Science.gov

Sample records for high-capacity bidirectional glucose

  1. CSTI High Capacity Power

    NASA Technical Reports Server (NTRS)

    Winter, Jerry M.

    1989-01-01

    The SP-100 program was established in 1983 by DOD, DOE, and NASA as a joint program to develop the technology necessary for space nuclear power systems for military and civil application. During FY-86 and 87, the NASA SP-100 Advanced Technology Program was devised to maintain the momentum of promising technology advancement efforts started during Phase 1 of SP-100 and to strengthen, in key areas, the chances for successful development and growth capability of space nuclear reactor power systems for future space applications. In FY-88, the Advanced Technology Program was incorporated into NASA's new Civil Space Technology Initiative (CSTI). The CSTI Program was established to provide the foundation for technology development in automation and robotics, information, propulsion, and power. The CSTI High Capacity Power Program builds on the technology efforts of the SP-100 program, incorporates the previous NASA SP-100 Advanced Technology project, and provides a bridge to NASA Project Pathfinder. The elements of CSTI High Capacity Power development include Conversion Systems, Thermal Management, Power Management, System Diagnostics, and Environmental Interactions. Technology advancement in all areas, including materials, is required to assure the high reliability and 7 to 10 year lifetime demanded for future space nuclear power systems. The overall program will develop and demonstrate the technology base required to provide a wide range of modular power systems as well as allowing mission independence from solar and orbital attitude requirements. Several recent advancements in CSTI High Capacity power development will be discussed.

  2. CSTI high capacity power

    SciTech Connect

    Winter, J.M.

    1994-09-01

    The SP-100 program was established in 1983 by DOD, DOE, and NASA as a joint program to develop the technology necessary for space nuclear power systems for military and civil application. During FY86 and 87, the NASA SP-100 Advanced Technology Program was devised to maintain the momentum of promising technology advancement efforts started during Phase I of SP-100 and to strengthen, in key areas, the chances for successful development and growth capability of space nuclear reactor power systems for future space applications. In FY88, the Advanced Technology Program was incorporated into NASA`s new Civil Space Technology Initiative (CSTI). The CSTI Program was established to provide the foundation for technology development in automation and robotics, information, propulsion, and power. The CSTI High Capacity Power Program builds on the technology efforts of the SP-100 program, incorporates the previous NASA SP-100 Advanced Technology project, and provides a bridge to NASA Project Pathfinder. The elements of CSTI High Capacity Power development include Conversion Systems, Thermal Management, Power Management, System Diagnostics, and Environmental Interactions. Technology advancement in all areas, including materials, is required to assure the high reliability and 7 to 10 year lifetime demanded for future space nuclear power systems. The overall program will develop and demonstrate the technology base required to provide a wide range of modular power systems as well as allowing mission independence from solar and orbital attitude requirements. Several recent advancements in CSTI High Capacity power development will be discussed.

  3. High capacity oil burner

    SciTech Connect

    Pedrosa, O.A. Jr.; Couto, N.C.; Fanqueiro, R.C.C.

    1983-11-01

    The present invention relates to a high capacity oil burner comprising a cylindrical atomizer completely surrounded by a protective cylindrical housing having a diameter from 2 to 3 times greater than the diameter of said atomizer; liquid fuels being injected under pressure into said atomizer and accumulating within said atomizer in a chamber for the accumulation of liquid fuels, and compressed air being injected into a chamber for the accumulation of air; cylindrical holes communicating said chamber for the accumulation of liquid fuels with the outside and cylindrical holes communicating said chamber for the accumulation of air with said cylindrical holes communicating the chamber for the accumulation of liquids with the outside so that the injection of compressed air into said liquid fuel discharge holes atomizes said fuel which is expelled to the outside through the end portions of said discharge holes which are circumferentially positioned to be burnt by a pilot flame; said protecting cylindrical housing having at its ends perforated circular rings into which water is injected under pressure to form a protecting fan-like water curtain at the rear end of the housing and a fan-like water curtain at the flame to reduce the formation of soot; the burning efficiency of said burner being superior to 30 barrels of liquid fuel per day/kg of the apparatus.

  4. Bidirectional amplifier

    DOEpatents

    Wright, James T.

    1986-01-01

    A bilateral circuit is operable for transmitting signals in two directions without generation of ringing due to feedback caused by the insertion of the circuit. The circuit may include gain for each of the signals to provide a bidirectional amplifier. The signals are passed through two separate paths, with a unidirectional amplifier in each path. A controlled sampling device is provided in each path for sampling the two signals. Any feedback loop between the two signals is disrupted by providing a phase displacement between the control signals for the two sampling devices.

  5. Bidirectional amplifier

    DOEpatents

    Wright, J.T.

    1984-02-02

    A bilateral circuit is operable for transmitting signals in two directions without generation of ringing due to feedback caused by the insertion of the circuit. The circuit may include gain for each of the signals to provide a bidirectional amplifier. The signals are passed through two separate paths, with a unidirectional amplifier in each path. A controlled sampling device is provided in each path for sampling the two signals. Any feedback loop between the two signals is disrupted by providing a phase displacement between the control signals for the two sampling devices.

  6. Bidirectional visibility

    NASA Astrophysics Data System (ADS)

    Rasmussen, William O.

    1994-01-01

    The percentage of the cross-sectional area of two objects (e.g., vehicles, hikers, or animals) that can be seen from each of their locations in a forested area is generally not the same. There is a directionality to the visibility between them. This is due to the relative positions and sizes of the vegetation and other view-blocking features between the objects. An analytical technique has been developed to help understand bidirectional visibility. Its use entails the construction of a visibility diagram containing the basic visibility information between observers in a given setting. An example is presented showing the use of the visibility diagram to determine visibility between two moving observers in a forested environment. The diagram is also used to determine the differences in the percentage each observer has of the other's visible cross-sectional area (bidirectional visibility). A discussion of the application of the technique in the planning or development of new facilities, as well as in forest and wildlife management, is provided.

  7. Implementation method of a core SONET/SDH switch with high capacity

    NASA Astrophysics Data System (ADS)

    Zhang, JinQi

    2004-05-01

    An implementation method of a core SONET/SDH switch with high capacity is introduced in the paper. High-speed serial I/O, switching architectures and design considerations for switching unit are involved. It supports strictly non-blocking for unicast traffic and re-arrangeably non-blocking for dual-cast. Dualcast traffic allows for efficient scheduling of working and protection paths in UPSR(Unidirectional Path Switched Ring)/BLSR (Bidirectional Line Switched Ring) applications.

  8. Bidirectional Manchester repeater

    NASA Technical Reports Server (NTRS)

    Ferguson, J.

    1980-01-01

    Bidirectional Manchester repeater is inserted at periodic intervals along single bidirectional twisted pair transmission line to detect, amplify, and transmit bidirectional Manchester 11 code signals. Requiring only 18 TTL 7400 series IC's, some line receivers and drivers, and handful of passive components, circuit is simple and relatively inexpensive to build.

  9. A high capacity 3D steganography algorithm.

    PubMed

    Chao, Min-Wen; Lin, Chao-hung; Yu, Cheng-Wei; Lee, Tong-Yee

    2009-01-01

    In this paper, we present a very high-capacity and low-distortion 3D steganography scheme. Our steganography approach is based on a novel multilayered embedding scheme to hide secret messages in the vertices of 3D polygon models. Experimental results show that the cover model distortion is very small as the number of hiding layers ranges from 7 to 13 layers. To the best of our knowledge, this novel approach can provide much higher hiding capacity than other state-of-the-art approaches, while obeying the low distortion and security basic requirements for steganography on 3D models. PMID:19147891

  10. The NASA CSTI High Capacity Power Project

    NASA Technical Reports Server (NTRS)

    Winter, J.; Dudenhoefer, J.; Juhasz, A.; Schwarze, G.; Patterson, R.; Ferguson, D.; Schmitz, P.; Vandersande, J.

    1992-01-01

    The elements of the Civilian Space Technology Initiative (CSTI) High Capacity Power Project include Systems Analysis, Stirling Power Conversion, Thermoelectric Power Conversion, Thermal Management, Power Management, Systems Diagnostics, Environmental Interactions, and Material/Structural Development. The overall project will develop and demonstrate the technology base required to provide a wide range of modular power systems compatible with the SP-100 reactor which facilitates operation during lunar and planetary day/night cycles as well as allowing spacecraft operation at any attitude or distance from the sun. Significant accomplishments in all of the project elements are presented, along with revised goals and project timelines recently developed.

  11. High capacity image barcodes using color separability

    NASA Astrophysics Data System (ADS)

    Bulan, Orhan; Oztan, Basak; Sharma, Gaurav

    2011-01-01

    Two-dimensional barcodes are widely used for encoding data in printed documents. In a number of applications, the visual appearance of the barcode constitutes a fundamental restriction. In this paper, we propose high capacity color image barcodes that encode data in an image while preserving its basic appearance. Our method aims at high embedding rates and sacrifices image fidelity in favor of embedding robustness in regions where these two goals conflict with each other. The method operates by utilizing cyan, magenta, and yellow printing channels with elongated dots whose orientations are modulated in order to encode the data. At the receiver, by using the complementary sensor channels to estimate the colorant channels, data is extracted in each individual colorant channel. In order to recover from errors introduced in the channel, error correction coding is employed. Our simulation and experimental results indicate that the proposed method can achieve high encoding rates while preserving the appearance of the base image.

  12. The NASA CSTI High Capacity Power Program

    SciTech Connect

    Winter, J.M.

    1994-09-01

    The SP-100 program was established in 1983 by DOD, DOE, and NASA as a joint program to develop the technology necessary for space nuclear power systems for military and civil applications. During 1986 and 1987, the NASA Advanced Technology Program was responsible for maintaining the momentum of promising technology advancement efforts started during Phase I of SP-100 and to strengthen, in key areas, the chances for successful development and growth capability of space nuclear reactor power systems for future space applications. In 1988, the NASA Advanced Technology Program was incorporated into NASA`s new Civil Space Technology Initiative (CSTI). The CSTI program was established to provide the foundation for technology development in automation and robotics, information, propulsion, and power. The CSTI High Capacity Power Program builds on the technology efforts of the SP-100 program, incorporates the previous NASA advanced technology project, and provides a bridge to the NASA exploration technology programs. The elements of CSTI high capacity power development include conversion systems - Stirling and thermoelectric, thermal management, power management, system diagnostics, and environmental interactions. Technology advancement in all areas, including materials, is required to provide the growth capability, high reliability and 7 to 10 years lifetime demanded for future space nuclear power systems. The overall program will develop and demonstrate the technology base required to provide a wide range of modular power systems while minimizing the impact of day/night operation as well as attitudes and distance from the Sun. Significant accomplishments in all of the program elements will be discussed, along with revised goals and project timelines recently developed.

  13. The NASA CSTI High Capacity Power Program

    NASA Technical Reports Server (NTRS)

    Winter, Jerry M.

    1991-01-01

    The SP-100 program was established in 1983 by DOD, DOE, and NASA as a joint program to develop the technology necessary for space nuclear power systems for military and civil applications. During 1986 and 1987, the NASA Advanced Technology Program was responsible for maintaining the momentum of promising technology advancement efforts started during Phase 1 of SP-100 and to strengthen, in key areas, the chances for successful development and growth capability of space nuclear reactor power systems for future space applications. In 1988, the NASA Advanced Technology Program was incorporated into NASA's new Civil Space Technology Initiative (CSTI). The CSTI program was established to provide the foundation for technology development in automation and robotics, information, propulsion, and power. The CSTI High Capacity Power Program builds on the technology efforts of the SP-100 program, incorporates the previous NASA advanced technology project, and provides a bridge to the NASA exploration technology programs. The elements of CSTI high capacity power development include conversion systems: Stirling and thermoelectric, thermal management, power management, system diagnostics, and environmental interactions. Technology advancement in all areas, including materials, is required to provide the growth capability, high reliability, and 7 to 10 year lifetime demanded for future space nuclear power systems. The overall program will develop and demonstrate the technology base required to provide a wide range of modular power systems while minimizing the impact of day/night operations as well as attitudes and distance from the Sun. Significant accomplishments in all of the program elements will be discussed, along with revised goals and project timelines recently developed.

  14. Development of high-capacity antimatter storage

    NASA Astrophysics Data System (ADS)

    Howe, Steven D.; Smith, Gerald A.

    2000-01-01

    Space is vast. Over the next few decades, humanity will strive to send probes farther and farther into space to establish long baselines for interferometry, to visit the Kuiper Belt, to identify the heliopause, or to map the Oort cloud. In order to solve many of the mysteries of the universe or to explore the solar system and beyond, one single technology must be developed-high performance propulsion. In essence, future missions to deep space will require specific impulses between 50,000 and 200,000 seconds and energy densities greater than 1014 j/kg in order to accomplish the mission within the career lifetime of an individual, 40 years. Only two technologies available to mankind offer such performance-fusion and antimatter. Currently envisioned fusion systems are too massive. Alternatively, because of the high energy density, antimatter powered systems may be relatively compact. The single key technology that is required to enable the revolutionary concept of antimatter propulsion is safe, reliable, high-density storage. Under a grant from the NASA Institute of Advanced Concepts, we have identified two potential mechanisms that may enable high capacity antimatter storage systems to be built. We will describe planned experiments to verify the concepts. Development of a system capable of storing megajoules per gram will allow highly instrumented platforms to make fast missions to great distances. Such a development will open the universe to humanity. .

