Sample records for high beta fusion

  1. Fusion alpha-particle losses in a high-beta rippled tokamak

    SciTech Connect

    Bunno, M.; Nakamura, Y. [Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan)] [Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Suzuki, Y. [National Institute for Fusion Science, Toki 509-5292 (Japan)] [National Institute for Fusion Science, Toki 509-5292 (Japan); Shinohara, K.; Matsunaga, G. [Japan Atomic Energy Agency, Naka, Ibaraki 311-0193 (Japan)] [Japan Atomic Energy Agency, Naka, Ibaraki 311-0193 (Japan); Tani, K. [Nippon Advanced Technology, Naka, Ibaraki 311-0102 (Japan)] [Nippon Advanced Technology, Naka, Ibaraki 311-0102 (Japan)

    2013-08-15

    In tokamak plasmas, the confinement of energetic ions depends on the magnetic field structure. If the plasma pressure is finite, the equilibrium current (i.e., the Pfirsch-Schlüter current and diamagnetic current) flows in the plasma to maintain the magnetohydrodynamic (MHD) equilibrium. These plasma currents generate poloidal and toroidal magnetic field and alter the field structure. Moreover, if we consider the non-axisymmetry of magnetic field structures such as toroidal field (TF) ripples, the non-axisymmetric component of the equilibrium current can alter TF ripples themselves. When the plasma beta becomes high, the changes in the field structure due to the equilibrium current might affect the confinement of energetic ions significantly. We intend to clarify how these currents alter the field structure and affect the confinement of alpha particles in high-beta plasma. The MHD equilibrium is calculated using VMEC and the orbits of fusion alpha particles are followed by using the fully three-dimensional magnetic field orbit-following Monte Carlo code. In relatively low-beta plasma (e.g., the volume-averaged beta value ?2%), the changes in the magnetic field component due to the plasma current negligibly affect the confinement of alpha particles except for the Shafranov shift effect. However, for ?3%, the diamagnetic effect reduces the magnetic field strength and significantly increases alpha-particle losses. In these high-beta cases, the non-axisymmetric field component generated by the equilibrium current also increases these losses, but not as effectively as compared to the diamagnetic effect.

  2. High beta multipoles

    SciTech Connect

    Prager, S C

    1982-05-01

    Multipoles are being employed as devices to study fusion issues and plasma phenomena at high values of beta (plasma pressure/magnetic pressure) in a controlled manner. Due to their large volume, low magnetic field (low synchrotron radiation) region, they are also under consideration as potential steady state advanced fuel (low neutron yield) reactors. Present experiments are investigating neoclassical (bootstrap and Pfirsch-Schlueter) currents and plasma stability at extremely high beta.

  3. High poloidal beta long-pulse experiments in the Tokamak Fusion Test Reactor*

    E-print Network

    Mauel, Michael E.

    was consistent with the predictions of ideal magnetohydrodynamics (MHD) stability analyses. I. INTRODUCTION dis- charges the bootstrap current fraction was calculated to be large and the bootstrap current. high poloidal beta experiments with high bootstrap frac- tions. The Japan Tokamak-60 (JT-60) experiment

  4. Status of the Argonne heavy-ion-fusion low-beta linac

    SciTech Connect

    Watson, J.M.; Bogaty, J.M.; Moretti, A.; Sacks, R.A.; Sesol, N.Q.; Wright, A.J.

    1981-01-01

    The primary goal of the experimental program in heavy-ion fusion (HIF) at Argonne National Laboratory (ANL) during the next few years is to demonstrate many of the requirements of a RF linac driver for inertial-fusion power plants. So far, most of the construction effort has been applied to the front end. The ANL program has developed a high-intensity xenon source, a 1.5-MV preaccelerator, and the initial cavities of the low-beta linac. The design, initial tests, and status of the low-beta linac are described.

  5. Pulsed High Density Fusion

    NASA Astrophysics Data System (ADS)

    Slough, John

    2000-10-01

    Based on FRC acceleration experiments, together with confinement scaling observed in past FRC experiments, a method has been determined by which an FRC can be compressed to high density and brought to ignition conditions in a rapid, repetitive manner. This regime is referred to as the Pulsed High Density (PHD) regime of MFE. Unlike MTF, the upper boundary of this regime remains below the density limit imposed by material strength limitations. Data from various FRC experiments yield a scaling with size and density such that at a density of 10^24 m-3, a fusion gain > 1 can be achieved at a radius ~ 1 cm. The energy necessary for burn is transferred to the FRC in the form of translational energy, which is produced by an inductive magnetized plasma accelerator (IMPAC) that is capable of repetitive pulsing. The simplicity of this approach to fusion lies in the fact that the directed energy of the FRC mass is much greater than the FRC internal energy, so that the confining magnetic fields, as well as accelerating fields, need to be no greater than required to contain the low-pressure FRC generated in the source coil ( ~ 0.4 T). The conversion of the FRC directed energy into thermal energy occurs only after the FRC has reached the burn chamber where the FRC is slowed and compressed to fusion conditions. The goal of a concept exploration experiment would be the construction of an IMPAC device capable of producing a FRC plasma where all key parameters can be brought to within an order of magnitude of that required for a Q ~1 fusion burn. Details of such an experiment will be discussed.

  6. High beta plasmas in the PBX tokamak

    SciTech Connect

    Bol, K.; Buchenauer, D.; Chance, M.; Couture, P.; Fishman, H.; Fonck, R.; Gammel, G.; Grek, B.; Ida, K.; Itami, K.

    1986-04-01

    Bean-shaped configurations favorable for high ..beta.. discharges have been investigated in the Princeton Beta Experiment (PBX) tokamak. Strongly indented bean-shaped plasmas have been successfully formed, and beta values of over 5% have been obtained with 5 MW of injected neutral beam power. These high beta discharges still lie in the first stability regime for ballooning modes, and MHD stability analysis implicates the external kink as responsible for the present ..beta.. limit.

  7. Field-reversed configuration high power density fusion reactor

    Microsoft Academic Search

    Hoffman

    1986-01-01

    A field-reversed-configuration (FRC) is a compact toroidal plasma confined solely by poloidal fields. Its naturally high ..beta.. (<..beta..> greater than or equal to 0.5), and the simple cylindrical vacuum chamber and magnetic field configuration needed to confine it offer significant engineering advantages in constructing compact, small unit size, economic fusion reactors. The FRC's demonstrated ability to be translated opens many

  8. Neoclassical transport in high [beta] tokamaks

    SciTech Connect

    Cowley, S.C.

    1992-12-01

    Neoclassical, transport in high [beta] large aspect ratio tokamaks is calculated. The variational method introduced by Rosenbluth, et al., is used to calculate the full Onsager matrix in the banana regime. These results are part of a continuing study of the high [beta] large aspect ratio equilibria introduced in Cowley, et al. All the neoclassical coefficients are reduced from their nominal low [beta] values by a factor ([var epsilon]/q[sup 2][beta])[sup [1/2

  9. Nanoscale organization of {beta}{sub 2}-adrenergic receptor-Venus fusion protein domains on the surface of mammalian cells

    SciTech Connect

    Vobornik, Dusan; Rouleau, Yanouchka; Haley, Jennifer [Steacie Institute for Molecular Sciences, National Research Council Canada, Ottawa, ON, Canada K1A 0R6 (Canada)] [Steacie Institute for Molecular Sciences, National Research Council Canada, Ottawa, ON, Canada K1A 0R6 (Canada); Bani-Yaghoub, Mahmud [Institute for Biological Sciences, National Research Council Canada, Ottawa, ON, Canada K1A 0R6 (Canada)] [Institute for Biological Sciences, National Research Council Canada, Ottawa, ON, Canada K1A 0R6 (Canada); Taylor, Rod [Steacie Institute for Molecular Sciences, National Research Council Canada, Ottawa, ON, Canada K1A 0R6 (Canada)] [Steacie Institute for Molecular Sciences, National Research Council Canada, Ottawa, ON, Canada K1A 0R6 (Canada); Johnston, Linda J., E-mail: Linda.Johnston@nrc-cnrc.gc.ca [Steacie Institute for Molecular Sciences, National Research Council Canada, Ottawa, ON, Canada K1A 0R6 (Canada); Pezacki, John Paul, E-mail: John.Pezacki@nrc-cnrc.gc.ca [Steacie Institute for Molecular Sciences, National Research Council Canada, Ottawa, ON, Canada K1A 0R6 (Canada)

    2009-04-24

    Adrenergic receptors are a key component of nanoscale multiprotein complexes that are responsible for controlling the beat rate in a mammalian heart. We demonstrate the ability of near-field scanning optical microscopy (NSOM) to visualize {beta}{sub 2}-adrenergic receptors ({beta}{sub 2}AR) fused to the GFP analogue Venus at the nanoscale on HEK293 cells. The expression of the {beta}{sub 2}AR-Venus fusion protein was tightly controlled using a tetracycline-induced promoter. Both the size and density of the observed nanoscale domains are dependent on the level of induction and thus the level of protein expression. At concentrations between 100 and 700 ng/ml of inducer doxycycline, the size of domains containing the {beta}{sub 2}AR-Venus fusion protein appears to remain roughly constant, but the number of domains per cell increase. At 700 ng/ml doxycycline the functional receptors are organized into domains with an average diameter of 150 nm with a density similar to that observed for the native protein on primary murine cells. By contrast, larger micron-sized domains of {beta}{sub 2}AR are observed in the membrane of the HEK293 cells that stably overexpress {beta}{sub 2}AR-GFP and {beta}{sub 2}AR-eYFP. We conclude that precise chemical control of gene expression is highly advantageous for the use {beta}{sub 2}AR-Venus fusion proteins as models for {beta}{sub 2}AR function. These observations are critical for designing future cell models and assays based on {beta}{sub 2}AR, since the receptor biology is consistent with a relatively low density of nanoscale receptor domains.

  10. Cognitive high level information fusion

    Microsoft Academic Search

    Leonid I. Perlovsky

    2007-01-01

    Fusion of sensor and communication data currently can only be performed at a late processing stage after sensor and textual information are formulated as logical statements at appropriately high level of abstraction. Contrary to this it seems, the human mind integrates sensor and language signals seamlessly, before signals are understood, at pre-conceptual level. Learning of conceptual contents of the surrounding

  11. In vivo analysis of Chlamydomonas chloroplast petD gene expression using stable transformation of beta-glucuronidase translational fusions.

    PubMed Central

    Sakamoto, W; Kindle, K L; Stern, D B

    1993-01-01

    We have used the Escherichia coli beta-glucuronidase (uidA) gene as a reporter gene to localize the promoter and analyze the function of the 5' untranslated region (UTR) of the Chlamydomonas chloroplast petD gene. Using particle bombardment, petD-uidA transcriptional and translational fusion genes were introduced into the chloroplast genome in the large inverted repeat flanking the atpB gene. In transformants carrying a petD-uidA transcriptional fusion, uidA mRNA accumulated but was not translated. However, in a translational fusion that included the entire petD 5' UTR, uidA mRNA accumulated and a high level of beta-glucuronidase activity was detected. When approximately 70% of the petD 5' UTR was deleted from the translational fusion, uidA mRNA accumulation and beta-glucuronidase activity decreased 4- to 6-fold and 8-fold, respectively. Run-on transcription assays demonstrated that all strains transcribe the uidA gene at equivalent rates. Our results show that sequences essential for translation reside in the petD 5' UTR and also that sequences within the 5' UTR directly or indirectly affect mRNA stability. The expression of beta-glucuronidase under the control of chloroplast transcriptional and translational signals will facilitate further studies of chloroplast gene regulatory mechanisms. Images PMID:8421681

  12. High Level Information Fusion (HLIF) with nested fusion loops

    NASA Astrophysics Data System (ADS)

    Woodley, Robert; Gosnell, Michael; Fischer, Amber

    2013-05-01

    Situation modeling and threat prediction require higher levels of data fusion in order to provide actionable information. Beyond the sensor data and sources the analyst has access to, the use of out-sourced and re-sourced data is becoming common. Through the years, some common frameworks have emerged for dealing with information fusion—perhaps the most ubiquitous being the JDL Data Fusion Group and their initial 4-level data fusion model. Since these initial developments, numerous models of information fusion have emerged, hoping to better capture the human-centric process of data analyses within a machine-centric framework. 21st Century Systems, Inc. has developed Fusion with Uncertainty Reasoning using Nested Assessment Characterizer Elements (FURNACE) to address challenges of high level information fusion and handle bias, ambiguity, and uncertainty (BAU) for Situation Modeling, Threat Modeling, and Threat Prediction. It combines JDL fusion levels with nested fusion loops and state-of-the-art data reasoning. Initial research has shown that FURNACE is able to reduce BAU and improve the fusion process by allowing high level information fusion (HLIF) to affect lower levels without the double counting of information or other biasing issues. The initial FURNACE project was focused on the underlying algorithms to produce a fusion system able to handle BAU and repurposed data in a cohesive manner. FURNACE supports analyst's efforts to develop situation models, threat models, and threat predictions to increase situational awareness of the battlespace. FURNACE will not only revolutionize the military intelligence realm, but also benefit the larger homeland defense, law enforcement, and business intelligence markets.

  13. Fusion zone microstructure and porosity in electron beam welds of an {alpha} + {beta} titanium alloy

    SciTech Connect

    Mohandas, T.; Banerjee, D. [Defence Metallurgical Research Lab., Hyderabad (India); Kutumba Rao, V.V. [Banaras Hindu Univ., Varanasi (India)

    1999-03-01

    The effect of electron beam welding parameters on fusion zone (FZ) microstructure and porosity in a Ti-6.8 Al-3.42 Mo-1.9 Zr-0.21 Si alloy (Russian designation VT 9) has been investigated. It has been observed that the FZ grain width increased continuously with increase in heat input when the base metal was in the {beta} heat-treated condition, while in the {alpha} + {beta} heat-treated base metal welds, the FZ grain width increased only after a threshold energy input. The difference is attributed to both the weld thermal cycle and the pinning effect of equiaxed primary alpha on grain growth in the heat-affected zone (HAZ) of {alpha} + {beta} heat-treated base metal. Postweld heat treatment (PWHT) in the subtransus and supertransus regions did not alter the columnar grain morphology in the FZ, possibly due to the lack of enough driving force for the formation of new grains by the breaking up of the columnar grains and grain boundary movement for grain growth. The highest porosity was observed at intermediate welding speeds. At low speeds, a majority of pores formed at the fusion boundary, while at high speeds, occurrence of porosity was maximum at the weld center. The trends on porosity can be explained on the basis of solubility of hydrogen in titanium as a function of temperature and the influence of weld thermal cycle on nucleation, growth, and escape of hydrogen gas bubbles. The porosity at slow welding speeds is low because sufficient time exists for the nucleation, growth, and escape of hydrogen gas bubbles, while insufficient time exists for the nucleation of gas bubbles at high welding speeds. The effect of pickling of joint surface, vacuum annealing of the base metal, and successive remelting of the weld metal has also been investigated.

  14. High-density-plasma diagnostics in magnetic-confinement fusion

    SciTech Connect

    Jahoda, F.C.

    1982-01-01

    The lectures will begin by defining high density in the context of magnetic confinement fusion research and listing some alternative reactor concepts, ranging from n/sub e/ approx. 2 x 10/sup 14/ cm/sup -3/ to several orders of magnitude greater, that offer potential advantages over the main-line, n/sub e/ approx. 1 x 10/sup 14/ cm/sup -3/, Tokamak reactor designs. The high density scalings of several major diagnostic techniques, some favorable and some disadvantageous, will be discussed. Special emphasis will be given to interferometric methods, both electronic and photographic, for which integral n/sub e/dl measurements and associated techniques are accessible with low wavelength lasers. Reactor relevant experience from higher density, smaller dimension devices exists. High density implies high ..beta.., which implies economies of scale. The specialized features of high ..beta.. diagnostics will be discussed.

  15. Neoclassical transport in high {beta} tokamaks

    SciTech Connect

    Cowley, S.C.

    1992-12-01

    Neoclassical, transport in high {beta} large aspect ratio tokamaks is calculated. The variational method introduced by Rosenbluth, et al., is used to calculate the full Onsager matrix in the banana regime. These results are part of a continuing study of the high {beta} large aspect ratio equilibria introduced in Cowley, et al. All the neoclassical coefficients are reduced from their nominal low {beta} values by a factor ({var_epsilon}/q{sup 2}{beta}){sup {1/2}} II. This factor is the ratio of plasma volume in the boundary layer to the volume in the core. The fraction of trapped particles on a given flux surface (f{sub t}) is also reduced by this factor so that {approximately} {sub ({var_epsilon}}/q{sup 2}{beta}){sup {1/2}}. Special attention is given to the current equation, since this is thought to be relevant at low 3 and therefore may also be relevant at high {beta}. The bootstrap current term is found to exceed the actual current by a factor of the square root of the aspect ratio.

  16. Symmetric Injection of High Beta Plasma into a Magnetic Dipole

    NASA Astrophysics Data System (ADS)

    Giersch, Louis; Winglee, Robert; Slough, John; Ziemba, Tim; Euripides, Peter

    2003-10-01

    Dipole confinement is a critical issue for several plasma devices, including the magnetic levitated dipole experiment for fusion applications, and mini-magnetospheric plasma propulsion for spacecraft applications. In this paper we investigate confinement of plasma within a magnetic dipole as functions of chamber neutral pressure and external magnetic field. The dipole plasma is created by the symmetric injection of high beta plasma into the equator of the dipole. The injection uses 8 cascaded arc plasma sources arranged at 45-degree increments around the magnet. The electron temperature, magnetic perturbations, and 3D measurements of the plasma density as a function of time are presented. Plasma losses on feed throughs are a significant sink of plasma. Nevertheless plasma with beta of order unity can be attained and confinement is seen out to several times the Bohm diffusion limit.

  17. Modular low aspect ratio-high beta torsatron

    DOEpatents

    Sheffield, George V. (Hopewell, NJ); Furth, Harold P. (Princeton, NJ)

    1984-02-07

    A fusion reactor device in which the toroidal magnetic field and at least a portion of the poloidal magnetic field are provided by a single set of modular coils. The coils are arranged on the surface of a low aspect ratio toroid in planes having the cylindrical coordinate relationship .phi.=.phi..sub.i +kz where k is a constant equal to each coil's pitch and .phi..sub.i is the toroidal angle at which the i'th coil intersects the z=o plane. The device may be described as a modular, high beta torsation whose screw symmetry is pointed along the systems major (z) axis. The toroid defined by the modular coils preferably has a racetrack minor cross section. When vertical field coils and preferably a toroidal plasma current are provided for magnetic field surface closure within the toroid, a vacuum magnetic field of racetrack shaped minor cross section with improved stability and beta valves is obtained.

  18. High beta and confinement studies of TFTR

    SciTech Connect

    Navratil, G.A.; Bhattacharjee, A.; Iacono, R.; Mauel, M.E.; Sabbagh, S.A. (Columbia Univ., New York, NY (United States)); Kesner, J. (Massachusetts Inst. of Tech., Cambridge, MA (United States))

    1993-01-01

    The project discussed in this report are: Enhanced High Poloidal Beta Operation in TFTR with Deuterium Pellet Injection; Approaching High Q by Utilizing High [beta][sub p] Operation in TFTR; Advanced Tokamak Regime Experiment, and Second Regime Studies at large Major Radius High [beta][sub p] Plasmas. Analysis of the data taken during these experiments as well as continuing analysis of earlier data led to a number important results described in publications in the past year including two invited presentations at the 1992 American Physical Society Division of Plasma Physics Meeting in Seattle an oral presentation at the 1992 IAEA Meeting in Wuertzburg, Germany, and a Physical Review Letter. These results included extending the high 11/2 regime to 1.2 MA current and neutron production rates to more than 3 [times] 10[sup 16] sec[sup [minus

  19. Beta decay of highly charged ions

    NASA Astrophysics Data System (ADS)

    Litvinov, Yuri A.; Bosch, Fritz

    2011-01-01

    Beta decay of highly charged ions has attracted much attention in recent years. An obvious motivation for this research is that stellar nucleosynthesis proceeds at high temperatures where the involved atoms are highly ionized. Another important reason is addressing decays of well-defined quantum-mechanical systems, such as one-electron ions where all interactions with other electrons are excluded. The largest modifications of nuclear half-lives with respect to neutral atoms have been observed in beta decay of highly charged ions. These studies can be performed solely at ion storage rings and ion traps, because there high atomic charge states can be preserved for extended periods of time (up to several hours). Currently, all experimental results available in this field originate from experiments at the heavy-ion complex GSI in Darmstadt. There, the fragment separator facility FRS allows the production and separation of exotic, highly charged nuclides, which can then be stored and investigated in the storage ring facility ESR. In this review, we present and discuss in particular two-body beta decays, namely bound-state beta decay and orbital electron capture. Although we focus on experiments conducted at GSI, we will also attempt to provide general requirements common to any other experiment in this context. Finally, we address challenging but not yet performed experiments and we give prospects for the new radioactive beam facilities, such as FAIR in Darmstadt, IMP in Lanzhou and RIKEN in Wako.

  20. Experimental studies of linear high-beta heliac plasma configurations

    SciTech Connect

    Greenfield, C.M.; Koepke, M.E.; Ribe, F.L. (University of Washington, Seattle, Washington 98195 (US))

    1990-01-01

    The formation and quasi-equilibrium of a high-beta heliac plasma are investigated in the High-Beta Q Machine (Phys. Fluids {bold 30}, 2885 (1987)), a linear high-beta {ital l}=1 stellarator with an internal current carrying conductor (hardcore). The hardcore current rise time is varied from 9 {mu}sec to smaller values comparable with that of the main compression field (450 nsec). Flux contours and plasma pressure calculated from internal magnetic-probe measurements are used to distinguish between nearly axisymmetric plasma confined near the hardcore and the heliac plasma confined near the magnetic axis. For the shorter hardcore rise times, the axisymmetric plasma pressure becomes small compared to that of the heliac. Further analysis of the data allows calculation of the currents flowing in the plasma, the rotational transform, and the magnetic well depth. Appreciable axial current is observed, consistent with induction by the changing magnetic fields during the heliac formation. The observed relationship between the axial current and rotational transform is confirmed by computer modeling using the HASE magnetohydrodynamic equilibrium code (Nucl. Fusion {bold 23}, 1061 (1983)).

  1. Tethering of Epidermal Growth Factor (EGF) to Beta Tricalcium Phosphate (?TCP) via Fusion to a High Affinity, Multimeric ?TCP-Binding Peptide: Effects on Human Multipotent Stromal Cells/Connective Tissue Progenitors

    PubMed Central

    Stockdale, Linda; Saini, Sunil; Lee, Richard T.; Griffith, Linda G.

    2015-01-01

    Transplantation of freshly-aspirated autologous bone marrow, together with a scaffold, is a promising clinical alternative to harvest and transplantation of autologous bone for treatment of large defects. However, survival proliferation, and osteogenic differentiation of the marrow-resident stem and progenitor cells with osteogenic potential can be limited in large defects by the inflammatory microenvironment. Previous studies using EGF tethered to synthetic polymer substrates have demonstrated that surface-tethered EGF can protect human bone marrow-derived osteogenic stem and progenitor cells from pro-death inflammatory cues and enhance their proliferation without detriment to subsequent osteogenic differentiation. The objective of this study was to identify a facile means of tethering EGF to clinically-relevant ?TCP scaffolds and to demonstrate the bioactivity of EGF tethered to ?TCP using stimulation of the proliferative response of human bone-marrow derived mesenchymal stem cells (hBMSC) as a phenotypic metric. We used a phage display library and panned against ?TCP and composites of ?TCP with a degradable polyester biomaterial, together with orthogonal blocking schemes, to identify a 12-amino acid consensus binding peptide sequence, LLADTTHHRPWT, with high affinity for ?TCP. When a single copy of this ?TCP-binding peptide sequence was fused to EGF via a flexible peptide tether domain and expressed recombinantly in E. coli together with a maltose-binding domain to aid purification, the resulting fusion protein exhibited modest affinity for ?TCP. However, a fusion protein containing a linear concatamer containing 10 repeats of the binding motif the resulting fusion protein showed high affinity stable binding to ?TCP, with only 25% of the protein released after 7 days at 37oC. The fusion protein was bioactive, as assessed by its abilities to activate kinase signaling pathways downstream of the EGF receptor when presented in soluble form, and to enhance the proliferation of hBMSC when presented in tethered form on commercial ?TCP bone regeneration scaffolds. PMID:26121597

  2. High-gain aneutronic fusion

    NASA Astrophysics Data System (ADS)

    Hay, M. J.; Fisch, N. J.

    2014-10-01

    Fusion reactions which release most of their energy in charged particles are desirable for power applications. The proton-boron reaction p+11 B --> 3 ? + 8 . 7 MeV is ideal due to the low incidence of neutron-generating side reactions and the natural abundance of the reactants. However, an optically thin proton-boron plasma radiates a substantial amount of energy via bremsstrahlung. To compensate, we consider ways of increasing the fusion reactivity above the Maxwellian value. Using the fusion alpha particle energy to heat specific parts of the proton velocity distribution is one such approach. In principle, waves could channel the alpha energy to protons near the cross section maximum in energy, resulting in a substantial reactivity gain. By making aggressive assumptions regarding how energy might be channeled, we present upper bounds on the extent to which a proton-boron fusion reaction can be self-sustaining. Work supported by DOE Contract No. DE-AC02-09CH11466 and DOE NNSA SSAA Grant No. DE274-FG52-08NA28553. M. J. H. was supported in part by the DOE NNSA SSGF under Grant No. DE-FC52-08NA28752.

  3. In vivo topological analysis of Ste2, a yeast plasma membrane protein, by using beta-lactamase gene fusions.

    PubMed Central

    Cartwright, C P; Tipper, D J

    1991-01-01

    Gene fusions were constructed between Ste2, the receptor for the Saccharomyces cerevisiae alpha-factor, and beta la, the secreted form of beta-lactamase encoded by the bla gene of pBR322. The Ste2 and beta la components were linked by a processing fragment (P) from the yeast killer preprotoxin containing a C-terminal lysine-arginine site for cleavage by the Golgi-associated Kex2 protease. Ste2 is predicted to have a rhodopsinlike topology, with an external N terminus and seven transmembrane segments. Fusions to three of the four Ste2 domains predicted to be external resulted in beta la secretion from yeast cells. A fusion at a site just preceding the first transmembrane segment was an exception; the product was cell associated, indicating that the first 44 residues of Ste2 are insufficient to direct secretion of beta la; translocation of this domain presumably requires the downstream transmembrane segment. Expression of fusions located in two domains predicted to be cytoplasmic failed to result in beta la secretion. Following insertion of the preprotoxin signal peptide (S) between the Ste2 and P components of these cytoplasmic fusions, secretion of beta la activity occurred, which is consistent with inversion of the orientation of the beta la reporter. Conversely, insertion of S between Ste2 and P in an external fusion sharply reduced beta la secretion. Complementary information about both cytoplasmic and external domains of Ste2 was therefore provided, and most aspects of the predicted topology were confirmed. The steady-state levels of beta la detected were low, presumably because of efficient degradation of the fusions in the secretory pathway; levels, however, were easily detectable. This method should be valuable in the analysis of in vivo topologies of both homologous and foreign plasma membrane proteins expressed in yeast cells. Images PMID:2017168

  4. High beta and confinement studies on TFTR

    SciTech Connect

    Navratil, G.A.; Bhattacharjee, A.; Iacono, R.; Mauel, M.E.; Sabbagh, S.A. (Columbia Univ., New York, NY (United States)); Kesner, J. (Massachusetts Inst. of Tech., Cambridge, MA (United States))

    1992-01-01

    A new regime of high poloidal beta operation in TFTR was developed in the course of the first two years of this project (9/25/89 to 9/24/91). Our proposal to continue this successful collaboration between Columbia University and the Massachusetts Institute of Technology with the Princeton Plasma Physics Laboratory for a three year period (9/25/91 to 9/24/94) to continue to investigate improved confinement and tokamak performance in high poloidal beta plasmas in TFTR through the DT phase of operation was approved by the DOE and this is a report of our progress during the first 9 month budget period of the three year grant (9/25/91 to 6/24/92). During the approved three year project period we plan to (1) extend and apply the low current, high QDD discharges to the operation of TFTR using Deuterium and Tritium plasma; (2) continue the analysis and plan experiments on high poloidal beta phenomena in TFTR including: stability properties, enhanced global confinement, local transport, bootstrap current, and divertor formation; (3) plan and carry out experiments on TFTR which attempt to elevate the central q to values > 2 where entry to the second stability regime is predicted to occur; and (4) collaborate on high beta experiments using bean-shaped plasmas with a stabilizing conducting shell in PBX-M. In the seven month period covered by this report we have made progress in each of these four areas through the submission of 4 TFTR Experimental Proposals and the partial execution of 3 of these using a total of 4.5 run days during the August 1991 to February 1992 run.

  5. The effect of wall loading limitations and choice of beta on the feasibility of advanced fuel fusion reactors

    Microsoft Academic Search

    J. Reece Roth; Hall C. Roland

    1981-01-01

    This paper investigates the effect of wall loading limitations and choice of plasma stability index beta on the feasibility of advanced fuel fusion reactors. Two new conceptual tools are introduced to facilitate this analysis: the “effective reactivity,” which includes all of the reaction-relevant parameters that determine the fusion power density, and the “critical radius,” which is the maximum allowable minor

  6. The effect of wall loading limitations and choice of beta on the feasibility of advanced fuel fusion reactors

    Microsoft Academic Search

    J. R. Roth; H. C. Roland

    1979-01-01

    This paper investigates the effect of wall loading limitations and choice of plasma stability index beta on the feasibility of advanced fuel fusion reactors. Two new conceptual tools are introduced to facilitate this analysis: the effective reactivity, which includes all of the reaction-relevant parameters which determine the fusion power density; and the critical radius, which is the maximum allowable minor

  7. Preliminary evaluation of beta-spodumene as a fusion reactor structural material

    SciTech Connect

    Kelsey, P.V. Jr.; Schmunk, R.E.; Henslee, S.P.

    1981-01-01

    Beta-spodumene was investigated as a candidate material for use in fusion reactor environments. Properties which support the use of beta-spodumene include good thermal shock resistance, a very low coefficient of thermal expansion, a low-Z composition which would result in minimum impact on the plasma, and flexibility in fabrication processes. Specimens were irradiated in the Advanced Test Reactor (ATR) to a fluence of 5.3 x 10/sup 22/ n/m/sup 2/, E > 0.1 MeV, and 4.9 x 10/sup 23/ n/m/sup 2/ thermal fluence in order to obtain a preliminary evaluation of the impact of irradiation on the material. Preliminary data indicate that the mechanical properties of beta-spodumene are little affected by irradiation. Gas production and release have also been investigated.

  8. Achieving a long-lived high-beta plasma state by energetic beam injection.

    PubMed

    Guo, H Y; Binderbauer, M W; Tajima, T; Milroy, R D; Steinhauer, L C; Yang, X; Garate, E G; Gota, H; Korepanov, S; Necas, A; Roche, T; Smirnov, A; Trask, E

    2015-01-01

    Developing a stable plasma state with high-beta (ratio of plasma to magnetic pressures) is of critical importance for an economic magnetic fusion reactor. At the forefront of this endeavour is the field-reversed configuration. Here we demonstrate the kinetic stabilizing effect of fast ions on a disruptive magneto-hydrodynamic instability, known as a tilt mode, which poses a central obstacle to further field-reversed configuration development, by energetic beam injection. This technique, combined with the synergistic effect of active plasma boundary control, enables a fully stable ultra-high-beta (approaching 100%) plasma with a long lifetime. PMID:25902924

  9. Bound-state beta decay of highly ionized atoms

    Microsoft Academic Search

    K. Takahashi; R. N. Boyd; G. J. Mathews; K. Yokoi

    1987-01-01

    Nuclear ..beta.. decays of highly ionized atoms under laboratory conditions are studied. Theoretical predictions of ..beta..-decay rates are given for a few cases in which bound-state ..beta.. decay produces particularly interesting effects. A possible storage-ring experiment is proposed for measuring bound-state ..beta..-decay rates, which will be most easily applied to the decay of ³H\\/sup +\\/. .AE

  10. Bioavailability of beta-carotene (betaC) from purple carrots is the same as typical orange carrots while high-betaC carrots increase betaC stores in Mongolian gerbils (Meriones unguiculatus)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vitamin A (VA) deficiency is a worldwide public health problem. Biofortifying existing sources of beta-carotene (betaC) and increasing dietary betaC could help combat the issue. Two studies were performed to investigate the relative betaC bioavailability of a betaC supplement to purple, high-betaC o...

  11. High-. beta. plasmas in the PBX tokamak

    SciTech Connect

    Bol, K.; Buchenauer, D.; Chance, M.; Couture, P.; Fishman, H.; Fonck, R.; Gammel, G.; Grek, B.; Ida, K.; Itami, K.

    1986-10-13

    Bean-shaped configurations have been successfully formed in the PBX tokamak and ..beta.. values of over 5% have been obtained. These discharges still lie in the first stability regime for ballooning modes, and MHD stability analysis implicates the external kink as responsible for the present ..beta.. limit.

  12. High$beta$ plasma behavior in a canted mirror

    Microsoft Academic Search

    R. A. Dandl; H. O. Eason; A. C. England; J. C. Sprott

    1973-01-01

    A high- BETA hot-electron plasma was studied in an asymmetric magnetic ; mirror device with a variable cant angle. The plasma was produced by microwave ; heating at a frequency corresponding to cold-electron-cyclotron resonance ; together with a higher frequency suitable for upper-off-resonance heating. The ; position of the high- BETA plasma annulus was studied as a function of cant

  13. Comparison and analysis of fusion algorithms of high resolution imagery

    NASA Astrophysics Data System (ADS)

    Dong, Guangjun; Huang, Xiaobo; Dai, Chenguang

    2008-03-01

    The fusion techniques have been developed quickly in recent years and become an important remote sensing research topic. This paper systematically discusses the technique used in pixel level image fusion including IHS transform, YIQ transform, HLS transform, HSV transform, PCA transform, HPF transform and wavelet transform image fusion method. Then a fusion experiment of IKONOS image is made to compares the different merging methods from spectral quality and the spatial quality in order to choose the suitable method for the high resolution image.

  14. Use of Staphylococcus aureus 6-P-beta-galactosidase and GFP as fusion partners for lactose-specific IIC domain from Staphylococcus aureus.

    PubMed

    Kowolik, C M; Hengstenberg, W

    2001-07-01

    The hydrophilic part of membrane proteins plays an important role in the formation of 3D crystals. The construction of fusion proteins using well crystallizing proteins as fusion partners is a possibility to increase the hydrophilic part of membrane proteins lacking large hydrophilic domains. These fusion proteins might be easier to crystallize. Two bifunctional fusion proteins containing the membrane-bound, lactose-specific enzyme IIC domain of the lactose transporter (IICB(lac)) from S. aureus as N-terminal fusion partner were constructed by gene fusion. The C-terminal fusion partners were S. aureus 6-P-beta-Galactosidase and GFP, respectively. Both proteins were overexpressed in E. coli, purified to homogeneity and kinetically characterized: In the presence of the components of the lactose phosphotransferase system of S. aureus, the hybrid proteins phosphorylated their substrates, indicating that the fusion partners are sufficiently flexibly linked to allow the interaction of the IIC(lac) domain with the IIB(lac) domain of the lactose transporter. The activity of the 6-P-beta-Galactosidase as well as the fluorescence of GFP were preserved in the fusion proteins. The Vmax values determined for the IIC domain in the fusion proteins were dramatically reduced compared with the values determined for the separate IIC(lac) domain and the complete lactose transporter (IICB(lac)). The Km values were only slightly increased indicating that the Vmax values are much more influenced by the fusion than the substrate affinities. The substrate affinity and the Vmax value determined for the GFP-fused IIC(lac) domain are higher than for the 6-P-beta-Galactosidase-fused IIC(lac). The results suggest that the fusion with GFP enables a better interaction with the IIB(lac) domain than the fusion with 6-P-beta-Galactosidase. Moreover, the GFP-fused IIC(lac) domain proved to be more stable than the 6-P-beta-Galactosidase fusion protein. PMID:11361070

  15. SUPPORT FOR HU CFRT SUMMER HIGH SCHOOL FUSION WORKSHOP

    Microsoft Academic Search

    Alkesh Punjabi

    2010-01-01

    Nine summer fusion science research workshops for minority and female high school students were conducted at the Hampton University Center for Fusion Research and Training from 1996 to 2005. Each workshop was of the duration of eight weeks. In all 35 high school students were mentored. The students presented 28 contributed papers at the annual meetings of the American Physical

  16. Projecting High Beta Steady-State Scenarios from DIII-D Advanced Tokamk Discharges

    NASA Astrophysics Data System (ADS)

    Park, J. M.

    2013-10-01

    Fusion power plant studies based on steady-state tokamak operation suggest that normalized beta in the range of 4-6 is needed for economic viability. DIII-D is exploring a range of candidate high beta scenarios guided by FASTRAN modeling in a repeated cycle of experiment and modeling validation. FASTRAN is a new iterative numerical procedure coupled to the Integrated Plasma Simulator (IPS) that integrates models of core transport, heating and current drive, equilibrium and stability self-consistently to find steady state (d / dt = 0) solutions, and reproduces most features of DIII-D high beta discharges with a stationary current profile. Separately, modeling components such as core transport (TGLF) and off-axis neutral beam current drive (NUBEAM) show reasonable agreement with experiment. Projecting forward to scenarios possible on DIII-D with future upgrades, two self-consistent noninductive scenarios at ?N > 4 are found: high qmin and high internal inductance li. Both have bootstrap current fraction fBS > 0 . 5 and rely on the planned addition of a second off-axis neutral beamline and increased electron cyclotron heating. The high qmin > 2 scenario achieves stable operation at ?N as high as 5 by a very broad current density profile to improve the ideal-wall stabilization of low-n instabilities along with confinement enhancement from low magnetic shear. The li near 1 scenario does not depend on ideal-wall stabilization. Improved confinement from strong magnetic shear makes up for the lower pedestal needed to maintain li high. The tradeoff between increasing li and reduced edge pedestal determines the achievable ?N (near 4) and fBS (near 0.5). This modeling identifies the necessary upgrades to achieve target scenarios and clarifies the pros and cons of particular scenarios to better inform the development of steady-state fusion. Fusion power plant studies based on steady-state tokamak operation suggest that normalized beta in the range of 4-6 is needed for economic viability. DIII-D is exploring a range of candidate high beta scenarios guided by FASTRAN modeling in a repeated cycle of experiment and modeling validation. FASTRAN is a new iterative numerical procedure coupled to the Integrated Plasma Simulator (IPS) that integrates models of core transport, heating and current drive, equilibrium and stability self-consistently to find steady state (d / dt = 0) solutions, and reproduces most features of DIII-D high beta discharges with a stationary current profile. Separately, modeling components such as core transport (TGLF) and off-axis neutral beam current drive (NUBEAM) show reasonable agreement with experiment. Projecting forward to scenarios possible on DIII-D with future upgrades, two self-consistent noninductive scenarios at ?N > 4 are found: high qmin and high internal inductance li. Both have bootstrap current fraction fBS > 0 . 5 and rely on the planned addition of a second off-axis neutral beamline and increased electron cyclotron heating. The high qmin > 2 scenario achieves stable operation at ?N as high as 5 by a very broad current density profile to improve the ideal-wall stabilization of low-n instabilities along with confinement enhancement from low magnetic shear. The li near 1 scenario does not depend on ideal-wall stabilization. Improved confinement from strong magnetic shear makes up for the lower pedestal needed to maintain li high. The tradeoff between increasing li and reduced edge pedestal determines the achievable ?N (near 4) and fBS (near 0.5). This modeling identifies the necessary upgrades to achieve target scenarios and clarifies the pros and cons of particular scenarios to better inform the development of steady-state fusion. Supported by the US Department of Energy under DE-AC05-00OR22725 & DE-FC02-04ER54698.

  17. High current injector for heavy ion fusion

    SciTech Connect

    Yu, S.; Eylon, S.; Chupp, W.W.

    1993-05-01

    A 2 MV, 800 mA, K{sup +} injector for heavy ion fusion studies is under construction. This new injector is a one-beam version of the proposed 4-beam ILSE injector. A new 36-module MARX is being built to achieve a 5 {mu}s flat top. The high voltage generator is stiff (< 5k{Omega}) to minimize effects of beam-induced transients. A large ({approx} 7 in. diameter) curved hot alumina-silicate source emits a 1 {mu}s long beam pulse through a gridless extraction electrode, and the ions are accelerated to 1 MV in a diode configuration. Acceleration to 2 MV takes place in a set of electrostatic quadrupole (ESQ) units, arranged to simultaneously focus and accelerate the ion beam. Heavy shields and other protection devices have been built in to minimize risks of high voltage breakdown. Beam aberration effects through the ESQ have been studied extensively with theory, simulations, and scaled experiments. The design, simulations, experiments, and engineering of the ESQ injector will be presented.

  18. Progress toward high-gain laser fusion

    NASA Astrophysics Data System (ADS)

    Storm, Erik

    1988-09-01

    A 1985 to 1986 Review of the U.S. inertial confinement fusion program by the National Academy of Sciences concluded that five more years might be required to obtain enough data to determine the future course of the program. Since then, data from the Nova laser and from the Halite/Centurion program have resolved most of the outstanding problems identified by the NAS review. In particular, we now believe that we can produce a sufficiently uniform target; that we can keep the energy content in hot electrons and high-energy photons low enough (approximately 1 to 10 percent of drive energy, depending on target design) and achieve enough pulse-shaping accuracy (approximately 10 percent, with a dynamic range of 100:1) to keep the fuel on a near-Fermi-degenerate adiabat; that we can produce an approximately 100-Mbar pressure pulse of sufficient uniformity (approximately 1 percent), and can control hydrodynamic instabilities so that the mix of the pusher into the hot spot is low enough to permit marginal ignition. These results are sufficiently encouraging that DOE is planning to complete a 10-MJ laboratory microfusion facility to demonstrate high-gain ICF in the laboratory within a decade.

  19. High Level Information Fusion developments, issues, and grand challenges: Fusion 2010 panel discussion

    Microsoft Academic Search

    Erik Blasch; James Llinas; Dale Lambert; Pierre Valin; Subrata Das; Chee Chong; Mitch Kokar; Elisa Shahbazian

    2010-01-01

    The goal of the High-Level Information Fusion (HLIF) Panel Discussion is to present contemporary HLIF advances and developments to determine unsolved grand challenges and issues. The discussion will address the issues between low-level (signal processing and object state estimation and characterization) and high-level information fusion (control, situational understanding, and relationships to the environment). Specific areas of interest include modeling (situations,

  20. Access to sustained high-beta with internal transport barrier and negative central magnetic shear in DIII-D

    SciTech Connect

    Garofalo, A.M.; Reimerdes, H. [Columbia University, New York, New York 10027 (United States); Doyle, E.J. [University of California, Los Angeles, California 90095 (United States); Ferron, J.R.; Greenfield, C.M.; Groebner, R.J.; Hyatt, A.W.; Jackson, G.L.; La Haye, R.J.; Osborne, T.H.; Petty, C.C.; Politzer, P.A.; Scoville, J.T.; St John, H.E.; Strait, E.J.; Turnbull, A.D.; Wade, M.R. [General Atomics, P.O. Box 85608, San Diego, California 92186 (United States); Jayakumar, R.J. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Kinsey, J.E. [Lehigh University, Bethlehem, Pennsylvania 18015 (United States); McKee, G.R. [University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States)] (and others)

    2006-05-15

    High values of normalized {beta} ({beta}{sub N}{approx}4) and safety factor (q{sub min}{approx}2) have been sustained simultaneously for {approx}2 s in DIII-D [J.L. Luxon, Nucl. Fusion 42, 64 (2002)], suggesting a possible path to high fusion performance, steady-state tokamak scenarios with a large fraction of bootstrap current. The combination of internal transport barrier and negative central magnetic shear at high {beta} results in high confinement (H{sub 89P}>2.5) and large bootstrap current fraction (f{sub BS}>60%) with good alignment. Previously, stability limits in plasmas with core transport barriers have been observed at moderate values of {beta}{sub N} (<3) because of the pressure peaking which normally develops from improved core confinement. In recent DIII-D experiments, the internal transport barrier is clearly observed in the electron density and in the ion temperature and rotation profiles at {rho}{approx}0.5 but not in the electron temperature profile, which is very broad. The misalignment of T{sub i} and T{sub e} gradients may help to avoid a large local pressure gradient. Furthermore, at low internal inductance {approx}0.6, the current density gradients are close to the vessel and the ideal kink modes are strongly wall-coupled. Simultaneous feedback control of both external and internal sets of n=1 magnetic coils was used to maintain optimal error field correction and resistive wall mode stabilization, allowing operation above the free-boundary {beta} limit. Large particle orbits at high safety factor in the core help to broaden both the pressure and the beam-driven current profiles, favorable for steady-state operation. At plasma current flat top and {beta}{approx}5%, a noninductive current fraction of {approx}100% has been observed. Stability modeling shows the possibility for operation up to the ideal-wall limit at {beta}{approx}6%.

  1. Physics Basis for High-Beta, Low-Aspect-Ratio Stellarator Experiments

    SciTech Connect

    A. Brooks; A.H. Reiman; G.H. Neilson; M.C. Zarnstorff; et al

    1999-11-01

    High-beta, low-aspect-ratio (compact) stellarators are promising solutions to the problem of developing a magnetic plasma configuration for magnetic fusion power plants that can be sustained in steady-state without disrupting. These concepts combine features of stellarators and advanced tokamaks and have aspect ratios similar to those of tokamaks (2-4). They are based on computed plasma configurations that are shaped in three dimensions to provide desired stability and transport properties. Experiments are planned as part of a program to develop this concept. A beta = 4% quasi-axisymmetric plasma configuration has been evaluated for the National Compact Stellarator Experiment (NCSX). It has a substantial bootstrap current and is shaped to stabilize ballooning, external kink, vertical, and neoclassical tearing modes without feedback or close-fitting conductors. Quasi-omnigeneous plasma configurations stable to ballooning modes at beta = 4% have been evaluated for the Quasi-Omnigeneous Stellarator (QOS) experiment. These equilibria have relatively low bootstrap currents and are insensitive to changes in beta. Coil configurations have been calculated that reconstruct these plasma configurations, preserving their important physics properties. Theory- and experiment-based confinement analyses are used to evaluate the technical capabilities needed to reach target plasma conditions. The physics basis for these complementary experiments is described.

  2. High-density lipoprotein, beta cells, and diabetes .

    PubMed

    von Eckardstein, Arnold; Widmann, Christian

    2014-08-01

    High-density lipoproteins (HDLs) exert a series of potentially beneficial effects on many cell types including anti-atherogenic actions on the endothelium and macrophage foam cells. HDLs may also exert anti-diabetogenic functions on the beta cells of the endocrine pancreas, notably by potently inhibiting stress-induced cell death and enhancing glucose-stimulated insulin secretion. HDLs have also been found to stimulate insulin-dependent and insulin-independent glucose uptake into skeletal muscle, adipose tissue, and liver. These experimental findings and the inverse association of HDL-cholesterol levels with the risk of diabetes development have generated the notion that appropriate HDL levels and functionality must be maintained in humans to diminish the risks of developing diabetes. In this article, we review our knowledge on the beneficial effects of HDLs in pancreatic beta cells and how these effects are mediated. We discuss the capacity of HDLs to modulate endoplasmic reticulum stress and how this affects beta-cell survival. We also point out the gaps in our understanding on the signalling properties of HDLs in beta cells. Hopefully, this review will foster the interest of scientists in working on beta cells and diabetes to better define the cellular pathways activated by HDLs in beta cells. Such knowledge will be of importance to design therapeutic tools to preserve the proper functioning of the insulin-secreting cells in our body. PMID:24903496

  3. High fusion performance from deuterium-tritium plasmas in JET

    Microsoft Academic Search

    M. Keilhacker; A. Gibson; C. Gormezano; P. J. Lomas; P. R. Thomas; M. L. Watkins; P. Andrew; B. Balet; D. Borba; C. D. Challis; I. Coffey; G. A. Cottrell; H. P. L. DeEsch; N. Deliyanakis; A. Fasoli; C. W. Gowers; H. Y. Guo; G. T. A. Huysmans; T. T. C. Jones; W. Kerner; R. W. T. König; M. J. Loughlin; A. Maas; F. B. Marcus; M. F. F. Nave; F. G. Rimini; G. J. Sadler; S. E. Sharapov; G. Sips; P. Smeulders; F. X. Söldner; A. Taroni; B. J. D. Tubbing; M. G. von Hellermann; D. J. Ward

    1999-01-01

    High fusion power experiments using DT mixtures in ELM-free H mode and optimized shear regimes in JET are reported. A fusion power of 16.1 MW has been produced in an ELM-free H mode at 4.2 MA\\/3.6 T. The transient value of the fusion amplification factor was 0.95+\\/-0.17, consistent with the high value of nDT(0)tauEdiaTi(0) = 8.7 × 1020+\\/-20% m-3 s

  4. MHD activity and energy loss during beta saturation and collapse at high beta poloidal in PBX

    SciTech Connect

    Kugel, H.W.; Sesnic, S.; Bol, K.; Chance, M.; Fishman, H.; Fonck, R.; Gammel, G.; Kaita, R.; Kaye, S.; LeBlanc, B.

    1987-10-01

    High-..beta.. experiments, in medium to high-q tokamak plasmas, exhibit a temporal ..beta.. saturation and collapse. This behavior has been attributed to ballooning, ideal kink, or tearing modes. In PBX, a unique diagnostic capability allowed studies of the relation between MHD and energy loss for neutral-beam-heated (<6 MW), mildly indented (10 to 15%), nearly steady I/sub p/ discharges that approached the Troyon-Gruber limit. Under these conditions, correlations between MHD activity and energy losses have shown that the latter can be almost fully accounted for by various long wavelength MHD instabilities and that there is no need to invoke high-n ballooning modes in PBX. 6 refs., 4 figs.

  5. Modular low-aspect-ratio high-beta torsatron

    DOEpatents

    Sheffield, G.V.

    1982-04-01

    A fusion-reactor device is described which the toroidal magnetic field and at least a portion of the poloidal magnetic field are provided by a single set of modular coils. The coils are arranged on the surface of a low-aspect-ratio toroid in planed having the cylindrical coordinate relationship phi = phi/sub i/ + kz, where k is a constant equal to each coil's pitch and phi/sub i/ is the toroidal angle at which the i'th coil intersects the z = o plane. The toroid defined by the modular coils preferably has a race track minor cross section. When vertical field coils and, preferably, a toroidal plasma current are provided for magnetic-field-surface closure within the toroid, a vacuum magnetic field of racetrack-shaped minor cross section with improved stability and beta valves is obtained.

  6. High Precision Measurements of Neutron Beta-Decay at LANSCE

    Microsoft Academic Search

    Mark Makela

    2009-01-01

    High precision measurements of neutron beta-decay can be used to study the standard model of particle physics by testing the unitarity condition of the CKM matrix. Precise measurements of the neutrons' lifetime and one of its angular correlations are needed to determine the necessary standard model parameters for a unitarity test from neutron decay alone. Several experiments are underway at

  7. Measures of effectiveness for high-level fusion

    Microsoft Academic Search

    Erik Blasch; Pierre Valin; Eloi Bosse

    2010-01-01

    Current advances in technology, sensor collection, data storage, and data distribution have afforded more complex, distributed, and operational information fusion systems (IFSs). IFSs notionally consist of low-level (data collection, registration, and association in time and space) and high-level fusion (user coordination, situational awareness, and mission control). Low-level IFSs typically rely on standard metrics for evaluation such as timeliness, accuracy, and

  8. Experiments on linear high beta helical axis stellarators to study simulated toroidal effects and Alfven-wave heating: (Annual) progress report No. 1, February 16, 1987-November 15, 1987

    SciTech Connect

    Ribe, F.L.

    1987-01-01

    This paper discusses experiments on linear high beta helical axis stellarators. Experiments considered are: formation of linear high beta heliac plasma configurations; Alfven wave heating in a straight tube and in a linear high beat stellarator; shifted hardcore heliac studies; a system for measuring the timing of high-current switches in a pulsed high voltage fusion experiment; HBQM general refurbishment; and proposed experiment on excitation of the m = 1 tilt mode in field-reversed configurations. (LSP)

  9. Galectin-1 as a fusion partner for the production of soluble and folded human {beta}-1,4-galactosyltransferase-T7 in E. coli

    SciTech Connect

    Pasek, Marta [Structural Glycobiology Section, SAIC-Frederick, Inc., Center for Cancer Research Nanobiology Program, Center for Cancer Research, NCI-Frederick, Frederick, MD 2170 (United States)] [Structural Glycobiology Section, SAIC-Frederick, Inc., Center for Cancer Research Nanobiology Program, Center for Cancer Research, NCI-Frederick, Frederick, MD 2170 (United States); Boeggeman, Elizabeth; Ramakrishnan, Boopathy [Structural Glycobiology Section, SAIC-Frederick, Inc., Center for Cancer Research Nanobiology Program, Center for Cancer Research, NCI-Frederick, Frederick, MD 2170 (United States) [Structural Glycobiology Section, SAIC-Frederick, Inc., Center for Cancer Research Nanobiology Program, Center for Cancer Research, NCI-Frederick, Frederick, MD 2170 (United States); Basic Science Program, SAIC-Frederick, Inc., Center for Cancer Research Nanobiology Program, Center for Cancer Research, NCI-Frederick, Frederick, MD 2170 (United States); Qasba, Pradman K., E-mail: qasba@helix.nih.gov [Structural Glycobiology Section, SAIC-Frederick, Inc., Center for Cancer Research Nanobiology Program, Center for Cancer Research, NCI-Frederick, Frederick, MD 2170 (United States)

    2010-04-09

    The expression of recombinant proteins in Escherichia coli often leads to inactive aggregated proteins known as the inclusion bodies. To date, the best available tool has been the use of fusion tags, including the carbohydrate-binding protein; e.g., the maltose-binding protein (MBP) that enhances the solubility of recombinant proteins. However, none of these fusion tags work universally with every partner protein. We hypothesized that galectins, which are also carbohydrate-binding proteins, may help as fusion partners in folding the mammalian proteins in E. coli. Here we show for the first time that a small soluble lectin, human galectin-1, one member of a large galectin family, can function as a fusion partner to produce soluble folded recombinant human glycosyltransferase, {beta}-1,4-galactosyltransferase-7 ({beta}4Gal-T7), in E. coli. The enzyme {beta}4Gal-T7 transfers galactose to xylose during the synthesis of the tetrasaccharide linker sequence attached to a Ser residue of proteoglycans. Without a fusion partner, {beta}4Gal-T7 is expressed in E. coli as inclusion bodies. We have designed a new vector construct, pLgals1, from pET-23a that includes the sequence for human galectin-1, followed by the Tev protease cleavage site, a 6x His-coding sequence, and a multi-cloning site where a cloned gene is inserted. After lactose affinity column purification of galectin-1-{beta}4Gal-T7 fusion protein, the unique protease cleavage site allows the protein {beta}4Gal-T7 to be cleaved from galectin-1 that binds and elutes from UDP-agarose column. The eluted protein is enzymatically active, and shows CD spectra comparable to the folded {beta}4Gal-T1. The engineered galectin-1 vector could prove to be a valuable tool for expressing other proteins in E. coli.

  10. CC CKR5: A RANTES, MIP1alpha, MIP1beta Receptor as a Fusion Cofactor for Macrophage-Tropic HIV1

    Microsoft Academic Search

    Ghalib Alkhatib; Christophe Combadiere; Christopher C. Broder; Yu Feng; Paul E. Kennedy; Philip M. Murphy; Edward A. Berger

    1996-01-01

    Human immunodeficiency virus-type 1 (HIV-1) entry requires fusion cofactors on the CD4^+ target cell. Fusin, a heterotrimeric GTP-binding protein (G protein)-coupled receptor, serves as a cofactor for T cell line-tropic isolates. The chemokines RANTES, MIP-1alpha, and MIP-1beta, which suppress infection by macrophage-tropic isolates, selectively inhibited cell fusion mediated by the corresponding envelope glycoproteins (Envs). Recombinant CC CKR5, a G protein-coupled

  11. Fusion

    Microsoft Academic Search

    Robin Herman

    1990-01-01

    The book abounds with fascinating anecdotes about fusion's rocky path: the spurious claim by Argentine dictator Juan Peron in 1951 that his country had built a working fusion reactor, the rush by the United States to drop secrecy and publicize its fusion work as a propaganda offensive after the Russian success with Sputnik; the fortune Penthouse magazine publisher Bob Guccione

  12. Production of high intensity Beta beams at the ISOLDE facility

    SciTech Connect

    Hodak, Rastislav [Department of Nuclear Physics and Biophysics, Comenius University, Mlynska dolina, SK-84248 Bratislava (Slovakia); Stora, Thierry [CERN, CH-1211 Geneva 23 (Switzerland); Mendonca, Tania M. [IFIMUP and IN - Institute of Nanosciences and Nanotechnologies, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); CERN, CH-1211 Geneva 23 (Switzerland)

    2011-12-16

    We discuss a design study devoted to a construction of the Beta beams facility at CERN, a next generation European facility aiming for a production of pure and collimated ultra-relativistic beam of electron (anti)neutrinos with help of accelerated {beta}-decaying radioactive ions circulating in a storage decay ring. This high intense source of (anti)neutrinos directed towards a remote underground neutrino detector will allow to measure neutrino oscillations with high accuracy offering a unique chance for establishing a value of the {beta}{sub 13} mixing angle and CP violating phase. Recently, a significant progress have been achieved on the conceptual design of high power targets required for a production and an extraction of two baseline isotopes, {sup 6}He and {sup 18}Ne, at the unexampled rate of several 10{sup 13} ions/s. There is a possibility to produce these isotopes using the so-called Isotope Separation On Line (ISOL) method at the ISOLDE facility (CERN). The {sup 6}He production is realized by taking advantage of the {sup 9}Be(n,{alpha}){sup 6}He reaction and with help of spallation neutrons and porous BeO target material. The production of {sup 18}Ne through the {sup 19}F(p,2n){sup 18}Ne reaction at required intensities is even more challenging. Currently, a molten salt (NaF) loop target is proposed for a production of high rate of {sup 18}Ne required for the Beta beams project. The progress on the design study associated with new data and plans for future is briefly presented.

  13. Inertial Confinement Fusion Ignition and High Yield Campaign

    E-print Network

    for defense issues 3. Develop advanced technology capabilities that support the long-term needs of stockpile) Project has begun · Will add two high-energy petawatt lasers for OMEGA for advanced backlighting and fast Crandall Assistant Deputy Administrator for Research, Development & Simulation Fusion Power Associates

  14. Automated Dynamic Symbology for Visualization of High Level Fusion

    Microsoft Academic Search

    Youngseok Kim; Thenkurussi Kesavadas

    Symbols play an important role in identifying informative objects and are widely used in geo-spatial decision support systems and applications. In high level fusion applications, however, simply placing symbols often lead to information overload problem; symbols quickly grow fast in many applications, such as the post disaster monitoring system we are interested in. This leads to cluttered and overlapped icons.

  15. Indirectly driven, high convergence inertial confinement fusion implosions

    Microsoft Academic Search

    M. D. Cable; S. P. Hatchett; J. A. Caird; J. D. Kilkenny; H. N. Kornblum; C. Laumann; R. A. Lerche; T. J. Murphy; M. B. Nelson; D. W. Phillion; H. Powell; D. B. Ress

    1994-01-01

    A series of high convergence indirectly driven implosions has been done with the Nova Laser Fusion facility. These implosions were well characterized by a variety of measurements; computer models are in good agreement. The imploded fuel areal density was measured using a technique based on secondary neutron spectroscopy. At capsule convergences of 24:1, comparable to what is required for the

  16. SES-Based Ontological Process for High Level Information Fusion

    E-print Network

    1 SES-Based Ontological Process for High Level Information Fusion Hojun Lee Arizona Center. The System Entity Structure (SES) is an ontology framework that can facilitate information exchange and represent knowledge in a network-centric environment. We explore an idea of adopting the SES ontology

  17. Some experiences with experimental high level fusion systems

    Microsoft Academic Search

    J. Biermann

    2007-01-01

    A very short overview is given on experience gained in the area of high level information fusion (JDL level 2 and 3) since 1988. The main characteristics of the referenced projects and experimental systems for the support of intelligence officers in land battle missions will be outlined. The different approaches to analyse and model military intelligence processing and the development

  18. Super-X divertors and high power density fusion devices

    SciTech Connect

    Valanju, P. M.; Kotschenreuther, M.; Mahajan, S. M. [Institute for Fusion Studies, University of Texas at Austin, Austin, Texas 78712-1060 (United States); Canik, J. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830 (United States)

    2009-05-15

    The Super-X Divertor (SXD), a robust axisymmetric redesign of the divertor magnetic geometry that can allow a fivefold increase in the core power density of toroidal fusion devices, is presented. With small changes in poloidal coils and currents for standard divertors, the SXD allows the largest divertor plate radius inside toroidal field coils. This increases the plasma-wetted area by 2-3 times over all flux-expansion-only methods (e.g., plate near main X point, plate tilting, X divertor, and snowflake), decreases parallel heat flux and hence plasma temperature at plate, and increases connection length by 2-5 times. Examples of high-power-density fusion devices enabled by SXD are discussed; the most promising near-term device is a 100 MW modular compact fusion neutron source 'battery' small enough to fit inside a conventional fission blanket.

  19. X-1: The challenge of high fusion yield

    SciTech Connect

    Cook, D.L.; Ramirez, J.J.; Raglin, P.S. [and others

    1998-06-01

    In the past three years, tremendous strides have been made in x-ray production using high-current z-pinches. Today, the x-ray energy and power output of the Z accelerator (formerly PBFA II) is the largest available in the laboratory. These z-pinch x-ray sources have great potential to drive high-yield inertial confinement fusion (ICF) reactions at affordable cost if several challenging technical problems can be overcome. Technical challenges in three key areas are discussed in this paper: (1) the design of a target for high yield, (2) the development of a suitable pulsed power driver, and (3) the design of a target chamber capable of containing the high fusion yield.

  20. High density, high magnetic field concepts for compact fusion reactors

    Microsoft Academic Search

    Perkins

    1996-01-01

    One rather discouraging feature of our conventional approaches to fusion energy is that they do not appear to lend themselves to a small reactor for developmental purposes. This is in contrast with the normal evolution of a new technology which typically proceeds to a full scale commercial plant via a set of graduated steps. Accordingly` several concepts concerned with dense

  1. High-Energy Space Propulsion Based on Magnetized Target Fusion

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. F.; Freeze, B.; Kirkpatrick, R. C.; Landrum, B.; Gerrish, H.; Schmidt, G. R.

    1999-01-01

    A conceptual study is made to explore the feasibility of applying magnetized target fusion (MTF) to space propulsion for omniplanetary travel. Plasma-jet driven MTF not only is highly amenable to space propulsion, but also has a number of very attractive features for this application: 1) The pulsed fusion scheme provides in situ a very dense hydrogenous liner capable of moderating the neutrons, converting more than 97% of the neutron energy into charged particle energy of the fusion plasma available for propulsion. 2) The fusion yield per pulse can be maintained at an attractively low level (< 1 GJ) despite a respectable gain in excess of 70. A compact, low-weight engine is the result. An engine with a jet power of 25 GW, a thrust of 66 kN, and a specific impulse of 77,000 s, can be achieved with an overall engine mass of about 41 metric tons, with a specific power density of 605 kW/kg, and a specific thrust density of 1.6 N/kg. The engine is rep-rated at 40 Hz to provide this power and thrust level. At a practical rep-rate limit of 200 Hz, the engine can deliver 128 GW jet power and 340 kN of thrust, at specific power and thrust density of 1,141 kW/kg and 3 N/kg respectively. 3) It is possible to operate the magnetic nozzle as a magnetic flux compression generator in this scheme, while attaining a high nozzle efficiency of 80% in converting the spherically radial momentum of the fusion plasma to an axial impulse. 4) A small fraction of the electrical energy generated from the flux compression is used directly to recharge the capacitor bank and other energy storage equipment, without the use of a highvoltage DC power supply. A separate electrical generator is not necessary. 5) Due to the simplicity of the electrical circuit and the components, involving mainly inductors, capacitors, and plasma guns, which are connected directly to each other without any intermediate equipment, a high rep-rate (with a maximum of 200 Hz) appears practicable. 6) All fusion related components are within the current state of the art for pulsed power technology. Experimental facilities with the required pulsed power capabilities already exist. 7) The scheme does not require prefabricated fuel target and liner hardware in any esoteric form or state. All necessary fuel and liner material are introduced into the engine in the form of ordinary matter in gaseous state at room temperature, greatly simplifying their handling on board. They are delivered into the fusion reaction chamber in a completely standoff manner.

  2. High temperature plasma in beta Lyrae, observed from Copernicus

    NASA Technical Reports Server (NTRS)

    Kondo, Y.; Hack, M.; Hutchings, J. B.; Mccluskey, G. E., Jr.; Plavec, M.; Polidan, R. S.

    1975-01-01

    High-resolution UV spectrophotometry of the complex close binary system beta Lyrae was performed with a telescope spectrometer on board Copernicus. Observations were made at phases 0.0, 0.25, 0.5, and 0.75 with resolutions of 0.2 A (far-UV) and 0.4 A (mid-UV). The far-UV spectrum is completely dominated by emission lines indicating the existence of a high-temperature plasma in this binary. The spectrum of this object is unlike that of any other object observed from Copernicus. It is believed that this high-temperature plasma results from dynamic mass transfer taking place in the binary. The current results are compared with OAO-2 observations and other observational results. The possibility that the secondary component is a collapsed object is also discussed; the Copernicus observations are consistent with the hypothesis that the spectroscopically invisible secondary component is a black hole.

  3. Designing Fusion Machines for High Availability

    E-print Network

    Study, April, 2005 Test Cell #12;High availability designs require large openings to remove and replace alignment, labyrinth gap shielding and disruption load support 10 Three blanket and four divertor segments per TF coil Semi-permanent inboard shield used for alignment, disruption load support and shielding

  4. The Beta Pictoris circumstellar disk. XV - Highly ionized species near Beta Pictoris

    Microsoft Academic Search

    M. Deleuil; C. Gry; A.-M. Lagrange-Henri; A. Vidal-Madjar; H. Beust; R. Ferlet; H. W. Moos; T. A. Livengood; D. Ziskin; P. D. Feldman

    1993-01-01

    Temporal variations of the Fe II, Mg II, and Al III circumstellar lines towards Beta Pictoris have been detected and monitored since 1985. However, the unusual presence of Al III ions is still puzzling, since the UV stellar flux from an A5V star such as Beta Pic is insufficient to produce such an ion. In order to better define the

  5. A high-temperature inert gas fusion apparatus.

    PubMed

    Mosen, A W; Kelley, R E; Mitchell, H P

    1966-03-01

    A high-temperature inert gas fusion apparatus capable of operating at crucible temperatures as high as 3,100 degrees is described. While this apparatus has been used primarily for the determination of oxygen in pyrolytic carbon-coated uranium carbide particles, its usefulness is not limited to this type of material. It can be generally applied to the determination of oxygen and nitrogen in metals, alloys and other materials amenable to analysis by vacuum-fusion techniques. Analytical results obtained on steel and uranium carbide samples are presented. The apparatus, in its present form, has been in daily use for nearly 2 years. Down time during this period has been negligible. A total of 20 samples can be run in duplicate in an 8-hr shift. PMID:18959890

  6. High density, high magnetic field concepts for compact fusion reactors

    Microsoft Academic Search

    L. J. Perkins; R. P. Drake; J. L. Eddleman; J. H. Hammer; C. W. Hartman; N. Mattor; D. D. Ryutov; A. A. Newton; U. Shumlak

    1996-01-01

    During the past year, several concepts concerned with dense plasma fusion systems have been theoretically\\/numerically re-examined at LLNL, with a conclusion that they may become strong candidates for future alternatives research programs. A common feature of these schemes is that they employ (a) plasmas with densities ranging from â¼10¹⁶ cm⁻³ up to ICF-like densities (â¼ 10²⁶ cm⁻³) and (b) magnetic

  7. Design issues for a laboratory high gain fusion facility

    SciTech Connect

    Hogan, W.J.

    1987-11-02

    In an inertial fusion laboratory high gain facility, experiments will be carried out with up to 1000 MJ of thermonuclear yield. The experiment area of such a facility will include many systems and structures that will have to operate successfully in the difficult environment created by the sudden large energy release. This paper estimates many of the nuclear effects that will occur, discusses the implied design issues and suggests possible solutions so that a useful experimental facility can be built. 4 figs.

  8. High temperature superconducting current leads for fusion magnet systems

    NASA Astrophysics Data System (ADS)

    Wu, J. L.; Dederer, J. T.; Singh, S. K.; Hull, J. R.

    Superconducting magnets for fusion applications typically have very high operating currents. These currents are transmitted from the room temperature power supplies to the low temperature superconducting coils by way of helium-vapor-cooled current leads. Because of the high current magnitude and the resistive characteristics associated with the normal metallic lead conductors, a substantial amount of power is dissipated in the lead. To maintain a stable operation, a high rate of helium vapor flow, generated by the boil-off of liquid helium, is required to cool the lead conductors. This helium boil-off substantially increases both the installation capacity and the operating cost of the helium refrigerator/liquefier. The boil-off of liquid helium can be significantly reduced by employing ceramic high temperature superconductors, such as Y-Ba-Cu-O, in the low temperature part of the lead conductor structure. This concept utilizes the superconducting, as well as the low thermal conductivity properties of the superconductor materials in eliminating power dissipation in part of the current lead and in inhibiting heat conduction into the liquid helium pool, resulting in reduced helium boil-off. This design concept has been conclusively demonstrated by a 2-kA current lead test model using Y-Ba-Cu-O (123) material which, although not optimized in design, has significantly reduced the rate of helium boil-off in comparison to optimized conventional leads. There appear to be no major technological barriers for scaling up this design to higher current levels for applications in fusion magnet systems or in fusion related testing activities. The theoretical basis of the current lead concept, as well as the important design and technology issues are addressed. The potential cost saving derived from employing these leads in fusion magnets is also discussed. In addition, a design concept for a 10-kA lead is presented.

  9. Applications of high-speed dust injection to magnetic fusion

    SciTech Connect

    Wang, Zhehui [Los Alamos National Laboratory; Li, Yangfang [Max Planck Institute for Extraterrestrial Physics, Germany

    2012-08-08

    It is now an established fact that a significant amount of dust is produced in magnetic fusion devices due to plasma-wall interactions. Dust inventory must be controlled, in particular for the next-generation steady-state fusion machines like ITER, as it can pose significant safety hazards and degrade performance. Safety concerns are due to tritium retention, dust radioactivity, toxicity, and flammability. Performance concerns include high-Z impurities carried by dust to the fusion core that can reduce plasma temperature and may even induce sudden termination of the plasma. We have recognized that dust transport, dust-plasma interactions in magnetic fusion devices can be effectively studied experimentally by injection of dust with known properties into fusion plasmas. Other applications of injected dust include diagnosis of fusion plasmas and edge localized mode (ELM)'s pacing. In diagnostic applications, dust can be regarded as a source of transient neutrals before complete ionization. ELM's pacing is a promising scheme to prevent disruptions and type I ELM's that can cause catastrophic damage to fusion machines. Different implementation schemes are available depending on applications of dust injection. One of the simplest dust injection schemes is through gravitational acceleration of dust in vacuum. Experiments at Los Alamos and Princeton will be described, both of which use piezoelectric shakers to deliver dust to plasma. In Princeton experiments, spherical particles (40 micron) have been dropped in a systematic and reproducible manner using a computer-controlled piezoelectric bending actuator operating at an acoustic (0,2) resonance. The circular actuator was constructed with a 2.5 mm diameter central hole. At resonance ({approx} 2 kHz) an applied sinusoidal voltage has been used to control the flux of particles exiting the hole. A simple screw throttle located {approx}1mm above the hole has been used to set the magnitude of the flux achieved for a given voltage. Particle fluxes ranging from a few tens of particle per second up to thousands of particles per second have been achieved using this simple device. To achieve higher dust injection speed, another key consideration is how to accelerate dust at controlled amount. In addition to gravity, other possible acceleration mechanisms include electrostatic, electromagnetic, gas-dragged, plasma-dragged, and laser-ablation-based acceleration. Features and limitations of the different acceleration methods will be discussed. We will also describe laboratory experiments on dust acceleration.

