 5,6-dimethyl-4-(piperidin-1-yl)thieno[2,3-d]pyrimidine core.

    PubMed

    Wood, Michael R; Noetzel, Meredith J; Engers, Julie L; Bollinger, Katrina A; Melancon, Bruce J; Tarr, James C; Han, Changho; West, Mary; Gregro, Alison R; Lamsal, Atin; Chang, Sichen; Ajmera, Sonia; Smith, Emery; Chase, Peter; Hodder, Peter S; Bubser, Michael; Jones, Carrie K; Hopkins, Corey R; Emmitte, Kyle A; Niswender, Colleen M; Wood, Michael W; Duggan, Mark E; Conn, P Jeffrey; Bridges, Thomas M; Lindsley, Craig W

    2016-07-01

    This Letter describes the chemical optimization of a novel series of M4 positive allosteric modulators (PAMs) based on a 5,6-dimethyl-4-(piperidin-1-yl)thieno[2,3-d]pyrimidine core, identified from an MLPCN functional high-throughput screen. The HTS hit was potent and selective, but not CNS penetrant. Potency was maintained, while CNS penetration was improved (rat brain:plasma Kp=0.74), within the original core after several rounds of optimization; however, the thieno[2,3-d]pyrimidine core was subject to extensive oxidative metabolism. Ultimately, we identified a 6-fluoroquinazoline core replacement that afforded good M4 PAM potency, muscarinic receptor subtype selectivity and CNS penetration (rat brain:plasma Kp>10). Moreover, this campaign provided fundamentally distinct M4 PAM chemotypes, greatly expanding the available structural diversity for this exciting CNS target. PMID:27185330

  18. High-Temperature Motor Windings for Downhole Pumps Used in Geothermal Energy Production

    SciTech Connect

    Hooker, Matthew; Hazelton, Craig; Kano, Kimi

    2010-12-31

    The development of highly reliable downhole equipment is an essential element in enabling the widespread utilization of Enhanced Geothermal Systems (EGS). The downhole equipment used in these systems will be required to operate at high voltages and temperatures on the order of 200 to 250°C (and eventually to 300°C). These conditions exceed the practical operating ranges of currently available thermoplastic wire insulations, and thus limit the operating lifetime of tools such as Electric Submersible Pumps (ESPs). In this work, high-temperature insulations based on composite materials were developed and demonstrated. The products of this work were found to exhibit electrical resistivities and dielectric breakdown strengths that PEEK at temperatures above 250C. In addition, sub-scale motor windings were fabricated and tested to validate the performance of this technology

  19. High Speed Civil Transport in 14x22 Foot Wind Tunnel

    NASA Technical Reports Server (NTRS)

    1993-01-01

    A NASA technician (Michael E. Ramsey) inspects a high-speed civil transport model between wind tunnel tests at NASA's Langley Research Center, Hampton, Virginia. Aerodynamic tests of the 19-foot (5.7m) model in the 14- by 22-Foot Subsonic Tunnel simulate takeoff and landing of a 300-passenger supersonic commercial transport that would cruise at Mach 2.4 (approximately 1,600 mph/2,560 kph). Designated 'Reference H,' the concept was designed by Boeing and presently serves as a common configuration for government-industry technology studies. Langley is NASA's lead center for the agency's High Speed Research program, aimed at developing technology to help U.S. industry compete in the rapidly expanding trans-oceanic transport market. A. U.S. high-speed civil transport is expected to fly in about the year 2010.

  20. Wind tunnel investigation of the effect of high relative velocities on the structural integrity of birds

    NASA Technical Reports Server (NTRS)

    Bresnahan, D. L.

    1972-01-01

    An experimental investigation was conducted in a supersonic wind tunnel to determine the effect a sudden high velocity headwind had on the physical deformation and structural breakup characteristics of birds. Several sizes of recently killed birds were dropped into the test section at free-stream Mach numbers ranging from 0.2 to 0.8 and photographed with high-speed motion-picture cameras. These conditions simulated flow conditions encountered when birds are ingested into the inlets of high speed aircraft, thereby constituting a safety hazard to the aircraft and its occupants. The investigation shows that, over the range of headwind conditions tested, the birds remained structurally intact and did not suffer any appreciable deformation or structural breakup.