  15. High capacity heat pipe performance demonstration

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A high capacity heat pipe which will operate in one-g and in zero-g is investigated. An artery configuration which is self-priming in one-g was emphasized. Two artery modifications were evolved as candidates to achieve one-g priming and will provide the very high performance: the four artery and the eight artery configurations. These were each evaluated analytically for performance and priming capability. The eight artery configuration was found to be inadequate from a performance standpoint. The four artery showed promise of working. A five-inch long priming element test article was fabricated using the four artery design. Plexiglas viewing windows were made on each end of the heat pipe to permit viewing of the priming activity. The five-inch primary element would not successfully prime in one-g. Difficulties on priming in one-g raised questions about zero-g priming. Therefore a small test element heat pipe for verifying that the proposed configuration will self-prime in zero-g was fabricated and delivered.

  16. The NASA CSTI High Capacity Power Project

    SciTech Connect

    Winter, J.; Dudenhoefer, J.; Juhasz, A.; Schwarze, G.; Patterson, R.; Ferguson, D.; Titran, R.; Schmitz, P.; Vandersande, J.

    1994-09-01

    The SP-100 Space Nuclear Power Program was established in 1983 by DOD, DOE, and NASA as a joint program to develop technology for military and civil applications. Starting in 1986, NASA has funded a technology program to maintain the momentum of promising aerospace technology advancement started during Phase I of SP-100 and to strengthen, in key areas, the changes for successful development and growth capability of space nuclear reactor power systems for a wide range of future space applications. The elements of the CSTI High Capacity Power Project include Systems Analysis, Stirling Power Conversion, Thermoelectric Power Conversion, Thermal Management, Power Management, Systems Diagnostics, Environmental Interactions, and Material/Structural Development. Technology advancement in all elements is required to provide the growth capability, high reliability and 7 to 10 year lifetime demanded for future space nuclear power systems. The overall project with develop and demonstrate the technology base required to provide a wide range of modular power systems compatible with the SP-100 reactor which facilitates operation during lunar and planetary day/night cycles as well as allowing spacecraft operation at any attitude or distance from the sun. Significant accomplishments in all of the project elements will be presented, along with revised goals and project timelines recently developed.

  17. The NASA CSTI high capacity power project

    NASA Technical Reports Server (NTRS)

    Winter, J.; Dudenhoefer, J.; Juhasz, A.; Schwarze, G.; Patterson, R.; Ferguson, D.; Titran, R.; Schmitz, P.; Vandersande, J.

    1992-01-01

    The SP-100 Space Nuclear Power Program was established in 1983 by DOD, DOE, and NASA as a joint program to develop technology for military and civil applications. Starting in 1986, NASA has funded a technology program to maintain the momentum of promising aerospace technology advancement started during Phase 1 of SP-100 and to strengthen, in key areas, the chances for successful development and growth capability of space nuclear reactor power systems for a wide range of future space applications. The elements of the Civilian Space Technology Initiative (CSTI) High Capacity Power Project include Systems Analysis, Stirling Power Conversion, Thermoelectric Power Conversion, Thermal Management, Power Management, Systems Diagnostics, Environmental Interactions, and Material/Structural Development. Technology advancement in all elements is required to provide the growth capability, high reliability and 7 to 10 year lifetime demanded for future space nuclear power systems. The overall project will develop and demonstrate the technology base required to provide a wide range of modular power systems compatible with the SP-100 reactor which facilitates operation during lunar and planetary day/night cycles as well as allowing spacecraft operation at any attitude or distance from the sun. Significant accomplishments in all of the project elements will be presented, along with revised goals and project timelines recently developed.

  18. High-Capacity Communications from Martian Distances

    NASA Technical Reports Server (NTRS)

    Williams, W. Dan; Collins, Michael; Hodges, Richard; Orr, Richard S.; Sands, O. Scott; Schuchman, Leonard; Vyas, Hemali

    2007-01-01

    High capacity communications from Martian distances, required for the envisioned human exploration and desirable for data-intensive science missions, is challenging. NASA s Deep Space Network currently requires large antennas to close RF telemetry links operating at kilobit-per-second data rates. To accommodate higher rate communications, NASA is considering means to achieve greater effective aperture at its ground stations. This report, focusing on the return link from Mars to Earth, demonstrates that without excessive research and development expenditure, operational Mars-to-Earth RF communications systems can achieve data rates up to 1 Gbps by 2020 using technology that today is at technology readiness level (TRL) 4-5. Advanced technology to achieve the needed increase in spacecraft power and transmit aperture is feasible at an only moderate increase in spacecraft mass and technology risk. In addition, both power-efficient, near-capacity coding and modulation and greater aperture from the DSN array will be required. In accord with these results and conclusions, investment in the following technologies is recommended:(1) lightweight (1 kg/sq m density) spacecraft antenna systems; (2) a Ka-band receive ground array consisting of relatively small (10-15 m) antennas; (3) coding and modulation technology that reduces spacecraft power by at least 3 dB; and (4) efficient generation of kilowatt-level spacecraft RF power.

  19. Towards green high capacity optical networks

    NASA Astrophysics Data System (ADS)

    Glesk, I.; Mohd Warip, M. N.; Idris, S. K.; Osadola, T. B.; Andonovic, I.

    2012-02-01

    The demand for fast, secure, energy efficient high capacity networks is growing. It is fuelled by transmission bandwidth needs which will support among other things the rapid penetration of multimedia applications empowering smart consumer electronics and E-businesses. All the above trigger unparallel needs for networking solutions which must offer not only high-speed low-cost "on demand" mobile connectivity but should be ecologically friendly and have low carbon footprint. The first answer to address the bandwidth needs was deployment of fibre optic technologies into transport networks. After this it became quickly obvious that the inferior electronic bandwidth (if compared to optical fiber) will further keep its upper hand on maximum implementable serial data rates. A new solution was found by introducing parallelism into data transport in the form of Wavelength Division Multiplexing (WDM) which has helped dramatically to improve aggregate throughput of optical networks. However with these advancements a new bottleneck has emerged at fibre endpoints where data routers must process the incoming and outgoing traffic. Here, even with the massive and power hungry electronic parallelism routers today (still relying upon bandwidth limiting electronics) do not offer needed processing speeds networks demands. In this paper we will discuss some novel unconventional approaches to address network scalability leading to energy savings via advance optical signal processing. We will also investigate energy savings based on advanced network management through nodes hibernation proposed for Optical IP networks. The hibernation reduces the network overall power consumption by forming virtual network reconfigurations through selective nodes groupings and by links segmentations and partitionings.

  20. Towards green high capacity optical networks

    NASA Astrophysics Data System (ADS)

    Glesk, I.; Mohd Warip, M. N.; Idris, S. K.; Osadola, T. B.; Andonovic, I.

    2011-09-01

    The demand for fast, secure, energy efficient high capacity networks is growing. It is fuelled by transmission bandwidth needs which will support among other things the rapid penetration of multimedia applications empowering smart consumer electronics and E-businesses. All the above trigger unparallel needs for networking solutions which must offer not only high-speed low-cost "on demand" mobile connectivity but should be ecologically friendly and have low carbon footprint. The first answer to address the bandwidth needs was deployment of fibre optic technologies into transport networks. After this it became quickly obvious that the inferior electronic bandwidth (if compared to optical fiber) will further keep its upper hand on maximum implementable serial data rates. A new solution was found by introducing parallelism into data transport in the form of Wavelength Division Multiplexing (WDM) which has helped dramatically to improve aggregate throughput of optical networks. However with these advancements a new bottleneck has emerged at fibre endpoints where data routers must process the incoming and outgoing traffic. Here, even with the massive and power hungry electronic parallelism routers today (still relying upon bandwidth limiting electronics) do not offer needed processing speeds networks demands. In this paper we will discuss some novel unconventional approaches to address network scalability leading to energy savings via advance optical signal processing. We will also investigate energy savings based on advanced network management through nodes hibernation proposed for Optical IP networks. The hibernation reduces the network overall power consumption by forming virtual network reconfigurations through selective nodes groupings and by links segmentations and partitionings.

  1. Bidirectional slapper detonator

    DOEpatents

    McCormick, Robert N.; Boyd, Melissa D.

    1984-01-01

    The disclosure is directed to a bidirectional slapper detonator. One embodiment utilizes a single bridge circuit to detonate a pair of opposing initiating pellets. A line generator embodiment uses a plurality of bridges in electrical series to generate opposing cylindrical wavefronts.

  2. Bidirectional grating compressors

    NASA Astrophysics Data System (ADS)

    Wang, Cheng; Li, Zhaoyang; Li, Shuai; Liu, Yanqi; Leng, Yuxin; Li, Ruxin

    2016-07-01

    A bidirectional grating compressor for chirped pulse amplifiers is presented. It compresses a laser beam simultaneously in two opposite directions. The pulse compressor is shown to promote chirped pulse amplifiers' output energy without grating damages. To verify the practicability, an experiment is carried out. In addition, a crosscorrelation instrument is designed and set up to test the time synchronization between these two femtosecond pulses.

  3. High capacity anode materials for lithium ion batteries

    SciTech Connect

    Lopez, Herman A.; Anguchamy, Yogesh Kumar; Deng, Haixia; Han, Yongbon; Masarapu, Charan; Venkatachalam, Subramanian; Kumar, Suject

    2015-11-19

    High capacity silicon based anode active materials are described for lithium ion batteries. These materials are shown to be effective in combination with high capacity lithium rich cathode active materials. Supplemental lithium is shown to improve the cycling performance and reduce irreversible capacity loss for at least certain silicon based active materials. In particular silicon based active materials can be formed in composites with electrically conductive coatings, such as pyrolytic carbon coatings or metal coatings, and composites can also be formed with other electrically conductive carbon components, such as carbon nanofibers and carbon nanoparticles. Additional alloys with silicon are explored.

  4. High capacity nickel battery material doped with alkali metal cations

    DOEpatents

    Jackovitz, John F.; Pantier, Earl A.

    1982-05-18

    A high capacity battery material is made, consisting essentially of hydrated Ni(II) hydroxide, and about 5 wt. % to about 40 wt. % of Ni(IV) hydrated oxide interlayer doped with alkali metal cations selected from potassium, sodium and lithium cations.

  5. Bidirectional reflectance of zinc oxide

    NASA Technical Reports Server (NTRS)

    Scott, R.

    1973-01-01

    This investigation was undertaken to determine original and useful information about the bidirection reflectance of zinc oxide. The bidirectional reflectance will be studied for the spectra between .25-2.5 microns and the hemisphere above the specimen. The following factors will be considered: (1) surface conditions; (2) specimen preparation; (3) specimen substrate, (4) polarization; (5) depolarization; (6) wavelength; and (7) angles of incident and reflection. The bidirectional reflectance will be checked by experimentally determined angular hemispherical measurements or hemispherical measurements will be used to obtain absolute bidirectional reflectance.

  6. Adaptive bidirectional associative memories.

    PubMed

    Kosko, B

    1987-12-01

    Bidirectionality, forward and backward information flow, is introduced in neural networks to produce two-way associative search for stored stimulus-response associations (A(i),B(i)). Two fields of neurons, F(A) and F(B), are connected by an n x p synaptic marix M. Passing information through M gives one direction, passing information through its transpose M(T) gives the other. Every matrix is bidirectionally stable for bivalent and for continuous neurons. Paired data (A(i),B(i)) are encoded in M by summing bipolar correlation matrices. The bidirectional associative memory (BAM) behaves as a two-layer hierarchy of symmetrically connected neurons. When the neurons in F(A) and F(B) are activated, the network quickly evolves to a stable state of twopattern reverberation, or pseudoadaptive resonance, for every connection topology M. The stable reverberation corresponds to a system energy local minimum. An adaptive BAM allows M to rapidly learn associations without supervision. Stable short-term memory reverberations across F(A) and F(B) gradually seep pattern information into the long-term memory connections M, allowing input associations (A(i),B(i)) to dig their own energy wells in the network state space. The BAM correlation encoding scheme is extended to a general Hebbian learning law. Then every BAM adaptively resonates in the sense that all nodes and edges quickly equilibrate in a system energy local minimum. A sampling adaptive BAM results when many more training samples are presented than there are neurons in F(B) and F(B), but presented for brief pulses of learning, not allowing learning to fully or nearly converge. Learning tends to improve with sample size. Sampling adaptive BAMs can learn some simple continuous mappings and can rapidly abstract bivalent associations from several noisy gray-scale samples. PMID:20523473

  7. Optical Bidirectional Associative Memories

    NASA Astrophysics Data System (ADS)

    Kosko, Bart; Guest, Clark

    1987-06-01

    Four optical implementations of bidirectional associative memories (BAMs) are presented. BAMs are heteroassociative content addressable memories (CAMs). A BAM stores the m binary associations (A1, B1), ..., (Am, Bm) , where A is a point in the Boolean n-cube and B is a point in the Boolean p-cube. A is a neural network of n bivalent or continuous neurons ai; B is a network of p bivalent or continuous neurons bi. The fixed synaptic connections between the A and B networks are represented by some n-by-p real matrix M. Bidirectionality, forward and backward information flow, in neural nets produces two-way associative search for the nearest stored pair (Ai, Bi) to an input key. Every matrix is a bidirectionally stable hetero-associative CAM for boh bivalent and continuous networks. This generalizes the well-known unidirectional stability for autoassociative networks with square symmetric M. When the BAM neurons are activated, the network quickly evolves to a stable state of two-pattern reverberation, or pseudo-adaptive resonance. The stable reverberation corresponds to a system energy local minimum. Heteroassociative pairs (Ai, Bi) are encoded in a BAM M by summing bipolar correlation matrices, M = X1T Y1 + ... + XmT Ym , where Xi (Yi) is the bipolar version of Ai (Bi), with -1s replacing Os. the BAM storage capacity for reliable recall is roughly m < min(n, p)--pattern number is bounded by pattern dimensionality. BAM optical implementations are divided into two approaches: matrix vector multipliers and holographic correlators. The four optical BAMs described respectively emphasize a spatial light modulator, laser diodes and high-speed detectors, a reflection hologram, and a transmission hologram.

  8. ac bidirectional motor controller

    NASA Technical Reports Server (NTRS)

    Schreiner, K.