  10. UNCORRECTED 2 High level information fusion for tracking and projection of multistage

    E-print Network

    Jay Yang, Shanchieh

    UNCORRECTED PROOF 1 2 High level information fusion for tracking and projection of multistage 3 volumes of sensed data. An in-depth discussion is provided to define 16 fusion tasks for cyber defense challenges of high level information fusion for cyber security. 19 Ó 2007 Elsevier B.V. All rights reserved

  11. High-Energy Space Propulsion Based on Magnetized Target Fusion

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. F.; Landrum, D. B.; Freeze, B.; Kirkpatrick, R. C.; Gerrish, H.; Schmidt, G. R.

    1999-01-01

    Magnetized target fusion is an approach in which a magnetized target plasma is compressed inertially by an imploding material wall. A high energy plasma liner may be used to produce the required implosion. The plasma liner is formed by the merging of a number of high momentum plasma jets converging towards the center of a sphere where two compact toroids have been introduced. Preliminary 3-D hydrodynamics modeling results using the SPHINX code of Los Alamos National Laboratory have been very encouraging and confirm earlier theoretical expectations. The concept appears ready for experimental exploration and plans for doing so are being pursued. In this talk, we explore conceptually how this innovative fusion approach could be packaged for space propulsion for interplanetary travel. We discuss the generally generic components of a baseline propulsion concept including the fusion engine, high velocity plasma accelerators, generators of compact toroids using conical theta pinches, magnetic nozzle, neutron absorption blanket, tritium reprocessing system, shock absorber, magnetohydrodynamic generator, capacitor pulsed power system, thermal management system, and micrometeorite shields.

  12. Fusion

    NASA Astrophysics Data System (ADS)

    Herman, Robin

    1990-10-01

    The book abounds with fascinating anecdotes about fusion's rocky path: the spurious claim by Argentine dictator Juan Peron in 1951 that his country had built a working fusion reactor, the rush by the United States to drop secrecy and publicize its fusion work as a propaganda offensive after the Russian success with Sputnik; the fortune Penthouse magazine publisher Bob Guccione sank into an unconventional fusion device, the skepticism that met an assertion by two University of Utah chemists in 1989 that they had created "cold fusion" in a bottle. Aimed at a general audience, the book describes the scientific basis of controlled fusion--the fusing of atomic nuclei, under conditions hotter than the sun, to release energy. Using personal recollections of scientists involved, it traces the history of this little-known international race that began during the Cold War in secret laboratories in the United States, Great Britain and the Soviet Union, and evolved into an astonishingly open collaboration between East and West.

  13. Beta-coupled high-frequency activity and beta-locked neuronal spiking in the subthalamic nucleus of Parkinson's disease.

    PubMed

    Yang, Andrew I; Vanegas, Nora; Lungu, Codrin; Zaghloul, Kareem A

    2014-09-17

    Beta frequency (13-30 Hz) oscillatory activity in the subthalamic nucleus (STN) of Parkinson's disease (PD) has been shown to influence the temporal dynamics of high-frequency oscillations (HFOs; 200-500 Hz) and single neurons, potentially compromising the functional flexibility of the motor circuit. We examined these interactions by simultaneously recording both local field potential and single-unit activity from the basal ganglia of 15 patients with PD during deep brain stimulation (DBS) surgery of the bilateral STN. Phase-amplitude coupling (PAC) in the STN was specific to beta phase and HFO amplitude, and this coupling was strongest at the dorsal STN border. We found higher beta-HFO PAC near DBS lead contacts that were clinically effective compared with the remaining non-effective contacts, indicating that PAC may be predictive of response to STN DBS. Neuronal spiking was locked to the phase of 8-30 Hz oscillations, and the spatial topography of spike-phase locking (SPL) was similar to that of PAC. Comparisons of PAC and SPL showed a lack of spatiotemporal correlations. Beta-coupled HFOs and field-locked neurons had different preferred phase angles and did not co-occur within the same cycle of the modulating oscillation. Our findings provide additional support that beta-HFO PAC may be central to the pathophysiology of PD and suggest that field-locked neurons alone are not sufficient for the emergence of beta-coupled HFOs. PMID:25232117

  14. Beta-Coupled High-Frequency Activity and Beta-Locked Neuronal Spiking in the Subthalamic Nucleus of Parkinson's Disease

    PubMed Central

    Yang, Andrew I.; Vanegas, Nora; Lungu, Codrin

    2014-01-01

    Beta frequency (13–30 Hz) oscillatory activity in the subthalamic nucleus (STN) of Parkinson's disease (PD) has been shown to influence the temporal dynamics of high-frequency oscillations (HFOs; 200–500 Hz) and single neurons, potentially compromising the functional flexibility of the motor circuit. We examined these interactions by simultaneously recording both local field potential and single-unit activity from the basal ganglia of 15 patients with PD during deep brain stimulation (DBS) surgery of the bilateral STN. Phase-amplitude coupling (PAC) in the STN was specific to beta phase and HFO amplitude, and this coupling was strongest at the dorsal STN border. We found higher beta-HFO PAC near DBS lead contacts that were clinically effective compared with the remaining non-effective contacts, indicating that PAC may be predictive of response to STN DBS. Neuronal spiking was locked to the phase of 8–30 Hz oscillations, and the spatial topography of spike-phase locking (SPL) was similar to that of PAC. Comparisons of PAC and SPL showed a lack of spatiotemporal correlations. Beta-coupled HFOs and field-locked neurons had different preferred phase angles and did not co-occur within the same cycle of the modulating oscillation. Our findings provide additional support that beta-HFO PAC may be central to the pathophysiology of PD and suggest that field-locked neurons alone are not sufficient for the emergence of beta-coupled HFOs. PMID:25232117

  15. Development in DIII-D of High Beta Discharges Appropriate for Steady-state Tokamak Operation With Burning Plasmas

    SciTech Connect

    Ferron, J R; Basiuk, V; Casper, T A; Challis, C D; DeBoo, J C; Doyle, E J; Gao, Q; Garofalo, A M; Greenfield, C M; Holcomb, C T; Hyatt, A W; Ide, S; Luce, T C; Murakami, M; Ou, Y; Park, J; Petrie, T W; Petty, C C; Politzer, P A; Reimerdes, H; Schuster, E; Schneider, M; Wang, A

    2008-10-13

    Ideally, tokamak power plants will operate in steady-state at high fusion gain. Recent work at DIII-D on the development of suitable high beta discharges with 100% of the plasma current generated noninductively (f{sub NI} = 1) is described. In a discharge with 1.5 < q{sub min} <2, a scan of the discharge shape squareness was used to find the value that maximizes confinement and achievable {beta}{sub N}. A small bias of the up/down balance of the double-null divertor shape away from the ion B x {del}B drift direction optimizes pumping for minimum density. Electron cyclotron current drive with a broad deposition profile was found to be effective at avoidance of a 2/1 NTM allowing long duration at {beta}{sub N} = 3.7. With these improvements, surface voltage {approx} 0-10 mV, indicating f{sub NI} {approx} 1, was obtained for 0.7 {tau}{sub R} (resistive time). Stationary discharges with {beta}{sub N} = 3.4 and f{sub NI} {approx} 0.9 that project to Q = 5 in ITER have been demonstrated for {tau}{sub R}. For use in development of model based controllers for the q profile, transport code models of the current profile evolution during discharge formation have been validated against the experiment. Tests of available actuators confirm that electron heating during the plasma current ramp up to modify the conductivity is by far the most effective. The empirically designed controller has been improved by use of proportional/integral gain and built-in limits to {beta}{sub N} to avoid instabilities. Two alternate steady-state compatible scenarios predicted to be capable of reaching {beta}{sub N} = 5 have been tested experimentally, motivated by future machines that require high power density and neutron fluence. In a wall stabilized scenario with q{sub min} > 2, {beta}{sub N} = 4 has been achieved for 2 s {approx} {tau}{sub R}. In a high internal inductance scenario, which maximizes the ideal no-wall stability limit, {beta}{sub N} {approx} 4.8 has been reached with f{sub NI} > 1.

  16. Fusion reactor high vacuum pumping: Charcoal cryosorber tritium exposure results

    SciTech Connect

    Sedgley, D.W.; Walthers, C.R.; Jenkins, E.M. (Grumman Aerospace Corp., Bethpage, NY (United States))

    1991-01-01

    Recent experiments, have shown the practically of using activated charcoal (coconut charcoal) at 4{degrees}K to pump helium and hydrogen isotopes for a fusion reactor. Both speed and capacity for deuterium/helium and tritium/helium-3 mixtures were shown to be satisfactory. The long term effects of tritium on the charcoal/cement system developed by Grumman and LLNL were not known and a program was undertaken to see what, if any, effect long term tritium exposure has on the cryosorber. Several charcoal on aluminum test samples were subjected to six months exposure of tritium at approximately 77{degrees}K. The tritium was scanned several times with a residual gas analyzer and the speed-capacity performance of the samples was measured before, approximately half way through and after the exposure. Modest effects were noted which would not seriously restrict charcoal's use as a cryosorber for fusion reactor high vacuum pumping applications. 4 refs., 8 figs.

  17. Resistive wall stabilized operation in rotating high beta NSTX plasmas

    NASA Astrophysics Data System (ADS)

    Sabbagh, S. A.; Sontag, A. C.; Bialek, J. M.; Gates, D. A.; Glasser, A. H.; Menard, J. E.; Zhu, W.; Bell, M. G.; Bell, R. E.; Bondeson, A.; Bush, C. E.; Callen, J. D.; Chu, M. S.; Hegna, C. C.; Kaye, S. M.; Lao, L. L.; LeBlanc, B. P.; Liu, Y. Q.; Maingi, R.; Mueller, D.; Shaing, K. C.; Stutman, D.; Tritz, K.; Zhang, C.

    2006-05-01

    The National Spherical Torus Experiment (NSTX) has demonstrated the advantages of low aspect ratio geometry in accessing high toroidal and normalized plasma beta, \\beta _t \\equiv 2\\mu_{0}\\langle p\\rangle /B_{0}^{2} and ?N ? 108lang?trang aB0/Ip. Experiments have reached ?t = 39% and ?N = 7.2 through boundary and profile optimization. High ?N plasmas can exceed the ideal no-wall stability limit, ?Nno-wall, for periods much greater than the wall eddy current decay time. Resistive wall mode (RWM) physics is studied to understand mode stabilization in these plasmas. The toroidal mode spectrum of unstable RWMs has been measured with mode number n up to 3. The critical rotation frequency of Bondeson-Chu, ?crit = ?A/(4q2), describes well the RWM stability of NSTX plasmas when applied over the entire rotation profile and in conjunction with the ideal stability criterion. Rotation damping and global rotation collapse observed in plasmas exceeding ?Nno-wall differs from the damping observed during tearing mode activity and can be described qualitatively by drag due to neoclassical toroidal viscosity in the helically perturbed field of an ideal displacement. Resonant field amplification of an applied n = 1 field perturbation has been measured and increases with increasing ?N. Equilibria are reconstructed including measured ion and electron pressure, toroidal rotation and flux isotherm constraint in plasmas with core rotation ?phi/?A up to 0.48. Peak pressure shifts of 18% of the minor radius from the magnetic axis have been reconstructed.

  18. Analytic, High-beta Solutions of the Helical Grad-Shafranov Equation

    SciTech Connect

    D.R. Smith; A.H. Reiman

    2004-05-19

    We present analytic, high-beta ({beta} {approx} O(1)), helical equilibrium solutions for a class of helical axis configurations having large helical aspect ratio, with the helix assumed to be tightly wound. The solutions develop a narrow boundary layer of strongly compressed flux, similar to that previously found in high beta tokamak equilibrium solutions. The boundary layer is associated with a strong localized current which prevents the equilibrium from having zero net current.

  19. High Energy Density Simulations for Inertial Fusion Energy Reactor Design

    SciTech Connect

    Moses, Gregory A.; Santarius, John F. [University of Wisconsin-Madison (United States)

    2005-05-15

    The so-called 'threat spectra' of an inertial fusion energy (IFE) high gain target (neutron, x-ray, and ion energy fraction and particle spectra) are the usual starting point for IFE reactor conceptual design. The threat spectra are typically computed using the same radiation hydrodynamics and thermonuclear burn computer simulation codes used to compute implosion, ignition and burn. We analyze the validity of this model for simulating the expansion of the direct drive IFE target plasma and for computing threat spectra. Particular attention is paid to the collisionality of the expanding plasma.

  20. An analytic solution of high. beta. equilibrium in a large aspect ratio tokamak

    SciTech Connect

    Cowley, S.C.; Kaw, P.K.; Kelly, R.S.; Kulsrud, R.M.

    1991-03-01

    An analytic solution of the high {beta} ({epsilon}{bar {beta}}{sub p} {approximately} {beta}q{sup 2}/{epsilon} {much gt} 1) equilibrium of a large aspect ratio tokamak is presented. Two arbitrary flux functions, the pressure profile p({psi}) and the safety factor profile q({psi}), specify the equilibrium. The solution splits into two asymptotic regions: the core region where {psi} is a function of the major radius alone and a narrow boundary layer region adjoining the conducting wall. The solutions in the two regions are asymptotically matched to each other. For monotonic pressure profiles, the Shafranov shift is equal to the minor radius. For {beta} much bigger than one, the solution contains a region (in place of the magnetic axis) of zero magnetic field and constant pressure. At high {beta} the quantity {beta}{sub I}, which is essentially proportional to the pressure over the total current squared, is largely independent of pressure. We discuss the important ramifications of limited {beta}{sub I} for high {beta} reactors. Generalizations to shaped cross sections and hollow pressure profiles are outlined. We also consider the problem of equilibrium reconstruction in the high {beta} regime. 8 refs., 7 figs.

  1. Fusion reactors as high-temperature process heat sources

    Microsoft Academic Search

    J. H. Pendergrass; L. A. Booth

    1981-01-01

    The reasons for interest in fusion process heat sources, the present United States requirements for process heat, and process industry criteria for selection of thermal energy sources are reviewed. Constraints on process heat fusion reactor design, conceptual solutions to design problems, and energy delivery characteristics of present process heat fusion reactor concepts are described. Projections of the time frame and

  2. MHD analysis of high (. beta. /sub t/) disruptions in PBX (Princeton Beta Experiment)

    SciTech Connect

    Jahns, G.L.; Chance, M.S.; Kaye, S.M.; Manickam, J.; Takahashi, H.; LeBlanc, B.; Morris, A.W.; Reusch, M.; Sesnic, S.

    1987-10-01

    PBX discharges run at the lowest q and highest (..beta../sub t/) always terminated in a hard disruption. The discharges, with (..beta../sub t/) values of up to 5.5% and q-values down to 2.2, were obtained by employing large current ramps and large gas feed rates during neutral beam injection. Previous work has indicated that the achieved (..beta../sub t/)-values were consistent with the limit imposed by the n = 1 ideal external kink with a conducting wall at b/a = 2. In this work, we investigate further the validity of ideal MHD theory in explaining the low-q/sub psi/j disruptions. In particular, the character of the pre-disruption MHD activity in these low-q discharges, specifically the time scales of growth and internal and external mode structures, was compared with those determined from theoretical calculations. The results of these comparisons indicate that non-ideal effects must be considered to obtain detailed agreement between theory and experiment. 13 refs., 6 figs.

  3. High Current Density Ion Sources for Heavy Ion Fusion Accelerators.

    NASA Astrophysics Data System (ADS)

    Kwan, J. W.; Eylon, S.

    1997-05-01

    A typical heavy ion fusion driver can have of the order of 100 ESQ channels while each channel requires a beam with an initial line charge density of approx. 0.25 ? C/m. In order to minimize the overall cost, it is essential to develop a multiple-beam injector using high current density ion sources. So far we have achieved more than 14 mA/cm^2 of K^+ ions using a 2-cm diameter Alumino-Silicate surface ionization source. The current density is uniform to within 90 percent. At present, the high voltage pulser for the extraction diode is being upgraded in order to allow higher current density output. We are also considering the use of alkali (Cs, K) vapor hot plate ion sources. A 2-cm diameter front feed vapor source has been designed. Experimental results on testing both types of ion sources will be discussed at the meeting.

  4. Whole Organism High Content Screening Identifies Stimulators of Pancreatic Beta-Cell Proliferation

    PubMed Central

    Delawary, Mina; Osman, Sahar; Roh, Alex S.; Gut, Philipp; Stainier, Didier Y. R.

    2014-01-01

    Inducing beta-cell mass expansion in diabetic patients with the aim to restore glucose homeostasis is a promising therapeutic strategy. Although several in vitro studies have been carried out to identify modulators of beta-cell mass expansion, restoring endogenous beta-cell mass in vivo has yet to be achieved. To identify potential stimulators of beta-cell replication in vivo, we established transgenic zebrafish lines that monitor and allow the quantification of cell proliferation by using the fluorescent ubiquitylation-based cell cycle indicator (FUCCI) technology. Using these new reagents, we performed an unbiased chemical screen, and identified 20 small molecules that markedly increased beta-cell proliferation in vivo. Importantly, these structurally distinct molecules, which include clinically-approved drugs, modulate three specific signaling pathways: serotonin, retinoic acid and glucocorticoids, showing the high sensitivity and robustness of our screen. Notably, two drug classes, retinoic acid and glucocorticoids, also promoted beta-cell regeneration after beta-cell ablation. Thus, this study establishes a proof of principle for a high-throughput small molecule-screen for beta-cell proliferation in vivo, and identified compounds that stimulate beta-cell proliferation and regeneration. PMID:25117518

  5. Resistive wall stabilization of high-beta plasmas in DIII D

    Microsoft Academic Search

    E. J. Strait; J. Bialek; N. Bogatu; M. Chance; M. S. Chu; D. Edgell; A. M. Garofalo; G. L. Jackson; T. H. Jensen; L. C. Johnson; J. S. Kim; R. J. La Haye; G. Navratil; M. Okabayashi; H. Reimerdes; J. T. Scoville; A. D. Turnbull; M. L. Walker

    2003-01-01

    Recent DIII D experiments show that ideal kink-modes can be stabilized at high beta by a resistive wall, with sufficient plasma rotation. However, the resonant response to static magnetic field asymmetries by a marginally stable resistive wall mode can lead to strong damping of the rotation. Careful reduction of such asymmetries has allowed plasmas with beta well above the ideal

  6. Development and application of nonflammable, high-temperature beta fibers

    NASA Technical Reports Server (NTRS)

    Dawn, Frederic S.

    1989-01-01

    Recent advances in fiber technology have contributed to the success of the U.S. space program. The inorganic fiber Beta, developed as a result of efforts begun in the early 1960's and heightened following the January 27, 1967 Apollo fire is unique among inorganic and organic fibers. It has been developed into woven, nonwoven, knitted, braided, coated and printed structures. All of these were used extensively for the Apollo, Skylab, Apollo-Soyuz test project, space shuttle, Spacelab, and satellite programs. In addition to being used successfully in the space program, Beta fibers are being used commercially as firesafe fabrics in homes, hospitals, institutions, public buildings, aircraft, and public transportation, wherever total nonflammability is required. One of the most unique applications of the Beta composite structure is the roofing material for the 80,000-seat Detroit Lion's Silverdome and 5 square miles of the Jeddah International Airport in Saudi Arabia. This fiber has been successfully incorporated into 165 major public construction projects around the globe. The United States alone has used more than 12 million square yards of the material. Beta fiber has been used successfully to date and has a promising future with unlimited potential for both space and commercial application. Efforts are currently underway to improve Beta fiber to meet the requirements of extended service life for the Space Station Freedom, lunar outpost, and Mars exploration missions.

  7. Advantages of High Tolerance Measurements in Fusion Environments Applying Photogrammetry

    SciTech Connect

    T. Dodson, R. Ellis, C. Priniski, S. Raftopoulos, D. Stevens, M. Viola

    2009-02-04

    Photogrammetry, a state-of-the-art technique of metrology employing digital photographs as the vehicle for measurement, has been investigated in the fusion environment. Benefits of this high tolerance methodology include relatively easy deployment for multiple point measurements and deformation/distortion studies. Depending on the equipment used, photogrammetric systems can reach tolerances of 25 microns (0.001 in) to 100 microns (0.004 in) on a 3-meter object. During the fabrication and assembly of the National Compact Stellarator Experiment (NCSX) the primary measurement systems deployed were CAD coordinate-based computer metrology equipment and supporting algorithms such as both interferometer-aided (IFM) and absolute distance measurementbased (ADM) laser trackers, as well as portable Coordinate Measurement Machine (CMM) arms. Photogrammetry was employed at NCSX as a quick and easy tool to monitor coil distortions incurred during welding operations of the machine assembly process and as a way to reduce assembly downtime for metrology processes.

  8. The convergence of analytic high-{beta} equilibrium in a finite aspect ratio tokamak

    SciTech Connect

    Neches, R. Y.; Cowley, S. C.; Gourdain, P. A.; Leboeuf, J. N. [Department of Physics and Astronomy, University of California, Los Angeles, Los Angeles, California 90095 (United States)

    2008-12-15

    The characteristics of near-unity-{beta} equilibria are investigated with two codes. CUBE is a multigrid Grad-Shafranov solver [Gourdain et al., J. Comput. Phys. 216, 275 (2006)], and Ophidian was written to compute solutions using analytic unity-{beta} equilibria [Cowley et al., Phys. Fluids B 3, 2066 (1991)]. Results from each method are qualitatively and quantitatively compared across a spectrum of mutually relevant parameters. These comparisons corroborate the theoretical results and provide benchmarks for high-resolution numerical results available from CUBE. Both tools facilitate the exploration of the properties of high-{beta} equilibria, such as a highly diamagnetic plasma and its ramifications for stability and transport.

  9. Generating High-Brightness Ion Beams for Inertial Confinement Fusion

    NASA Astrophysics Data System (ADS)

    Cuneo, M. E.

    1997-11-01

    The generation of high current density ion beams with applied-B ion diodes showed promise in the late-1980's as an efficient, rep-rate, focusable driver for inertial confinement fusion. These devices use several Tesla insulating magnetic fields to restrict electron motion across anode-cathode gaps of order 1-2 cm, while accelerating ions to generate ? 1 kA/cm^2, 5 - 15 MeV beams. These beams have been used to heat hohlraums to about 65 eV. However, meeting the ICF driver requirements for low-divergence and high-brightness lithium ion beams has been more technically challenging than initially thought. Experimental and theoretical work over the last 5 years shows that high-brightness beams meeting the requirements for inertial confinement fusion are possible. The production of these beams requires the simultaneous integration of at least four conditions: 1) rigorous vacuum cleaning techniques for control of undesired anode, cathode, ion source and limiter plasma formation from electrode contaminants to control impurity ions and impedance collapse; 2) carefully tailored insulating magnetic field geometry for uniform beam generation; 3) high magnetic fields (V_crit/V > 2) and other techniques to control the electron sheath and the onset of a high divergence electromagnetic instability that couples strongly to the ion beam; and 4) an active, pre-formed, uniform lithium plasma for low source divergence which is compatible with the above electron-sheath control techniques. These four conditions have never been simultaneously present in any lithium beam experiment, but simulations and experimental tests of individual conditions have been done. The integration of these conditions is a goal of the present ion beam generation program at Sandia. This talk will focus on the vacuum cleaning techniques for ion diodes and pulsed power devices in general, including experimental results obtained on the SABRE and PBFA-II accelerators over the last 3 years. The current status of integration of the other key physics and technologies required to demonstrate high-brightness ion beams will also be presented.

  10. Deregulated Wnt/beta-catenin program in high-risk neuroblastomas without MYCN amplification.

    PubMed

    Liu, X; Mazanek, P; Dam, V; Wang, Q; Zhao, H; Guo, R; Jagannathan, J; Cnaan, A; Maris, J M; Hogarty, M D

    2008-02-28

    Neuroblastoma (NB) is a frequently lethal tumor of childhood. MYCN amplification accounts for the aggressive phenotype in a subset while the majority have no consistently identified molecular aberration but frequently express MYC at high levels. We hypothesized that activated Wnt/beta-catenin (CTNNB1) signaling might account for this as MYC is a beta-catenin transcriptional target and multiple embryonal and neural crest malignancies have oncogenic alterations in this pathway. NB cell lines without MYCN amplification express higher levels of MYC and beta-catenin (with aberrant nuclear localization) than MYCN-amplified cell lines. Evidence for aberrant beta-catenin-TCF transcriptional activity was demonstrated using expression profiles from 73 primary NBs. Findings included increased WNT ligands (WNT1, WNT6, WNT7A, WNT10B), DVL1 and TCF7 expression in high-risk NBs without MYCN amplification, consistent with canonical beta-catenin signaling. More directly, Patterns of Gene Expression and Gene Set Enrichment Analyses demonstrated beta-catenin target genes (for example, MYC, PPARD, NRCAM, CD44, TCF7) as coordinately upregulated in high-risk NBs without MYCN amplification in comparison to high-risk MYCN-amplified or intermediate-risk NBs, supporting pathway activation in this subset. Thus, high-risk NBs without MYCN amplification may deregulate MYC and other oncogenic genes via altered beta-catenin signaling providing a potential candidate pathway for therapeutic inhibition. PMID:17724465

  11. TGF-beta1 and high levels of glucose do not increase insulin cell proportions in the avian embryonic pancreas.

    PubMed

    Marais, A; Goven-Shiba, P T; Kramer, B

    2008-01-01

    TGF-beta1 is thought to decrease the proportion of embryonic pancreatic beta-cells with respect to alpha-cells, whereas glucose is thought to enhance beta-cell proportions in rats. However, chick pancreatic cells may respond in a dissimilar way to glucose. Thus, the effect of TGF-beta1 on the proportion of beta-cells in embryonic chick dorsal pancreatic buds (DPBs) in vitro was tested with short-term exposure to high levels of glucose. Five-day-old chick DPBs were cultured on growth factor-reduced Matrigel, which contains reduced levels of growth factors including TGF-beta1, and a variety of culture media with and without high levels of glucose. TGF-beta1 reduced the proportion of beta-cells, as expected. A similar decrease in the proportion of beta-cells occurred in the presence of high levels of glucose. PMID:18097729

  12. Web Presentation to Raise Awareness of High School Students about Fusion Science

    NASA Astrophysics Data System (ADS)

    Hicks, Jessica; Calvin, Mark

    1996-11-01

    A growing awareness and understanding within mainstream America of the role of fusion science in our future is critical to the optimal growth of fusion energy science programs. High school students interested in science and global energy concerns are in an excellent position to use the vast potential of the World Wide Web (WWW) to share information and opinions about this and other exciting and important topics. This work consists of an educational WWW presentation about fusion energy science. It is written by an advanced high school student for other high school students with the assistance of a fusion scientist. Jessica Hicks is a HU CFRT Summer Fusion High School Workshop scholar from Crest Senior High School in North Carolina. She is supported by NASA under its NASA Sharp Plus program. This project is supported by the US DOE OFES.

  13. Gene fusions of signal sequences with a modified beta-glucuronidase gene results in retention of the beta-glucuronidase protein in the secretory pathway/plasma membrane.

    PubMed Central

    Yan, X; Gonzales, R A; Wagner, G J

    1997-01-01

    Signal sequences and endoplasmic reticulum (ER) retention signals are known to play central roles in targeting and translocation in the secretory pathway, but molecular aspects about their involvement are poorly understood. We tested the effectiveness of deduced signal sequences from various genes (hydroxyproline-rich glycoprotein [HRGP] from Phaseolus vulgaris; Serpin from Manduca sexta) to direct a modified beta-glucuronidase (GUS) protein into the secretory pathway in transgenic tobacco (Nicotiana tabacum L.). The reporter protein was not secreted to the cell wall/extracellular space as monitored using extracellular fluid analysis (low- or high-ionic-strength conditions) but occurred in membranes with a density of 1.16 to 1.20 g/mL. Membrane-bound GUS equilibrated with the plasma membrane (PM) and the ER on linear sucrose gradients with or without ethylenediaminetetraacetic acid, suggesting that GUS associates with the ER and the PM. Confocal microscopy of fixed cultured cells prepared from GUS control and HRGP signal peptide (SP)-GUS-expressing plants suggested only cytosolic localization in GUS-expressing plants but substantial peripheral localization in HRGP SP-GUS plants, which is consistent with GUS being associated with the PM. Aqueous two-phase partitioning of microsomal membranes from HRGP SP-GUS and Serpin SP-GUS transgenic leaves also indicated that GUS activity was enriched in the ER and the PM. These observations, together with hydrophobic moment plot analysis, suggest that properties of the SP-GUS protein result in its retention in the secretory pathway and PM. PMID:9390428

  14. Thermal properties of fats and oils. VIII. Specific heats, heats of fusion, and entropy of alpha and beta tung oils

    Microsoft Academic Search

    T. L. Ward; W. S. Singleton; R. W. Planck

    1952-01-01

    Summary  Beta tung oil belongs to that group of substances which are capable of existing in more than one crystalline form, each of\\u000a which has a distinet melting point. Three different melting points of the beta tung oil were observed, each dependent upon\\u000a the rate of cooling. Forms I, II, and III have been used to distinguish beta tung oil melting

  15. The high current transport experiment for heavy ion inertial fusion

    SciTech Connect

    Seidl, P.A.; Baca, D.; Bieniosek, F.M.; Celata, C.M.; Faltens, A.; Prost, L.R.; Sabbi, G.; Waldron, W.L.; Cohen, R.; Friedman, A.; Lund, S.M.; Molvik, A.W.; Haber, I.

    2003-05-01

    The High Current Experiment (HCX) at Lawrence Berkeley National Laboratory is part of the US program to explore heavy-ion beam transport at a scale representative of the low-energy end of an induction linac driver for fusion energy production. The primary mission of this experiment is to investigate aperture fill factors acceptable for the transport of space-charge-dominated heavy-ion beams at high space-charge intensity (line charge density {approx} 0.2 {micro}C/m) over long pulse durations (>4 ms) in alternating gradient electrostatic and magnetic quadrupoles. This experiment is testing--at driver-relevant scale--transport issues resulting from nonlinear space-charge effects and collective modes, beam centroid alignment and beam steering, matching, image charges, halo, electron cloud effects, and longitudinal bunch control. We present the results for a coasting 1 MeV K{sup +} ion beam transported through the first ten electrostatic transport quadrupoles, measured with beam-imaging and phase-space diagnostics. The latest additions to the experiment include measurements of the secondary ion, electron and atom coefficients due to halo ions scraping the wall, and four magnetic quadrupoles to explore similar issues in magnetic channels.

  16. KrF laser path to high gain ICF (inertial confinement fusion) laboratory microfusion facility

    Microsoft Academic Search

    David B. Harris; J. Al Sullivan; Joseph F. Figueiro; David C. Cartwright; Thomas E. McDonald; Allan A. Hauer; Stephen V. Coggeshall; Stephen M. Younger

    1990-01-01

    The krypton-fluoride laser has many desirable features for inertial confinement fusion. Because it is a gas laser capable of operation with high efficiency, it is the only known laser candidate capable of meeting the driver requirements for inertial fusion energy (IFE) production. Los Alamos National Laboratory has defined a program plan to develop KrF lasers for IFE production. This plan

  17. The high current transport experiment for heavy ion inertial fusion

    SciTech Connect

    Prost, L.R.; Baca, D.; Bieniosek, F.M.; Celata, C.M.; Faltens, A.; Henestroza, E.; Kwan, J.W.; Leitner, M.; Seidl, P.A.; Waldron, W.L.; Cohen, R.; Friedman, A.; Grote, D.; Lund, S.M.; Molvik, A.W.; Morse, E.

    2004-05-01

    The High Current Experiment (HCX) at Lawrence Berkeley National Laboratory is part of the US program to explore heavy-ion beam transport at a scale representative of the low-energy end of an induction linac driver for fusion energy production. The primary mission of this experiment is to investigate aperture fill factors acceptable for the transport of space-charge-dominated heavy-ion beams at high intensity (line charge density {approx} 0.2 {micro}C/m) over long pulse durations (4 {micro}s) in alternating gradient focusing lattices of electrostatic or magnetic quadrupoles. This experiment is testing transport issues resulting from nonlinear space-charge effects and collective modes, beam centroid alignment and steering, envelope matching, image charges and focusing field nonlinearities, halo and, electron and gas cloud effects. We present the results for a coasting 1 MeV K{sup +} ion beam transported through ten electrostatic quadrupoles. The measurements cover two different fill factor studies (60% and 80% of the clear aperture radius) for which the transverse phase-space of the beam was characterized in detail, along with beam energy measurements and the first halo measurements. Electrostatic quadrupole transport at high beam fill factor ({approx}80%) is achieved with acceptable emittance growth and beam loss, even though the initial beam distribution is not ideal (but the emittance is low) nor in thermal equilibrium. We achieved good envelope control, and rematching may only be needed every ten lattice periods (at 80% fill factor) in a longer lattice of similar design. We also show that understanding and controlling the time dependence of the envelope parameters is critical to achieving high fill factors, notably because of the injector and matching section dynamics.

  18. JAFFA: High sensitivity transcriptome-focused fusion gene detection.

    PubMed

    Davidson, Nadia M; Majewski, Ian J; Oshlack, Alicia

    2015-01-01

    Genomic instability is a hallmark of cancer and, as such, structural alterations and fusion genes are common events in the cancer landscape. RNA sequencing (RNA-Seq) is a powerful method for profiling cancers, but current methods for identifying fusion genes are optimised for short reads. JAFFA (https://github.com/Oshlack/JAFFA/wiki) is a sensitive fusion detection method that outperforms other methods with reads of 100 bp or greater. JAFFA compares a cancer transcriptome to the reference transcriptome, rather than the genome, where the cancer transcriptome is inferred using long reads directly or by de novo assembling short reads. PMID:26019724

  19. Resonant magnetohydrodynamic waves in high-beta plasmas

    SciTech Connect

    Ruderman, M. S. [Department of Applied Mathematics, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH (United Kingdom)

    2009-04-15

    When a global magnetohydrodynamic (MHD) wave propagates in a weakly dissipative inhomogeneous plasma, the resonant interaction of this wave with either local Alfven or slow MHD waves is possible. This interaction occurs at the resonant position where the phase velocity of the global wave coincides with the phase velocity of either Alfven or slow MHD waves. As a result of this interaction a dissipative layer embracing the resonant position is formed, its thickness being proportional to R{sup -1/3}, where R>>1 is the Reynolds number. The wave motion in the resonant layer is characterized by large amplitudes and large gradients. The presence of large gradients causes strong dissipation of the global wave even in very weakly dissipative plasmas. Very often the global wave motion is characterized by the presence of both Alfven and slow resonances. In plasmas with small or moderate plasma beta {beta}, the resonance positions corresponding to the Alfven and slow resonances are well separated, so that the wave motion in the Alfven and slow dissipative layers embracing the Alfven and slow resonant positions, respectively, can be studied separately. However, when {beta} > or approx. R{sup 1/3}, the two resonance positions are so close that the two dissipative layers overlap. In this case, instead of two dissipative layers, there is one mixed Alfven-slow dissipative layer. In this paper the wave motion in such a mixed dissipative layer is studied. It is shown that this motion is a linear superposition of two motions, one corresponding to the Alfven and the other to the slow dissipative layer. The jump of normal velocity across the mixed dissipative layer related to the energy dissipation rate is equal to the sum of two jumps, one that occurs across the Alfven dissipative layer and the other across the slow dissipative layer.

  20. (Confinement and heating of high beta plasmas. Annual progress report)

    SciTech Connect

    Not Available

    1986-01-01

    Final measurements have been made of flux surfaces and equilibrium pressure balance with improved magnetic probes on the ''steady'' hardcore system with 6 msec risetime. These measurements were made with the power crowbar on the main B/sub z/ and l = 1 stellarator fields. Pressure balance measurements show a ..beta.. distribution peaking at about 40% (centered on the ''bean''). Theoretical work that shows the equivalence of a hardcore shift of 2.5 cm (with respect to the l = 1 axis) and toroidal effects corresponding to aspect ratios >17. Some operational results of the coaxial slow source for compact toroids are described.

  1. RF behavior of triple-frequency high power fusion gyrotron

    NASA Astrophysics Data System (ADS)

    Kumar, Nitin; Singh, Udaybir; Kumar, Anil; Sinha, A. K.

    2014-05-01

    The RF behavior of high power, triple frequency (170-, 127.5-, and 85 GHz) gyrotron for fusion application is presented in this paper. The operating mode selection is discussed in detail for each corresponding frequencies and TE34,10, TE25,8 and TE17,5 modes are selected as the operating mode for 170 GHz, 127.5 GHz and 85 GHz operation of the device, respectively. The interaction cavity geometry and beam parameters are finalized by the cold cavity analysis and beam-wave interaction simulations. Considering the beam parameters and the beam launching positions in cavity (beam radius), the design of Magnetically Tunable MIG (MT-MIG) is also presented. Results of MT-MIG confirm the beam launching with desired beam parameters at the beam radius corresponding to the selected operating modes for all three frequencies. The CVD diamond window is also designed for RF power transmission. The beam-wave interaction simulations confirm more than 1 MW power at all three frequencies (170-, 127.5-, and 85 GHz).

  2. Neutralinos in Vector Boson Fusion at High Energy Colliders

    E-print Network

    Asher Berlin; Tongyan Lin; Matthew Low; Lian-Tao Wang

    2015-06-17

    Discovering dark matter at high energy colliders continues to be a compelling and well-motivated possibility. Weakly interacting massive particles are a particularly interesting class in which the dark matter particles interact with the standard model weak gauge bosons. Neutralinos are a prototypical example that arise in supersymmetric models. In the limit where all other superpartners are decoupled, it is known that for relic density motivated masses, the rates for neutralinos are too small to be discovered at the Large Hadron Collider (LHC), but that they may be large enough for a 100 TeV collider to observe. In this work we perform a careful study in the vector boson fusion channel for pure winos and pure higgsinos. We find that given a systematic uncertainty of 1% (5%), with 3000 fb$^{-1}$, the LHC is sensitive to winos of 240 GeV (125 GeV) and higgsinos of 125 GeV (55 GeV). A future 100 TeV collider would be sensitive to winos of 1.1 TeV (750 GeV) and higgsinos of 530 GeV (180 GeV) with a 1% (5%) uncertainty, also with 3000 fb$^{-1}$.

  3. Neutralinos in vector boson fusion at high energy colliders

    NASA Astrophysics Data System (ADS)

    Berlin, Asher; Lin, Tongyan; Low, Matthew; Wang, Lian-Tao

    2015-06-01

    Discovering dark matter at high-energy colliders continues to be a compelling and well-motivated possibility. Weakly interacting massive particles are a particularly interesting class in which the dark matter particles interact with the standard model weak gauge bosons. Neutralinos are a prototypical example that arise in supersymmetric models. In the limit where all other superpartners are decoupled, it is known that for relic density motivated masses, the rates for neutralinos are too small to be discovered at the Large Hadron Collider (LHC), but that they may be large enough to observe at 100 TeV. In this work we perform a careful study in the vector boson fusion channel for pure winos and pure Higgsinos. We find that given a systematic uncertainty of 1% (5%), with 3000 fb-1 , the LHC is sensitive to winos of 240 GeV (125 GeV) and Higgsinos of 125 GeV (55 GeV). A future 100 TeV collider would be sensitive to winos of 1.1 TeV (750 GeV) and Higgsinos of 530 GeV (180 GeV) with a 1% (5%) uncertainty, also with 3000 fb-1 .

  4. Ba-ion extraction from a high pressure Xe gas for double-beta decay studies T. Brunnera,

    E-print Network

    Gratta, Giorgio

    Ba-ion extraction from a high pressure Xe gas for double-beta decay studies with EXO T. Brunnera investigating double-beta decay in 136 Xe. Efficient extraction and detection of Ba ions, the decay product of Xe, would allow for a background-free measurement of the 136 Xe double-beta decay. Keywords: RF

  5. Yellow maize with high beta-carotene is an effective source of vitamin A in healthy Zimbabwean men

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The bioconversion efficiency of yellow maize beta-carotene to retinol in humans is unknown. Thus, the objective of this study was to determine the vitamin A value of yellow maize beta-carotene in humans. A high beta-carotene containing yellow maize was grown in a hydroponic medium with 23 atom% 2H2O...

  6. Yellow maize with high (beta)-carotene is an effective source of vitamin A in healthy Zimbabwean men

    Technology Transfer Automated Retrieval System (TEKTRAN)

    BACKGROUND: The bioconversion efficiency of yellow maize Beta-carotene to retinol in humans is unknown. OBJECTIVE: The objective of this study was to determine the vitamin A value of yellow maize Beta-carotene in humans. DESIGN: High Beta-carotene-containing yellow maize was grown in a hydroponic...

  7. Highly specific targeting of the TMPRSS2/ERG fusion gene using liposomal nanovectors

    PubMed Central

    Shao, Longjiang; Tekedereli, Ibrahim; Wang, Jianghua; Yuca, Erkan; Tsang, Susan; Sood, Anil; Lopez-Berestein, Gabriel; Ozpolat, Bulent; Ittmann, Michael

    2012-01-01

    Purpose The TMPRSS2/ERG (T/E) fusion gene is present in half of all prostate cancer (PCa) tumors. Fusion of the oncogenic ERG gene with the androgen-regulated TMPRSS2 gene promoter results in expression of fusion mRNAs in PCa cells. The junction of theTMPRSS2 and ERG derived portions of the fusion mRNA constitutes a cancer specific target in cells containing the T/E fusion gene. Targeting the most common alternatively spliced fusion gene mRNA junctional isoforms in vivo using siRNAs in liposomal nanovectors may potentially be a novel, low toxicity treatment for PCa. Experimental Design We designed and optimized siRNAs targeting the two most common T/E fusion gene mRNA junctional isoforms (Type III or Type VI). Specificity of siRNAs was assessed by transient co-transfection in vitro. To test their ability to inhibit growth of PCa cells expressing these fusion gene isoforms in vivo, specific siRNAs in liposomal nanovectors were used to treat mice bearing orthotopic or subcutaneous xenograft tumors expressing the targeted fusion isoforms. Results The targeting siRNAs were both potent and highly specific in vitro. In vivo they significantly inhibited tumor growth. The degree of growth inhibition was variable and was correlated with the extent of fusion gene knockdown. The growth inhibition was associated with marked inhibition of angiogenesis and, to a lesser degree, proliferation and a marked increase in apoptosis of tumor cells. No toxicity was observed. Conclusions Targeting the T/E fusion junction in vivo with specific siRNAs delivered via liposomal nanovectors is a promising therapy for men with PCa. PMID:23052253

  8. Anti-tumor angiogenesis effect of genetic fusion vaccine encoding murine beta-defensin 2 and tumor endothelial marker-8 in a CT-26 murine colorectal carcinoma model.

    PubMed

    Liu, Ping; Xie, Ganfeng; Geng, Peiliang; Zheng, Chenhong; Li, Jianjun; Pan, Feng; Ruan, Zhihua; Liang, Houjie

    2015-01-01

    Tumor endothelial marker 8 (TEM8) is an endothelial-specific marker that is upregulated during tumor angiogenesis. We previously demonstrated that DNA-based vaccine encoding xenogeneic TEM8 can potentiate anti-angiogenesis immunotherapy of malignancy; nevertheless, it remains to be improved in minimizing immune tolerance. Recently, it has been reported that murine beta-defensin 2 (MBD2) is chemotactic for immature dendritic cells and plays a pivotal role in breaking immune tolerance. Herein, we constructed a genetic fusion vaccine encoding murine TEM8 and MBD2 to investigate whether the novel vaccine preferentially elicits therapeutic antitumor immune responses and suppresses cancerous angiogenesis in mouse models. The anti-angiogenesis effect was determined by microvessel density (MVD) using immunohistochemical staining. The efficacy of the fusion vaccine was primarily assessed by detecting cytotoxic T lymphocyte activity ((51)Cr-release assay). Enzyme-linked immunosorbent spot (ELISpot) assay was used to detect TEM8-specific INF-? production, and the activity of CTL was further verified by a depletion of CD8(+) T cells via anti-CD8 monoclonal antibody. Our results showed that the DNA fusion vaccine possessed an enhanced therapeutic antitumor immunity through anti-angiogenesis in BALB/c mice inoculated with CT26 cells, and this effect was generally attributed to stimulation of an antigen specific CD8(+) T-cell response against mTEM8. In conclusion, our study demonstrated that the fusion vaccine based on mTEM8 and MBD2 induced autoimmunity against endothelial cells, resulting in deceleration of tumor growth, and could be potential therapeutical application in clinic. PMID:26064415

  9. Anti-tumor angiogenesis effect of genetic fusion vaccine encoding murine beta-defensin 2 and tumor endothelial marker-8 in a CT-26 murine colorectal carcinoma model

    PubMed Central

    Liu, Ping; Xie, Ganfeng; Geng, Peiliang; Zheng, Chenhong; Li, Jianjun; Pan, Feng; Ruan, Zhihua; Liang, Houjie

    2015-01-01

    Tumor endothelial marker 8 (TEM8) is an endothelial-specific marker that is upregulated during tumor angiogenesis. We previously demonstrated that DNA-based vaccine encoding xenogeneic TEM8 can potentiate anti-angiogenesis immunotherapy of malignancy; nevertheless, it remains to be improved in minimizing immune tolerance. Recently, it has been reported that murine beta-defensin 2 (MBD2) is chemotactic for immature dendritic cells and plays a pivotal role in breaking immune tolerance. Herein, we constructed a genetic fusion vaccine encoding murine TEM8 and MBD2 to investigate whether the novel vaccine preferentially elicits therapeutic antitumor immune responses and suppresses cancerous angiogenesis in mouse models. The anti-angiogenesis effect was determined by microvessel density (MVD) using immunohistochemical staining. The efficacy of the fusion vaccine was primarily assessed by detecting cytotoxic T lymphocyte activity (51Cr-release assay). Enzyme-linked immunosorbent spot (ELISpot) assay was used to detect TEM8-specific INF-? production, and the activity of CTL was further verified by a depletion of CD8+ T cells via anti-CD8 monoclonal antibody. Our results showed that the DNA fusion vaccine possessed an enhanced therapeutic antitumor immunity through anti-angiogenesis in BALB/c mice inoculated with CT26 cells, and this effect was generally attributed to stimulation of an antigen specific CD8+ T-cell response against mTEM8. In conclusion, our study demonstrated that the fusion vaccine based on mTEM8 and MBD2 induced autoimmunity against endothelial cells, resulting in deceleration of tumor growth, and could be potential therapeutical application in clinic.

  10. High-temperature thermochemical water splitting cycle fusion reactor design considerations

    Microsoft Academic Search

    E. T. Cheng; C. P. C. Wong; K. H. McCorkle Jr.; P. W. Trester; K. R. Schultz

    1980-01-01

    The design considerations were explored for the adaptation of the high-temperature General Atomic sulfur-iodine thermochemical water splitting cycle to a fusion reactor heat source. This high-temperature cycle modification was found to have a good heat line match to the fusion heat source with an attractive possibility of process simplification compared to the reference HTGR-adapted cycle. The cost improvement due to

  11. Contribution of Neutron Beta Decay to Radiation Belt Pumping from High Altitude Nuclear Explosion

    Microsoft Academic Search

    Marrs

    2002-01-01

    In 1962, several satellites were lost following high altitude nuclear tests by the United States and the Soviet Union. These satellite failures were caused by energetic electrons injected into the earth's radiation belts from the beta decay of bomb produced fission fragments and neutrons. It has been 40 years since the last high altitude nuclear test; there are now many

  12. Spatial and Temporal Data Fusion for Generating High-Resolution Land Cover Imagery

    NASA Astrophysics Data System (ADS)

    Xu, Yong

    Currently, remote sensing imagery has been widely used for generating global land cover products, but due to certain physical and budget limitations related to the sensors, their spatial and temporal resolution are too low to attain more accurate and more reliable global change research. In this situation, there is an urgent need to study and develop a more advanced satellite image processing method and land cover producing techniques to generate higher resolution images and land cover products for global change research. Through conducting a comprehensive study of the related theories and methods related to data fusion, various methods are systematically reviewed and summarized, such as HIS transformation image fusion, Wavelet transform image fusion, the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM), etc. The advantages and disadvantages of these methods are highlighted according to their specific applications in the field of remote sensing. Based on my research target, the following are the main contents of this thesis: (1) Data fusion theory will be systematically studied and summarized, including various fusion models and specific applications, such as IHS transformation, PCA transformation, Wavelet analysis based data fusion, etc. Furthermore, their advantages and disadvantages are pointed out in relation to specific applications. (2) As traditional data fusion methods rely on spatial information and it is hard to deal with multi-source data fusion with temporal variation, therefore, the traditional data fusion theory and methods will be improved by a consideration of temporal information. Accordingly, some spatial and temporal data fusion methods will be proposed, in which both high-resolution & low-temporary imagery and low-resolution & high-temporary imagery are incorporated. Our experiments also show that they are suitable for dealing with multi-temporal data integration and generating high-resolution, multi-temporal images for global change research. (3) There are two main issues related to spatial and temporal data fusion theory. The first is that there are inconsistencies in different images, such as the different levels of land surface reflectance and different degrees of reliability of multi-source satellite data. The second is the rule of phonological variation/land cover variation in both the spatial and temporal dimensions, particularly in areas with heterogeneous landscapes. When considering these issues, an improved STARFM (spatial and temporal adaptive reflectance fusion model) is proposed, based on the original model, and the preliminary results show that it is more efficient and accurate in generating high-resolution land surface imagery than its predecessor. (4) Mixed pixels is a common issue in relation to satellite data processing, as one pixel in a coarse resolution image will constitute several pixels in a high-resolution image of the same size, so different levels of land surface reflectance will be acquired from multi-source satellite data because of the mixed pixel effect on the coarse resolution data, and the final accuracy of the fused result will be affected if these data are subjected to data fusion. In order to solve the mixed pixel issue in multi-source data fusion, an improved spatial and temporal data fusion approach, based on the constraint unmixing technique, was developed in this thesis. The experimental results show that it is well-suited to the phenological monitoring task when a prior land cover map is available. (5) Based on the high-resolution reflectance images generated from spatial and temporal fusion, a spatial and temporal classification method based on the spatial and temporal Markov random field was developed to produce a high-resolution land cover product, in which both spatial and temporal contextual information are included within the classification scheme. This method provides a new strategy for generating high-resolution land cover products in the area without high-resolution images at a certain time, and the experimental results show tha

  13. Identification of beta-exotoxin production, plasmids encoding beta-exotoxin, and a new exotoxin in Bacillus thuringiensis by using high-performance liquid chromatography.

    PubMed Central

    Levinson, B L; Kasyan, K J; Chiu, S S; Currier, T C; González, J M

    1990-01-01

    An improved high-performance liquid chromatography separation was developed to detect and quantify beta-exotoxin production in Bacillus thuringiensis culture supernatants. Exotoxin production was assigned to a plasmid in five strains, from three subspecies (B. thuringiensis subsp. thuringiensis serotype 1, B. thuringiensis subsp. tolworthi serotype 9, and B. thuringiensis subsp. darmstadiensis serotype 10). A new exotoxin, called type II beta-exotoxin in this report, was discovered in B. thuringiensis subsp. morrisoni serotype 8ab, purified, and partially characterized. This material is more specific than type I beta-exotoxin and is very active against the Colorado potato beetle, Leptinotarsa decemlineata. Images PMID:2345141

  14. High Cholesterol Obviates a Prolonged Hemifusion Intermediate in Fast SNARE-Mediated Membrane Fusion.

    PubMed

    Kreutzberger, Alex J B; Kiessling, Volker; Tamm, Lukas K

    2015-07-21

    Cholesterol is essential for exocytosis in secretory cells, but the exact molecular mechanism by which it facilitates exocytosis is largely unknown. Distinguishing contributions from the lateral organization and dynamics of membrane proteins to vesicle docking and fusion and the promotion of fusion pores by negative intrinsic spontaneous curvature and other mechanical effects of cholesterol have been elusive. To shed more light on this process, we examined the effect of cholesterol on SNARE-mediated membrane fusion in a single-vesicle assay that is capable of resolving docking and elementary steps of fusion with millisecond time resolution. The effect of cholesterol on fusion pore formation between synaptobrevin-2 (VAMP-2)-containing proteoliposomes and acceptor t-SNARE complex-containing planar supported bilayers was examined using both membrane and content fluorescent markers. This approach revealed that increasing cholesterol in either the t-SNARE or the v-SNARE membrane favors a mechanism of direct fusion pore opening, whereas low cholesterol favors a mechanism leading to a long-lived (>5 s) hemifusion state. The amount of cholesterol in the target membrane had no significant effect on docking of synaptobrevin vesicles. Comparative studies with ?-tocopherol (vitamin E) show that the negative intrinsic spontaneous curvature of cholesterol and its presumed promotion of a very short-lived (<50 ms) lipid stalk intermediate is the main factor that favors rapid fusion pore opening at high cholesterol. This study also shows that this single-vesicle fusion assay can distinguish between hemifusion and full fusion with only a single lipid dye, thereby freeing up a fluorescence channel for the simultaneous measurement of another parameter in fast time-resolved fusion assays. PMID:26200867

  15. [Determination of beta2-agonists and beta-blockers in urine using high performance liquid chromatography-ion trap mass spectrometry].

    PubMed

    Miao, Hong; Zou, Jianhong; Fan, Sai; Gan, Lewen; Zhao, Yunfeng; Wu, Yongning

    2010-06-01

    A method has been developed for the determination of 23 beta2-agonists and 5 beta-blockers in urine samples using high performance liquid chromatography-ion trap mass spectrometry (HPLC-IT-MS). Urine samples were first deproteinized by high-speed frozen centrifugation, and the supernatants were loaded on an Extrelut diatomite column for clean-up. The analytes were eluted by ethyl acetate and concentrated for further analysis. The analytical separation was performed on an AtlantisT3-150 mm chromatographic column with the gradient elution using methanol and water (containing 0.1% formic acid). The detection was carried on a linear ion trap mass spectrometer under multiple reaction monitoring (MRM) mode with the source operated in positive mode of electrospray ionization (ESI+). Nine deuterium labeled beta2-agonists were used as internal standards for quantitative analysis. The results showed that the linear ranges for 23 beta2-agonists and 5 beta-blockers were 0.005-0.16 mg/L, and the limits of detection were all around 0.2 microg/L. The mixed standard solution was added into the blank urine samples, and the recoveries of 23 beta2-agonists and 5 beta-blockers were ranged from 57.1% to 127.7% with the relative standard deviations of 1.1%-31.1%. The results demonstrate that the method is easy, fast, sensitive, and suitable for the confirmation and quantification of 23 beta2-agonists and 5 beta-blockers in urine samples. PMID:20873578

  16. Spherical torus fusion reactor

    DOEpatents

    Peng, Yueng-Kay M. (Oak Ridge, TN)

    1989-01-01

    A fusion reactor is provided having a near spherical-shaped plasma with a modest central opening through which straight segments of toroidal field coils extend that carry electrical current for generating a toroidal magnet plasma confinement fields. By retaining only the indispensable components inboard of the plasma torus, principally the cooled toroidal field conductors and in some cases a vacuum containment vessel wall, the fusion reactor features an exceptionally small aspect ratio (typically about 1.5), a naturally elongated plasma cross section without extensive field shaping, requires low strength magnetic containment fields, small size and high beta. These features combine to produce a spherical torus plasma in a unique physics regime which permits compact fusion at low field and modest cost.

  17. The NEXT experiment: A high pressure xenon gas TPC for neutrinoless double beta decay searches

    E-print Network

    D. Lorca; J. Martín-Albo; F. Monrabal; for the NEXT Collaboration

    2012-10-15

    Neutrinoless double beta decay is a hypothetical, very slow nuclear transition in which two neutrons undergo beta decay simultaneously and without the emission of neutrinos. The importance of this process goes beyond its intrinsic interest: an unambiguous observation would establish a Majorana nature for the neutrino and prove the violation of lepton number. NEXT is a new experiment to search for neutrinoless double beta decay using a radiopure high-pressure xenon gas TPC, filled with 100 kg of Xe enriched in Xe-136. NEXT will be the first large high-pressure gas TPC to use electroluminescence readout with SOFT (Separated, Optimized FuncTions) technology. The design consists in asymmetric TPC, with photomultipliers behind a transparent cathode and position-sensitive light pixels behind the anode. The experiment is approved to start data taking at the Laboratorio Subterr\\'aneo de Canfranc (LSC), Spain, in 2014.

  18. The NEXT experiment: A high pressure xenon gas TPC for neutrinoless double beta decay searches

    NASA Astrophysics Data System (ADS)

    Lorca, D.; Martín-Albo, J.; Monrabal, F.; NEXT Collaboration

    2013-08-01

    Neutrinoless double beta decay (??0?) is a hypothetical, very slow nuclear transition in which two neutrons undergo beta decay simultaneously and without the emission of neutrinos. The importance of this process goes beyond its intrinsic interest: an unambiguous observation would establish a Majorana nature for the neutrino and prove the violation of lepton number. NEXT is a new experiment to search for neutrinoless double beta decay using a radiopure high-pressure xenon gas TPC, filled with 100 kg of Xe enriched in Xe-136. NEXT will be the first large high-pressure gas TPC to use electroluminescence readout with SOFT (Separated, Optimized FuncTions) technology. The design consists in asymmetric TPC, with photomultipliers behind a transparent cathode and position-sensitive light pixels behind the anode. The experiment is approved to start data taking at the Laboratorio Subterráneo de Canfranc (LSC), Spain, in 2014.

  19. Z, ZX, and X-1: a realistic path to high fusion yield

    Microsoft Academic Search

    D. Cook; DONALD L

    1999-01-01

    Z-pinches now constitute the most energetic and powerful sources of X-rays available by a large margin. The Z accelerator at Sandia National Laboratories has produced 1.8 MJ of X-ray energy, 280 TW of power, and hohlraum temperatures of 200 eV. These advances are being applied to inertial confinement fusion (ICF) experiments on Z. The requirements for high fusion yield are

  20. Imprecise Probability as an Approach to Improved Dependability in High-Level Information Fusion

    Microsoft Academic Search

    Alexander Karlsson; Ronnie Johansson; Sten F. Andler

    2008-01-01

    The main goal of information fusion can be seen as improving human or automatic decision-making by exploiting diversities\\u000a in information from multiple sources. High-level information fusion aims specifically at decision support regarding situations,\\u000a often expressed as “achieving situation awareness”. A crucial issue for decision making based on such support is trust that\\u000a can be defined as “accepted dependence”, where dependence

  1. A conceptual fusion reactor based on the high-plasma-density Z-pinch

    Microsoft Academic Search

    C. W. Hartman; G. Carlson; M. Hoffman; R. Werner; D. Y. Cheng

    1977-01-01

    Conceptual DT and DD fusion reactors are discussed based on magnetic confinement with the high-plasma-density Z-pinch. The reactor concepts have no 'first wall', the fusion neutrons and plasma energy being absorbed directly into a surrounding lithium vortex blanket. Efficient systems with low recirculated power are projected, based on a flow-through pinch cycle for which overall Q values can approach 10.

  2. Fusion reactor high vacuum pumping: charcoal cryosorber tritium exposure results

    Microsoft Academic Search

    Douglas W. Sedgley; Charles R. Walthers; Everett M. Jenkins

    1991-01-01

    Recent experiments have shown the practicality of using activated carbon (coconut charcoal) at 4 K to pump helium and hydrogen isotopes for a fusion reactor. The long-term effects of tritium on the charcoal\\/cement system developed by Grumman and LLNL was not known; therefore, a program was undertaken to see what, if any, effect long-term tritium exposure has on the cryosorber.

  3. Effects of vitamins C and E, acetylsalicylic acid and heparin on fusion, beta-hCG and PP13 expression in BeWo cells.

    PubMed

    Orendi, K; Gauster, M; Moser, G; Meiri, H; Huppertz, B

    2010-05-01

    Preeclampsia is one of the leading causes for maternal and fetal morbidity. Placental protein 13 (PP13) is a placenta specific protein and with its decreased maternal serum levels in the first trimester it is one of the most promising markers to predict the syndrome in early pregnancy. In clinical trials attempts to prevent preeclampsia have already been made using low-dose aspirin, low-molecular-weight heparin, and antioxidants such as vitamins C and E. Here we investigated the effect of these agents on PP13 and beta-hCG levels using choriocarcinoma cell lines as surrogates for primary villous trophoblast. Five different cell lines were triggered with forskolin and cultured for 48 h. Amongst the five tested cell lines BeWo cells showed the strongest increase in PP13 mRNA after forskolin treatment compared to controls. Hence these cells were used to investigate the effect of varying concentrations of vitamin C, acetylsalicylic acid (ASA), Trolox) and heparin on cell fusion and PP13 and beta-hCG levels. The response to vitamin C was a dose-dependent increase in protein expression, while the other drugs showed only modest effects. Since first trimester PP13 has been shown to be significantly decreased in women subsequently developing preeclampsia, this data might point to a beneficial effect of very early vitamin C treatment of such women already in the early first trimester of pregnancy. PMID:20347141

  4. High-. beta. , sawtooth-free tokamak operation using energetic trapped particles

    SciTech Connect

    White, R.B.; Bussac, M.N.; Romanelli, F.

    1989-01-30

    It is shown that a population of high-energy trapped particles, such as that produced by ion cyclotron heating in tokamaks, can result in a plasma completely stable to both sawtooth oscillations and the fishbone mode. The stable window of operation increases in size with plasma temperature and with trapped particle energy, and provides a means of obtaining a stable plasma with high current and high ..beta...

  5. High beta, sawtooth-free tokamak operation using energetic trapped particles

    SciTech Connect

    White, R.B.; Bussac, M.N.; Romanelli, F.

    1988-08-01

    It is shown that a population of high energy trapped particles, such as that produced by ion cyclotron heating in tokamaks, can result in a plasma completely stable to both sawtooth oscillations and the fishbone mode. The stable window of operation increases in size with plasma temperature and with trapped particle energy, and provides a means of obtaining a stable plasma with high current and high beta. 13 refs., 2 figs.

  6. Ballooning-mode stability of bean-shaped cross sections for high-. beta. tokamak plasmas

    SciTech Connect

    Chance, M.S.; Jardin, S.C.; Stix, T.H.

    1983-09-01

    Indentation of a tokamak plasma on its inner major radius side is shown to be strongly beneficial for achieving high-..beta.. stability against ballooning modes. Using a set of reasonable equilibrium profiles, it is found that moderate indentation provides accessibility to the second region of stability. Ohmic equilibrium configurations which exhibit the second stability region have not yet been found.

  7. High-Precision Measurements of the Superallowed Beta+ Decays of 38Ca and 46V 

    E-print Network

    Park, Hyo-In

    2012-10-19

    depended on beta-delayed gamma-ray intensities being measured with a high-purity germanium detector calibrated for absolute efficiency to 0.2% precision. This branching-ratio result represents our first step in bringing the ft value for the superallowed ³?...

  8. Free Boundary, High Beta Equilibrium in a Large Aspect Ratio Tokamak with Nearly

    E-print Network

    Free Boundary, High Beta Equilibrium in a Large Aspect Ratio Tokamak with Nearly Circular Plasma Boundary H. Qin A. Reiman September 25, 1996 Abstract An analytic solution is obtained for free. In the absence of surface currents at the plasma­vacuum in­ terface, the free­boundary equilibrium solution

  9. MHD stability of high-beta tokamak equilibria with pedestal and line-tying

    Microsoft Academic Search

    J. K. Lee; M.-S. Chu

    1984-01-01

    A high-beta circular tokamak equilibrium with a large pressure gradient near the plasma edge is examined with respect to magnetohydrodynamic stability including external kink, tearing, and ballooning modes with and without line-tying effects. As the edge pressure gradient increases, the linear growth rate decreases and the mode spectrum broadens with the perturbation increasingly localized near the edge.

  10. Falsifying High-Scale Baryogenesis with Neutrinoless Double Beta Decay and Lepton Flavor Violation

    E-print Network

    Frank F. Deppisch; Julia Harz; Martin Hirsch; Wei-Chih Huang; Heinrich Päs

    2015-03-16

    Interactions that manifest themselves as lepton number violating processes at low energies in combination with sphaleron transitions typically erase any pre-existing baryon asymmetry of the universe. In this letter, we discuss the constraints obtained from an observation of neutrinoless double beta decay in this context. If a new physics mechanism of neutrinoless double beta decay is observed, typical scenarios of high-scale baryogenesis will be excluded unless the baryon asymmetry is stabilized via some new mechanism. We also sketch how this conclusion can be extended beyond the first lepton generation by incorporating lepton flavor violating processes.

  11. Falsifying High-Scale Baryogenesis with Neutrinoless Double Beta Decay and Lepton Flavor Violation

    E-print Network

    Deppisch, Frank F; Hirsch, Martin; Huang, Wei-Chih; Päs, Heinrich

    2015-01-01

    Interactions that manifest themselves as lepton number violating processes at low energies in combination with sphaleron transitions typically erase any pre-existing baryon asymmetry of the universe. In this letter, we discuss the constraints obtained from an observation of neutrinoless double beta decay in this context. If a new physics mechanism of neutrinoless double beta decay is observed, typical scenarios of high-scale baryogenesis will be excluded unless the baryon asymmetry is stabilized via some new mechanism. We also sketch how this conclusion can be extended beyond the first lepton generation by incorporating lepton flavor violating processes.

  12. Near-equilibrium growth of thick, high quality beta-SiC by sublimation

    NASA Technical Reports Server (NTRS)

    Shields, Virgil B.; Fekade, Konjit; Spencer, Michael G.

    1993-01-01

    A close spaced near-equilibrium growth technique was used to produce thick, high quality epitaxial layers of beta-silicon carbide. The process utilized a sublimation method to grow morphologically smooth layers. The beta silicon carbide growth layers varied from about 200 to 750 microns in thickness. Chemical vapor deposition grown, 2-10 microns, beta silicon carbide films were used as seeds at 1860 and 1910 C growth temperatures. The respective average growth rates were 20 and 30 microns per hour. The layers are p-type with a 3.1 x 10 exp 17/cu cm carrier concentration. Electrical measurements indicate considerable improvement in the breakdown voltage of Schottky barriers on growth samples. Breakdown values ranged from 25 to 60 V. These measurements represent the highest values reported for 3C-SiC.

  13. High precision measurements of {sup 26}Na {beta}{sup -} decay

    SciTech Connect

    Grinyer, G.F.; Svensson, C.E.; Andreoiu, C.; Finlay, P.; Hyland, B.; Phillips, A.A.; Schumaker, M.A.; Valiente-Dobon, J.J. [Department of Physics, University of Guelph, Guelph, Ontario, N1G 2W1 (Canada); Andreyev, A.N.; Ball, G.C.; Chakrawarthy, R.S.; Hackman, G.; Macdonald, J.A.; Morton, A.C.; Osborne, C.J.; Pearson, C.J.; Sarazin, F.; Scraggs, H.C.; Smith, M.B. [TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, V6T 2A3 (Canada); Austin, R.A.E. [Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, L8S 4K1 (Canada)] [and others

    2005-04-01

    High-precision measurements of the half-life and {beta}-branching ratios for the {beta}{sup -} decay of {sup 26}Na to {sup 26}Mg have been measured in {beta}-counting and {gamma}-decay experiments, respectively. A 4{pi} proportional counter and fast tape transport system were employed for the half-life measurement, whereas the {gamma} rays emitted by the daughter nucleus {sup 26}Mg were detected with the 8{pi} {gamma}-ray spectrometer, both located at TRIUMF's isotope separator and accelerator radioactive beam facility. The half-life of {sup 26}Na was determined to be T{sub 1/2}=1.07128{+-}0.00013{+-}0.00021 s, where the first error is statistical and the second systematic. The logft values derived from these experiments are compared with theoretical values from a full sd-shell model calculation.

  14. Haemoglobin Hallamshire (beta146 HIS --> TYR): a new high oxygen affinity haemoglobin responsible for familial erythrocytosis.

    PubMed

    Leach, M; Greaves, M; Porter, N; Williamson, D; Brown, K

    1996-12-01

    A new high oxygen affinity haemoglobin with the beta chain mutation beta146 HIS --> TYR is described. This variant was detected in a fit 34-year-old man with true erythrocytosis. The abnormal haemoglobin was identified as an extra band on cellulose acetate electrophoresis at pH 6.3 and was later confirmed by beta globin gene sequencing and oxygen dissociation studies. Whole blood containing Haemoglobin Hallamshire has a P50 of 18 mmHg. This newly described haemoglobin variant was also responsible for erythrocytosis in the mother and maternal half cousin of the index case. The identification of Haemoglobin Hallamshire provides confirmatory evidence of the important role of the C-terminal end of the chain in haemoglobin function. PMID:9054694

  15. Anthrax Toxin Uptake by Primary Immune Cells as Determined with a Lethal Factor-beta-Lactamase Fusion Protein

    Microsoft Academic Search

    Haijing Hu; Stephen H. Leppla; Adam J. Ratner

    2009-01-01

    BackgroundTo initiate infection, Bacillus anthracis needs to overcome the host innate immune system. Anthrax toxin, a major virulence factor of B. anthracis, impairs both the innate and adaptive immune systems and is important in the establishment of anthrax infections.Methodology\\/Principal FindingsTo measure the ability of anthrax toxin to target immune cells, studies were performed using a fusion of the anthrax toxin

  16. High Temperature coatings based on {beta}-NiAI

    SciTech Connect

    Severs, Kevin

    2012-07-10

    High temperature alloys are reviewed, focusing on current superalloys and their coatings. The synthesis, characerization, and oxidation performance of a NiAl–TiB{sub 2} composite are explained. A novel coating process for Mo–Ni–Al alloys for improved oxidation performance is examined. The cyclic oxidation performance of coated and uncoated Mo–Ni–Al alloys is discussed.

  17. Experiments on linear high beta helical axis stellarators to study simulated toroidal effects and Alfven-wave heating

    SciTech Connect

    Ribe, F.L.; Nelson, B.A.

    1989-01-01

    This paper discusses induced axial current studies in a hardcore Theta-Pinch; nonaxisymmetric RF heating of a high-Beta plasma column; formation of Axisymmetric hardcore theta pinches with notched hardcore current; and externally driven till made experiments on the high-beta Q machine field reversed configuration. (LSP)

  18. Reaching High Poloidal Beta at Greenwald Density with Internal Transport Barrier Close to Full Noninductive Current Drive

    Microsoft Academic Search

    J. Hobirk; R. C. Wolf; O. Gruber; A. Gude; S. Guenter; B. Kurzan; M. Maraschek; P. J. McCarthy; H. Meister; A. G. Peeters; G. V. Pereverzev; J. Stober; W. Treutterer

    2001-01-01

    In the ASDEX Upgrade tokamak, high poloidal beta up to betapol = 3 at the Greenwald density with H-mode confinement has been reached. Because of the high beta, the plasma current is driven almost fully noninductively, consisting of 51% bootstrap and 43% neutral beam driven current. To reach these conditions the discharge is operated at low plasma current ( IP

  19. Fusion reactor options and alternatives for the RFP

    Microsoft Academic Search

    R. L. Miller; R. A. Krakowski; C. G. Bathke; K. A. Werley; R. L. Hagenson

    1986-01-01

    The poloidal-field-dominated confinement properties of the Reversed-Field Pinch (RFP) are exploited to examine physics and technical issues related to compact, high-power-density fusion reactors. Past studies of the Compact RFP Reactor (CRFPR) were based on a liquid-metal-cooled fusion power core (FPC) that confined high-density plasma at high beta with fields generated by resistive coils. These early framework studies combine with a

  20. A thin 4 pi beta-counter operating by negative high voltage for the 4 pi beta-gamma coincidence measurement. --Operating characteristics.

    PubMed

    Miyahara, H; Suzuki, M; Watanabe, T

    1978-11-01

    A thin 4 pi beta-counter with five anode wires was operated by supplying negative high voltage to the inner wall and showed good plateau characteristics in the case of using only the center anode to take out signals in the previous experiments. This counter, as the 4 pi beta-counter and both 2 pi beta-counters, showed good plateau characteristics in these detailed experiments and no dependency on the disintegration rates examined up to 6000 dps. Then a 4 pi beta-gamma coincidence equipment was set up using this 4 pi beta-counter and one NaI(T1) scintillation detector with size of 76 mmphi x 76 mm. The radioactivities that were measured for beta-gamma and electron capture-gamma decay nuclides by this coincidence equipment were coincided with those measured by the other one. The improvement of the gamma-ray detection efficiency to aim was achieved by that the efficiency obtained by this system was the same as one by the other system having two NaI(T1) detectors with the same size. PMID:752168

  1. I. The design, synthesis, and structure of antiparallel beta-sheet and beta-strand mimics. II. The design of a scripted chemistry outreach program to high schools

    NASA Astrophysics Data System (ADS)

    Waldman, Amy Sue

    I. Protein structure is not easily predicted from the linear sequence of amino acids. An increased ability to create protein structures would allow researchers to develop new peptide-based therapeutics and materials, and would provide insights into the mechanisms of protein folding. Toward this end, we have designed and synthesized two-stranded antiparallel beta-sheet mimics containing conformationally biased scaffolds and semicarbazide, urea, and hydrazide linker groups that attach peptide chains to the scaffold. The mimics exhibited populations of intramolecularly hydrogen-bonded beta-sheet-like conformers as determined by spectroscopic techniques such as FTIR, sp1H NMR, and ROESY studies. During our studies, we determined that a urea-hydrazide beta-strand mimic was able to tightly hydrogen bond to peptides in an antiparallel beta-sheet-like configuration. Several derivatives of the urea-hydrazide beta-strand mimic were synthesized. Preliminary data by electron microscopy indicate that the beta-strand mimics have an effect on the folding of Alzheimer's Abeta peptide. These data suggest that the urea-hydrazide beta-strand mimics and related compounds may be developed into therapeutics which effect the folding of the Abeta peptide into neurotoxic aggregates. II. In recent years, there has been concern about the low level of science literacy and science interest among Americans. A declining interest in science impacts the abilities of people to make informed decisions about technology. To increase the interest in science among secondary students, we have developed the UCI Chemistry Outreach Program to High Schools. The Program features demonstration shows and discussions about chemistry in everyday life. The development and use of show scripts has enabled large numbers of graduate and undergraduate student volunteers to demonstrate chemistry to more than 12,000 local high school students. Teachers, students, and volunteers have expressed their enjoyment of The UCI Chemistry Outreach Program to High Schools.

  2. Role of high l values in the onset of incomplete fusion

    SciTech Connect

    Singh, Pushpendra P. [INFN - Laboratori Nazionali di Legnaro, I-35020 Legnaro (Italy); Yadav, Abhishek; Singh, Devendra P.; Gupta, Unnati; Singh, D.; Ansari, M. A.; Singh, B. P.; Prasad, R. [Accelerator Laboratory, Department of Physics, A. M. University, Aligarh 202 002 (India); Sharma, Manoj K. [Physics Department, S. V. College, Aligarh 202 001 (India); Kumar, R.; Singh, R. P.; Muralithar, S.; Bhowmik, R. K. [NP-Group, Inter-University Accelerator Center, New Delhi 110 067 (India)

    2009-12-15

    A particle-{gamma}-coincidence experiment is performed to investigate the role of high l values in the production of direct-{alpha}-emitting channels (associated with incomplete fusion) in {sup 12}C+{sup 169}Tm system. Spin distributions of various xn/pxn/{alpha}xn/2{alpha}xn channels are measured at E{sub lab}=5.6A and 6.5A MeV. Entirely different de-excitation patterns are observed in direct-{alpha}-emitting channels and fusion-evaporation channels. The fusion-evaporation channels are found to be strongly fed over a broad spin range. While narrow range feeding for only high-spin states was observed in the case of direct-{alpha}-emitting channels, in the present work, incomplete fusion is shown to be a promising tool to populate high-spin states in final reaction products. To have better insight into the associated l values in different reaction channels, the present data are compared with similar data obtained in {sup 16}O(E{sub lab}{approx_equal}5.6A MeV) + {sup 169}Tm system. The mean driving angular momenta involved in the production of direct-{alpha}-emitting channels are found to be higher than those involved in the production of fusion-evaporation channels. Direct-{alpha} multiplicity in the forward cone increases with driving angular momenta, which indicates the origin of direct-{alpha}-emitting channels at high l values in noncentral interactions.

  3. A setup for Ba-ion extraction from high pressure Xe gas for double-beta decay studies with EXO

    E-print Network

    Gratta, Giorgio

    A setup for Ba-ion extraction from high pressure Xe gas for double-beta decay studies with EXO T. This technique is intended for use in a future multi-ton detector investigating double-beta decay in 136 Xe-free measurement of the 136 Xe double-beta decay. Ó 2013 Elsevier B.V. All rights reserved. 1. Introduction Several

  4. Systematic investigation into the role of intermittent high glucose in pancreatic beta-cells

    PubMed Central

    Shao, Chen; Gu, Jianqiu; Meng, Xin; Zheng, Hongzhi; Wang, Difei

    2015-01-01

    Objectives: Glucose fluctuation is suggested to be the leading cause of beta-cell damages. To determine how it induces beta-cell dysfunction, we systematically evaluated the effects of intermittent high glucose (IHG) in INS-1 rat pancreatic beta-cells on their proliferation activity, apoptosis, insulin secretion, reactive oxygen species (ROS), intracellular concentration of Ca2+ ([Ca2+]i), and the PTEN expression as well as AKT phosphorylation. Methods: Prior to the examinations, INS-1 cells were treated with normal glucose (NG, 11.1 mmol/L), sustained high glucose (SHG, 33 mmol/L), IHG (switching per 12 h in 11.1 mmol/l or 33 mmol/L), NG+?-lipoic acid (LA, pretreated with LA 12 h before exposure to NG), SHG+LA (pretreated with LA 12 h before being exposed to 33.3 mmol/L glucose) and IHG+LA (pretreated with LA 12 h before being cultured with IHG). The cells in each group were cultured with indicated concentrations of glucose for 3 days. The evaluations were carried out on the cell viability, apoptosis rate, insulin secretion, [Ca2+]i, ROS and the expressions of PTEN and p-AKT. Results: The current study determined that IHG induces more apoptosis and significant increases of [Ca2+]i and intracellular ROS levels, compared to SHG and NG treatments to INS-1 cells. Moreover, IHG leads to more than 20% decrease on cell viability and over 50% reduction on insulin secretion (from 5.48±0.79 mIU/L to 2.51±0.58 mIU/L). The negative regulation of IHG on insulin signaling in beta-cells is identified via western blot analysis with results of the elevated expression of PTEN and lowered phosphorylation levels of AKT post IHG treatment. While the pretreatment of the antioxidant LA can significantly suppress the above responses induced by high glucose treatment. Conclusions: This study demonstrated that IHG plays a detrimental role in the viability, expansion, and function of beta-cells. IHG could be more harmful to the INS-1 cells than the SHG treatment. The rate increase of apoptosis in beta-cells could be caused by the suppressed insulin signaling, which is resulted from the raised ROS level by abnormal glucose treatments. Undergoing oxidative stress induced by high glucose treatments, including SHG and IHG, might be an important player in mediating the injury process to beta-cells, concluded from the beneficial rescue by the antioxidant LA treatment.

  5. Sensitivity to Error Fields in NSTX High Beta Plasmas

    SciTech Connect

    Park, Jong-Kyu; Menard, Jonathan E.; Gerhardt, Stefan P.; Buttery, Richard J.; Sabbagh, Steve A.; Bell, Steve E.; LeBlanc, Benoit P.

    2011-11-07

    It was found that error field threshold decreases for high ? in NSTX, although the density correlation in conventional threshold scaling implies the threshold would increase since higher ? plasmas in our study have higher plasma density. This greater sensitivity to error field in higher ? plasmas is due to error field amplification by plasmas. When the effect of amplification is included with ideal plasma response calculations, the conventional density correlation can be restored and threshold scaling becomes more consistent with low ? plasmas. However, it was also found that the threshold can be significantly changed depending on plasma rotation. When plasma rotation was reduced by non-resonant magnetic braking, the further increase of sensitivity to error field was observed.

  6. Observations of the earth's bow shock under high Mach number/high plasma beta solar wind conditions

    NASA Technical Reports Server (NTRS)

    Winterhalter, Daniel; Kivelson, Margaret G.

    1988-01-01

    Using 221 observations of the earth's bow shock by ISEE-1, the magnetic field characteristics of the shock are investigated as a function of Mach number and plasma beta. It is found that immediately behind the overshoot of the shock large amplitude waves develop preferentially with increasing Alfven Mach number and/or plasma beta. Their probability of occurrence is very high in the parallel regime, and declines to near zero probability when theta(BN) reaches 75 deg. It is estimated that approximately 10 percent of the total solar wind energy density is dissipated by these waves.

  7. Pulsed-Power-Driven High Energy Density Physics and Inertial Confinement Fusion Research

    Microsoft Academic Search

    M. Keith Matzen; Maurice Keith

    2004-01-01

    There continues to be dramatic progress in applying pulsed-power drivers to research in High Energy Density Physics (HEDP) and Inertial Confinement Fusion (ICF). The Z facility at Sandia National Laboratories delivers 20-MA load currents to create high magnetic fields (> 1000 T) and pressures (Mbar to Gbar). In a z-pinch configuration, the magnetic pressure (Lorentz Force) supersonically implodes a plasma

  8. Micro-engineered first wall tungsten armor for high average power laser fusion energy systems

    E-print Network

    Ghoniem, Nasr M.

    Micro-engineered first wall tungsten armor for high average power laser fusion energy systems implantation. Tungsten has been identified as the candidate material for a FW armor. The fundamental concern is long term thermo-mechanical survivability of the armor against the effects of high temperature pulsed

  9. High-beta spherical tokamak startup in TS-4 merging experiment by use of toroidal field ramp-up

    NASA Astrophysics Data System (ADS)

    Kaminou, Yasuhiro; , Toru, II; Kato, Joji; Inomoto, Michiaki; Ono, Yasushi; TS Group Team; National Institute for Fusion Science Collaboration

    2014-10-01

    We demonstrated the formation method of an ultrahigh-beta spherical tokamak by use of a field-reversed configuration and a spheromak in TS-4 device (R ~ 0.5 m, A ~ 1.5, Ip ~ 30-100 kA, B ~ 100 mT). This method is composed of the following steps: 1. Two spheromaks are merged together and a high-beta spheromak or FRC is formed by reconnection heating. 2. External toroidal magnetic field is added (current rising time ~50 ?s), and spherical tokamak-like configuration is formed. In this way, the ultrahigh-beta ST is formed. The ultrahigh-beta ST formed by FRC has a diamagnetic toroidal field, and it presumed to be in a second-stable state for ballooning stability, and the one formed by spheromak has a weak paramagnetic toroidal magnetic field, while a spheormak has a strong paramagnetic toroidal magnetic field. This diamagnetic current derives from inductive electric field by ramping up the external toroidal magnetic field, and the diamagnetic current sustains high thermal pressure of the ultrahigh-beta spherical tokamak. And the beta of the ultrahigh-beta ST formed by FRC reaches about 50%. To sustain the high-beta state, 0.6 MW neutral beam injection and center solenoid coils are installed to the TS-4 device. In the poster, we report the experimental results of ultrahigh-beta spherical tokamak startup and sustainment by NBI and CS current driving experiment.

  10. High beta and confinement studies of TFTR. Progress report, April 15, 1992--April 14, 1993

    SciTech Connect

    Navratil, G.A.; Bhattacharjee, A.; Iacono, R.; Mauel, M.E.; Sabbagh, S.A. [Columbia Univ., New York, NY (United States); Kesner, J. [Massachusetts Inst. of Tech., Cambridge, MA (United States)

    1993-07-01

    The project discussed in this report are: Enhanced High Poloidal Beta Operation in TFTR with Deuterium Pellet Injection; Approaching High Q by Utilizing High {beta}{sub p} Operation in TFTR; Advanced Tokamak Regime Experiment, and Second Regime Studies at large Major Radius High {beta}{sub p} Plasmas. Analysis of the data taken during these experiments as well as continuing analysis of earlier data led to a number important results described in publications in the past year including two invited presentations at the 1992 American Physical Society Division of Plasma Physics Meeting in Seattle an oral presentation at the 1992 IAEA Meeting in Wuertzburg, Germany, and a Physical Review Letter. These results included extending the high 11/2 regime to 1.2 MA current and neutron production rates to more than 3 {times} 10{sup 16} sec{sup {minus}}1; the first experiments with 4 sec neutral beam injection on TFRR; the creation of the first beam and bootstrap current sustained plasmas on TFTR for more than a current relaxation time scale; the first observation of ideal NM ballooning modes in a large tokamak; and production of plasmas with the inner 3/4 of the plasma in or with stable access to the second stability regime. The principal results of these papers and supporting theory work are summarized below.

  11. Microorifice-Based High-Yield Cell Fusion on Microfluidic Chip: Electrofusion of Selected Pairs and Fusant Viability

    Microsoft Academic Search

    M. Gel; S. Suzuki; Y. Kimura; O. Kurosawa; B. Techaumnat; H. Oana; M. Washizu

    2009-01-01

    Microorifice-based fusion makes use of electric field constriction to assure high-yield one-to-one fusion of selected cell pairs. The aim of this paper is to verify feasibility of high-yield cell fusion on a microfluidic chip. This paper also examines viability of the fusant created on the chip. We fabricated a microfluidic chip to fuse selected cell pairs and to study postfusion

  12. Development of high-power DPSSL for inertial fusion energy

    NASA Astrophysics Data System (ADS)

    Izawa, Yasukazu; Yamanaka, Masanobu; Kanabe, Tadashi; Matsui, Hiroki; Kawada, Yasuo; Kandasamy, Ranganathan; Eguchi, Takeyoshi; Nakatsuka, Masahiro; Nakai, Sadao; Kawashima, Takayuki; Okada, Yasumitsu; Kanzaki, Takeshi; Miyajima, Hirofumi; Miyamoto, Masahiro; Kan, Hirofumi

    2000-01-01

    We have conceptually designed a diode-pumped Nd:glass slab amplifier module for Inertial Fusion Energy (IFE). As a first step of a driver development, we have been developing a diode-pumped zig-zag Nd:glass slab laser amplifier system which can generate an output energy of 10 J per pulse at 1053 nm in 10 Hz operation. The water-cooled zig-zag Nd: glass slab is pumped for both sides by 803-nm AlGaAs laser- diode (LD) module; each LD module has an emitting area of 420 mm X 10 mm and two LD modules generated in total 200kW peak power with 2.5kW/cm2 peak intensity at 10 Hz repetition rate. We have obtained in a preliminary experiment a 8.5 J output energy at 0.5 Hz with a beam quality of 2 times diffraction limited far-field pattern.

  13. High quality actively cooled plasma facing components for fusion

    SciTech Connect

    Nygren, R.

    1993-12-31

    This paper interweaves some suggestions for developing actively-cooled PFCs (plasma facing components) for future fusion devices with supporting examples taken from the design, fabrication and operation of Tore Supra`s Phase III Outboard Pump Limiter (OPL). This actively-cooled midplane limiter, designed for heat and particle removal during long pulse operation, has been operated in essentially thermally steady state conditions. From experience with testing to identify braze flaws in the OPL, recommendations are made to analyze the impact of joining flaws on thermal-hydraulic performance of PFCs and to validate a method of inspection for such flaws early in the design development. Capability for extensive in-service monitoring of future PFCs is also recommended and the extensive calorimetry and IR thermography used to confirm and update safe operating limits for power handling of the OPL are reviewed.

  14. Common Fusion Transcripts Identified in Colorectal Cancer Cell Lines by High-Throughput RNA Sequencing12

    PubMed Central

    Nome, Torfinn; Thomassen, Gard OS; Bruun, Jarle; Ahlquist, Terje; Bakken, Anne C; Hoff, Andreas M; Rognum, Torleiv; Nesbakken, Arild; Lorenz, Susanne; Sun, Jinchang; Barros-Silva, João Diogo; Lind, Guro E; Myklebost, Ola; Teixeira, Manuel R; Meza-Zepeda, Leonardo A; Lothe, Ragnhild A; Skotheim, Rolf I

    2013-01-01

    Colorectal cancer (CRC) is the third most common cancer disease in the Western world, and about 40% of the patients die from this disease. The cancer cells are commonly genetically unstable, but only a few low-frequency recurrent fusion genes have so far been reported for this disease. In this study, we present a thorough search for novel fusion transcripts in CRC using high-throughput RNA sequencing. From altogether 220 million paired-end sequence reads from seven CRC cell lines, we identified 3391 candidate fused transcripts. By stringent requirements, we nominated 11 candidate fusion transcripts for further experimental validation, of which 10 were positive by reverse transcription-polymerase chain reaction and Sanger sequencing. Six were intrachromosomal fusion transcripts, and interestingly, three of these, AKAP13-PDE8A, COMMD10-AP3S1, and CTB-35F21.1-PSD2, were present in, respectively, 18, 18, and 20 of 21 analyzed cell lines and in, respectively, 18, 61, and 48 (17%-58%) of 106 primary cancer tissues. These three fusion transcripts were also detected in 2 to 4 of 14 normal colonic mucosa samples (14%–28%). Whole-genome sequencing identified a specific genomic breakpoint in COMMD10-AP3S1 and further indicates that both the COMMD10-AP3S1 and AKAP13-PDE8A fusion transcripts are due to genomic duplications in specific cell lines. In conclusion, we have identified AKAP13-PDE8A, COMMD10-AP3S1, and CTB-35F21.1-PSD2 as novel intrachromosomal fusion transcripts and the most highly recurring chimeric transcripts described for CRC to date. The functional and clinical relevance of these chimeric RNA molecules remains to be elucidated. PMID:24151535

  15. High-adiabat high-foot inertial confinement fusion implosion experiments on the national ignition facility.

    PubMed

    Park, H-S; Hurricane, O A; Callahan, D A; Casey, D T; Dewald, E L; Dittrich, T R; Döppner, T; Hinkel, D E; Berzak Hopkins, L F; Le Pape, S; Ma, T; Patel, P K; Remington, B A; Robey, H F; Salmonson, J D; Kline, J L

    2014-02-01

    This Letter reports on a series of high-adiabat implosions of cryogenic layered deuterium-tritium (DT) capsules indirectly driven by a "high-foot" laser drive pulse at the National Ignition Facility. High-foot implosions have high ablation velocities and large density gradient scale lengths and are more resistant to ablation-front Rayleigh-Taylor instability induced mixing of ablator material into the DT hot spot. Indeed, the observed hot spot mix in these implosions was low and the measured neutron yields were typically 50% (or higher) of the yields predicted by simulation. On one high performing shot (N130812), 1.7 MJ of laser energy at a peak power of 350 TW was used to obtain a peak hohlraum radiation temperature of ?300??eV. The resulting experimental neutron yield was (2.4±0.05)×10(15) DT, the fuel ?R was (0.86±0.063)??g/cm2, and the measured Tion was (4.2±0.16)??keV, corresponding to 8 kJ of fusion yield, with ?1/3 of the yield caused by self-heating of the fuel by ? particles emitted in the initial reactions. The generalized Lawson criteria, an ignition metric, was 0.43 and the neutron yield was ?70% of the value predicted by simulations that include ?-particle self-heating. PMID:24580603

  16. High-Yield Lithium-Injection Fusion-Energy (HYLIFE) reactor

    SciTech Connect

    Blink, J.A.; Hogam, W.J.; Hovingh, J.; Meier, E.R.; Pitts, J.H. (comps.)

    1985-12-23

    The High-Yield Lithium-Injection Fusion Energy (HYLIFE) concept to convent inertial confinement fusion energy into electric power has undergone intensive research and refinement at LLNL since 1978. This paper reports on the final HYLIFE design, focusing on five major areas: the HYLIFE reaction chamber (which includes neutronics, liquid-metal jet-array hydrocynamics, and structural design), supporting systems, primary steam system and balance of plant, safety and environmental protection, and costs. An annotated bibliography of reports applicable to HYLIFE is also provided. We conclude that HYLIFE is a particularly viable concept for the safe, clean production of electrical energy. The liquid-metal jet array, HYLIFE's key design feature, protects the surrounding structural components from x-rays, fusion fuel-pellet debris, neutron damage and activation, and high temperatures and stresses, allowing the structure to last for the plant's entire 30-year lifetime without being replaced. 127 refs., 18 figs.

  17. Cold fusion, Alchemist's dream

    SciTech Connect

    Clayton, E.D.

    1989-09-01

    In this report the following topics relating to cold fusion are discussed: muon catalysed cold fusion; piezonuclear fusion; sundry explanations pertaining to cold fusion; cosmic ray muon catalysed cold fusion; vibrational mechanisms in excited states of D{sub 2} molecules; barrier penetration probabilities within the hydrogenated metal lattice/piezonuclear fusion; branching ratios of D{sub 2} fusion at low energies; fusion of deuterons into {sup 4}He; secondary D+T fusion within the hydrogenated metal lattice; {sup 3}He to {sup 4}He ratio within the metal lattice; shock induced fusion; and anomalously high isotopic ratios of {sup 3}He/{sup 4}He.

  18. Fluctuations in high {beta}{sub p} plasmas in DIII-D

    SciTech Connect

    Casper, T.A. [Lawrence Livermore National Lab., CA (United States); Chu, M.S.; Gohil, P. [General Atomics, San Diego, CA (United States)] [and others

    1994-07-01

    In our investigation of improved confinement in high poloidal beta ({beta}{sub p}= 2 to 4) advanced tokamak experiments, we observe that the internal MHD activity evolves from an m/n = 2/1 to a 3/1 structure coincident with q{sub o} rising above 2, and consistent with the GATO code stability analysis. The plasma eventually evolves to a quiescent state at which time the stored energy increases, mostly as a result of improved particle confinement. The bootstrap fraction rises to 80%. The measured plasma pressure profiles during this time are calculated to be stable to high-n ballooning modes consistent with operation of the core in the second stable regime. The sustained improvement in confinement is ultimately limited by our ability to control the toroidal current profile.

  19. Physiologically motivated computational visual target recognition beta selection

    Microsoft Academic Search

    Erik P. Blasch; Randy P. Broussard

    2000-01-01

    This paper investigates the use of a beta value derived from a receiver operator characteristic curve for target recognition. Using a physiologically-motivated sensor-fusion algorithm, lower-level data is filtered and fused using a pulse-coupled neural network (PCNN) to represent the feature processing of the parvocellular and magnetocellular pathways. High level decision making includes feature association from the PCNN filter, information fusion,

  20. High beta, Long Pulse, Bootstrap Sustained Scenarios on the National Spherical Torus Experiment (NSTX)

    SciTech Connect

    D.A. Gates, for the NSTX National Research Team

    2003-02-26

    Long-pulse, high-beta scenarios have been established on the National Spherical Torus Experiment (NSTX). Beta(sub)t(always equal to 2{mu}(sub)0{center_dot}

    /B{sup 2}(sub)t0) {approx} 35% has been achieved during transient discharges. The machine improvements that lead to these results, including error field reduction and high-temperature bakeout of plasma-facing components are described. The highest Beta(sub)t plasmas have high triangularity (delta = 0.8) and elongation (k = 2.0) at low-aspect ratio A always equal to R/a = 1.4. The strong shaping permits large values of normalized current, I(sub)N(always equal to I(sub)p /(aB(sub)t0)) approximately equal to 6 while maintaining moderate values of q(sub)95 = 4. Long-pulse discharges up to 1 sec in duration have been achieved with substantial bootstrap current. The total noninductive current drive can be as high as 60%, comprised of 50% bootstrap current and {approx}10% neutral-beam current drive. The confinement enhancement factor H89P is in excess of 2.7. Beta(sub)N * H(sub)89P approximately or greater than 15 has been maintained for 8 * tau(sub)E {approx} 1.6 * tau(sub)CR, where tau(sub)CR is the relaxation time of the first radial moment of the toroidal current density. The ion temperature for these plasmas is significantly higher than that predicted by neoclassical theory.

  1. MHD Stability Calculations of High-Beta Quasi-Axisymmetric Stellarators

    SciTech Connect

    C. Kessel; G.Y. Fu; L.P. Ku; M.H. Redi; N. Pomphrey; et al

    1999-09-01

    The MHD stability of quasi-axisymmetric compact stellarators is investigated. It is shown that bootstrap current driven external kink modes can be stabilized by a combination of edge magnetic shear and appropriate 3D plasma boundary shaping while maintaining good quasi-axisymmetry. The results demonstrate that there exists a new class of stellarators with quasi-axisymmetry, large bootstrap current, high MHD beta limit, and compact size.

  2. In-situ observation of the alpha/beta cristobalite transition using high voltage electron microscopy

    SciTech Connect

    Meike, A. [Lawrence Berkeley Lab., CA (USA); Glassley, W. [Lawrence Livermore National Lab., CA (USA)

    1989-10-01

    A high temperature water vapor phase is expected to persist in the vicinity of high level radioactive waste packages for several hundreds of years. The authors have begun an investigation of the structural and chemical effects of water on cristobalite because of its abundance in the near field environment. A high voltage transmission electron microscope (HVEM) investigation of bulk synthesized {alpha}-cristobalite to be used in single phase dissolution and precipitation kinetics experiments revealed the presence {beta}-cristobalite, quartz and amorphous silica, in addition to {alpha}-cristobalite. Consequently, this apparent metastable persistence of {beta}-cristobalite and amorphous silica during the synthesis of {alpha}-cristobalite was investigated using a heating stage and an environmental cell installed in the HVEM that allowed the introduction of either dry CO{sub 2} or a CO{sub 2} + H{sub 2}O vapor. Preliminary electron diffraction evidence suggests that the presence of water vapor affected the {alpha}-{beta} transition temperature. Water vapor may also be responsible for the development of an amorphous silica phase at the transition that may persist over an interval of several tens of degrees. The amorphous phase was not documented during the dry heating experiments. 20 refs., 7 figs., 5 tabs.

  3. High-precision branching ratio measurement for the superallowed {beta}{sup +} emitter {sup 62}Ga

    SciTech Connect

    Finlay, P.; Svensson, C. E.; Bandyopadhyay, D.; Grinyer, G. F.; Hyland, B.; Leach, K. G.; Phillips, A. A.; Schumaker, M. A.; Wong, J. [Department of Physics, University of Guelph, Guelph, Ontario N1G 2W1 (Canada); Ball, G. C.; Chakrawarthy, R. S.; Hackman, G.; Kanungo, R.; Morton, A. C.; Pearson, C. J.; Savajols, H. [TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3 (Canada); Leslie, J. R.; Towner, I. S. [Department of Physics, Queen's University, Kingston, Ontario K7L 3N6 (Canada); Austin, R. A. E.; Chaffey, A. [Department of Astronomy and Physics, Saint Mary's University, Halifax, Nova Scotia B3H 3C3 (Canada)] (and others)

    2008-08-15

    A high-precision branching ratio measurement for the superallowed {beta}{sup +} decay of {sup 62}Ga was performed at the Isotope Separator and Accelerator (ISAC) radioactive ion beam facility. The 8{pi} spectrometer, an array of 20 high-purity germanium detectors, was employed to detect the {gamma} rays emitted following Gamow-Teller and nonanalog Fermi {beta}{sup +} decays of {sup 62}Ga, and the SCEPTAR plastic scintillator array was used to detect the emitted {beta} particles. Thirty {gamma} rays were identified following {sup 62}Ga decay, establishing the superallowed branching ratio to be 99.858(8)%. Combined with the world-average half-life and a recent high-precision Q-value measurement for {sup 62}Ga, this branching ratio yields an ft value of 3074.3{+-}1.1 s, making {sup 62}Ga among the most precisely determined superallowed ft values. Comparison between the superallowed ft value determined in this work and the world-average corrected Ft value allows the large nuclear-structure-dependent correction for {sup 62}Ga decay to be experimentally determined from the CVC hypothesis to better than 7% of its own value, the most precise experimental determination for any superallowed emitter. These results provide a benchmark for the refinement of the theoretical description of isospin-symmetry breaking in A{>=}62 superallowed decays.

  4. Oat beta-glucan ameliorates insulin resistance in mice fed on high-fat and high-fructose diet

    PubMed Central

    Zheng, Jie; Shen, Nanhui; Wang, Shuanghui; Zhao, Guohua

    2013-01-01

    Methods This study sought to evaluate the impact of oat beta-glucan on insulin resistance in mice fed on high-fat and high-fructose diet with fructose (10%, w/v) added in drinking water for 10 weeks. Results The results showed that supplementation with oat beta-glucan could significantly reduce the insulin resistance both in low-dose (200 mg/kg?1 body weight) and high-dose (500 mg/kg?1 body weight) groups, but the high-dose group showed a more significant improvement in insulin resistance (P<0.01) compared with model control (MC) group along with significant improvement in hepatic glycogen level, oral glucose, and insulin tolerance. Moreover, hepatic glucokinase activity was markedly enhanced both in low-dose and high-dose groups compared with that of MC group (P<0.05). Conclusion These results suggested that supplementation of oat beta-glucan alleviated insulin resistance and the effect was dose dependent. PMID:24371433

  5. Mining high-dimensional data for information fusion: a database-centric approach

    Microsoft Academic Search

    Boriana L. Milenova; M. M. Campos

    2005-01-01

    Data mining on high-dimensional heterogeneous data is a crucial component in information fusion application domains such as remote sensing, surveillance, and homeland security. The information processing requirements of these domains place a premium on security, robustness, performance, and sophisticated analytic methods. This paper introduces a database-centric approach that enables data mining and analysis of data that typically interest the information

  6. High power microwaves for plasma heating in fusion experiments: Gyrotron - Transmission system - Antenna

    Microsoft Academic Search

    Helga Kumric

    2010-01-01

    In the wide range of applications of microwaves in plasma physics, the field of high power millimeter waves for electron cyclotron resonance heating (ECRH), electron cyclotron current drive (ECCD), stability control and diagnostics of magnetically confined plasmas for generation of energy by controlled thermonuclear fusion is one of the most complex and challenging in the last 30 years. The prosperous

  7. Reliability Fusion of Time-of-Flight Depth and Stereo Geometry for High Quality Depth Maps

    E-print Network

    Davis, James E.

    Reliability Fusion of Time-of-Flight Depth and Stereo Geometry for High Quality Depth Maps Jiejie characteristics, which are complementary to passive stereo. They provide real-time depth estimates in conditions where passive stereo does not work well, such as on white walls. In contrast, these sensors are noisy

  8. Context-driven fusion of high spatial and spectral resolution images based on oversampled multiresolution analysis

    Microsoft Academic Search

    Bruno Aiazzi; Luciano Alparone; Stefano Baronti; Andrea Garzelli

    2002-01-01

    This paper compares two general and formal solutions to the problem of fusion of multispectral images with high-resolution panchromatic observations. The former exploits the undecimated discrete wavelet transform, which is an octave bandpass representation achieved from a conventional discrete wavelet transform by omitting all decimators and upsampling the wavelet filter bank. The latter relies on the generalized Laplacian pyramid, which

  9. Status and future prospects of laser fusion and high power laser applications

    Microsoft Academic Search

    Kunioki Mima

    2010-01-01

    In Asia, there are many institutes for the R&D of high power laser science and applications. They are 5 major institutes in Japan, 4 major institutes in China, 2 institutes in Korea, and 3 institutes in India. The recent achievements and future prospects of those institutes will be over viewed. In the laser fusion research, the FIREX-I project in Japan

  10. INFORM Lab: a testbed for high-level information fusion and resource management

    Microsoft Academic Search

    Pierre Valin; Adel Guitouni; Eloi Bossé; Hans Wehn; Jens Happe

    2011-01-01

    DRDC Valcartier and MDA have created an advanced simulation testbed for the purpose of evaluating the effectiveness of Network Enabled Operations in a Coastal Wide Area Surveillance situation, with algorithms provided by several universities. This INFORM Lab testbed allows experimenting with high-level distributed information fusion, dynamic resource management and configuration management, given multiple constraints on the resources and their communications

  11. Eight different fusion techniques for use with very high-resolution data

    NASA Astrophysics Data System (ADS)

    Nikolakopoulos, Konstantinos G.

    2005-10-01

    All the commercial satellites (SPOT, LANDSAT, IRS, IKONOS, Quickbird and Orbview) collect a high spatial resolution panchromatic image and multiple (usually four) multispectral images with significant lower spatial resolution. The PAN images are characterised by a very high spatial information content well-suited for intermediate scale mapping applications and urban analysis. The multispectral images provide the essential spectral information for smaller scale thematic mapping applications such as landuse surveys. Why don't most satellites collect high-resolution MS images directly, to meet this requirement for high-spatial and high-spectral resolutions? There is a limitation to the data volume that a satellite sensor can store on board and then transmit to ground receiving station. Usually the size of the panchromatic image is many times larger than the size of the multispectral images. The size of the panchromatic of Landsat ETM+ is four times greater than the size of a ETM+ multispectral image. The panchromatic image for IKONOS, Quickbird SPOT5 and Orbview is sixteen times larger than the respective multispectral images. As a result if a sensor collected high-resolution multispectral data it could acquire fewer images during every pass. Considering these limitations, it is clear that the most effective solution for providing high-spatial-resolution and high-spectral-resolution remote sensing images is to develop effective image fusion techniques. Image fusion is a technique used to integrate the geometric detail of a high-resolution panchromatic (Pan) image and the color information of a low-resolution multispectral (MS) image to produce a high-resolution MS image. During the last twenty years many methods such as Principal Component Analysis (PCA), Multiplicative Transform, Brovey Transform, IHS Transform have been developed producing good quality fused images. Despite the quite good optical results many research papers have reported the limitations of the above fusion techniques. The most significant problem is color distortion. Another common problem is that the fusion quality often depends upon the operator's fusion experience, and upon the data set being fused. No automatic solution has been achieved to consistently produce high quality fusion for different data sets. More recently new techniques have been proposed such as the Wavelet Transform, the Pansharp Transform and the Modified IHS Transform. Those techniques seem to reduce the color distortion problem and to keep the statistical parameters invariable. In this study we compare the efficiency of eight fusion techniques and more especially the efficiency of Multiplicative Brovey, IHS, Modified IHS, PCA, Pansharp, Wavelet and LMM (Local Mean Matching) fusion techniques for the fusion of Ikonos data. For each merged image we have examined the optical qualitative result and the statistical parameters of the histograms of the various frequency bands, especially the standard deviation All the fusion techniques improve the resolution and the optical result. The Pansharp, the Wavelet and the Modified IHS merging technique do not change at all the statistical parameters of the original images. These merging techniques are proposed if the researcher want to proceed to further processing using for example different vegetation indexes or to perform classification using the spectral signatures.

  12. KSTAR equilibrium operating space and projected stabilization at high normalized beta

    NASA Astrophysics Data System (ADS)

    Park, Y. S.; Sabbagh, S. A.; Berkery, J. W.; Bialek, J. M.; Jeon, Y. M.; Hahn, S. H.; Eidietis, N.; Evans, T. E.; Yoon, S. W.; Ahn, J.-W.; Kim, J.; Yang, H. L.; You, K.-I.; Bae, Y. S.; Chung, J.; Kwon, M.; Oh, Y. K.; Kim, W.-C.; Kim, J. Y.; Lee, S. G.; Park, H. K.; Reimerdes, H.; Leuer, J.; Walker, M.

    2011-05-01

    Along with an expanded evaluation of the equilibrium operating space of the Korea Superconducting Tokamak Advanced Research, KSTAR, experimental equilibria of the most recent plasma discharges were reconstructed using the EFIT code. In near-circular plasmas created in 2009, equilibria reached a stored energy of 54 kJ with a maximum plasma current of 0.34 MA. Highly shaped plasmas with near double-null configuration in 2010 achieved H-mode with clear edge localized mode (ELM) activity, and transiently reached a stored energy of up to 257 kJ, elongation of 1.96 and normalized beta of 1.3. The plasma current reached 0.7 MA. Projecting active and passive stabilization of global MHD instabilities for operation above the ideal no-wall beta limit using the designed control hardware was also considered. Kinetic modification of the ideal MHD n = 1 stability criterion was computed by the MISK code on KSTAR theoretical equilibria with a plasma current of 2 MA, internal inductance of 0.7 and normalized beta of 4.0 with simple density, temperature and rotation profiles. The steep edge pressure gradient of this equilibrium resulted in the need for significant plasma toroidal rotation to allow thermal particle kinetic resonances to stabilize the resistive wall mode (RWM). The impact of various materials and electrical connections of the passive stabilizing plates on RWM growth rates was analysed, and copper plates reduced the RWM passive growth rate by a factor of 15 compared with stainless steel plates at a normalized beta of 4.4. Computations of active RWM control using the VALEN code showed that the n = 1 mode can be stabilized at normalized beta near the ideal wall limit via control fields produced by the midplane in-vessel control coils (IVCCs) with as low as 0.83 kW control power using ideal control system assumptions. The ELM mitigation potential of the IVCC, examined by evaluating the vacuum island overlap created by resonant magnetic perturbations, was analysed using the TRIP3D code. Using a combination of all IVCCs with dominant n = 2 field and upper/lower coils in an even parity configuration, a Chirikov parameter near unity at normalized poloidal flux 0.83, an empirically determined condition for ELM mitigation in DIII-D, was generated in theoretical high-beta equilibria. Chirikov profile optimization was addressed in terms of coil parity and safety factor profile.

  13. RESISTIVE WALL STABILIZATION OF HIGH BETA PLASMAS IN DIII-D

    SciTech Connect

    STRAIT,EJ; BIALEK,J; BOGATU,N; CHANCE,M; CHU,MS; EDGELL,D; GAROFALO,AM; JACKSON,GL; JENSEN,TH; JOHNSON,LC; KIM,JS; LAHAYE,RJ; NAVRATIL,G; OKABAYASHI,M; REIMERDES,H; SCOVILLE,JT; TURNBULL,AD; WALKER,ML

    2002-09-01

    OAK A271 RESISTIVE WALL STABILIZATION OF HIGH BETA PLASMAS IN DIII-D. Recent DIII-D experiments show that ideal kink modes can be stabilized at high beta by a resistive wall, with sufficient plasma rotation. However, the resonant response by a marginally stable resistive wall mode to static magnetic field asymmetries can lead to strong damping of the rotation. Careful reduction of such asymmetries has allowed plasmas with beta well above the ideal MHD no-wall limit, and approaching the ideal-wall limit, to be sustained for durations exceeding one second. Feedback control can improve plasma stability by direct stabilization of the resistive wall mode or by reducing magnetic field asymmetry. Assisted by plasma rotation, direct feedback control of resistive wall modes with growth rates more than 5 times faster than the characteristic wall time has been observed. These results open a new regime of tokamak operation above the free-boundary stability limit, accessible by a combination of plasma rotation and feedback control.

  14. Electromagnetic stabilization of tokamak microturbulence in a high-$\\beta$ regime

    E-print Network

    Citrin, J; Goerler, T; Jenko, F; Mantica, P; Told, D; Bourdelle, C; Hatch, D R; Hogeweij, G M D; Johnson, T; Pueschel, M J; Schneider, M

    2014-01-01

    The impact of electromagnetic stabilization and flow shear stabilization on ITG turbulence is investigated. Analysis of a low-$\\beta$ JET L-mode discharge illustrates the relation between ITG stabilization, and proximity to the electromagnetic instability threshold. This threshold is reduced by suprathermal pressure gradients, highlighting the effectiveness of fast ions in ITG stabilization. Extensive linear and nonlinear gyrokinetic simulations are then carried out for the high-$\\beta$ JET hybrid discharge 75225, at two separate locations at inner and outer radii. It is found that at the inner radius, nonlinear electromagnetic stabilization is dominant, and is critical for achieving simulated heat fluxes in agreement with the experiment. The enhancement of this effect by suprathermal pressure also remains significant. It is also found that flow shear stabilization is not effective at the inner radii. However, at outer radii the situation is reversed. Electromagnetic stabilization is negligible while the flow...

  15. MHD surface waves in high- and low-beta plasmas. I - Normal-mode solutions

    NASA Technical Reports Server (NTRS)

    Musielak, Z. E.; Suess, S. T.

    1989-01-01

    Since the first paper by Barston (1964) on electrostatic oscillations in inhomogeneous cold plasmas, it has been commonly accepted that all finite layers with a continuous profile in pressure, density and magnetic field cannot support normal surface waves but instead the waves always decay through phase mixing (also called resonant absorption). The problem is reanalyzed by studying a compressible current sheet of a general structure with rotation of the magnetic field included. All inhomogeneous layers considered in the high-beta plasma limit do not support normal modes. However, in the limit of a low-beta plasma there are some cases when normal-mode solutions are recovered. The latter means that the process of resonant absorption is not common for all inhomogeneous layers.

  16. Selective, high-energy beta scintillation sensor for real-time, in situ characterization of uranium-238 and strontium-90

    SciTech Connect

    Schilk, A.J.; Abel, K.H.; Brown, D.P.; Thompson, R.C.; Knopf, M.A.; Hubbard, C.W.

    1994-04-01

    A novel scintillating-fiber sensor for detecting high-energy beta particles has been designed and built at the Pacific Northwest Laboratory to characterize {sup 238}U and {sup 90}Sr in surface soils. High-energy betas generate unique signals as they pass through multiple layers of scintillating fibers that make up the active region of the detector. Lower-energy beta particles, gamma rays, and cosmic-ray-generated particles comprise the majority of the background interferences. The resulting signals produced by these latter phenomena are effectively discriminated against due to the combination of the sensor`s multi-layer configuration and its interlayer coincidence/anti-coincidence circuitry.

  17. Lipid Bilayer Vesicle Fusion: Intermediates Captured by High-Speed Microfluorescence Spectroscopy

    PubMed Central

    Lei, Guohua; MacDonald, Robert C.

    2003-01-01

    The fusion of lipid bilayers can be visualized under the fluorescence microscope, but the process is very fast and requires special techniques for its study. It is reported here that vesicle fusion is susceptible to analysis by microspectrofluorometry and that for the first time, the entire fusion process has been captured. In the case of giant (>10-?m diameter) bilayer vesicles having a high density of opposite charge, fusion proceeds through stages of adhesion, flattening, hemifusion, elimination of the intervening septum, and uptake of excess membrane to generate a spherical product very rapidly. These investigations became possible with a fluorescence microscope that was modified for recording of images simultaneously with the collection of fluorescence emission spectra from many (>100) positions along the fusion axis. Positively-charged vesicles, composed of O-ethylphosphatidylcholine and dioleoylphosphatidylcholine, were labeled with a carbocyanine fluorophore. Negatively-charged vesicles, composed of dioleoylphosphatidylglycerol and dioleoylphosphatidylcholine, were labeled with a rhodamine fluorophore that is a resonance energy transfer acceptor from the carbocyanine fluorophore. An electrophoretic chamber allowed selection of pairs of vesicles to be brought into contact and examined. Spectral changes along the axis of fusion were captured at high speed (a few ms/frame) by operating a sensitive digital camera in the virtual-chip mode, a software/hardware procedure that permits rapid readout of selected regions of interest and by pixel binning along the spectral direction. Simultaneously, color images were collected at video rates (30 frame/s). Comparison of the spectra and images revealed that vesicle fusion typically passes through a hemifusion stage and that the time from vesicle contact to fusion is <10 ms. Fluorescence spectra are well suited to rapid collection in the virtual-chip mode because spectra (in contrast to images) are accurately characterized with a relatively small number of points and interfering signals can be removed by judicious choice of barrier filters. The system should be especially well-suited to phenomena exhibiting rapid fluorescence change along an axis; under optimal conditions, it is possible to obtain sets of spectra (wavelength range of ?150 nm) at >100 positions along a line at rates >1000 frames/s with a spectral resolution of ?10 nm and spatial resolution at the limit of the light microscope (?0.2 ?m). PMID:12944275

  18. Development of a high resolution beta camera for a direct measurement of positron distribution on brain surface

    SciTech Connect

    Yamamoto, S. [Kobe City College of Technology, Nishi-ku (Japan); Seki, C.; Kashikura, K. [Akita Lab. (Japan)] [and others

    1996-12-31

    We have developed and tested a high resolution beta camera for a direct measurement of positron distribution on brain surface of animals. The beta camera consists of a thin CaF{sub 2}(Eu) scintillator, a tapered fiber optics plate (taper fiber) and a position sensitive photomultiplier tube (PSPMT). The taper fiber is the key component of the camera. We have developed two types of beta cameras. One is 20mm diameter field of view camera for imaging brain surface of cats. The other is 10mm diameter camera for that of rats. Spatial resolutions of beta camera for cats and rats were 0.8mm FWHM and 0.5mm FWHM, respectively. We confirmed that developed beta cameras may overcome the limitation of the spatial resolution of the positron emission tomography (PET).

  19. High thermal conductivity of graphite fiber silicon carbide composites for fusion reactor application

    Microsoft Academic Search

    L. L. Snead; M. Balden; R. A. Causey; H. Atsumi

    2002-01-01

    The benefits of using CVI SiC\\/graphite fiber composites as low tritium retaining, high thermal conductivity composites for fusion applications are presented. Three-dimensional woven composites have been chemically vapor infiltrated with SiC and their thermophysical properties measured. One material used an intermediate grade graphite fiber in all directions (Amoco P55) while a second material used very high thermal conductive fiber (Amoco

  20. Thermal and structural design aspects of high-temperature blankets for fusion synfuel production

    SciTech Connect

    Powell, J.R.; Fillo, J.A.; Reich, M.

    1981-01-01

    The most promising process, high temperature electrolysis (HTE) of steam at temperatures of greater than or equal to 1000/sup 0/C is examined. In HTE, a large fraction (up to approx. 50%) of the energy input to split water to hydrogen and oxygen comes from thermal energy. For the projected operating conditions achieved by high temperature fusion blankets, overall efficiencies for hydrogen production should be on the order of 60%. The design, thermal-hydraulics, and materials for such blankets are discussed.

  1. Physics of laser fusion. Volume III. High-power pulsed lasers

    SciTech Connect

    Holzrichter, J.F.; Eimerl, D.; George, E.V.; Trenholme, J.B.; Simmons, W.W.; Hunt, J.T.

    1982-09-01

    High-power pulsed lasers can deliver sufficient energy on inertial-confinement fusion (ICF) time scales (0.1 to 10 ns) to heat and compress deuterium-tritium fuel to fusion-reaction conditions. Several laser systems have been examined, including Nd:glass, CO/sub 2/, KrF, and I/sub 2/, for their ICF applicability. A great deal of developmental effort has been applied to the Nd:glass laser and the CO/sub 2/ gas laser systems; these systems now deliver > 10/sup 4/ J and 20 x 10/sup 12/ W to ICF targets. We are constructing the Nova Nd:glass laser at LLNL to provide > 100 kJ and > 100 x 10/sup 12/ W of 1-..mu..m radiation for fusion experimentation in the mid-1980s. For ICF target gain > 100 times the laser input, we expect that the laser driver must deliver approx. 3 to 5 MJ of energy on a time scale of 10 to 20 ns. In this paper we review the technological status of fusion-laser systems and outline approaches to constructing high-power pulsed laser drivers.

  2. Beta processes in a high-temperature field and nuclear multibeta decays

    SciTech Connect

    Kopytin, I. V., E-mail: kopytin@yandex.ru; Hussain, Imad A. [Voronezh State University (Russian Federation)] [Voronezh State University (Russian Federation)

    2013-11-15

    Sources of the temperature dependence of rates of nuclear beta processes in matter of massive stars are systematized. Electron and positron beta decays and electron capture (K capture and the capture of unbound electrons) fromexcited nuclear states (thermal decays) are considered along with the photobeta decays from ground and excited nuclear states. The possible quantum degeneracy of an electron gas in matter and the degree of ionization of an atomic K shell in a high-temperature field are taken into account. For a number of multidecay odd-nuclei, the temperature dependences of the ratios of the total rates of their {beta}{sup -} decays to the sum of the total rates over all of decay modes for the same nuclei are calculated in the range of nuclear temperature from 2 to 3 Multiplication-Sign 10{sup 9} K. It is shown that the deviation of this ratio from the experimental value obtained at 'normal' temperature may be quite sizable. This circumstance should be taken into account in models that consider the problem of synthesis of nuclei in matter of massive stars.

  3. The use of neutral beam heating to produce high performance fusion plasmas, including the injection of tritium beams into the Joint European Torus (JET)

    SciTech Connect

    Thompson, E.; Stork, D.; de Esch, H.P.L. (JET Joint Undertaking, Abingdon, Oxon 0X14 3EA (United Kingdom)); the JET Team

    1993-07-01

    The neutral beam injection (NBI) system of the Joint European Torus (JET) [[ital Plasma] [ital Physics] [ital and] [ital Controlled] [ital Nuclear] [ital Fusion] [ital Research] (International Atomic Energy Agency, Vienna, 1985), Vol. 1, p. 11] has proved to be an extremely effective and flexible heating method capable of producing high performance plasmas and performing a wide range of related physics experiments. High fusion performance deuterium plasmas have been obtained in the hot-ion (HI) H-mode regime, using the central particle fueling and ion heating capabilities of the NBI system in low target density plasmas, and in the pellet enhanced plasma (PEP) H-mode regime, where the good central confinement properties of pellet fueled plasmas are exploited by additional heating and fueling as well as the transition to H mode. The HI H-mode configuration was used for the First Tritium Experiment (FTE) in JET in which NBI was used to heat the plasma using 14 D[sup 0] beams and, for the first time, to inject T[sup 0] using the two remaining beams. These plasmas had a peak fusion power of 1.7 MW from deuterium--tritium (D--T) fusion reactions. The capability for injection of a variety of beam species (H[sup 0], D[sup 0], [sup 3]He[sup 0], and [sup 4]He[sup 0]) has allowed the study of confinement variation with atomic mass and the simulation of [alpha]-particle transport. Additionally, the use of the NBI system has permitted an investigation of the plasma behavior near the toroidal [beta] limit over a wide range of toroidal field strengths.

  4. Highly charged ions in magnetic fusion plasmas: research opportunities and diagnostic necessities

    NASA Astrophysics Data System (ADS)

    Beiersdorfer, P.

    2015-07-01

    Highly charged ions play a crucial role in magnetic fusion plasmas. These plasmas are excellent sources for producing highly charged ions and copious amounts of radiation for studying their atomic properties. These studies include calibration of density diagnostics, x-ray production by charge exchange, line identifications and accurate wavelength measurements, and benchmark data for ionization balance calculations. Studies of magnetic fusion plasmas also consume a large amount of atomic data, especially in order to develop new spectral diagnostics. Examples we give are the need for highly accurate wavelengths as references for measurements of bulk plasma motion, the need for accurate line excitation rates that encompass both electron-impact excitation and indirect line formation processes, for accurate position and resonance strength information of dielectronic recombination satellite lines that may broaden or shift diagnostic lines or that may provide electron temperature information, and the need for accurate ionization balance calculations. We show that the highly charged ions of several elements are of special current interest to magnetic fusion, notably highly charged ions of argon, iron, krypton, xenon, and foremost of tungsten. The electron temperatures thought to be achievable in the near future may produce W70+ ions and possibly ions with even higher charge states. This means that all but a few of the most highly charged ions are of potential interest as plasma diagnostics or are available for basic research.

  5. High-Damage-Threshold Pinhole for Glass Fusion Laser Applications

    SciTech Connect

    Kumit, N.A.; Letzring, S.A.; Johnson, R.P.

    1998-06-07

    We are investigating methods to fabricate high-damage-threshold spatial-filter pinholes that might not be susceptible to plasma closure for relatively high energies and long pulses. These are based on the observation that grazing-incidence reflection from glass can withstand in excess of 5 kJ/cm{sup 2} (normal to the beam) without plasma formation. The high damage threshold results from both the cos q spreading of the energy across the surface and the reflection of a large fraction of the energy from the surface, thereby greatly reducing the field strength within the medium.

  6. Identification and confirmation of molecular markers and orange flesh color associated with major QTL for high beta-carotene content in muskmelon 

    E-print Network

    Napier, Alexandra Bamberger

    2009-05-15

    -carotene content, flesh color, and flesh color intensity. Bulk segregent analysis was used with RAPD markers to identify molecular markers associated with high beta-carotene content. Flesh color and flesh color intensity both had significant relationships with beta...

  7. Advantages of high-field tokamaks for fusion reactor development

    Microsoft Academic Search

    D. R. Cohn; L. Bromberg

    1986-01-01

    High-field designs could reduce the cost and complexity of tokamak reactors. Moreover, the certainty of achieving required plasma performance could be increased. Strong Ohmic heating could eliminate or significantly decrease auxiliary heating power requirements and high values of ntE could be obtained in modest-size plasmas. Other potential advantages are reactor operation at modest values of ß, capability of higher power

  8. Effect of high spin states on fusion in heavy ion collisions

    SciTech Connect

    Rajasekaran, M.; Arunachalam, N.; Devanathan, V.

    1987-11-01

    The behavior of very high rotational states of the highly excited compound nuclear systems formed in fusion reactions is studied in the framework of the statistical theory. The very high spin states populated in these reactions results in the observation of phenomena like backbending and yrast traps. The experimental data on the angular momentum limitation on fusion probability are reproduced at higher entropy values. Shape transitions are observed for the systems /sup 12/C+/sup 12/C, /sup 16/O+/sup 16/O, /sup 18/O+/sup 18/O, and /sup 40/Ca+/sup 40/Ca. We predict a shift in the yrast minima towards higher angular momentum states in the case of /sup 40/Ca+/sup 40/Ca with the increase in the excitation energy and the entropy of the compound nuclear system. Lines of constant entropy or constant level density are found to be almost equally spaced.

  9. Final Report on The Theory of Fusion Plasmas

    SciTech Connect

    Steven C. Cowley

    2008-06-17

    Report describes theoretical research in the theory of fusion plasmas funded under grant DE-FG02-04ER54737. This includes work on: explosive instabilities, plasma turbulence, Alfven wave cascades, high beta (pressure) tokamaks and magnetic reconnection. These studies have lead to abetter understanding of fusion plasmas and in particular the future behavior of ITER. More than ten young researchers were involved in this research -- some were funded under the grant.

  10. Beta-adrenergic receptor mediated protection against doxorubicin-induced apoptosis in cardiomyocytes: the impact of high ambient glucose.

    PubMed

    Yano, Naohiro; Suzuki, Daisuke; Endoh, Masayuki; Tseng, Andy; Stabila, Joan P; McGonnigal, Bethany G; Zhao, Ting C; Padbury, James F; Tseng, Yi-Tang

    2008-12-01

    Recent studies have demonstrated that the beta2-adrenergic receptor (beta2AR)-Galphai signaling pathway exerts a cardiac antiapoptotic effect. The goals of this study were to determine the intracellular signaling factors involved in beta2AR-mediated protection against doxorubicin-induced apoptosis in H9c2 cardiomyocyte and explore the impact of high ambient glucose on the antiapoptotic effect. Under physiological glucose environment (100 mg/dl), beta2AR stimulation prevented doxorubicin-induced apoptosis, which was attenuated by cotreatment with wortmannin, a phosphoinositide 3-kinase (PI3K) inhibitor, or transfection of a dominant-negative Akt. Inhibition of Src kinase with 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d] pyrimidine or cSrc small interfering RNA 32 also attenuated the antiapoptotic effect. Inhibition of platelet-derived growth factor receptor (PDGFR) with AG1296 reversed the beta2AR-induced antiapoptotic effect. Transfection of an active Src cDNA (Y529F) alone was sufficient to render the cells resistant to apoptosis, and the resistance was blocked by wortmannin. Transfection of an active PI3K minigene (iSH2-p110) alone also induced resistance to apoptosis, and the resistance was reversed by an Akt-inhibitor but not by AG1296. High ambient glucose (450 mg/dl) caused two major effects: 1) it significantly reduced betaAR-induced PDGFR phosphorylation, Src kinase activity, and activation of PI3K signaling pathway; and 2) it partially attenuated beta2AR-induced antiapoptotic effect. These data provide in vitro evidence supporting a signaling cascade by which beta2AR exerts a protective effect against doxorubicin-induced apoptosis via sequential involvement of Galphai, Gbetagamma, Src, PDGFR, PI3K, and Akt. High ambient glucose significantly attenuates beta2AR-mediated cardioprotection by suppressing factors involved in this cascade including PDGFR, Src, and PI3K/Akt. PMID:18719028

  11. INFORM Lab: a testbed for high-level information fusion and resource management

    NASA Astrophysics Data System (ADS)

    Valin, Pierre; Guitouni, Adel; Bossé, Eloi; Wehn, Hans; Happe, Jens

    2011-05-01

    DRDC Valcartier and MDA have created an advanced simulation testbed for the purpose of evaluating the effectiveness of Network Enabled Operations in a Coastal Wide Area Surveillance situation, with algorithms provided by several universities. This INFORM Lab testbed allows experimenting with high-level distributed information fusion, dynamic resource management and configuration management, given multiple constraints on the resources and their communications networks. This paper describes the architecture of INFORM Lab, the essential concepts of goals and situation evidence, a selected set of algorithms for distributed information fusion and dynamic resource management, as well as auto-configurable information fusion architectures. The testbed provides general services which include a multilayer plug-and-play architecture, and a general multi-agent framework based on John Boyd's OODA loop. The testbed's performance is demonstrated on 2 types of scenarios/vignettes for 1) cooperative search-and-rescue efforts, and 2) a noncooperative smuggling scenario involving many target ships and various methods of deceit. For each mission, an appropriate subset of Canadian airborne and naval platforms are dispatched to collect situation evidence, which is fused, and then used to modify the platform trajectories for the most efficient collection of further situation evidence. These platforms are fusion nodes which obey a Command and Control node hierarchy.

  12. The NSTX Research Program and Progress Towards an Attractive High Beta Operating Scenario

    NASA Astrophysics Data System (ADS)

    Synakowski, E. J.; Peng, Y.-K. M.

    2001-10-01

    The past year of operations on NSTX saw the advent of high power neutral beam heating (up to 4.7 MW), and research aimed at developing the capability of high harmonic fast wave heating (ultimately 6 MW) and current drive. This research, as well as work in non-inductive plasma startup and boundary physics, enables the start of the assessment of the requirements for long pulse operation at high beta and high edge heat fluxes. Efforts necessary to make this assessment include topical research in MHD stability, transport, current initiation and sustainment, and boundary physics. It also includes dedicated efforts to integrate aspects of each scientific topic specifically with this goal in mind. Presented is a summary of NSTX research over a wide range of scientific topical areas in the past year and a description of next year’s plan, with emphasis on the assessment of the requirements for this integration.

  13. Alternate applications of fusion power: development of a high-temperature blanket for synthetic-fuel production

    SciTech Connect

    Howard, P.A.; Mattas, R.F.; Krajcinovic, D.; DePaz, J.; Gohar, Y.

    1981-11-01

    This study has shown that utilization of the unique features of a fusion reactor can result in a novel and potentially economical method of decomposing steam into hydrogen and oxygen. Most of the power of fusion reactors is in the form of energetic neutrons. If this power could be used to produce high temperature uncontaminated steam, a large fraction of the energy needed to decomposee the steam could be supplied as thermal energy by the fusion reaction. Proposed high temperature electrolysis processes require steam temperature in excess of 1000/sup 0/C for high efficiency. The design put forth in this study details a system that can accomplish that end.

  14. beta2-Microglobulin production by highly purified human T and B lymphocytes in cell culture stimulated with various mitogens.

    PubMed Central

    Kin, K; Kasahara, T; Itoh, Y; Sakurabayashi, I; Kawai, T; Morita, M

    1979-01-01

    This study attempts to evaluate beta2-microglobulin production by highly purified (greater than 98%) peripheral and tonsil T and B lymphocytes cultured with various mitogens. beta2-Microglobulin was measured by the radioimmunoassay method. It was found that PHA and Con A markedly stimulated beta2-microglobulin production in cultures of T but not B lymphocytes. B lymphocytes were greatly activated, on the other hand, by Staphylococcus aureau Cowan I organisms cSpA), though the level of beta2-microglobulin production was less than that observed in PHA- and Con A-stimulated T lymphocytes. PWM only slightly increased beta2-microglobulin production of T lymphocytes, although the incorporation of [3H]-thymidine was highly enhanced. The highest level of beta2-microglobulin obtained with PHA or Con A was observed when the T/B lymphocyte ratio was between 90/10 and 80/20. These results lead to the conclusion that: (1) SpA is a specific mitogen for B lymphocytes, and its mitogenicity is independent of the presence of T lymphocytes, while PHA, Con A, and PWM are ineffective as stimulants of B lymphocytes; (2) the beta2-microglobulin producing ability of B lymphocytes is less than that of T lymphocytes, even when the lymphocytes are markedly activated; (3) the beta2-microglobulin production and DNA synthesis by T lymphocytes is markedly enhanced by the helper effect of B lymphocytes; (4) the level of beta2-microglobulin production reflects lymphocyte activation, especially in T lymphocytes stimulated with PHA or Con A. PMID:84785

  15. High LET Radiation Can Enhance TGF(Beta) Induced EMT and Cross-Talk with ATM Pathways

    NASA Technical Reports Server (NTRS)

    Wang, Minli; Hada, Megumi; Huff, Janice; Pluth, Janice M.; Anderson, Janniffer; ONeill, Peter; Cucinotta, Francis A.

    2010-01-01

    The TGF(Beta) pathway has been shown to regulate or directly interact with the ATM pathway in the response to radiation in mammary epithelial cells. We investigated possible interactions between the TGF(Beta) and ATM pathways following simulated space radiation using hTERT immortalized human esophageal epithelial cells (EPC-hTERT), mink lung epithelial cells (Mv1lu), and several human fibroblast cell lines. TGF(Beta) is a key modulator of the Epithelial-Mesenchymal Transition (EMT), important in cancer progression and metastasis. The implication of EMT by radiation also has several lines of developing evidence, however is poorly understood. The identification of TGF(Beta) induced EMT can be shown in changes to morphology, related gene over expression or down regulation, which can be detected by RT-PCR, and immunostaining and western blotting. In this study, we have observed morphologic and molecular alternations consistent with EMT after Mv1lu cells were treated with TGF(Beta) High LET radiation enhanced TGF(Beta) mediated EMT with a dose as low as 0.1Gy. In order to consider the TGF(Beta) interaction with ATM we used a potent ATM inhibitor Ku55933 and investigated gene expression changes and Smad signaling kinetics. Ku559933 was observed to reverse TGF(Beta) induced EMT, while this was not observed in dual treated cells (radiation+TGF(Beta)). In EPC-hTERT cells, TGF(Beta) alone was not able to induce EMT after 3 days of application. A combined treatment with high LET, however, significantly caused the alteration of EMT markers. To study the function of p53 in the process of EMT, we knocked down P53 through RNA interference. Morphology changes associated with EMT were observed in epithelial cells with silenced p53. Our study indicates: high LET radiation can enhance TGF(Beta) induced EMT; while ATM is triggering the process of TGF(Beta)-induced EMT, p53 might be an essential repressor for EMT phenotypes.

  16. General mutagenesis/gene expression procedure for the construction of variant immunoglobulin domains in Escherichia coli. Production of the Bence-Jones protein REIv via fusion to beta-lactamase.

    PubMed

    Kolmar, H; Ferrando, E; Hennecke, F; Wippler, J; Fritz, H J

    1992-11-20

    A novel mutagenesis/gene expression and protein purification scheme was established for ready construction and purification of variant immunoglobulin domains in Escherichia coli. This procedure, which has been applied to the production of the VK domain of the Bence-Jones protein REI and structural variants of it, rests on the synthesis of chimeric proteins with beta-lactamase as the amino-terminal fusion partner. The beta-lactamase not only guides the fusion protein to the periplasmic space, but also allows affinity chromatography on phenylboronate-Sepharose as an efficient and general purification procedure, independent of hypervariable loop structure. The REIv protein was released from the purified fusion protein by site-specific proteolytic cleavage. After a second passage through the same affinity column, up to 2 mg of pure REIv was obtained starting from one liter of bacterial liquid culture. A scheme of oligonucleotide-directed mutagenesis was introduced for replacement of DNA stretches encoding hypervariable loops. It exploits a colony color genetic screen and can be applied to any DNA sequence replacement. Mutations can be constructed by simple co-transformation with single-stranded template DNA and mutagenic oligonucleotide. PMID:1453448

  17. Development of a new concept ion source for high performance inertial electrostatic confinement fusion device

    Microsoft Academic Search

    Y. Taniuchi; Y. Matsumura; K. Taira; M. Utsumi

    2010-01-01

    An Inertial Electrostatic Confinement Fusion (IECF) is a concept for retaining a plasma using an electrostatic potential well. It consists of two spherical grids inside the vacuum chamber. An insulated high voltage feed-through supplies power to the inner grid cathode, and a small amount of deuterium or tritium gas (0.1-1.0 Pa) is fed into the chamber. When the voltage is

  18. High temperature surface effects of He + implantation in ICF fusion first wall materials

    Microsoft Academic Search

    Samuel J. Zenobia; R. F. Radel; B. B. Cipiti; Gerald L. Kulcinski

    2009-01-01

    The first wall armor of the inertial confinement fusion reactor chambers must withstand high temperatures and significant radiation damage from target debris and neutrons. The resilience of multiple materials to one component of the target debris has been investigated using energetic (20–40keV) helium ions generated in the inertial electrostatic confinement device at the University of Wisconsin. The materials studied include:

  19. Anomalous fast ion losses at high ? on the tokamak fusion test reactor

    NASA Astrophysics Data System (ADS)

    Fredrickson, E. D.; Bell, M. G.; Budny, R. V.; Darrow, D. S.; White, R.

    2015-03-01

    This paper describes experiments carried out on the Tokamak Fusion Test Reactor (TFTR) [R. J. Hawryluk et al., Plasma Phys. Controlled Fusion 33, 1509 (1991)] to investigate the dependence of ?-limiting disruption characteristics on toroidal field strength. The hard disruptions found at the ?-limit in high field plasmas were not found at low field, even for ?'s 50% higher than the empirical ?-limit of ?n ? 2 at high field. Comparisons of experimentally measured ?'s to TRANSP simulations suggest anomalous loss of up to half of the beam fast ions in the highest ?, low field shots. The anomalous transport responsible for the fast ion losses may at the same time broaden the pressure profile. Toroidal Alfvén eigenmodes, fishbone instabilities, and Geodesic Acoustic Modes are investigated as possible causes of the enhanced losses. Here, we present the first observations of high frequency fishbones [F. Zonca et al., Nucl. Fusion 49, 085009 (2009)] on TFTR. The interpretation of Axi-symmetric Beam-driven Modes as Geodesic Acoustic Modes and their possible correlation with transport barrier formation are also presented.

  20. The national spherical torus experiment (NSTX) research programme and progress towards high beta, long pulse operating scenarios

    Microsoft Academic Search

    E. J. Synakowski; M. G. Bell; R. E. Bell; T. Bigelow; M. Bitter; W. Blanchard; J. Boedo; C. Bourdelle; C. Bush; D. S. Darrow; E. D. Fredrickson; D. A. Gates; M. Gilmore; L. R. Grisham; J. C. Hosea; D. W. Johnson; R. Kaita; S. M. Kaye; S. Kubota; H. W. Kugel; B. P. LeBlanc; K. Lee; R. Maingi; J. Manickam; R. Maqueda; E. Mazzucato; S. S. Medley; J. Menard; D. Mueller; B. A. Nelson; C. Neumeyer; M. Ono; F. Paoletti; H. K. Park; S. F. Paul; Y.-K. M. Peng; C. K. Phillips; S. Ramakrishnan; R. Raman; A. L. Roquemore; A. Rosenberg; P. M. Ryan; S. A. Sabbagh; C. H. Skinner; V. Soukhanovskii; T. Stevenson; D. Stutman; D. W. Swain; G. Taylor; A. Von Halle; J. Wilgen; M. Williams; J. R. Wilson; S. J. Zweben; R. Akers; R. E. Barry; P. Beiersdorfer; J. M. Bialek; B. Blagojevic; P. T. Bonoli; R. Budny; M. D. Carter; C. S. Chang; J. Chrzanowski; W. Davis; B. Deng; E. J. Doyle; L. Dudek; J. Egedal; R. Ellis; J. R. Ferron; M. Finkenthal; J. Foley; E. Fredd; A. Glasser; T. Gibney; R. J. Goldston; R. Harvey; R. E. Hatcher; R. J. Hawryluk; W. Heidbrink; K. W. Hill; W. Houlberg; T. R. Jarboe; S. C. Jardin; H. Ji; M. Kalish; J. Lawrance; L. L. Lao; K. C. Lee; F. M. Levinton; N. C. Luhmann; R. Majeski; R. Marsala; D. Mastravito; T. K. Mau; B. McCormack; M. M. Menon; O. Mitarai; M. Nagata; N. Nishino; M. Okabayashi; G. Oliaro; D. Pacella; R. Parsells; T. Peebles; B. Peneflor; D. Piglowski; R. Pinsker; G. D. Porter; A. K. Ram; M. Redi; M. Rensink; G. Rewoldt; J. Robinson; P. Roney; M. Schaffer; K. Shaing; S. Shiraiwa; P. Sichta; D. Stotler; B. C. Stratton; Y. Takase; X. Tang; R. Vero; W. R. Wampler; G. A. Wurden; X. Q. Xu; J. G. Yang; L. Zeng; W. Zhu

    2003-01-01

    A major research goal of the national spherical torus experiment is establishing long-pulse, high beta, high confinement operation and its physics basis. This research has been enabled by facility capabilities developed during 2001 and 2002, including neutral beam (up to 7 MW) and high harmonic fast wave (HHFW) heating (up to 6 MW), toroidal fields up to 6 kG, plasma

  1. NSTX Research Aimed at High Beta, Long Pulse Operations: Recent Results and Plans

    NASA Astrophysics Data System (ADS)

    Synakowski, E. J.

    2002-11-01

    Central to achieving long-pulse, high-beta plasmas in NSTX is integrating the results of topical research in MHD, transport, heating, current drive and boundary physics. For example, the high-performance plasmas recently achieved demonstrate the effectiveness of MHD wall stabilization, which depends on the profiles and thus the transport. Wall stabilization studies are part of a broader set of MHD research on beta limiting modes and the possible influences of fast ion-induced instabilities. Confinement research includes systematic studies of core thermal and particle transport in L- and H- modes, and of turbulence near and at the plasma boundary. Current drive requirements and possibilities for future devices are being assessed through studies of HHFW physics, EBW emission, non-inductive startup and analysis of the bootstrap current. Boundary research includes studies of heat flux scaling and mitigation, and assessment of particle control requirements. Recent research results, and how they form the basis of a plan for research on NSTX that carries through the middle part of this decade, will be discussed.

  2. Recent Results and Plans in NSTX Research Aimed at High Beta, Long Pulse Scenarios

    NASA Astrophysics Data System (ADS)

    Synakowski, E. J.

    2004-11-01

    Presented here are highlights from 2004's research effort, with a discussion of implications for the long-range research plan and goals. The 2004 run period saw increases in operating space that enabled extensions of studies of high beta plasma science. In establishing the physics basis for long pulse, high beta ST operations, advantage was taken of this with an expanded set of diagnostic, analysis, and control tools. Research in 2004 focused on critical elements of transport, including turbulence measurements from core to edge, and MHD studies that included the first application of active field perturbation coils. Solenoid-free startup and sustainment research focused on exploration of new startup techniques, as well as EBW research aimed at assessing the viability of EBW current drive. Boundary physics studies now include the start of a lithium coatings program using pellet injection. A description of progress and issues regarding each of these topics, especially as they pertain to space expansion and understanding of the physics required for sensible extrapolation to new devices, will be outlined.

  3. Development of superconductors for applications in high-field, high-current-density magnets for fusion research

    Microsoft Academic Search

    L. T. Summers; J. R. Miller

    1986-01-01

    The development of large-bore, high-field magnets for fusion energy applications requires a system approach to both magnet and conductor design. At Lawrence Livermore National Laboratory (LLNL), the criteria used to choose superconductors include: strain tolerance, radiation tolerance, heat removal, stability, fabricability, and cost. We report on the performance of industrially produced, prototype, Ti-modified NbâSn wires developed with LLNL support. Wire

  4. Design and identification of a high efficient formic acid cleavage site for separation of fusion protein.

    PubMed

    Zhang, Huaguang; Li, Mei; Shi, Shuangfeng; Yin, Chao; Jia, Shirong; Wang, Zhixing; Liu, Yuhui

    2015-02-01

    The release of target protein with high efficiency and low cost from expressed fusion protein is a key requirement for commercial production of target proteins. To establish such a cleavage system, we have designed four formic acid (FA) cleavage sites C1 (DPDPDP), C2 (DPPDPP), C3 (DDDDPI) and C4 (IVDPNP), which was placed in between the E and G fusion protein. Four expression vectors were individually constructed and expressed in Escherichia coli. Purified proteins were reacted with a series of FA concentrations or under different temperatures followed by SDS-PAGE gel electrophoresis to verify the degree of cleavage efficiency. Results showed that the C2 was the most efficient site compared with the other three. After optimization of cleavage conditions for E-C2-G, the cleavage efficiently could reach as high as 87.3% within 2.5 h in 37% FA at 45 °C. Comparing with previous reports, a significant reduction (26%) of FA concentration at a lower temperature in a short duration of reaction (18 times less) was achieved. We believe the cleavage site of DPPDPP identified in this study can be used in the large-scale production of valuable fusion proteins to save the cost, time and energy. PMID:25487032

  5. First direct double-beta decay Q-value measurement of the neutrinoless double-beta decay candidate selenium-82 and development of a high-precision magnetometer

    NASA Astrophysics Data System (ADS)

    Lincoln, David Louis

    The results of recent neutrino oscillation experiments indicate that the mass of the neutrino is nonzero. The mass hierarchy and the absolute mass scale of the neutrino, however, are unknown. Furthermore, the nature of the neutrino is also unknown; is it a Dirac or Majorana particle, i.e. is the neutrino its own antiparticle? If experiments succeed in observing neutrinoless double-beta decay, there would be evidence that the neutrino is a Majorana particle and that conservation of total lepton number is violated - a situation forbidden by the Standard Model of particle physics. In support of understanding the nature of the neutrino, the first direct double-beta decay Q-value measurement of the neutrinoless double-beta decay candidate 82Se was performed [D. L. Lincoln et al., Physical Review Letters 110, 012501 (2013)]. The measurement was carried out using Penning trap mass spectrometry, which has proven to be the most precise and accurate method for determining atomic masses and therefore, Q-values. The high-precision measurement resulted in a Q-value with nearly an order of magnitude improvement in precision over the literature value. This result is important for the theoretical interpretations of the observations of current and future double-beta decay studies. It is also important for the design of future and next-generation double-beta decay experiments, such as SuperNEMO, which is planned to observe 100 - 200 kg of 82Se for five years. The high-precision measurement was performed at the Low-Energy Beam and Ion Trap (LEBIT) facility located at the National Superconducting Cyclotron Laboratory (NSCL). The LEBIT facility was the first Penning trap mass spectrometry facility to utilize rare isotope beams produced via fast fragmentation and has measured nearly 40 rare isotopes since its commissioning in 2005. To further improve the LEBIT facility's performance, technical improvements to the system are being implemented. As part of this work, to increase the precision of measurements and to maximize the use of beam time, a high-precision magnetometer was developed. The magnetometer will monitor drifts in the LEBIT facility's 9.4 T superconducting magnet to a relative precision on the order of 1 part in 108. This will eliminate the need to perform reference measurements during an experiment, thus expanding the LEBIT facility's measurement capabilities and scientific output.