    1988-01-01

    Test data are presented and the design of a high-efficiency motor/generator controller at NASA-Lewis for use with the Space Station power system testbed is described. The bidirectional motor driver is a 20 kHz to variable frequency three-phase ac converter that operates from the high-frequency ac bus being designed for the Space Station. A zero-voltage-switching pulse-density-modulation technique is used in the converter to shape the low-frequency output waveform.

  9. Bidirectional Brush Seals

    NASA Technical Reports Server (NTRS)

    Hendricks, Robert C.; Wilson, Jack; Wu, Tom; Flower, Ralph

    1997-01-01

    Presented is a study of the use of a set of I.D./O.D. bidirectional press seals to reduce the leakage losses in a wave rotor. Relative to the baseline configuration, data indicate the use of brush seals enhanced wave rotor efficiency from 36 to 45 percent at low leakages (small rotor endwall gap spacings) and from 15 to 33 percent at high leakages (larger endwall gap spacings). These brush seals are capable of sealing positive or negative pressure drops with respect to the axial direction. Surface tribology for these tests suggested little evidence of grooving although the bristles appeared polished.

  10. High Capacity Data Hiding in Binary Document Images

    NASA Astrophysics Data System (ADS)

    Puhan, N. B.; Ho, A. T. S.; Sattar, F.

    In this paper, we propose a high capacity data hiding method in binary document images towards semi-fragile authentication. Achieving high capacity in binary images with strict imperceptibility criterion is found to be a difficult task. In this method, noise type pixels are selected for pixel-wise data embedding using a secret key. The data hiding process through pixel flipping introduces some background noise in watermarked images and could preserve relevant information. The reversible nature of noise pixel patterns used in flipping process enables blind detection and provides high watermark capacity illustrated in different test images. After extraction process, the background noise is removed to generate the noise-free version of the watermarked image.

  11. Recycling rice husks for high-capacity lithium battery anodes.

    PubMed

    Jung, Dae Soo; Ryou, Myung-Hyun; Sung, Yong Joo; Park, Seung Bin; Choi, Jang Wook

    2013-07-23

    The rice husk is the outer covering of a rice kernel and protects the inner ingredients from external attack by insects and bacteria. To perform this function while ventilating air and moisture, rice plants have developed unique nanoporous silica layers in their husks through years of natural evolution. Despite the massive amount of annual production near 10(8) tons worldwide, so far rice husks have been recycled only for low-value agricultural items. In an effort to recycle rice husks for high-value applications, we convert the silica to silicon and use it for high-capacity lithium battery anodes. Taking advantage of the interconnected nanoporous structure naturally existing in rice husks, the converted silicon exhibits excellent electrochemical performance as a lithium battery anode, suggesting that rice husks can be a massive resource for use in high-capacity lithium battery negative electrodes. PMID:23836636

  12. A high capacity satellite switched TDMA microwave switch matrix

    NASA Technical Reports Server (NTRS)

    Cory, B. J.; Berkowitz, M.

    1981-01-01

    A description is given of the conceptual design of a high-capacity satellite switched-time division multiple access (SS-TDMA) microwave switch matrix fabricated with GaAs monolithic microwave integrated circuits (MMICs), including integration of both microwave and control logic circuits into the monolithic design. The technology required for a 30/20 GHz communications system includes an on-board SS-TDMA switch matrix. A conceptual design study that has been completed for a wideband, high-capacity (typically 100 x 100) channel switch matrix using technology anticipated for 1987 is described, noting that the study resulted in a switch matrix design concept using a coupled crossbar architecture implemented with MMIC. The design involves basic building block MMIC, permitting flexible growth and efficient wraparound redundancy to increase reliability.

  13. Recycling rice husks for high-capacity lithium battery anodes

    PubMed Central

    Jung, Dae Soo; Ryou, Myung-Hyun; Sung, Yong Joo; Park, Seung Bin; Choi, Jang Wook

    2013-01-01

    The rice husk is the outer covering of a rice kernel and protects the inner ingredients from external attack by insects and bacteria. To perform this function while ventilating air and moisture, rice plants have developed unique nanoporous silica layers in their husks through years of natural evolution. Despite the massive amount of annual production near 108 tons worldwide, so far rice husks have been recycled only for low-value agricultural items. In an effort to recycle rice husks for high-value applications, we convert the silica to silicon and use it for high-capacity lithium battery anodes. Taking advantage of the interconnected nanoporous structure naturally existing in rice husks, the converted silicon exhibits excellent electrochemical performance as a lithium battery anode, suggesting that rice husks can be a massive resource for use in high-capacity lithium battery negative electrodes. PMID:23836636

  14. A Statistical Theory of Bidirectionality

    NASA Technical Reports Server (NTRS)

    DeLoach, Richard; Ulbrich, Norbert

    2013-01-01

    Original concepts related to the quantification and assessment of bidirectionality in strain-gage balances were introduced by Ulbrich in 2012. These concepts are extended here in three ways: 1) the metric originally proposed by Ulbrich is normalized, 2) a categorical variable is introduced in the regression analysis to account for load polarity, and 3) the uncertainty in both normalized and non-normalized bidirectionality metrics is quantified. These extensions are applied to four representative balances to assess the bidirectionality characteristics of each. The paper is tutorial in nature, featuring reviews of certain elements of regression and formal inference. Principal findings are that bidirectionality appears to be a common characteristic of most balance outputs and that unless it is taken into account, it is likely to consume the entire error budget of a typical balance calibration experiment. Data volume and correlation among calibration loads are shown to have a significant impact on the precision with which bidirectionality metrics can be assessed.

  15. Development of a high capacity variable conductance heat pipe.

    NASA Technical Reports Server (NTRS)

    Kosson, R.; Hembach, R.; Edelstein, F.; Loose, J.

    1973-01-01

    The high-capacity, pressure-primed, tunnel-artery wick concept was used in a gas-controlled variable conductance heat pipe. A variety of techniques were employed to control the size of gas/vapor bubbles trapped within the artery. Successful operation was attained with a nominal 6-foot long, 1-inch diameter cold reservoir VCHP using ammonia working fluid and nitrogen control gas. The pipe contained a heat exchanger to subcool the liquid in the artery. Maximum transport capacity with a 46-inch effective length was 1200 watts level (more than 50,000 watt-inches) and 800 watts at 0.5-inch adverse tilt.

  16. High specific energy, high capacity nickel-hydrogen cell design

    NASA Technical Reports Server (NTRS)

    Wheeler, James R.

    1993-01-01

    A 3.5 inch rabbit-ear-terminal nickel-hydrogen cell has been designed and tested to deliver high capacity at a C/1.5 discharge rate. Its specific energy yield of 60.6 wh/kg is believed to be the highest yet achieved in a slurry-process nickel-hydrogen cell, and its 10 C capacity of 113.9 AH the highest capacity yet made at a discharge rate this high in the 3.5 inch diameter size. The cell also demonstrated a pulse capability of 180 amps for 20 seconds. Specific cell parameters, performance, and future test plans are described.

  17. Colloidal silica films for high-capacity DNA arrays

    NASA Astrophysics Data System (ADS)

    Glazer, Marc Irving

    The human genome project has greatly expanded the amount of genetic information available to researchers, but before this vast new source of data can be fully utilized, techniques for rapid, large-scale analysis of DNA and RNA must continue to develop. DNA arrays have emerged as a powerful new technology for analyzing genomic samples in a highly parallel format. The detection sensitivity of these arrays is dependent on the quantity and density of immobilized probe molecules. We have investigated substrates with a porous, "three-dimensional" surface layer as a means of increasing the surface area available for the synthesis of oligonucleotide probes, thereby increasing the number of available probes and the amount of detectable bound target. Porous colloidal silica films were created by two techniques. In the first approach, films were deposited by spin-coating silica colloid suspensions onto flat glass substrates, with the pores being formed by the natural voids between the solid particles (typically 23nm pores, 35% porosity). In the second approach, latex particles were co-deposited with the silica and then pyrolyzed, creating films with larger pores (36 nm), higher porosity (65%), and higher surface area. For 0.3 mum films, enhancements of eight to ten-fold and 12- to 14-fold were achieved with the pure silica films and the films "templated" with polymer latex, respectively. In gene expression assays for up to 7,000 genes using complex biological samples, the high-capacity films provided enhanced signals and performed equivalently or better than planar glass on all other functional measures, confirming that colloidal silica films are a promising platform for high-capacity DNA arrays. We have also investigated the kinetics of hybridization on planar glass and high-capacity substrates. Adsorption on planar arrays is similar to ideal Langmuir-type adsorption, although with an "overshoot" at high solution concentration. Hybridization on high-capacity films is

  18. High capacity 30 K remote helium cooling loop

    NASA Astrophysics Data System (ADS)

    Trollier, T.; Tanchon, J.; Icart, Y.; Ravex, A.

    2014-01-01

    Absolut System has built several 50 K remote helium cooling loops used as high capacity and very low vibration cooling source into large wavelength IR detectors electro-optical characterization test benches. MgB2 based superconducting electro-technical equipment's under development require also distributed high cooling power in the 20-30 K temperature range. Absolut System has designed, manufactured and tested a high capacity 30 K remote helium cooling loop. The equipment consists of a CRYOMECH AL325 type cooler, a CP830 type compressor package used as room temperature circulator and an intermediate LN2 bath cooling used between two recuperator heat exchangers (300 K-77 K and 77 K-20 K). A cooling capacity of 30 W @ 20 K or 80 W @ 30 K has been demonstrated on the application heat exchanger, with a 4-meter remote distance ensured by a specifically designed gas circulation flexible line. The design and the performance will be reported in this paper.

  19. High capacity aerodynamic air bearing (HCAB) for laser scanning applications

    NASA Astrophysics Data System (ADS)

    Coleman, Sean M.

    2005-08-01

    A high capacity aerodynamic air bearing (HCAB) has been developed for the laser scanning market. The need for increasing accuracies in the prepress and print plate-making market is causing a shift from ball bearing to air bearing scanners. Aerostatic air bearings are a good option to meet this demand for better performance however, these bearings tend to be expensive and require an additional air supply, filtering and drying system. Commercially available aerodynamic bearings have been typically limited to small mirrors, on the order of 3.5" diameter and less than 0.5" thick. A large optical facet, hence a larger mirror, is required to generate the high number of pixels needed for this type of application. The larger optic necessitated the development of a high capacity 'self-generating' or aerodynamic air bearing that would meet the needs of the optical scanning market. Its capacity is rated up to 6.0" diameter and 1.0" thick optics. The performance of an aerodynamic air bearing is better than a ball bearing and similar to an aerostatic air bearing. It retains the low costs while eliminating the need for ancillary equipment required by an aerostatic bearing.

  20. Bidirectional Quantum States Sharing

    NASA Astrophysics Data System (ADS)

    Peng, Jia-Yin; Bai, Ming-qiang; Mo, Zhi-Wen

    2016-05-01

    With the help of the shared entanglement and LOCC, multidirectional quantum states sharing is considered. We first put forward a protocol for implementing four-party bidirectional states sharing (BQSS) by using eight-qubit cluster state as quantum channel. In order to extend BQSS, we generalize this protocol from four sharers to multi-sharers utilizing two multi-qubit GHZ-type states as channel, and propose two multi-party BQSS schemes. On the other hand, we generalize the three schemes from two senders to multi-senders with multi GHZ-type states of multi-qubit as quantum channel, and give a multidirectional quantum states sharing protocol. In our schemes, all receivers can reconstruct the original unknown single-qubit state if and only if all sharers can cooperate. Only Pauli operations, Bell-state measurement and single-qubit measurement are used in our schemes, so these schemes are easily realized in physical experiment and their successful probabilities are all one.

  1. Bidirectional buck boost converter

    DOEpatents

    Esser, Albert Andreas Maria

    1998-03-31

    A bidirectional buck boost converter and method of operating the same allows regulation of power flow between first and second voltage sources in which the voltage level at each source is subject to change and power flow is independent of relative voltage levels. In one embodiment, the converter is designed for hard switching while another embodiment implements soft switching of the switching devices. In both embodiments, first and second switching devices are serially coupled between a relatively positive terminal and a relatively negative terminal of a first voltage source with third and fourth switching devices serially coupled between a relatively positive terminal and a relatively negative terminal of a second voltage source. A free-wheeling diode is coupled, respectively, in parallel opposition with respective ones of the switching devices. An inductor is coupled between a junction of the first and second switching devices and a junction of the third and fourth switching devices. Gating pulses supplied by a gating circuit selectively enable operation of the switching devices for transferring power between the voltage sources. In the second embodiment, each switching device is shunted by a capacitor and the switching devices are operated when voltage across the device is substantially zero.

  2. Bidirectional buck boost converter

    DOEpatents

    Esser, A.A.M.

    1998-03-31

    A bidirectional buck boost converter and method of operating the same allows regulation of power flow between first and second voltage sources in which the voltage level at each source is subject to change and power flow is independent of relative voltage levels. In one embodiment, the converter is designed for hard switching while another embodiment implements soft switching of the switching devices. In both embodiments, first and second switching devices are serially coupled between a relatively positive terminal and a relatively negative terminal of a first voltage source with third and fourth switching devices serially coupled between a relatively positive terminal and a relatively negative terminal of a second voltage source. A free-wheeling diode is coupled, respectively, in parallel opposition with respective ones of the switching devices. An inductor is coupled between a junction of the first and second switching devices and a junction of the third and fourth switching devices. Gating pulses supplied by a gating circuit selectively enable operation of the switching devices for transferring power between the voltage sources. In the second embodiment, each switching device is shunted by a capacitor and the switching devices are operated when voltage across the device is substantially zero. 20 figs.

  3. High Capacity Two-Stage Coaxial Pulse Tube Cooler

    NASA Astrophysics Data System (ADS)

    Jaco, C.; Nguyen, T.; Tward, E.

    2008-03-01

    The High Capacity Cryocooler Qualification unit (HCCQ) provides large capacity cooling at both 35 K and 85 K for space applications in which focal planes and optics require cooling. The compressor is scaled from the High Energy Cryocooler (HEC) compressor and is capable of using input powers up to 700 W. The two coaxial pulse tube cold heads are integrated with the compressor into an integral cryocooler. A thermal strap between the cold heads improves efficiency and can be positioned to provide cooling for a wide range of applied loads. The cooler will be acceptance tested at space qualification levels that include thermal performance mapping over a range of reject temperatures and power levels and launch vibration testing.

  4. High specific energy, high capacity nickel-hydrogen cell design

    NASA Technical Reports Server (NTRS)

    Wheeler, James R.

    1993-01-01

    A 3.5 inch rabbit-ear-terminal nickel-hydrogen cell was designed and tested to deliver high capacity at steady discharge rates up to and including a C rate. Its specific energy yield of 60.6 wh/kg is believed to be the highest yet achieved in a slurry-process nickel-hydrogen cell, and its 10 C capacity of 113.9 AH the highest capacity yet of any type in a 3.5 inch diameter size. The cell also demonstrated a pulse capability of 180 amps for 20 seconds. Specific cell parameters and performance are described. Also covered is an episode of capacity fading due to electrode swelling and its successful recovery by means of additional activation procedures.

  5. High capacity demonstration of honeycomb panel heat pipes

    NASA Technical Reports Server (NTRS)

    Tanzer, H. J.

    1989-01-01

    The feasibility of performance enhancing the sandwich panel heat pipe was investigated for moderate temperature range heat rejection radiators on future-high-power spacecraft. The hardware development program consisted of performance prediction modeling, fabrication, ground test, and data correlation. Using available sandwich panel materials, a series of subscale test panels were augumented with high-capacity sideflow and temperature control variable conductance features, and test evaluated for correlation with performance prediction codes. Using the correlated prediction model, a 50-kW full size radiator was defined using methanol working fluid and closely spaced sideflows. A new concept called the hybrid radiator individually optimizes heat pipe components. A 2.44-m long hybrid test vehicle demonstrated proof-of-principle performance.

  6. Testing of a high capacity research heat pipe

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Tests were performed on a high-capacity channel-wick heat pipe to assess the transport limitations of v-grooves and the effects of boiling. The results showed that transport can vary significantly (less than 50 W) under similar conditions and the continuous boiling was observed at power levels as low as 40 W. In addition, some evidence was found to support the predictions using a groove transport model which shows that transport increases with lower groove densities and longer evaporators. However, due to transport variations, these results were not consistent throughout the program. When a glass fiber wick was installed over the grooves, a relatively low transport level was achieved (80 to 140 W). Based on these results and the identification of some potential causes for them, several design suggestions were recommended for reducing the possibility of boiling and improving groove transport.

  7. High capacity demonstration of honeycomb panel heat pipes

    NASA Technical Reports Server (NTRS)

    Tanzer, H. J.; Cerza, M. R., Jr.; Hall, J. B.

    1986-01-01

    High capacity honeycomb panel heat pipes were investigated as heat rejection radiators on future space platforms. Starting with a remnant section of honeycomb panel measuring 3.05-m long by 0.127-m wide that was originally designed and built for high-efficiency radiator fins, features were added to increase thermal transport capacity and thus permit test evaluation as an integral heat transport and rejection radiator. A series of subscale panels were fabricated and reworked to isolate individual enhancement features. Key to the enhancement was the addition of a liquid sideflow that utilizes pressure priming. A prediction model was developed and correlated with measured data, and then used to project performance to large, space-station size radiators. Results show that a honeycomb panel with 5.08-cm sideflow spacing and core modification will meet the design load of a 50 kW space heat rejection system.

  8. Holographic memory module with ultra-high capacity and throughput

    SciTech Connect

    Vladimir A. Markov, Ph.D.

    2000-06-04

    High capacity, high transfer rate, random access memory systems are needed to archive and distribute the tremendous volume of digital information being generated, for example, the human genome mapping and online libraries. The development of multi-gigabit per second networks underscores the need for next-generation archival memory systems. During Phase I we conducted the theoretical analysis and accomplished experimental tests that validated the key aspects of the ultra-high density holographic data storage module with high transfer rate. We also inspected the secure nature of the encoding method and estimated the performance of full-scale system. Two basic architectures were considered, allowing for reversible compact solid-state configuration with limited capacity, and very large capacity write once read many memory system.

  9. Stable high capacity, F-actin affinity column

    SciTech Connect

    Luna, E.J.; Wang, Y.L.; Voss, E.W. Jr.; Branton, D.; Taylor, D.L.

    1982-11-10

    A high capacity F-actin affinity matrix is constructed by binding fluorescyl-actin to rabbit anti-fluorescein IgG that is covalently bound to Sepharose 4B. When stabilized with phalloidin, the actin remains associated with the Sepharose beads during repeated washes, activates the ATPase activity of myosin subfragment 1, and specifically binds /sup 125/I-heavy meromyosin and /sup 125/I-tropomyosin. The associations between the F-actin-binding proteins are monitored both by affinity chromatography and by a rapid, low speed sedimentation assay. Anti-fluorescein IgG-Sepharose should be generally useful as a matrix for the immobilization of proteins containing accessible, covalently bound fluorescein groups.

  10. High-Capacity Spacesuit Evaporator Absorber Radiator (SEAR)

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Chen, Weibo; Phillips, Scott; Chepko, Ariane; Bue, Grant; Quinn, Gregory

    2015-01-01

    Future human space exploration missions will require advanced life support technology that can operate across a wide range of applications and environments. Thermal control systems for space suits and spacecraft will need to meet critical requirements for water conservation and multifunctional operation. This paper describes a Space Evaporator Absorber Radiator (SEAR) that has been designed to meet performance requirements for future life support systems. A SEAR system comprises a lithium chloride absorber radiator (LCAR) for heat rejection coupled with a space water membrane evaporator (SWME) for heat acquisition. SEAR systems provide heat pumping to minimize radiator size, thermal storage to accommodate variable environmental conditions, and water absorption to minimize use of expendables. We have built and tested a flight-like, high-capacity LCAR, demonstrated its performance in thermal vacuum tests, and explored the feasibility of an ISS demonstration test of a SEAR system. The new LCAR design provides the same cooling capability as prior LCAR prototypes while enabling over 30% more heat absorbing capacity. Studies show that it should be feasible to demonstrate SEAR operation in flight by coupling with an existing EMU on the space station.

  11. Charged fullerenes as high-capacity hydrogen storage media.

    PubMed

    Yoon, Mina; Yang, Shenyuan; Wang, Enge; Zhang, Zhenyu

    2007-09-01

    Using first-principles calculations within density functional theory, we explore systematically the capacity of charged carbon fullerenes Cn (20 high-capacity hydrogen storage media. PMID:17718530

  12. Charged Fullerenes as High Capacity Hydrogen Storage Media

    SciTech Connect

    Yoon, Mina; Yang, Shenyuan; Wang, Enge; Zhang, Zhenyu

    2007-01-01

    Using first-principles calculations within density functional theory, we explore systematically the capacity of charged carbon fullerenes Cn (20≤n≤84) as hydrogen storage media. We find that the binding strength of molecular hydrogen on either positively or negatively charged fullerenes can be dramatically enhanced to 0.18-0.32 eV, a desirable range for potential room-temperature, near ambient applications. The enhanced binding is delocalized in nature, surrounding the whole surface of a charged fullerene, and is attributed to the polarization of the hydrogen molecules by the high electric field generated near the surface of the charged fullerene. At full hydrogen coverage, these charged fullerenes can gain storage capacities of up to ~8.0wt%. We also find that, contrary to intuitive expectation, fullerenes containing intercalated metal atoms only exhibit negligible enhancement in the hydrogen binding strength, because the charge donated by the metal atoms is primarily confined inside the fullerene cages. These predictions may prove to be instrumental in searching for a new class of high capacity hydrogen storage media.

  13. Organotrisulfide: A High Capacity Cathode Material for Rechargeable Lithium Batteries.

    PubMed

    Wu, Min; Cui, Yi; Bhargav, Amruth; Losovyj, Yaroslav; Siegel, Amanda; Agarwal, Mangilal; Ma, Ying; Fu, Yongzhu

    2016-08-16

    An organotrisulfide (RSSSR, R is an organic group) has three sulfur atoms which could be involved in multi-electron reduction reactions; therefore it is a promising electrode material for batteries. Herein, we use dimethyl trisulfide (DMTS) as a model compound to study its redox reactions in rechargeable lithium batteries. With the aid of XRD, XPS, and GC-MS analysis, we confirm DMTS could undergo almost a 4 e(-) reduction process in a complete discharge to 1.0 V. The discharge products are primarily LiSCH3 and Li2 S. The lithium cell with DMTS catholyte delivers an initial specific capacity of 720 mAh g(-1) DMTS and retains 82 % of the capacity over 50 cycles at C/10 rate. When the electrolyte/DMTS ratio is 3:1 mL g(-1) , the reversible specific energy for the cell including electrolyte can be 229 Wh kg(-1) . This study shows organotrisulfide is a promising high-capacity cathode material for high-energy rechargeable lithium batteries. PMID:27411083

  14. High-capacity quantum Fibonacci coding for key distribution

    NASA Astrophysics Data System (ADS)

    Simon, David S.; Lawrence, Nate; Trevino, Jacob; Dal Negro, Luca; Sergienko, Alexander V.

    2013-03-01

    Quantum cryptography and quantum key distribution (QKD) have been the most successful applications of quantum information processing, highlighting the unique capability of quantum mechanics, through the no-cloning theorem, to securely share encryption keys between two parties. Here, we present an approach to high-capacity, high-efficiency QKD by exploiting cross-disciplinary ideas from quantum information theory and the theory of light scattering of aperiodic photonic media. We propose a unique type of entangled-photon source, as well as a physical mechanism for efficiently sharing keys. The key-sharing protocol combines entanglement with the mathematical properties of a recursive sequence to allow a realization of the physical conditions necessary for implementation of the no-cloning principle for QKD, while the source produces entangled photons whose orbital angular momenta (OAM) are in a superposition of Fibonacci numbers. The source is used to implement a particular physical realization of the protocol by randomly encoding the Fibonacci sequence onto entangled OAM states, allowing secure generation of long keys from few photons. Unlike in polarization-based protocols, reference frame alignment is unnecessary, while the required experimental setup is simpler than other OAM-based protocols capable of achieving the same capacity and its complexity grows less rapidly with increasing range of OAM used.

  15. High-Capacity Spacesuit Evaporator Absorber Radiator (SEAR)

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Chen, Weibo; Phillips, Scott; Chepko, Ariane; Bue, Grant; Quinn, Gregory

    2014-01-01

    Future human space exploration missions will require advanced life support technology that can operate across a wide range of applications and environments. Thermal control systems for space suits and spacecraft will need to meet critical requirements for water conservation and adaptability to highly variable thermal environments. This paper describes a Space Evaporator Absorber Radiator (SEAR) that has been designed to meet performance requirements for future life support systems. A SEAR system comprises a lithium chloride absorber radiator (LCAR) for heat rejection coupled with a space water membrane evaporator (SWME) for heat acquisition. SEAR systems provide heat pumping to minimize radiator size, thermal storage to accommodate variable environmental conditions, and water absorption to minimize use of expendables. We have built and tested a flightlike, high-capacity LCAR, demonstrated its performance in thermal vacuum tests, and explored the feasibility of an ISS demonstration test of a SEAR system. The new LCAR design provides the same cooling capability as prior LCAR prototypes while enabling over 30% more heat absorbing capacity. Studies show that it should be feasible to demonstrate SEAR operation in flight by coupling with an existing EMU on the space station.

  16. High-Capacity, High-Voltage Composite Oxide Cathode Materials

    NASA Technical Reports Server (NTRS)

    Hagh, Nader M.

    2015-01-01

    This SBIR project integrates theoretical and experimental work to enable a new generation of high-capacity, high-voltage cathode materials that will lead to high-performance, robust energy storage systems. At low operating temperatures, commercially available electrode materials for lithium-ion (Li-ion) batteries do not meet energy and power requirements for NASA's planned exploration activities. NEI Corporation, in partnership with the University of California, San Diego, has developed layered composite cathode materials that increase power and energy densities at temperatures as low as 0 degC and considerably reduce the overall volume and weight of battery packs. In Phase I of the project, through innovations in the structure and morphology of composite electrode particles, the partners successfully demonstrated an energy density exceeding 1,000 Wh/kg at 4 V at room temperature. In Phase II, the team enhanced the kinetics of Li-ion transport and electronic conductivity at 0 degC. An important feature of the composite cathode is that it has at least two components that are structurally integrated. The layered material is electrochemically inactive; however, upon structural integration with a spinel material, the layered material can be electrochemically activated and deliver a large amount of energy with stable cycling.

  17. Tracking inhomogeneity in high-capacity lithium iron phosphate batteries

    NASA Astrophysics Data System (ADS)

    Paxton, William A.; Zhong, Zhong; Tsakalakos, Thomas

    2015-02-01

    Energy-dispersive x-ray diffraction (EDXRD) is one of the few techniques that can internally probe a sealed battery under operating conditions. In this paper, we use EDXRD with ultrahigh energy synchrotron radiation to track inhomogeneity in a cycled high-capacity lithium iron phosphate cell under in-situ and operando conditions. A sequence of depth-profile x-ray diffraction spectra are collected with 40 μm resolution as the cell is discharged. Additionally, nine different locations of the cell are tracked independently throughout a second discharge process. In each case, a two-peak reference intensity ratio analysis (RIR) was used on the LiFePO4 311 and the FePO4 020 reflections to estimate the relative phase abundance of the lithiated and non-lithiated phases. The data provide a first-time look at the dynamics of electrochemical inhomogeneity in a real-world battery. We observe a strong correlation between inhomogeneity and overpotential in the galvanic response of the cell. Additionally, the data closely follow the behavior that is predicted by the resistive-reactant model originally proposed by Thomas-Alyea. Despite a non-linear response in the independently measured locations, the behavior of the ensemble is strikingly linear. This suggests that effects of inhomogeneity can be elusive and highlights the power of the EDXRD technique.