  6. Translation and Capture of High-Density Field Reversed Configurations for Magnetized Target Fusion

    NASA Astrophysics Data System (ADS)

    Sieck, P. E.; Intrator, T. P.; Wurden, G. A.; Waganaar, W. J.; Cortez, R. J.; Oberto, R. J.

    2009-11-01

    A physics demonstration of Magnetized Target Fusion (MTF) is being pursued by a collaborative team from Los Alamos National Laboratory and Air Force Research Laboratory. The LANL facility, known as the Field Reversed eXperiment --- Liner (FRX-L), focuses on the physics of producing high-density Field Reversed Configurations (FRCs), translating them, and capturing them in a static flux conserver. Observations of FRCs in translation and capture will be presented. The data suggest FRCs are formed at density above 10^22/m^3, translate over the one meter chamber at 97 km/s, and a captured portion having radius 4 cm lives for 10?s. The repeatability of FRC capture will be discussed in context of that necessary for MTF. This work is supported by the Office of Fusion Energy Sciences, and DOE/LANL contract DE-AC52-06NA25396.

  7. Irradiation of commercial, high-Tc superconducting tape for potential fusion applications: electromagnetic transport properties

    SciTech Connect

    Aytug, Tolga [ORNL; Gapud, Albert A. [University of South Alabama, Mobile; List III, Frederick Alyious [ORNL; Leonard, Keith J [ORNL; Rupich, Marty [American Superconductor Corporation, Westborough, MA; Zhang, Yanwen [ORNL; Greenwood, N T [University of South Alabama, Mobile; Alexander, J A [University of South Alabama, Mobile; Khan, A [University of South Alabama, Mobile

    2015-01-01

    Effects of low dose irradiation on the electrical transport current properties of commercially available high-temperature superconducting, coated-conductor tapes were investigated, in view of potential applications in the irradiative environment of fusion reactors. Three different tapes, each with unique as-grown flux-pinning structures, were irradiated with Au and Ni ions at energies that provide a range of damage effects, with accumulated damage levels near that expected for conductors in a fusion reactor environment. Measurements using transport current determined the pre- and post-irradiation resistivity, critical current density, and pinning force density, yielding critical temperatures, irreversibility lines, and inferred vortex creep rates. Results show that at the irradiation damage levels tested, any detriment to as-grown pre-irradiation properties is modest; indeed in one case already-superior pinning forces are enhanced, leading to higher critical currents.

  8. Universal antibodies against the highly conserved influenza fusion peptide cross-neutralize several subtypes of influenza A virus

    SciTech Connect

    Hashem, Anwar M. [Centre for Vaccine Evaluation, Biologics and Genetic Therapies Directorate, HPFB, Health Canada, Ottawa, ON (Canada) [Centre for Vaccine Evaluation, Biologics and Genetic Therapies Directorate, HPFB, Health Canada, Ottawa, ON (Canada); Department of Microbiology, Faculty of Medicine, King Abdulaziz University, Jeddah (Saudi Arabia); Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON (Canada); Van Domselaar, Gary [National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB (Canada)] [National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB (Canada); Li, Changgui; Wang, Junzhi [National Institute for the Control of Pharmaceutical and Biological Products, Beijing (China)] [National Institute for the Control of Pharmaceutical and Biological Products, Beijing (China); She, Yi-Min; Cyr, Terry D. [Centre for Vaccine Evaluation, Biologics and Genetic Therapies Directorate, HPFB, Health Canada, Ottawa, ON (Canada)] [Centre for Vaccine Evaluation, Biologics and Genetic Therapies Directorate, HPFB, Health Canada, Ottawa, ON (Canada); Sui, Jianhua [Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Department of Medicine, Harvard Medical School, 44 Binney Street, Boston, MA 02115 (United States)] [Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Department of Medicine, Harvard Medical School, 44 Binney Street, Boston, MA 02115 (United States); He, Runtao [National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB (Canada)] [National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB (Canada); Marasco, Wayne A. [Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Department of Medicine, Harvard Medical School, 44 Binney Street, Boston, MA 02115 (United States)] [Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Department of Medicine, Harvard Medical School, 44 Binney Street, Boston, MA 02115 (United States); Li, Xuguang, E-mail: Sean.Li@hc-sc.gc.ca [Centre for Vaccine Evaluation, Biologics and Genetic Therapies Directorate, HPFB, Health Canada, Ottawa, ON (Canada) [Centre for Vaccine Evaluation, Biologics and Genetic Therapies Directorate, HPFB, Health Canada, Ottawa, ON (Canada); Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON (Canada)

    2010-12-10

    Research highlights: {yields} The fusion peptide is the only universally conserved epitope in all influenza viral hemagglutinins. {yields} Anti-fusion peptide antibodies are universal antibodies that cross-react with all influenza HA subtypes. {yields} The universal antibodies cross-neutralize different influenza A subtypes. {yields} The universal antibodies inhibit the fusion process between the viruses and the target cells. -- Abstract: The fusion peptide of influenza viral hemagglutinin plays a critical role in virus entry by facilitating membrane fusion between the virus and target cells. As the fusion peptide is the only universally conserved epitope in all influenza A and B viruses, it could be an attractive target for vaccine-induced immune responses. We previously reported that antibodies targeting the first 14 amino acids of the N-terminus of the fusion peptide could bind to virtually all influenza virus strains and quantify hemagglutinins in vaccines produced in embryonated eggs. Here we demonstrate that these universal antibodies bind to the viral hemagglutinins in native conformation presented in infected mammalian cell cultures and neutralize multiple subtypes of virus by inhibiting the pH-dependant fusion of viral and cellular membranes. These results suggest that this unique, highly-conserved linear sequence in viral hemagglutinin is exposed sufficiently to be attacked by the antibodies during the course of infection and merits further investigation because of potential importance in the protection against diverse strains of influenza viruses.

  9. Creation of a high density, high flux target plasmoid for magneto-inertial fusion

    NASA Astrophysics Data System (ADS)

    Weber, Thomas; Intrator, Thomas; Sears, Jason

    2011-10-01

    Magneto-inertial fusion utilizes embedded magnetic fields to reduce thermal transport and enhance alpha particle heating during an implosion reducing the required areal density, implosion speed, and convergence for fusion ignition. This enables the use of efficient inexpensive pulsed power, reducing the gain required for breakeven (e.g. ?G = 0 . 5 * 10 (MIF), = 0 . 05 * 100 (ICF)). The FRX-L and FRCHX experiments at Los Alamos National Laboratory and the Air Force Research Laboratory at Kirtland AFB are investigating a subset of MIF called Magnetized Target Fusion (MTF) in which a Field Reversed Configuration (FRC) plasmoid is injected into a converging solid, conductive liner and compressed to fusion conditions. Traditional FRC formation techniques utilizing ringing- ? pre-ionization have proved to be incapable of forming target plasmoids with enough density and magnetic flux, limiting the particle inventory, confinement, and lifetime. An alternative formation technique utilizing magnetoplasmadynamic arc sources has been developed to increase the density and trapped flux of the target plasmoid. Plasma source technology and operation are presented, as well as changes to the target formation process, plasmoid characteristics, and implications to MTF. Work supported by the DOE, OFES, under LANS Contract No. DE-AC52-06NA25369. Public release number LA-UR 11-03950.

  10. Magnetospheres in the Labtoratory: Studying the Role of Ion Temperature Anisotropy in High Beta Plasmas

    NASA Astrophysics Data System (ADS)

    Scime, Earl

    1999-11-01

    The wide range of plasma regimes in the near-Earth space environment provide unparalleled opportunities for testing the predictions of theory and computation. Measurements and theory have yielded substantial insight into the macroscopic dynamics and structure of the terrestrial ionosphere, magnetosphere, and magnetotail, as well as of the solar wind. Unfortunately, nature's price for providing such a rich plasma environment is that the scientific paradigm of varying a single parameter in a controlled experiment and determining the consequences is extremely difficult to achieve in space plasma research. Thus, progress in understanding microscopic aspects of space plasmas has been more equivocal. This talk will focus on studies of electromagnetic ion temperature anisotropy driven instabilities in high beta, marginally collisional, magnetized plasmas. The experiments were performed in the West Virginia University Large Experiment on Anisotropies and Instabilities (LEIA). Typical steady state, LEIA argon plasma parameters are n ~ 10E12 cm-3, B ~ 40 G, electron temperature ~ 5 eV, parallel ion temperature ~ 0.2 eV, perpendicular ion temperature ~ 0.6 eV, electron beta ~ 0.1 , and parallel ion beta ~ 0.01. The parallel and perpendicular ion temperatures are determined by laser induced fluorescence. Radially resolved, two dimensional(parallel and perpendicular to the field) measurements of the ion distribution function are also routinely measured. Ion temperatures anisotropies (perpendicular over parallel) ranging from 1 to 20 have been observed and the upper bound on the anisotropy is observed to be inversely correlated with parallel ion beta as predicted by theory and computation. The inverse scaling of the upper bound on the ion temperature anisotropy is also consistent with magnetosheath observations by multiple spacecraft. Magnetic fluctuation measurements support the conclusion that anisotropy driven, electromagnetic instabilities exist in the plasma and that they play a role in limiting the ion temperature anisotropy. The experimental results also suggest that such constraints may be a fundamental property of all collisionless plasmas bearing such an anisotropy, including other laboratory plasmas as well as space and astrophysical domains not yet subject to in situ observations. Thus, the basic concept of short wavelength instabilities imposing anisotropy constraints may offer an alternative to the long-standing approach of using analogues of collision-dominated transport coefficients to express the consequences of small-scale, collective processes in the collisionless plasmas of space. This work supported by the National Science Foundation under grant ATM-9616467 and the U.S. Department of Energy under grant DE-FG02-97ER54420

  11. High-Pressure Tritium Targets for Research in Muon-Catalyzed Fusion

    SciTech Connect

    Perevozchikov, V.V. [Russian Federal Nuclear Center-All Russian Research Institute of Experimental Physics (Russian Federation); Yukhimchuk, A.A. [Russian Federal Nuclear Center-All Russian Research Institute of Experimental Physics (Russian Federation); Vinogradov, Yu.I. [Russian Federal Nuclear Center-All Russian Research Institute of Experimental Physics (Russian Federation)] (and others)

    2005-07-15

    The paper presents designs of a set of high-pressure targets developed by RFNC-VNIIEF and JINR collaboration to study muon-catalyzed fusion at high density of hydrogen isotopes in a wide temperature range. Designs, technical and operating characteristics of the targets and service results are described.In 1997-2002 these targets were used to measure basic characteristics of muon catalysis in pure deuterium, binary D/T mixture and triple H/D/T mixture as a function of density ([variant phi] = 0.2 - 1.2 LHD{sup *}), temperature (T = 20-800 K) and concentration of hydrogen isotopes in a mixture.

  12. High Current Density Beamlets from an RF Argon Source for Heavy Ion Fusion Applications

    SciTech Connect

    Kwan, J W; Grote, D P; Westenskow, G A

    2003-09-04

    In a new approach to develop high current beams for heavy ion fusion, beam current at about 0.5 ampere per channel can be obtained by merging an array of high current density beamlets of 5 mA each. We have done computer simulations to study the transport of high current density beamlets and the emittance growth due to this merging process. In our RF multicusp source experiment, we have produced a cluster of 61 beamlets using minimum gas flow. The current density from a 0.25 cm diameter aperture reached 100 mA/cm{sup 2}. The normalized emittance of 0.02 {pi}-mm-mrad corresponds to an equivalent ion temperature of 2.4 eV. These results showed that the RF argon plasma source is suitable for producing high current density beamlets that can be merged to form a high current high brightness beam for HIF application.

  13. High current density beamlets from RF Argon source for heavy ion fusion applications

    SciTech Connect

    Kwan, J.W.; Grote, D.P.; Westenskow, G.

    2003-08-01

    In a new approach to develop high current beams for heavy ion fusion, beam current at about 0.5 ampere per channel can be obtained by merging an array of high current density beamlets of 5 mA each. We have done computer simulations to study the transport of high current density beamlets and the emittance growth due to this merging process. In our RF multicusp source experiment, we have produced a cluster of 61 beamlets using minimum gas flow. The current density from a 0.25 cm diameter aperture reached 100 mA/cm{sup 2}. The normalized emittance of 0.02 {pi}-mm-mrad corresponds to an equivalent ion temperature of 2.4 eV. These results showed that the RF argon plasma source is suitable for producing high current density beamlets that can be merged to form a high current high brightness beam for HIF application.

  14. Numerical study of the Columbia high-beta device: Torus-II

    SciTech Connect

    Izzo, R.

    1981-01-01

    The ionization, heating and subsequent long-time-scale behavior of the helium plasma in the Columbia fusion device, Torus-II, is studied. The purpose of this work is to perform numerical simulations while maintaining a high level of interaction with experimentalists. The device is operated as a toroidal z-pinch to prepare the gas for heating. This ionization of helium is studied using a zero-dimensional, two-fluid code. It is essentially an energy balance calculation that follows the development of the various charge states of the helium and any impurities (primarily silicon and oxygen) that are present. The code is an atomic physics model of Torus-II. In addition to ionization, we include three-body and radiative recombination processes.

  15. F A T I G U E 2 0 0 2 HIGH-CYCLE FATIGUE OF BETA TITANIUM ALLOYS

    E-print Network

    Ritchie, Robert

    F A T I G U E 2 0 0 2 HIGH-CYCLE FATIGUE OF BETA TITANIUM ALLOYS J. O. Peters*+ , G. Lütjering*, R) properties of the high-strength titanium alloys -Cez and Ti-6246 (in two distinctly different + processed and processed conditions) with the conventional + titanium alloy Ti-6Al-4V (in a + processed condition

  16. Repetitively pulsed, high energy KrF lasers for inertial fusion energy

    NASA Astrophysics Data System (ADS)

    Myers, M. C.; Sethian, J. D.; Giuliani, J. L.; Lehmberg, R.; Kepple, P.; Wolford, M. F.; Hegeler, F.; Friedman, M.; Jones, T. C.; Swanekamp, S. B.; Weidenheimer, D.; Rose, D.

    2004-12-01

    Krypton fluoride (KrF) lasers produce highly uniform beams at 248 nm, allow the capability of 'zooming' the spot size to follow an imploding pellet, naturally assume a modular architecture and have been developed into a pulsed-power-based industrial technology that readily scales to a fusion power plant sized system. There are two main challenges for the fusion power plant application: to develop a system with an overall efficiency of greater than 6% (based on target gains of 100) and to achieve a durability of greater than 3 × 108 shots (two years at 5 Hz). These two issues are being addressed with the Electra (700 J, 5 Hz) and Nike (3000 J, single shot) KrF lasers at the Naval Research Laboratory. Based on recent advances in pulsed power, electron beam generation and transport, hibachi (foil support structure) design and KrF physics, wall plug efficiencies of greater than 7% should be achievable. Moreover, recent experiments show that it may be possible to realize long lived electron beam diodes using ceramic honeycomb cathodes and anode foils that are convectively cooled by periodically deflecting the laser gas. This paper is a summary of the progress in the development of the critical KrF technologies for laser fusion energy.

  17. Inertial Fusion and High-Energy-Density Science in the United States

    SciTech Connect

    Tarter, C B

    2001-09-06

    Inertial fusion and high-energy density science worldwide is poised to take a great leap forward. In the US, programs at the University of Rochester, Sandia National Laboratories, Los Alamos National Laboratory, Lawrence Livermore National Laboratory (LLNL), the Naval Research Laboratory, and many smaller laboratories have laid the groundwork for building a facility in which fusion ignition can be studied in the laboratory for the first time. The National Ignition Facility (NIF) is being built by the Department of Energy's National Nuclear Security Agency to provide an experimental test bed for the US Stockpile Stewardship Program (SSP) to ensure the dependability of the country's nuclear deterrent without underground nuclear testing. NIF and other large laser systems being planned such as the Laser MegaJoule (LMJ) in France will also make important contributions to basic science, the development of inertial fusion energy, and other scientific and technological endeavors. NIF will be able to produce extreme temperatures and pressures in matter. This will allow simulating astrophysical phenomena (on a tiny scale) and measuring the equation of state of material under conditions that exist in planetary cores.

  18. Purification, characterization, and substrate specificity of a novel highly glucose-tolerant beta-glucosidase from Aspergillus oryzae.

    PubMed

    Riou, C; Salmon, J M; Vallier, M J; Günata, Z; Barre, P

    1998-10-01

    Aspergillus oryzae was found to secrete two distinct beta-glucosidases when it was grown in liquid culture on various substrates. The major form had a molecular mass of 130 kDa and was highly inhibited by glucose. The minor form, which was induced most effectively on quercetin (3,3',4',5,7-pentahydroxyflavone)-rich medium, represented no more than 18% of total beta-glucosidase activity but exhibited a high tolerance to glucose inhibition. This highly glucose-tolerant beta-glucosidase (designated HGT-BG) was purified to homogeneity by ammonium sulfate precipitation, gel filtration, and anion-exchange chromatography. HGT-BG is a monomeric protein with an apparent molecular mass of 43 kDa and a pI of 4.2 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and isoelectric focusing polyacrylamide gel electrophoresis, respectively. Using p-nitrophenyl-beta-D-glucoside as the substrate, we found that the enzyme was optimally active at 50 degreesC and pH 5.0 and had a specific activity of 1,066 micromol min-1 mg of protein-1 and a Km of 0.55 mM under these conditions. The enzyme is particularly resistant to inhibition by glucose (Ki, 1. 36 M) or glucono-delta-lactone (Ki, 12.5 mM), another powerful beta-glucosidase inhibitor present in wine. A comparison of the enzyme activities on various glycosidic substrates indicated that HGT-BG is a broad-specificity type of fungal beta-glucosidase. It exhibits exoglucanase activity and hydrolyzes (1-->3)- and (1-->6)-beta-glucosidic linkages most effectively. This enzyme was able to release flavor compounds, such as geraniol, nerol, and linalol, from the corresponding monoterpenyl-beta-D-glucosides in a grape must (pH 2.9, 90 g of glucose liter-1). Other flavor precursors (benzyl- and 2-phenylethyl-beta-D-glucosides) and prunin (4',5,7-trihydroxyflavanone-7-glucoside), which contribute to the bitterness of citrus juices, are also substrates of the enzyme. Thus, this novel beta-glucosidase is of great potential interest in wine and fruit juice processing because it releases aromatic compounds from flavorless glucosidic precursors. PMID:9758774

  19. In vitro killing of parenteral beta-lactams against standard and high inocula of extended-spectrum beta-lactamase and non-esbl producing klebsiella pneumoniae

    Microsoft Academic Search

    David S Burgess; Ronald G Hall

    2004-01-01

    Minimum inhibitory concentrations and time-kill curves were performed against 8 Klebsiella pneumoniae (4 non-extended-spectrum beta-lactamase[ESBL] and 4 ESBL) for piperacillin\\/tazobactam (40\\/5 ?g\\/mL), cefepime (20 ?g\\/mL), and meropenem (4 ?g\\/mL) by using a standard and high inocula. Imipenem was evaluated only at the standard inoculum for the non-ESBL and ESBL isolates. Samples were withdrawn at 7 predetermined time-points over 24 hours

  20. High-Level Fusion: Issues in Developing a Formal Theory Paulo C. G. Costa, Kuo-Chu Chang, Kathryn Laskey, Tod Levitt, Wei Sun

    E-print Network

    Laskey, Kathryn Blackmond

    concentrated on lower-level data align- ment (e.g. multi-sensor data fusion, syntactic protocols, distributedHigh-Level Fusion: Issues in Developing a Formal Theory Paulo C. G. Costa, Kuo-Chu Chang, Kathryn demand an in- creasingly sophisticated level of interoperation and information fusion for an escalating

  1. Prospects for High Resolution Neutron Spectroscopy on high power fusion devices in view of the recent diagnostic developments at JET

    SciTech Connect

    Ericsson, Goeran; Sunden, E. Andersson; Conroy, S.; Johnson, M. Gatu; Giacomelli, L.; Hellesen, C.; Hjalmarsson, A.; Ronchi, E.; Sjsoetrand, H.; Weiszflog, M.; Kaellne, J. [INF, Uppsala University, EURATOM-VR Association, Uppsala (Sweden); Gorini, G.; Ognissanto, F.; Tardocchi, M. [Istituto di Fisica del Plasma, EURATOM-ENEA-CNR Association, Milan (Italy); Angelone, M. [Association EURATOM-ENEA, Via E. Fermi, Frascati, Rome (Italy); Popovichev, S. [EURATOM/UKAEA Fusion Association, Culham Science Centre, Abingdon (United Kingdom)

    2008-03-12

    An evaluation of three different candidate techniques for a 14-MeV High Resolution Neutron Spectrometer for a high power fusion device is presented. The performance is estimated for a modelled neutron emission for ITER plasma scenario 4. As performance indicators we use the estimated time-resolution achieved in measurements of three plasma parameters, namely, the ion temperature, the intensity of neutron emission due to neutral beam--thermal plasma interactions and the intensity of the so-called alpha knock-on neutron tail. It is found that only the MPR technique can deliver results on all three parameters with reasonable time resolution.

  2. Magnetized plasma flow injection into tokamak and high-beta compact torus plasmas

    NASA Astrophysics Data System (ADS)

    Matsunaga, Hiroyuki; Komoriya, Yuuki; Tazawa, Hiroyasu; Asai, Tomohiko; Takahashi, Tsutomu; Steinhauer, Loren; Itagaki, Hirotomo; Onchi, Takumi; Hirose, Akira

    2010-11-01

    As an application of a magnetized coaxial plasma gun (MCPG), magnetic helicity injection via injection of a highly elongated compact torus (magnetized plasma flow: MPF) has been conducted on both tokamak and field-reversed configuration (FRC) plasmas. The injected plasmoid has significant amounts of helicity and particle contents and has been proposed as a fueling and a current drive method for various torus systems. In the FRC, MPF is expected to generate partially spherical tokamak like FRC equilibrium by injecting a significant amount of magnetic helicity. As a circumstantial evidence of the modified equilibrium, suppressed rotational instability with toroidal mode number n = 2. MPF injection experiments have also been applied to the STOR-M tokamak as a start-up and current drive method. Differences in the responses of targets especially relation with beta value and the self-organization feature will be studied.

  3. Wall stabilization of rotating high {beta} discharges in DIII-D

    SciTech Connect

    Turnbull, A.D.; Taylor, T.S.; Strait, E.J. [General Atomics, San Diego, CA (United States)] [and others

    1994-10-01

    Wall stabilization of the ideal n = 1 external kink mode is shown to be possible in high {beta}, rotating DII-D plasmas for times much longer than the resistive wall penetration time. The gain in {ss} can be more than 30% above the calculated stability limit with no wall stabilization. Stabilization from the resistive wall is found to require plasma rotation speeds of several kHz; otherwise, unstable locked or slowly rotating modes appear, with growth times of the order of the wall penetration time, which ultimately lead to termination of the discharge. The slowly rotating modes have the characteristics expected of the theoretically predicted resistive wall mode in an ideal plasma.

  4. Production and characterization of highly purified recombinant thymosin beta 4 in Escherichia coli.

    PubMed

    Li, Teng; Ma, Su-Yong; Tang, Xiao-Chuang; Nie, Li-Ya; Huang, He

    2013-08-01

    Thymosin ?4 (T?4) is a small peptide composed of 43 amino acids. It has many important biological functions, such as promoting cardiac repair and wound healing, and therefore has great potential in clinical applications. In this report, we describe a novel and efficient way to produce highly purified and active T?4. It was expressed in a soluble form using a DsbA and hexahistindine tag in Escherichia coli (E. coli). Using high cell density cultivation, the final biomass concentration was about 50 g L(-1) dry cell weight with the expression level of the fusion protein being 40%. To obtain highly purified protein, a purification process involving a five-step column procedure was implemented. The purity of T?4 was above 98% and all the host cell related impurities, such as endotoxin, host cell protein and residual DNA levels, were within the permissible range listed in the Chinese Pharmacopoeia. The E-rosette test demonstrated that the bioactivity of purified T?4 was consistent with other published work. This is the first report producing highly purified T?4 from genetically engineered sources. PMID:23711379

  5. Nuclear Fusion prize laudation Nuclear Fusion prize laudation

    NASA Astrophysics Data System (ADS)

    Burkart, W.

    2011-01-01

    Clean energy in abundance will be of critical importance to the pursuit of world peace and development. As part of the IAEA's activities to facilitate the dissemination of fusion related science and technology, the journal Nuclear Fusion is intended to contribute to the realization of such energy from fusion. In 2010, we celebrated the 50th anniversary of the IAEA journal. The excellence of research published in the journal is attested to by its high citation index. The IAEA recognizes excellence by means of an annual prize awarded to the authors of papers judged to have made the greatest impact. On the occasion of the 2010 IAEA Fusion Energy Conference in Daejeon, Republic of Korea at the welcome dinner hosted by the city of Daejeon, we celebrated the achievements of the 2009 and 2010 Nuclear Fusion prize winners. Steve Sabbagh, from the Department of Applied Physics and Applied Mathematics, Columbia University, New York is the winner of the 2009 award for his paper: 'Resistive wall stabilized operation in rotating high beta NSTX plasmas' [1]. This is a landmark paper which reports record parameters of beta in a large spherical torus plasma and presents a thorough investigation of the physics of resistive wall mode (RWM) instability. The paper makes a significant contribution to the critical topic of RWM stabilization. John Rice, from the Plasma Science and Fusion Center, MIT, Cambridge is the winner of the 2010 award for his paper: 'Inter-machine comparison of intrinsic toroidal rotation in tokamaks' [2]. The 2010 award is for a seminal paper that analyzes results across a range of machines in order to develop a universal scaling that can be used to predict intrinsic rotation. This paper has already triggered a wealth of experimental and theoretical work. I congratulate both authors and their colleagues on these exceptional papers. W. Burkart Deputy Director General Department of Nuclear Sciences and Applications International Atomic Energy Agency, Vienna, Austria References [1] Sabbagh S. et al 2006 Nucl. Fusion 46 635-44 [2] Rice J.E. et al 2007 Nucl. Fusion 47 1618-24

  6. High Temperature Fusion Reactor Cooling Using Brayton Cycle Based Partial Energy Conversion

    NASA Astrophysics Data System (ADS)

    Juhasz, Albert J.; Sawicki, Jerzy T.

    2004-02-01

    For some future space power systems using high temperature nuclear heat sources most of the output energy will be used in other than electrical form, and only a fraction of the total thermal energy generated will need to be converted to electrical work. The paper describes the conceptual design of such a ``partial energy conversion'' system, consisting of a high temperature fusion reactor operating in series with a high temperature radiator and in parallel with dual closed cycle gas turbine (CCGT) power systems, also referred to as closed Brayton cycle (CBC) systems, which are supplied with a fraction of the reactor thermal energy for conversion to electric power. Most of the fusion reactor's output is in the form of charged plasma which is expanded through a magnetic nozzle of the interplanetary propulsion system. Reactor heat energy is ducted to the high temperature series radiator utilizing the electric power generated to drive a helium gas circulation fan. In addition to discussing the thermodynamic aspects of the system design the authors include a brief overview of the gas turbine and fan rotor-dynamics and proposed bearing support technology along with performance characteristics of the three phase AC electric power generator and fan drive motor.

  7. High thermal conductivity of graphite fiber silicon carbide composites for fusion reactor application

    NASA Astrophysics Data System (ADS)

    Snead, L. L.; Balden, M.; Causey, R. A.; Atsumi, H.

    2002-12-01

    The benefits of using CVI SiC/graphite fiber composites as low tritium retaining, high thermal conductivity composites for fusion applications are presented. Three-dimensional woven composites have been chemically vapor infiltrated with SiC and their thermophysical properties measured. One material used an intermediate grade graphite fiber in all directions (Amoco P55) while a second material used very high thermal conductive fiber (Amoco K-1100) in the high fiber density direction. The overall void was less than 20%. Strength as measured by four-point bending was comparable to those of SiC/SiC composite. The room temperature thermal conductivity in the high conductivity direction was impressive for both materials, with values >70 W/m K for the P-55 and >420 W/m K for the K-1100 variant. The thermal conductivity was measured as a function of temperature and exceeds the highest thermal conductivity of CVD SiC currently available at fusion relevant temperatures (>600 °C). Limited data on the irradiation-induced degradation in thermal conductivity is consistent with carbon fiber composite literature.

  8. High-Speed Incoming Infrared Target Detection by Fusion of Spatial and Temporal Detectors

    PubMed Central

    Kim, Sungho

    2015-01-01

    This paper presents a method for detecting high-speed incoming targets by the fusion of spatial and temporal detectors to achieve a high detection rate for an active protection system (APS). The incoming targets have different image velocities according to the target-camera geometry. Therefore, single-target detector-based approaches, such as a 1D temporal filter, 2D spatial filter and 3D matched filter, cannot provide a high detection rate with moderate false alarms. The target speed variation was analyzed according to the incoming angle and target velocity. The speed of the distant target at the firing time is almost stationary and increases slowly. The speed varying targets are detected stably by fusing the spatial and temporal filters. The stationary target detector is activated by an almost zero temporal contrast filter (TCF) and identifies targets using a spatial filter called the modified mean subtraction filter (M-MSF). A small motion (sub-pixel velocity) target detector is activated by a small TCF value and finds targets using the same spatial filter. A large motion (pixel-velocity) target detector works when the TCF value is high. The final target detection is terminated by fusing the three detectors based on the threat priority. The experimental results of the various target sequences show that the proposed fusion-based target detector produces the highest detection rate with an acceptable false alarm rate. PMID:25815448

  9. High-Precision Half-Life Measurement for the Superallowed {beta}{sup +} Emitter {sup 26}Al{sup m}

    SciTech Connect

    Finlay, P.; Svensson, C. E.; Green, K. L.; Leach, K. G.; Phillips, A. A.; Sumithrarachchi, C. S. [Department of Physics, University of Guelph, Guelph, Ontario, N1G 2W1 (Canada); Ettenauer, S. [TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, V6T 2A3 (Canada); Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, V6T 1Z4 (Canada); Ball, G. C.; Bandyopadhyay, D.; Djongolov, M.; Hackman, G.; Pearson, C. J.; Williams, S. J [TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, V6T 2A3 (Canada); Leslie, J. R. [Department of Physics, Queen's University, Kingston, Ontario, K7L 3N6 (Canada); Andreoiu, C.; Cross, D. S. [Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6 (Canada); Austin, R. A. E. [Astronomy and Physics Department, Saint Mary's University, Halifax, Nova Scotia, B3H 3C3 (Canada); Demand, G. [Department of Physics, University of Guelph, Guelph, Ontario, N1G 2W1 (Canada); Department of Physics, Queen's University, Kingston, Ontario, K7L 3N6 (Canada); Garrett, P. E.; Triambak, S. [Department of Physics, University of Guelph, Guelph, Ontario, N1G 2W1 (Canada); TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, V6T 2A3 (Canada)

    2011-01-21

    A high-precision half-life measurement for the superallowed {beta}{sup +} emitter {sup 26}Al{sup m} was performed at the TRIUMF-ISAC radioactive ion beam facility yielding T{sub 1/2}=6346.54{+-}0.46{sub stat{+-}}0.60{sub syst} ms, consistent with, but 2.5 times more precise than, the previous world average. The {sup 26}Al{sup m} half-life and ft value, 3037.53(61) s, are now the most precisely determined for any superallowed {beta} decay. Combined with recent theoretical corrections for isospin-symmetry-breaking and radiative effects, the corrected Ft value for {sup 26}Al{sup m}, 3073.0(12) s, sets a new benchmark for the high-precision superallowed Fermi {beta}-decay studies used to test the conserved vector current hypothesis and determine the V{sub ud} element of the Cabibbo-Kobayashi-Maskawa quark mixing matrix.

  10. Indirect-drive inertial confinement fusion using highly supersonic, radiatively cooled, plasma slugs.

    PubMed

    Chittenden, J P; Dunne, M; Zepf, M; Lebedev, S V; Ciardi, A; Bland, S N

    2002-06-10

    We present a new approach to indirect-drive inertial confinement fusion which makes use of highly supersonic, radiatively cooled, slugs of plasma to energize a hohlraum. 2D resistive magnetohydrodynamic simulations of slug formation in shaped liner Z-pinch implosions are presented along with 2D-radiation-hydrodynamic simulations of the slug impacting a converter foil and 3D-view-factor simulations of a double-ended hohlraum. Results for the Z facility at Sandia National Laboratory indicate that two synchronous slugs of 250 kJ kinetic energy could be produced, resulting in a capsule surface temperature of approximately 225 eV. PMID:12059369

  11. KrF laser path to high gain ICF (inertial confinement fusion) laboratory microfusion facility

    NASA Astrophysics Data System (ADS)

    Harris, David B.; Sullivan, J. Al; Figueiro, Joseph F.; Cartwright, David C.; McDonald, Thomas E.; Hauer, Allan A.; Coggeshall, Stephen V.; Younger, Stephen M.

    1990-09-01

    The krypton-fluoride laser has many desirable features for inertial confinement fusion. Because it is a gas laser capable of operation with high efficiency, it is the only known laser candidate capable of meeting the driver requirements for inertial fusion energy (IFE) production. Los Alamos National Laboratory has defined a program plan to develop KrF lasers for IFE production. This plan develops the KrF laser and demonstrates the target performance in single-pulse facilities. A 100-kJ Laser Target Test Facility (LTTF) is proposed as the next step, to be followed by a 3 to 10-MJ Laboratory Microfusion Facility (LMF). The LTTF will resolve many target physics issues and accurately define the driver energy required for the LMF. It is also proposed that the technology development for IFE, such as the high-efficiency, high-reliability, repetitively pulsed driver, the reactor, mass production of targets, and the mechanism of injecting targets be developed in parallel with the single-pulse facilities.

  12. Development of high average power DPSSL for laser fusion driver and industrial application

    SciTech Connect

    Nakai, S.; Izawa, Y.; Nakatsuka, M.; Yamanaka, M. [Osaka Univ. (Japan)] [and others

    1996-12-31

    Laser fusion is one of the most feasible approach in the fusion energy development. The goal of inertial fusion energy (IFE) development is to prove that fusion energy can be available to society as electric power source. Recent progress of laser fusion research and development enable the authors to examine technical and economical feasibility, and to plan the realistic strategy and program to the commercial power plant. The most important key issue for IFE is driver technologies. The development of the laser fusion driver may establish new industrial technologies based on the photon processes and is attracting attentions in wide industrial fields.

  13. High Affinity Host-Guest FRET Pair for Single-Vesicle Content-Mixing Assay: Observation of Flickering Fusion Events.

    PubMed

    Gong, Bokyoung; Choi, Bong-Kyu; Kim, Jae-Yeol; Shetty, Dinesh; Ko, Young Ho; Selvapalam, Narayanan; Lee, Nam Ki; Kim, Kimoon

    2015-07-22

    Fluorescence-based single-vesicle fusion assays provide a powerful method for studying mechanisms underlying complex biological processes of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor)-mediated vesicle fusion and neurotransmitter release. A crucial element of these assays is the ability of the fluorescent probe(s) to reliably detect key intermediate events of fusion pore opening and content release/mixing. Here, we report a new, reliable, and efficient single-vesicle content-mixing assay using a high affinity, fluorophore tagged host-guest pair, cucurbit[7]uril-Cy3 and adamantane-Cy5 as a fluorescence resonance energy transfer (FRET) pair. The power of these probes is demonstrated by the first successful observation of flickering dynamics of the fusion pore by in vitro assay using neuronal SNARE-reconstituted vesicles. PMID:26160008

  14. IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 49 (2009) 085009 (8pp) doi:10.1088/0029-5515/49/8/085009

    E-print Network

    Zonca, Fulvio

    2009-01-01

    (8pp) doi:10.1088/0029-5515/49/8/085009 High-frequency fishbones at JET: theoretical interpretation of fishbone fluctuations at frequencies comparable to those of geodesic acoustic modes (GAM) and beta induced. Fusion 47 1588). Here, we show that observation of fishbones at unexpectedly high frequencies in JET

  15. Effects of line-tying on free-boundary global modes in high-beta tokamak plasmas

    Microsoft Academic Search

    J. K. Lee

    1984-01-01

    Axisymmetric line-tying, as may occur in an H-mode discharge or in a toroidal limiter, is modeled through a rigid or conducting boundary condition. It is shown effective in reducing the linear growth rate of global free-boundary magnetohydrodynamic modes in high- ..beta..\\/sub p\\/ circular cross-section tokamaks. Various parameter dependencies are also examined.

  16. Effects of line-tying on free-boundary global modes in high-beta tokamak plasmas

    SciTech Connect

    Lee, J.K.

    1984-04-01

    Axisymmetric line-tying, as may occur in an H-mode discharge or in a toroidal limiter, is modeled through a rigid or conducting boundary condition. It is shown effective in reducing the linear growth rate of global free-boundary magnetohydrodynamic modes in high- ..beta../sub p/ circular cross-section tokamaks. Various parameter dependencies are also examined.

  17. Thin shell, high velocity inertial confinement fusion implosions on the national ignition facility.

    PubMed

    Ma, T; Hurricane, O A; Callahan, D A; Barrios, M A; Casey, D T; Dewald, E L; Dittrich, T R; Döppner, T; Haan, S W; Hinkel, D E; Berzak Hopkins, L F; Le Pape, S; MacPhee, A G; Pak, A; Park, H-S; Patel, P K; Remington, B A; Robey, H F; Salmonson, J D; Springer, P T; Tommasini, R; Benedetti, L R; Bionta, R; Bond, E; Bradley, D K; Caggiano, J; Celliers, P; Cerjan, C J; Church, J A; Dixit, S; Dylla-Spears, R; Edgell, D; Edwards, M J; Field, J; Fittinghoff, D N; Frenje, J A; Gatu Johnson, M; Grim, G; Guler, N; Hatarik, R; Herrmann, H W; Hsing, W W; Izumi, N; Jones, O S; Khan, S F; Kilkenny, J D; Knauer, J; Kohut, T; Kozioziemski, B; Kritcher, A; Kyrala, G; Landen, O L; MacGowan, B J; Mackinnon, A J; Meezan, N B; Merrill, F E; Moody, J D; Nagel, S R; Nikroo, A; Parham, T; Ralph, J E; Rosen, M D; Rygg, J R; Sater, J; Sayre, D; Schneider, M B; Shaughnessy, D; Spears, B K; Town, R P J; Volegov, P L; Wan, A; Widmann, K; Wilde, C H; Yeamans, C

    2015-04-10

    Experiments have recently been conducted at the National Ignition Facility utilizing inertial confinement fusion capsule ablators that are 175 and 165???m in thickness, 10% and 15% thinner, respectively, than the nominal thickness capsule used throughout the high foot and most of the National Ignition Campaign. These three-shock, high-adiabat, high-foot implosions have demonstrated good performance, with higher velocity and better symmetry control at lower laser powers and energies than their nominal thickness ablator counterparts. Little to no hydrodynamic mix into the DT hot spot has been observed despite the higher velocities and reduced depth for possible instability feedthrough. Early results have shown good repeatability, with up to 1/2 the neutron yield coming from ?-particle self-heating. PMID:25910132

  18. Ba-ion extraction from a high pressure Xe gas for double-beta decay studies with EXO

    E-print Network

    T. Brunner; D. Fudenberg; A. Sabourov; V. L. Varentsov; G. Gratta; D. Sinclair; for the EXO collaboration

    2013-02-27

    An experimental setup is being developed to extract Ba ions from a high-pressure Xe gas environment. It aims to transport Ba ions from 10 bar Xe to vacuum conditions. The setup utilizes a converging-diverging nozzle in combination with a radio-frequency (RF) funnel to move Ba ions into vacuum through the pressure drop of several orders of magnitude. This technique is intended to be used in a future multi-ton detector investigating double-beta decay in $^{136}$Xe. Efficient extraction and detection of Ba ions, the decay product of Xe, would allow for a background-free measurement of the $^{136}$Xe double-beta decay.

  19. A high-throughput chemical screen reveals that harmine-mediated inhibition of DYRK1A increases human pancreatic beta cell replication.

    PubMed

    Wang, Peng; Alvarez-Perez, Juan-Carlos; Felsenfeld, Dan P; Liu, Hongtao; Sivendran, Sharmila; Bender, Aaron; Kumar, Anil; Sanchez, Roberto; Scott, Donald K; Garcia-Ocaña, Adolfo; Stewart, Andrew F

    2015-04-01

    Types 1 and 2 diabetes affect some 380 million people worldwide. Both ultimately result from a deficiency of functional pancreatic insulin-producing beta cells. Beta cells proliferate in humans during a brief temporal window beginning around the time of birth, with a peak percentage (?2%) engaged in the cell cycle in the first year of life. In embryonic life and after early childhood, beta cell replication is barely detectable. Whereas beta cell expansion seems an obvious therapeutic approach to beta cell deficiency, adult human beta cells have proven recalcitrant to such efforts. Hence, there remains an urgent need for antidiabetic therapeutic agents that can induce regeneration and expansion of adult human beta cells in vivo or ex vivo. Here, using a high-throughput small-molecule screen (HTS), we find that analogs of the small molecule harmine function as a new class of human beta cell mitogenic compounds. We also define dual-specificity tyrosine-regulated kinase-1a (DYRK1A) as the likely target of harmine and the nuclear factors of activated T cells (NFAT) family of transcription factors as likely mediators of human beta cell proliferation and differentiation. Using three different mouse and human islet in vivo-based models, we show that harmine is able to induce beta cell proliferation, increase islet mass and improve glycemic control. These observations suggest that harmine analogs may have unique therapeutic promise for human diabetes therapy. Enhancing the potency and beta cell specificity of these compounds are important future challenges. PMID:25751815

  20. Secondary scintillation yield in high-pressure xenon gas for neutrinoless double beta decay (0???) search

    NASA Astrophysics Data System (ADS)

    Freitas, E. D. C.; Monteiro, C. M. B.; Ball, M.; Gómez-Cadenas, J. J.; Lopes, J. A. M.; Lux, T.; Sánchez, F.; dos Santos, J. M. F.

    2010-02-01

    The search for neutrinoless double beta decay (0???) is an important topic in contemporary physics with many active experiments. New projects are planning to use high-pressure xenon gas as both source and detection medium. The secondary scintillation processes available in noble gases permit large amplification with negligible statistical fluctuations, offering the prospect of energy resolution approaching the Fano factor limit. This Letter reports results for xenon secondary scintillation yield, at room temperature, as a function of electric field in the gas scintillation gap for pressures ranging from 2 to 10 bar. A Large Area Avalanche Photodiode (LAAPD) collected the VUV secondary scintillation produced in the gas. X-rays directly absorbed in the LAAPD are used as a reference for determining the number of charge carriers produced by the scintillation pulse and, hence, the number of photons impinging the LAAPD. The number of photons produced per drifting electron and per kilovolt, the so-called scintillation amplification parameter, displays a small increase with pressure, ranging from 141±6 at 2 bar to 170±10 at 8 bar. In our setup, this parameter does not increase above 8 bar due to non-negligible electron attachment. The results are in good agreement with those presented in the literature in the 1 to 3 bar range. The increase of the scintillation amplification parameter with pressure for high gas densities has been also observed in former work at cryogenic temperatures.

  1. Electron temperature profiles in high power neutral-beam-heated TFTR (Tokamak Fusion Test Reactor) plasmas

    SciTech Connect

    Taylor, G.; Grek, B.; Stauffer, F.J.; Goldston, R.J.; Fredrickson, E.D.; Wieland, R.M.; Zarnstorff, M.C.

    1987-09-01

    In 1986, the maximum neutral beam injection (NBI) power in the Tokamak Fusion Test Reactor (TFTR) was increased to 20 MW, with three beams co-parallel and one counter-parallel to I/sub p/. TFTR was operated over a wide range of plasma parameters; 2.5 < q/sub cyl/ < 10, and 2 x 10/sup 19/ < anti n/sub e/ < 7 x 10/sup 19/ m/sup -3/. Data bases have been constructed with over 600 measured electron temperature profiles from multipoint TV Thomson scattering which span much of this parameter space. We have also examined electron temperature profile shapes from electron cyclotron emission at the fundamental ordinary mode and second harmonic extraordinary mode for a subset of these discharges. In the light of recent work on ''profile consistency'' we have analyzed these temperature profiles in the range 0.3 < (r/a) < 0.9 to determine if a profile shape exists which is insensitive to q/sub cyl/ and beam-heating profile. Data from both sides of the temperature profile (T/sub e/(R)) were mapped to magnetic flux surfaces (T/sub e/(r/a)). Although T/sub e/(r/a), in the region where 0.3 < r/a < 0.9 was found to be slightly broader at lower q/sub cyl/, it was found to be remarkably insensitive to ..beta../sub p/, to the fraction of NBI power injected co-parallel to I/sub p/, and to the heating profile going from peaked on axis, to hollow. 10 refs., 8 figs.

  2. Radio-Frequency Wave Excitation and Damping on a High Beta Plasma Column.

    NASA Astrophysics Data System (ADS)

    Meuth, Hermann

    Azimuthally symmetric (m = 0) radio-frequency (RF) waves for zero and for finite axial wave number k(,z) are investigated on the High-Beta Q Machine, a two-meter, 20 cm-diameter, low-compression linear theta pinch (T (GREATERTHEQ) 200 eV, n (DBLTURN) 10('15)cm('-3)) fast rising (0.4 (mu)s) compression field. The (k(,z) = 0) modes occur spontaneously following the implosion phase of the discharge. A novel 100-MWatt, 1 to 1.3-MHz, short wavelength current drive excites the plasma column in the vicinity of the lowest fast magnetoacoustic mode at various filling pressures. This current drive is designed as an integral part of the compression coil, which is segmented with a 20-cm axial wavelength (k(,z) = 0.314 cm('-1)). The electron density oscillations along major and minor chords at various positions are measured by interferometry perpendicular to the pinch axis. The oscillatory radial magnetic field component between pinch wall and hot plasma edge is measured by probes. Phases, amplitudes and radial mode structure are studied for the free (k = 0) modes and the externally driven (k (NOT=) 0) modes for various filling pressures of deuterium. In the first case, the damping is determined from the e-folding time of the decaying oscillations. In the latter case, the phases and amplitudes indicate a broad resonance structure, from which we extract the damping constant. The energy deposition from the externally driven RF wave leads to a radial expansion of the plasma column, as observed by axial interferometry and by excluded flux measurements. We compare these experimental results with damping phenomena as predicted by MHD-like collisional (viscous) and collisionless (ion-Landau and cyclotron) damping models. It is found that the viscous model overestimates the observed (k = 0) damping by at least an order of magnitude, while both the viscous and kinetic models underestimate the (k (NOT=) 0) damping by at least an order of magnitude. The characteristic and resonant frequencies, as well as the oscillatory radial mode structure, can be understood within the ideal MHD description. The experimentally observed damping and wave-energy deposition are consistent with the magnitude of the density oscillations. The efficiency of the RF energy deposition is at least 27%, somewhat exceeding that observed in other high-beta magnetoacoustic experiments.

  3. Multi-Sensor Fusion of Electro-Optic and Infrared Signals for High Resolution Visible Images: Part II

    E-print Network

    Multi-Sensor Fusion of Electro-Optic and Infrared Signals for High Resolution Visible Images: Part temperature variation of objects in the daytime via high-resolution EO images. The proposed novel framework objects' temperature information onto original EO images via the modified NTSC color space transformation

  4. Reaching High-Yield Fusion with a Slow Plasma Liner Compressing a Magnetized Target

    SciTech Connect

    Ryutov, D D; Parks, P B

    2008-03-18

    Dynamics of the compression of a magnetized plasma target by a heavy liner made of partially ionized high high-Z material is discussed. A 'soft-landing' (shockless) mode of the liner deceleration is analyzed. Conclusion is drawn that such mode is possible for the liners whose thickness at the time of the first contact with the target is smaller than, roughly, 10% of the initial (un-compressed) target radius. A combination of the plasma liner with one or two glide cones allows for a direct access to the area near the center of the reactor chamber. One can then generate plasma target inside the plasma liner at the optimum time. The other advantage of the glide cones is that they can be used to deliver additional fuel to the center of the target near the point of a maximum compression and thereby increase the fusion yield.

  5. Use of Polycarbonate Vacuum Vessels in High-Temperature Fusion-Plasma Research

    SciTech Connect

    B. Berlinger, A. Brooks, H. Feder, J. Gumbas, T. Franckowiak and S.A. Cohen

    2012-09-27

    Magnetic fusion energy (MFE) research requires ultrahigh-vacuum (UHV) conditions, primarily to reduce plasma contamination by impurities. For radiofrequency (RF)-heated plasmas, a great benefit may accrue from a non-conducting vacuum vessel, allowing external RF antennas which avoids the complications and cost of internal antennas and high-voltage high-current feedthroughs. In this paper we describe these and other criteria, e.g., safety, availability, design flexibility, structural integrity, access, outgassing, transparency, and fabrication techniques that led to the selection and use of 25.4-cm OD, 1.6-cm wall polycarbonate pipe as the main vacuum vessel for an MFE research device whose plasmas are expected to reach keV energies for durations exceeding 0.1 s

  6. Asymmetric catalysis with self-organized chiral lanthanum complexes: practical and highly enantioselective epoxidation of alpha,beta-unsaturated ketones.

    PubMed

    Daikai, Kazuhiro; Hayano, Tetsuji; Kino, Rie; Furuno, Hiroshi; Kagawa, Takumi; Inanaga, Junji

    2003-01-01

    A highly efficient and practical method for obtaining alpha,beta-epoxy ketones with high optical purities was developed. The chiral lanthanum complex self-organized in situ from lanthanum triisopropoxide, (R)-BINOL, triarylphosphine oxide, and alkyl hydroperoxide (1:1:1:1) was found to catalyze the epoxidation of alpha,beta-unsaturated ketones with tert-butyl hydroperoxide or cumene hydroperoxide at room temperature to give the corresponding epoxy ketones in high enantioselectivities (up to >99% enantiomeric excess (ee)). A remarkably high asymmetric amplification, a positive nonlinear effect, was observed in the epoxidation of chalcone, which strongly suggests the formation of a dinuclear peroxide-involved mu-complex as the active catalyst. PMID:12467048

  7. Onset of Hydrodynamic Mix in High-Velocity, Highly Compressed Inertial Confinement Fusion Implosions

    NASA Astrophysics Data System (ADS)

    Ma, T.; Patel, P. K.; Izumi, N.; Springer, P. T.; Key, M. H.; Atherton, L. J.; Benedetti, L. R.; Bradley, D. K.; Callahan, D. A.; Celliers, P. M.; Cerjan, C. J.; Clark, D. S.; Dewald, E. L.; Dixit, S. N.; Döppner, T.; Edgell, D. H.; Epstein, R.; Glenn, S.; Grim, G.; Haan, S. W.; Hammel, B. A.; Hicks, D.; Hsing, W. W.; Jones, O. S.; Khan, S. F.; Kilkenny, J. D.; Kline, J. L.; Kyrala, G. A.; Landen, O. L.; Le Pape, S.; MacGowan, B. J.; Mackinnon, A. J.; MacPhee, A. G.; Meezan, N. B.; Moody, J. D.; Pak, A.; Parham, T.; Park, H.-S.; Ralph, J. E.; Regan, S. P.; Remington, B. A.; Robey, H. F.; Ross, J. S.; Spears, B. K.; Smalyuk, V.; Suter, L. J.; Tommasini, R.; Town, R. P.; Weber, S. V.; Lindl, J. D.; Edwards, M. J.; Glenzer, S. H.; Moses, E. I.

    2013-08-01

    Deuterium-tritium inertial confinement fusion implosion experiments on the National Ignition Facility have demonstrated yields ranging from 0.8 to 7×1014, and record fuel areal densities of 0.7 to 1.3g/cm2. These implosions use hohlraums irradiated with shaped laser pulses of 1.5-1.9 MJ energy. The laser peak power and duration at peak power were varied, as were the capsule ablator dopant concentrations and shell thicknesses. We quantify the level of hydrodynamic instability mix of the ablator into the hot spot from the measured elevated absolute x-ray emission of the hot spot. We observe that DT neutron yield and ion temperature decrease abruptly as the hot spot mix mass increases above several hundred ng. The comparison with radiation-hydrodynamic modeling indicates that low mode asymmetries and increased ablator surface perturbations may be responsible for the current performance.

  8. Onset of hydrodynamic mix in high-velocity, highly compressed inertial confinement fusion implosions.

    PubMed

    Ma, T; Patel, P K; Izumi, N; Springer, P T; Key, M H; Atherton, L J; Benedetti, L R; Bradley, D K; Callahan, D A; Celliers, P M; Cerjan, C J; Clark, D S; Dewald, E L; Dixit, S N; Döppner, T; Edgell, D H; Epstein, R; Glenn, S; Grim, G; Haan, S W; Hammel, B A; Hicks, D; Hsing, W W; Jones, O S; Khan, S F; Kilkenny, J D; Kline, J L; Kyrala, G A; Landen, O L; Le Pape, S; MacGowan, B J; Mackinnon, A J; MacPhee, A G; Meezan, N B; Moody, J D; Pak, A; Parham, T; Park, H-S; Ralph, J E; Regan, S P; Remington, B A; Robey, H F; Ross, J S; Spears, B K; Smalyuk, V; Suter, L J; Tommasini, R; Town, R P; Weber, S V; Lindl, J D; Edwards, M J; Glenzer, S H; Moses, E I

    2013-08-23

    Deuterium-tritium inertial confinement fusion implosion experiments on the National Ignition Facility have demonstrated yields ranging from 0.8 to 7×10(14), and record fuel areal densities of 0.7 to 1.3 g/cm2. These implosions use hohlraums irradiated with shaped laser pulses of 1.5-1.9 MJ energy. The laser peak power and duration at peak power were varied, as were the capsule ablator dopant concentrations and shell thicknesses. We quantify the level of hydrodynamic instability mix of the ablator into the hot spot from the measured elevated absolute x-ray emission of the hot spot. We observe that DT neutron yield and ion temperature decrease abruptly as the hot spot mix mass increases above several hundred ng. The comparison with radiation-hydrodynamic modeling indicates that low mode asymmetries and increased ablator surface perturbations may be responsible for the current performance. PMID:24010449

  9. Progress in laboratory high gain ICF (inertial confinement fusion): Prospects for the future

    SciTech Connect

    Storm, E.; Lindl, J.D.; Campbell, E.M.; Bernat, T.P.; Coleman, L.W.; Emmett, J.L.; Hogan, W.J.; Hunt, J.T.; Krupke, W.F.; Lowdermilk, W.H.

    1988-01-01

    Inertial confinement fusion (ICF), a thermonuclear reaction in a small (/approximately/5 mm diameter) fuel capsule filled with a few milligrams of deuterium and tritium, has been the subject of very fruitful experimentation since the early 1970's. High gain ICF is now on the threshold of practical applications. With a Laboratory Microfusion Facility (LMF), these applications will have major implications for national defense, basic and applied science, and power production. With a driver capable of delivering about 10 MJ in a 10-ns pulse at an intensity of /approximately/3 /times/ 10/sup 14/ W/cm/sup 2/, an appropriately configured cryogenic capsule could be compressed to a density of about 200 g/cm/sup 3/ and a temperature of 3--5 keV. Under these conditions, up to 10 mg of DT could be ignited, and with a burn efficiency of about 30%, release up to 1000 MJ of fusion energy, an energy gain of about 100. A thousand megajoules is equivalent to about one quarter ton of TNT, or about 7 gallons of oil--an amount of energy tractable under laboratory conditions and potentially very useful for a variety of applications. 61 refs., 33 figs.

  10. Application of spatially resolved high resolution crystal spectrometry to inertial confinement fusion plasmas.

    PubMed

    Hill, K W; Bitter, M; Delgado-Aparacio, L; Pablant, N A; Beiersdorfer, P; Schneider, M; Widmann, K; Sanchez del Rio, M; Zhang, L

    2012-10-01

    High resolution (???? ? 10 000) 1D imaging x-ray spectroscopy using a spherically bent crystal and a 2D hybrid pixel array detector is used world wide for Doppler measurements of ion-temperature and plasma flow-velocity profiles in magnetic confinement fusion plasmas. Meter sized plasmas are diagnosed with cm spatial resolution and 10 ms time resolution. This concept can also be used as a diagnostic of small sources, such as inertial confinement fusion plasmas and targets on x-ray light source beam lines, with spatial resolution of micrometers, as demonstrated by laboratory experiments using a 250-?m (55)Fe source, and by ray-tracing calculations. Throughput calculations agree with measurements, and predict detector counts in the range 10(-8)-10(-6) times source x-rays, depending on crystal reflectivity and spectrometer geometry. Results of the lab demonstrations, application of the technique to the National Ignition Facility (NIF), and predictions of performance on NIF will be presented. PMID:23126946

  11. High precision study of muon catalyzed fusion in D2 and HD gas

    NASA Astrophysics Data System (ADS)

    Balin, D. V.; Ganzha, V. A.; Kozlov, S. M.; Maev, E. M.; Petrov, G. E.; Soroka, M. A.; Schapkin, G. N.; Semenchuk, G. G.; Trofimov, V. A.; Vasiliev, A. A.; Vorobyov, A. A.; Voropaev, N. I.; Petitjean, C.; Gartner, B.; Lauss, B.; Marton, J.; Zmeskal, J.; Case, T.; Crowe, K. M.; Kammel, P.; Hartmann, F. J.; Faifman, M. P.

    2011-03-01

    Muon catalyzed dd fusion in D2 and HD gases in the temperature range from 28 to 350 K was investigated in a series of experiments based on a time-projection ionization chamber operating with pure hydrogen. All main observables in this reaction chain were measured with high absolute precision including the resonant and non-resonant dd? formation rates, the rate for hyperfine transitions in d? atoms, the branching ratio of the two charge symmetric fusion channels 3He + n and t + p and the muon sticking probability. The report presents the final analysis of the data together with a comprehensive comparison with calculations based on recent ?CF theories. The energy of the loosely bound dd? state with quantum numbers J = 1, ? = 1, which is central to the mechanism of resonant molecule formation, is extracted with precision ?11(fit) = -1.9651(7) eV. in impressive agreement with the latest theoretical results ?11(theory) = -1.9646 eV.

  12. Progress in laboratory high gain ICF (Inertial Confinement Fusion): Prospects for the future

    NASA Astrophysics Data System (ADS)

    Storm, Erik; Lindl, J. D.; Campbell, E. M.; Bernat, T. P.; Coleman, L. W.; Emmett, J. L.; Hogan, W. J.; Hunt, J. T.; Krupke, W. F.; Lowdermilk, W. H.

    Inertial Confinement Fusion (ICF), a thermonuclear reaction in a small (approximately 5 mm diameter) fuel capsule filled with a few milligrams of deuterium and tritium, has been the subject of very fruitful experimentation since the early 1970's. High gain ICF is now on the threshold of practical applications. With a Laboratory Microfusion Facility (LMF), these applications will have major implications for national defense, basic and applied science, and power production. With a driver capable of delivering about 10 MJ in a 10-ns pulse at an intensity of approximately 3 X 10 to the 14th W/sq cm, an appropriately configured cryogenic capsule could be compressed to a density of about 200 g/ cu cm and a temperature of 3 to 5 keV. Under these conditions, up to 10 mg of DT could be ignited, and with a burn efficiency of about 30 percent, release up to 1000 MJ of fusion energy, an energy gain of about 100. A thousand megajoules is equivalent to about one quarter ton of TNT, or about 7 gallons of oil--an amount of energy tractable under laboratory conditions and potentially very useful for a variety of applications.

  13. Production of high purity TeO 2 single crystals for the study of neutrinoless double beta decay

    Microsoft Academic Search

    C. Arnaboldi; C. Brofferio; A. Bryant; C. Bucci; L. Canonica; S. Capelli; M. Carrettoni; M. Clemenza; I. Dafinei; S. Di Domizio; F. Ferroni; E. Fiorini; Z. Ge; A. Giachero; L. Gironi; A. Giuliani; P. Gorla; E. Guardincerri; R. Kadel; K. Kazkaz; L. Kogler; Y. Kolomensky; J. Larsen; M. Laubenstein; Y. Li; C. Maiano; M. Martinez; R. Maruyama; S. Nisi; C. Nones; Eric B. Norman; A. Nucciotti; F. Orio; L. Pattavina; M. Pavan; G. Pessina; S. Pirro; E. Previtali; C. Rusconi; Nicholas D. Scielzo; M. Sisti; Alan R. Smith; W. Tian; M. Vignati; H. Wang; Y. Zhu

    2010-01-01

    High purity TeO2 crystals are produced to be used for the search for the neutrinoless double beta decay of 130Te. Dedicated production lines for raw material synthesis, crystal growth, and surface processing were built compliant with radio-purity constraints specific to rare event physics experiments. High sensitivity measurements of radio-isotope concentrations in raw materials, reactants, consumables, ancillaries, and intermediary products used

  14. Review of fusion synfuels

    SciTech Connect

    Fillo, J.A.

    1980-01-01

    Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Depending on design, electric generation efficiencies of approx. 40 to 60% and hydrogen production efficiencies by high-temperature electrolysis of approx. 50 to 65% are projected for fusion reactors using high-temperatures blankets. Fusion/coal symbiotic systems appear economically promising for the first generation of commercial fusion synfuels plants. Coal production requirements and the environmental effects of large-scale coal usage would be greatly reduced by a fusion/coal system. In the long term, there could be a gradual transition to an inexhaustible energy system based solely on fusion.

  15. Alpha or beta human chorionic gonadotropin knockdown decrease BeWo cell fusion by down-regulating PKA and CREB activation

    PubMed Central

    Saryu Malhotra, Sudha; Suman, Pankaj; Kumar Gupta, Satish

    2015-01-01

    The aim of the present study is to delineate the role of human chorionic gonadotropin (hCG) in trophoblast fusion. In this direction, using shRNA lentiviral particles, ?- and ?-hCG silenced ‘BeWo’ cell lines were generated. Treatment of both ?- and ?-hCG silenced BeWo cells with either forskolin or exogenous hCG showed a significant reduction in cell fusion as compared with control shRNA treated cells. Studies by qRT-PCR, Western blotting and immunofluorescence revealed down-regulation of fusion-associated proteins such as syncytin-1 and syndecan-1 in the ?- and ?-hCG silenced cells. Delineation of downstream signaling pathways revealed that phosphorylation of PKA and CREB were compromised in the silenced cells whereas, no significant changes in p38MAPK and ERK1/2 phosphorylation were observed. Moreover, ?-catenin activation was unaffected by either ?- or ?-hCG silencing. Further, inhibition of PKA by H89 inhibitor led to a significant decrease in BeWo cell fusion but had no effect on ?-catenin activation suggesting the absence of non-canonical ?-catenin stabilization via PKA. Interestingly, canonical activation of ?-catenin was associated with the up-regulation of Wnt 10b expression. In summary, this study establishes the significance of hCG in the fusion of trophoblastic BeWo cells, but there may be additional factors involved in this process. PMID:26053549

  16. Alpha or beta human chorionic gonadotropin knockdown decrease BeWo cell fusion by down-regulating PKA and CREB activation.

    PubMed

    Saryu Malhotra, Sudha; Suman, Pankaj; Kumar Gupta, Satish

    2015-01-01

    The aim of the present study is to delineate the role of human chorionic gonadotropin (hCG) in trophoblast fusion. In this direction, using shRNA lentiviral particles, ?- and ?-hCG silenced 'BeWo' cell lines were generated. Treatment of both ?- and ?-hCG silenced BeWo cells with either forskolin or exogenous hCG showed a significant reduction in cell fusion as compared with control shRNA treated cells. Studies by qRT-PCR, Western blotting and immunofluorescence revealed down-regulation of fusion-associated proteins such as syncytin-1 and syndecan-1 in the ?- and ?-hCG silenced cells. Delineation of downstream signaling pathways revealed that phosphorylation of PKA and CREB were compromised in the silenced cells whereas, no significant changes in p38MAPK and ERK1/2 phosphorylation were observed. Moreover, ?-catenin activation was unaffected by either ?- or ?-hCG silencing. Further, inhibition of PKA by H89 inhibitor led to a significant decrease in BeWo cell fusion but had no effect on ?-catenin activation suggesting the absence of non-canonical ?-catenin stabilization via PKA. Interestingly, canonical activation of ?-catenin was associated with the up-regulation of Wnt 10b expression. In summary, this study establishes the significance of hCG in the fusion of trophoblastic BeWo cells, but there may be additional factors involved in this process. PMID:26053549

  17. Life Studies of Metal Films on Beta-Alumina at High Temperature

    NASA Technical Reports Server (NTRS)

    Williams, R.; Kisor, A.; Fiebig, B.; Cortez, R.; Ryan, M.; Shields, V.; Homer, M.

    2000-01-01

    Applications of metallic films on sodium beta-alumina solid electrolyte (BASE) ceramic in technology for the alkali metal thermal to electric converter (AMTEC) include both electrode and metallization functions.

  18. Experimental beta limits of symmetric linear heliac configurations

    SciTech Connect

    Spanjers, G.G.; Nelson, B.A.; Ribe, F.L.; Jarboe, T.R. (120 AERL FL-10, University of Washington, Seattle, Washington 98195 (United States))

    1994-08-01

    Helically symmetric heliac equilibria [H. P. Furth, [ital Plasma] [ital Physics] [ital and] [ital Controlled] [ital Fusion] [ital Research] (International Atomic Energy Agency, Vienna, 1966), Vol. 1, p. 103] are formed on the High Beta Q Machine (HBQM) [C. M. Greenfield, Phys. Fluids B [bold 2], 133 (1990)] by using a fast-rising central conductor (hardcore) current in conjunction with a shock-heated [ital l]=1 stellarator configuration. The equilibria are found to possess a high global beta and the plasma pressure is approximately a flux-surface quantity. Under the effects of plasma, the magnetic well is found to deepen and the rotational transform is greatly increased and becomes highly sheared, owing to plasma currents induced by the fast-rising hardcore current. In the second phase of the experiment, the equilibrium fields of the symmetric heliac are lowered while maintaining the same shock heating in an attempt to raise the global beta. No substantial change in global beta is seen, indicating that the configuration forms at the beta limit in the shock-heated HBQM, and that the plasma beta seen in the first phase of the experiment is the symmetric heliac beta limit.

  19. ChemTeacher: Fusion

    NSDL National Science Digital Library

    2011-01-01

    ChemTeacher compiles background information, videos, articles, demonstrations, worksheets and activities for high school teachers to use in their classrooms. The Fusion page includes resources for teaching students about the discovery and applications of fusion.

  20. Collisional-radiative modeling of EBIT spectra from highly-charged high-Z ions of relevance to magnetic fusion

    NASA Astrophysics Data System (ADS)

    Ralchenko, Yuri; Dragani?, Ilija N.; Gillaspy, John D.; Reader, Joseph; Tan, Joseph N.; Pomeroy, Joshua M.; Brewer, Samuel M.

    2009-11-01

    Electron Beam Ion Traps (EBITs) are currently the primary source of spectroscopic information on highly-charged ions of heavy elements, e.g. tungsten, that are important for diagnostics of magnetic confinement fusion devices such as ITER. We will present some results on collisional-radiative (CR) modeling of low-density non-Maxwellian plasmas of EBITs and discuss how various physical processes affect spectral emission and ionization balance. Special attention will be given to the accuracy of radiative and collisional data used for the CR modeling. The simulated spectra will be compared with our recently measured x-ray and extreme-ultraviolet spectra of highly-charged (ion charge z=35-68) Hf, Ta, W, and Au.

  1. High resolution image acquisition from magnetic resonance and computed tomography scans using the curvelet fusion algorithm with inverse interpolation techniques.

    PubMed

    Ali, Fatma E; El-Dokany, Ibrahim M; Saad, Abdelfattah A; Al-Nuaimy, Waleed; Abd El-Samie, Fathi E

    2010-01-01

    We present a new approach, based on the curvelet transform, for the fusion of magnetic resonance and computed tomography images. The objective of this fusion process is to obtain images, with as much detail as possible, for medical diagnosis. This approach is based on the application of the additive wavelet transform on both images and the segmentation of their detail planes into small overlapping tiles. The ridgelet transform is then applied on each of these tiles, and the fusion process is performed on the ridgelet transforms of the tiles. To maximize the benefit of the fused images, inverse interpolation techniques are used to obtain high resolution images from the low resolution fused images. Three inverse interpolation techniques are presented and compared. Simulation results show the superiority of the proposed curvelet fusion approach to the traditional discrete wavelet transform fusion technique. Results also reveal that inverse interpolation techniques have succeeded in obtaining high resolution images from the fused images with better quality than that of the traditional cubic spline interpolation technique. PMID:20062497

  2. Different pituitary. beta. -endorphin and adrenal cortisol response to ethanol in individuals with high and low risk for future development of alcoholism

    SciTech Connect

    Gianoulakis, C.G.; Beliveau, D.; Angelogianni, P.; Meaney, M.; Thavundayil, J.; Tawar, V.; Dumas, M. (McGill Univ., Quebec (Canada))

    1989-01-01

    The purpose of the present studies was to investigate the activity of the adrenal gland and the pituitary {beta}-endorphin system in individuals from families with a 3 generation history of alcoholism, High Risk group, or from families without history of alcoholism, Low Risk group. On the day of testing, blood sample was taken at 9:00 a.m., then the subject drank a placebo drink or an ethanol solution. Additional blood samples were taken at 15, 45 and 120 minutes post-drink. Results indicated that individuals of the High Risk group had lower basal levels of {beta}-endorphin like immunoreactivity ({beta}-EPLIR) than individuals of the Low Risk group. The dose of 0.5 g ethanol/kg B.Wt. induced an induce an increase in the plasma content of {beta}-EPLIR of the High Risk group, but not of the Low Risk group. In the Low Risk group ethanol did not induce an increase above the 9:00 a.m. levels, however, it attenuated the {beta}-endorphin decrease overtime, observed following the placebo drink. Analysis of {beta}-endorphin-like peptides in the plasma of the High Risk group, with Sephadex G-75 chromatography indicated that the major component of the plasma {beta}-EPLIR was {beta}-lipotropin. Plasma cortisol levels, following ethanol intake, presented a small increase in the High Risk group but not in the Low Risk group.

  3. Tokamak fusion power reactors

    Microsoft Academic Search

    W. M. Stacey Jr.; M. A. Abdou

    1978-01-01

    The major parameters and corresponding economic characteristics of a representative class of commercial Tokamak fusion power reactors are examined as a function of four major design parameters: plasma beta-t, toroidal magnetic field strength, first-wall lifetime, and power output. It is shown that for beta-t greater than or equal to 0.06, the minimum cost of energy is obtained for toroidal field

  4. Application of amorphous filler metals in production of fusion reactor high heat flux components

    SciTech Connect

    Kalin, B.A.; Fedotov, V.T.; Grigoriev, A.E. [Moscow Engineering Physics Inst. (Russian Federation)] [and others

    1994-12-31

    The technology of Al-Si, Zr-Ti-Be and Ti-Zr-Cu-Ni amorphous filler metals for Be and graphite brazing with Cu, Mo and V was developed. The fusion reactor high heat flux components from Cu-Be, Cu-graphite, Mo-Be, Mo-graphite, V-Re and V-graphite materials were produced by brazing. Every component represents metallic base, to which Be or graphite plates are brazed. The distance between plates was equal 0.2 times the plate height. These components were irradiated by hydrogen plasma with 5 x 10{sup 6} W/m{sup 2} power. The microstructure and the element distribution in the brazed zone were investigated before and after heat plasma irradiation. Topography graphite plate surfaces and topography of metal surfaces between plates were also investigated after heat plasma irradiation. The results of microstructure investigation and material erosion are discussed.