  18. High capacity color barcodes using dot orientation and color separability

    NASA Astrophysics Data System (ADS)

    Bulan, Orhan; Monga, Vishal; Sharma, Gaurav

    2009-02-01

    Barcodes are widely utilized for embedding data in printed format to provide automated identification and tracking capabilities in a number of applications. In these applications, it is desirable to maximize the number of bits embedded per unit print area in order to either reduce the area requirements of the barcodes or to offer an increased payload, which in turn enlarges the class of applications for these barcodes. In this paper, we present a new high capacity color barcode. Our method operates by embedding independent data in two different printer colorant channels via halftone-dot orientation modulation. In the print, the dots of the two colorants occupy the same spatial region. At the detector, however, by using the complementary sensor channels to estimate the colorant channels we can recover the data in each individual colorant channel. The method therefore (approximately) doubles the capacity of encoding methods based on a single colorant channel and provides an embedding rate that is higher than other known barcode alternatives. The effectiveness of the proposed technique is demonstrated by experiments conducted on Xerographic printers. Data embedded at a high density by using the two cyan and yellow colorant channels for halftone dot orientation modulation is successfully recovered by using the red and blue channels for the detection, with an overall symbol error rate that is quite small.

  19. A high-capacity streptavidin-coated microtitration plate.

    PubMed

    Välimaa, Lasse; Pettersson, Kim; Vehniäinen, Markus; Karp, Matti; Lövgren, Timo

    2003-01-01

    A majority of current immunoassays rely on capturing a specific analyte on a solid phase to allow the separation of the bound analyte from nonbound components. Streptavidin-coated microtitration plates are widely used for immobilization of capturing antibodies, since they provide a generic surface for immobilization of any biotinylated molecule and preserve biomolecule activity much better than direct passive adsorption. Our trials to further improve the properties of the plates resulted in a development of a modified plate, which has higher binding capacity than currently used control plate. The modified coat was prepared by cross-linking streptavidin chemically prior to adsorption onto the microtitration well surfaces. The binding capacities of the plates were measured with biotinylated, europium-labeled molecules and labeled antigen. The immunoassay performance of the plates was studied with noncompetitive, sandwich-type assays of prostate specific antigen (PSA) and human chorionic gonadotropin (hCG). The maximum immobilization capacity of the modified plate was up to 2.5 times higher than that of the control plate. The higher binding capacity was especially emphasized with small-size molecules. The modified high capacity plate increased the linear ranges of the immunoassays and thus delayed the high-dose hook effect. At high antigen concentrations the signal increased up to 59%, and at the conventional linear ranges of the assays, the increase was up to 29%. We conclude that the modified coating method will be valuable for the future miniaturized systems, where high immobilization capacity is needed at limited areas. PMID:12526699

  20. Design of high-capacity fiber-optic transport systems

    NASA Astrophysics Data System (ADS)

    Liao, Zhi Ming

    2001-08-01

    We study the design of fiber-optic transport systems and the behavior of fiber amplifiers/lasers with the aim of achieving higher capacities with larger amplifier spacing. Solitons are natural candidates for transmitting short pulses for high-capacity fiber-optic networks because of its innate ability to use two of fiber's main defects, fiber dispersion and fiber nonlinearity to balance each other. In order for solitons to retain its dynamic nature, amplifiers must be placed periodically to restore powers to compensate for fiber loss. Variational analysis is used to study the long-term stability of a periodical- amplifier system. A new regime of operation is identified which allows the use of a much longer amplifier spacing. If optical fibers are the blood vessels of an optical communication system, then the optical amplifier based on erbium-doped fiber is the heart. Optical communication systems can avoid the use of costly electrical regenerators to maintain system performance by being able to optically amplify the weakened signals. The length of amplifier spacing is largely determined by the gain excursion experienced by the solitons. We propose, model, and demonstrate a distributed erbium-doped fiber amplifier which can drastically reduce the amount of gain excursion experienced by the solitons, therefore allowing a much longer amplifier spacing and superior stability. Dispersion management techniques have become extremely valuable tools in the design of fiber-optic communication systems. We have studied in depth the advantage of different arnplification schemes (lumped and distributed) for various dispersion compensation techniques. We measure the system performance through the Q factor to evaluate the added advantage of effective noise figure and smaller gain excursion. An erbium-doped fiber laser has been constructed and characterized in an effort to develop a test bed to study transmission systems. The presence of mode-partition noise in an erbium

  1. Bidirectional power converter control electronics

    NASA Technical Reports Server (NTRS)

    Mildice, J. W.

    1987-01-01

    The object of this program was to design, build, test, and deliver a set of control electronics suitable for control of bidirectional resonant power processing equipment of the direct output type. The program is described, including the technical background, and results discussed. Even though the initial program tested only the logic outputs, the hardware was subsequently tested with high-power breadboard equipment, and in the testbed of NASA contract NAS3-24399. The completed equipment is now operating as part of the Space Station Power System Test Facility at NASA Lewis Research Center.

  2. Fail-safe bidirectional valve driver

    NASA Technical Reports Server (NTRS)

    Fujimoto, H.

    1974-01-01

    Cross-coupled diodes are added to commonly used bidirectional valve driver circuit to protect circuit and power supply. Circuit may be used in systems requiring fail-safe bidirectional valve operation, particularly in chemical- and petroleum-processing control systems and computer-controlled hydraulic or pneumatic systems.

  3. An Unusual Etiology for Bidirectional Ventricular Tachycardia.

    PubMed

    Zhao, Yun-Tao; Wang, Lei; Yi, Zhong

    2016-03-01

    Bidirectional ventricular tachycardia is a rare variety of tachycardia with a morphologically distinct presentation. The QRS axis and/or morphology alternate in the frontal plane leads. We report a patient with bidirectional ventricular tachycardia in association with aconitine poisoning. PMID:26604120

  4. Bidirectional lexical-gustatory synesthesia.

    PubMed

    Richer, François; Beaufils, Guillaume-Alexandre; Poirier, Sophie

    2011-12-01

    In developmental lexical-gustatory synesthesia, specific words (inducers) can trigger taste perceptions (concurrents) and these synesthetic associations are generally stable. We describe a case of multilingual lexical-gustatory synesthesia for whom some synesthesias were bidirectional as some tastes also triggered auditory word associations. Evoked concurrents could be gustatory but also tactile sensations. In addition to words and pseudowords, many voices were effective inducers, suggesting increased connections between cortical taste areas and both voice-selective and language-selective areas. Lasting changes in some evoked tastes occurred during childhood suggesting that some plasticity can be present after the initial learning of associations. Inducers were often linked to taste concurrents phonologically or semantically, but also through identifiable childhood episodes (persons or events). Several inducers were phonologically linked to episodic inducers suggesting a process of secondary acquisition for many inducers. Implications of these observations are discussed. PMID:21296005

  5. Response of standard and high-capacity HEPA filters to simulated tornado and explosive transients

    SciTech Connect

    Gregory, W.S.; Smith, P.R.

    1982-03-01

    An investigation was performed to determine the response of standard and high-capacity high-efficiency particulate air filters to simulated tornado and explosive transients. Most of the tests were directed toward evaluating the structural response of high-capacity filters to explosive transients. Selected tests were performed to evaluate the effects of particulate loading on filtration efficiencies. Also, several of the high-capacity filters were subjected to simulated toronado transients. The results indicate that the upper structural limits of high-capacity filters for explosive loading is 6.89-kPa (1-psi) peak pressure and 100-kPa-ms (14.51-psi-ms) impulse. These limits are below the approximately 13.78-kPa (2-psi) peak pressure loadings found for standard HEPA filters. Tests of high-capacity filters preloaded with aerosol indicated that the structural limits were further degraded by approximately 40%. The filtration efficiencies were degraded to approximately 70% when the filters were subjected to aerosol entrained within the shock pulse. The effect of simulated tornado transients on high-capacity filters resulted in an upper structural limit of 11.02 kPa (1.6 psi) for peak pressure.

  6. Bidirectional waveguide coupling with plasmonic Fano nanoantennas

    SciTech Connect

    Guo, Rui; Decker, Manuel Staude, Isabelle; Neshev, Dragomir N.; Kivshar, Yuri S.

    2014-08-04

    We introduce the concept of a bidirectional, compact single-element Fano nanoantenna that allows for directional coupling of light in opposite directions of a high-index dielectric waveguide for two different operation wavelengths. We utilize a Fano resonance to tailor the radiation phases of a gold nanodisk and a nanoslit that is inscribed into the nanodisk to realize bidirectional scattering. We show that this Fano nanoantenna operates as a bidirectional waveguide coupler at telecommunication wavelengths and, thus, is ideally suitable for integrated wavelength-selective light demultiplexing.

  7. Bidirectional reflection effects in practical integrating spheres.

    PubMed

    Mahan, J R; Walker, J A; Stancil, M M

    2015-10-20

    Integrating spheres play a central role in radiometric instrument calibration, surface optical property measurement, and radiant source characterization. Our work involves a simulation, based on the Monte Carlo ray-trace (MCRT) of bidirectional reflections within a practical integrating sphere pierced with two viewing ports. We used data from the literature to create an empirical model for the bidirectional reflection distribution function (BRF) of Spectralon suitable for use in the MCRT environment. The ratio of power escaping through the two openings is shown to vary linearly with wall absorptivity for both diffuse and bidirectional reflections. The sensitivity of this ratio to absorptivity is shown to be less when reflections are weakly bidirectional. PMID:26560384

  8. Surface roughness effects on bidirectional reflectance

    NASA Technical Reports Server (NTRS)

    Smith, T. F.; Hering, R. G.

    1972-01-01

    An experimental study of surface roughness effects on bidirectional reflectance of metallic surfaces is presented. A facility capable of irradiating a sample from normal to grazing incidence and recording plane of incidence bidirectional reflectance measurements was developed. Samples consisting of glass, aluminum alloy, and stainless steel materials were selected for examination. Samples were roughened using standard grinding techniques and coated with a radiatively opaque layer of pure aluminum. Mechanical surface roughness parameters, rms heights and rms slopes, evaluated from digitized surface profile measurements are less than 1.0 micrometers and 0.28, respectively. Rough surface specular, bidirectional, and directional reflectance measurements for selected values of polar angle of incidence and wavelength of incident energy within the spectral range of 1 to 14 micrometers are reported. The Beckmann bidirectional reflectance model is compared with reflectance measurements to establish its usefulness in describing the magnitude and spatial distribution of energy reflected from rough surfaces.

  9. A Multiscale Bidirectional Coupling Framework

    SciTech Connect

    Kabilan, Senthil; Kuprat, Andrew P.; Hlastala, Michael P.; Corley, Richard A.; Einstein, Daniel R.

    2011-12-01

    The lung is geometrically articulated across multiple scales from the trachea to the alveoli. A major computational challenge is to tightly link ODEs that describe lower scales to 3D finite element or finite volume models of airway mechanics using iterative communication between scales. In this study, we developed a novel multiscale computational framework for bidirectionally coupling 3D CFD models and systems of lower order ODEs. To validate the coupling framework, a four and eight generation Weibel lung model was constructed. For the coupled CFD-ODE simulations, the lung models were truncated at different generations and a RL circuit represented the truncated portion. The flow characteristics from the coupled models were compared to untruncated full 3D CFD models at peak inhalation and peak exhalation. Results showed that at no time or simulation was the difference in mass flux and/or pressure at a given location between uncoupled and coupled models was greater than 2.43%. The flow characteristics at prime locations for the coupled models showed good agreement to uncoupled models. Remarkably, due to reuse of the Krylov subspace, the cost of the ODE coupling is not much greater than uncoupled full 3D-CFD computations with simple prescribed pressure values at the outlets.

  10. Bidirectional Modulation of Numerical Magnitude

    PubMed Central

    Arshad, Qadeer; Nigmatullina, Yuliya; Nigmatullin, Ramil; Asavarut, Paladd; Goga, Usman; Khan, Sarah; Sander, Kaija; Siddiqui, Shuaib; Roberts, R. E.; Cohen Kadosh, Roi; Bronstein, Adolfo M.; Malhotra, Paresh A.

    2016-01-01

    Numerical cognition is critical for modern life; however, the precise neural mechanisms underpinning numerical magnitude allocation in humans remain obscure. Based upon previous reports demonstrating the close behavioral and neuro-anatomical relationship between number allocation and spatial attention, we hypothesized that these systems would be subject to similar control mechanisms, namely dynamic interhemispheric competition. We employed a physiological paradigm, combining visual and vestibular stimulation, to induce interhemispheric conflict and subsequent unihemispheric inhibition, as confirmed by transcranial direct current stimulation (tDCS). This allowed us to demonstrate the first systematic bidirectional modulation of numerical magnitude toward either higher or lower numbers, independently of either eye movements or spatial attention mediated biases. We incorporated both our findings and those from the most widely accepted theoretical framework for numerical cognition to present a novel unifying computational model that describes how numerical magnitude allocation is subject to dynamic interhemispheric competition. That is, numerical allocation is continually updated in a contextual manner based upon relative magnitude, with the right hemisphere responsible for smaller magnitudes and the left hemisphere for larger magnitudes. PMID:26879093

  11. Bidirectional Modulation of Numerical Magnitude.

    PubMed

    Arshad, Qadeer; Nigmatullina, Yuliya; Nigmatullin, Ramil; Asavarut, Paladd; Goga, Usman; Khan, Sarah; Sander, Kaija; Siddiqui, Shuaib; Roberts, R E; Cohen Kadosh, Roi; Bronstein, Adolfo M; Malhotra, Paresh A

    2016-05-01

    Numerical cognition is critical for modern life; however, the precise neural mechanisms underpinning numerical magnitude allocation in humans remain obscure. Based upon previous reports demonstrating the close behavioral and neuro-anatomical relationship between number allocation and spatial attention, we hypothesized that these systems would be subject to similar control mechanisms, namely dynamic interhemispheric competition. We employed a physiological paradigm, combining visual and vestibular stimulation, to induce interhemispheric conflict and subsequent unihemispheric inhibition, as confirmed by transcranial direct current stimulation (tDCS). This allowed us to demonstrate the first systematic bidirectional modulation of numerical magnitude toward either higher or lower numbers, independently of either eye movements or spatial attention mediated biases. We incorporated both our findings and those from the most widely accepted theoretical framework for numerical cognition to present a novel unifying computational model that describes how numerical magnitude allocation is subject to dynamic interhemispheric competition. That is, numerical allocation is continually updated in a contextual manner based upon relative magnitude, with the right hemisphere responsible for smaller magnitudes and the left hemisphere for larger magnitudes. PMID:26879093

  12. Mechanics of high-capacity electrodes in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Ting, Zhu

    2016-01-01

    Rechargeable batteries, such as lithium-ion batteries, play an important role in the emerging sustainable energy landscape. Mechanical degradation and resulting capacity fade in high-capacity electrode materials critically hinder their use in high-performance lithium-ion batteries. This paper presents an overview of recent advances in understanding the electrochemically-induced mechanical behavior of the electrode materials in lithium-ion batteries. Particular emphasis is placed on stress generation and facture in high-capacity anode materials such as silicon. Finally, we identify several important unresolved issues for future research. Project support by the NSF (Grant Nos. CMMI 1100205 and DMR 1410936).

  13. Alkali slurry ozonation to produce a high capacity nickel battery material

    DOEpatents

    Jackovitz, John F.; Pantier, Earl A.

    1984-11-06

    A high capacity battery material is made, consisting essentially of hydrated Ni(II) hydroxide, and about 5 wt. % to about 40 wt. % of Ni(IV) hydrated oxide interlayer doped with alkali metal cations selected from potassium, sodium and lithium cations.

  14. Peptide immobilized monolith containing tentacle-type functionalized polymer chains for high-capacity binding of immunoglobulin G.

    PubMed

    Du, Kaifeng

    2014-12-29

    A peptide immobilized tentacle-type monolith is developed here for high-performance IgG purification. In this work, the glucose-anchored GMA molecules serve as monomers to be grafted into the tentacle-type chains on highly porous monolith by a series of chemical reactions. While maintaining high column permeability, the tentacle grafting endows the monolith with lots of reactive handles to anchor more peptides. With that, the grafted monolith shows high peptide density of about 155μmolmL(-1), up to approximately 4.7 times higher over the ungrafted one (33μmolmL(-1)). As a result, the static adsorbing capacity and dynamic adsorption capacity at 50% breakthrough point reach 101.8 and 83.3mgmL(-1) for IgG adsorption, respectively. Regeneration, recycle and reuse of grafted monolith are highly successful for 25 runs without obvious capacity loss. By taking these advantages of high capacity and excellent structure stability, the affinity grafted monolith is evaluated by using cleared human blood supernatant. And the result shows the peptide immobilized tentacle type monolith displays excellent specificity and high effectiveness for IgG purification. PMID:25476688

  15. Bidirectional Modulation of Recognition Memory

    PubMed Central

    Ho, Jonathan W.; Poeta, Devon L.; Jacobson, Tara K.; Zolnik, Timothy A.; Neske, Garrett T.; Connors, Barry W.

    2015-01-01

    Perirhinal cortex (PER) has a well established role in the familiarity-based recognition of individual items and objects. For example, animals and humans with perirhinal damage are unable to distinguish familiar from novel objects in recognition memory tasks. In the normal brain, perirhinal neurons respond to novelty and familiarity by increasing or decreasing firing rates. Recent work also implicates oscillatory activity in the low-beta and low-gamma frequency bands in sensory detection, perception, and recognition. Using optogenetic methods in a spontaneous object exploration (SOR) task, we altered recognition memory performance in rats. In the SOR task, normal rats preferentially explore novel images over familiar ones. We modulated exploratory behavior in this task by optically stimulating channelrhodopsin-expressing perirhinal neurons at various frequencies while rats looked at novel or familiar 2D images. Stimulation at 30–40 Hz during looking caused rats to treat a familiar image as if it were novel by increasing time looking at the image. Stimulation at 30–40 Hz was not effective in increasing exploration of novel images. Stimulation at 10–15 Hz caused animals to treat a novel image as familiar by decreasing time looking at the image, but did not affect looking times for images that were already familiar. We conclude that optical stimulation of PER at different frequencies can alter visual recognition memory bidirectionally. SIGNIFICANCE STATEMENT Recognition of novelty and familiarity are important for learning, memory, and decision making. Perirhinal cortex (PER) has a well established role in the familiarity-based recognition of individual items and objects, but how novelty and familiarity are encoded and transmitted in the brain is not known. Perirhinal neurons respond to novelty and familiarity by changing firing rates, but recent work suggests that brain oscillations may also be important for recognition. In this study, we showed that

  16. Neuroendocrinology: Electromagnetogenetic Control over Feeding and Glucose Metabolism.

    PubMed

    Ruud, Johan; Brüning, Jens C

    2016-06-01

    Cutting-edge experiments show a new means to control the activity of specifically genetically targeted neurons in the hypothalamus using electromagnetic force. At the flip of a switch, the system bidirectionally regulates feeding behavior and glucose homeostasis, demonstrating wireless control over deep brain regions and their strong influence over energy balance. PMID:27269725

  17. Optical bidirectional beacon based visible light communications.

    PubMed

    Tiwari, Samrat Vikramaditya; Sewaiwar, Atul; Chung, Yeon Ho

    2015-10-01

    In an indoor bidirectional visible light communications (VLC), a line-of-sight (LOS) transmission plays a major role in obtaining adequate performance of a VLC system. Signals are often obstructed in the LOS transmission path, causing an effect called optical shadowing. In the absence of LOS, the performance of the VLC system degrades significantly and, in particular, at uplink transmission this degradation becomes severe due to design constraints and limited power at uplink devices. In this paper, a novel concept and design of an optical bidirectional beacon (OBB) is presented as an efficient model to counter the performance degradation in a non-line-of-sight (NLOS) VLC system. OBB is an independent operating bidirectional transceiver unit installed on walls, composed of red, green, and blue (RGB) light emitting diodes (LEDs), photodetectors (PDs) and color filters. OBB improves the coverage area in the form of providing additional or alternate paths for transmission and enhances the performance of the VLC system in terms of bit error rate (BER). To verify the effectiveness of the proposed system, simulations were carried out under optical shadowing conditions at various locations in an indoor environment. The simulation results and analysis show that the implementation of OBB improves the performance of the VLC system significantly, especially when the LOS bidirectional transmission paths are completely or partially obstructed. PMID:26480168

  18. Image fusion using bi-directional similarity

    NASA Astrophysics Data System (ADS)

    Bai, Chunshan; Luo, Xiaoyan

    2015-05-01

    Infrared images are widely used in the practical applications to capture abundant information. However, it is still challenging to enhance the infrared image by the visual image. In this paper, we propose an effective method using bidirectional similarity. In the proposed method, we aim to find an optimal solution from many feasible solutions without introducing intermediate image. We employ some priori constraints to meet the requirements of image fusion which can be detailed to preserve both good characteristics in the infrared image and spatial information in the visual image. In the iterative step, we use the matrix with the square of the difference between images to integrate the image holding most information. We call this matrix the bidirectional similarity distance. By the bidirectional similarity distance, we can get the transitive images. Then, we fuse the images according to the weight. Experimental results show that, compared to the traditional image fusion algorithm, fusion images from bidirectional similarity fusion algorithm have greatly improved in the subjective vision, entropy, structural similarity index measurement. We believe that the proposed scheme can have a wide applications.

  19. Bidirectional ventricular tachycardia of unusual etiology

    PubMed Central

    Chakraborty, Praloy; Kaul, Bhavna; Mandal, Kausik; Isser, H.S.; Bansal, Sandeep; Subramanian, Anandaraja

    2016-01-01

    Bidirectional ventricular tachycardia (BDVT) is a rare form of ventricular arrhythmia, characterized by changing QRS axis of 180 degrees. Digitalis toxicity is considered as commonest cause of BDVT; other causes include aconite toxicity, myocarditis, myocardial infarction, metastatic cardiac tumour and cardiac channelopathies. We describe a case of BDVT in a patient with Anderson-Tawil syndrome.

  20. Transient response of a high-capacity heat pipe for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Ambrose, J. H.; Holmes, H. R.

    1991-01-01

    High-capacity heat pipe radiator panels have been proposed as the primary means of heat rejection for Space Station Freedom. In this system, the heat pipe would interface with the thermal bus condensers. Changes in system heat load can produce large temperature and heat load variations in individual heat pipes. Heat pipes could be required to start from an initially cold state, with heat loads temporarily exceeding their low-temperature transport capacity. The present research was motivated by the need for accurate prediction of such transient operating conditions. In this work, the cold startup of a 6.7-meter long high-capacity heat pipe is investigated experimentally and analytically. A transient thermohydraulic model of the heat pipe was developed which allows simulation of partially-primed operation. The results of cold startup tests using both constant temperature and constant heat flux evaporator boundary conditions are shown to be in good agreement with predicted transient response.

  1. Estimation of Parameters Obtained by Electrochemical Impedance Spectroscopy on Systems Containing High Capacities

    PubMed Central

    Stević, Zoran; Vujasinović, Mirjana Rajčić; Radunović, Milan

    2009-01-01

    Electrochemical systems with high capacities demand devices for electrochemical impedance spectroscopy (EIS) with ultra-low frequencies (in order of mHz), that are almost impossible to accomplish with analogue techniques, but this becomes possible by using a computer technique and accompanying digital equipment. Recently, an original software and hardware for electrochemical measurements, intended for electrochemical systems exhibiting high capacities, such as supercapacitors, has been developed. One of the included methods is EIS. In this paper, the method of calculation of circuit parameters from an EIS curve is described. The results of testing on a physical model of an electrochemical system, constructed of known elements (including a 1.6 F capacitor) in a defined arrangement, proved the validity of the system and the method. PMID:22400000

  2. Radiation and temperature effects on electronic components investigated under the CSTI high capacity power project

    SciTech Connect

    Schwarze, G.E. ); Niedra, J.M. ); Frasca, A.J. ); Wieserman, W.R. )

    1993-01-15

    The effects of nuclear radiation and high temperature environments must be fully known and understood for the electronic components and materials used in both the Power Conditioning and Control subsystem and the reactor Instrumentation and Control subsystem of future high capacity nuclear space power systems. This knowledge is required by the designer of these subsystems in order to develop highly reliable, long-life power systems for future NASA missions. A review and summary of the experimental results obtained for the electronic components and materials investigated under the power management element of the CSTI high capacity power project will be presented in this paper: (1) Neutron, gamma ray, and temperature effects on power semiconductor switches, (2) Temperature and frequency effects on soft magnetic materials; and (3) Temperature effects on rare-earth permanent magnets.

  3. Radiation and temperature effects on electronic components investigated under the CSTI High Capacity Power Project

    SciTech Connect

    Shwarze, G.E.; Niedra, J.M.; Frasca, A.J.; Wieserman, W.R.

    1994-09-01

    The effects of nuclear radiation and high temperature environments must be fully known and understood for the electronic components and materials used in both the Power Conditioning and Control subsystem and the reactor Instrumentation and Control subsystem of future high capacity nuclear space power systems. This knowledge is required by the designer of these subsystems in order to develop highly reliable, long-life power systems for future NASA missions. A review and summary of the experimental results obtained for the electronic components and materials investigated under the power management element of the CSTI high capacity power project will be presented in this paper: (1) Neutron, gamma ray, and temperature effects on power semiconductor switches, (2) Temperature and frequency effects on soft magnetic materials; and (3) Temperature effects on rare earth permanent magnets.

  4. Radiation and temperature effects on electronic components investigated under the CSTI high capacity power project

    NASA Technical Reports Server (NTRS)

    Schwarze, Gene E.; Niedra, Janis M.; Frasca, Albert J.; Wieserman, William R.

    1993-01-01

    The effects of nuclear radiation and high temperature environments must be fully known and understood for the electronic components and materials used in both the Power Conditioning and Control subsystem and the reactor Instrumentation and Control subsystem of future high capacity nuclear space power systems. This knowledge is required by the designer of these subsystems in order to develop highly reliable, long-life power systems for future NASA missions. A review and summary of the experimental results obtained for the electronic components and materials investigated under the power management element of the Civilian Space Technology Initiative (CSTI) high capacity power project are presented: (1) neutron, gamma ray, and temperature effects on power semiconductor switches, (2) temperature and frequency effects on soft magnetic materials; and (3) temperature effects on rare earth permanent magnets.

  5. Estimation of parameters obtained by electrochemical impedance spectroscopy on systems containing high capacities.

    PubMed

    Stević, Zoran; Vujasinović, Mirjana Rajčić; Radunović, Milan

    2009-01-01

    Electrochemical systems with high capacities demand devices for electrochemical impedance spectroscopy (EIS) with ultra-low frequencies (in order of mHz), that are almost impossible to accomplish with analogue techniques, but this becomes possible by using a computer technique and accompanying digital equipment. Recently, an original software and hardware for electrochemical measurements, intended for electrochemical systems exhibiting high capacities, such as supercapacitors, has been developed. One of the included methods is EIS. In this paper, the method of calculation of circuit parameters from an EIS curve is described. The results of testing on a physical model of an electrochemical system, constructed of known elements (including a 1.6 F capacitor) in a defined arrangement, proved the validity of the system and the method. PMID:22400000

  6. The development of a high-capacity instrument module heat transport system, appendixes

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Data sheets provide temperature requirements for 82 individual instruments that are under development or planned for grouping on a space platform or pallet. The scientific objectives of these instrument packages are related to solar physics, space plasma physics, astronomy, high energy astrophysics, resources observations, environmental observations, materials processing, and life sciences. System specifications are given for a high capacity instrument module heat transport system to be used with future payloads.