  5. Membrane-anchored beta 2-microglobulin stabilizes a highly receptive state of MHC class I molecules.

    PubMed

    Berko, Dikla; Carmi, Yaron; Cafri, Gal; Ben-Zaken, Shimrit; Sheikhet, Helena Migalovich; Tzehoval, Esther; Eisenbach, Lea; Margalit, Alon; Gross, Gideon

    2005-02-15

    The magnitude of response elicited by CTL-inducing vaccines correlates with the density of MHC class I (MHC-I)-peptide complexes formed on the APC membrane. The MHC-I L chain, beta2-microglobulin (beta2m), governs complex stability. We reasoned that genetically converting beta2m into an integral membrane protein should exert a marked stabilizing effect on the resulting MHC-I molecules and enhance vaccine efficacy. In the present study, we show that expression of membranal human beta2m (hbeta2m) in mouse RMA-S cells elevates MHC-I thermal stability. RMA-S transfectants bind an exogenous peptide at concentrations 10(4)- to 10(6)-fold lower than parental RMA-S, as detected by complex-specific Abs and by T cell activation. Moreover, saturation of the transfectants' MHC-I by exogenous peptide occurs within 1 min, as compared with approximately 1 h required for parental cells. At saturation, however, level of peptide bound by modified cells is only 3- to 5-fold higher. Expression of native hbeta2m only results in marginal effect on the binding profile. Soluble beta2m has no effect on the accelerated kinetics, but the kinetics of transfectants parallel that of parental cells in the presence of Abs to hbeta2m. Ab inhibition and coimmunoprecipitation analyses suggest that both prolonged persistence of peptide-receptive H chain/beta2m heterodimers and fast heterodimer formation via lateral diffusion may contribute to stabilization. In vivo, peptide-loaded transfectants are considerably superior to parental cells in suppressing tumor growth. Our findings support the role of an allosteric mechanism in determining ternary MHC-I complex stability and propose membranal beta2m as a novel scaffold for CTL induction. PMID:15699142

  6. Hemoglobin Great Lakes (beta 68 [E12] leucine replaced by histidine): a new high-affinity hemoglobin.

    PubMed

    Rahbar, S; Winkler, K; Louis, J; Rea, C; Blume, K; Beutler, E

    1981-10-01

    Hemoglobin Great Lakes, beta 68 (E12) Leu replaced by His is a new high oxygen affinity hemoglobin variant discovered in a 29-yr-old female having numerous hospitalizations for thrombophlebitis associated with mild erythrocytosis. The mutant hemoglobin has normal stability and normal electrophoretic mobility, but increased oxygen affinity (P-50 16.1 mm Hg at 37 degrees C, pH 7.4) and reduced cooperativity. The abnormal beta-chain could be separated on globin chain chromatography on carboxymethyl/cellulose in spite of the normal electrophoretic mobility of the intact hemoglobin. The leucyl residue at beta 68th position (E12) is in the middle of E-helix, which is part of the heme pocket and next to the valine (E11), which is the heme binding site. The substitution of proline for leucine in hemoglobin Mizuho resulted in the distortion of tertiary structure of the beta-chains and lead to a serious instability of hemoglobin molecule. However, the substitution of this residue by histidine in hemoglobin Great Lakes is not associated with hemoglobin instability. PMID:7272510

  7. High-throughput luminescent reporter of insulin secretion for discovering regulators of pancreatic Beta-cell function.

    PubMed

    Burns, Sean M; Vetere, Amedeo; Walpita, Deepika; Dan?ík, Vlado; Khodier, Carol; Perez, Jose; Clemons, Paul A; Wagner, Bridget K; Altshuler, David

    2015-01-01

    Defects in insulin secretion play a central role in the pathogenesis of type 2 diabetes, yet the mechanisms driving beta-cell dysfunction remain poorly understood, and therapies to preserve glucose-dependent insulin release are inadequate. We report a luminescent insulin secretion assay that enables large-scale investigations of beta-cell function, created by inserting Gaussia luciferase into the C-peptide portion of proinsulin. Beta-cell lines expressing this construct cosecrete luciferase and insulin in close correlation, under both standard conditions or when stressed by cytokines, fatty acids, or ER toxins. We adapted the reporter for high-throughput assays and performed a 1,600-compound pilot screen, which identified several classes of drugs inhibiting secretion, as well as glucose-potentiated secretagogues that were confirmed to have activity in primary human islets. Requiring 40-fold less time and expense than the traditional ELISA, this assay may accelerate the identification of pathways governing insulin secretion and compounds that safely augment beta-cell function in diabetes. PMID:25565210

  8. The National Spherical Torus Experiment (NSTX) Research Program and Progress Towards High Beta, Long Pulse Operating Scenarios

    SciTech Connect

    E.J. Synakowski; M.G. Bell; R.E. Bell; T. Bigelow; M. Bitter; W. Blanchard; J. Boedo; C. Bourdelle; C. Bush; D.S. Darrow; , P.C. Efthimion; et al.

    2002-10-15

    A major research goal of the National Spherical Torus Experiment is establishing long-pulse, high-beta, high-confinement operation and its physics basis. This research has been enabled by facility capabilities developed over the last two years, including neutral-beam (up to 7 MW) and high-harmonic fast-wave heating (up to 6 MW), toroidal fields up to 6 kG, plasma currents up to 1.5 MA, flexible shape control, and wall preparation techniques. These capabilities have enabled the generation of plasmas with <beta {sub T}> up to 35%. Normalized beta values often exceed the no wall limit, and studies suggest that passive wall mode stabilization is enabling this for broad pressure profiles characteristic of H-mode plasmas. The viability of long, high bootstrap-current fraction operations has been established for ELMing H-mode plasmas with toroidal beta values in excess of 15% and sustained for several current relaxation times. Improvements in wall conditioning and fueling are likely contributing to a reduction in H-mode power thresholds. Electron thermal conduction is the dominant thermal loss channel in auxiliary-heated plasmas examined thus far. High-harmonic fast-wave (HHFW) effectively heats electrons, and its acceleration of fast beam ions has been observed. Evidence for HHFW current drive is by comparing of the loop voltage evolution in plasmas with matched density and temperature profiles but varying phases of launched HHFW waves. A peak heat flux of 10 MW/m superscript ''2'' has been measured in the H-mode, with large asymmetries in the power deposition being observed between the inner and outer strike points. Noninductive plasma start-up studies have focused on coaxial helicity injection. With this technique, toroidal currents up to 400 kA have been driven, and studies to assess flux closure and coupling to other current-drive techniques have begun.

  9. Fusion-product transport in axisymmetric tokamaks: losses and thermalization

    SciTech Connect

    Hively, L.M.

    1980-01-01

    High-energy fusion-product losses from an axisymmetric tokamak plasma are studied. Prompt-escape loss fluxes (i.e. prior to slowing down) are calculated including the non-separable dependence of flux as a function of poloidal angle and local angle-of-incidence at the first wall. Fusion-product (fp) thermalization and heating are calculated assuming classical slowing down. The present analytical model describes fast ion orbits and their distribution function in realistic, high-..beta.., non-circular tokamak equilibria. First-orbit losses, trapping effects, and slowing-down drifts are also treated.

  10. A High Temperature Electrochemical Energy Storage System Based on Sodium Beta-Alumina Solid Electrolyte (Base)

    SciTech Connect

    Anil Virkar

    2008-03-31

    This report summarizes the work done during the period September 1, 2005 and March 31, 2008. Work was conducted in the following areas: (1) Fabrication of sodium beta{double_prime} alumina solid electrolyte (BASE) using a vapor phase process. (2) Mechanistic studies on the conversion of {alpha}-alumina + zirconia into beta{double_prime}-alumina + zirconia by the vapor phase process. (3) Characterization of BASE by X-ray diffraction, SEM, and conductivity measurements. (4) Design, construction and electrochemical testing of a symmetric cell containing BASE as the electrolyte and NaCl + ZnCl{sub 2} as the electrodes. (5) Design, construction, and electrochemical evaluation of Na/BASE/ZnCl{sub 2} electrochemical cells. (6) Stability studies in ZnCl{sub 2}, SnCl{sub 2}, and SnI{sub 4} (7) Design, assembly and testing of planar stacks. (8) Investigation of the effect of porous surface layers on BASE on cell resistance. The conventional process for the fabrication of sodium ion conducting beta{double_prime}-alumina involves calcination of {alpha}-alumina + Na{sub 2}CO{sub 3} + LiNO{sub 3} at 1250 C, followed by sintering powder compacts in sealed containers (platinum or MgO) at {approx}1600 C. The novel vapor phase process involves first sintering a mixture of {alpha}-alumina + yttria-stabilized zirconia (YSZ) into a dense ceramic followed by exposure to soda vapor at {approx}1450 C to convert {alpha}-alumina into beta{double_prime}-alumina. The vapor phase process leads to a high strength BASE, which is also resistant to moisture attack, unlike BASE made by the conventional process. The PI is the lead inventor of the process. Discs and tubes of BASE were fabricated in the present work. In the conventional process, sintering of BASE is accomplished by a transient liquid phase mechanism wherein the liquid phase contains NaAlO{sub 2}. Some NaAlO{sub 2} continues to remain at grain boundaries; and is the root cause of its water sensitivity. In the vapor phase process, NaAlO{sub 2} is never formed. Conversion occurs by a coupled transport of Na{sup +} through BASE formed and of O{sup 2-} through YSZ to the reaction front. Transport to the reaction front is described in terms of a chemical diffusion coefficient of Na{sub 2}O. The conversion kinetics as a function of microstructure is under investigation. The mechanism of conversion is described in this report. A number of discs and tubes of BASE have been fabricated by the vapor phase process. The material was investigated by X-ray diffraction (XRD), optical microscopy and scanning electron microscopy (SEM), before and after conversion. Conductivity (which is almost exclusively due to sodium ion transport at the temperatures of interest) was measured. Conductivity was measured using sodium-sodium tests as well as by impedance spectroscopy. Various types of both planar and tubular electrochemical cells were assembled and tested. In some cases the objective was to determine if there was any interaction between the salt and BASE. The interaction of interest was mainly ion exchange (possible replacement of sodium ion by the salt cation). It was noted that Zn{sup 2+} did not replace Na+ over the conditions of interest. For this reason much of the work was conducted with ZnCl{sub 2} as the cathode salt. In the case of Sn-based, Sn{sup 2+} did ion exchange, but Sn{sup 4+} did not. This suggests that Sn{sup 4+} salts are viable candidates. These results and implications are discussed in the report. Cells made with Na as the anode and ZnCl{sub 2} as the cathode were successfully charged/discharged numerous times. The key advantages of the batteries under investigation here over the Na-S batteries are: (1) Steel wool can be used in the cathode compartment unlike Na-S batteries which require expensive graphite. (2) Planar cells can be constructed in addition to tubular, allowing for greater design flexibility and integration with other devices such as planar SOFC. (3) Comparable or higher open circuit voltage (OCV) than the Na-S battery. (4) Wider operating temperature range and higher temper

  11. [Effect of tetramethylpyrazine and rat CTGF miRNA plasmids on connective tissue growth factor, transforming growth factor-beta in high glucose stimulated hepatic stellate cells].

    PubMed

    Yang, Hong; Li, Jun; Xing, Nini; Xiang, Ying; Shen, Yan; Li, Xiaosheng

    2014-04-01

    The aim of this research is to evaluate the effect of tetramethylpyrazine (TMP) and connective tissue growth factor (CTGF) miRNA plasmids on the expressive levels of CTGF, transforming growth factor-beta (TGFbeta) and type I collagen of rat hepatic stellate cells (HSC) which are stimulated by high glucose. The rat HSCs which were successfully transfected rat CTGF miRNA plasmids and the rat HSCs which were successfully transfected negative plasmids were cultured in vitro. After stimulus of the TMP and the high glucose, the protein levels and gene expressive levels of CTGF, TGF-beta and type I collagen were tested. The results indicated that high glucose increased the expression of CTGF mRNA, CTGF protein, TGF-beta mRNA,TGF-beta protein and type I collagen (P < 0.05). The expressive levels of CTGF mRNA, CTGF protein, TGF-beta mRNA, TGF-beta and type I collagen in TMP group were lower than those in high glucose group and showed statistically significant differences (P < 0.05). Compared with high glucose group, the expressive levels of CTGF mRNA, CTGF protein, TGF-beta mRNA, TGF-beta and type I collagen in rat CTGF miRNA plasmid interference group were significantly lower (P < 0.05). However, no statistically significant difference was found in CTGF mRNA and CTGF protein levels between TMP group and CTGF miRNA group (P > 0.05), while type I collagen levels showed statistically significant differences (P < 0.05). It is concluded that high glucose could promote the expressions of CTGF, TGF-beta and type I collagen, and TMP and rat CTGF miRNA plasmids could reduce the expressions of CTGF, TGF-beta, type I collagen. PMID:25039149

  12. Multisensor fusion system using wavelet-based detection algorithm applied to physiological monitoring under high-G environment

    Microsoft Academic Search

    Han Chool Ryoo

    2000-01-01

    A significant problem in physiological state monitoring systems with single data channels is high rates of false alarm. In order to reduce false alarm probability, several data channels can be integrated to enhance system performance. In this work, we have investigated a sensor fusion methodology applicable to physiological state monitoring, which combines local decisions made from dispersed detectors. Difficulties in

  13. Detection of highly enriched uranium and tungsten surface damage studies using a pulsed inertial electrostatic confinement fusion device

    Microsoft Academic Search

    Ross F. Radel

    2007-01-01

    The research in this thesis examines two applications of a pulsed Inertial Electrostatic Confinement (EEC) fusion device: detection of highly enriched uranium (HEU) and tungsten surface damage studies. In order to complete this thesis, a pulsed IEC device was developed that is capable of generating converging ion pulses with widths ranging from 0.1 to 5 ms at frequencies between 1

  14. Highly diverse chromoviruses of Beta vulgaris are classified by chromodomains and chromosomal integration

    PubMed Central

    2013-01-01

    Background Chromoviruses are one of the three genera of Ty3-gypsy long terminal repeat (LTR) retrotransposons, and are present in high copy numbers in plant genomes. They are widely distributed within the plant kingdom, with representatives even in lower plants such as green and red algae. Their hallmark is the presence of a chromodomain at the C-terminus of the integrase. The chromodomain exhibits structural characteristics similar to proteins of the heterochromatin protein 1 (HP1) family, which mediate the binding of each chromovirus type to specific histone variants. A specific integration via the chromodomain has been shown for only a few chromoviruses. However, a detailed study of different chromoviral clades populating a single plant genome has not yet been carried out. Results We conducted a comprehensive survey of chromoviruses within the Beta vulgaris (sugar beet) genome, and found a highly diverse chromovirus population, with significant differences in element size, primarily caused by their flanking LTRs. In total, we identified and annotated full-length members of 16 families belonging to the four plant chromoviral clades: CRM, Tekay, Reina, and Galadriel. The families within each clade are structurally highly conserved; in particular, the position of the chromodomain coding region relative to the polypurine tract is clade-specific. Two distinct groups of chromodomains were identified. The group II chromodomain was present in three chromoviral clades, whereas families of the CRM clade contained a more divergent motif. Physical mapping using representatives of all four clades identified a clade-specific integration pattern. For some chromoviral families, we detected the presence of expressed sequence tags, indicating transcriptional activity. Conclusions We present a detailed study of chromoviruses, belonging to the four major clades, which populate a single plant genome. Our results illustrate the diversity and family structure of B. vulgaris chromoviruses, and emphasize the role of chromodomains in the targeted integration of these viruses. We suggest that the diverse sets of plant chromoviruses with their different localization patterns might help to facilitate plant-genome organization in a structural and functional manner. PMID:23448600

  15. Electronic conductivity of polycrystalline Na-[beta]-alumina at high temperatures

    SciTech Connect

    Naefe, H. (Max-Planck-Inst. fuer Festkoerperforschung, Stuttgart (Germany)); Steinbrueck, M. (Kernforschungszentrum Karlsruhe (Germany). Inst. fuer Reaktorsicherheit)

    1994-10-01

    Na-[beta]-alumina is of practical relevance as a sodium ion conducting solid electrolyte to sensors, Na/S-batteries and the alkali metal thermoelectric converter. From defect chemical considerations the sodium potential dependencies of the partial electronic conductivities of Na-[beta]-alumina are derived. As a result, relationships for the ionic transference number, the open-circuit voltage of a galvanic cell, the steady-state ionic current and the sodium potential profile across the electrolyte can be solved for. These relationships serve as a theoretical basis to determine and discuss the role of the partial electronic conductivities under defined operating conditions of the electrolyte.

  16. Limited access surgery for 360 degrees in-situ fusion in a dysraphic patient with high-grade spondylolisthesis.

    PubMed

    König, M A; Boszczyk, B M

    2012-03-01

    Progressive high-grade spondylolisthesis can lead to spinal imbalance. High-grade spondylolisthesis is often reduced and fused in unbalanced pelvises, whereas in-situ fusion is used more often in balanced patients. The surgical goal is to recreate or maintain sagittal balance but if anatomical reduction is necessary, the risk of nerval damage with nerve root disruption in worst cases is increased. Spinal dysraphism like spina bifida or tethered cord syndrome make it very difficult to achieve reduction and posterior fusion due to altered anatomy putting the focus on anterior column support. Intensive neural structure manipulation should be avoided to reduce neurological complications and re-tethering in these cases. A 26-year-old patient with a history of diastematomyelia, occult spina bifida and tethered cord syndrome presented with new onset of severe low back pain, and bilateral L5/S1 sciatica after a fall. The X-ray demonstrated a grade III spondylolisthesis with spina bifida and the MRI scan revealed bilateral severely narrowed exit foramina L5 due to the listhesis. Because she was well balanced sagittally, the decision for in-situ fusion was made to minimise the risk of neurological disturbance through reduction. Anterior fusion was favoured to minimise manipulation of the dysraphic neural structures. Fusion was achieved via isolated access to the L4/L5 disc space. A L5 transvertebral hollow modular anchorage (HMA) screw was passed into the sacrum from the L4/L5 disc space and interbody fusion of L4/L5 was performed with a cage. The construct was augmented with pedicle screw fixation L4-S1 via a less invasive bilateral muscle split for better anterior biomechanical support. The postoperative course was uneventful and fusion was CT confirmed at the 6-month follow-up. At the last follow-up, she worked full time, was completely pain free and not limited in her free-time activities. The simultaneous presence of high-grade spondylolisthesis and spinal dysraphism make it very difficult to find a decisive treatment plan because both posterior and anterior treatment strategies have advantages and disadvantages in these challenging cases. The described technique combines several surgical options to achieve 360° fusion with limited access, reducing the risk of neurological sequelae. PMID:22008862

  17. High-Energy Neutron Source For Fusion Material Property Studies Using Short Pulse Lasers

    NASA Astrophysics Data System (ADS)

    Higginson, D. P.; McNaney, J. M.; Swift, D. C.; Bleuel, D.; MacKinnon, A. J.; Patel, P. K.; Petrov, G. M.; Davis, J.; Glebov, V. Yu; Stoeckl, C.; Cobble, J.; Frenje, J. A.; Kodama, R.; Nakamura, H.; Lancaster, K. L.; Jarrott, L. C.; Tynan, G.; Beg, F. N.

    2011-11-01

    High-energy (>10 MeV) neutron generation is of interest to applications including fusion energy, material damage studies and nondestructive material detection. A novel technique to create high-energy neutrons was demonstrated using short pulse (10 ps), high-energy (350-1000 J) lasers at the Titan and Omega EP laser systems. In this method, the laser accelerates deuterons from a CD foil, which produce neutrons as they pass through a LiF block via the reaction ^7Li(d,xn), Q=15 MeV. The spectrum is forward peaked in both energy and number. The presence of proton contaminants on the CD foil dramatically inhibits the acceleration of deuterons, which reduces the neutron generation. Activation diagnostics and CR39 detectors recorded single shot neutron fluences of up to 3x10^9 n sr-1. Neutron time-of-flight spectrometer detectors indicate the production of neutrons with energies up to 18 MeV in the forward direction. Methods to improve neutron yield and directionality will be presented.

  18. A review of high-level multisensor fusion: approaches and applications

    Microsoft Academic Search

    Ren C. Luo; K. L. Su

    1999-01-01

    The potential advantages in multisensor fusion can be obtained more accurately, concerning feature that are impossible to perceive with individual sensors, as well as in less time, and at a lower cost. The characterization most commonly encountered in the rapidly growing multisensor fusion literature based on levels of detail in the information is that of the now well known triple

  19. Sensor fusion for a network of processes\\/systems with highly autonomous sensors

    Microsoft Academic Search

    Fernando Figueroa; Xiaojing Yuan

    2001-01-01

    Sensor fusion systems have largely been implemented with centralized and hierarchical architectures using numerical and statistical inference methods. Some recent research has emphasized distributed and decentralized systems, using analytical\\/quantitative inference mechanism. It appears that little has been done to define generic paradigms and theories to apply qualitative reasoning as an inference mechanism in sensor fusion systems. This paper describes a

  20. Optimal shape of electrodes for high performance of inertial electrostatic confinement fusion

    Microsoft Academic Search

    R. Tanaka; H. Osawa; T. Tabata; T. Ishibashi; M. Ohnishi

    2003-01-01

    Inertial electrostatic confinement (IEC) fusion is a scheme of producing the ions between the anode and the hollow cathode in the concentric spheres by the glow discharge, accelerating the ions into the spherical center and giving rise to fusion reactions between the accelerated ions or between the accelerated ions and the background neutrals. A current feed-through is connected to the

  1. Shape of Electrodes for High Performance of Inertial Electrostatic Confinement Fusion

    Microsoft Academic Search

    Masami OHNISHI; Hodaka OSAWA; Ryo TANAKA; Naoki WAKIZAKA

    2005-01-01

    Inertial electrostatic confinement (IEC) fusion is a scheme of producing deuterium, tritium, and helium-3 ions between the anode and the hollow cathode in the concentric sphere by glow discharge, accelerating the ions into the spherical center and giving rise to the fusion reactions between the accelerated ions or between the accelerated ions and the background neutrals. The current feed-through is

  2. Testbed for distributed high-level information fusion and dynamic resource management

    Microsoft Academic Search

    Pierre Valin; Eloi Bossé; Adel Guitouni; Hans Wehn; Jens Happe

    2010-01-01

    The testbed allows experimenting with highlevel distributed information fusion, dynamic resource management and configuration management given multiple constraints on the resources and their communication networks. The testbed provides general services that are useful for testing many information fusion applications. Services include a multi-layer plug-and-play architecture, and a general multi-agent framework based on John Boyd's OODA loop.

  3. Strong interaction corrections to the neutron beta decay and high precision

    Microsoft Academic Search

    A. García; J. L. García-Luna

    2000-01-01

    We present, in the neutron beta decay, expressions for the decay rate and the electron asymmetry that contain the theoretical effects at the 10-4 level. This accuracy is better than the current experimental precision that experiments allow. We consider the effects of the second class current and the radiative corrections. We compare the values of the CKM matrix element |Vud|

  4. Strong interaction corrections to the neutron beta decay and high precision

    Microsoft Academic Search

    A. Garc?´a; J. L. Garc?´a-Luna

    2000-01-01

    We present, in the neutron beta decay, expressions for the decay rate and the electron asymmetry that contain the theoretical effects at the 10?4 level. This accuracy is better than the current experimental precision that experiments allow. We consider the effects of the second class current and the radiative corrections. We compare the values of the CKM matrix element |Vud|

  5. Topic: EX-S High Beta Plasmas Exceeding Dual Stability Thresholds in the MST RFP

    E-print Network

    Wisconsin at Madison, University of

    to the total edge field pressure, reaches 26%, the largest value yet attained in the ohmically-heated RFP the average density exceeds about 1e19 m-3. This leads to confinement degradation. By depositing fuel directly, but these plasmas also exhibit improved energy confinement [1]. Total beta, the average plasma pressure normalized

  6. Multi-sensor fusion system using wavelet-based detection algorithm applied to physiological monitoring under high-G environment

    NASA Astrophysics Data System (ADS)

    Ryoo, Han Chool

    2000-06-01

    A significant problem in physiological state monitoring systems with single data channels is high rates of false alarm. In order to reduce false alarm probability, several data channels can be integrated to enhance system performance. In this work, we have investigated a sensor fusion methodology applicable to physiological state monitoring, which combines local decisions made from dispersed detectors. Difficulties in biophysical signal processing are associated with nonstationary signal patterns and individual characteristics of human physiology resulting in nonidentical observation statistics. Thus a two compartment design, a modified version of well established fusion theory in communication systems, is presented and applied to biological signal processing where we combine discrete wavelet transforms (DWT) with sensor fusion theory. The signals were decomposed in time-frequency domain by discrete wavelet transform (DWT) to capture localized transient features. Local decisions by wavelet power analysis are followed by global decisions at the data fusion center operating under an optimization criterion, i.e., minimum error criterion (MEC). We used three signals acquired from human volunteers exposed to high-G forces at the human centrifuge/dynamic flight simulator facility in Warminster, PA. The subjects performed anti-G straining maneuvers to protect them from the adverse effects of high-G forces. These maneuvers require muscular tensing and altered breathing patterns. We attempted to determine the subject's state by detecting the presence or absence of the voluntary anti-G straining maneuvers (AGSM). During the exposure to high G force the respiratory patterns, blood pressure and electroencephalogram (EEG) were measured to determine changes in the subject's state. Experimental results show that the probability of false alarm under MEC can be significantly reduced by applying the same rule found at local thresholds to all subjects, and MEC can be employed as a robust system to the case of defective/jammed local sensors. This implies the feasibility of our system for physiological state monitoring under a unifying criterion by biological information fusion, and provides significant guidance for algorithm development.

  7. Status and future prospects of laser fusion and high power laser applications

    NASA Astrophysics Data System (ADS)

    Mima, Kunioki

    2010-08-01

    In Asia, there are many institutes for the R&D of high power laser science and applications. They are 5 major institutes in Japan, 4 major institutes in China, 2 institutes in Korea, and 3 institutes in India. The recent achievements and future prospects of those institutes will be over viewed. In the laser fusion research, the FIREX-I project in Japan has been progressing. The 10kJ short pulse LFEX laser has completed and started the experiments with a single beam. About 1kJ pulse energy will be injected into a cone target. The experimental results of the FIREX experiments will be presented. As the target design for the experiments, a new target, namely, a double cone target was proposed, in which the high energy electrons are well confined and the heating efficiency is significantly improved. Together with the fusion experiments, Osaka University has carried out laboratory astrophysics experiments on photo ionizing plasmas to observe a unique X-ray spectrum from non-LTE plasmas. In 2008, Osaka university has started a new Photon research center in relation with the new program: Consortium for Photon Science and Technology: C-PhoST, in which ultra intense laser plasmas research and related education will be carried out for 10 years. At APRI, JAEA, the fundamental science on the relativistic laser plasmas and the applications of laser particle acceleration has been developed. The application of laser ion acceleration has been investigated on the beam cancer therapy since 2007. In China, The high power glass laser: Shenguan-II and a peta watt beam have been operated to work on radiation hydro dynamics at SIOFM Shanghai. The laser material and optics are developed at SIOFM and LFRC. The IAPCM and the IOP continued the studies on radiation hydrodynamics and on relativistic laser plasmas interactions. At LFRC in China, the construction of Shenguan III glass laser of 200kJ in blue has progressed and will be completed in 2012. Together with the Korean program, I will overview the above Asian programs.

  8. Fronto-Parietal Anatomical Connections Influence the Modulation of Conscious Visual Perception by High-Beta Frontal Oscillatory Activity.

    PubMed

    Quentin, Romain; Chanes, Lorena; Vernet, Marine; Valero-Cabré, Antoni

    2015-08-01

    May white matter connectivity influence rhythmic brain activity underlying visual cognition? We here employed diffusion imaging to reconstruct the fronto-parietal white matter pathways in a group of healthy participants who displayed frequency-specific ameliorations of visual sensitivity during the entrainment of high-beta oscillatory activity by rhythmic transcranial magnetic stimulation over their right frontal eye field. Our analyses reveal a strong tract-specific association between the volume of the first branch of the superior longitudinal fasciculus and improvements of conscious visual detection driven by frontal beta oscillation patterns. These data indicate that the architecture of specific white matter pathways has the ability to influence the distributed effects of rhythmic spatio-temporal activity, and suggest a potentially relevant role for long-range connectivity in the synchronization of oscillatory patterns across fronto-parietal networks subtending the modulation of conscious visual perception. PMID:24554730

  9. The effects of exchange gas temperature and pressure on the beta-layering process in solid deuterium-tritium fusion fuel

    SciTech Connect

    Hoffer, J.K.; Foreman, L.R. (Los Alamos National Lab., NM (USA)); Simpson, J.D.; Pattinson, T.R. (KMS Fusion, Inc., Ann Arbor, MI (USA))

    1990-01-01

    It has recently been shown that when solid tritium is confined in an isothermal enclosure, self-heating due to beta decay drives a net sublimation of material from thick, warmer layers to thin, cooler ones, ultimately resulting in layer thickness uniformity. We have observed this process of beta-layering'' in a 50--50 D-T mixture in both cylindrical and spherical enclosures at temperatures from 19.6 K, down to 11.6 K. The measured time constants are found to depend on the {sup 3}He content as suggested by recent theoretical predictions. When using an enclosure having low thermal conductivity, the ultimate layer uniformity is found to be a strong function of the exchange gas pressure. This is due to the presence of thermal convection in the exchange gas and consequent temperature anisotropy at the solid layer surface. 6 refs., 2 figs., 1 tab.

  10. SIPHORE: Conceptual Study of a High Efficiency Neutral Beam Injector Based on Photo-detachment for Future Fusion Reactors

    Microsoft Academic Search

    A. Simonin; L. Christin; H. de Esch; P. Garibaldi; C. Grand; F. Villecroze; C. Blondel; C. Delsart; C. Drag; M. Vandevraye; A. Brillet; W. Chaibi

    2011-01-01

    An innovative high efficiency neutral beam injector concept for future fusion reactors is under investigation (simulation and R&D) between several laboratories in France, the goal being to perform a feasibility study for the neutralization of intense high energy (1 MeV) negative ion (NI) beams by photo-detachment. The objective of the proposed project is to put together the expertise of three

  11. Overview of the scientific objectives of the high current experiment of heavy-ion fusion

    SciTech Connect

    Seidl, P.; Bangerter, R.; Celata, C.; Faltens, A.; Karpenko, V.; Lee, E.; Haber, I.; Lund, S.; Molvik, A.

    2001-06-01

    The High Current Experiment (HCX) is being built to explore heavy-ion beam transport at a scale appropriate to the low-energy end of a driver for fusion energy production. The primary mission of this experiment is to investigate aperture fill factors acceptable for the transport of space-charge dominated heavy-ion beams at high space-charge intensity (line-charge density {approx} 0.2 {micro}C/m) over long pulse durations (3-10 {micro}sec). A single beam transport channel will be used to evaluate scientific and technological issues resulting from the transport of an intense beam subject to applied field nonlinearities, envelope mismatch, misalignment-induced centroid excursions, imperfect vacuum, halo, background gas and electron effects resulting from lost beam ions. Emphasis will be on the influence of these effects on beam control and limiting degradations in beam quality (emittance growth). Electrostatic (Phase I) and magnetic (Phase II) quadrupole focusing lattices have been designed and future phases of the experiment may involve acceleration and/or pulse compression. The Phase I lattice is presently under construction [1] and simulations to better predict machine performance are being carried out [2]. Here we overview: the scientific objectives of the overall project, processes that will be explored, and transport lattices developed.

  12. High yield inertial confinement fusion target design for a {ital z}-pinch-driven hohlraum

    SciTech Connect

    Hammer, J.H.; Tabak, M.; Wilks, S.C.; Lindl, J.D.; Bailey, D.S.; Rambo, P.W.; Toor, A.; Zimmerman, G.B. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States)] [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Porter, J.L. Jr. [Sandia National Laboratories, Albuquerque, New Mexico 87185-1191 (United States)] [Sandia National Laboratories, Albuquerque, New Mexico 87185-1191 (United States)

    1999-05-01

    Calculations are presented for a high yield inertial fusion design, employing indirect drive with a double-ended {ital z}-pinch-driven hohlraum radiation source. A high current ({approximately}60 MA) accelerator implodes {ital z} pinches within an enclosing hohlraum. Radial spoke arrays and shine shields isolate the capsule from the pinch plasma, magnetic field, and direct x-ray shine. Our approach places minimal requirements on {ital z}-pinch uniformity and stability, usually problematic due to magneto-Rayleigh{endash}Taylor instability. Large inhomogeneities of the pinch and spoke array may be present, but the hohlraum adequately smooths the radiation field at the capsule. Simultaneity and reproducibility of the pinch x-ray output to better than 7{percent} are required, however, for good symmetry. Recent experiments suggest a pulse shaping technique, through implosion of a multishell {ital z} pinch. X-ray bursts are calculated and observed to occur at each shell collision. A capsule absorbing 1 MJ of x rays at a peak drive temperature of 210 eV is found to have adequate stability and to produce 400 MJ of yield. A larger capsule absorbs 2 MJ with a yield of 1200 MJ. {copyright} {ital 1999 American Institute of Physics.}

  13. Performance of large-aperture optical switches for high-energy inertial-confinement fusion lasers

    SciTech Connect

    Rhodes, M.A.; Woods, B.; DeYoreo, J.J.; Roberts, D.; Atherton, L.J. [University of California, Lawrence Livermore National Laboratory, P.O. Box 808 L-490, Livermore, California 94550 (United States)

    1995-08-20

    We describe the design and performance of large-aperture ({lt}30 cm {times} 30 cm) optical switches that have demonstrated, for the first time to our knowledge, active switching of a high-energy ({lt}5 kJ) optical pulse in an inertial-confinement fusion laser. These optical switches, which consist of a plasma-electrode Pockels cell (PEPC) and a passive polarizer, permit the design of efficient, multipass laser amplifiers. In a PEPC, plasma discharges on the faces of a thin (1-cm) electro-optic crystal (KDP or KD{bold |}P) act as highly conductive and transparent electrodes. These plasma electrodes facilitate rapid ({lt}100 ns) and uniform charging of the crystal to the half-wave voltage and discharging back to 0 V. We discuss the operating principles, design, optical performance, and technical issues of a 32 cm {times} 32 cm prototype PEPC with both KDP and KD{bold |}P crystals, and a 37 cm {times} 37 cm PEPC with a KDP crystal for the Beamlet laser. This PEPC recently switched a 6-kJ, 3-ns pulse in a four-pass cavity.

  14. Cellular LanthaScreen and beta-lactamase reporter assays for high-throughput screening of JAK2 inhibitors.

    PubMed

    Robers, Matthew B; Machleidt, Thomas; Carlson, Coby B; Bi, Kun

    2008-08-01

    The Janus kinase (JAK) 2/signal transducer and activator of transcription (STAT) 5 pathway is responsible for regulation of cellular responses to a number of cytokines and growth factors. In hematopoietic cells, growth factors such as granulocyte macrophage-colony stimulating factor, interleukin-3, and erythropoietin induce the activation of JAK2, which leads to the phosphorylation, dimerization, and transactivation of STAT5 proteins. Dysregulation of JAK2 by activating mutations such as JAK2V617F results in constitutive phosphorylation of STAT5 and has been linked to numerous myeloproliferative disorders such as polycythemia vera. A cellular LanthaScreen (Invitrogen Corp., Carlsbad, CA) time-resolved Förster resonance energy transfer assay for wild-type JAK2 activity was developed. This assay utilized the growth factor-dependent human erythroleukemia TF1 cell line engineered to express a green fluorescent protein-STAT5 fusion protein. Furthermore, a complementary beta-lactamase reporter gene assay was developed to analyze the transcriptional activity of STAT5 downstream of JAK2 in TF1 cells. The same technologies were applied to the development of cellular assays for the interrogation of the disease-relevant JAK2V617F activating mutant. A small molecule inhibitor and Stealth (Invitrogen Corp.) RNA interference oligonucleotides were used to confirm the involvement of JAK2. Our results suggest that these cellular assays and validation tools represent powerful integrated methods for the analysis of physiological and disease-relevant JAK/STAT pathways within the physiological cellular context. PMID:18694336

  15. Production of high purity TeO2 single crystals for the study of neutrinoless double beta decay

    E-print Network

    Arnaboldi, C; Bryant, A; Bucci, C; Canonica, L; Capelli, S; Carrettoni, M; Clemenza, M; Dafinei, I; Di Domizio, S; Ferroni, F; Fiorini, E; Ge, Z; Giachero, A; Gironi, L; Giuliani, A; Gorla, P; Guardincerri, E; Kadel, R; Kazkaz, K; Kogler, L; Kolomensky, Y; Larsen, J; Laubenstein, M; Li, Y; Maiano, C; Martinez, M; Maruyama, R; Nisi, S; Nones, C; Norman, Eric B; Nucciotti, A; Orio, F; Pattavina, L; Pavan, M; Pessina, G; Pirro, S; Previtali, E; Rusconi, C; Scielzo, Nicholas D; Sisti, M; Smith, Alan R; Tian, W; Vignati, M; Wang, H; Zhu, Y

    2010-01-01

    High purity TeO2 crystals are produced to be used for the search for the neutrinoless double beta decay of 130Te. Dedicated production lines for raw material synthesis, crystal growth and surface processing were built compliant with radio-purity constraints specific to rare event physics experiments. High sensitivity measurements of radio-isotope concentrations in raw materials, reactants, consumables, ancillaries and intermediary products used for TeO2 crystals production are reported. Production and certification protocols are presented and resulting ready-to-use TeO2 crystals are described.

  16. Production of high purity TeO2 single crystals for the study of neutrinoless double beta decay

    E-print Network

    C. Arnaboldi; C. Brofferio; A. Bryant; C. Bucci; L. Canonica; S. Capelli; M. Carrettoni; M. Clemenza; I. Dafinei; S. Di Domizio; F. Ferroni; E. Fiorini; Z. Ge; A. Giachero; L. Gironi; A. Giuliani; P. Gorla; E. Guardincerri; R. Kadel; K. Kazkaz; L. Kogler; Y. Kolomensky; J. Larsen; M. Laubenstein; Y. Li; C. Maiano; M. Martinez; R. Maruyama; S. Nisi; C. Nones; Eric B. Norman; A. Nucciotti; F. Orio; L. Pattavina; M. Pavan; G. Pessina; S. Pirro; E. Previtali; C. Rusconi; Nicholas D. Scielzo; M. Sisti; Alan R. Smith; W. Tian; M. Vignati; H. Wang; Y. Zhu

    2010-05-20

    High purity TeO2 crystals are produced to be used for the search for the neutrinoless double beta decay of 130Te. Dedicated production lines for raw material synthesis, crystal growth and surface processing were built compliant with radio-purity constraints specific to rare event physics experiments. High sensitivity measurements of radio-isotope concentrations in raw materials, reactants, consumables, ancillaries and intermediary products used for TeO2 crystals production are reported. Production and certification protocols are presented and resulting ready-to-use TeO2 crystals are described.

  17. Pulsed-Power-Driven High Energy Density Physics and Inertial Confinement Fusion Research

    NASA Astrophysics Data System (ADS)

    Matzen, M. Keith

    2004-11-01

    There continues to be dramatic progress in applying pulsed-power drivers to research in High Energy Density Physics (HEDP) and Inertial Confinement Fusion (ICF). The Z facility at Sandia National Laboratories delivers 20-MA load currents to create high magnetic fields (> 1000 T) and pressures (Mbar to Gbar). In a z-pinch configuration, the magnetic pressure (Lorentz Force) supersonically implodes a plasma created from a cylindrical wire array, which at stagnation generates a plasma with energy densities of 10 MJ/cm^3 and temperatures exceeding 1 keV at 0.1% of solid density. These HED plasmas produce x-ray energies approaching 2 MJ at powers greater than 200 TW for ICF, radiation hydrodynamics, radiation-material interactions, Inertial Fusion Energy, astrophysics, and opacity experiments. In an alternate configuration, the large magnetic pressure is used to directly drive Isentropic Compression Experiments (ICE) to pressures greater than 3 Mbar and accelerate flyer plates to 27 km/s for equation of state (EOS) experiments at pressures up to 10 Mbar in Al. The challenge to model these complex geometric configurations over multiple orders of magnitude in spatial scale, temperatures, densities, and radiation fluxes is daunting. Nevertheless, development of multi-dimensional radiation-MHD codes (e.g. ALEGRA) coupled with more accurate material models (e.g. quantum molecular dynamics calculations within density functional theory) has resulted in a productive synergy between validating the simulations and guiding the experiments. The Z facility is now routinely used to drive ICF capsules (focusing on implosion symmetry and neutron production) and several different HEDP experiments (including radiation-driven hydrodynamic jets; material EOS, phase transitions, and strength; and the detailed behavior of z-pinch wire array initiation and implosion). This research is performed in collaboration with many other groups from around the world. A $60M, five-year project to enhance the capability and precision of the Z facility will be completed in 2007 and will result in x-ray energies of nearly 3 MJ at powers over 300 TW. *Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy&;s National Nuclear Security Administration under contract No. DE-AC04-94AL85000.

  18. High-beta operation and magnetohydrodynamic activity on the TFTR tokamak

    Microsoft Academic Search

    K. McGuire; V. Arunasalam; C. W. Barnes; M. G. Bell; M. Bitter; R. Boivin; N. L. Bretz; R. Budny; C. E. Bush; A. Cavallo; T. K. Chu; S. A. Cohen; P. Colestock; S. L. Davis; D. L. Dimock; P. C. Efthimion; A. B. Ehrhrardt; R. J. Fonck; E. Fredrickson; H. P. Furth; G. Gammel; R. J. Goldston; G. Greene; B. Grek; L. R. Grisham; G. Hammett; R. J. Hawryluk; H. W. Hendel; K. W. Hill; E. Hinnov; D. J. Hoffman; J. Hosea; R. B. Howell; H. Hsuan; R. A. Hulse; A. C. Janos; D. Jassby; F. Jobes; D. W. Johnson; L. C. Johnson; R. Kaita; C. Kieras-Phillips; S. J. Kilpatrick; P. H. LaMarche; B. LeBlanc; D. M. Manos; D. K. Mansfield; E. Mazzucato; M. P. McCarthy; M. C. McCune; D. H. McNeill; D. M. Meade; S. S. Medley; D. R. Mikkelsen; D. Monticello; R. Motley; D. Mueller; J. A. Murphy; Y. Nagayama; D. R. Nazakian; E. B. Neischmidt; D. K. Owens; S. Pitcher; A. T. Ramsey; M. H. Redi; A. L. Roquemore; P. H. Rutherford; G. Schilling; J. Schivell; G. L. Schmidt; S. D. Scott; J. C. Sinnis; J. Stevens; B. C. Stratton; W. Stodiek; E. J. Synakowski; W. M. Tang; G. Taylor; J. R. Timberlake; H. H. Towner; M. Ulrickson; S. von Goeler; R. Wieland; M. Williams; J. R. Wilson; K.-L. Wong; M. Yamada; S. Yoshikawa; K. M. Young; M. C. Zarnstorff; S. J. Zweben

    1990-01-01

    Magnetohydrodynamic (MHD) activity within three zones (core, half-radius, and edge) of TFTR [PlasmaPhysicsandControlledNuclearFusionResearch1986 (IAEA, Vienna, 1987), Vol. 1, p. 51] tokamak plasmas are discussed. Near the core of the plasma column, sawteeth are often observed. Two types of sawteeth are studied in detail; one with complete, and the other with incomplete, magnetic reconnection. Their characteristics are determined by the shape

  19. The Highly Conserved Proline at Position 438 in Pseudorabies Virus gH Is Important for Regulation of Membrane Fusion

    PubMed Central

    Schröter, Christina; Klupp, Barbara G.; Fuchs, Walter; Gerhard, Marika; Backovic, Marija; Rey, Felix A.

    2014-01-01

    ABSTRACT Membrane fusion in herpesviruses requires viral glycoproteins (g) gB and gH/gL. While gB is considered the actual fusion protein but is nonfusogenic per se, the function of gH/gL remains enigmatic. Crystal structures for different gH homologs are strikingly similar despite only moderate amino acid sequence conservation. A highly conserved sequence motif comprises the residues serine-proline-cysteine corresponding to positions 437 to 439 in pseudorabies virus (PrV) gH. The PrV-gH structure shows that proline438 induces bending at the end of an alpha-helix, thereby placing cysteine404 and cysteine439 in juxtaposition to allow formation of a strictly conserved disulfide bond. However, PrV vaccine strain Bartha unexpectedly carries a serine at this conserved position. To test the influence of this substitution, we constructed different gH chimeras carrying proline or serine at position 438 in gH derived from either PrV strain Kaplan or strain Bartha. Mutants expressing gH with serine438 showed reduced fusion activity in transient-fusion assays and during infection, with delayed penetration kinetics and a small-plaque phenotype which indicates that proline438 is important for efficient fusion. A more drastic effect was observed when disulfide bond formation was completely blocked by mutation of cysteine404 to serine. Although PrV expressing gHC404S was viable, plaque size and penetration kinetics were drastically reduced. Alteration of serine438 to proline in gH of strain Bartha enhanced cell-to-cell spread and penetration kinetics, but restoration of full activity required additional alteration of aspartic acid to valine at position 59. IMPORTANCE The role of the gH/gL complex in herpesvirus membrane fusion is still unclear. Structural studies predicted a critical role for proline438 in PrV gH to allow the formation of a conserved disulfide bond and correct protein folding. Functional analyses within this study corroborated these structural predictions: mutation of this residue resulted in a drastic impairment of membrane fusion kinetics not only in vitro in transient transfection-fusion assays but also during virus infection. Elimination of formation of the disulfide bond yielded the same phenotype in transient assays but had a more drastic effect on virus replication. Thus, our studies add important information to structure-function analyses of herpesvirus gH. PMID:25187552

  20. Identification and confirmation of molecular markers and orange flesh color associated with major QTL for high beta-carotene content in muskmelon

    E-print Network

    Napier, Alexandra Bamberger

    2009-05-15

    IDENTIFICATION AND CONFIRMATION OF MOLECULAR MARKERS AND ORANGE FLESH COLOR ASSOCIATED WITH MAJOR QTL FOR HIGH BETA-CAROTENE CONTENT IN MUSKMELON A Thesis by ALEXANDRA BAMBERGER NAPIER Submitted to the Office of Graduate... COLOR ASSOCIATED WITH MAJOR QTL FOR HIGH BETA-CAROTENE CONTENT IN MUSKMELON A Thesis by ALEXANDRA BAMBERGER NAPIER Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment...

  1. A fusion power plant without plasma-material interactions

    SciTech Connect

    Cohen, S.A.

    1997-04-01

    A steady-state fusion power plant is described which avoids the deleterious plasma-material interactions found in D-T fueled tokamaks. It is based on driven p-{sup 11}B fusion in a high-beta closed-field device, the field-reversed configuration (FRC), anchored in a gas-dynamic trap (GDT). The plasma outflow on the open magnetic-field lines is cooled by radiation in the GDT, then channeled through a magnetic nozzle, promoting 3-body recombination in the expansion region. The resulting supersonic neutral exhaust stream flows through a turbine, generating electricity.

  2. High-precision {beta} decay half-life measurements of proton-rich nuclei for testing the CVC hypothesis

    SciTech Connect

    Kurtukian-Nieto, T. [Centre d'Etudes Nucleaires de Bordeaux-Gradignan (CENBG), Universite Bordeaux 1, CNRS/IN2P3, Chemin du Solarium, BP 120, F-33175 Gradignan cedex (France); Collaboration: NEX Group of CENBG

    2011-11-30

    The experimental study of super-allowed nuclear {beta} decays serves as a sensitive probe of the conservation of the weak vector current (CVC) and allows tight limits to be set on the presence of scalar or right-handed currents. Once CVC is verified, it is possible to determine the V{sub ud} element of the CKM quark-mixing matrix. Similarly, the study of nuclear mirror {beta} decays allows to arrive at the same final quantity V{sub ud}. Whereas dedicated studies of 0{sup +}{yields}0{sup +} decays are performed for several decades now, the potential of mirror transitions was only rediscovered recently. Therefore, it can be expected that important progress is possible with high-precision studies of different mirror {beta} decays. In the present piece of work the half-life measurements performed by the CENBG group of the proton-rich nuclei {sup 42}Ti, {sup 38-39}Ca, {sup 30-31}S and {sup 29}P are summarised.

  3. 4{\\pi}{\\beta} (LS)-{\\gamma} (HPGe) Digital Coincidence System Based on Synchronous High-Speed Multichannel Data Acquisition

    E-print Network

    Chen, Jifeng; Liang, Juncheng; Liu, Jiacheng

    2015-01-01

    A dedicated 4{\\pi}{\\beta} (LS)-{\\gamma} (HPGe)digital coincidence system has been developed in this work, which includes five acquisition channels. Three analog-to-digital converter (ADC) acquisition channels with an acquisition resolution of 8 bits and acquisition rate of 1GSPS (sample per second) are utilized to collect the signals from three Photo multiplier tubes (PMTs) which are adopted to detect {\\beta} decay, and two acquisition channels with an acquisition resolution of 16 bits and acquisition rate of 50MSPS are utilized to collect the signals from high-purity germanium (HPGe) which are adopted to detect {\\gamma} decay. In order to increase the accuracy of the coincidence system, all the five acquisition channels are synchronous within 500ps. The data collected by the five acquisition channels will be transmitted to the host PC through PCI bus and saved as a file. Off-line software is applied for the 4{\\pi}{\\beta} (LS)-{\\gamma} (HPGe) coincidence and data analysis as needed in practical application. W...

  4. Reverse Remodeling Achieved by Combination Therapy With High-Dose Beta Blocker and Cardiac Resynchronization.

    PubMed

    Muraoka, Hironori; Imamura, Teruhiko; Kinugawa, Koichiro

    2015-07-13

    Although both beta-blocker treatment and cardiac resynchronization therapy (CRT) have been established as the standard therapeutic strategy to achieve left ventricular reverse remodeling (LVRR) and improve prognosis in heart failure (HF) patients with systolic LV dysfunction, some patients do not respond to such treatments. We here report a HF patient with left bundle branch block due to nonischemic cardiomyopathy who did not respond to 20 mg/day of carvedilol in terms of LVRR. Subsequent CRT only achieved insufficient LVRR, and we further titrated carvedilol up to 40 mg/day. Marked LVRR was accomplished at a fixed 70 bpm heart rate under CRT, and therefore it was considered as heart rate-independent. Up-titration of beta-blocker after CRT may be necessary to induce optimal LVRR in some populations. PMID:26084461

  5. Histological assessment in grafts of highly purified beta-tricalcium phosphate (OSferion) in human bones.

    PubMed

    Ogose, Akira; Kondo, Naoki; Umezu, Hajime; Hotta, Tetsuo; Kawashima, Hiroyuki; Tokunaga, Kunihiko; Ito, Tomoyuki; Kudo, Naoko; Hoshino, Makiko; Gu, Wenguang; Endo, Naoto

    2006-03-01

    Prominent osteoconductive activity and the biodegradable nature of commercially available beta-tricalcium phosphate (beta-TCP, OSferion) have been documented in animal experiments. We analyzed four cases of involving grafted OSferion in human bone with respect to histological features by routine hematoxylin and eosin staining, silver impregnation, immunohistochemistry and in situ hybridization. OSferion affords early bioresorption by osteoclasts, vascular invasion of macropores and osteoblastic cell attachment on the surface on the ceramic surface 14 days after grafting. Prominent bone formation and direct bone connection between preexisting bone and OSferion were evident 28 days after grafting. Nearly the entire TCP surface was covered by lamellar bone; additionally, active osteoblastic lining and attachment of the osteoclast-like giant cells were not observed 72 weeks after grafting. Silver impregnation revealed the presence of collagen fibrils within probable micropores of OSferion. PMID:16165205

  6. Facility for high heat flux testing of irradiated fusion materials and components using infrared plasma arc lamps

    SciTech Connect

    Sabau, Adrian S [ORNL] [ORNL; Ohriner, Evan Keith [ORNL] [ORNL; Kiggans, Jim [ORNL] [ORNL; Harper, David C [ORNL] [ORNL; Snead, Lance Lewis [ORNL] [ORNL; Schaich, Charles Ross [ORNL] [ORNL

    2014-01-01

    A new high-heat flux testing facility using water-wall stabilized high-power high-pressure argon Plasma Arc Lamps (PALs) has been developed for fusion applications. It can handle irradiated plasma facing component materials and mock-up divertor components. Two PALs currently available at ORNL can provide maximum incident heat fluxes of 4.2 and 27 MW/m2 over a heated area of 9x12 and 1x10 cm2, respectively, which are fusion-prototypical steady state heat flux conditions. The facility will be described and the main differences between the photon-based high-heat flux testing facilities, such as PALs, and the e-beam and particle beam facilities more commonly used for fusion HHF testing are discussed. The components of the test chamber were designed to accommodate radiation safety and materials compatibility requirements posed by high-temperature exposure of low levels irradiated tungsten articles. Issues related to the operation and temperature measurements during testing are presented and discussed.

  7. Study of High-Beta Magnetohydrodynamic Modes and Fast-Ion Losses in PDX

    Microsoft Academic Search

    K. McGuire; R. Goldston; M. Bell; M. Bitter; K. Bol; K. Brau; D. Buchenauer; T. Crowley; S. Davis; F. Dylla; H. Eubank; H. Fishman; R. Fonck; B. Grek; R. Grimm; R. Hawryluk; H. Hsuan; R. Hulse; R. Izzo; R. Kaita; S. Kaye; H. Kugel; D. Johnson; J. Manickam; D. Manos; D. Mansfield; E. Mazzucato; R. McCann; D. McCune; D. Monticello; R. Motley; D. Mueller; K. Oasa; M. Okabayashi; K. Owens; M. Reusch; N. Sauthoff; G. Schmidt; S. Sesnic; J. Strachan; C. Surko; R. Slusher; H. Takahashi; F. Tenney; P. Thomas; H. Towner; J. Valley; R. White

    1983-01-01

    Strong magnetohydrodynamic activity has been observed in PDX neutral-beam-heated discharges. It occurs for betaTq>=0.045 and is associated with a significant loss of fast ions and a drop in neutron emission. As much as 20%-40% of the beam heating power may be lost. The instability occurs in repetitive bursts of oscillations of <= 1 msec duration at 1-6-msec intervals. The magnetohydrodynamic

  8. High efficiency beta radioisotope energy conversion using reciprocating electromechanical converters with integrated betavoltaics

    Microsoft Academic Search

    Rajesh Duggirala; Hui Li; Amit Lal

    2008-01-01

    We demonstrate a 5.1% energy conversion efficiency 63Ni radioisotope power generator by integrating silicon betavoltaic converters with radioisotope actuated reciprocating piezoelectric unimorph cantilever converters. The electromechanical energy converter efficiently utilizes both the kinetic energy and the electrical charge of the 0.94 muW beta radiation from a 9 mCi 63Ni thin film source to generate maximum (1) continuous betavoltaic electrical power

  9. A PARALLEL-PROPAGATING ALFVENIC ION-BEAM INSTABILITY IN THE HIGH-BETA SOLAR WIND

    SciTech Connect

    Verscharen, Daniel; Bourouaine, Sofiane; Chandran, Benjamin D. G. [Space Science Center, University of New Hampshire, Durham, NH 03824 (United States); Maruca, Bennett A., E-mail: daniel.verscharen@unh.edu, E-mail: s.bourouaine@unh.edu, E-mail: benjamin.chandran@unh.edu, E-mail: bmaruca@ssl.berkeley.edu [Space Science Laboratory, University of California, Berkeley, CA 94720 (United States)

    2013-08-10

    We investigate the conditions under which parallel-propagating Alfven/ion-cyclotron waves are driven unstable by an isotropic (T{sub {alpha}} = T{sub Parallel-To {alpha}}) population of alpha particles drifting parallel to the magnetic field at an average speed U{sub {alpha}} with respect to the protons. We derive an approximate analytic condition for the minimum value of U{sub {alpha}} needed to excite this instability and refine this result using numerical solutions to the hot-plasma dispersion relation. When the alpha-particle number density is {approx_equal} 5% of the proton number density and the two species have similar thermal speeds, the instability requires that {beta}{sub p} {approx}> 1, where {beta}{sub p} is the ratio of the proton pressure to the magnetic pressure. For 1 {approx}< {beta}{sub p} {approx}< 12, the minimum U{sub {alpha}} needed to excite this instability ranges from 0.7v{sub A} to 0.9v{sub A}, where v{sub A} is the Alfven speed. This threshold is smaller than the threshold of {approx_equal} 1.2v{sub A} for the parallel magnetosonic instability, which was previously thought to have the lowest threshold of the alpha-particle beam instabilities at {beta}{sub p} {approx}> 0.5. We discuss the role of the parallel Alfvenic drift instability for the evolution of the alpha-particle drift speed in the solar wind. We also analyze measurements from the Wind spacecraft's Faraday cups and show that the U{sub {alpha}} values measured in solar-wind streams with T{sub {alpha}} Almost-Equal-To T{sub Parallel-To {alpha}} are approximately bounded from above by the threshold of the parallel Alfvenic instability.

  10. [Determination of fifteen beta-agonists in animal urine by high performance liquid chromatography-tandem mass spectrometry].

    PubMed

    Nie, Jianrong; Zhu, Mingli; Lian, Jin; Pan, Yunshan; Deng, Xianglian; Hu, Cuiping

    2010-08-01

    A high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/ MS) method was established for the determination of fifteen beta-agonists (clenbuterol, ractopamine, salbutamol, cimaterol, mabuterol, tulobuterol, bambuterol, mapenterol, cimbuterol, zilpaterol, formoterol, clorprenaline, terbutaline, penbutolol and brombuterol) in animal urine. Perchloric acid solution was used to acidify the sample and precipitate protein in the sample. The sample was purified and concentrated by an HLB mini-column. The separation of the beta-agonist was performed on an Agilent 1100 HPLC system with a Eclipse XDB-C18 column by using gradient elution with methanol and water (containing 0.1% (v/v) formic acid) as the mobile phases at a flow rate of 1 mL/min. Qualitative and quantitative analysis of the fifteen beta-agonists, which were ionized by electrospray ionization interface (ESI), were carried out in multiple reaction monitoring (MRM) mode with API 4000 tandem mass spectrometry. The calibration curves showed good linearity in the mass concentration range of 0.25 - 20 microg/L with the correlation coefficients r > or = 0.999 5. The recoveries of the fifteen beta-agonists ranged from 62.1% to 107% at the spiked levels of 0.25, 1.0 and 10 microg/L. The relative standard deviations (n = 10) were between 3.5% and 9.9%. The limits of quantification (S/N > 10) were 0.25 microg/L for all the analytes. This method is simple, rapid, sensitive and accurate. PMID:21261043

  11. Construction of hormonally responsive intact cell hybrids by cell fusion: transfer of. beta. -adrenergic receptor and nucleotide regulatory protein(s) in normal and desensitized cells

    SciTech Connect

    Schulster, D.; Salmon, D.M.

    1985-01-01

    Fusion of normal, untreated human erythrocytes with desensitized turkey erythrocytes increases isoproterenol stimulation of cyclic (/sup 3/H)AMP accumulation over basal rates. Moreover, pretreatment of the human erythrocytes with cholera toxin before they are fused with desensitized turkey erthythrocytes leads to a large stimulation with isoproterenol. This is even greater and far more rapid than the response obtained if turkey erythrocytes are treated directly with cholera toxin. It is concluded that the stimulation in the fused system is due to the transfer of an ADP-ribosylated subunit of nucleotide regulatory protein.

  12. High-Level Fusion Physics and Materials Interface Challenges July 27, 2012

    E-print Network

    priorities in the Fusion Energy Science Program. It is important that the U, tritium burn-up, wall-recycling, fuel pumping, fuel cycle and plasma operation on the technology to immediately recycle the plasma exhaust would greatly reduce

  13. Magnetized Target Fusion project with high density FRC at Los Alamos National Laboratory.

    SciTech Connect

    Intrator, T.; Park, J. Y.; Wurden, G. A.; Taccetti, J. M.; Tuszewski, M.; Zhang, S. Y.; Waganaar, W.; Furno, I.; Hsu, S.; Tejero, E.; Leonard, M.; Bass, C.; Grabowski, C.; Degnan, J. H.

    2003-08-13

    We describe a program to demonstrate the scientific basis of Magnetized Target Fusion (MTF). MTF is a potentially low cost path to fusion which is intermediate in plasma regime between magnetic (MFE) and inertial fusion energy (IFE). MTF involves the compression of a magnetized target plasma and PdV heating to fusion relevant conditions inside a converging flux conserving boundary. We have chosen to demonstrate MTF by using a field-reversed configuration (FRC) as our magnetized target plasma and an imploding metal liner for compression. These choices take advantage of significant past scientific and technical accomplishments in MFE and Defense Programs research and should yield substantial plasma performance (n{tau}>10{sup 13}s-cm{sup -3}>5 keV) using an available pulsed-power implosion facility at modest cost. We have recently shown this FRC to be within a factor of 2-3 of required pressure and lifetime.

  14. Thin Shell, High Velocity Inertial Confinement Fusion Implosions on the National Ignition Facility

    E-print Network

    Ma, T.

    Experiments have recently been conducted at the National Ignition Facility utilizing inertial confinement fusion capsule ablators that are 175 and 165???m in thickness, 10% and 15% thinner, respectively, than the nominal ...

  15. Magnetized target fusion: An ultra high energy approach in an unexplored parameter space

    SciTech Connect

    Lindemuth, I.R.

    1994-12-31

    Magnetized target fusion is a concept that may lead to practical fusion applications in a variety of settings. However, the crucial first step is to demonstrate that it works as advertised. Among the possibilities for doing this is an ultrahigh energy approach to magnetized target fusion, one powered by explosive pulsed power generators that have become available for application to thermonuclear fusion research. In a collaborative effort between Los Alamos and the All-Russian Scientific Institute for Experimental Physics (VNIIEF) a very powerful helical generator with explosive power switching has been used to produce an energetic magnetized plasma. Several diagnostics have been fielded to ascertain the properties of this plasma. We are intensively studying the results of the experiments and calculationally analyzing the performance of this experiment.

  16. Pulsed-power-driven high energy density physics and inertial confinement fusion researcha)

    NASA Astrophysics Data System (ADS)

    Matzen, M. Keith; Sweeney, M. A.; Adams, R. G.; Asay, J. R.; Bailey, J. E.; Bennett, G. R.; Bliss, D. E.; Bloomquist, D. D.; Brunner, T. A.; Campbell, R. B.; Chandler, G. A.; Coverdale, C. A.; Cuneo, M. E.; Davis, J.-P.; Deeney, C.; Desjarlais, M. P.; Donovan, G. L.; Garasi, C. J.; Haill, T. A.; Hall, C. A.; Hanson, D. L.; Hurst, M. J.; Jones, B.; Knudson, M. D.; Leeper, R. J.; Lemke, R. W.; Mazarakis, M. G.; McDaniel, D. H.; Mehlhorn, T. A.; Nash, T. J.; Olson, C. L.; Porter, J. L.; Rambo, P. K.; Rosenthal, S. E.; Rochau, G. A.; Ruggles, L. E.; Ruiz, C. L.; Sanford, T. W. L.; Seamen, J. F.; Sinars, D. B.; Slutz, S. A.; Smith, I. C.; Struve, K. W.; Stygar, W. A.; Vesey, R. A.; Weinbrecht, E. A.; Wenger, D. F.; Yu, E. P.

    2005-05-01

    The Z accelerator [R. B. Spielman, W. A. Stygar, J. F. Seamen et al., Proceedings of the 11th International Pulsed Power Conference, Baltimore, MD, 1997, edited by G. Cooperstein and I. Vitkovitsky (IEEE, Piscataway, NJ, 1997), Vol. 1, p. 709] at Sandia National Laboratories delivers ˜20MA load currents to create high magnetic fields (>1000T) and high pressures (megabar to gigabar). In a z-pinch configuration, the magnetic pressure (the Lorentz force) supersonically implodes a plasma created from a cylindrical wire array, which at stagnation typically generates a plasma with energy densities of about 10MJ/cm3 and temperatures >1keV at 0.1% of solid density. These plasmas produce x-ray energies approaching 2MJ at powers >200TW for inertial confinement fusion (ICF) and high energy density physics (HEDP) experiments. In an alternative configuration, the large magnetic pressure directly drives isentropic compression experiments to pressures >3Mbar and accelerates flyer plates to >30km/s for equation of state (EOS) experiments at pressures up to 10Mbar in aluminum. Development of multidimensional radiation-magnetohydrodynamic codes, coupled with more accurate material models (e.g., quantum molecular dynamics calculations with density functional theory), has produced synergy between validating the simulations and guiding the experiments. Z is now routinely used to drive ICF capsule implosions (focusing on implosion symmetry and neutron production) and to perform HEDP experiments (including radiation-driven hydrodynamic jets, EOS, phase transitions, strength of materials, and detailed behavior of z-pinch wire-array initiation and implosion). This research is performed in collaboration with many other groups from around the world. A five year project to enhance the capability and precision of Z, to be completed in 2007, will result in x-ray energies of nearly 3MJ at x-ray powers >300TW.

  17. High yield inertial fusion design for a z-pinch accelerator

    SciTech Connect

    Hammer, J H; Lindl, J; Porter, J L; Rambo, P W; Tabak, M; Toor, A; Wilks, S; Zimmerman, G B

    1998-10-01

    In this paper we discuss design calculations for high yield inertial fusion capsules, indirectly driven by a double-ended z-pinch-driven hohlraum radiation source. The z-pinches are imploded by a high current (- 60 MA) accelerator while enclosed within a hohlraum. Radial spoke arrays and shine shields isolate the capsule from the pinch plasma, magnetic field and direct x-ray shine. Our approach places minimal requirements on z-pinch uniformity and stability, usually problematic due to magneto- Rayleigh Taylor (MRT) instability. The hohlraum smooths the radiation field at the capsule, even in the presence of large millimeter scale inhomogeneities of the pinch and the high-spatial-frequency pertur- bation of the spoke array. The design requires simultaneity and reproducibility of the x-ray output to 5- 10%, however. Reproducibility at this level may be achievable based on experience with the Z and Sat- urn accelerators. Recent Z experiments also suggest a method for generating the required x-ray pulse shape, through implosion of a multi-shell z-pinch. X-ray bursts are calculated and observed to occur at each shell collision. Variation of shell masses and radii allows considerable latitude for creating the desired pulse shape. For the design considered, a capsule absorbing 1 MJ of x-rays at a peak drive tem- perature of 210 eV is found to have adequate stability and produces 400 MJ of yield. A larger capsule with slightly longer drive and similar peak temperature absorbs 2 MJ with a yield of 1200 MJ.

  18. Mitigating laser imprint in direct-drive inertial confinement fusion implosions with high-Z dopants.

    PubMed

    Hu, S X; Fiksel, G; Goncharov, V N; Skupsky, S; Meyerhofer, D D; Smalyuk, V A

    2012-05-11

    Nonuniformities seeded by both long- and short-wavelength laser perturbations can grow via Rayleigh-Taylor (RT) instability in direct-drive inertial confinement fusion, leading to performance reduction in low-adiabat implosions. To mitigate the effect of laser imprinting on target performance, spherical RT experiments have been performed on OMEGA using Si- or Ge-doped plastic targets in a cone-in-shell configuration. Compared to a pure plastic target, radiation preheating from these high-Z dopants (Si/Ge) increases the ablation velocity and the standoff distance between the ablation front and laser-deposition region, thereby reducing both the imprinting efficiency and the RT growth rate. Experiments showed a factor of 2-3 reduction in the laser-imprinting efficiency and a reduced RT growth rate, leading to significant (3-5 times) reduction in the ?(rms) of shell ?R modulation for Si- or Ge-doped targets. These features are reproduced by radiation-hydrodynamics simulations using the two-dimensional hydrocode DRACO. PMID:23003051

  19. A high efficiency, low background neutron and gamma detector for cold fusion experiments

    NASA Astrophysics Data System (ADS)

    Stella, B.; Celani, F.; Corradi, M.; Ferrarotto, F.; Iucci, N.; Milone, V.; Spallone, A.; Villoresi, G.

    1995-02-01

    The present apparatus (named by the acrostic "FERMI" also to celebrate the 60 yr of the discovery, by Enrico Fermi and collaborators at Rome University, of the effects of moderation of neutrons) is mainly a moderated neutron detector developed for the search of cold fusion events. It is based on 7 BF 3 and 2 3He proportional counters with detection efficiency for neutrons 40%-8% in the range 1 keV-20 MeV, pulse shape acquisition and good time resolution for neutron bursts; it also allows us to perform a good reconstruction of the average original neutron energy. The neutron background measured in the Gran Sasso INFN underground laboratory is about 0.09 Hz. Gamma rays are revealed mostly by a complementary low background NaI detector with 26% solid angle coverage. The performances are controlled by a full MC simulation, experimentally tested. A high multiplicity (up to ˜ 100) neutrons' event has been detected during background runs. The system is being upgraded by the detection and identification of charged hadrons.

  20. A National Collaboratory to Advance the Science of High Temperature Plasma Physics for Magnetic Fusion

    SciTech Connect

    Schissel, David P. [Princeton Plasma Physics Lab., NJ (United States); Abla, G. [Princeton Plasma Physics Lab., NJ (United States); Burruss, J. R. [Princeton Plasma Physics Lab., NJ (United States); Feibush, E. [Princeton Plasma Physics Lab., NJ (United States); Fredian, T. W. [Massachusetts Institute of Technology, Cambridge, MA (United States); Goode, M. M. [Lawrence Berkeley National Lab., CA (United States); Greenwald, M. J. [Massachusetts Institute of Technology, Cambridge, MA (United States); Keahey, K. [Argonne National Lab., IL (United States); Leggett, T. [Argonne National Lab., IL (United States); Li, K. [Princeton Univ., NJ (United States); McCune, D. C. [Princeton Plasma Physics Lab., NJ (United States); Papka, M. E. [Argonne National Lab., IL (United States); Randerson, L. [Princeton Plasma Physics Lab., NJ (United States); Sanderson, A. [Univ. of Utah, Salt Lake City, UT (United States); Stillerman, J. [Massachusetts Institute of Technology, Cambridge, MA (United States); Thompson, M. R. [Lawrence Berkeley National Lab., CA (United States); Uram, T. [Argonne National Lab., IL (United States); Wallace, G. [Princeton Univ., NJ (United States)

    2012-12-20

    This report summarizes the work of the National Fusion Collaboratory (NFC) Project to develop a persistent infrastructure to enable scientific collaboration for magnetic fusion research. The original objective of the NFC project was to develop and deploy a national FES ??Grid (FusionGrid) that would be a system for secure sharing of computation, visualization, and data resources over the Internet. The goal of FusionGrid was to allow scientists at remote sites to participate as fully in experiments and computational activities as if they were working on site thereby creating a unified virtual organization of the geographically dispersed U.S. fusion community. The vision for FusionGrid was that experimental and simulation data, computer codes, analysis routines, visualization tools, and remote collaboration tools are to be thought of as network services. In this model, an application service provider (ASP provides and maintains software resources as well as the necessary hardware resources. The project would create a robust, user-friendly collaborative software environment and make it available to the US FES community. This Grid'??s resources would be protected by a shared security infrastructure including strong authentication to identify users and authorization to allow stakeholders to control their own resources. In this environment, access to services is stressed rather than data or software portability.

  1. Existence of both IL-1 alpha and beta in normal human amniotic fluid: unique high molecular weight form of IL-1 beta.

    PubMed Central

    Tamatani, T; Tsunoda, H; Iwasaki, H; Kaneko, M; Hashimoto, T; Onozaki, K

    1988-01-01

    We investigated the possible existence of IL-1 in human amniotic fluid (AF). Since AF from most full-term deliveries appeared to contain an inhibitor(s) for thymocyte proliferation, AFs were fractionated by gel filtration prior to IL-1 assay. IL-1 activities eluted in two peaks at positions of 90,000-60,000 MW and 20,000-15,000 MW. Growth inhibitory activity eluted at the position of 70,000-50,000 MW, and its effect appeared to be non-specific because these fractions inhibited the growth of various cell lines. Using isoelectric focusing (IEF) techniques, pI values of 6.8-7.3 for the higher MW IL-1 as well as 4.9-5.5 and 6.7-7.0 for the lower MW IL-1 were obtained. Antibody against human IL-1 alpha partially neutralized the activity of the lower MW IL-1, though it exhibited little effect on the higher MW IL-1. In contrast, antibody against human IL-1 beta almost completely neutralized the activity of the higher MW IL-1 and partially neutralized the activity of the lower MW IL-1. These results suggest that most of the higher MW IL-1 is beta-type, and the lower MW IL-1 is a mixture of alpha and beta-types. IL-1 beta appeared to exist as a complex (combined with AF components) or as an aggregate of the lower MW IL-1 forms. These findings indicate that both IL-1 alpha and IL-1 beta are present in normal human AF from full-term deliveries, though IL-1 beta exists as a higher MW form aggregated with an unknown molecule. PMID:3264804

  2. High Resolution Charge Exchange Reaction and Analogous {beta}-decay for the Study of Gamow-Teller Transition Strengths

    SciTech Connect

    Fujita, Y. [Department of Physics, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Rubio, B. [IFIC, CSIC-University of Valencia, E-46071 Valencia (Spain)

    2007-06-13

    Isospin symmetry is expected for the Tz = {+-}1 {yields} 0 isobaric analogous transitions in isobars with mass number A, where Tz is the z component of isospin T. Assuming this symmetry, strengths of analogous Gamow-Teller (GT) transitions within A = 50 isobars were determined from a high energy-resolution Tz = + 1 {yields} 0, 50Cr(3He,t)50Mn study at 0 deg. in combination with the decay Q-value and lifetime from the Tz = -1 {yields} 0, 50Fe{yields}50Mn {beta} decay. This method can be applied to other pf-shell nuclei and can be used to study GT strengths of astrophysical interest.

  3. The national spherical torus experiment (NSTX) research programme and progress towards high beta, long pulse operating scenarios

    NASA Astrophysics Data System (ADS)

    Synakowski, E. J.; Bell, M. G.; Bell, R. E.; Bigelow, T.; Bitter, M.; Blanchard, W.; Boedo, J.; Bourdelle, C.; Bush, C.; Darrow, D. S.; Efthimion, P. C.; Fredrickson, E. D.; Gates, D. A.; Gilmore, M.; Grisham, L. R.; Hosea, J. C.; Johnson, D. W.; Kaita, R.; Kaye, S. M.; Kubota, S.; Kugel, H. W.; LeBlanc, B. P.; Lee, K.; Maingi, R.; Manickam, J.; Maqueda, R.; Mazzucato, E.; Medley, S. S.; Menard, J.; Mueller, D.; Nelson, B. A.; Neumeyer, C.; Ono, M.; Paoletti, F.; Park, H. K.; Paul, S. F.; Peng, Y.-K. M.; Phillips, C. K.; Ramakrishnan, S.; Raman, R.; Roquemore, A. L.; Rosenberg, A.; Ryan, P. M.; Sabbagh, S. A.; Skinner, C. H.; Soukhanovskii, V.; Stevenson, T.; Stutman, D.; Swain, D. W.; Taylor, G.; Von Halle, A.; Wilgen, J.; Williams, M.; Wilson, J. R.; Zweben, S. J.; Akers, R.; Barry, R. E.; Beiersdorfer, P.; Bialek, J. M.; Blagojevic, B.; Bonoli, P. T.; Budny, R.; Carter, M. D.; Chang, C. S.; Chrzanowski, J.; Davis, W.; Deng, B.; Doyle, E. J.; Dudek, L.; Egedal, J.; Ellis, R.; Ferron, J. R.; Finkenthal, M.; Foley, J.; Fredd, E.; Glasser, A.; Gibney, T.; Goldston, R. J.; Harvey, R.; Hatcher, R. E.; Hawryluk, R. J.; Heidbrink, W.; Hill, K. W.; Houlberg, W.; Jarboe, T. R.; Jardin, S. C.; Ji, H.; Kalish, M.; Lawrance, J.; Lao, L. L.; Lee, K. C.; Levinton, F. M.; Luhmann, N. C.; Majeski, R.; Marsala, R.; Mastravito, D.; Mau, T. K.; McCormack, B.; Menon, M. M.; Mitarai, O.; Nagata, M.; Nishino, N.; Okabayashi, M.; Oliaro, G.; Pacella, D.; Parsells, R.; Peebles, T.; Peneflor, B.; Piglowski, D.; Pinsker, R.; Porter, G. D.; Ram, A. K.; Redi, M.; Rensink, M.; Rewoldt, G.; Robinson, J.; Roney, P.; Schaffer, M.; Shaing, K.; Shiraiwa, S.; Sichta, P.; Stotler, D.; Stratton, B. C.; Takase, Y.; Tang, X.; Vero, R.; Wampler, W. R.; Wurden, G. A.; Xu, X. Q.; Yang, J. G.; Zeng, L.; Zhu, W.

    2003-12-01

    A major research goal of the national spherical torus experiment is establishing long-pulse, high beta, high confinement operation and its physics basis. This research has been enabled by facility capabilities developed during 2001 and 2002, including neutral beam (up to 7 MW) and high harmonic fast wave (HHFW) heating (up to 6 MW), toroidal fields up to 6 kG, plasma currents up to 1.5 MA, flexible shape control, and wall preparation techniques. These capabilities have enabled the generation of plasmas with \\beta _T \\equiv \\langle p \\rangle /(B_{T0}^{2}/2\\mu_{0}) of up to 35%. Normalized beta values often exceed the no-wall limit, and studies suggest that passive wall mode stabilization enables this for H mode plasmas with broad pressure profiles. The viability of long, high bootstrap current fraction operations has been established for ELMing H mode plasmas with toroidal beta values in excess of 15% and sustained for several current relaxation times. Improvements in wall conditioning and fuelling are likely contributing to a reduction in H mode power thresholds. Electron thermal conduction is the dominant thermal loss channel in auxiliary heated plasmas examined thus far. HHFW effectively heats electrons, and its acceleration of fast beam ions has been observed. Evidence for HHFW current drive is obtained by comparision of the loop voltage evolution in plasmas with matched density and temperature profiles but varying phases of launched HHFW waves. Studies of emissions from electron Bernstein waves indicate a density scale length dependence of their transmission across the upper hybrid resonance near the plasma edge that is consistent with theoretical predictions. A peak heat flux to the divertor targets of 10 MW m-2 has been measured in the H mode, with large asymmetries being observed in the power deposition between the inner and outer strike points. Non-inductive plasma startup studies have focused on coaxial helicity injection. With this technique, toroidal currents up to 400 kA have been driven, and studies to assess flux closure and coupling to other current drive techniques have begun.

  4. Mitigation of rotational instability of high-beta field-reversed configuration by double-sided magnetized plasmoid injection

    SciTech Connect

    Itagaki, H.; Inomoto, M. [Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561 (Japan)] [Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561 (Japan); Asai, T.; Takahashi, Ts. [College of Science and Technology, Nihon University, 1-8-14 Kanda Surugadai, Chiyoda-ku, Tokyo 101-8308 (Japan)] [College of Science and Technology, Nihon University, 1-8-14 Kanda Surugadai, Chiyoda-ku, Tokyo 101-8308 (Japan)

    2014-03-15

    Active control of destructive rotational instability in a high-beta field-reversed configuration (FRC) plasma was demonstrated by using double-sided plasmoid injection technique. The elliptical deformation of the FRC's cross section was mitigated as a result of substantial suppression of spontaneous spin-up by the plasmoid injection. It was found that the injected plasmoid provided better stability against the rotational mode, suggesting that the compensation of the FRC's decaying magnetic flux might help to suppress its spin-up.

  5. Demonstration of Radiation Pulse Shaping with Nested-Tungsten-Wire-Array Z Pinches for High-Yield Inertial Confinement Fusion

    Microsoft Academic Search

    M. E. Cuneo; R. A. Vesey; D. B. Sinars; E. M. Waisman; R. W. Lemke; D. E. Bliss; W. A. Stygar; J. L. Porter; M. G. Mazarakis; G. A. Chandler; T. A. Mehlhorn; J. P. Chittenden; S. V. Lebedev; D. G. Schroen

    2005-01-01

    Nested wire-array Z pinches are shown to generate soft x-ray radiation pulse shapes required for three-shock isentropic compression and hot-spot ignition of high-yield inertial confinement fusion capsules. We demonstrate a reproducible and tunable foot pulse (first shock) produced by interaction of the outer and inner arrays. A first-step pulse (second shock) is produced by inner array collision with a central

  6. Near-vacuum hohlraums for driving fusion implosions with high density carbon ablators

    NASA Astrophysics Data System (ADS)

    Berzak Hopkins, Laura

    2014-10-01

    Achieving ignition requires reaching fast implosion velocities, which highlights the need for a highly efficient hohlraum to drive indirect-drive inertial confinement fusion implosions. Gas-filled hohlraums are typically utilized due to the pulse length (15-20 ns) needed to drive plastic (CH) capsules. With the recent use of 3× denser high-density carbon (HDC) capsules, ignition pulses can be less than 10 ns in duration, providing the opportunity to utilize near-vacuum hohlraums (NVH) to drive ignition-relevant implosions on the National Ignition Facility (NIF) with minimal laser-plasma instabilities which complicate standard gas-filled hohlraums. Initial NVH implosions on the NIF have demonstrated coupling efficiency significantly higher than observed in gas-filled hohlraums - backscatter losses less than 2% and virtually no suprathermal electron generation. A major design challenge for the NVH is symmetry control. Without tamping gas, the hohlraum wall quickly expands filling the volume with gold plasma. However, results to-date indicate that the inner-cone beams propagate freely to the hohlraum wall for at least 6.5 ns. With minimal predicted cross-beam power transfer, this propagation enables symmetry control via dynamic beam phasing - time-dependent direct adjustment of the inner- and outer-cone laser pulses. A series of experiments with an HDC ablator and NVH culminated in a 6 ns, 1.2 MJ cryogenic DT layered implosion yielding 1.8 × 1015 neutrons--significantly higher yield than any CH implosion at comparable energy. This implosion reached an ignition-relevant velocity -350 km/s - with no observed ablator mix in the hot spot. Recent experiments have explored two-shock designs in a larger, 6.72 mm hohlraum, and upcoming experiments will incrementally extend the pulse duration toward a 9 ns long, three-shock ignition design. Prepared by LLNL under Contract DE-AC52-07NA27344.

  7. Finite beta effects on low- and high-frequency magnetosonic waves in a two-ion-species plasma

    SciTech Connect

    Toida, Mieko; Aota, Yukio [Department of Physics, Nagoya University, Nagoya 464-8602 (Japan)] [Department of Physics, Nagoya University, Nagoya 464-8602 (Japan)

    2013-08-15

    A magnetosonic wave propagating perpendicular to a magnetic field in a two-ion-species plasma has two branches, high-frequency and low-frequency modes. The finite beta effects on these modes are analyzed theoretically on the basis of the three-fluid model with finite ion and electron pressures. First, it is shown that the Korteweg-de Vries (KdV) equation for the low-frequency mode is valid for amplitudes ?high-frequency mode are derived, including ? as a factor. In addition, the theory for heavy ion acceleration by the high-frequency mode pulse and the pulse damping due to this energy transfer in a finite beta plasma are presented.

  8. High-level expression of antimicrobial peptide mediated by a fusion partner reinforcing formation of inclusion bodies.

    PubMed

    Lee, J H; Kim, J H; Hwang, S W; Lee, W J; Yoon, H K; Lee, H S; Hong, S S

    2000-11-01

    A gene expression system for antimicrobial peptides, which could be effectively used for various studies or applications of the antimicrobial peptides, has been developed. To avoid the harmful effects on an expression host, Escherichia coli, the antimicrobial peptides were expressed as fusion proteins with a polypeptide F4, which is a truncated PurF fragment that highly tends to form inclusion bodies. Seven different kinds of antimicrobial peptides have been successfully expressed by this expression system and the resulting expression level of fusion proteins reached up to 30% of total cell proteins. To confirm the identity of the recombinant peptide, MSI-344 was selected as a model peptide and purified to homogeneity, and we could obtain the recombinant MSI-344 of a high purity and with a good yield, which was identical to the authentic peptide in the aspects of the chemical and antimicrobial properties. These results show that the neutral fusion partner, which reinforces the formation of inclusion bodies, could mediate a high-level expression of the antimicrobial peptides. PMID:11061996

  9. High resolution transmission electron microscopy study of the hardening mechanism through phase separation in a beta-Ti-35Nb-7Zr-5Ta alloy for implant applications.

    PubMed

    Afonso, Conrado R M; Ferrandini, Peterson L; Ramirez, Antonio J; Caram, Rubens

    2010-04-01

    beta-Ti alloys are highly attractive metallic materials for biomedical applications due to their high specific strength, high corrosion resistance and excellent biocompatibility, including low elastic modulus. This work aims to clarify the hardening mechanism of a beta-Ti-Nb-Zr-Ta alloy using different characterization techniques. Ingots (50 g) of Ti-35Nb-7Zr-5Ta (wt.%) alloy were arc furnace melted in an Ar((g)) atmosphere, homogenized, hot rolled, solubilized and finally aged at several temperatures from 200 to 700 degrees C for 4 h. Microstructure characterization was performed using X-ray diffraction, optical microscopy, scanning and high resolution transmission electron microscopy (HR-TEM). The 4 h aging showed that the highest hardness values were found when aged at 400 degrees C and the HR-TEM images confirmed splitting of spots on the Fourier space map, which indicated the presence of a coherent interface between separated phases (beta and beta') and explains the hardening mechanism of the alloy. Through geometric phase analysis analysis, using the HR-TEM image, the localized strain map showed 5-10 nm domains of the beta and beta' phases. The combination of suitable values of yield strength, hardness and low Young's modulus makes Ti-35Nb-7Zr-5Ta alloy suitable for medical applications as a metallic orthopedic implant. PMID:19913645

  10. Highly Potent, Water Soluble Benzimidazole Antagonist for Activated (alpha)4(beta)1 Integrin

    SciTech Connect

    Carpenter, R D; Andrei, M; Lau, E Y; Lightstone, F C; Liu, R; Lam, K S; Kurth, M J

    2007-08-29

    The cell surface receptor {alpha}{sub 4}{beta}{sub 1} integrin, activated constitutively in lymphoma, can be targeted with the bisaryl urea peptidomimetic antagonist 1 (LLP2A). However, concerns on its preliminary pharmacokinetic (PK) profile provided an impetus to change the pharmacophore from a bisaryl urea to a 2-arylaminobenzimidazole moiety resulting in improved solubility while maintaining picomolar potency [5 (KLCA4); IC{sub 50} = 305 pM]. With exceptional solubility, this finding has potential for improving PK to help diagnose and treat lymphomas.

  11. ChemTeacher: Beta Decay

    NSDL National Science Digital Library

    2011-01-01

    ChemTeacher compiles background information, videos, articles, demonstrations, worksheets and activities for high school teachers to use in their classrooms. The Beta Decay page includes resources for teaching students about the discovery and applications of beta decay.

  12. Signal modeling of high-purity Ge detectors with a small read-out electrode and application to neutrinoless double beta decay search in Ge76

    Microsoft Academic Search

    M. Agostini; C. A. Ur; D. Budjás; E. Bellotti; R. Brugnera; C. M. Cattadori; A. di Vacri; A. Garfagnini; L. Pandola; S. Schönert

    2011-01-01

    The GERDA experiment searches for the neutrinoless double beta decay of 76Ge using high-purity germanium detectors enriched in 76Ge. The analysis of the signal time structure provides a powerful tool to identify neutrinoless double beta decay events and to discriminate them from gamma-ray induced backgrounds. Enhanced pulse shape discrimination capabilities of Broad Energy Germanium detectors with a small read-out electrode

  13. Magnetic Effects in a Moderate-Temperature, High-Beta, Toroidal Plasma Device

    NASA Astrophysics Data System (ADS)

    Edwards, W. F.; Singh, A. K.; Held, E. D.

    2011-10-01

    A small toroidal machine (STOR-1M; minor radius 4.5 cm), on loan from the University of Saskatchewan, has been modified to operate at hydrogen ionization levels ~0.1%, beta values between 0.1 and 1, electron number density ~5x1016/m3, temperature ~5 eV, and applied toroidal magnetic field ~20 gauss. Plasma is generated using magnetron-produced microwaves. Langmuir and Hall probes determine radial profiles of electron number density, temperature, and magnetic field. For most values of the externally-applied magnetic field, the internal field is the same with or without plasma, however, in a narrow window of B, diamagnetism and other effects are present. The effect is observed with no externally induced current; plasma currents are self generated through some sort of relaxation process. Beta and radius conditions correlate well with similar magnetic structures in the laboratory (eg., plasma focus, Z pinch) and in space (eg., Venus flux ropes, solar coronal loops).

  14. A NPxY-independent {beta}5 integrin activation signal regulates phagocytosis of apoptotic cells

    SciTech Connect

    Singh, Sukhwinder; D'mello, Veera [Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103-6399 (United States); Henegouwen, Paul van Bergen en [Utrecht University, Department of Molecular Cell Biology, Padualaan 8 3584 CH Utrecht (Netherlands); Birge, Raymond B. [Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103-6399 (United States); Utrecht University, Department of Molecular Cell Biology, Padualaan 8 3584 CH Utrecht (Netherlands)], E-mail: birgera@umdnj.edu

    2007-12-21

    Integrin receptors are heterodimeric transmembrane receptors with critical functions in cell adhesion and migration, cell cycle progression, differentiation, apoptosis, and phagocytosis of apoptotic cells. Integrins are activated by intracellular signaling that alter the binding affinity for extracellular ligands, so-called inside to outside signaling. A common element for integrin activation involves binding of the cytoskeletal protein talin, via its FERM domain, to a highly conserved NPxY motif in the {beta} chain cytoplasmic tails, which is involved in long-range conformation changes to the extracellular domain that impinges on ligand affinity. When the human beta-5 ({beta}5) integrin cDNA was expressed in {alpha}v positive, {beta}5 and {beta}3 negative hamster CS-1 cells, it promoted NPxY-dependent adhesion to VTN-coated surfaces, phosphorylation of FAK, and concomitantly, {beta}5 integrin-EGFP protein was recruited into talin and paxillin-containing focal adhesions. Expression of a NPxY destabilizing {beta}5 mutant (Y750A) abrogated adhesion and {beta}5-Y750A-EGFP was excluded from focal adhesions at the tips of stress fibers. Surprisingly, expression of {beta}5 Y750A integrin had a potent gain-of-function effect on apoptotic cell phagocytosis, and further, a {beta}5-Y750A-EGFP fusion integrin readily bound MFG-E8-coated 10 {mu}m diameter microspheres developed as apoptotic cell mimetics. The critical sequences in {beta}5 integrin were mapped to a YEMAS motif just proximal to the NPxY motif. Our studies suggest that the phagocytic function of {beta}5 integrin is regulated by an unconventional NPxY-talin-independent activation signal and argue for the existence of molecular switches in the {beta}5 cytoplasmic tail for adhesion and phagocytosis.

  15. Analysis of proteins binding to the ITAM motif of the beta-subunit of the high-affinity receptor for IgE (FcepsilonRI).

    PubMed

    Soto-Cruz, Isabel; Oliver, Janet M; Ortega, Enrique

    2007-01-01

    Aggregation of the multichain (alphabetagamma2) high-affinity IgE receptor (Fcepsilon RI) initiates a signaling cascade that results in the release of allergic mediators. The cytoplasmic tails of the FcepsilonRI-beta and -gamma subunits contain immunoreceptor tyrosine-based activation motifs (ITAMs). Phosphorylation of the gammaITAM mediates activation of Syk kinase and is sufficient for triggering the responses induced by Fcepsilon RI crosslinking. Phosphorylation of the betaITAM is insufficient to mediate cell activation. The rat betaITAM contains three tyrosines (Tyr218, Tyr224, and Tyr228) with an intermediate noncanonical tyrosine. Synthetic peptides based on the ITAM of the FcepsilonRI-beta subunit were used to investigate the role of each phosphotyrosine in the binding of signaling proteins to this motif. Among the proteins that bind to phosphorylated beta ITAM are Syk, Grb2, Shc, SHIP, and SHP-1, and binding does not depend on previous cell activation. Nonphosphorylated peptides do not bind these proteins. Syk binding to beta-peptides is dependent on the number and position of phosphotyrosines in the ITAM. Phosphorylation of Tyr218 seems to be most important for Syk binding. Recruitment of Syk and other signaling proteins to the beta-subunit might be important for its amplifier role. PMID:17365510

  16. Access to sustained high-beta with internal transport barrier and negative central magnetic shear in DIII-D

    SciTech Connect

    Garofalo, A. M. [Columbia Univ., New York, NY (United States); Doyle, E. J. [Univ. of California, Los Angeles, CA (United States); Ferron, J. R. [General Atomics, San Diego, CA (United States); Greenfield, C. M. [General Atomics, San Diego, CA (United States); Groebner, R. J. [General Atomics, San Diego, CA (United States); Hyatt, A. W. [General Atomics, San Diego, CA (United States); Jackson, G. L. [General Atomics, San Diego, CA (United States); Jayakumar, R. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kinsey, J. E. [Lehigh Univ., Bethlehem, PA (United States); La Haye, R. J. [General Atomics, San Diego, CA (United States); McKee, G. R. [Univ. of Wisconsin, Madison, WI (United States); Murakami, M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Okabayashi, M. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Osborne, T. H. [General Atomics, San Diego, CA (United States); Petty, C. C. [General Atomics, San Diego, CA (United States); Politzer, P. A. [General Atomics, San Diego, CA (United States); Reimerdes, H. [Columbia Univ., New York, NY (United States); Scoville, J. T. [General Atomics, San Diego, CA (United States); Solomon, W. M. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); St. John, H. E. [General Atomics, San Diego, CA (United States); Strait, E. J. [General Atomics, San Diego, CA (United States); Turnbull, A. D. [General Atomics, San Diego, CA (United States); Wade, M. R. [General Atomics, San Diego, CA (United States); VanZeeland, M. A. [Oak Ridge Inst. for Science and Education (ORISE), Oak Ridge, TN (United States)

    2006-01-01

    High values of normalized ? (?N~4) and safety factor (qmin~2) have been sustained simultaneously for ~2 s in DIII-D [J.L. Luxon, Nucl. Fusion 42, 64 (2002)], suggesting a possible path to high fusion performance, steady-state tokamak scenarios with a large fraction of bootstrap current. The combination of internal transport barrier and negative central magnetic shear at high ? results in high confinement (H89P>2.5) and large bootstrap current fraction (fBS>60%) with good alignment. Previously, stability limits in plasmas with core transport barriers have been observed at moderate values of ?N (<3) because of the pressure peaking which normally develops from improved core confinement. In recent DIII-D experiments, the internal transport barrier is clearly observed in the electron density and in the ion temperature and rotation profiles at ?~0.5 but not in the electron temperature profile, which is very broad. The misalignment of Ti and Te gradients may help to avoid a large local pressure gradient. Furthermore, at low internal inductance ~0.6, the current density gradients are close to the vessel and the ideal kink modes are strongly wall-coupled. Simultaneous feedback control of both external and internal sets of n=1 magnetic coils was used to maintain optimal error field correction and resistive wall mode stabilization, allowing operation above the free-boundary ? limit. Largree-boundary ? limit. Large particle orbits at high safety factor in the core help to broaden both the pressure and the beam-driven current profiles, favorable for steady-state operation. At plasma current flat top and ?~5%, a noninductive current fraction of ~100% has been observed. Stability modeling shows the possibility for operation up to the ideal-wall limit at ?~6%

  17. Stimulated scattering in laser driven fusion and high energy density physics experiments

    NASA Astrophysics Data System (ADS)

    Yin, L.; Albright, B. J.; Rose, H. A.; Montgomery, D. S.; Kline, J. L.; Kirkwood, R. K.; Milovich, J.; Finnegan, S. M.; Bergen, B.; Bowers, K. J.

    2014-09-01

    In laser driven fusion and high energy density physics experiments, one often encounters a k?D range of 0.15 < k?D < 0.5, where stimulated Raman scattering (SRS) is active (k is the initial electron plasma wave number and ?D is the Debye length). Using particle-in-cell simulations, the SRS reflectivity is found to scale as ˜ (k?D)-4 for k?D ? 0.3 where electron trapping effects dominate SRS saturation; the reflectivity scaling deviates from the above for k?D < 0.3 when Langmuir decay instability (LDI) is present. The SRS risk is shown to be highest for k?D between 0.2 and 0.3. SRS re-scattering processes are found to be unimportant under conditions relevant to ignition experiments at the National Ignition Facility (NIF). Large-scale simulations of the hohlraum plasma show that the SRS wavelength spectrum peaks below 600 nm, consistent with most measured NIF spectra, and that nonlinear trapping in the presence of plasma gradients determines the SRS spectral peak. Collisional effects on SRS, stimulated Brillouin scattering (SBS), LDI, and re-scatter, together with three dimensional effects, are examined. Effects of collisions are found to include de-trapping as well as cross-speckle electron temperature variation from collisional heating, the latter of which reduces gain, introduces a positive frequency shift that counters the trapping-induced negative frequency shift, and affects SRS and SBS saturation. Bowing and breakup of ion-acoustic wavefronts saturate SBS and cause a dramatic, sharp decrease in SBS reflectivity. Mitigation of SRS and SBS in the strongly nonlinear trapping regime is discussed.

  18. High Energy Electron Confinement in a Magnetic Cusp Configuration

    E-print Network

    Park, Jaeyoung; Sieck, Paul E; Offermann, Dustin T; Skillicorn, Michael; Sanchez, Andrew; Davis, Kevin; Alderson, Eric; Lapenta, Giovanni

    2014-01-01

    We report experimental results validating the concept that plasma confinement is enhanced in a magnetic cusp configuration when beta (plasma pressure/magnetic field pressure) is order of unity. This enhancement is required for a fusion power reactor based on cusp confinement to be feasible. The magnetic cusp configuration possesses a critical advantage: the plasma is stable to large scale perturbations. However, early work indicated that plasma loss rates in a reactor based on a cusp configuration were too large for net power production. Grad and others theorized that at high beta a sharp boundary would form between the plasma and the magnetic field, leading to substantially smaller loss rates. The current experiment validates this theoretical conjecture for the first time and represents critical progress toward the Polywell fusion concept which combines a high beta cusp configuration with an electrostatic fusion for a compact, economical, power-producing nuclear fusion reactor.

  19. Sub-millimeter nuclear medical imaging with high sensitivity in positron emission tomography using beta-gamma coincidences

    E-print Network

    C. Lang; D. Habs; K. Parodi; P. G. Thirolf

    2014-02-15

    We present a nuclear medical imaging technique, employing triple-gamma trajectory intersections from beta^+ - gamma coincidences, able to reach sub-millimeter spatial resolution in 3 dimensions with a reduced requirement of reconstructed intersections per voxel compared to a conventional PET reconstruction analysis. This '$\\gamma$-PET' technique draws on specific beta^+ - decaying isotopes, simultaneously emitting an additional photon. Exploiting the triple coincidence between the positron annihilation and the third photon, it is possible to separate the reconstructed 'true' events from background. In order to characterize this technique, Monte-Carlo simulations and image reconstructions have been performed. The achievable spatial resolution has been found to reach ca. 0.4 mm (FWHM) in each direction for the visualization of a 22Na point source. Only 40 intersections are sufficient for a reliable sub-millimeter image reconstruction of a point source embedded in a scattering volume of water inside a voxel volume of about 1 mm^3 ('high-resolution mode'). Moreover, starting with an injected activity of 400 MBq for ^76Br, the same number of only about 40 reconstructed intersections are needed in case of a larger voxel volume of 2 x 2 x 3~mm^3 ('high-sensitivity mode'). Requiring such a low number of reconstructed events significantly reduces the required acquisition time for image reconstruction (in the above case to about 140 s) and thus may open up the perspective for a quasi real-time imaging.

  20. High-throughput deterministic single-cell encapsulation and droplet pairing, fusion, and shrinkage in a single microfluidic device.

    PubMed

    Schoeman, Rogier M; Kemna, Evelien W M; Wolbers, Floor; van den Berg, Albert

    2014-02-01

    In this article, we present a microfluidic device capable of successive high-yield single-cell encapsulation in droplets, with additional droplet pairing, fusion, and shrinkage. Deterministic single-cell encapsulation is realized using Dean-coupled inertial ordering of cells in a Yin-Yang-shaped curved microchannel using a double T-junction, with a frequency over 2000 Hz, followed by controlled droplet pairing with a 100% success rate. Subsequently, droplet fusion is realized using electrical actuation resulting in electro-coalescence of two droplets, each containing a single HL60 cell, with 95% efficiency. Finally, volume reduction of the fused droplet up to 75% is achieved by a triple pitchfork structure. This droplet volume reduction is necessary to obtain close cell-cell membrane contact necessary for final cell electrofusion, leading to hybridoma formation, which is the ultimate aim of this research. PMID:23856757

  1. Seismic properties of Southalpine metapelite at high temperatures and pressures: revisiting the alpha-beta quartz phase transition

    NASA Astrophysics Data System (ADS)

    Benson, P.; Zappone, A.

    2012-04-01

    This work concludes a study started many years ago in the Rock Deformation Laboratory of ETH Zurich, in which the seismic properties (Vp / Vs) of crustal metapelites at high pressure and temperature were characterised. A particular goal was to map the alpha-beta phase transition in quartz-rich rocks, and to link these effects to areas of above average heat flux. Our interest in metapelites is driven by the observation that they are among the most common metamorphic rock types of continental crust and possibly constitute a significant part of lower crust. Metapelites are rich in quartz and hydrous minerals (e.g. biotite, muscovite, chlorite), and are common in the lithology of areas high geothermal activity due to the higher than average heat flux. They are also good candidates to investigate dehydration reactions and phase transitions of the middle to lower crust. To investigate, we employ a 'Paterson' type apparatus that is configured for petrophysical work, in particular elastic wave velocity and electrical conductivity, installed in the Rock Deformation Laboratory at ETH Zurich in 2002. Using this apparatus, we have been able to greatly expand our understanding of the seismic (and inducted seismicity) properties associated with dehydration reactions and phase transitions, simulating in situ conditions in the shallow crust. Here we report new measurements of the seismic properties of a metapelite from the Serie dei Laghi basement (Southern Alps, N-Italy), revealing, for the first time under in-situ conditions, evidence for the alpha-beta transition. P-wave and S-wave elastic wave velocities were measured along the principal anisotropy directions at pressures up to 500 MPa. To observe the effects of the alpha-beta quartz transition under hydrostatic conditions, and additionally of muscovite dehydration, we then monitored P-wave velocity continuously as the sample was heated to 800°C, for a range of pressures. At 400 MPa, Vp decreases monotonically with temperature to 675°C; then as temperatures continue to increase Vp rapidly increases until 750°C. The effect is found to be perfectly reversible, and thus we interpret it as the alpha-beta transition in quartz. We measure a linear trend of the transition with increasing pressure, at a rate equivalent of 0.3 K/MPa, consistent with previous work. We also find evidence that the continuous increase of Vp at elevated temperatures (to 750°C) reflects the dehydration of muscovite + quartz to K-feldspar + sillimanite. After recovering the sample, we are able to support this hypothesis by identifying the presence of water in the assemblage and through the presence of newly formed K-feldspar and sillimanite.

  2. V&V of MCNP 6.1.1 Beta Against Intermediate and High-Energy Experimental Data

    SciTech Connect

    Mashnik, Stepan G [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-09-08

    This report presents a set of validation and verification (V&V) MCNP 6.1.1 beta results calculated in parallel, with MPI, obtained using its event generators at intermediate and high-energies compared against various experimental data. It also contains several examples of results using the models at energies below 150 MeV, down to 10 MeV, where data libraries are normally used. This report can be considered as the forth part of a set of MCNP6 Testing Primers, after its first, LA-UR-11-05129, and second, LA-UR-11-05627, and third, LA-UR-26944, publications, but is devoted to V&V with the latest, 1.1 beta version of MCNP6. The MCNP6 test-problems discussed here are presented in the /VALIDATION_CEM/and/VALIDATION_LAQGSM/subdirectories in the MCNP6/Testing/directory. README files that contain short descriptions of every input file, the experiment, the quantity of interest that the experiment measures and its description in the MCNP6 output files, and the publication reference of that experiment are presented for every test problem. Templates for plotting the corresponding results with xmgrace as well as pdf files with figures representing the final results of our V&V efforts are presented. Several technical “bugs” in MCNP 6.1.1 beta were discovered during our current V&V of MCNP6 while running it in parallel with MPI using its event generators. These “bugs” are to be fixed in the following version of MCNP6. Our results show that MCNP 6.1.1 beta using its CEM03.03, LAQGSM03.03, Bertini, and INCL+ABLA, event generators describes, as a rule, reasonably well different intermediate- and high-energy measured data. This primer isn’t meant to be read from cover to cover. Readers may skip some sections and go directly to any test problem in which they are interested.

  3. Lateral Lumbar Interbody Fusion for the Correction of Spondylolisthesis and Adult Degenerative Scoliosis in High-Risk Patients: Early Radiographic Results and Complications

    PubMed Central

    Waddell, Brad; Briski, David; Qadir, Rabah; Godoy, Gustavo; Houston, Allison Howard; Rudman, Ernest; Zavatsky, Joseph

    2014-01-01

    Background Lateral lumbar interbody fusion (LLIF) is not associated with many of the complications seen in other interbody fusion techniques. This study used computed tomography (CT) scans, the radiographic gold standard, to assess interbody fusion rates achieved utilizing the LLIF technique in high-risk patients. Methods We performed a retrospective review of patients who underwent LLIF between January 2008 and July 2013. Forty-nine patients underwent nonstaged or staged LLIF on 119 levels with posterior correction and augmentation. Per protocol, patients received CT scans at their 1-year follow-up. Of the 49 patients, 21 patients with LLIF intervention on 54 levels met inclusion criteria. Two board-certified musculoskeletal radiologists and the senior surgeon (JZ) assessed fusion. Results Of the 21 patients, 6 patients had had previous lumbar surgery, and the cohort's comorbidities included osteoporosis, diabetes, obesity, and smoking, among others. Postoperative complications occurred in 12 (57.1%) patients and included anterior thigh pain and weakness in 6 patients, all of which resolved by 6 months. Two cases of proximal junctional kyphosis occurred, along with 1 case of hardware pullout. Two cases of abdominal atonia occurred. By CT scan assessment, each radiologist found fusion was achieved in 53 of 54 levels (98%). The radiologists' findings were in agreement with the senior surgeon. Conclusion Several studies have evaluated LLIF fusion and reported fusion rates between 88%-96%. Our results demonstrate high fusion rates using this technique, despite multiple comorbidities in the patient population. Spanning the ring apophysis with large LLIF cages along with supplemental posterior pedicle screw augmentation can enhance stability of the fusion segment and increase fusion rates. PMID:24688329

  4. Highly toxic and broad-spectrum insecticidal local Bacillus strains engineered using protoplast fusion.

    PubMed

    El-Kawokgy, Tahany M A; Hussein, Hashem A; Aly, Nariman A H; Mohamed, Shereen A H

    2015-01-01

    Protoplast fusion was performed between a local Bacillus thuringiensis UV-resistant mutant 66/1a (Bt) and Bacillus sphaericus GHAI (Bs) to produce new Bacillus strains with a wider spectrum of action against different insects. Bt is characterized as sensitive to polymyxin and streptomycin and resistant to rifampicin and has shown 87% mortality against Spodoptera littoralis larvae at concentration of 1.5 × 10(7) cells/mL after 7 days of feeding; Bs is characterized as resistant to polymyxin and streptomycin and sensitive to rifampicin and has been shown to have 100% mortality against Culex pipiens after 1 day of feeding at the same concentration as that of Bt. Among a total of 64 Bt::Bs fusants produced on the selective medium containing polymyxin, streptomycin, and rifampicin, 17 fusants were selected because of their high mortality percentages against S. littoralis (Lepidoptera) and C. pipiens (Diptera). While Bt harboured 3 plasmids (600, 350, and 173 bp) and Bs had 2 plasmids (544 and 291 bp), all the selected fusants acquired plasmids from both parental strains. SDS-PAGE protein analysis of the 17 selected fusants and their parental strains confirmed that all fusant strains acquired and expressed many specific protein bands from the 2 parental strains, especially the larvicidal proteins to both lepidopteran and dipteran species with molecular masses of 65, 70, 80, 88, 100, and 135 kDa. Four protein bands with high molecular masses of 281, 263, 220, and 190 kDa, which existed in the Bt parental strain and did not exist in the Bs parental strain, and 2 other protein bands with high molecular masses of 185 and 180 kDa, which existed in the Bs parental strain and did not exist in the Bt parental strain, were expressed in most fusants. The results indicated the expression of some cry genes encoded for insecticidal crystal proteins from Bt and the binary toxin genes from Bs in all fusant strains. The recombinant fusants have more efficient and potential values for agricultural application compared with both the insecticidal Bt and the mosquitocidal Bs strains alone against S. littoralis and C. pipiens larvae, respectively. PMID:25485592

  5. Chronic treatment with amyloid beta(1-42) inhibits non-cholinergic high-affinity choline transport in NG108-15 cells through protein kinase C signaling.

    PubMed

    Nováková, Jana; Mikasová, Lenka; Machová, Eva; Lisá, V?ra; Dolezal, Vladimír

    2005-11-16

    We investigated the influence of the amyloid-beta-peptide(1-42) on hemicholinum-3-sensitive high-affinity choline uptake in NG108-15 cells. RT-PCR analysis revealed the presence of mRNA for a choline transporter-like protein but not for cholinergic high-affinity choline transporter. Differentiation of cells increased both hemicholinum-3-sensitive choline uptake and high-affinity hemicholinium-3 binding. This transport was not influenced by tenfold excess of carnitine. Continuous presence of submicromolar concentrations of amyloid-beta-peptide(1-42) during differentiation resulted in a decrease of both choline uptake and hemicholinium-3 binding. These effects were not present when amyloid-beta-peptide(1-42) was added 5 min prior to measurements. Neither differentiation nor amyloid-beta-peptide(1-42) treatment changed levels of choline transporter-like protein mRNA. Protein kinase C inhibition by staurosporine or its inactivation by continuous presence of tetradecanoyl phorbol acetate prevented the inhibitory effect of amyloid-beta-peptide(1-42) treatment on choline uptake. Activation of protein kinase C by tetradecanoyl phorbol acetate during measurement had inhibitory effect on choline uptake in control but not amyloid-beta-peptide(1-42)-treated cells. The concentration of amyloid-beta-peptide(1-42) maximally effective on hemicholinium-3-sensitive choline uptake had no effect on cell growth, oxidative activity, membrane integrity, number of surface muscarinic receptors, caspase-3 and -8 activities, or uptake of deoxyglucose. Results demonstrate that long-term treatment with non-toxic concentrations of amyloid-beta-peptide(1-42) downregulates choline uptake presumably mediated by a choline transporter-like protein through activation of protein kinase C signaling. The decrease of choline uptake may have relevance to the pathogenesis of Alzheimer's disease. PMID:16256077

  6. Development of a magnetohydrodynamic code for axisymmetric, high-. beta. plasmas with complex magnetic fields

    SciTech Connect

    Cook, G.O. Jr.

    1982-12-01

    The Topolotron is an axisymmetric, toroidal magnetic fusion concept in which two-dimensional effects are important, as well as all three magnetic field components. The particular MHD model employed is basically the one-fluid, two-temperature model using classical Braginskii transport with viscous effects ignored. The model is augmented by Saha-Boltzmann dissociation and partial ionization physics, a simple radiation loss mechanism, and an additional resistivity due to electron-neutral collisions. While retaining all velocity and magnetic field components, the assumption of axisymmetry is made, and the resulting equations are expanded in cylindrical coordinates. The major approximation technique is then applied: spline collocation, which reduces these equations to a set of ordinary differential equations.

  7. Identifying heavy-ion-beam fusion design and system features with high economic leverage

    NASA Astrophysics Data System (ADS)

    Meier, W. R.; Hogan, W. J.

    1985-03-01

    We have conducted parametric economic studies for heavy-ion-beam fusion electric power plants. We examined the effects on the cost of electricity of several design parameters: maximum achievable chamber pulse rate, driver cost, target gain, and electric conversion efficiency, and net electric power. We found with reasonable assumptions on driver cost, target gain, and electric conversion efficiency, a 2 to 3 GWe heavy-ion-beam fusion power plant, with a chamber pulse rate of 5 to 10 Hz, can be competitive with nuclear and coal power plants.

  8. Supplementation of the diet with high-viscosity beta-glucan results in enrichment for lactobacilli in the rat cecum.

    PubMed

    Snart, Jennifer; Bibiloni, Rodrigo; Grayson, Teresa; Lay, Christophe; Zhang, Haiyan; Allison, Gwen E; Laverdiere, Julie K; Temelli, Feral; Vasanthan, Thavaratnam; Bell, Rhonda; Tannock, Gerald W

    2006-03-01

    BBn (BioBreeding) rats were fed casein-based diets supplemented with barley flour, oatmeal flour, cellulose, or barley beta-glucans of high [HV] or low viscosity [LV] in order to measure the prebiotic effects of these different sources of dietary fiber. The dietary impact on the composition of the cecal microbiota was determined by the generation of denaturing gradient gel electrophoresis (DGGE) profiles of PCR-amplified 16S rRNA gene sequences. The DGGE profiles produced from the cecal microbiota of rats within each dietary group were similar, but consensus profiles generated from pooled bacterial DNAs showed differences between rat groups. Animals fed HV glucans (HV-fed rats) had DGGE consensus profiles that were 30% dissimilar from those of the other rat groups. A 16S rRNA gene fragment that was more conspicuous in the profiles of HV-fed animals than in those of cellulose-fed rats had sequence identity with Lactobacillus acidophilus. Measurements of L. acidophilus rRNA abundance (DNA-RNA hybridization), the preparation of cloned 16S rRNA gene libraries, and the enumeration of Lactobacillus cells (fluorescent in situ hybridization) showed that lactobacilli formed a greater proportion of the cecal microbiota in HV-fed rats. In vitro experiments confirmed that some lactobacilli utilize oligosaccharides (degree of polymerization, 3 or 4) present in beta-glucan hydrolysates. The results of this study have relevance to the use of purified beta-glucan products as dietary supplements for human consumption. PMID:16517639

  9. Driver Technology for Inertial Fusion Research 1.Status of High Power Solid State Laser for Laser Fusion Experiments and the Prospect of Future Reactor Drivers

    NASA Astrophysics Data System (ADS)

    Fujita, Hisanori

    The progress in development of high-power glass laser systems during the past 30 years is remarkable NIF (National Ignition Facility), which will deliver 1.8 MJ at 0.35 ?m is now construction in the United States. Recently, technology that smoothes out the focal pattern has been developed to a great extent. RPP (Random Phase Plate) and PCL (Partially Coherent Laser) both gave an excellent focal pattern with standard deviation of 3% in the Gekko XII laser system. In the US, Japan and Europe, several ultra-short pulse lasers were developed for research on “fast ignition”. “Fast ignition” is a method which will reduce the total required laser energy for ignition. Because a diode-pumped, solid state laser can operate at a repetition rate of over 10 Hz with an efficiency of about 10% research area of high-power systems at the 1 kW level started to focus on the development of a driver for a commercial laser fusion reactor.

  10. Optimization of a high-throughput whole blood expression profiling methodology and its application to assess the pharmacodynamics of interferon (IFN) beta-1a or polyethylene glycol-conjugated IFN beta-1a in healthy clinical trial subjects

    PubMed Central

    2013-01-01

    Background Clinical trials offer a unique opportunity to study human disease and response to therapy in a highly controlled setting. The application of high-throughput expression profiling to peripheral blood from clinical trial subjects could facilitate the identification of transcripts that function as prognostic or diagnostic markers of disease or treatment. The paramount issue for these methods is the ability to produce robust, reproducible, and timely mRNA expression profiles from peripheral blood. Single-stranded complementary DNA (sscDNA) targets derived from whole blood exhibit improved detection of transcripts and reduced variance as compared to their complementary RNA counterparts and therefore provide a better option for interrogation of peripheral blood on oligonucleotide arrays. High-throughput microarray technologies such as the high-throughput plate array platform offer several advantages compared with slide- or cartridge-based arrays; however, manufacturer’s protocols do not support the use of sscDNA targets. Results We have developed a highly reproducible, high-through put, whole blood expression profiling methodology based on sscDNA and used it to analyze human brain reference RNA and universal human reference RNA samples to identify experimental conditions that most highly correlated with a gold standard quantitative polymerase chain reaction reference dataset. We then utilized the optimized method to analyze whole blood samples from healthy clinical trial subjects treated with different versions of interferon (IFN) beta-1a. Analysis of whole blood samples before and after treatment with intramuscular [IM] IFN beta-1a or polyethylene glycol-conjugated IFN (PEG-IFN) beta-1a under optimized experimental conditions demonstrated that PEG-IFN beta-1a induced a more sustained and prolonged pharmacodynamic response than unmodified IM IFN beta-1a. These results provide validation of the utility of this new methodology and suggest the potential therapeutic benefit of a sustained pharmacodynamic response to PEG-IFN beta-1a. Conclusions This novel microarray methodology is ideally suited for utilization in large clinical studies to identify expressed transcripts for the elucidation of disease mechanisms of action and as prognostic, diagnostic, or toxicity markers. PMID:23289891

  11. Ion-scale spectral break of solar wind turbulence at high and low beta

    PubMed Central

    Chen, C H K; Leung, L; Boldyrev, S; Maruca, B A; Bale, S D

    2014-01-01

    The power spectrum of magnetic fluctuations in the solar wind at 1 AU displays a break between two power laws in the range of spacecraft-frame frequencies 0.1 to 1 Hz. These frequencies correspond to spatial scales in the plasma frame near the proton gyroradius ?i and proton inertial length di. At 1 AU it is difficult to determine which of these is associated with the break, since and the perpendicular ion plasma beta is typically ??i?1. To address this, several exceptional intervals with ??i?1 and ??i?1 were investigated, during which these scales were well separated. It was found that for ??i?1 the break occurs at di and for ??i?1 at ?i, i.e., the larger of the two scales. Possible explanations for these results are discussed, including Alfvén wave dispersion, damping, and current sheets.

  12. Beta Thalassemia

    MedlinePLUS

    ... iron overload which must be treated with chelation therapy to prevent early death from organ failure. In a somewhat milder form, the inheritance of two abnormal beta globin genes may cause beta thalassemia intermedia, in which the lack of beta globin ...

  13. Production of high purity TeO 2 single crystals for the study of neutrinoless double beta decay

    NASA Astrophysics Data System (ADS)

    Arnaboldi, C.; Brofferio, C.; Bryant, A.; Bucci, C.; Canonica, L.; Capelli, S.; Carrettoni, M.; Clemenza, M.; Dafinei, I.; Di Domizio, S.; Ferroni, F.; Fiorini, E.; Ge, Z.; Giachero, A.; Gironi, L.; Giuliani, A.; Gorla, P.; Guardincerri, E.; Kadel, R.; Kazkaz, K.; Kogler, L.; Kolomensky, Y.; Larsen, J.; Laubenstein, M.; Li, Y.; Maiano, C.; Martinez, M.; Maruyama, R.; Nisi, S.; Nones, C.; Norman, Eric B.; Nucciotti, A.; Orio, F.; Pattavina, L.; Pavan, M.; Pessina, G.; Pirro, S.; Previtali, E.; Rusconi, C.; Scielzo, Nicholas D.; Sisti, M.; Smith, Alan R.; Tian, W.; Vignati, M.; Wang, H.; Zhu, Y.

    2010-10-01

    High purity TeO 2 crystals are produced to be used for the search for the neutrinoless double beta decay of 130Te. Dedicated production lines for raw material synthesis, crystal growth, and surface processing were built compliant with radio-purity constraints specific to rare event physics experiments. High sensitivity measurements of radio-isotope concentrations in raw materials, reactants, consumables, ancillaries, and intermediary products used for TeO 2 crystals production are reported. Indications are given on the crystals perfection and how it is achieved and maintained in a large scale production process. Production and certification protocols are presented and resulting ready-to-use TeO 2 crystals are described.

  14. High level information fusion for tracking and projection of multistage cyber attacks

    Microsoft Academic Search

    Shanchieh J. Yang; Adam Stotz; Jared Holsopple; Moises Sudit; Michael E. Kuhl

    2009-01-01

    The use of computer networks has become a necessity for government, industry, and personal businesses. Protection and defense against cyber attacks on computer networks, however, are becoming inadequate as attackers become more sophisticated and as the networks and systems become more complex. Drawing analogies from other application domains, this paper introduces information fusion to provide situation awareness and threat prediction

  15. Neural network computational technique for high-resolution remote sensing image reconstruction with system fusion

    Microsoft Academic Search

    Yuriy V. Shkvarko; Jose L. Leyva-Montiel; Ivan E. Villalon-Turrubiates

    2005-01-01

    We address a new approach to the problem of improvement of the quality of scene images obtained with several sensing systems as required for remote sensing imagery, in which case we propose to exploit the idea of robust regularization aggregated with the neural network (NN) based computational implementation of the multi-sensor fusion tasks. Such a specific aggregated robust regularization problem

  16. Inertial Confinement Fusion, High Energy Density Plasmas and an Energy Source on Earth

    E-print Network

    be tested at the National Ignition Facility(NIF) · NIF is scheduled for completion by 2009 ­ Physics (DPSSL or KrF) Heavy Ions Z-pinch Needs to produce low cost targets rapidly Extract energy from target explosions and breed tritium Driver To heat and compress target to fusion conditions #12;Tabak Snowmass

  17. The alpha/beta ocean distinction: A perspective on freshwater fluxes, convection, nutrients and productivity in high-latitude seas

    NASA Astrophysics Data System (ADS)

    Carmack, Eddy C.

    2007-11-01

    Stratification is perhaps the most important attribute of oceans with regards to climate and biology. Two simple aspects of the ocean's climate system appear to have a surprisingly important role in transforming waters that feed the global thermohaline circulation, dominating patterns of biogeochemical flux and establishing macroecological domains. First, largely because of meridional distillation (mainly due to the atmospheric transport of freshwater across the Isthmus of Panama) the North Pacific is fresher than the North Atlantic. Second, largely because of zonal distillation (e.g., warming and evaporation at low latitudes and poleward transport of latent heat and moisture by the atmosphere) the upper layers of subtropical seas are permanently stratified by temperature ( NT2= g?d T/d z>0; here called alpha oceans), while the upper layers of high-latitude seas are permanently stratified by salinity ( NS2= g?d S/d z>0; here called beta oceans). The physical basis for the boundary separating alpha and beta oceans is unclear, but may lie in the thermodynamical equations published by Fofonoff [1961. Energy transformations in the sea. Fisheries Research Board of Canada, Report Series 109, 82pp]. Nevertheless, it is clear that the resulting thermohaline distributions establish a 'downhill journey' of low-salinity (and nutrient-rich) waters from the North Pacific to the Arctic and then into the North Atlantic. The Arctic Ocean—itself—acts a double estuary, whereby waters entering from the North Atlantic become either denser through cooling (negative estuary) or lighter by freshening (positive estuary) as they circulate within the basin and then return to the North Atlantic as a variety of components of the ocean's conveyor. Intermediate and deep waters generally form within cyclonic beta oceans in close proximity to alphas systems. Similar patterns of stratification, nutrients and biogeographical boundaries persist in the Southern Hemisphere. It is thus argued that this simple distinction—alpha versus beta oceans—provides a broad, conceptual framework for simple interpretation of key physical and biological processes and rates, including the impacts of climate variability.

  18. Beta-limiting instabilities and global mode stabilization in the National Spherical Torus Experiment

    NASA Astrophysics Data System (ADS)

    Sabbagh, S. A.; Bell, R. E.; Bell, M. G.; Bialek, J.; Glasser, A. H.; LeBlanc, B.; Menard, J. E.; Paoletti, F.; Stutman, D.; Fredrickson, E.; Garofalo, A. M.; Gates, D.; Kaye, S. M.; Lao, L. L.; Maingi, R.; Mueller, D.; Navratil, G.; Ono, M.; Peng, M.; Synakowski, E.; Zhu, W.

    2002-05-01

    Research on the stability of spherical torus plasmas at and above the no-wall beta limit is being addressed on the National Spherical Torus Experiment [M. Ono et al., Nucl. Fusion 40, 557 (2000)], that has produced low aspect ratio plasmas, R/a˜1.27 at plasma current exceeding 1.4 MA with high energy confinement (TauE/TauE_ITER89P>2). Toroidal and normalized beta have exceeded 25% and 4.3, respectively, in q˜7 plasmas. The beta limit is observed to increase and then saturate with increasing li. The stability factor ?N/li has reached 6, limited by sudden beta collapses. Increased pressure peaking leads to a decrease in ?N. Ideal stability analysis of equilibria reconstructed with EFIT [L. L. Lao et al., Nucl. Fusion 25, 1611 (1985)] shows that the plasmas are at the no-wall beta limit for the n=1 kink/ballooning mode. Low aspect ratio and high edge q theoretically alter the plasma stability and mode structure compared to standard tokamak configurations. Below the no-wall limit, stability calculations show the perturbed radial field is maximized near the center column and mode stability is not highly effected by a nearby conducting wall due to the short poloidal wavelength in this region. In contrast, as beta reaches and exceeds the no-wall limit, the mode becomes strongly ballooning with long poloidal wavelength at large major radius and is highly wall stabilized. In this way, wall stabilization is more effective at higher beta in low aspect ratio geometry. The resistive wall mode has been observed in plasmas exceeding the ideal no-wall beta limit and leads to rapid toroidal rotation damping across the plasma core.

  19. High Prevalence of Extended-Spectrum Beta Lactamases among Salmonella enterica Typhimurium Isolates from Pediatric Patients with Diarrhea in China

    PubMed Central

    Yu, Fangyou; Chen, Qiang; Yu, Xiaojun; Li, Qiaoqiao; Ding, Baixing; Yang, Lehe; Chen, Cong; Qin, Zhiqiang; Parsons, Chris; Zhang, Xueqing; Huang, Jinwei; Luo, Yun; Wang, Liangxing; Pan, Jingye

    2011-01-01

    We investigated the extended-spectrum beta lactamases among 62 Salmonella enterica Typhimurium isolates recovered from children with diarrhea in a Chinese pediatric hospital. A large proportion of S. enterica Typhimurium isolates were resistant to multiple antimicrobial agents, including ampicillin (90.3%), tetracycline (80.6%), trimethoprim/sulfamethoxazole (74.2%), chloramphenicol (66.1%), cefotaxime (27.4%). Forty-nine (79.0%) of S. enterica Typhimurium isolates were positive for blaTEM-1b and resistant to ampicillin. Thirteen S. enterica Typhimurium isolates (21.0%) were positive for blaCTX-M-1-group and blaCTX-M-9-group, and all isolates harboring blaCTX-M genes were positive for ISEcp1. Two main clones (PFGE type A and D) accounted for nearly 70% of S. enterica Typhimurium isolates, and 7 CTX-M-producing isolates belonged to PFGE type D. Collectively, our data reveal multi-drug resistance and a high prevalence of extended spectrum beta lactamases among S. enterica Typhimurium isolates from children in China. In addition, we report the first identification of blaCTX-M-55 within Salmonella spp. Our data also suggest that clonal spread is responsible for the dissemination of S. enterica Typhimurium isolates. PMID:21390297

  20. Microstructural evolution of fusion zone in laser beam welds of pure titanium

    SciTech Connect

    Liu, H., E-mail: hitliuhong@163.com [State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049 (China) and Joining and Welding Research Institute, Osaka University, Ibaraki 567-0047 (Japan); Nakata, K. [Joining and Welding Research Institute, Osaka University, Ibaraki 567-0047 (Japan); Zhang, J.X. [State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049 (China); Yamamoto, N.; Liao, J. [Technology Development Headquarters, Kurimoto Ltd., Osaka 559-0021 (Japan)

    2012-03-15

    Microstructural evolution of fusion zone in laser beam welds of pure titanium was studied by means of electron backscattering diffraction. The microstructural evolution is strongly affected by the {beta} {yields} {alpha} transformation mechanism dependent on the cooling rate during phase transformation. The long-range diffusional transformation mainly occurs in the fusion zone at the low cooling rate, and the massive transformation dominantly takes place at the high cooling rate. For this reason, the grain morphologies probably change from the granular-like to columnar-like grains with the cooling rate increasing. - Highlights: Black-Right-Pointing-Pointer Microstructures of fusion zone in laser beam welds of pure titanium are studied. Black-Right-Pointing-Pointer Increasing cooling rate changes grain morphology from granular to columnar one. Black-Right-Pointing-Pointer Final microstructures depend on the {beta}{yields}{alpha} transformation mechanisms.

  1. Study of high-beta pressure-driven modes in PDX

    SciTech Connect

    McGuire, K.; Bell, M.; Bitter, M.

    1982-10-01

    A new pressure driven instability has been observed in PDX neutral beam heated discharges. It occurs for <BETA/sub T/>q greater than or equal to 0.045 and is associated with a significant loss of fast ions and a drop in neutron emission. As much as 20 to 40% of the beam heating power may be lost. The instability occurs in repetitive oscillatory bursts of < 1 msec duration at 1 to 6 msec intervals. It has been dubbed the fishbone instability from its characteristic signature on the Mirnov coils. From the soft x-ray detector array, it is identified as an m = 1 mode; the Mirnov coil signals are synchronous with it but indicate m greater than or equal to 2. The oscillation frequency within a fishbone burst is approx. 10 kHz, but precursors at 50 to 150 kHz are sometimes observed. Much higher frequency osciallations, up to approx. 500 MHz, have been observed as well.

  2. SIPHORE: Conceptual Study of a High Efficiency Neutral Beam Injector Based on Photo-detachment for Future Fusion Reactors

    SciTech Connect

    Simonin, A.; Christin, L.; Esch, H. de; Garibaldi, P.; Grand, C.; Villecroze, F. [IRFM, CEA Cadarache, IRFM, St. Paul-lez-Durance (France); Blondel, C.; Delsart, C.; Drag, C.; Vandevraye, M. [LAC :Aime-Cotton Laboratory, Univ. Paris-sud, Orsay (France); Brillet, A.; Chaibi, W. [ARTEMIS Laboratory, Cote-d'azur Observatory, Nice (France)

    2011-09-26

    An innovative high efficiency neutral beam injector concept for future fusion reactors is under investigation (simulation and R and D) between several laboratories in France, the goal being to perform a feasibility study for the neutralization of intense high energy (1 MeV) negative ion (NI) beams by photo-detachment.The objective of the proposed project is to put together the expertise of three leading groups in negative ion quantum physics, high power stabilized lasers and neutral beam injectors to perform studies of a new injector concept called SIPHORE (SIngle gap PHOto-neutralizer energy REcovery injector), based on the photo-detachment of negative ions and energy recovery of unneutralised ions; the main feature of SIPHORE being the relevance for the future Fusion reactors (DEMO), where high injector efficiency (up to 70-80%), technological simplicity and cost reduction are key issues to be addressed.The paper presents the on-going developments and simulations around this project, such as, a new concept of ion source which would fit with this injector topology and which could solve the remaining uniformity issue of the large size ion source, and, finally, the presentation of the R and D program in the laboratories (LAC, ARTEMIS) around the photo-neutralization for Siphore.

  3. Overexpression of beta-arrestin and beta-adrenergic receptor kinase augment desensitization of beta 2-adrenergic receptors.

    PubMed

    Pippig, S; Andexinger, S; Daniel, K; Puzicha, M; Caron, M G; Lefkowitz, R J; Lohse, M J

    1993-02-15

    Receptor-specific or homologous desensitization of beta 2-adrenergic receptors is thought to be effected via phosphorylation of the receptor by the beta-adrenergic receptor kinase (beta ARK), followed by binding of beta-arrestin. We have generated stably transfected Chinese hamster ovary cell lines overexpressing either of the two regulatory proteins and also expressing low or high levels of beta 2-adrenergic receptors (approximately 80 and approximately 600 fmol/mg of membrane protein). In these cells, we studied the process of desensitization induced by the beta-adrenergic receptor agonist isoproterenol. In cells expressing high levels of beta 2-adrenergic receptors, desensitization to high concentrations of isoproterenol (previously shown to be mediated by both beta ARK and protein kinase A) amounted to approximately 50% in control cells, approximately 80% in beta ARK-overexpressing cells, and approximately 90% in beta-arrestin-overexpressing cells. In cells expressing low levels of beta 2-adrenergic receptors, these values were approximately 50, approximately 60, and approximately 60%, respectively. Desensitization to low concentrations of isoproterenol (previously shown to be essentially protein kinase A-mediated and not receptor-specific, i.e. heterologous) was not affected by overexpression of either beta ARK or beta-arrestin. These data suggest that in cells expressing high levels of beta 2-adrenergic receptors, beta-arrestin and beta ARK become limiting for homologous receptor desensitization. They provide further support for the involvement of these two proteins in the regulation of beta 2-adrenergic receptor function. PMID:8381421

  4. Dense Plasma Focus - From Alternative Fusion Source to Versatile High Energy Density Plasma Source for Plasma Nanotechnology

    NASA Astrophysics Data System (ADS)

    Rawat, R. S.

    2015-03-01

    The dense plasma focus (DPF), a coaxial plasma gun, utilizes pulsed high current electrical discharge to heat and compress the plasma to very high density and temperature with energy densities in the range of 1-10 × 1010 J/m3. The DPF device has always been in the company of several alternative magnetic fusion devices as it produces intense fusion neutrons. Several experiments conducted on many different DPF devices ranging over several order of storage energy have demonstrated that at higher storage energy the neutron production does not follow I4 scaling laws and deteriorate significantly raising concern about the device's capability and relevance for fusion energy. On the other hand, the high energy density pinch plasma in DPF device makes it a multiple radiation source of ions, electron, soft and hard x-rays, and neutrons, making it useful for several applications in many different fields such as lithography, radiography, imaging, activation analysis, radioisotopes production etc. Being a source of hot dense plasma, strong shockwave, intense energetic beams and radiation, etc, the DPF device, additionally, shows tremendous potential for applications in plasma nanoscience and plasma nanotechnology. In the present paper, the key features of plasma focus device are critically discussed to understand the novelties and opportunities that this device offers in processing and synthesis of nanophase materials using, both, the top-down and bottom-up approach. The results of recent key experimental investigations performed on (i) the processing and modification of bulk target substrates for phase change, surface reconstruction and nanostructurization, (ii) the nanostructurization of PLD grown magnetic thin films, and (iii) direct synthesis of nanostructured (nanowire, nanosheets and nanoflowers) materials using anode target material ablation, ablated plasma and background reactive gas based synthesis and purely gas phase synthesis of various different types of nanostructured materials using DPF device will discussed to establish this device as versatile tool for plasma nanotechnology.

  5. Achievement of High Fusion Performance in JT-60U Reversed Shear Discharges

    SciTech Connect

    Ishida, S.; Fujita, T.; Akasaka, H.; Akino, N.; Annou, K.; Aoyagi, T.; Arai, T.; Arakawa, K.; Asakura, N.; Azumi, M.; Budny, R.; Chiba, S.; Da Costa, O.; Ebisawa, N.; Fujii, T.; Fukuda, T.; Funahashi, A.; Grisham, L.; Gunji, S.; Hamamatsu, K.; Hasegawa, Y.; Hatae, T.; Higashijima, S.; Hiratsuka, H.; Hirauchi, S.; Hirayama, T.; Honda, A.; Honda, M.; Hosogane, N.; Ichige, H.; Ide, S.; Ikeda, Y.; Isaka, M.; Isayama, A.; Isei, N.; Ishii, Y.; Isozaki, N.; Itami, K.; Itoh, T.; Iwahashi, T.; Kamada, Y.; Kaminaga, A.; Kashiwabara, T.; Kawai, M.; Kawamata, Y.; Kawano, Y.; Kazama, D.; Kazawa, M.; Kikuchi, M.; Kimura, H.; Kimura, T.; Kishimoto, H.; Kishimoto, Y.; Kitamura, S.; Kiyono, K.; Kodama, K.; Koide, Y.; Kokusen, S.; Kondoh, T.; Konoshima, S.; Koog, J.; Kramer, G.J.; Kubo, H.; Kurihara, K.; Kurita, G.; Kuriyama, M.; Kusama, Y.; Masaki, K.; Matsuda, T.; Matsumoto, T.; Matukawa, M.; Miura, T.; Miya, N.; Miyachi, K.; Miyata, H.; Miyo, Y.; Mogaki, K.; Mori, M.; Morimoto, M.; Morioka, S.; Moriyama, S.; Nagami, M.; Nagashima, A.; Nagashima, K.; Nagaya, S.; Naito, O.; Nakamura, Y.; Nemoto, M.; Neyatani, Y.; Nishitani, T.; Ogiwara, N.; Ohga, T.; Ohsawa, M.; Ohshima, T.; Oikawa, T.; Okabe, T.; Okano, J.; Omori, K.; Omori, S.; Omori, Y.; Onose, Y.; Oohara, H.; Ozeki, T.; Saidoh, M.; Saigusa, M.; Saito, N.; Sakasai, A.; Sakata, S.; Sakurai, S.; Sasajima, T.; Sato, M.; Scott, S.D.; Seimiya, M.; Seiki, H.; Seki, M.; Shimada, M.; Shimizu, K.; Shimizu, M.; Shimono, M.; Shinozaki, S.; Shirai, H.; Shitomi, M.; Suganuma, K.; Sugie, T.; Sunaoshi, H.; Takahashi, M.; Takahashi, S.; Takeji, S.; Takenaga, H.; Takizuka, T.; Tamai, H.; Terakado, M.; Terakado, T.; Tobita, K.; Tokuda, S.; Totsuka, T.; Toyokawa, Y.; Toyoshima, N.; Tsuchiya, K.; Tsugita, T.; Tsukahara, Y.; Tuda, T.; Uramoto, Y.; Ushigusa, K.; Usui, K.; Yagyu, J.; Yamagiwa, M.; Yamamoto, M.; Yamamoto, T.; Yamashita, O.; Yokokura, K.; Yoshida, H.; Yoshida, M.; Yoshino, R. [Japan Atomic Energy Research Institute, Naka Fus (Japan)] [Japan Atomic Energy Research Institute, Naka Fus (Japan)

    1997-11-01

    Fusion performance of reversed shear discharges with an {ital L}-mode edge has been significantly improved in a thermonuclear dominant regime with up to 2.8 MA of plasma current in the JT-60U tokamak. The core plasma energy is efficiently confined due to the existence of persistent internal transport barriers formed for both ions and electrons at a large minor radius of r/a{approximately}0.7 near the boundary of the reversed shear region. In an assumed deuterium-tritium fuel, the peak fusion amplification factor defined for transient conditions involving the dW/dt term would be in excess of unity. {copyright} {ital 1997} {ital The American Physical Society}

  6. Driving high-gain shock-ignited inertial confinement fusion targets by green laser light

    SciTech Connect

    Atzeni, Stefano; Marocchino, Alberto; Schiavi, Angelo [Dipartimento SBAI, Universita di Roma 'La Sapienza' and CNISM, Via A. Scarpa 14-16, I-00161 Roma (Italy)

    2012-09-15

    Standard direct-drive inertial confinement fusion requires UV light irradiation in order to achieve ignition at total laser energy of the order of 1 MJ. The shock-ignition approach opens up the possibility of igniting fusion targets using green light by reducing the implosion velocity and laser-driven ablation pressure. An analytical model is derived, allowing to rescale UV-driven targets to green light. Gain in the range 100-200 is obtained for total laser energy in the range 1.5-3 MJ. With respect to the original UV design, the rescaled targets are less sensitive to irradiation asymmetries and hydrodynamic instabilities, while operating in the same laser-plasma interaction regime.

  7. Multi-Sensor Data Fusion for High-Resolution Material Characterization

    NASA Astrophysics Data System (ADS)

    Dion, Juanita; Kumar, Mrityunjay; Ramuhalli, Pradeep

    2007-03-01

    In typical nondestructive evaluation (NDE) of materials, the material under test is inspected using one or more NDE techniques to evaluate its condition. However, measurement data from different inspection techniques are often complementary in nature and higher accuracy may be achieved by fusing information from these different inspection modes. This paper proposes a classifier-fusion based approach to combine multifrequency eddy current and ultrasound data for material characterization. The proposed algorithm uses a hierarchy of classifiers to determine the material state (e.g. stress, heat treatment etc.) and level of exposure to this condition, with classifier fusion achieved through a majority-voting rule. Preliminary results on applying the proposed algorithm to data from Inconel 600 samples are presented.

  8. Enantioseparation of a novel "click" chemistry derived native beta-cyclodextrin chiral stationary phase for high-performance liquid chromatography.

    PubMed

    Wang, Yong; Ong, Teng-Teng; Li, Lai-Sheng; Tan, Timothy Thatt Yang; Ng, Siu-Choon

    2009-03-20

    A novel native beta-cyclodextrin chiral stationary phase was prepared via "click" chemistry with cuprous iodide-triphenylphosphine complex as the catalyst and applied for enantioseparation of Dns-amino acids, substituted phenyl and phenoxy group modified propionic acids, flavonoids, and some pharmaceutical compounds such as nimodipine, propranolol, brompheniramine and bendroflumethiazide in reversed-phase high-performance liquid chromatography. The studied analytes could be resolved under different separation conditions. The resolution of Dns-DL-Leu could reach 5.08 using a mobile phase consisting of 1% (w/w) triethylammonium acetate buffer (pH 4.11) and methanol (50:50 v/v). The effects of buffer pH and the content of organic modifier on enantioseparation of Dns-amino acids by this novel chiral phase were being investigated. The separation results demonstrate that click chemistry, a versatile reaction, affords a facile approach towards the preparation of stable chiral stationary phases. PMID:19185873

  9. (Fusion energy research)

    SciTech Connect

    Phillips, C.A. (ed.)

    1988-01-01

    This report discusses the following topics: principal parameters achieved in experimental devices (FY88); tokamak fusion test reactor; Princeton beta Experiment-Modification; S-1 Spheromak; current drive experiment; x-ray laser studies; spacecraft glow experiment; plasma deposition and etching of thin films; theoretical plasma; tokamak modeling; compact ignition tokamak; international thermonuclear experimental reactor; Engineering Department; Project Planning and Safety Office; quality assurance and reliability; and technology transfer.