  7. Free space optical communications for ultra high-capacity PON system

    NASA Astrophysics Data System (ADS)

    Shahpari, Ali; Sousa, Artur N.; Ferreira, Ricardo; Lima, Mário; Teixeira, António

    2014-08-01

    We experimentally demonstrate a set of ultra-high capacity free space passive optical networks (PONs) using quadrature phase shift keying (QPSK), 16-quadrature amplitude modulation (16-QAM) Nyquist pulse shaped and orthogonal frequency-division multiplexing (OFDM) modulations. Moreover, these technologies support up to 10 Gb/s services per user and allow a smooth and full integration between fiber and optical wireless access networks.

  8. High-capacity push-pickling lines and acid recovery systems

    SciTech Connect

    Braun, E.; Groessl, C. )

    1993-07-01

    High-capacity, 1.2 million ton/year, pushing-pickling lines capable of processing strip up to 76 in. wide in gages between 0.060 and 0.500 in. are a viable alternative in replacing older continuous pickling lines: space requirements are less (up to 40%) and capital costs lower (up to 60%). Installation of an acid regeneration plant provides major reductions in acid purchases as well as minimizing waste acid and rinse water disposal costs.

  9. Overview of space power electronic's technology under the CSTI High Capacity Power Program

    NASA Technical Reports Server (NTRS)

    Schwarze, Gene E.

    1994-01-01

    The Civilian Space Technology Initiative (CSTI) is a NASA Program targeted at the development of specific technologies in the areas of transportation, operations and science. Each of these three areas consists of major elements and one of the operation's elements is the High Capacity Power element. The goal of this element is to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA initiatives. The High Capacity Power element is broken down into several subelements that includes energy conversion in the areas of the free piston Stirling power converter and thermoelectrics, thermal management, power management, system diagnostics, and environmental compatibility and system's lifetime. A recent overview of the CSTI High capacity Power element and a description of each of the program's subelements is given by Winter (1989). The goals of the Power Management subelement are twofold. The first is to develop, test, and demonstrate high temperature, radiation-resistant power and control components and circuits that will be needed in the Power Conditioning, Control and Transmission (PCCT) subsystem of a space nuclear power system. The results obtained under this goal will also be applicable to the instrumentation and control subsystem of a space nuclear reactor. These components and circuits must perform reliably for lifetimes of 7-10 years. The second goal is to develop analytical models for use in computer simulations of candidate PCCT subsystems. Circuits which will be required for a specific PCCT subsystem will be designed and built to demonstrate their performance and, also, to validate the analytical models and simulations. The tasks under the Power Management subelement will now be described in terms of objectives, approach and present status of work.

  10. Superimposed nanostructured diffraction gratings as high capacity barcodes for biological and chemical applications

    NASA Astrophysics Data System (ADS)

    Birtwell, S. W.; Galitonov, G. S.; Morgan, H.; Zheludev, N. I.

    2008-04-01

    We describe a new non-contact high capacity optical tagging technique for bead based assays, based on the use of nanostructured barcodes. The tags are generated from a number of superimposed diffraction gratings. With one-dimensional diffraction, capacity for up to 68,000 distinguishable tags has been demonstrated, with a theoretical capacity of up to 10 9 tags. Extension into two dimensions increases this theoretical limit to 10 21 tags.

  11. Robo-line storage: Low latency, high capacity storage systems over geographically distributed networks

    NASA Technical Reports Server (NTRS)

    Katz, Randy H.; Anderson, Thomas E.; Ousterhout, John K.; Patterson, David A.

    1991-01-01

    Rapid advances in high performance computing are making possible more complete and accurate computer-based modeling of complex physical phenomena, such as weather front interactions, dynamics of chemical reactions, numerical aerodynamic analysis of airframes, and ocean-land-atmosphere interactions. Many of these 'grand challenge' applications are as demanding of the underlying storage system, in terms of their capacity and bandwidth requirements, as they are on the computational power of the processor. A global view of the Earth's ocean chlorophyll and land vegetation requires over 2 terabytes of raw satellite image data. In this paper, we describe our planned research program in high capacity, high bandwidth storage systems. The project has four overall goals. First, we will examine new methods for high capacity storage systems, made possible by low cost, small form factor magnetic and optical tape systems. Second, access to the storage system will be low latency and high bandwidth. To achieve this, we must interleave data transfer at all levels of the storage system, including devices, controllers, servers, and communications links. Latency will be reduced by extensive caching throughout the storage hierarchy. Third, we will provide effective management of a storage hierarchy, extending the techniques already developed for the Log Structured File System. Finally, we will construct a protototype high capacity file server, suitable for use on the National Research and Education Network (NREN). Such research must be a Cornerstone of any coherent program in high performance computing and communications.

  12. Reversible anionic redox chemistry in high-capacity layered-oxide electrodes.

    PubMed

    Sathiya, M; Rousse, G; Ramesha, K; Laisa, C P; Vezin, H; Sougrati, M T; Doublet, M-L; Foix, D; Gonbeau, D; Walker, W; Prakash, A S; Ben Hassine, M; Dupont, L; Tarascon, J-M

    2013-09-01

    Li-ion batteries have contributed to the commercial success of portable electronics and may soon dominate the electric transportation market provided that major scientific advances including new materials and concepts are developed. Classical positive electrodes for Li-ion technology operate mainly through an insertion-deinsertion redox process involving cationic species. However, this mechanism is insufficient to account for the high capacities exhibited by the new generation of Li-rich (Li(1+x)Ni(y)Co(z)Mn(1-x-y-z)O₂) layered oxides that present unusual Li reactivity. In an attempt to overcome both the inherent composition and the structural complexity of this class of oxides, we have designed structurally related Li₂Ru(1-y)Sn(y)O₃ materials that have a single redox cation and exhibit sustainable reversible capacities as high as 230 mA h g(-1). Moreover, they present good cycling behaviour with no signs of voltage decay and a small irreversible capacity. We also unambiguously show, on the basis of an arsenal of characterization techniques, that the reactivity of these high-capacity materials towards Li entails cumulative cationic (M(n+)→M((n+1)+)) and anionic (O(2-)→O₂(2-)) reversible redox processes, owing to the d-sp hybridization associated with a reductive coupling mechanism. Because Li₂MO₃ is a large family of compounds, this study opens the door to the exploration of a vast number of high-capacity materials. PMID:23852398

  13. Reversible anionic redox chemistry in high-capacity layered-oxide electrodes

    NASA Astrophysics Data System (ADS)

    Sathiya, M.; Rousse, G.; Ramesha, K.; Laisa, C. P.; Vezin, H.; Sougrati, M. T.; Doublet, M.-L.; Foix, D.; Gonbeau, D.; Walker, W.; Prakash, A. S.; Ben Hassine, M.; Dupont, L.; Tarascon, J.-M.

    2013-09-01

    Li-ion batteries have contributed to the commercial success of portable electronics and may soon dominate the electric transportation market provided that major scientific advances including new materials and concepts are developed. Classical positive electrodes for Li-ion technology operate mainly through an insertion-deinsertion redox process involving cationic species. However, this mechanism is insufficient to account for the high capacities exhibited by the new generation of Li-rich (Li1+xNiyCozMn(1-x-y-z)O2) layered oxides that present unusual Li reactivity. In an attempt to overcome both the inherent composition and the structural complexity of this class of oxides, we have designed structurally related Li2Ru1-ySnyO3 materials that have a single redox cation and exhibit sustainable reversible capacities as high as 230 mA h g-1. Moreover, they present good cycling behaviour with no signs of voltage decay and a small irreversible capacity. We also unambiguously show, on the basis of an arsenal of characterization techniques, that the reactivity of these high-capacity materials towards Li entails cumulative cationic (Mn+→M(n+1)+) and anionic (O2-→O22-) reversible redox processes, owing to the d-sp hybridization associated with a reductive coupling mechanism. Because Li2MO3 is a large family of compounds, this study opens the door to the exploration of a vast number of high-capacity materials.

  14. Isolation and Functional Characterization of Bidirectional Promoters in Rice

    PubMed Central

    Wang, Rui; Yan, Yan; Zhu, Menglin; Yang, Mei; Zhou, Fei; Chen, Hao; Lin, Yongjun

    2016-01-01

    Bidirectional promoters, which show great application potential in genetic improvement of plants, have aroused great research interest recently. However, most bidirectional promoters were cloned individually in the studies of single genes. Here, we initiatively combined RNA-seq data and cDNA microarray data to discover the potential bidirectional promoters in rice genome. Based on the expression level and correlation of each adjacent and oppositely transcribed gene pair, we selected four candidate gene pairs. Then, the intergenic region between each pair was isolated and cloned into a dual reporter vector pDX2181 for functional identification. GUS and GFP assays of the transgenic plants indicated that all the intergenic regions showed bidirectional expression activity in various tissues. Through 5′ and 3′ deletion analysis on one of the above bidirectional promoters, we identified the enhancing region which sharply increased its bidirectional expression efficiency and the essential regions respectively responsible for its 5′ and 3′ basic expression activity. The bidirectional arrangement of the four gene pairs in six gramineous plants was also analyzed, showing the conserved characteristics of the four bidirectional promoters identified in our study. In addition, two novel cis-sequences conserved in the four bidirectional promoters were discovered by bioinformatic identification. Our study proposes a feasible method for selecting, cloning, and functionally identifying bidirectional promoters as well as for discovering their bidirectional regulatory regions and conserved sequences in rice. PMID:27303432

  15. Systems and methods for bi-directional energy delivery with galvanic isolation

    SciTech Connect

    Kajouke, Lateef A.

    2013-06-18

    Systems and methods are provided for bi-directional energy delivery. A charging system comprises a first bi-directional conversion module, a second bi-directional conversion module, and an isolation module coupled between the first bi-directional conversion module and the second bi-directional conversion module. The isolation module provides galvanic isolation between the first bi-directional conversion module and the second bi-directional conversion module.

  16. The cardiovascular phenotype: impact on choice of glucose- lowering therapy.

    PubMed

    Kalra, Sanjay; Gupta, Yashdeep; Kishor, Kamal

    2016-04-01

    One of the major endpoints to be considered while choosing glucose-lowering therapy is their impact on cardiovascular outcomes. As a corollary, the cardiovascular health assessment of a person with diabetes informs the choice of glucose-lowering treatment. The clinical aspects included in this bidirectional relationship are described in this review as the cardiovascular phenotype. Vital signs, cardiac autonomic function, myocardial health and coronary status influence, and are influenced by, choice of glucose-lowering therapy. Such therapy also has an impact on cerebrovascular and peripheral arterial health. These aspects should be considered while planning treatment for type 2 diabetes mellitus. PMID:27122283

  17. Robust bidirectional links for photonic quantum networks

    PubMed Central

    Xu, Jin-Shi; Yung, Man-Hong; Xu, Xiao-Ye; Tang, Jian-Shun; Li, Chuan-Feng; Guo, Guang-Can

    2016-01-01

    Optical fibers are widely used as one of the main tools for transmitting not only classical but also quantum information. We propose and report an experimental realization of a promising method for creating robust bidirectional quantum communication links through paired optical polarization-maintaining fibers. Many limitations of existing protocols can be avoided with the proposed method. In particular, the path and polarization degrees of freedom are combined to deterministically create a photonic decoherence-free subspace without the need for any ancillary photon. This method is input state–independent, robust against dephasing noise, postselection-free, and applicable bidirectionally. To rigorously quantify the amount of quantum information transferred, the optical fibers are analyzed with the tools developed in quantum communication theory. These results not only suggest a practical means for protecting quantum information sent through optical quantum networks but also potentially provide a new physical platform for enriching the structure of the quantum communication theory. PMID:26824069

  18. Robust bidirectional links for photonic quantum networks.

    PubMed

    Xu, Jin-Shi; Yung, Man-Hong; Xu, Xiao-Ye; Tang, Jian-Shun; Li, Chuan-Feng; Guo, Guang-Can

    2016-01-01

    Optical fibers are widely used as one of the main tools for transmitting not only classical but also quantum information. We propose and report an experimental realization of a promising method for creating robust bidirectional quantum communication links through paired optical polarization-maintaining fibers. Many limitations of existing protocols can be avoided with the proposed method. In particular, the path and polarization degrees of freedom are combined to deterministically create a photonic decoherence-free subspace without the need for any ancillary photon. This method is input state-independent, robust against dephasing noise, postselection-free, and applicable bidirectionally. To rigorously quantify the amount of quantum information transferred, the optical fibers are analyzed with the tools developed in quantum communication theory. These results not only suggest a practical means for protecting quantum information sent through optical quantum networks but also potentially provide a new physical platform for enriching the structure of the quantum communication theory. PMID:26824069

  19. High Capacity Communications From Martian Distances. Part 1; Spacecraft Link Design Analysis

    NASA Technical Reports Server (NTRS)

    Vyas, Hemali N.; Schuchman, Leonard; Orr, Richard; Williams, Wallace Dan; Collins, Michael; Noreen, Gary

    2006-01-01

    High capacity space communications has been a desire for Human Exploration and Science missions. Current Mars missions operate at data rates of 120 kbps for telemetry downlink and it is desirable to study high rate communication links in the range of 100 Mbps to 1 Gbps data rates from Martian distances. This paper will present some assumed scenarios along with link design assumptions and link analysis for high capacity communications from Mars. The paper will focus on RF subsystems namely antenna and power for the downlink communication from a relay orbiter at Mars. The relay orbiter will communicate with the low orbit spacecrafts at Mars or any Martian surface elements such as robots, and relay the data back to the ground networks on Earth. The study will dive into the spacecraft downlink system design and communication link analysis between the relay orbiter and ground network on Earth for data rates ranging from 100 Mbps to 1 Gbps based on the assumed scenarios and link assumptions. With high rate links at larger distances, there will be a significant impact on the antenna and power requirements and the link design will make an attempt to minimize the mass of the RF subsystem on the spacecraft. The results of this study will be presented for three data rates 1 Gbps, 500 Mbps and 100 Mbps at maximum Mars to Earth distance of 2.67AU. The design will use a Ka-band downlink with 90% link availability, along with various ground network G/T assumptions and possible bandwidth efficient modulations. The paper will conclude with what types of high rate communication links are feasible from Martian distances and also identify a range of requirements for antenna and power technologies for these high capacity communications from Mars.