  10. Achievement of High Fusion Performance in JT-60U Reversed Shear Discharges

    Microsoft Academic Search

    S. Ishida; T. Fujita; H. Akasaka; N. Akino; K. Annou; T. Aoyagi; T. Arai; K. Arakawa; N. Asakura; M. Azumi; R. Budny; S. Chiba; O. da Costa; N. Ebisawa; T. Fujii; T. Fukuda; A. Funahashi; L. Grisham; S. Gunji; K. Hamamatsu; Y. Hasegawa; T. Hatae; S. Higashijima; H. Hiratsuka; S. Hirauchi; T. Hirayama; A. Honda; M. Honda; N. Hosogane; H. Ichige; S. Ide; Y. Ikeda; M. Isaka; A. Isayama; N. Isei; Y. Ishii; N. Isozaki; K. Itami; T. Itoh; T. Iwahashi; Y. Kamada; A. Kaminaga; T. Kashiwabara; M. Kawai; Y. Kawamata; Y. Kawano; D. Kazama; M. Kazawa; M. Kikuchi; H. Kimura; T. Kimura; H. Kishimoto; Y. Kishimoto; S. Kitamura; K. Kiyono; K. Kodama; Y. Koide; S. Kokusen; T. Kondoh; S. Konoshima; J. Koog; G. J. Kramer; H. Kubo; K. Kurihara; G. Kurita; M. Kuriyama; Y. Kusama; K. Masaki; T. Matsuda; T. Matsumoto; M. Matukawa; T. Miura; N. Miya; K. Miyachi; H. Miyata; Y. Miyo; K. Mogaki; M. Mori; M. Morimoto; S. Morioka; S. Moriyama; M. Nagami; A. Nagashima; K. Nagashima; S. Nagaya; O. Naito; Y. Nakamura; M. Nemoto; Y. Neyatani; T. Nishitani; N. Ogiwara; T. Ohga; M. Ohsawa; T. Ohshima; T. Oikawa; T. Okabe; J. Okano; K. Omori; S. Omori; Y. Omori; Y. Onose; H. Oohara; T. Ozeki; M. Saidoh; M. Saigusa; N. Saito; A. Sakasai; S. Sakata; S. Sakurai; T. Sasajima; M. Sato; S. D. Scott; M. Seimiya; H. Seiki; M. Seki; M. Shimada; K. Shimizu; M. Shimizu; M. Shimono; S. Shinozaki; H. Shirai; M. Shitomi; K. Suganuma; T. Sugie; H. Sunaoshi; M. Takahashi; S. Takahashi; S. Takeji; H. Takenaga; T. Takizuka; H. Tamai; M. Terakado; T. Terakado; K. Tobita; S. Tokuda; T. Totsuka; Y. Toyokawa; N. Toyoshima; K. Tsuchiya; T. Tsugita; Y. Tsukahara; T. Tuda; Y. Uramoto; K. Ushigusa; K. Usui; J. Yagyu; M. Yamagiwa; M. Yamamoto; T. Yamamoto; O. Yamashita; K. Yokokura; H. Yoshida; M. Yoshida; R. Yoshino

    1997-01-01

    Fusion performance of reversed shear discharges with an L-mode edge has been significantly improved in a thermonuclear dominant regime with up to 2.8 MA of plasma current in the JT-60U tokamak. The core plasma energy is efficiently confined due to the existence of persistent internal transport barriers formed for both ions and electrons at a large minor radius of r\\/a~0.7

  11. Experimental investigation of opacity models for stellar interiors, inertial fusion, and high energy density plasmas

    Microsoft Academic Search

    James Bailey

    2008-01-01

    Theoretical opacities are required for calculating energy transport in plasmas. In particular, understanding stellar interiors, inertial fusion, and Z-pinches depends on the opacities of mid-atomic-number elements in the 150-300 eV temperature range. These models are complex and experimental validation is crucial. For example, solar models presently disagree with helioseismology and one possible explanation is inadequate opacities. Testing these opacities requires

  12. Interpretation of high-resolution optical imagery with evidential fusion of spectral information and object attributes

    Microsoft Academic Search

    Y. Allard; A. Jouan

    2006-01-01

    Since the past five years Lockheed Martin Canada is developing an advanced image interpretation system integrating classification tools and target detection operators for multispectral, hyperspectral and polarimetric SAR imagery. Improved classification maps and superior object detection and identification performances have been obtained with a pixel-driven evidential fusion of textural measurements and end-member respectively extracted from polSAR and HIS imagery. As

  13. A high-gain fusion-fission reactor for producing uranium-233

    Microsoft Academic Search

    S.-F. Su; G. L. Woodruff; N. J. McCormick

    1976-01-01

    The neutronics of several hybrid fission-fusion reactors were analyzed using a computational method based on the ANISN transport code (Engle, 1967) to develop a design capable of producing large quantities of U-233 while maintaining a tritium breeding ratio greater than unity. In the optimum design, an equilibrium concentration of Pu-239 and U-238 replaces thorium in a converter region, significantly increasing

  14. Highly dynamic fission–fusion species can exhibit leadership when traveling

    Microsoft Academic Search

    Jennifer S. Lewis; Douglas Wartzok; Michael R. Heithaus

    2011-01-01

    Leadership by specific individuals is thought to enhance the fitness of followers by allowing them to take advantage of the\\u000a knowledge or skills of key individuals. In general, consistent leadership is expected to occur primarily in stable groups\\u000a of related individuals where the benefits enhance the inclusive fitness of a leader. Societies with less stability in group\\u000a composition (i.e., fission–fusion

  15. Abnormal gene expression and gene fusion in lung adenocarcinoma with high-throughput RNA sequencing.

    PubMed

    Yang, Z-H; Zheng, R; Gao, Y; Zhang, Q; Zhang, H

    2014-02-01

    To explore the universal law of the abnormal gene expression and the structural variation of genes related to lung adenocarcinoma, the gene expression profile of GSE37765 were downloaded from Gene Expression Omnibus database. The differentially expressed genes (DEGs) were analyzed with t-test and NOISeq tool, and the core DEGs were screened out by combining with another RNA-seq data containing totally 77 pairs of samples in 77 patients with lung adenocarcinoma. Moreover, the functional annotation of the core DEGs was performed by using the Database for Annotation Visualization and Integrated Discovery following selection of oncogene and tumor suppressor by combining with tumor suppressor genes and Cancer Genes database, and motif-finding of core DEGs was performed with motif-finding algorithm Seqpos. We also used Tophat-fusion tool to further explore the fusion genes. In total, 850 downregulated DEGs and 206 upregulated DEGs were screened out in lung adenocarcinoma tissues. Next, we selected 543 core DEGs, including 401 downregulated and 142 upregulated genes, and vasculature development (P=1.89E-06) was significantly enriched among downregulated core genes, as well as mitosis (P=6.26E-04) enriched among upregulated core genes. On the basis of the cellular localization analysis of core genes, wnt-1-induced secreted protein 1 (WISP1) and receptor (G protein-coupled) activity modifying protein 1 (RAMP1) identified mainly located in extracellular region and extracellular space. We also screened one oncogene, v-myb avian myeloblastosis viral oncogene homolog-like 2 (MYBL2). Moreover, transcription factor GATA2 was mined by motif-finding analysis. Finally, four fusion genes belonged to the human leukocyte antigen (HLA) family. WISP1, RAMP1, MYBL2 and GATA2 could be potential targets of treatment for lung adenocarcinoma and the fusion of HLA family genes might have important roles in lung adenocarcinoma. PMID:24503571

  16. Compact NE213 neutron spectrometer with high energy resolution for fusion applications

    SciTech Connect

    Zimbal, A.; Reginatto, M.; Schuhmacher, H.; Bertalot, L.; Esposito, B.; Poli, F.; Adams, J.M.; Popovichev, S.; Kiptily, V.; Murari, A. [Physikalisch-Technische Bundesanstalt, Bundesalleee 100, D-38116 Braunschweig (Germany); Associazione Euratom-ENEA sulla Fusione, C.R. Frascati, C.P. 65, Frascati, I-00044, Roma (Italy); Association Euratom-UKAEA Fusion, Culham Science Center, Abingdon, OX14 3DB (United Kingdom); Consorzio RFX--Associazione Euratom-ENEA sulla Fusione, Corso Stati Uniti 4, 35127 Padua (Italy)

    2004-10-01

    Neutron spectrometry is a tool for obtaining important information on the fuel ion composition, velocity distribution and temperature of fusion plasmas. A compact NE213 liquid scintillator, fully characterized at Physikalisch-Technische Bundesanstalt, was installed and operated at the Joint European Torus (JET) during two experimental campaigns (C8-2002 and trace tritium experiment-TTE 2003). The results show that this system can operate in a real fusion experiment as a neutron (1.5 MeVfusion devices (JET and the International Thermonuclear Experimental Reactor)

  17. Amyloid-beta Oligomerization in Alzheimer Dementia vs. High Pathology Controls

    PubMed Central

    Esparza, Thomas J.; Zhao, Hanzhi; Cirrito, John R.; Cairns, Nigel J.; Bateman, Randall J.; Holtzman, David M.; Brody, David L.

    2012-01-01

    Objective While amyloid-beta (A?) peptide deposition into insoluble plaques is a pathological hallmark of Alzheimer’s disease, soluble oligomeric A? has been hypothesized to more directly underlie impaired learning and memory in dementia of the Alzheimer type. However, the lack of a sensitive, specific, and quantitative assay for A? oligomers has hampered rigorous tests of this hypothesis. Methods We developed a plate-based single molecule counting fluorescence immunoassay for oligomeric A? sensitive to low pg/ml concentrations of synthetic A? dimers using the same A?-specific monoclonal antibody to both capture and detect A?. The A? oligomer assay does not recognize monomeric A?, amyloid precursor protein, or other non-A? peptide oligomers. Results A? oligomers were detected in aqueous cortical lysates from patients with dementia of the Alzheimer type and non-demented patients with A? plaque pathology. However, A? oligomer concentrations in demented patients’ lysates were tightly correlated with A? plaque coverage (r=0.88), but this relationship was weaker in those from non-demented patients (r=0.30) despite equivalent A? plaque pathology. The ratio of A? oligomer levels to plaque density fully distinguished demented from non-demented patients, with no overlap between groups in this derived variable. Other A? and plaque measures did not distinguish demented from non-demented patients. A? oligomers were not detected in cerebrospinal fluid with this assay. Interpretation The results raise the intriguing hypothesis that the linkage between plaques and oligomers may be a key pathophysiological event underlying dementia of the Alzheimer type. This A? oligomer assay may be useful for many tests of the oligomer hypothesis. PMID:23225543

  18. Development of an ultra-high-temperature process for the enzymatic hydrolysis of lactose: II. Oligosaccharide formation by two thermostable beta-glycosidases.

    PubMed

    Petzelbauer, I; Zeleny, R; Reiter, A; Kulbe, K D; Nidetzky, B

    2000-07-20

    During lactose conversion at 70 degrees C, when catalyzed by beta-glycosidases from the archea Sulfolobus solfataricus (SsbetaGly) and Pyrococcus furiosus (CelB), galactosyl transfer to acceptors other than water competes efficiently with complete hydrolysis of substrate. This process leads to transient formation of a range of new products, mainly disaccharides and trisaccharides, and shows a marked dependence on initial substrate concentration and lactose conversion. Oligosaccharides have been analyzed quantitatively by using capillary electrophoresis and high performance anion-exchange chromatography. At 270 g/L initial lactose, they accumulate at a maximum concentration of 86 g/L at 80% lactose conversion. With both enzymes, the molar ratio of trisaccharides to disaccharides is maximal at an early stage of reaction and decreases directly proportional to increasing substrate conversion. Overall, CelB produces about 6% more hydrolysis byproducts than SsbetaGly. However, the product spectrum of SsbetaGly is richer in trisaccharides, and this agrees with results obtained from the steady-state kinetics analyses of galactosyl transfer catalyzed by SsbetaGly and CelB. The major transgalactosylation products of SsbetaGly and CelB have been identified. They are beta-D-Galp-(1-->3)-Glc and beta-D-Galp-(1-->6)-Glc, and beta-D-Galp-(1-->3)-lactose and beta-D-Galp-(1-->6)-lactose, and their formation and degradation have been shown to be dependent upon lactose conversion. Both enzymes accumulate beta(1-->6)-linked glycosides, particularly allolactose, at a late stage of reaction. Because a high oligosaccharide concentration prevails until about 80% lactose conversion, thermostable beta-glycosidases are efficient for oligosaccharide production from lactose. Therefore, they prove to be stable and versatile catalysts for lactose utilization. PMID:10861393

  19. Fusion Energy Education

    NSDL National Science Digital Library

    The basics of fusion are deceptively simple: the process powers the sun and other stars, and it all takes place when atomic nuclei collide at high speed. But many questions remain. How can humans develop and exploit fusion energy? Is there a way to convert it more efficiently into useful mechanical, electrical, or thermal energy? This intriguing site, created by the Lawrence Livermore National Laboratory and the Princeton Plasma Physics Laboratory, presents an online fusion course designed to teach students and others about how fusion works and how it might be harnessed in the future. Visitors can try out The Guided Tour to get started, or they can click on one of the Main Topics. These include Energy Sources and Conversions, Two Key Fusion Reactions, and Creating the Conditions for Fusion. Each section contains graphics, explanatory text, and various diagrams. The site also includes charts which can be printed out for classroom use.

  20. Beta experiment

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A focused laser doppler velocimeter (LDV) system was developed for the measurement of atmospheric backscatter (beta) from aerosols at infrared wavelengths. A Doppler signal generator was used in mapping the coherent sensitive focal volume of a focused LDV system. System calibration data was analyzed during the flight test activity scheduled for the Beta system. These analyses were performed to determine the acceptability of the Beta measurement system's performance.

  1. Use of reversed phase high pressure liquid chromatography for the physicochemical and thermodynamic characterization of oxyresveratrol/beta-cyclodextrin complexes.

    PubMed

    Rodríguez-Bonilla, Pilar; López-Nicolás, José Manuel; García-Carmona, Francisco

    2010-06-01

    Knowledge of the complexation process of oxyresveratrol with beta-cyclodextrin (beta-CD) under different physicochemical conditions is essential if this potent antioxidant compound is to be used successfully in both food and pharmaceutical industries as ingredient of functional foods or nutraceuticals, despite its poor stability and bioavailability. In this paper, the complexation of oxyresveratrol with natural CDs was investigated for first time using RP-HPLC and mobile phases to which alpha-, beta-, and gamma-CD were added. Among natural CDs, the interaction of oxyresveratrol with beta-CD was more efficient than with alpha- and gamma-CD. The decrease in the retention times with increasing concentrations of beta-CD (0-4 mM) showed that the formation constants (KF) of the oxyresveratrol/beta-CD complexes were strongly dependent on both the water-methanol proportion and the temperature of the mobile phase employed. However, oxyresveratrol formed complexes with beta-CD with a 1:1 stoichiometry in all the physicochemical conditions tested. Moreover, to obtain information about the mechanism of the oxyresveratrol affinity for beta-CD, the thermodynamic parameters DeltaG degrees, DeltaH degrees and DeltaS degrees were obtained. Finally, to gain information on the effect of the structure of different compounds belonging to the stilbenoids family on the KF values, the complexation of other molecules, resveratrol, pterostilbene and pinosylvin, was studied and compared with the results obtained for the oxyresveratrol/beta-CD complexes. PMID:20444655

  2. Study of Chelyabinsk LL5 meteorite fragment with a light lithology and its fusion crust using Mössbauer spectroscopy with a high velocity resolution

    SciTech Connect

    Maksimova, Alevtina A.; Petrova, Evgeniya V.; Grokhovsky, Victor I. [Department of Physical Techniques and Devices for Quality Control, Institute of Physics and Technology, Ural Federal University, Ekaterinburg, 620002 (Russian Federation); Oshtrakh, Michael I., E-mail: oshtrakh@gmail.com; Semionkin, Vladimir A. [Department of Physical Techniques and Devices for Quality Control, Institute of Physics and Technology, Ural Federal University, Ekaterinburg, 620002, Russian Federation and Department of Experimental Physics, Institute of Physics and Technology, Ura (Russian Federation)

    2014-10-27

    Study of Chelyabinsk LL5 ordinary chondrite fragment with a light lithology and its fusion crust, fallen on February 15, 2013, in Russian Federation, was carried out using Mössbauer spectroscopy with a high velocity resolution. The Mössbauer spectra of the internal matter and fusion crust were fitted and all components were related to iron-bearing phases such as olivine, pyroxene, troilite, Fe-Ni-Co alloy, and chromite in the internal matter and olivine, pyroxene, troilite, Fe-Ni-Co alloy, and magnesioferrite in the fusion crust. A comparison of the content of different phases in the internal matter and in the fusion crust of this fragment showed that ferric compounds resulted from olivine, pyroxene, and troilite combustion in the atmosphere.

  3. Controlled Nuclear Fusion.

    ERIC Educational Resources Information Center

    Glasstone, Samuel

    This publication is one of a series of information booklets for the general public published by The United States Atomic Energy Commission. Among the topics discussed are: Importance of Fusion Energy; Conditions for Nuclear Fusion; Thermonuclear Reactions in Plasmas; Plasma Confinement by Magnetic Fields; Experiments With Plasmas; High-Temperature…

  4. Total wrist fusion

    Microsoft Academic Search

    J. Field; T. J. Herbert; R. Prosser

    1996-01-01

    Twenty cases of total wrist fusion, performed for post-traumatic conditions, were reviewed objectively, subjectively and radiologically. All patients were satisfied with the position of the fused wrist and had good pain relief. All patients would have had the procedure sooner, having had an average of three operations on the wrist before the fusion. There was a high complication rate (45%),

  5. Particle-In-Cell modeling of the Knudsen layer reduction of fusion reactivity at high and low Z plasma interface

    NASA Astrophysics Data System (ADS)

    Huang, Chengkun; Albright, Brian J.; Bowers, Kevin J.; Molvig, Kim; Nelson, Eric M.; Dodd, Evan S.; Hoffman, Nelson M.

    2012-10-01

    The high Z and low Z ion interfaces produced in ICF capsule during implosion can reduce the amount of tail ions responsible for the majority of the fusion reactivity due to the higher collision rate in the high Z plasma. This effect can be significant at the Knudsen layer of the interface where the layer width corresponds to the mean free path of the tail ions [1]. We employ 1D3V Particle-In-Cell simulations with binary collision and a lossy wall boundary for the tail ions to model their diffusion across the Knudsen layer. Tail ion population and dynamics are evolved self-consistently including effects such as slow-down and spreading, pitch-angle scattering and ambipolar diffusion. Fusion reactivity of the low Z ion is calculated using Bosch-Hale parameterization of the cross section data. Simulations are compared with result from simplified kinetic models and detailed benchmark will be presented and discussed.[4pt] [1] Molvig et al., submitted to Physical Review Letters.

  6. High-level expression of recombinant beta-galactosidases in Lactobacillus plantarum and Lactobacillus sakei using a Sakacin P-based expression system.

    PubMed

    Halbmayr, Elisabeth; Mathiesen, Geir; Nguyen, Thu-Ha; Maischberger, Thomas; Peterbauer, Clemens K; Eijsink, Vincent G H; Haltrich, Dietmar

    2008-06-25

    This work presents the cloning and expression of the genes encoding heterodimeric beta-galactosidases from Lactobacillus reuteri L103, Lactobacillus acidophilus R22, Lactobacillus plantarum WCFS1, and Lactobacillus sakei Lb790. These enzymes consist of two subunits of approximately 73 and 35 kDa, which are encoded by two overlapping genes, lacL and lacM, respectively. We have cloned these genes into the lactobacillal expression vectors pSIP403 and pSIP409, which are based on the sakacin P operon of L. sakei ( Sørvig et al. Microbiology 2005, 151, 2439- 2449 ), and expressed them in the host strains L. plantarum WCFS1 and L. sakei Lb790. Results varied considerably, ranging from 2.23 to 61.1 U/mg of beta-galactosidase activity, depending on the origin of the lacLM genes, the host strain, and the expression vector used. Highest expression levels were obtained in a laboratory cultivation of L. plantarum WCFS1 harboring the plasmid pEH3R containing the lacLM gene from L. reuteri L103. These cultivations yielded approximately 23 000 U of beta-galactosidase activity per liter, corresponding to the formation of roughly 100 mg of recombinant protein per liter of fermentation medium, and beta-galactosidase levels amounted to 55% of the total intracellular protein of the host organism. To further verify the suitability of this expression system, recombinant beta-galactosidase from L. reuteri was purified to apparent homogeneity. The properties of the purified enzyme were essentially identical with the properties of purified native beta-galactosidase from L. reuteri L103. The presented results lead the way to efficient overproduction of beta-galactosidase in a food-grade expression system, which is of high interest for applications in food industry. PMID:18512940

  7. Solar cycle and latitude dependence of high-beta suprathermal plasma conditions in interplanetary space between 1.3 and 5.4 AU

    NASA Astrophysics Data System (ADS)

    Marhavilas, Panagiotis K.

    2012-05-01

    The analysis of energetic particles and magnetic field measurements from the Ulysses spacecraft has shown that in a series of events, the energy density contained in the suprathermal tail particle distribution is comparable to or larger than that of the magnetic field, creating conditions of high-beta plasma. In this work we analyze periods of high-beta suprathermal plasma occurrences (?ep > 1) in interplanetary space, using the ratio (?ep) of the energetic particle (20 keV to ˜5 MeV) and magnetic field energy densities from measurements covering the entire Ulysses mission lifetime (1990-2009) in order to reveal new or to reconfirm some recently defined interesting characteristics. The main key-results of the work are summarized as follows: (i) we verify that high-beta events are detected within well identified regions corresponding mainly to the vicinity of shock surfaces and magnetic structures, and associated with energetic particle intensity enhancements due to (a) reacceleration at shock-fronts and (b) unusually large magnetic field depressions. (ii) We define three considerable features for the high-beta events, concentrated on the next points: (a) there is an appreciable solar-activity influence on the high-beta events, during the maximum and middle solar-cycle phase, (b) the annual peak magnitude and the number of occurrences of high events are well correlated with the sunspot number, (c) the high-beta suprathermal plasma events present a spatial distribution in heliographic latitudes (HL) up to ˜±80°, and a specific important concentration on the low (-25° ? HL < -6°, 6° < HL ? 25°) and median (-45° ? HL < -25°, 25° < HL ? 45°) latitudes. We also reconfirm by a statistical analysis the results of Marhavilas and Sarris (2011), that the high-beta suprathermal plasma (?ep > 1) events are characterized by a very large parameter ?ep (up to 1732.5), a great total duration (406 days) and a large percentage of the Ulysses-mission lifetime (which is equal to 6.34% of the total duration with usable measurements, and 11.3% of the duration in presence of suprathermal particles events).

  8. beta Lactamase Binds to GroEL in a Conformation Highly Protected against Hydrogen\\/Deuterium Exchange

    Microsoft Academic Search

    Pietro Gervasoni; Werner Staudenmann; Peter James; Peter Gehrig; Andreas Pluckthun

    1996-01-01

    Escherichia coli RTEM beta -lactamase reversibly forms a stable complex with GroEL, devoid of any enzymatic activity, at 48 degrees C. When beta -lactamase is diluted from this complex into denaturant solution, its unfolding rate is identical to that from the native state, while the unfolding rate from the molten globule state is too fast to be measured. Electrospray mass

  9. Beta-blocker induced changes in the cholesterol: High-density lipoprotein cholesterol ratio and risk of coronary heart disease

    Microsoft Academic Search

    B. G. Woodcock; N. Rietbrock

    1984-01-01

    Summary The lowering of blood pressure with beta-blocking drugs has had a low impact on coronary heart disease (CHD) mortality and the question has been raised whether adverse changes in plasma lipoproteins offset the benefits of blood pressure reduction. Comparison of plasma lipoprotein concentrations in hypertensive patients treated with commonly used beta-blockers with lipoprotein concentrations in patients with coronary heart

  10. Tutorial 14: multisensor data fusion

    Microsoft Academic Search

    David Macii; Andrea Boni; Mariolino De Cecco; Dario Petri

    2008-01-01

    Multisensor data fusion is an emerging discipline. The rapid evolution of high-performance, inexpensive, and low-power computing components for pervasive systems, such as wireless sensor networks, will enable the development of complex sensor fusion applications. The idea underlying data fusion is to combine information collected by different sensors, to make inferences at different levels of abstraction about an entity or a

  11. The effect of beta adrenergic blockade on pulmonary hypertension, right ventricular hypertrophy and polycythaemia, induced in rats by intermittent high altitude hypoxia

    Microsoft Academic Search

    B. Oštádal; J. Ressl; D. Urbanová; J. Widimský; J. Procházka; V. Pelouch

    1978-01-01

    Summary Adult male rats were used to study the effect of a beta blocking agent on pulmonary hypertension and right ventricular hypertrophy induced by intermittent high altitude (IHA) hypoxia (8 hr daily, 5 days a week, stepwise up to the simulated altitude of 7000 m). Trimepranol was injected subcutaneously in a single dose of 10 mg\\/kg\\/b.w. one hour before each

  12. A faster, high resolution, mtPA-GFP-based mitochondrial fusion assay acquiring kinetic data of multiple cells in parallel using confocal microscopy.

    PubMed

    Lovy, Alenka; Molina, Anthony J A; Cerqueira, Fernanda M; Trudeau, Kyle; Shirihai, Orian S

    2012-01-01

    Mitochondrial fusion plays an essential role in mitochondrial calcium homeostasis, bioenergetics, autophagy and quality control. Fusion is quantified in living cells by photo-conversion of matrix targeted photoactivatable GFP (mtPAGFP) in a subset of mitochondria. The rate at which the photoconverted molecules equilibrate across the entire mitochondrial population is used as a measure of fusion activity. Thus far measurements were performed using a single cell time lapse approach, quantifying the equilibration in one cell over an hour. Here, we scale up and automate a previously published live cell method based on using mtPAGFP and a low concentration of TMRE (15 nm). This method involves photoactivating a small portion of the mitochondrial network, collecting highly resolved stacks of confocal sections every 15 min for 1 hour, and quantifying the change in signal intensity. Depending on several factors such as ease of finding PAGFP expressing cells, and the signal of the photoactivated regions, it is possible to collect around 10 cells within the 15 min intervals. This provides a significant improvement in the time efficiency of this assay while maintaining the highly resolved subcellular quantification as well as the kinetic parameters necessary to capture the detail of mitochondrial behavior in its native cytoarchitectural environment. Mitochondrial dynamics play a role in many cellular processes including respiration, calcium regulation, and apoptosis. The structure of the mitochondrial network affects the function of mitochondria, and the way they interact with the rest of the cell. Undergoing constant division and fusion, mitochondrial networks attain various shapes ranging from highly fused networks, to being more fragmented. Interestingly, Alzheimer's disease, Parkinson's disease, Charcot Marie Tooth 2A, and dominant optic atrophy have been correlated with altered mitochondrial morphology, namely fragmented networks. Often times, upon fragmentation, mitochondria become depolarized, and upon accumulation this leads to impaired cell function. Mitochondrial fission has been shown to signal a cell to progress toward apoptosis. It can also provide a mechanism by which to separate depolarized and inactive mitochondria to keep the bulk of the network robust. Fusion of mitochondria, on the other hand, leads to sharing of matrix proteins, solutes, mtDNA and the electrochemical gradient, and also seems to prevent progression to apoptosis. How fission and fusion of mitochondria affects cell homeostasis and ultimately the functioning of the organism needs further understanding, and therefore the continuous development and optimization of how to gather information on these phenomena is necessary. Existing mitochondrial fusion assays have revealed various insights into mitochondrial physiology, each having its own advantages. The hybrid PEG fusion assay, mixes two populations of differently labeled cells (mtRFP and mtYFP), and analyzes the amount of mixing and colocalization of fluorophores in fused, multinucleated, cells. Although this method has yielded valuable information, not all cell types can fuse, and the conditions under which fusion is stimulated involves the use of toxic drugs that likely affect the normal fusion process. More recently, a cell free technique has been devised, using isolated mitochondria to observe fusion events based on a luciferase assay. Two human cell lines are targeted with either the amino or a carboxy terminal part of Renilla luciferase along with a leucine zipper to ensure dimerization upon mixing. Mitochondria are isolated from each cell line, and fused. The fusion reaction can occur without the cytosol under physiological conditions in the presence of energy, appropriate temperature and inner mitochondrial membrane potential. Interestingly, the cytosol was found to modulate the extent of fusion, demonstrating that cell signaling regulates the fusion process. This assay will be very useful for high throughput screening to identify components of the fusion machinery and also pharmacological c

  13. Separation and Purification and Beta Liquid Scintillation Analysis of Sm-151 in Savannah River Site and Hanford Site DOE High Level Waste

    SciTech Connect

    Dewberry, R.A.

    2001-02-13

    This paper describes development work to obtain a product phase of Sm-151 pure of any other radioactive species so that it can be determined in US Department of Energy high level liquid waste and low level solid waste by liquid scintillation {beta}-spectroscopy. The technique provides separation from {mu}Ci/ml levels of Cs-137, Pu alpha and Pu-241 {beta}-decay activity, and Sr-90/Y-90 activity. The separation technique is also demonstrated to be useful for the determination of Pm-147.

  14. PPARgamma coactivator 1beta/ERR ligand 1 is an ERR protein ligand, whose expression induces a high-energy expenditure and antagonizes obesity.

    PubMed

    Kamei, Yasutomi; Ohizumi, Hiroshi; Fujitani, Yasushi; Nemoto, Tomoyuki; Tanaka, Toshiya; Takahashi, Nobuyuki; Kawada, Teruo; Miyoshi, Masamitsu; Ezaki, Osamu; Kakizuka, Akira

    2003-10-14

    A well balanced body energy budget controlled by limitation of calorie uptake and/or increment of energy expenditure, which is typically achieved by proper physical exercise, is most effective against obesity and diabetes mellitus. Recently, peroxisome proliferator-activated receptor (PPAR) gamma, a member of the nuclear receptor, and its cofactors have been shown to be involved in lipid metabolism and in the control of energy expenditure. Here we show that PPARgamma coactivator 1 (PGC-1) beta functions as ERRL1 (for ERR ligand 1), which can bind and activate orphan ERRs (estrogen receptor-related receptors) in vitro. Consistently, PGC-1beta/ERRL1 transgenic mice exhibit increased expression of the medium-chain acyl CoA dehydrogenase, a known ERR target and a pivotal enzyme of mitochondrial beta-oxidation in skeletal muscle. As a result, the PGC-1beta/ERRL1 mice show a state similar to an athlete; namely, the mice are hyperphagic and of elevated energy expenditure and are resistant to obesity induced by a high-fat diet or by a genetic abnormality. These results demonstrate that PGC-1beta/ERRL1 can function as a protein ligand of ERR, and that its level contributes to the control of energy balance in vivo, and provide a strategy for developing novel antiobesity drugs. PMID:14530391

  15. Development of high-power solid state laser for inertial fusion energy driver

    NASA Astrophysics Data System (ADS)

    Yoshida, Kunio; Yamanaka, Masanobu; Nakatsuka, Masahiro; Sasaki, Takatomo; Nakai, Sadao

    1997-05-01

    The design study of the laser fusion power plant KOYO has been conducted as a joint program of universities, national laboratories, and industries in Japan and also with international collaborations. In the design of KOYO, the gain scaling of direct drive implosion with 0.35 micrometers wavelength laser light is used. A driver of diode pumped solid state laser generates 4 MJ/pulse with 12 Hz and the output pulses are switched to deliver the laser energy success five to four chambers, which operate with 3 Hz. The chamber wall is protected with thick liquid metal which flows down in a SiC woven tube. Following to the conceptual design study, the critical key issues which may affect the technical and economical and economical feasibility of the commercial power plant KOYO have been examined. Research and development of some key technologies have been performed. As the results of the studies on KOYO, it is concluded that thee technical and economical feasibility of laser fusion reactor is well in our scope to reach.

  16. Measurement of scintillation and ionization yield with high-pressure gaseous mixtures of Xe and TMA for improved neutrinoless double beta decay and dark matter searches

    E-print Network

    Nakajima, Y; Matis, H S; Nygren, D; Oliveira, C; Renner, J

    2015-01-01

    Liquid Xe TPCs are among the most popular choices for double beta decay and WIMP dark matter searches. Gaseous Xe has intrinsic advantages when compared to Liquid Xe, specifically, tracking capability and better energy resolution for double beta decay searches. The performance of gaseous Xe can be further improved by molecular additives such as trimethylamine(TMA), which are expected to (1) cool down the ionization electrons, (2) convert Xe excitation energy to TMA ionizations through Penning transfer, and (3) produce scintillation and electroluminescence light in a more easily detectable wavelength (300 nm). These features may provide better tracking and energy resolution for double-beta decay searches. They are also expected to enhance columnar recombination for nuclear recoils, which can be used for searches for WIMP dark matter with directional sensitivity. We constructed a test ionization chamber and successfully measured scintillation and ionization yields at high precision with various Xe and TMA mixtu...

  17. High-level expression, purification and study of bioactivity of fusion protein M-IL-2((88)Arg, (125)Ala) in Pichia pastoris.

    PubMed

    Li, Lin; Qian, Dongmeng; Shao, Guangcan; Yan, Zhiyong; Li, Ronggui; Hua, Xiaomin; Song, Xuxia; Wang, Bin

    2014-09-01

    M-IL-2((88)Arg, (125)Ala) is a fusion protein comprising melittin genetically linked to a mutant human interleukin 2((88)Arg, (125)Ala). In this study, we constructed an expression system of M-IL-2((88)Arg, (125)Ala) in Pichia pastoris: GS115/pPICZ? A/M-IL-2((88)Arg, (125)Ala), and achieved the high-level expression of the fusion protein. The maximum yield of the fusion protein M-IL-2((88)Arg, (125)Ala) reached up to 814.5mg/L, higher than the system in Escherichiacoli. The fusion protein was purified by means of ammonium sulfate fractionation, dialysis and nickel ion affinity chromatography. The molecular weight of the fusion protein is about 26kDa, conforming the theoretical value. And M-IL-2((88)Arg, (125)Ala) possesses strong antigen-specificity by Western blot detection. Bioassay results indicated that the fusion protein could directly inhibit the growth of human ovarian cancer SKOV3 cells and Hela cells in vitro. This study provides an alternative strategy for large-scale production of bioactive M-IL-2((88)Arg, (125)Ala) using P. pastoris as an expression host and paves the way to clinical practice. PMID:24955549

  18. Diagnosis of physical parameters of fast particles in high power fusion plasmas with high resolution neutron and gamma-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Tardocchi, M.; Nocente, M.; Gorini, G.

    2013-07-01

    High resolution neutron emission spectroscopy (NES) and gamma-ray spectroscopy (GRS) measurements of fast ions in high power fusion plasmas are reviewed. NES is a well established diagnostics of the velocity distribution of fast fuel ions and was recently used to investigate the interaction of energetic ions with MHD instabilities. High energy resolution GRS on fusion plasmas is a more recent application and was shown to provide information on the distribution function of fast minority ions accelerated by ICRH, such as 4He and 3He. Starting from measurements on today's high power D plasmas, fast ion measurements with NES and GRS in a DT burning plasma of next step tokamaks, such as ITER, are discussed. The enhanced neutron and gamma-ray fluxes expected on ITER will allow for time-resolved measurements of the fast fuel and minority ion dynamics in the ms time scale. The intensity of the alpha knock-on component in the 14 MeV neutron spectrum and of the 4.44 and 3.21 MeV gamma-ray peaks from the 9Be(?,n?)12C reaction is studied as a diagnostics for the ? particle slowing down distribution in a DT plasma. The results show that the two techniques are sensitive to different regions of the ? particle phase space and thus provide complementary information.

  19. Proceedings of US/Japan workshop, Q219 on high heat flux components and plasma surface interactions for next fusion devices

    SciTech Connect

    Ulrickson, M.A.; Stevens, P.L.; Hino, T.; Hirohata, Y. [eds.] [eds.

    1996-12-01

    This report contains the viewgraphs from the proceedings of US/Japan Workshop on High Heat Flux Components and Plasma Surface Interactions for Next Fusion Devices. Some of the general topics covered by this report are: PFC/PSI in tokamak and helical devices; development of high heat flux components; PSIS and plasma facing materials;tritium; and material damage.

  20. Discovery of non-ETS gene fusions in human prostate cancer using next-generation RNA sequencing

    PubMed Central

    Pflueger, Dorothee; Terry, Stéphane; Sboner, Andrea; Habegger, Lukas; Esgueva, Raquel; Lin, Pei-Chun; Svensson, Maria A.; Kitabayashi, Naoki; Moss, Benjamin J.; MacDonald, Theresa Y.; Cao, Xuhong; Barrette, Terrence; Tewari, Ashutosh K.; Chee, Mark S.; Chinnaiyan, Arul M.; Rickman, David S.; Demichelis, Francesca; Gerstein, Mark B.; Rubin, Mark A.

    2011-01-01

    Half of prostate cancers harbor gene fusions between TMPRSS2 and members of the ETS transcription factor family. To date, little is known about the presence of non-ETS fusion events in prostate cancer. We used next-generation transcriptome sequencing (RNA-seq) in order to explore the whole transcriptome of 25 human prostate cancer samples for the presence of chimeric fusion transcripts. We generated more than 1 billion sequence reads and used a novel computational approach (FusionSeq) in order to identify novel gene fusion candidates with high confidence. In total, we discovered and characterized seven new cancer-specific gene fusions, two involving the ETS genes ETV1 and ERG, and four involving non-ETS genes such as CDKN1A (p21), CD9, and IKBKB (IKK-beta), genes known to exhibit key biological roles in cellular homeostasis or assumed to be critical in tumorigenesis of other tumor entities, as well as the oncogene PIGU and the tumor suppressor gene RSRC2. The novel gene fusions are found to be of low frequency, but, interestingly, the non-ETS fusions were all present in prostate cancer harboring the TMPRSS2–ERG gene fusion. Future work will focus on determining if the ETS rearrangements in prostate cancer are associated or directly predispose to a rearrangement-prone phenotype. PMID:21036922

  1. Fusion excitation function revisited

    E-print Network

    Ph. Eudes; Z. Basrak; F. Sébille; V. de la Mota; G. Royer; M. Zori?

    2012-09-28

    We report on a comprehensive systematics of fusion-evaporation and/or fusion-fission cross sections for a very large variety of systems over an energy range 4-155 A.MeV. Scaled by the reaction cross sections, fusion cross sections do not show a universal behavior valid for all systems although a high degree of correlation is present when data are ordered by the system mass asymmetry.For the rather light and close to mass-symmetric systems the main characteristics of the complete and incomplete fusion excitation functions can be precisely determined. Despite an evident lack of data above 15A.MeV for all heavy systems the available data suggests that geometrical effects could explain the persistence of incomplete fusion at incident energies as high as 155A.MeV.

  2. Cysteine-rich secretory proteins in snake venoms form high affinity complexes with human and porcine beta-microseminoproteins.

    PubMed

    Hansson, Karin; Kjellberg, Margareta; Fernlund, Per

    2009-08-01

    BETA-microseminoprotein (MSP), a 10 kDa protein in human seminal plasma, binds human cysteine-rich secretory protein-3 (CRISP-3) with high affinity. CRISP-3 is a member of the family of CRISPs, which are widespread among animals. In this work we show that human as well as porcine MSP binds catrin, latisemin, pseudecin, and triflin, which are CRISPs present in the venoms of the snakes Crotalus atrox, Laticauda semifasciata, Pseudechis porphyriacus, and Trimeresurus flavoviridis, respectively. The CRISPs were purified from the venoms by affinity chromatography on a human MSP column and their identities were settled by gel electrophoresis and mass spectrometry. Their interactions with human and porcine MSPs were studied with size exclusion chromatography and surface plasmon resonance measurements. The binding affinities at 25 degrees C were between 10(-10)M and 10(-7)M for most of the interactions, with higher affinities for the interactions with porcine MSP compared to human MSP and with Elapidae CRISPs compared to Viperidae CRISPs. The high affinities of the bindings in spite of the differences in amino acid sequence between the MSPs as well as between the CRISPs indicate that the binding is tolerant to amino acid sequence variation and raise the question how universal this cross-species reaction between MSPs and CRISPs is. PMID:19341830

  3. Production and study of high-beta plasma confined by a superconducting dipole magneta...

    E-print Network

    Mauel, Michael E.

    , and plasma boundary shape. In these initial experiments, the high-field superconducting floating coil, is a new research facility that was designed to investigate the confinement and stability of plasma and bal- looning instabilities when the pressure gradient is sufficiently gentle even when the local

  4. High beta and confinement studies on TFTR. Progress report, 15 April 1993--14 April 1994

    SciTech Connect

    Navratil, G.A.; Mauel, M.E.; Sabbagh, S.A. [Columbia Univ., New York, NY (United States); Kesner, J. [Massachusetts Inst. of Tech., Cambridge, MA (United States)

    1994-06-01

    Our work can be divided into two distinct parts: (1) deuterium plasma studies of the extension of our previous work on second stability region access and the observation of high-n ballooning and (2) deuterium-tritium plasma experimental planning and execution. Each of these is summarized in this report.

  5. Spleen tyrosine kinase mediates high glucose-induced transforming growth factor-{beta}1 up-regulation in proximal tubular epithelial cells

    SciTech Connect

    Yang, Won Seok; Chang, Jai Won [Division of Nephrology, Department of Internal Medicine, Asan Medical Center, College of Medicine, University of Ulsan, Seoul (Korea, Republic of)] [Division of Nephrology, Department of Internal Medicine, Asan Medical Center, College of Medicine, University of Ulsan, Seoul (Korea, Republic of); Han, Nam Jeong [Department of Cell Biology, Asan Institute for Life Sciences, Seoul (Korea, Republic of)] [Department of Cell Biology, Asan Institute for Life Sciences, Seoul (Korea, Republic of); Lee, Sang Koo [Division of Nephrology, Department of Internal Medicine, Asan Medical Center, College of Medicine, University of Ulsan, Seoul (Korea, Republic of)] [Division of Nephrology, Department of Internal Medicine, Asan Medical Center, College of Medicine, University of Ulsan, Seoul (Korea, Republic of); Park, Su-Kil, E-mail: skpark@amc.seoul.kr [Division of Nephrology, Department of Internal Medicine, Asan Medical Center, College of Medicine, University of Ulsan, Seoul (Korea, Republic of)] [Division of Nephrology, Department of Internal Medicine, Asan Medical Center, College of Medicine, University of Ulsan, Seoul (Korea, Republic of)

    2012-09-10

    The role of spleen tyrosine kinase (Syk) in high glucose-induced intracellular signal transduction has yet to be elucidated. We investigated whether Syk is implicated in high glucose-induced transforming growth factor-{beta}1 (TGF-{beta}1) up-regulation in cultured human proximal tubular epithelial cells (HK-2 cell). High glucose increased TGF-{beta}1 gene expression through Syk, extracellular signal-regulated kinase (ERK), AP-1 and NF-{kappa}B. High glucose-induced AP-1 DNA binding activity was decreased by Syk inhibitors and U0126 (an ERK inhibitor). Syk inhibitors suppressed high glucose-induced ERK activation, whereas U0126 had no effect on Syk activation. High glucose-induced NF-{kappa}B DNA binding activity was also decreased by Syk inhibitors. High glucose increased nuclear translocation of p65 without serine phosphorylation of I{kappa}B{alpha} and without degradation of I{kappa}B{alpha}, but with an increase in tyrosine phosphorylation of I{kappa}B{alpha} that may account for the activation of NF-{kappa}B. Both Syk inhibitors and Syk-siRNA attenuated high glucose-induced I{kappa}B{alpha} tyrosine phosphorylation and p65 nuclear translocation. Depletion of p21-activated kinase 2 (Pak2) by transfection of Pak2-siRNA abolished high glucose-induced Syk activation. In summary, high glucose-induced TGF-{beta}1 gene transcription occurred through Pak2, Syk and subsequent ERK/AP-1 and NF-{kappa}B pathways. This suggests that Syk might be implicated in the diabetic kidney disease.

  6. New Vectors for Chromosomal Integration Enable High-Level Constitutive or Inducible Magnetosome Expression of Fusion Proteins in Magnetospirillum gryphiswaldense

    PubMed Central

    Borg, Sarah; Hofmann, Julia; Pollithy, Anna; Lang, Claus

    2014-01-01

    The alphaproteobacterium Magnetospirillum gryphiswaldense biomineralizes magnetosomes, which consist of monocrystalline magnetite cores enveloped by a phospholipid bilayer containing specific proteins. Magnetosomes represent magnetic nanoparticles with unprecedented magnetic and physicochemical characteristics. These make them potentially useful in a number of biotechnological and biomedical applications. Further functionalization can be achieved by expression of foreign proteins via genetic fusion to magnetosome anchor peptides. However, the available genetic tool set for strong and controlled protein expression in magnetotactic bacteria is very limited. Here, we describe versatile vectors for either inducible or high-level constitutive expression of proteins in M. gryphiswaldense. The combination of an engineered native PmamDC promoter with a codon-optimized egfp gene (Mag-egfp) resulted in an 8-fold increase in constitutive expression and in brighter fluorescence. We further demonstrate that the widely used Ptet promoter is functional and tunable in M. gryphiswaldense. Stable and uniform expression of the EGFP and ?-glucuronidase (GusA) reporters was achieved by single-copy chromosomal insertion via Tn5-mediated transposition. In addition, gene duplication by Mag-EGFP–EGFP fusions to MamC resulted in further increased magnetosome expression and fluorescence. Between 80 and 210 (for single MamC–Mag-EGFP) and 200 and 520 (for MamC–Mag-EGFP–EGFP) GFP copies were estimated to be expressed per individual magnetosome particle. PMID:24532068

  7. Pulsed Operation of a Compact Fusion Neutron Source Using a High-Voltage Pulse Generator Developed for Landmine Detection

    SciTech Connect

    Yamauchi, Kunihito [Tokyo Institute of Technology (Japan); Watanabe, Masato [Tokyo Institute of Technology (Japan); Okino, Akitoshi [Tokyo Institute of Technology (Japan); Kohno, Toshiyuki [Tokyo Institute of Technology (Japan); Hotta, Eiki [Tokyo Institute of Technology (Japan); Yuura, Morimasa [Pulse Electronic Engineering Co., Ltd. (Japan)

    2005-05-15

    Preliminary experimental results of pulsed neutron source based on a discharge-type beam fusion called Inertial Electrostatic Confinement Fusion (IECF) for landmine detection are presented. In Japan, a research and development project for constructing an advanced anti-personnel landmine detection system by using IECF, which is effective not only for metal landmines but also for plastic ones, is now in progress. This project consists of some R and D topics, and one of them is R and D of a high-voltage pulse generator system specialized for landmine detection, which can be used in the severe environment such as that in the field in Afghanistan. Thus a prototype of the system for landmine detection was designed and fabricated in consideration of compactness, lightness, cooling performance, dustproof and robustness. By using this prototype pulse generator system, a conventional IECF device was operated as a preliminary experiment. As a result, it was confirmed that the suggested pulse generator system is suitable for landmine detection system, and the results follow the empirical law obtained by the previous experiments. The maximum neutron production rate of 2.0x10{sup 8} n/s was obtained at a pulsed discharge of -51 kV, 7.3 A.

  8. Maltose-Binding Protein Fusion Allows for High Level Bacterial Expression and Purification of Bioactive Mammalian Cytokine Derivatives

    PubMed Central

    Pennati, Andrea; Deng, Jiusheng; Galipeau, Jacques

    2014-01-01

    Fusokines are chimeric proteins generated by the physical coupling of cytokines in a single polypeptide, resulting in proteins with highly pleiotropic activity and the potential to treat cancer and autoimmune ailments. For instance, the fusokine GIFT15 (GM-CSF and Interleukin 15 Fusion Transgene) has been shown to be a powerful immunosuppressive protein able to convert naïve B cells into IL-10-producing B cells. To date, the mammalian cell systems used for the expression of GIFT15 allow for secretion of the protein in the culturing media, an inefficient system for producing GMP-compliant fusokines. In this study we report the bacterial expression of bioactive recombinant GIFT15 (rGIFT15). Indeed, there is a constant demand to improve the expression systems for therapeutic proteins. Expression of a maltose-binding protein (MBP) fusion protein efficiently allowed the accumulation of soluble protein in the intracellular milieu. Optimizing the bacterial culture significantly increased the yield of recombinant protein. The biological activity of rGIFT15 was comparable to that of fusokine derived from a mammalian source. This approach led to the production of soluble, endotoxin-free functional protein, averaging 5 mg of rGIFT15 per liter of culture. This process is amenable to scale up for the development of Food and Drug Administration (FDA)-compliant immune-modulatory rGIFT15. PMID:25198691

  9. High-cycle fatigue behavior of beta-titanium orthodontic wires.

    PubMed

    Murakami, Takashi; Iijima, Masahiro; Muguruma, Takeshi; Yano, Fumiaki; Kawashima, Isao; Mizoguchi, Itaru

    2015-01-01

    This study investigated high-cycle fatigue behavior in three ?-Ti wires (TMA, Resolve, Gummetal). Fatigue was evaluated using a static three-point bending test and a high-cycle fatigue test with a three-point bending mode. The surfaces of fractured wires were observed with scanning electron microscopy, and the post-fatigue crystal structures were determined by micro-X-ray diffraction. The Gummetal wire exhibited the lowest elastic modulus, bending strength and fatigue limit, and exhibited the highest resilience of the three types of wire studied. However, no difference in the number of cycles to failure was observed among the three types of wire. The fatigue crack propagation and rapid propagation regions of all wires contained single-phase ?-Ti. The elastic modulus and bending strength influenced the fatigue limit, although these properties did not affect the number of cycles to fracture. The three types of ?-Ti wires exhibited similar risks of wire fracture. PMID:25740165

  10. Magnetic design of a high gradient quadrupole for the LHC low-{beta} insertions

    SciTech Connect

    Sabbi, G.; Gourlay, S. A.; Kerby, J.; Limon, P. J.; Nobrega, F.; Novitski, I.; Strait, J. B.

    1997-06-01

    Fermilab, Lawrence Berkeley National Laboratory and Brookhaven National Laboratory have formed a consortium to provide components for the Large Hadron Collider (LHC) to be built at CERN. The U.S. contribution includes half of the high gradient quadrupoles (HGQ) for the inner focusing triplets. In this paper a description of the HGQ magnetic design is given, including short sample limit for field gradient, sources and expected values of systematic and random field errors, and possible strategies for field quality correction.

  11. High-Precision Measurements of the Superallowed Beta+ Decays of 38Ca and 46V

    E-print Network

    Park, Hyo-In

    2012-10-19

    counter or the branching ratio is determined with a plastic scintillator and 70% high- purity germanium detector (HPGe). A detailed description of our experimental setup and procedures is given in this chapter. A. Production of isotopes 1. The Momentum... with constant pressure maintained at 2 atm. 19 MARS beamline shielding tape transport deck #1 tape transport deck #2 plastic scintillator aluminum degraders HPGe aluminized mylar tape Hydrogen Gas Target scale (meter) 0 5Coffin...

  12. Family-wide expression characterization of Arabidopsis beta-carbonic anhydrase genes using qRT-PCR and Promoter::GUS fusions.

    PubMed

    Wang, Meng; Zhang, Qiong; Liu, Fang-Chun; Xie, Wei-Fa; Wang, Guang-Dong; Wang, Jun; Gao, Qing-Hua; Duan, Ke

    2014-02-01

    Carbonic anhydrases (CAs, EC 4.2.1.1) are metalloenzymes found throughout the phylogenetic tree. The ?-class carbonic anhydrases (?-CAs) are the predominating class of CAs in plants. Growing evidence underscores the importance of ?-CAs in plant immunity and environmental adaptation in addition to their roles in photosynthesis. However, many fundamental problems in Arabidopsis ?CAs expression remain unsolved. Here we examined the transcript abundance of At?CAs in different tissues of Arabidopsis thaliana, and the accumulation of mRNA in response to CO2 and darkness. Histochemical analysis was performed to study the promoter activity of At?CAs during post-germination seedling growth and in mature plants. All six members of the At?CA subfamily showed a response to changed CO2 level and darkness, but each member showed a specific dynamic pattern. Although expression of each At?CA was unique, in general most At?CAs were synchronously expressed in green leaves since 5 days after germination until flowering. At?CA1 and At?CA2 were most highly expressed in leaves but At?CA2 displayed weaker expression in roots. The level of At?CA3 transcripts was highest in flowers, while At?CA5 was most widely expressed and might be involved in more processes than other members. At?CA6 was unique for increased expression in darkness and no expression in either the anther or pistil. The present study provides useful information for further functional investigation. PMID:24211190

  13. Ultradense hydrogen in astrophysics, high-pressure metal physics and fusion studies

    NASA Astrophysics Data System (ADS)

    Ichimaru, Setsuo; Kitamura, Hikaru

    1998-02-01

    Phase diagrams of hydrogen are constructed through first-principles calculations of the equations of state for metallic and insulator phases. On the bases of these theories of the equations of state and the electric resistivity, it is shown that the results of recent shock-metallization experiments can be consistently interpreted in terms of first-order metal-insulator transitions, involving discontinuous changes in density, entropy and enthalpy. The first-order transitions then predict a discontinuous distribution of density and resistivity near the Jovian surface, with a large magnetic Reynolds number enough to sustain prominent magnetic activities. A phase diagram for freezing and ferromagnetic transitions provides a basic account of strong magnetization observed in magnetic white dwarfs. Feasibility of a novel scheme of fusion studies in ultradense metallic hydrogen is examined in light of these experimental and theoretical developments.

  14. Highly precise Re-Os dating for molybdenite using alkaline fusion and NTIMS

    USGS Publications Warehouse

    Markey, R.; Stein, H.; Morgan, J.

    1998-01-01

    The technique described in this paper represents the modification and combination of two previously existing methods, alkaline fusion and negative thermal ion mass spectrometry (NTIMS). We have used this technique to analyze repeatedly a homogeneous molybdenite powder used as a reference standard in our laboratory. Analyses were made over a period of 18 months, using four different calibrations of two different spike solutions. The age of this standard reproduces at a level of ?? 0.13%. Each individual age analysis carries an uncertainty of about 0.4% that includes the uncertainty in the decay constant for 187Re. This new level of resolution has allowed us to recognize real differences in ages for two grain-size populations of molybdenite from some Archean samples.

  15. Symmetric inertial confinement fusion implosions at ultra-high laser energies

    SciTech Connect

    Glenzer, S H; MacGowan, B J; Michel, P; Meezan, N B; Suter, L J; Dixit, S N; Kline, J L; Kyrala, G A; Callahan, D A; Dewald, E L; Divol, L; Dzenitis, E; Edwards, J; Hamza, A V; Haynam, C A; Hinkel, D E; Kalantar, D H; Kilkenny, J D; Landen, O L; Lindle, J D; LePape, S; Moody, J D; Nikroo, A; Parham, T; Schneider, M B; Town, R J; Wegner, P; Widmann, K; Whitman, P; Young, B F; Van Wonterghem, B; Atherton, J E; Moses, E I

    2009-12-03

    The first indirect-drive hohlraum experiments at the National Ignition Facility have demonstrated symmetric capsule implosions at unprecedented laser drive energies of 0.7 MJ. 192 simultaneously fired laser beams heat ignition hohlraums to radiation temperatures of 3.3 million Kelvin compressing 1.8-millimeter capsules by the soft x rays produced by the hohlraum. Self-generated plasma-optics gratings on either end of the hohlraum tune the laser power distribution in the hohlraum producing symmetric x-ray drive as inferred from capsule self-emission measurements. These experiments indicate conditions suitable for compressing deuterium-tritium filled capsules with the goal to achieve burning fusion plasmas and energy gain in the laboratory.

  16. Advanced scheme for high-yield laser driven proton-boron fusion reaction

    NASA Astrophysics Data System (ADS)

    Margarone, D.; Picciotto, A.; Velyhan, A.; Krasa, J.; Kucharik, M.; Morrissey, M.; Mangione, A.; Szydlowsky, A.; Malinowska, A.; Bertuccio, G.; Shi, Y.; Crivellari, M.; Ullschmied, J.; Bellutti, P.; Korn, G.

    2015-02-01

    A low contrast nanosecond laser pulse with relatively low intensity (3 × 1016 W cm-2) was used to enhance the yield of induced nuclear reactions in advanced solid targets. In particular the "ultraclean" proton-boron fusion reaction, producing energetic alpha-particles without neutron generation, was chosen. A spatially well-defined layer of boron dopants in a hydrogen-enriched silicon substrate was used as target. The combination of the specific target geometry and the laser pulse temporal shape allowed enhancing the yield of alpha-particles up to 109 per steradian, i.e 100 times higher than previous experimental achievements. Moreover the alpha particle stream presented a clearly peaked angular and energy distribution, which make this secondary source attractive for potential applications. This result can be ascribed to the interaction of the long laser pre-pulse with the target and to the optimal target geometry and composition.

  17. Vacuum insulation of the high energy negative ion source for fusion application

    SciTech Connect

    Kojima, A.; Hanada, M.; Inoue, T.; Watanabe, K.; Taniguchi, M.; Kashiwagi, M.; Umeda, N.; Tobari, H. [Japan Atomic Energy Agency, Naka, Ibaraki 311-0193 (Japan); Hilmi, A.; Kobayashi, S.; Yamano, Y. [Saitama University, Saitama, Saitama-ken, 338-8570 (Japan); Grisham, L. R. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

    2012-02-15

    Vacuum insulation on a large size negative ion accelerator with multiple extraction apertures and acceleration grids for fusion application was experimentally examined and designed. In the experiment, vacuum insulation characteristics were investigated in the JT-60 negative ion source with >1000 apertures on the grid with the surface area of {approx}2 m{sup 2}. The sustainable voltages varied with a square root of the gap lengths between the grids, and decreased with number of the apertures and with the surface area of the grids. Based on the obtained results, the JT-60SA (super advanced) negative ion source is designed to produce 22 A, 500 keV D{sup -} ion beams for 100 s.

  18. High-beta effects and anomalous diffusion in plasmas expanding into magnetic fields

    NASA Technical Reports Server (NTRS)

    Koopman, D. W.

    1976-01-01

    A metallic laser-produced plasma is allowed to expand transversely into an applied magnetic field, under conditions where the typical ion cyclotron radius is much larger, and the electron cyclotron radius much smaller, than the experimental dimensions. A stationary background plasma may also be present. Initially, the flow energy density exceeds (B squared/8 times pi), where B is the ambient magnetic field. Magnetic coil probes, Langmuir probes, and microwave diagnostics are used to study the plasma-field interaction. Field compression at the leading edge and field exclusion within the expanding plasma are seen. The diagnostic measurements and comparison with a theoretical model demonstrate plasma turbulence and anomalously high diffusion of field into the expanding plasma.

  19. Design and Fabrication of the RHIC Electron-Cooling Experiment High Beta Cavity and Cryomodule

    SciTech Connect

    Holmes,D.; Calderaro, M.; Cole, M.; Falletta, M.; Peterson, E.; Rathke, J.; Schultheiss, T.; Wong, R.; Ben-Zvi, I.; Burrill, A.; Calaga, R.; McIntyre, G.

    2008-11-17

    The summary of this report is: (1) A high-current SRF cavity for an Energy Recovery Linac (ERL) has been designed by BNL and AES and fabricated by AES; (2) The cavity was cleaned and tested by JLAB with BNL personnel support; (3) Cavity performance exceeded goal of 20 MV/m at Q{sub 0} > 1 x 10{sup 10} and far exceeded requirement of 15 MV/m at Q{sub 0} > 1 x 10{sup 10}; (4) Hermetic String assembled at JLAB with BNL personnel support and shipped to BNL; and (5) BNL has recently completed Cryomodule assembly and unit is ready for installation in the ERL vault.

  20. Interlocking of ?-carotene in beta-lactoglobulin aggregates produced under high pressure.

    PubMed

    Mensi, Azza; Choiset, Yvan; Haertlé, Thomas; Reboul, Emmanuelle; Borel, Patrick; Guyon, Claire; de Lamballerie, Marie; Chobert, Jean-Marc

    2013-08-15

    Vitamin A deficiency is one of the major causes of mortality and morbidity in the developing World. This deficiency can be prevented by alimentary or pharmaceutical supplementation. However, both vitamin A oxidation and isomerization should be prevented, as these phenomenons result in loss of nutritional efficacy. The aim of this study was to investigate the effect of a food protein matrix, ?-lactoglobulin (?-Lg) aggregates produced by high pressure (HP), on the stabilization of ?-carotene during storage and gastro-duodenal digestion and therefore on its bioavailability. In vitro gastro-duodenal digestion of ?-Lg aggregates entrapping ?-carotene showed that up to 12% and 33% of total ?-carotene was released after peptic and pancreatic digestion, respectively. Overall, our study showed that ?-Lg aggregates are efficient for caging and stabilization of ?-carotene during storage and digestion. Hence, it may be an interesting approach for the protection and the delivery of vitamin A. PMID:23561103

  1. Double Beta Decays and Neutrino Masses

    Microsoft Academic Search

    Hiroyasu Ejiri

    2005-01-01

    Neutrino-less double beta decays (0nu beta beta), which violate the lepton number conservation law by Delta L= 2, are of great interest for studying the fundamental properties of neutrinos beyond the standard electroweak theory. High-sensitivity 0 nu beta beta studies with mass sensitivities of the solar and atmospheric nu-masses are crucial for studying the Majorana nature of nu's, the nu

  2. Driven Reconnection in Magnetic Fusion Experiments

    E-print Network

    Fitzpatrick, Richard

    Driven Reconnection in Magnetic Fusion Experiments Richard Fitzpatrick Institute for Fusion Studies of life in magnetic fusion experiments. What effects do error fields have on plasma confinement? How can be sufficiently high (i.e. B > 1 tesla) that the Lamor radii of 3.5 M eV fusion product alpha particles are small

  3. Finishing broiler toms using an estradiol 17 beta implant together with a high energy-low protein final feed.

    PubMed

    Moran, E T; Etches, R J

    1983-06-01

    Wrolstad Small White toms were implanted with 10 mg of estradiol 17 beta monopalmitate (EMP) at 8 weeks of age. Common corn-soybean meal feeds were given through to 12 weeks, then one-half the birds from control and EMP groups received either an adequate (16% protein, 3166 kcal ME/kg) or high energy-low protein (HE-LP, 12%, 3373 kcal) feed to 14 weeks. No differences in weight gain and feed conversion occurred between EMP and control treatments at 12 weeks but at 14 weeks when the HE-LP diet had been fed the implanted birds performed better than controls. The HE-LP feed led to body weights and feed efficiencies below that of toms given adequate diet. In all cases, EMP elicited male secondary sex characteristics rather than feminization. Processing losses were increased with EMP and when the HE-LP feed had been given. Both treatments also improved finish assessment and were additive to the extent that a substantial increase in grade occurred. Effects on carcass composition, yield of commercial cuts, and cooking loss were small. Implantation, reduced meat yield percentage of breast and thigh. The increase in grade advantage from combining EMP with a feed that forced fat deposition more than compensated for the adverse effects. PMID:6878131

  4. Experimental program based on a High Beta Q Machine. Final report, 1 May 1978-30 September 1980

    SciTech Connect

    Ribe, F. L

    1980-07-01

    This report summarizes work done in designing and constructing the High Beta Q Machine from the inception of the work in May 1978 until the present time. It is a 3-m long, low-compression theta pinch with a 22-cm-diameter segmented compression coil with a minimum axial periodicity length of 10 cm. This capability of driving the machine as a simple, low-density theta pinch, and also of independently applying periodic magnetic fields before or after formation of the plasma column, gives the device considerable flexibility. Reported here is the construction and testing of the machine, development of its diagnostics and initial measurements of the plasma at early times in the duration of the crowbarred magnetic field. The experimental effort has been paralleled by theoretical work to model the diffuse profile, collisionless plasma in its response to the periodic RF magnetic fields. The model chosen is the Freidberg-Pearlstein Vlasov-fluid model which provides an MHD-like description but with accounting of ion kinetic effects over diffuse equilibrium profiles. A computer code has been developed to accurately calculate the resistive response of the plasma column, giving the power absorption by ion Landau damping and more recently, ion-cyclotron damping.

  5. The beta cell immunopeptidome.

    PubMed

    Dudek, Nadine L; Purcell, Anthony W

    2014-01-01

    Type 1 diabetes results from the autoimmune-mediated destruction of insulin-secreting beta cells, leading to beta cell loss and insulin deficiency. Presentation of peptides derived from beta cell proteins to autoreactive lymphocytes is critical for the development of disease, and the list of antigens recognized is increasing. A number of these proteins are found within the beta cell secretory granules, which are transiently exposed to the immune system during normal cellular function. How the interplay of environmental and genetic determinants culminates in destructive autoimmunity remains to be clearly defined. Nonconventional presentation of peptide ligands, posttranslational modification of peptides, and the role of the gut microbiome in the development of the immune system are all considered central topics in disease pathogenesis. Each of these may provide a mechanism by which presentation of antigenic peptides in the target tissue differs from presentation in the thymus, allowing autoreactive cells to escape tolerance induction. The high metabolic demand on pancreatic islets, the high concentration of granule proteins, and the susceptibility of islets to cellular stress may all contribute to the presentation of abnormal ligands in the pancreas. Moreover, the finding that small molecules can alter the repertoire of peptides presented by major histocompatibility complex molecules provides a tantalizing hypothesis for the presentation of autoantigenic peptides in the presence of microbial or endogenous metabolites. In this chapter, we provide an overview of the immunopeptidome of beta cells and the key factors that may influence presentation of beta cell antigens to the immune system. PMID:24559916

  6. On cold fusion

    Microsoft Academic Search

    Spinrad

    1990-01-01

    This paper argues that a high negative voltage on a metal into which deuterium is soaked might enhance fusion reactions. The author discusses how this may have been the way Fleischmann and Pons achieved their results.

  7. A method for detection of cellulases in polyacrylamide gels using 5-bromoindoxyl-beta-D-cellobioside: high sensitivity and resolution.

    PubMed

    Chernoglazov, V M; Ermolova, O V; Vozny, Y V; Klyosov, A A

    1989-11-01

    The assay of endo-1,4-beta-glucanases (cellulases) from Trichoderma reesei, T. longibrachiatum, and Sporotrichum pulverulentum by 5-bromoindoxyl-beta-D-cellobioside is described. The substrate is enzymatically cleaved to afford 5-bromoindoxyl and latter undergoes immediate azo coupling with Fast Red or oxidation by nitroblue monotetrazolium chloride, various forms of endoglucanases which can thus be assayed in polyacrylamide gel. PMID:2610340

  8. Molecular-dynamics study of the high-temperature elasticity of quartz above the alpha-beta phase transition

    Microsoft Academic Search

    Hajime Kimizuka; Hideo Kaburaki; Yoshiaki Kogure

    2003-01-01

    We have presented the molecular-dynamics (MD) results for the temperature dependence of the adiabatic elastic constants Cij of alpha and beta quartz, using a statistical fluctuation formula. It is noteworthy that the calculated Cij values are in a good agreement with the experimental values in the entire temperature range of 300 1100 K, including the alpha-beta phase-transition region. We have

  9. Red beet (Beta vulgaris L.) leaf supplementation improves antioxidant status in C57BL/6J mice fed high fat high cholesterol diet

    PubMed Central

    Lee, Jeung Hee; Son, Chan Wook; Kim, Mi Yeon; Kim, Min Hee; Kim, Hye Ran; Kwak, Eun Shil; Kim, Sena

    2009-01-01

    The effect of diet supplemented with red beet (Beta vulgaris L.) leaf on antioxidant status of plasma and tissue was investigated in C57BL/6J mice. The mice were randomly divided into two groups after one-week acclimation, and fed a high fat (20%) and high cholesterol (1%) diet without (control group) or with 8% freeze-dried red beet leaf (RBL group) for 4 weeks. In RBL mice, lipid peroxidation determined as 2-thiobarbituric acid-reactive substances (TBARS value) was significantly reduced in the plasma and selected organs (liver, heart, and kidney). Levels of antioxidants (glutathione and ?-carotene) and the activities of antioxidant enzyme (glutathione peroxidase) in plasma and liver were considerably increased, suggesting that antioxidant defenses were improved by RBL diet. Comet parameters such as tail DNA (%), tail extent moment, olive tail moment and tail length were significantly reduced by 25.1%, 49.4%, 35.4%, and 23.7%, respectively, in plasma lymphocyte DNA of RBL mice compared with control mice, and indicated the increased resistance of lymphocyte DNA to oxidative damage. In addition, the RBL diet controlled body weight together with a significant reduction of fat pad (retroperitoneal, epididymal, inguinal fat, and total fat). Therefore, the present study suggested that the supplementation of 8% red beet leaf in high fat high cholesterol diet could prevent lipid peroxidation and improve antioxidant defense system in the plasma and tissue of C57BL/6J mice. PMID:20016711

  10. Robotics and local fusion

    NASA Astrophysics Data System (ADS)

    Emmerman, Philip J.

    2005-05-01

    Teams of robots or mixed teams of warfighters and robots on reconnaissance and other missions can benefit greatly from a local fusion station. A local fusion station is defined here as a small mobile processor with interfaces to enable the ingestion of multiple heterogeneous sensor data and information streams, including blue force tracking data. These data streams are fused and integrated with contextual information (terrain features, weather, maps, dynamic background features, etc.), and displayed or processed to provide real time situational awareness to the robot controller or to the robots themselves. These blue and red force fusion applications remove redundancies, lessen ambiguities, correlate, aggregate, and integrate sensor information with context such as high resolution terrain. Applications such as safety, team behavior, asset control, training, pattern analysis, etc. can be generated or enhanced by these fusion stations. This local fusion station should also enable the interaction between these local units and a global information world.

  11. Fusion Basics

    NSDL National Science Digital Library

    This website from the Princeton Plasma Physics Laboratory provides background information about fusion. Different sections cover fusion reactions, plasma heating, and how a fusion power plant would work. In addition, the site offers links to research projects at the Princeton Plasma Physics Laboratory.

  12. Beta-Decay Studies near 100Sn

    SciTech Connect

    Karny, M. [University of Warsaw; Batist, L. [St. Petersburg Nuclear Physics Institute; Banu, A. [Gesellschaft fur Schwerionenforschung (GSI), Germany; Becker, F. [Gesellschaft fur Schwerionenforschung (GSI), Germany; Blazhev, A. [Gesellschaft fur Schwerionenforschung (GSI), Germany; Burkard, K. [Gesellschaft fur Schwerionenforschung (GSI), Germany; Bruchle, W. [Gesellschaft fur Schwerionenforschung (GSI), Germany; Doring, J. [Gesellschaft fur Schwerionenforschung (GSI), Germany; Faestermann, T. [Technische Universitat Munchen; Gorska, M. [Gesellschaft fur Schwerionenforschung (GSI), Germany; Grawe, H. [GSI-Hemholtzzentrum fur Schwerionenforschung, Darmstadt, Germany; Janas, Z. [University of Warsaw; Jungclaus, A. [Universidad Autonoma de Madrid, Madrid; Kavatsyuk, M. [Gesellschaft fur Schwerionenforschung (GSI), Germany; Kavatsyuk, O. [Gesellschaft fur Schwerionenforschung (GSI), Germany; Kirchner, R. [Gesellschaft fur Schwerionenforschung (GSI), Germany; La Commara, M. [Universita Federico II and INFN Napoli; Mandal, S. [Gesellschaft fur Schwerionenforschung (GSI), Germany; Mazzocchi, C. [Gesellschaft fur Schwerionenforschung (GSI), Germany; Miernik, K. [University of Warsaw; Mukha, I. [Gesellschaft fur Schwerionenforschung (GSI), Germany; Muralithar, S. [Gesellschaft fur Schwerionenforschung (GSI), Germany; Plettner, C. [Gesellschaft fur Schwerionenforschung (GSI), Germany; Plochocki, A. [University of Warsaw; Roeckl, E. [Gesellschaft fur Schwerionenforschung (GSI), Germany; Romoli, M. [Universita Federico II and INFN Napoli; Rykaczewski, Krzysztof Piotr [ORNL; Schadel, M. [Gesellschaft fur Schwerionenforschung (GSI), Germany; Schmidt, K. [Continental Teves AG & Co., Frankfurt am Main, Germany; Schwengner, R. [Forschungszentrum Rossendorf, Dresden, Germany; Zylicz, J. [University of Warsaw

    2005-01-01

    The {beta}-decay of {sup 102}Sn was studied by using high-resolution germanium detectors as well as a Total Absorption Spectrometer (TAS). A decay scheme has been constructed based on the {gamma}-{gamma} coincidence data. The total experimental Gamow-Teller strength B{sub GT}{sup exp} of {sup 102}Sn was deduced from the TAS data to be 4.2(9). A search for {beta}-delayed {gamma}-rays of {sup 100}Sn decay remained unsuccessful. However, a Gamow-Teller hindrance factor h = 2.2(3), and a cross-section of about 3nb for the production of {sup 100}Sn in fusion-evaporation reaction between {sup 58}Ni beam and {sup 50}Cr target have been estimated from the data on heavier tin isotopes. The estimated hindrance factor is similar to the values derived for lower shell nuclei.

  13. The Role of Strong Coupling in Z-Pinch-Driven Approaches to High Yield Inertial Confinement Fusion

    SciTech Connect

    MEHLHORN,THOMAS A.; DESJARLAIS,MICHAEL P.; HAILL,THOMAS A.; LASH,JOEL S.; ROSENTHAL,STEPHEN E.; SLUTZ,STEPHEN A.; STOLTZ,PETER H.; VESEY,ROGER A.; OLIVER,B.

    1999-11-08

    Peak x-ray powers as high as 280 {+-} 40 TW have been generated from the implosion of tungsten wire arrays on the Z Accelerator at Sandia National Laboratories. The high x-ray powers radiated by these z-pinches provide an attractive new driver option for high yield inertial confinement fusion (ICF). The high x-ray powers appear to be a result of using a large number of wires in the array which decreases the perturbation seed to the magnetic Rayleigh-Taylor (MRT) instability and diminishes other 3-D effects. Simulations to confirm this hypothesis require a 3-D MHD code capability, and associated databases, to follow the evolution of the wires from cold solid through melt, vaporization, ionization, and finally to dense imploded plasma. Strong coupling plays a role in this process, the importance of which depends on the wire material and the current time history of the pulsed power driver. Strong coupling regimes are involved in the plasmas in the convolute and transmission line of the powerflow system. Strong coupling can also play a role in the physics of the z-pinch-driven high yield ICF target. Finally, strong coupling can occur in certain z-pinch-driven application experiments.

  14. Fusion ignition research experiment

    SciTech Connect

    Dale Meade

    2000-07-18

    Understanding the properties of high gain (alpha-dominated) fusion plasmas in an advanced toroidal configuration is the largest remaining open issue that must be addressed to provide the scientific foundation for an attractive magnetic fusion reactor. The critical parts of this science can be obtained in a compact high field tokamak which is also likely to provide the fastest and least expensive path to understanding alpha-dominated plasmas in advanced toroidal systems.

  15. Transport of carbon ion test particles and hydrogen recycling in the plasma of the Columbia tokamak HBT'' (High Beta Tokamak)

    SciTech Connect

    Wang, Jian-Hua.

    1990-01-01

    Carbon impurity ion transport is studied in the Columbia High Beta Tokamak (HBT), using a carbon tipped probe which is inserted into the plasma (n{sub e} {approx} 1 {minus} 5 {times} 10{sup 14} (cm{sup {minus}3}), T{sub e} {approx} 4 {minus} 10 (eV), B{sub t} {approx} 0.2 {minus} 0.4(T)). Carbon impurity light, mainly the strong lines of C{sub II}(4267A, emitted by the C{sup +} ions) and C{sub III} (4647A, emitted by the C{sup ++} ions), is formed by the ablation or sputtering of plasma ions and by the discharge of the carbon probe itself. The diffusion transport of the carbon ions is modeled by measuring the space-and-time dependent spectral light emission of the carbon ions with a collimated optical beam and photomultiplier. The point of emission can be observed in such a way as to sample regions along and transverse to the toroidal magnetic field. The carbon ion diffusion coefficients are obtained by fitting the data to a diffusion transport model. It is found that the diffusion of the carbon ions is classical'' and is controlled by the high collisionality of the HBT plasma; the diffusion is a two-dimensional problem and the expected dependence on the charge of the impurity ion is observed. The measurement of the spatial distribution of the H{sub {alpha}} emissivity was obtained by inverting the light signals from a 4-channel polychromator, the data were used to calculate the minor-radial influx, the density, and the recycling time of neutral hydrogen atoms or molecules. The calculation shows that the particle recycling time {tau}{sub p} is comparable with the plasma energy confinement time {tau}{sub E}; therefore, the recycling of the hot plasma ions with the cold neutrals from the walls is one of the main mechanisms for loss of plasma energy.

  16. Rapamycin can restore the negative regulatory function of transforming growth factor beta 1 in high grade lymphomas.

    PubMed

    Sebestyén, Anna; Márk, Ágnes; Hajdu, Melinda; Nagy, Noémi; Molnár, Anna; Végs?, Gyula; Barna, Gábor; Kopper, László

    2015-06-01

    TGF-?1 (transforming growth factor beta 1) is a negative regulator of lymphocytes, inhibiting proliferation and switching on the apoptotic program in normal lymphoid cells. Lymphoma cells often lose their sensitivity to proapoptotic/anti-proliferative regulators such as TGF-?1. Rapamycin can influence both mTOR (mammalian target of rapamycin) and TGF-? signaling, and through these pathways it is able to enhance TGF-? induced anti-proliferative and apoptotic responses. In the present work we investigated the effect of rapamycin and TGF-?1 combination on cell growth and on TGF-? and mTOR signalling events in lymphoma cells. Rapamycin, an inhibitor of mTORC1 (mTOR complex 1) did not elicit apoptosis in lymphoma cells; however, the combination of rapamycin with exogenous TGF-?1 induced apoptosis and restored TGF-?1 dependent apoptotic machinery in several lymphoma cell lines with reduced TGF-? sensitivity in vitro. In parallel, the phosphorylation of p70 ribosomal S6 kinase (p70S6K) and ribosomal S6 protein, targets of mTORC1, was completely eliminated. Knockdown of Smad signalling by Smad4 siRNA had no influence on apoptosis induced by the rapamycin+TGF-?1, suggesting that this effect is independent of Smad signalling. However, apoptosis induction was dependent on early protein phosphatase 2A (PP2A) activity, and in part on caspases. Rapamycin+TGF-?1 induced apoptosis was not completely eliminated by a caspase inhibitor. These results suggest that high mTOR activity contributes to TGF-? resistance and lowering mTORC1 kinase activity may provide a tool in high grade B-cell lymphoma therapy by restoring the sensitivity to normally available regulators such as TGF-?1. PMID:25794661

  17. High Resolution Characterization of Heterogeneous Arctic Tundra Subsurface Properties using a Multiscale Bayesian Fusion Approach with

    E-print Network

    Hubbard, Susan

    High Resolution Characterization of Heterogeneous Arctic Tundra Subsurface Properties using of heterogeneous fields in the arctic tundra system, where the mechanistic process models are highly complex

  18. The nano-particle dispersion strengthening of V-4Cr-4Ti alloys for high temperature application in fusion reactors

    NASA Astrophysics Data System (ADS)

    Zheng, Pengfei; Chen, Jiming; Xu, Zengyu; Duan, Xuru

    2013-10-01

    V-4Cr-4Ti was identified as an attractive structural material for Li blanket in fusion reactors. However, both high temperature and irradiation induced degradation are great challenges for this material. It was thought that the nano-particles with high thermal stability can efficiently strengthen the alloy at elevated temperatures, and accommodate the irradiation induced defects at the boundaries. This study is a starting work aiming at improving the creep resistance and reducing the irradiation induced degradation for V-4Cr-4Ti alloy. Currently, we focus on the preparation of some comparative nano-particle dispersion strengthened V-4Cr-4Ti alloys. A mechanical alloying (MA) route is used to fabricate yttrium and carbides added V-4Cr-4Ti alloys. Nano-scale yttria, carbides and other possible particles have a combined dispersion-strengthening effect on the matrices of these MA-fabricated V-4Cr-4Ti alloys. High-temperature annealing is carried out to stabilize the optimized nano-particles. Mechanical properties are tested. Microstructures of the MA-fabricated V-4Cr-4Ti alloys with yttrium and carbide additions are characterized. Based on these results, the thermal stability of different nano-particle agents are classified. V-4Cr-4Ti was identified as an attractive structural material for Li blanket in fusion reactors. However, both high temperature and irradiation induced degradation are great challenges for this material. It was thought that the nano-particles with high thermal stability can efficiently strengthen the alloy at elevated temperatures, and accommodate the irradiation induced defects at the boundaries. This study is a starting work aiming at improving the creep resistance and reducing the irradiation induced degradation for V-4Cr-4Ti alloy. Currently, we focus on the preparation of some comparative nano-particle dispersion strengthened V-4Cr-4Ti alloys. A mechanical alloying (MA) route is used to fabricate yttrium and carbides added V-4Cr-4Ti alloys. Nano-scale yttria, carbides and other possible particles have a combined dispersion-strengthening effect on the matrices of these MA-fabricated V-4Cr-4Ti alloys. High-temperature annealing is carried out to stabilize the optimized nano-particles. Mechanical properties are tested. Microstructures of the MA-fabricated V-4Cr-4Ti alloys with yttrium and carbide additions are characterized. Based on these results, the thermal stability of different nano-particle agents are classified. ITER related China domestic project 2011GB108007.

  19. Radiochemistry and secondary reactions for the diagnostics of laser-driven fusion plasmas

    SciTech Connect

    Miyanaga, N.; Azechi, H.; Stapf, R.O.; Itoga, K.; Nakaishi, H.; Shiraga, H.; Yamanaka, M.; Yamanaka, T.; Tsuji, R.; Ido, S.; Sakurai, K.; Nishihara, K.; Yabe, T.; Takagi, M.; Nakatsuka, M.; Izawa, Y.; Nakai, S.; Yamanaka, C.; Kobayashi, K.; Kimura, I.; Morinobu, S.

    1986-08-01

    Radiochemical measurements have been developed for the diagnostics of laser-driven implosion plasmas. The excellent calibration for neutron-yield measurement has been done using ..beta..-..gamma.. coincidence technique. The multiactivable tracer method has been examined for measuring the pusher areal density by means of a high-purity germanium detector. The first experimental success of the secondary nuclear fusion reaction method is also demonstrated for the direct measurement of the fuel rhoR-italic.

  20. Structural performance of ceramics in a high-fluence fusion environment

    SciTech Connect

    Clinard, F.W. Jr.; Hurley, G.F.; Hobbs, L.W.; Rohr, D.L.; Youngman, R.A.

    1983-01-01

    The ceramics MgAl/sub 2/O/sub 4/, Al/sub 2/O/sub 3/ (single crystal), Si/sub 3/N/sub 4/, and a SiC/graphite laminate were irradiated to approx. 2 x 10/sup 26/ n/m/sup 2/ (E > 0.1 MeV) at 680 and 815K. Spinel exhibited near-zero dimensional change, while Al/sub 2/O/sub 3/ and Si/sub 3/N/sub 4/ swelled approx. 3 vol % and 1 vol % respectively. Strength of MgAl/sub 2/O/sub 4/ was increased, while strength of Al/sub 2/O/sub 3/ and Si/sub 3/N/sub 4/ were not greatly altered. The SiC/graphite composite, tested only at 680K, suffered almost complete delamination as a result of swelling of the SiC and densification of the graphite. These results are discussed in terms of microstructural alterations and related to various fusion applications.

  1. Development of a low-energy and high-current pulsed neutral beam injector with a washer-gun plasma source for high-beta plasma experiments.

    PubMed

    Ii, Toru; Gi, Keii; Umezawa, Toshiyuki; Asai, Tomohiko; Inomoto, Michiaki; Ono, Yasushi

    2012-08-01

    We have developed a novel and economical neutral-beam injection system by employing a washer-gun plasma source. It provides a low-cost and maintenance-free ion beam, thus eliminating the need for the filaments and water-cooling systems employed conventionally. In our primary experiments, the washer gun produced a source plasma with an electron temperature of approximately 5 eV and an electron density of 5 × 10(17) m(-3), i.e., conditions suitable for ion-beam extraction. The dependence of the extracted beam current on the acceleration voltage is consistent with space-charge current limitation, because the observed current density is almost proportional to the 3/2 power of the acceleration voltage below approximately 8 kV. By optimizing plasma formation, we successfully achieved beam extraction of up to 40 A at 15 kV and a pulse length in excess of 0.25 ms. Its low-voltage and high-current pulsed-beam properties enable us to apply this high-power neutral beam injection into a high-beta compact torus plasma characterized by a low magnetic field. PMID:22938291

  2. Development of a low-energy and high-current pulsed neutral beam injector with a washer-gun plasma source for high-beta plasma experiments

    SciTech Connect

    Ii, Toru [Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656 (Japan); Gi, Keii; Umezawa, Toshiyuki; Inomoto, Michiaki; Ono, Yasushi [Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8561 (Japan); Asai, Tomohiko [College of Science and Technology, Nihon University, Tokyo 101-8308 (Japan)

    2012-08-15

    We have developed a novel and economical neutral-beam injection system by employing a washer-gun plasma source. It provides a low-cost and maintenance-free ion beam, thus eliminating the need for the filaments and water-cooling systems employed conventionally. In our primary experiments, the washer gun produced a source plasma with an electron temperature of approximately 5 eV and an electron density of 5 Multiplication-Sign 10{sup 17} m{sup -3}, i.e., conditions suitable for ion-beam extraction. The dependence of the extracted beam current on the acceleration voltage is consistent with space-charge current limitation, because the observed current density is almost proportional to the 3/2 power of the acceleration voltage below approximately 8 kV. By optimizing plasma formation, we successfully achieved beam extraction of up to 40 A at 15 kV and a pulse length in excess of 0.25 ms. Its low-voltage and high-current pulsed-beam properties enable us to apply this high-power neutral beam injection into a high-beta compact torus plasma characterized by a low magnetic field.

  3. Time-resolved compression of a capsule with a cone to high density for fast-ignition laser fusion.

    PubMed

    Theobald, W; Solodov, A A; Stoeckl, C; Anderson, K S; Beg, F N; Epstein, R; Fiksel, G; Giraldez, E M; Glebov, V Yu; Habara, H; Ivancic, S; Jarrott, L C; Marshall, F J; McKiernan, G; McLean, H S; Mileham, C; Nilson, P M; Patel, P K; Pérez, F; Sangster, T C; Santos, J J; Sawada, H; Shvydky, A; Stephens, R B; Wei, M S

    2014-01-01

    The advent of high-intensity lasers enables us to recreate and study the behaviour of matter under the extreme densities and pressures that exist in many astrophysical objects. It may also enable us to develop a power source based on laser-driven nuclear fusion. Achieving such conditions usually requires a target that is highly uniform and spherically symmetric. Here we show that it is possible to generate high densities in a so-called fast-ignition target that consists of a thin shell whose spherical symmetry is interrupted by the inclusion of a metal cone. Using picosecond-time-resolved X-ray radiography, we show that we can achieve areal densities in excess of 300 mg cm(-2) with a nanosecond-duration compression pulse--the highest areal density ever reported for a cone-in-shell target. Such densities are high enough to stop MeV electrons, which is necessary for igniting the fuel with a subsequent picosecond pulse focused into the resulting plasma. PMID:25503788

  4. Time-resolved compression of a capsule with a cone to high density for fast-ignition laser fusion

    NASA Astrophysics Data System (ADS)

    Theobald, W.; Solodov, A. A.; Stoeckl, C.; Anderson, K. S.; Beg, F. N.; Epstein, R.; Fiksel, G.; Giraldez, E. M.; Glebov, V. Yu.; Habara, H.; Ivancic, S.; Jarrott, L. C.; Marshall, F. J.; McKiernan, G.; McLean, H. S.; Mileham, C.; Nilson, P. M.; Patel, P. K.; Pérez, F.; Sangster, T. C.; Santos, J. J.; Sawada, H.; Shvydky, A.; Stephens, R. B.; Wei, M. S.

    2014-12-01

    The advent of high-intensity lasers enables us to recreate and study the behaviour of matter under the extreme densities and pressures that exist in many astrophysical objects. It may also enable us to develop a power source based on laser-driven nuclear fusion. Achieving such conditions usually requires a target that is highly uniform and spherically symmetric. Here we show that it is possible to generate high densities in a so-called fast-ignition target that consists of a thin shell whose spherical symmetry is interrupted by the inclusion of a metal cone. Using picosecond-time-resolved X-ray radiography, we show that we can achieve areal densities in excess of 300?mg?cm?2 with a nanosecond-duration compression pulse—the highest areal density ever reported for a cone-in-shell target. Such densities are high enough to stop MeV electrons, which is necessary for igniting the fuel with a subsequent picosecond pulse focused into the resulting plasma.

  5. Hydrophobin Fusion of an Influenza Virus Hemagglutinin Allows High Transient Expression in Nicotiana benthamiana, Easy Purification and Immune Response with Neutralizing Activity

    PubMed Central

    Jacquet, Nicolas; Navarre, Catherine; Desmecht, Daniel; Boutry, Marc

    2014-01-01

    The expression of recombinant hemagglutinin in plants is a promising alternative to the current egg-based production system for the influenza vaccines. Protein-stabilizing fusion partners have been developed to overcome the low production yields and the high downstream process costs associated with the plant expression system. In this context, we tested the fusion of hydrophobin I to the hemagglutinin ectodomain of the influenza A (H1N1)pdm09 virus controlled by the hybrid En2PMA4 transcriptional promoter to rapidly produce high levels of recombinant antigen by transient expression in agro-infiltrated Nicotiana benthamiana leaves. The fusion increased the expression level by a factor of ?2.5 compared to the unfused protein allowing a high accumulation level of 8.6% of the total soluble proteins. Hemagglutinin was located in ER-derived protein bodies and was successfully purified by combining an aqueous-two phase partition system and a salting out step. Hydrophobin interactions allowed the formation of high molecular weight hemagglutinin structures, while unfused proteins were produced as monomers. Purified protein was shown to be biologically active and to induce neutralizing antibodies after mice immunization. Hydrophobin fusion to influenza hemagglutinin might therefore be a promising approach for rapid, easy, and low cost production of seasonal or pandemic influenza vaccines in plants. PMID:25541987

  6. Flowing Pbââ Li ââ liquid-metal coolant in fusion reactors with high-power densities and magnetic fields

    Microsoft Academic Search

    Bourque

    1983-01-01

    It is found that flowing liquid Pbââ Li ââ eutectic can be used as both tritium breeder and blanket coolant in fusion reactors with high-power densities and strong transverse magnetic fields provided the channel walls are rendered electrically insulated, either by use of a nonconducting material or with a nonconducting coating over a metallic material. Examples are given for the

  7. Signal modeling of high-purity Ge detectors with a small read-out electrode and application to neutrinoless double beta decay search in Ge-76

    E-print Network

    M. Agostini; C. A. Ur; D. Budjáš; E. Bellotti; R. Brugnera; C. M. Cattadori; A. di Vacri; A. Garfagnini; L. Pandola; S. Schönert

    2011-01-17

    The GERDA experiment searches for the neutrinoless double beta decay of Ge-76 using high-purity germanium detectors enriched in Ge-76. The analysis of the signal time structure provides a powerful tool to identify neutrinoless double beta decay events and to discriminate them from gamma-ray induced backgrounds. Enhanced pulse shape discrimination capabilities of "Broad Energy Germanium" detectors with a small read-out electrode have been recently reported. This paper describes the full simulation of the response of such a detector, including the Monte Carlo modeling of radiation interaction and subsequent signal shape calculation. A pulse shape discrimination method based on the ratio between the maximum current signal amplitude and the event energy applied to the simulated data shows quantitative agreement with the experimental data acquired with calibration sources. The simulation has been used to study the survival probabilities of the decays which occur inside the detector volume and are difficult to assess experimentally. Such internal decay events are produced by the cosmogenic radio-isotopes Ge-68 and Co-60 and the neutrinoless double beta decay of Ge-76. Fixing the experimental acceptance of the double escape peak of the 2.614 MeV photon to 90%, the estimated survival probabilities at Qbb = 2.039 MeV are (86+-3)% for Ge-76 neutrinoless double beta decays, (4.5+-0.3)% for the Ge-68 daughter Ga-68, and (0.9+0.4-0.2)% for Co-60 decays.

  8. High-performance thin-layer chromatographic analysis of lutein and beta-carotene in Cerithidia californica (Gastropoda) infected with two species of larval trematodes.

    PubMed

    Marsit, C J; Fried, B; Sherma, J

    2000-06-01

    High-performance thin-layer chromatography (HPTLC) analysis was done on lutein and beta-carotene in the digestive gland-gonad complex (DGG) and whole body of uninfected Cerithidia californica snails and those infected with the larval trematodes Mesostephanus appendiculatis or Euhaplorichis californiensis. HPTLC of the DGG extract on C-18 reversed-phase plates developed in petroleum ether-acetonitrile-methanol (1:2:2) mobile phase showed 2 identifiable pigment zones; the least polar zone had a retention factor (Rf) of 0.07, identical to a beta-carotene standard, and the more polar zone had an Rf of 0.41, identical to a lutein standard. Densitometric scanning of the pigment zones in sample versus standard chromatograms showed that the weight percent of lutein in the uninfected DGGs (3.4x10(-3)%) was significantly greater (P<0.05) than that of DGGs infected with either M. appendiculatis (0.35x10(-3)%) or E. californiensis (0.82x10(-3)%). Changes in beta-carotene in the infected DGGs were insignificant compared to the uninfected controls. However, the beta-carotene content of whole snails was significantly reduced (P<0.05) by infection with either trematode. PMID:10864272

  9. Magnetized Target Fusion

    NASA Technical Reports Server (NTRS)

    Griffin, Steven T.

    2002-01-01

    Magnetized target fusion (MTF) is under consideration as a means of building a low mass, high specific impulse, and high thrust propulsion system for interplanetary travel. This unique combination is the result of the generation of a high temperature plasma by the nuclear fusion process. This plasma can then be deflected by magnetic fields to provide thrust. Fusion is initiated by a small traction of the energy generated in the magnetic coils due to the plasma's compression of the magnetic field. The power gain from a fusion reaction is such that inefficiencies due to thermal neutrons and coil losses can be overcome. Since the fusion reaction products are directly used for propulsion and the power to initiate the reaction is directly obtained from the thrust generation, no massive power supply for energy conversion is required. The result should be a low engine mass, high specific impulse and high thrust system. The key is to successfully initiate fusion as a proof-of-principle for this application. Currently MSFC is implementing MTF proof-of-principle experiments. This involves many technical details and ancillary investigations. Of these, selected pertinent issues include the properties, orientation and timing of the plasma guns and the convergence and interface development of the "pusher" plasma. Computer simulations of the target plasma's behavior under compression and the convergence and mixing of the gun plasma are under investigation. This work is to focus on the gun characterization and development as it relates to plasma initiation and repeatability.

  10. Antitransforming growth factor-{beta} antibody 1D11 ameliorates normal tissue damage caused by high-dose radiation

    SciTech Connect

    Anscher, Mitchell S. [Department of Radiation Oncology, Duke University Medical Center, Durham, NC (United States)]. E-mail: ansch001@notes.duke.edu; Thrasher, Bradley [Department of Radiation Oncology, Duke University Medical Center, Durham, NC (United States); Rabbani, Zahid [Department of Radiation Oncology, Duke University Medical Center, Durham, NC (United States); Teicher, Beverly [Genzyme Corporation, Cambridge, MA (United States); Vujaskovic, Zeljko [Department of Radiation Oncology, Duke University Medical Center, Durham, NC (United States)

    2006-07-01

    Purpose The aim of this study was to determine whether a neutralizing transforming growth factor-{beta} (TGF{beta}) antibody can prevent radiation (RT) induced lung injury. Methods and Materials Fractionated and sham right lung irradiation in Fischer 344 rats was delivered to assess the radioprotective effect of the antibodies. Animals were divided into the following groups: (1) control (sham RT, control antibody 13C4); (2) RT (800cGy x 5)+13C4); (3) RT + 0.1 mg/kg 1D11 anti-TGF{beta} antibody; and (4) RT + 1 mg/kg 1D11 antibody. Antibodies were intraperitoneally administered immediately after the last fraction of RT. Animals were sacrificed at 6 and 26 weeks after irradiation. Lungs were assessed for histologic changes, activation of macrophages, expression/activation of TGF{beta} and its signal transduction pathway. Results At 6 weeks post-RT, there was a significant reduction in macrophage accumulation (p = 0.041), alveolar wall thickness (p = 0.0003), and TGF-{beta} activation (p = 0.032) in animals receiving 1.0 mg/kg 1D11 vs. in the control group. However, at 6 weeks, the low dose of 1D11 antibody (0.1 mg/kg) failed to produce any significant changes. At 6 months post-RT, radioprotection is apparent for the group receiving 1.0 mg/kg 1D11, with activated macrophages (p = 0.037), alveolar wall thickness (p = 0.0002), TGF{beta} activation (p = 0.002) and its signal transduction proteins (p < 0.05) compared with the control group. Conclusions Administration of a single dose of 1.0 mg/kg of the anti-TGF{beta} antibody 1D11 resulted in decreased morphologic changes, inflammatory response, and reduced expression and activation of TGF{beta} 6 weeks and 6 months after 40 Gy to the right hemithorax. Targeting the TGF{beta} pathway may be a useful strategy to prevent radiation-induced lung injury.

  11. A comparative study of multi-sensor data fusion methods for highly accurate assessment of manufactured parts

    NASA Astrophysics Data System (ADS)

    Hannachi, Ammar; Kohler, Sophie; Lallement, Alex; Hirsch, Ernest

    2015-04-01

    3D modeling of scene contents takes an increasing importance for many computer vision based applications. In particular, industrial applications of computer vision require efficient tools for the computation of this 3D information. Routinely, stereo-vision is a powerful technique to obtain the 3D outline of imaged objects from the corresponding 2D images. As a consequence, this approach provides only a poor and partial description of the scene contents. On another hand, for structured light based reconstruction techniques, 3D surfaces of imaged objects can often be computed with high accuracy. However, the resulting active range data in this case lacks to provide data enabling to characterize the object edges. Thus, in order to benefit from the positive points of various acquisition techniques, we introduce in this paper promising approaches, enabling to compute complete 3D reconstruction based on the cooperation of two complementary acquisition and processing techniques, in our case stereoscopic and structured light based methods, providing two 3D data sets describing respectively the outlines and surfaces of the imaged objects. We present, accordingly, the principles of three fusion techniques and their comparison based on evaluation criterions related to the nature of the workpiece and also the type of the tackled application. The proposed fusion methods are relying on geometric characteristics of the workpiece, which favour the quality of the registration. Further, the results obtained demonstrate that the developed approaches are well adapted for 3D modeling of manufactured parts including free-form surfaces and, consequently quality control applications using these 3D reconstructions.

  12. Research on fusion neutron sources

    SciTech Connect

    Gryaznevich, M. P. [Tokamak Solutions UK, Culham Science Centre, Abingdon, OXON, OX133DB (United Kingdom)

    2012-06-19

    The use of fusion devices as powerful neutron sources has been discussed for decades. Whereas the successful route to a commercial fusion power reactor demands steady state stable operation combined with the high efficiency required to make electricity production economic, the alternative approach to advancing the use of fusion is free of many of complications connected with the requirements for economic power generation and uses the already achieved knowledge of Fusion physics and developed Fusion technologies. 'Fusion for Neutrons' (F4N), has now been re-visited, inspired by recent progress achieved on comparably compact fusion devices, based on the Spherical Tokamak (ST) concept. Freed from the requirement to produce much more electricity than used to drive it, a fusion neutron source could be efficiently used for many commercial applications, and also to support the goal of producing energy by nuclear power. The possibility to use a small or medium size ST as a powerful or intense steady-state fusion neutron source (FNS) is discussed in this paper in comparison with the use of traditional high aspect ratio tokamaks. An overview of various conceptual designs of compact fusion neutron sources based on the ST concept is given and they are compared with a recently proposed Super Compact Fusion Neutron Source (SCFNS), with major radius as low as 0.5 metres but still able to produce several MW of neutrons in a steady-state regime.

  13. Cosmic Evolution of Accretion Power and Fusion Power: AGN and Starbursts at High Redshifts

    NASA Astrophysics Data System (ADS)

    Arnold Malkan, Matthew

    2009-05-01

    Extragalactic astronomers have been working for decades on obtaining robust measures of the luminosities galaxies produce from stars, and from active galactic nuclei. Our ultimate goal is deriving the cosmic evolution of all radiation produced by fusion and by black hole accretion. The combined effects of dust reddening and redshift make it impossible to achieve this with optical observations alone. Fortunately, infrared thermal continuum and forbidden line emission--from warm dust grains and ionized gas, respectively--can now be measured with excellent sensitivity. However, when measuring entire galaxies, these dust and gas emissions are powered by both active galactic nuclei and starbursts, which may be hard to separate spatially. We must use the fact that the patterns of IR energy output from AGN and SBs differ, with AGN making more ionized gas and hotter dust grains. Low-resolution spectroscopy, or even narrow-band filters can sort out the line emission from both processes when they are mixed in the same galaxy. The hope is that these spectroscopic determinations of star formation rate, and mass accretion rate in relatively small samples of bright galaxies will allow a calibration of broadband continuum measures. The dust continuum emission will then be measured in enormous samples of galaxies spanning their full range of masses, metallicities, environments and redshifts. Along the way, we should learn the astrophysical basis of black hole/galaxy "co-evolution." I will summarize some of the first specific infrared steps of this ambitious agenda, taken with IRAS and ISO to 2MASS, Akari and Spitzer and other telescopes. Time permitting, some of the exciting upcoming observational prospects will be advertised.

  14. High-Heat Flux Testing of Irradiated Tungsten based Materials for Fusion Applications using Infrared Plasma Arc Lamps

    SciTech Connect

    Sabau, Adrian S [ORNL; Ohriner, Evan Keith [ORNL; Kiggans Jr, James O [ORNL; Schaich, Charles Ross [ORNL; Ueda, Yoshio [ORNL; Harper, David C [ORNL; Katoh, Yutai [ORNL; Snead, Lance Lewis [ORNL; Byun, Thak Sang [ORNL

    2014-01-01

    Testing of advanced materials and component mock-ups under prototypical fusion high-heat flux conditions, while historically a mainstay of fusion research has proved challenging, especially for irradiated materials. A new high-heat flux testing facility based on water-wall Plasma Arc Lamps (PALs) is now being used for materials and small component testing. Two PAL systems, utilizing a 12,000 C plasma arc contained in a quartz tube cooled by a spiral water flow over the inside tube surface, are currently in use. The first PAL system provides a maximum incident heat flux of 4.2 MW/m2 over an area of 9x12 cm2. The second PAL available at ORNL provides a maximum incident heat flux of 27 MW/m2 over an area of 1x10 cm2. The absorbed heat fluxes into a tungsten target for the two PALs are approximately 1.97 and 12.7 MW/m2, respectively. This paper will present the overall design of the new PAL facilities as well as the design and implementation of the Irradiated Material Target Station (IMTS). The IMTS is primarily designed for testing the effects of heat flux or thermal cycling on material coupons of interested, such as those for plasma facing components. Moreover, IMTS designs are underway to extend the testing of small mock-ups for assessing the combined heating and thermomechanical effects of cooled, irradiated components. For the testing of material coupons , the specimens are placed in a shallow recess within the molybdenum holder that is attached to a water-cooled copper alloy rod. As the measurement of the specimen temperature for PAL is historically challenging since traditional approaches of temperature measurement cannot be employed due to the infrared heating and proximity of the PAL reflector to the specimen that does not allow a direct line of site, experiments for temperature calibration are presented. Finally, results for the high-heat flux testing of tungsten-based materials using the PAL are presented. As a demonstration of the system, results will be shown of thermal fatigue and high-heat flux testing of tungsten coupon specimens that were neutron irradiated in the HFIR reactor to neutron dose consistent to ITER lifetime.

  15. Signal modeling of high-purity Ge detectors with a small read-out electrode and application to neutrinoless double beta decay search in Ge76

    Microsoft Academic Search

    M. Agostini; C. A. Ur; D. Budjáš; E. Bellotti; R. Brugnera; C. M. Cattadori; A. di Vacri; A. Garfagnini; L. Pandola; S. Schönert

    2010-01-01

    The GERDA experiment searches for the neutrinoless double beta decay of Ge-76\\u000ausing high-purity germanium detectors enriched in Ge-76. The analysis of the\\u000asignal time structure provides a powerful tool to identify neutrinoless double\\u000abeta decay events and to discriminate them from gamma-ray induced backgrounds.\\u000aEnhanced pulse shape discrimination capabilities of \\

  16. Status of fusion research and implications for D/He-3 systems

    NASA Technical Reports Server (NTRS)

    Miley, George H.

    1988-01-01

    World wide programs in both magnetic confinement and inertial confinement fusion research have made steady progress towards the experimental demonstration of energy breakeven. However, after breakeven is achieved, considerable time and effort must still be expended to develop a usable power plant. The main program described is focused on Deuterium-Tritium devices. In magnetic confinement, three of the most promising high beta approaches with a reasonable experimental data base are the Field Reversed Configuration, the high field tokamak, and the dense Z-pinch. The situation is less clear in inertial confinement where the first step requires an experimental demonstration of D/T spark ignition. It appears that fusion research has reached a point in time where an R and D plan to develop a D/He-3 fusion reactor can be laid out with some confidence of success.

  17. The Heavy Ion Fusion Science Virtual National Laboratory Recent advances in ion-beam-driven high energy density

    E-print Network

    Science Virtual National Laboratory 3 Program objectives Top-level scientific question fundamental to both9/15/06 The Heavy Ion Fusion Science Virtual National Laboratory 1 Recent advances in ion. Presented by Ronald C. Davidson on behalf of the Heavy Ion Fusion Science Virtual National Laboratory

  18. 2 nature physics | VOL 2 | JANUARY 2006 | www.nature.com/naturephysics A high-power laser fusion

    E-print Network

    Loss, Daniel

    cycle. A range of conceptual reactor designs have been produced, typically delivering in e-power laser fusion facility for Europe MIKE DUNNE is at the Central Laser Facility, CCLRC Rutherford Appleton committed to fusion research facilities around the world, yet there is a distinct danger that key

  19. The Complete Burning of Weapons Grade Plutonium and Highly Enriched Uranium with (Laser Inertial Fusion-Fission Energy) LIFE Engine

    Microsoft Academic Search

    J C Farmer; T Diaz de la Rubia; E Moses

    2008-01-01

    The National Ignition Facility (NIF) project, a laser-based Inertial Confinement Fusion (ICF) experiment designed to achieve thermonuclear fusion ignition and burn in the laboratory, is under construction at the Lawrence Livermore National Laboratory (LLNL) and will be completed in April of 2009. Experiments designed to accomplish the NIF's goal will commence in late FY2010 utilizing laser energies of 1 to

  20. Validity of the fluid description of critical beta and Alfvén time scale of ballooning instability onset in the near-Earth collisionless high-beta plasma

    Microsoft Academic Search

    Akira Miura

    2004-01-01

    For a realistic, highly stretched, two-dimensional tail configuration, in which the pressure gradient force is balanced with the curved field line tension force at the equator, the growth rates and the real frequencies of the ideal magnetohydrodynamic (MHD) and two component fluid (nonideal MHD) ballooning modes, in which the phrase ``two component fluid'' means that the Hall and the electron

  1. The Need for Fusion Propulsion

    NASA Technical Reports Server (NTRS)

    Cassibry, Jason

    2005-01-01

    Fusion propulsion is inevitable if the human race remains dedicated to exploration of the solar system. There are fundamental reasons why fusion surpasses more traditional approaches to routine crewed missions to Mars, crewed missions to the outer planets, and deep space high speed robotic missions, assuming that reduced trip times, increased payloads, and higher available power are desired. A recent series of informal discussions were held among members from government, academia, and industry concerning fusion propulsion. We compiled a sufficient set of arguments for utilizing fusion in space. If the U.S. is to lead the effort and produce a working system in a reasonable amount of time, NASA must take the initiative, relying on, but not waiting for, DOE guidance. In this talk those arguments for fusion propulsion are presented, along with fusion enabled mission examples, fusion technology trade space, and a proposed outline for future efforts.

  2. Fusion breeder

    SciTech Connect

    Moir, R.W.

    1982-02-22

    The fusion breeder is a fusion reactor designed with special blankets to maximize the transmutation by 14 MeV neutrons of uranium-238 to plutonium or thorium to uranium-233 for use as a fuel for fission reactors. Breeding fissile fuels has not been a goal of the US fusion energy program. This paper suggests it is time for a policy change to make the fusion breeder a goal of the US fusion program and the US nuclear energy program. The purpose of this paper is to suggest this policy change be made and tell why it should be made, and to outline specific research and development goals so that the fusion breeder will be developed in time to meet fissile fuel needs.

  3. Influenza Virus-Membrane Fusion Triggered by Proton Uncaging for Single Particle Studies of Fusion Kinetics

    E-print Network

    Daniel, Susan

    Influenza Virus-Membrane Fusion Triggered by Proton Uncaging for Single Particle Studies of Fusion for studying membrane fusion, focusing on influenza virus fusion to lipid bilayers, which provides high of material across membranes. For example, in virus infection, membrane-enveloped viruses, such as influenza

  4. FEATURE BASED FUSION OF MULTISENSOR DATA - INCLUSION OF HYPERSPECTRAL DATA INTO CLASSIFICATION OF HIGH RESOLUTION ORTHOPHOTOS

    Microsoft Academic Search

    A. Greiwe

    Many applications of remote sensing - like for example urban monitoring - require high resolution data. For a correct determination of object geometry, high spatial resolution data is essential. These data contain often low spectral information like three band RGB orthophotos. Similar feature values for thematic classes like water, dark pavements or dark rooftops lead to classification errors. As a

  5. Fragmentation of Thin Wires under High Voltage Pulses and Bipolar Fusion

    SciTech Connect

    Papageorgiou, C. D. [Dept. of Electrical and Electronic Engineering, National Technical University of Athens (Greece); Raptis, T. E. [Division of Applied Technologies, National Centre for Science and Research 'Demokritos', Patriarchou Grigoriou and Neapoleos, Athens (Greece)

    2010-01-21

    In this article we present an alternative explanation of the phenomenon of wire fragmentation under high transient currents based on classical electromagnetism. We also explain how this phenomenon can be utilized as a primitive example of low energy-high power disruptive phenomena that can affect even nuclear matter.

  6. Pulsed-power-driven high energy density physics and inertial confinement fusion research

    Microsoft Academic Search

    M. Keith Matzen; M. A. Sweeney; R. G. Adams; J. R. Asay; J. E. Bailey; G. R. Bennett; D. E. Bliss; D. D. Bloomquist; T. A. Brunner; R. B. Campbell; G. A. Chandler; C. A. Coverdale; M. E. Cuneo; J.-P. Davis; C. Deeney; M. P. Desjarlais; G. L. Donovan; C. J. Garasi; T. A. Haill; C. A. Hall; D. L. Hanson; M. J. Hurst; B. Jones; M. D. Knudson; R. J. Leeper; R. W. Lemke; M. G. Mazarakis; D. H. McDaniel; T. A. Mehlhorn; T. J. Nash; C. L. Olson; J. L. Porter; P. K. Rambo; S. E. Rosenthal; G. A. Rochau; L. E. Ruggles; C. L. Ruiz; T. W. L. Sanford; J. F. Seamen; D. B. Sinars; S. A. Slutz; I. C. Smith; K. W. Struve; W. A. Stygar; R. A. Vesey; E. A. Weinbrecht; D. F. Wenger; E. P. Yu

    2005-01-01

    The Z accelerator [R. B. Spielman, W. A. Stygar, J. F. Seamen et al., Proceedings of the 11th International Pulsed Power Conference, Baltimore, MD, 1997, edited by G. Cooperstein and I. Vitkovitsky (IEEE, Piscataway, NJ, 1997), Vol. 1, p. 709] at Sandia National Laboratories delivers ~20 MA load currents to create high magnetic fields (>1000 T) and high pressures (megabar

  7. High Temperature Fusion Reactor Cooling Using Brayton Cycle Based Partial Energy Conversion

    Microsoft Academic Search

    Albert J. Juhasz; Jerzy T. Sawicki

    2004-01-01

    For some future space power systems using high temperature nuclear heat sources most of the output energy will be used in other than electrical form, and only a fraction of the total thermal energy generated will need to be converted to electrical work. The paper describes the conceptual design of such a ``partial energy conversion'' system, consisting of a high

  8. Development of negative ion extractor in the high-power and long-pulse negative ion source for fusion application

    NASA Astrophysics Data System (ADS)

    Kashiwagi, M.; Umeda, N.; Tobari, H.; Kojima, A.; Yoshida, M.; Taniguchi, M.; Dairaku, M.; Maejima, T.; Yamanaka, H.; Watanabe, K.; Inoue, T.; Hanada, M.

    2014-02-01

    High power and long-pulse negative ion extractor, which is composed of the plasma grid (PG) and the extraction grid (EXG), is newly developed toward the neutral beam injector for heating and current drive of future fusion machines such as ITER, JT-60 Super Advanced and DEMO reactor. The PG is designed to enhance surface production of negative ions efficiently by applying the chamfered aperture. The efficiency of the negative ion production for the discharge power increased by a factor of 1.3 against that of the conventional PG. The EXG is also designed with the thermal analysis to upgrade the cooling capability for the long pulse operation of >1000 s required in ITER. Though the magnetic field for electron suppression is reduced to 0.75 of that in the conventional EXG due to this upgrade, it was experimentally confirmed that the extracted electron current can be suppressed to the allowable level for the long pulse operation. These results show that newly developed extractor has the high potential for the long pulse extraction of the negative ions.

  9. The ITERThe ITER eraera : the 10: the 10 yearyear roadmaproadmap for the French fusion programmefor the French fusion programme

    E-print Network

    (disruptions, dust / T inventory, high performance with metallic walls ...) · Predictive modelling of fusion in Rome H mode on AUGH mode on AUG 2010-2035 : The Fusion Energy Era of magnetic fusion research 2010-2035 : The Fusion Energy Era of magnetic fusion research ITER thermonuclear plasmasITER thermonuclear plasmas

  10. A negative-ion TPC with ultra-high energy resolution for 0-? double beta decay search in 136Xe

    Microsoft Academic Search

    David R Nygren

    2007-01-01

    Future searches for the neutrino-less double beta decay mode in candidate nuclei must confront the need for sensitivities at the level of 10 – 50 meV effective neutrino mass. Current techniques may not be able to scale simultaneously to the needed mass of active isotope with both improved energy resolution and much higher levels of background rejection. To address these

  11. High precision corrections to the neutron beta decay rate and electron asymmetry and current determination of Vud

    Microsoft Academic Search

    J. L. García-Luna; A. García

    2006-01-01

    The goal of the present analysis is to find, in the free neutron beta decay, the expressions for the decay rate and the electron asymmetry that contain all the theoretical effects at the 10-4 level. This accuracy is better than the current experimental precision that modern experiments allow. For this aim it is necessary to study the strong interaction effects,

  12. Development of Cryogenic Bolometer for 0{nu}{beta}{beta} in {sup 124}Sn

    SciTech Connect

    Singh, Vivek; Mathimalar, S.; Dokania, Neha [INO, Tata Institute of Fundamental Research, Mumbai 400 005 (India); Yashwant, G.; Nanal, V.; Pillay, R. G. [Dept. of Nuclear and Atomic Physics, Tata Institute of Fundamental Research, Mumbai 400 005 (India); Datar, V. M. [Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India)

    2011-11-23

    Cryogenic bolometer detectors, with their high resolution spectroscopy capability, are ideal for neutrino mass experiments as well as for search of rare processes like neutrinoless double beta decay (0{nu}{beta}{beta}) and dark matter. A feasibility study for investigation of 0{nu}{beta}{beta} in {sup 124}Sn at the upcoming underground facility of India based Neutrino Observatory (INO) has been initiated. This paper describes endeavors towards cryogenic tin bolometer development.

  13. Fusion Implementation

    SciTech Connect

    J.A. Schmidt

    2002-02-20

    If a fusion DEMO reactor can be brought into operation during the first half of this century, fusion power production can have a significant impact on carbon dioxide production during the latter half of the century. An assessment of fusion implementation scenarios shows that the resource demands and waste production associated with these scenarios are manageable factors. If fusion is implemented during the latter half of this century it will be one element of a portfolio of (hopefully) carbon dioxide limiting sources of electrical power. It is time to assess the regional implications of fusion power implementation. An important attribute of fusion power is the wide range of possible regions of the country, or countries in the world, where power plants can be located. Unlike most renewable energy options, fusion energy will function within a local distribution system and not require costly, and difficult, long distance transmission systems. For example, the East Coast of the United States is a prime candidate for fusion power deployment by virtue of its distance from renewable energy sources. As fossil fuels become less and less available as an energy option, the transmission of energy across bodies of water will become very expensive. On a global scale, fusion power will be particularly attractive for regions separated from sources of renewable energy by oceans.

  14. Magnetized Target Fusion With Centimeter-Size Liners

    SciTech Connect

    Ryutov, D.D. [Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States)

    2006-01-05

    The author concentrates on the version of magnetized target fusion (MTF) that involves 3D implosions of a wall-confined plasma with the density in the compressed state {approx}1021-1022 cm-3. Possible plasma configurations suitable for this approach are identified. The main physics issues are outlined (equilibrium, stability, transport, plasma-liner interaction, etc). Specific parameters of the experiment reaching the plasma Q{approx}1 are presented (Q is the ratio of the fusion yield to the energy delivered to the plasma). It is emphasized that there exists a synergy between the physics and technology of MTF and dense Z-pinches (DZP). Specific areas include the particle and heat transport in a high-beta plasma, plasma-liner interaction, liner stability, stand-off problem for the power source, reaching a rep-rate regime in the energy-producing reactor, etc.

  15. Characterization of Nuclear Recoils in High Pressure Xenon Gas: Towards a Simultaneous Search for WIMP Dark Matter and Neutrinoless Double Beta Decay

    NASA Astrophysics Data System (ADS)

    Renner, J.; Gehman, V. M.; Goldschmidt, A.; Oliveira, C. A. B.; Nygren, D.

    Xenon has recently been the medium of choice in several large scale detectors searching for WIMP dark matter and neutrinoless double beta decay. Though present-day large scale experiments use liquid xenon, the gas phase o_ers advantages favorable to both types of searches such as improved intrinsic energy resolution and fewer fluctuations in the partition of deposited energy between scintillation and ionization channels. We recently constructed a high pressure xenon gas TPC as a prototype for the NEXT (Neutrino Experiment with a Xenon TPC) neutrinoless double beta decay experiment and have demonstrated the feasibility of 0.5% FWHM energy resolution at the 136Xe double beta Q-value with 3-D tracking capabilities. We now present results from this prototype on the simultaneous observation of scintillation and ionization produced by nuclear recoils at approximately 14 bar pressure. The recoils were produced by neutrons of approximately 2-6 MeV emitted from a radioisotope plutonium-beryllium source, and primary scintillation (S1) and electroluminescent photons produced by ionization (S2) were observed. We discuss the potential of gaseous xenon to distinguish between electron and nuclear recoils through the ratio of these two signals S2/S1. From these results combined with the possibility of using columnar recombination to sense nuclear recoil directionality at high pressures we envision a dual-purpose, ton-scale gaseous xenon detector capable of a combined search for WIMP dark matter and neutrinoless double beta decay. This work has been performed within the context of the NEXT collaboration.

  16. Boosted Beta Regression

    PubMed Central

    Schmid, Matthias; Wickler, Florian; Maloney, Kelly O.; Mitchell, Richard; Fenske, Nora; Mayr, Andreas

    2013-01-01

    Regression analysis with a bounded outcome is a common problem in applied statistics. Typical examples include regression models for percentage outcomes and the analysis of ratings that are measured on a bounded scale. In this paper, we consider beta regression, which is a generalization of logit models to situations where the response is continuous on the interval (0,1). Consequently, beta regression is a convenient tool for analyzing percentage responses. The classical approach to fit a beta regression model is to use maximum likelihood estimation with subsequent AIC-based variable selection. As an alternative to this established - yet unstable - approach, we propose a new estimation technique called boosted beta regression. With boosted beta regression estimation and variable selection can be carried out simultaneously in a highly efficient way. Additionally, both the mean and the variance of a percentage response can be modeled using flexible nonlinear covariate effects. As a consequence, the new method accounts for common problems such as overdispersion and non-binomial variance structures. PMID:23626706

  17. Higher-multipole deformations and compactness of hot fusion reactions

    SciTech Connect

    Manhas, Monika; Gupta, Raj K. [Department of Physics, Panjab University, Chandigarh 160014 (India); Frankfurt Institute for Advanced Studies (FIAS), Johann Wolfgang Goethe-Universitaet, Max-von-Laue-Str. 1, D-60438 Frankfurt (Germany); Li, Qingfeng; Greiner, Walter [Frankfurt Institute for Advanced Studies (FIAS), Johann Wolfgang Goethe-Universitaet, Max-von-Laue-Str. 1, D-60438 Frankfurt (Germany); Patra, S. K. [Frankfurt Institute for Advanced Studies (FIAS), Johann Wolfgang Goethe-Universitaet, Max-von-Laue-Str. 1, D-60438 Frankfurt (Germany); Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005 (India)

    2006-09-15

    The effect of adding the higher-multipole deformations {beta}{sub 6} and {beta}{sub 8}, and the octupole deformation {beta}{sub 3} (in addition to quadrupole and hexadecapole deformations {beta}{sub 2} and {beta}{sub 4}), on the distribution of barriers in orientation degrees of freedom is studied for a ''compact'' configuration of spherical-plus-deformed or deformed-plus-deformed nuclei in hot fusion reactions. Though {beta}{sub 3} is known to be nonzero for only a few nuclei, its role toward compactness of hot fusion reactions is found to be as important as that of {beta}{sub 4}. With {beta}{sub 3} included, depending on its sign and magnitude, the belly-to-belly compact, bbc (or equatorial compact, ec), configuration due to {beta}{sub 4} changes to not-belly-to-belly compact, nbbc (or not-equatorial compact, nec), and vice versa. Similarly, {beta}{sub 6} is found to be as important as {beta}{sub 3} and/or {beta}{sub 4} for spherical-plus-deformed nuclei, but is rather insignificant for collisions involving deformed-plus-deformed nuclei. On the other hand, the addition of {beta}{sub 8} is shown to be insignificant also for spherical-plus-deformed nuclei.

  18. IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 47 (2007) L17L20 doi:10.1088/0029-5515/47/9/L01

    E-print Network

    Wisconsin at Madison, University of

    2007-01-01

    IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 47 (2007) L17­L20 Budker Institute of Nuclear Physics, Novosibirsk, Russia 3 Consorzio RFX, Associazione EURATOM-ENEA sulla, face four major challenges on the path to fusion: confinement, beta, current sustainment, and resistive

  19. Tuftsin-based, EGFR-targeting fusion protein and its enediyne-energized analog show high antitumor efficacy associated with CD47 down-regulation.

    PubMed

    Liu, Wen-Juan; Liu, Xiu-Jun; Li, Liang; Li, Yi; Zhang, Sheng-Hua; Zhen, Yong-Su

    2014-12-01

    Tuftsin (TF) is an immunomodulator tetrapeptide (Thr-Lys-Pro-Arg) that binds to the receptor neuropilin-1 (Nrp1) on the surface of cells. Many reports have described anti-tumor activity of tuftsin to relate with nonspecific activation of the host immune system. Lidamycin (LDM) that displays extremely potent cytotoxicity to cancer cells is composed of an apoprotein (LDP) and an enediyne chromophore (AE). In addition, Ec is an EGFR-targeting oligopeptide. In the present study, LDP was used as protein scaffold and the specific carrier for the highly potent AE. Genetically engineered fusion proteins LDP-TF and Ec-LDP-TF were prepared; then, the enediyne-energized fusion protein Ec-LDM-TF was generated by integration of AE into Ec-LDP-TF. The tuftsin-based fusion proteins LDP-TF and Ec-LDP-TF significantly enhanced the phagocytotic activity of macrophages as compared with LDP (P < 0.05). Ec-LDP-TF effectively bound to tumor cells and macrophages; furthermore, it markedly suppressed the growth of human epidermoid carcinoma A431 xenograft in athymic mice by 84.2 % (P < 0.05) with up-regulated expression of TNF-? and IFN-?. Ec-LDM-TF further augmented the therapeutic efficacy, inhibiting the growth of A431 xenograft by 90.9 % (P < 0.05); notably, the Ec-LDM-TF caused marked down-regulation of CD47 in A431 cells. Moreover, the best therapeutic effect was recorded in the group of animals treated with the combination of Ec-LDP-TF with Ec-LDM-TF. The results suggest that tuftsin-based, enediyne-energized, and EGFR-targeting fusion proteins exert highly antitumor efficacy with CD47 modulation. Tuftsin-based fusion proteins are potentially useful for treatment of EGFR- and CD47-overexpressing cancers. PMID:25164878

  20. The Heptad Repeat 2 Domain Is a Major Determinant for Enhanced Human Immunodeficiency Virus Type 1 (HIV-1) Fusion and Pathogenicity of a Highly Pathogenic HIV-1 Env?

    PubMed Central

    Sivaraman, Vijay; Zhang, Liguo; Meissner, Eric G.; Jeffrey, Jerry L.; Su, Lishan

    2009-01-01

    Human immunodeficiency virus type 1 (HIV-1)-mediated depletion of CD4+ lymphocytes in an infected individual is the hallmark of progression to AIDS. However, the mechanism for this depletion remains unclear. To identify mechanisms of HIV-1-mediated CD4 T-cell death, two similar viral isolates obtained from a rapid progressor patient with significantly different pathogenic phenotypes were studied. One isolate (R3A) demonstrates enhanced pathogenesis in both in vivo models and relevant ex vivo lymphoid organ model systems compared to another isolate, R3B. The pathogenic determinants were previously mapped to the V5-gp41 envelope region, correlating functionally with enhanced fusion activity and elevated CXCR4 binding affinity. To further elucidate specific differences between R3A and R3B within the V5-gp41 domains that enhance CD4 depletion, R3A-R3B chimeras to study the V5-gp41 region were developed. Our data demonstrate that six residues in the ectodomain of R3A provide the major determinant for both enhanced Env-cell fusion and pathogenicity. Furthermore, three amino acid differences in the heptad repeat 2 (HR-2) domain of R3A determined its fusion activity and significantly elevated its pathogenic activity. The chimeric viruses with enhanced fusion activity, but not elevated CXCR4 affinity, correlated with high pathogenicity in the thymus organ. We conclude that the functional domain of a highly pathogenic HIV-1 Env is determined by mutations in the HR-2 region that contribute to enhanced fusion and CD4 T-cell depletion. PMID:19726524

  1. Turbulent electron thermal transport in fusion plasmas

    NASA Astrophysics Data System (ADS)

    Kim, Juhyung

    Electron heat transport at the scale of electron gyroradius are investigated via numerical simulation of a fluid model and a role of E x B shear flow with intermediate E x B shearing rate is explored in Euler's equation. The anomalous transport, enhanced transport due to turbulent electromagnetic fields caused by plasma instabilities, has been a focus of the international fusion research communities. Among the instabilities, the drift-type instabilities from the pressure-gradient universal in magnetic fusion devices are considered responsible for the anomalous transport. In the current status of wide use of wave heating on electrons and subsequent high core electron temperature, the turbulent heat loss through electrons has one of the most important science element in preventing the large fusion tokamaks from reaching breakeven in the past decade. The Electron Temperature Gradient fluid model consists of electrostatic potential, toroidal magnetic flux function and electron temperature (or pressure) describing electron drift waves. The fluid model proves to be highly useful to electron heat flux analysis in fusion machines. We analyze the discharges in National Spherical Tokamak eXperiment(NSTX) and Tokamak Configuration Variable (TCV) and found that the electron thermal diffusivities can be explained in terms of the mixing length argument based on electron gyroradius, linear theory and our nonlinear fluid simulation. The nonlinear fluid model predicts reasonable heat flux observed in the experiments. Based on the analysis, we investigate the dependences of the dynamics on the ratio of electron and ion temperature Te/Ti and plasma beta betae . The nonlinear dynamics such as saturation mechanism of the ETG turbulence and the electromagnetic dynamics in terms of micro-tearing at the scale of electron gyroradius are discussed briefly. In most of plasma confinement devices, the equilibrium radial electric field exists and the turbulence-generated electric field is observed. The coherent structure, called as zonal flow, has been know to be effective to suppress the micro-turbulence. But at intermediate E x B shear, where the vortex eddy turn-over time is comparable to E x B shearing rate, the suppression is weak and the flow shear can leads to vortex amplification through interaction of nonlinear dynamics and shear flow.

  2. Fusion for Space Propulsion

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Schafer, Charles (Technical Monitor)

    2001-01-01

    There is little doubt that humans will attempt to explore and develop the solar system in this century. A large amount of energy will be required for accomplishing this. The need for fusion propulsion is discussed. For a propulsion system, there are three important thermodynamical attributes: (1) The absolute amount of energy available, (2) the propellant exhaust velocity, and (3) the jet power per unit mass of the propulsion system (specific power). For human exploration and development of the solar system, propellant exhaust velocity in excess of 100 km/s and specific power in excess of 10 kW/kg are required. Chemical combustion can produce exhaust velocity up to about 5 km/s. Nuclear fission processes typically result in producing energy in the form of heat that needs to be manipulated at temperatures limited by materials to about 2,800 K. Using the energy to heat a hydrogen propellant increases the exhaust velocity by only a factor of about two. Alternatively the energy can be converted into electricity which is then used to accelerate particles to high exhaust velocity. The necessary power conversion and conditioning equipment, however, increases the mass of the propulsion system for the same jet power by more than two orders of magnitude over chemical system, thus greatly limits the thrust-to-weight ratio attainable. The principal advantage of the fission process is that its development is relatively mature and is available right now. If fusion can be developed, fusion appears to have the best of all worlds in terms of propulsion - it can provide the absolute amount, the propellant exhaust velocity, and the high specific jet power. An intermediate step towards pure fusion propulsion is a bimodal system in which a fission reactor is used to provide some of the energy to drive a fusion propulsion unit. The technical issues related to fusion for space propulsion are discussed. The technical priorities for developing and applying fusion for propulsion are somewhat different from those for terrestrial electrical power generation. Thus fusion schemes that are initially attractive for electrical power generation might not necessarily be attractive also for propulsion and vice versa, though the underlying fusion science and engineering enjoy much overlap. Parallel efforts to develop these qualitatively differently fusion schemes for the two applications could benefit greatly from each other due to the synergy in the underlying physics and engineering. Pulsed approaches to fusion have not been explored to the same degree as steady-state or long-pulse approaches to fusion in the fusion power research program. The concerns early on were several. One was that the pulsed power components might not have the service lifetimes meeting the requirements of a practical power generating plant. Another was that, for many pulsed fusion schemes, it was not clear whether the destruction of hardware per pulse could be minimized or eliminated or recycled to such an extent as to make economical electrical power generation feasible, Significant development of the underlying pulsed power component technologies have occurred in the last two decades because of defense and other energy requirements. The state of development of the pulsed power technologies are sufficiently advanced now to make it compelling to visit or re-visit pulsed fusion approaches for application to propulsion where the cost of energy is not so demanding a factor as in the case of terrestrial power application. For propulsion application, the overall mass of the fusion system is the critical factor. Producing fusion reactions require extreme states of matter. Conceptually, these extreme states of matter are more readily realizable in the pulsed states, at least within appropriate bounds, than in the steady states. Significant saving in system mass may result in such systems. Magnetic fields are effective in confining plasma energy, whereas inertial compression is an effective way of heating and containing the plasma. Intensive research in developing magnetic energy containme

  3. Implementation of scattering pinhole diagnostic for detection of fusion products on CR-39 at high particle fluence

    E-print Network

    Orozco, David, S.B. Massachusetts Institute of Technology

    2014-01-01

    Many Inertial Confinement Fusion (ICF) experiments use solid-state nuclear track detector CR-39 as a means to detect different types of nuclear products. Until recently, it was difficult to use CR-39 in experiments with ...

  4. Application of railgun principle to high-velocity hydrogen pellet injection for magnetic fusion reactor fueling

    SciTech Connect

    Kim, K.; Zhang, J.

    1992-01-01

    Three separate papers are included which report research progress during this period: (1) A new railgun configuration with perforated sidewalls, (2) development of a fuseless small-bore railgun for injection of high-speed hydrogen pellets into magnetically confined plasmas, and (3) controls and diagnostics on a fuseless railgun for solid hydrogen pellet injection.

  5. Fusion of LIDAR Data and High Resolution Images for Forest Canopy Modeling

    Microsoft Academic Search

    Liang-chien Chen; Tsai-wei Chiang; Tee-ann Teo

    Abstract: Three-dimensional forest ,model ,is important to forest ,ecosystem ,management. Traditional ground ,investigation requires vast amount of manpower, resources, costs, and time. H ence, it is difficult to promptly obtain accurate information by using ground investigation. Nowadays, Light Detection And Ranging (LIDAR) technology provides high density 3-D point clouds. It can rapidly obtain 3-D information of forest structure. On the

  6. Development, validation, and fusion of high resolution active and passive optical imagery

    Microsoft Academic Search

    W. P. Bissett; Sharon DeBra; Mubin Kadiwala; David D. R. Kohler; Curtis Mobley; Robert G. Steward; Alan Weidemann; Curtiss O. Davis; Jeff Lillycrop; Robert Pope

    2005-01-01

    HyperSpectral Imagery (HSI) of the coastal zone often focuses on the estimation of bathymetry. However, the estimation of bathymetry requires knowledge, or the simultaneous solution, of water column Inherent Optical Properties (IOPs) and bottom reflectance. The numerical solution to the simultaneous set of equations for bathymetry, IOPs, and bottom reflectance places high demands on the spectral quality, calibration, atmospheric correction,

  7. Materials for high-energy laser windows: oxyfluoride glass vs. fusion-cast CaF2

    NASA Astrophysics Data System (ADS)

    Klein, Claude A.

    2005-05-01

    The process of selecting suitable materials for high-energy laser windows involves considerations realting to (a) the flexural strength, (b) the thermal stresses, and (c) the optical distortion. Optical distortion ocnsiderations strongly favor low-absorbtion materials ythat exhibit a negitive thermo-optic coefficient (dn/dT) in conjunction with minimal stress-birefringence (qd\\overline -q? ~=0). For this reason, calcium floride has been the primary candidate for many years, but the efforts to strengthen this material have not been successful. Recently, a new glass compostion-oxyfloride glass (OFG)-has been promoted as an ideal solution in the sense that it will allow fabricating large "athermal" windows for operation at the chemical oxygen-iodine laser wavelength. It is, therefore, of interest to properly assess the merits of OFG in comparison to CaF2, which we do here on the basis of available (Dec '04) property data for fusion-cast CaF2 and OFG. Oxyfloride glass was found to be deficient in regard to thermal diffusivity, which may lead to excessive coating-induced compressive stresses, and stress- birefringence, which rules out creating a distortion-free window. It is suggested that future efforts should be directed at strengthening CaF2 in view of this material's exceptionally low absorbtion and almost no stress-birefringence

  8. Structural basis for immunization with postfusion respiratory syncytial virus fusion F glycoprotein (RSV F) to elicit high neutralizing antibody titers

    SciTech Connect

    Swanson, Kurt A.; Settembre, Ethan C.; Shaw, Christine A.; Dey, Antu K.; Rappuoli, Rino; Mandl, Christian W.; Dormitzer, Philip R.; Carfi, Andrea (Novartis)

    2012-02-07

    Respiratory syncytial virus (RSV), the main cause of infant bronchiolitis, remains a major unmet vaccine need despite more than 40 years of vaccine research. Vaccine candidates based on a chief RSV neutralization antigen, the fusion (F) glycoprotein, have foundered due to problems with stability, purity, reproducibility, and potency. Crystal structures of related parainfluenza F glycoproteins have revealed a large conformational change between the prefusion and postfusion states, suggesting that postfusion F antigens might not efficiently elicit neutralizing antibodies. We have generated a homogeneous, stable, and reproducible postfusion RSV F immunogen that elicits high titers of neutralizing antibodies in immunized animals. The 3.2-{angstrom} X-ray crystal structure of this substantially complete RSV F reveals important differences from homology-based structural models. Specifically, the RSV F crystal structure demonstrates the exposure of key neutralizing antibody binding sites on the surface of the postfusion RSV F trimer. This unanticipated structural feature explains the engineered RSV F antigen's efficiency as an immunogen. This work illustrates how structural-based antigen design can guide the rational optimization of candidate vaccine antigens.

  9. Advanced Concepts: Aneutronic Fusion Power and Propulsion

    NASA Technical Reports Server (NTRS)

    Chapman, John J.

    2012-01-01

    Aneutronic Fusion for In-Space thrust, power. Clean energy & potential nuclear gains. Fusion plant concepts, potential to use advanced fuels. Methods to harness ionic momentum for high Isp thrust plus direct power conversion into electricity will be presented.

  10. Assisted fusion

    E-print Network

    German Kälbermann

    2009-10-19

    A model of nuclear fusion consisting of a wave packet impinging into a well located between square one dimensional barriers is treated analytically. The wave function inside the well is calculated exactly for the assisted tunneling induced by a perturbation mimicking a constant electric field with arbitrary time dependence. Conditions are found for the enhancement of fusion.

  11. Image fusion

    NASA Technical Reports Server (NTRS)

    Pavel, M.

    1993-01-01

    The topics covered include the following: a system overview of the basic components of a system designed to improve the ability of a pilot to fly through low-visibility conditions such as fog; the role of visual sciences; fusion issues; sensor characterization; sources of information; image processing; and image fusion.

  12. Plasma transport control and self-sustaining fusion reactor

    SciTech Connect

    Ono, M.; Bell, R.; Choe, W. [and others

    1997-02-01

    The possibility of a high performance/low cost fusion reactor concept which can simultaneously satisfy (1) high beta, (2) high bootstrap fraction (self-sustaining), and (3) high confinement is discussed. In CDX-U, a tokamak configuration was created and sustained solely by internally generated bootstrap currents, in which a seed current is created through a non-classical current diffusion process. Recent theoretical studies of MHD stability limits in spherical torus [e.g., the National Spherical Torus Experiment (NSTX)] produced a promising regime with stable beta of 45% and bootstrap current fraction of {ge}99%. Since the bootstrap current is generated by the pressure gradient, to satisfy the needed current profile for MHD stable high beta regimes, it is essential to develop a means to control the pressure profile. It is suggested that the most efficient approach for pressure profile control is through a creation of transport barriers (localized regions of low plasma transport) in the plasma. As a tool for creating the core transport barrier, poloidal-sheared-flow generation by ion Bernstein waves (IBW) near the wave absorption region appears to be promising. In PBX-M, application of IBW power produced a high-quality internal transport barrier where the ion energy and particle transport became neoclassical in the barrier region. The observation is consistent with the IBW-induced-poloidal-sheared-flow model. An experiment is planned on TFTR to demonstrate this concept with D-T reactor-grade plasmas. For edge transport control, a method based on electron ripple injection (ERI), driven by electron cyclotron heating (ECH), is being developed on CDX-U. It is estimated that both the IBW and ERI methods can create a transport barrier in reactor-grade plasmas (e.g., ITER) with a relatively small amount of power ({approx}10 MW {much_lt} P{sub fusion}).

  13. High affinity (/sup 3/H). beta. -Alanine uptake by scar margins of ferric chloride-induced epileptogenic foci in rat isocortex

    SciTech Connect

    Robitaille, Y.; Sherwin, A.

    1984-07-01

    Cortical astrocytes of normal mammalian brain are endowed with a high affinity uptake system for ..beta..-Alanine which is competitively inhibited by gamma aminobutyric acid (GABA), a neurotransmitter strongly implicated in epileptogenesis. The authors evaluated (/sup 3/H) ..beta..-Alanine uptake by reactive astrocytes proliferating within scar of epileptogenic foci induced in rat motor cortex by microinjections of 100 mM ferric chloride. Following in vitro incubation of scar tissue with (/sup 3/H) ..beta..-Alanine, ultrastructural morphometry of grain patterns at 5, 30 and 120 days post injection revealed early and significant grain count increases over astroglial processes, predominantly those related to perivascular glial end-feet. Astrocytic cell body and endothelial cell counts showed a more gradual and stepwise increase. Similar data were obtained by comparing visual and edited mean astrocytic grain counts. These results suggest that the enhanced uptake of reactive astrocytes may reflect a marked decrease of inhibitory GABAergic neurons within ferric chloride-induced scars. 7 figures, 1 table.

  14. Chemistry and structure of beta silicon carbide implanted with high-dose aluminum. [168 keV

    SciTech Connect

    Du, Honghua; Yang, Zunde; Libera, M. (Stevens Inst. of Tech., Hoboken, NJ (United States). Dept. of Materials Science and Engineering); Jacobson, D.C. (AT and T Bell Laboratories, Murray Hill, NJ (United States)); Wang, Yu C.; Davis, R.F. (North Carolina State Univ., Raleigh, NC (United States). Dept. of Materials Science and Engineering)

    1993-02-01

    Single-crystal [beta]-SiC was implanted with aluminum to 3.90 x 10[sup 17] ions/cm[sup 2] at 168 keV at 773 K. The resultant compositional and structural characteristics were studied by Rutherford backscattering spectrometry. Auger electron spectroscopy, X-ray photoelectron spectroscopy, and cross-sectional transmission electron microscopy. No aluminum redistribution was observed during implantation. The Si-to-C ratio exhibited a negative deviation from unity in the implanted region. The shift in the photoelectron binding energies indicated the formation of aluminum carbide. The studies by electron microscopy showed that the implanted region consists of slightly misoriented [beta]-SiC crystals and textured crystalline aluminum carbide precipitates.

  15. High Prevalence of Extended-Spectrum Beta Lactamases among Salmonella enterica Typhimurium Isolates from Pediatric Patients with Diarrhea in China

    Microsoft Academic Search

    Fangyou Yu; Qiang Chen; Xiaojun Yu; Qiaoqiao Li; Baixing Ding; Lehe Yang; Cong Chen; Zhiqiang Qin; Chris Parsons; Xueqing Zhang; Jinwei Huang; Yun Luo; Liangxing Wang; Jingye Pan; Stefan Bereswill

    2011-01-01

    We investigated the extended-spectrum beta lactamases among 62 Salmonella enterica Typhimurium isolates recovered from children with diarrhea in a Chinese pediatric hospital. A large proportion of S. enterica Typhimurium isolates were resistant to multiple antimicrobial agents, including ampicillin (90.3%), tetracycline (80.6%), trimethoprim\\/sulfamethoxazole (74.2%), chloramphenicol (66.1%), cefotaxime (27.4%). Forty-nine (79.0%) of S. enterica Typhimurium isolates were positive for blaTEM-1b and resistant

  16. High-resolution spectroscopy used to measure inertial confinement fusion neutron spectra on Omega (invited)

    SciTech Connect

    Forrest, C. J.; Radha, P. B.; Glebov, V. Yu.; Goncharov, V. N.; Knauer, J. P.; Pruyne, A.; Romanofsky, M.; Sangster, T. C.; Shoup, M. J. III; Stoeckl, C. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623-1299 (United States); Casey, D. T.; Gatu-Johnson, M. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307 (United States); Gardner, S. [Constellation Energy Nuclear Group, Ontario, New York 14519 (United States)

    2012-10-15

    The areal density ({rho}R) of cryogenic DT implosions on Omega is inferred by measuring the spectrum of neutrons that elastically scatter off the dense deuterium (D) and tritium (T) fuel. Neutron time-of-flight (nTOF) techniques are used to measure the energy spectrum with high resolution. High signal-to-background data has been recorded on cryogenic DT implosions using a well-collimated 13.4-m line of sight and an nTOF detector with an advanced liquid scintillator compound. An innovative method to analyze the elastically scattered neutron spectra was developed using well-known cross sections of the DT nuclear reactions. The estimated areal densities are consistent with alternative {rho}R measurements and 1-D simulations.

  17. Spectroscopy of multiply charged titanium ions in high-density magnetic fusion plasmas

    SciTech Connect

    Clementson, J T; Beiersdorfer, P; Wood, R D

    2008-08-27

    The M-shell line emission from multiply charged titanium ions has been investigated at the sustained spheromak physics experiment in Livermore. Titanium was introduced into the relatively low-temperature, high-density magnetically confined spheromak plasmas using a titanium gettering system. The measurements were done using a high-resolution grazing-incidence spectrometer with a 1200 lines/mm grating and a Photometrics charged-coupled device camera. Spectral lines from the transition array 3s{sup 2}3p{sup k}-3s{sup 2}3p{sup k-1}3d in argon-like Ti{sup 4+}, chlorine-like Ti{sup 5+}, and sulfur-like Ti{sup 6+} have been observed in the 240-370 {angstrom} interval.

  18. High-heat-flux testing of helium-cooled heat exchangers for fusion applications

    Microsoft Academic Search

    D. L. Youchison; M. G. Izenson; C. B. Baxi; J. H. Rosenfeld

    1996-01-01

    High-heat-flux experiments on three types of helium-cooled divertor mock-ups were performed on the 30-kW electron beam test system and its associated helium flow loop at Sandia National Laboratories. A dispersion-strengthened copper alloy (DSCu) was used in the manufacture of all the mock-ups. The first heat exchanger provides for enhanced heat transfer at relatively low flow rates and much reduced pumping

  19. A method for high-frequency intergeneric fusion of plant protoplasts

    Microsoft Academic Search

    K. N. Kao; M. R. Michayluk

    1974-01-01

    Protoplasts of Vicia hajastana Grossh. obtained from suspension-culture cells and Pisum sativum L. obtained from leaves adhered tightly to each other in concentrated solutions of high-molecular-weight polyethylene glycol (PEG). The adhesion occurred non-specifically between the free protoplasts from the same species as well as from the different species and genus. It was enhanced by enrichment of the PEG solution with

  20. Quantitative autoradiography of. beta. /sub 1/- and. beta. /sub 2/-adrenergic receptors in rat brain

    SciTech Connect

    Rainbow, T.C.; Parsons, B.; Wolfe, B.B.

    1984-03-01

    The authors used quantitative autoradiography to localize in rat brain ..beta../sub 1/- and ..beta../sub 2/-adrenergic receptors. These receptors were labeled in vitro with /sup 125/I-labeled pindolol, an antagonist of ..beta..-adrenergic receptors that binds nonselectively to both ..beta../sub 1/ and ..beta../sub 2/ subtypes. The selective inhibition of /sup 125/I-labeled pindolol binding with specific antagonists of ..beta../sub 1/ and ..beta../sub 2/ receptors allowed the visualization of ..beta..-adrenergic receptor subtypes. High levels of ..beta../sub 1/ receptors were observed in the cingulate cortex, layers I and II of the cerebral cortex, the hippocampus, the Islands of Calleja, and the gelatinosus, mediodorsal, and ventral nuclei of the thalamus. High levels of ..beta../sub 2/ receptors were found in the molecular layer of the cerebellum, over pia mater, and in the central, paraventricular, and caudal lateral posterior thalamic nuclei. Approximately equal levels of ..beta../sub 1/ and ..beta../sub 2/ receptors occurred in the substantia nigra, the olfactory tubercle, layer IV of the cerebral cortex, the medial preoptic nucleus, and all nuclei of the medulla. The pronounced differences in the ratio of ..beta../sub 1/ to ..beta../sub 2/ receptors among brain regions suggests that the subtypes of ..beta..-adrenergic receptors may play different roles in neuronal function. 38 references, 3 figures, 1 table.