  20. The Bidirectional Reflectance of Apollo Lunar Soils

    NASA Astrophysics Data System (ADS)

    Foote, E.; Paige, D.; Shepard, M.; Johnson, J.; Grundy, W.; Biggar, S.; Greenhagen, B.; Allen, C.

    2011-10-01

    We have compared laboratory solar bidirectional reflectance measurements of a diverse set of Apollo soil samples with Lunar Reconnaissance Orbiter (LRO) Diviner orbital albedo measurements at the Apollo 11 and 16 landing sites. Preliminary results show good agreement between the laboratory and orbital measurements at low phase angles. We expect reasonable agreement between the Apollo 12, 15, and 17 landing sites once we complete those measurements.

  1. Bidirectional and Asymmetric Quantum Controlled Teleportation

    NASA Astrophysics Data System (ADS)

    Zhang, Da; Zha, Xin-Wei; Duan, Ya-Jun

    2015-05-01

    We propose a new protocol of bidirectional and asymmetric quantum controlled teleportation, using a maximally seven-qubit entangled state as the quantum channel. That is to say Alice wants to transmit an arbitrary single qubit state (an arbitrary two-qubit state) to Bob and Bob wants to transmit an arbitrary two-qubit state (an arbitrary single state) to Alice via the control of the supervisor Charlie.

  2. High capacity image steganography method based on framelet and compressive sensing

    NASA Astrophysics Data System (ADS)

    Xiao, Moyan; He, Zhibiao

    2015-12-01

    To improve the capacity and imperceptibility of image steganography, a novel high capacity and imperceptibility image steganography method based on a combination of framelet and compressive sensing (CS) is put forward. Firstly, SVD (Singular Value Decomposition) transform to measurement values obtained by compressive sensing technique to the secret data. Then the singular values in turn embed into the low frequency coarse subbands of framelet transform to the blocks of the cover image which is divided into non-overlapping blocks. Finally, use inverse framelet transforms and combine to obtain the stego image. The experimental results show that the proposed steganography method has a good performance in hiding capacity, security and imperceptibility.

  3. Very high-capacity short-reach VCSEL systems exploiting multicarrier intensity modulation and direct detection.

    PubMed

    Gatto, Alberto; Argenio, Debora; Boffi, Pierpaolo

    2016-06-13

    Multicarrier intensity modulation of a bandwidth-limited long-wavelength VCSEL is exploited combined to direct detection to achieve very high capacity simple systems for short-reach applications. Tailored FDM subcarriers modulation and allocation allow to match the non-uniform frequency response of the system induced by the direct modulation and detection of the FDM signal and by the uncompensated SSMF propagation, overcoming the VCSEL bandwidth limitations. A whole transported throughput ranging from 34 Gb/s to 25 Gb/s from few hundreds meters to 20 km of SSMF propagation is experimentally demonstrated even by employing a 5-GHz band VCSEL source. PMID:27410296

  4. Development and Testing of a High Capacity Plasma Chemical Reactor in the Ukraine

    SciTech Connect

    Reilly, Raymond W.

    2012-07-30

    This project, Development and Testing of a High Capacity Plasma Chemical Reactor in the Ukraine was established at the Kharkiv Institute of Physics and Technology (KIPT). The associated CRADA was established with Campbell Applied Physics (CAP) located in El Dorado Hills, California. This project extends an earlier project involving both CAP and KIPT conducted under a separate CRADA. The initial project developed the basic Plasma Chemical Reactor (PCR) for generation of ozone gas. This project built upon the technology developed in the first project, greatly enhancing the output of the PCR while also improving reliability and system control.

  5. The Design of an Ultra High Capacity Long Range Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Weisshaar, Terrence A.; Bucci, Gregory; Hare, Angela; Szolwinski, Matthew

    1993-01-01

    This paper examines the design of a 650 passenger aircraft with 8000 nautical mile range to reduce seat mile cost and to reduce airport and airway congestion. This design effort involves the usual issues that require trades between technologies, but must also include consideration of: airport terminal facilities; passenger loading and unloading; and, defeating the 'square-cube' law to design large structures. This paper will review the long range ultra high capacity or megatransport design problem and the variety of solutions developed by senior student design teams at Purdue University.

  6. Bidirectional pumped high power Raman fiber laser.

    PubMed

    Xiao, Q; Yan, P; Li, D; Sun, J; Wang, X; Huang, Y; Gong, M

    2016-03-21

    This paper presents a 3.89 kW 1123 nm Raman all-fiber laser with an overall optical-to-optical efficiency of 70.9%. The system consists of a single-wavelength (1070nm) seed and one-stage bidirectional 976 nm non-wavelength-stabilized laser diodes (LDs) pumped Yb-doped fiber amplifier. The unique part of this system is the application of non-wavelength-stabilized LDs in high power bidirectional pumping configuration fiber amplifier via refractive index valley fiber combiners. This approach not only increases the pump power, but also shortens the length of fiber by avoiding the usage of multi-stage amplifier. Through both theoretical research and experiment, the bidirectional pumping configuration presented in this paper proves to be able to convert 976 nm pump laser to 1070 nm laser via Yb3+ transfer, which is then converted into 1123 nm Raman laser via the first-order Raman effect without the appearance of any higher-order Raman laser. PMID:27136862

  7. Bidirectional controlled joint remote state preparation

    NASA Astrophysics Data System (ADS)

    Peng, Jia-Yin; Bai, Ming-Qiang; Mo, Zhi-Wen

    2015-11-01

    Fusing the ideas of bidirectional controlled teleportation and joint remote state preparation, we put forward a protocol for implementing five-party bidirectional controlled joint remote state preparation (BCJRSP) by using an eight-qubit cluster state as quantum channel. It can be shown that two distant senders can simultaneously and deterministically exchange their states with the other senders under the control of the supervisor. In order to extend BCJRSP, we generalize this protocol from five participants to multi participants utilizing two multi-qubit GHZ-type states as channel and propose two generalized BCJRSP schemes. On the other hand, we generalize the BCJRSP to multidirectional controlled joint remote state preparation by utilizing multi GHZ-type states of multi-qubit as quantum channel. By integrating bidirectional quantum teleportation, quantum state sharing and joint remote state preparation, some modified versions are discussed. Only Pauli operations and single-qubit measurements are used in our schemes, so the scheme with five-party is easily realized in physical experiment.

  8. Bidirectional optimization of the melting spinning process.

    PubMed

    Liang, Xiao; Ding, Yongsheng; Wang, Zidong; Hao, Kuangrong; Hone, Kate; Wang, Huaping

    2014-02-01

    A bidirectional optimizing approach for the melting spinning process based on an immune-enhanced neural network is proposed. The proposed bidirectional model can not only reveal the internal nonlinear relationship between the process configuration and the quality indices of the fibers as final product, but also provide a tool for engineers to develop new fiber products with expected quality specifications. A neural network is taken as the basis for the bidirectional model, and an immune component is introduced to enlarge the searching scope of the solution field so that the neural network has a larger possibility to find the appropriate and reasonable solution, and the error of prediction can therefore be eliminated. The proposed intelligent model can also help to determine what kind of process configuration should be made in order to produce satisfactory fiber products. To make the proposed model practical to the manufacturing, a software platform is developed. Simulation results show that the proposed model can eliminate the approximation error raised by the neural network-based optimizing model, which is due to the extension of focusing scope by the artificial immune mechanism. Meanwhile, the proposed model with the corresponding software can conduct optimization in two directions, namely, the process optimization and category development, and the corresponding results outperform those with an ordinary neural network-based intelligent model. It is also proved that the proposed model has the potential to act as a valuable tool from which the engineers and decision makers of the spinning process could benefit. PMID:24446468

  9. Programmatic status of NASA's CSTI high capacity power Stirling space power converter program

    NASA Technical Reports Server (NTRS)

    Dudenhoefer, James E.

    1990-01-01

    An overview is presented of the NASA Lewis Research Center Free-Piston Stirling Space Power Converter Technology Development Program. This work is being conducted under NASA's Civil Space Technology Initiative (CSTI). The goal of the CSTI High Capacity Power element is to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA space initiatives. Efforts are focused upon increasing system thermal and electric energy conversion efficiency at least fivefold over current SP-100 technology, and on achieving systems that are compatible with space nuclear reactors. The status of test activities with the Space Power Research Engine (SPRE) is discussed. Design deficiencies are gradually being corrected and the power converter is now outputting 11.5 kWe at a temperature ratio of 2 (design output is 12.5 kWe). Detail designs were completed for the 1050 K Component Test Power Converter (CTPC). The success of these and future designs is dependent upon supporting research and technology efforts including heat pipes, gas bearings, superalloy joining technologies and high efficiency alternators. An update of progress in these technologies is provided.

  10. Regular Arrays of Germanium Nanoparticles Assisted by Thermoset Polymer Composites for High Capacity Lithium Ion Battery

    NASA Astrophysics Data System (ADS)

    Jo, Gyuha; Park, Moon Jeong

    2012-02-01

    In recent years Li-batteries have attracted significant interests for a variety of applications such as portable electronics and electric vehicle (EV) batteries due to their high energy densities. Key challenges in advancing the technology lie in specific energy density, the long term cycle properties, and durability at elevated temperature. In present study, we were motivated to prepare high capacity Li-battery by creating regular arrays of germanium nanoparticles (GeNPs, 1600 mAh/g) to replace commercial graphite anode (370 mAh/g). Thermoset polymers were employed to prepare GeNPs/polymer composites with tunable NP loadings and spacings, followed by carbonization process to prepare GeNPs/carbon composite anode material. Due to the large volume change of GeNPs with charge/discharge cycles, the regular arrays of GeNPs are turned out to be a crucial parameter in obtaining enhanced cyclability. The GeNPs/carbon anode materials were cycle tested in a half cell configuration using Lithium foil as a counter electrode and lithium salt doped PS-PEO block copolymers as electrolytes. High capacity and rate capability were achieved, which demonstrate the role of nano-sized and regularly-arrayed anode active materials in obtaining the improved battery performance.

  11. High capacity group-15 alloy anodes for Na-ion batteries: Electrochemical and mechanical insights

    NASA Astrophysics Data System (ADS)

    Mortazavi, Majid; Ye, Qiongjie; Birbilis, Nick; Medhekar, Nikhil V.

    2015-07-01

    Group-15 elements phosphorus, arsenic, antimony and bismuth offer the prospect of serving as functional alloying elements for developing high-capacity alloy anodes for sodium-ion batteries (NIBs). Here we obtain concentration-dependent electrochemical properties of sodium (Na) alloys with group-15 elements using first principles calculations. Since Na intercalation in these alloys is accompanied by a substantial volume expansion that can lead to mechanical failure and loss of capacity, we have also obtained a full set of concentration-dependent elastic properties for a single crystal as well as a polycrystalline microstructure. We find that sodiation of these alloys results in their significant elastic softening by as large as 60%. In contrast to the group-14 alloys that are also being explored as anodes of NIBs, the elastic softening in group-15 alloys varies in a non-monotonic manner with Na concentration, and more importantly, the maximum degradation of elastic properties does not necessarily occur at full sodiation. Our results provide crucial insights into the electrochemical and mechanical response of these alloys to Na intercalation, thus contributing to the design of failure-resistant architectures of high capacity NIBs.

  12. Programmatic status of NASA`s CSTI high capacity power Stirling Space Power Converter Program

    SciTech Connect

    Dudenhoefer, J.E.

    1994-09-01

    An overview is presented of the NASA Lewis Research Center Free-Piston Stirling Space Power Converter Technology Development Program. This work is being conducted under NASA`s Civil Space Technology Initiative (CSTI). The goal of the CSTI High Capacity Power element is to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA space initiatives. Efforts are focused upon increasing system thermal and electric energy conversion efficiency at least fivefold over current SP-100 technology, and on achieving systems that are compatible with space nuclear reactors. This paper will discuss the status of test activities with the Space Power Research Engine (SPRE). Design deficiencies are gradually being corrected and the power converter is now outputting 11.5 kWe at a temperature ratio of 2 (design output is 12.5 kWe). Detail designs have been completed for the 1050 K Component Test Power Converter (CTPC). The success of these and future designs is dependent upon supporting research and technology efforts including heat pipes, gas bearings, superalloy joining technologies and high efficiency alternators. This paper also provides an update of progress in these technologies.

  13. High capacity embedding with indexed data recovery using adjunctive numerical relations in multimedia signal covers

    NASA Astrophysics Data System (ADS)

    Collins, James C.; Agaian, Sos S.

    2013-05-01

    We introduce a technique for covertly embedding data throughout an audio file using redundant number system decomposition across non-standard digital bit-lines. This bit-line implementation integrates an index recoverable embedded algorithm with an extended bit level representation that achieves a high capacity data channel within an audio multimedia file. It will be shown this new steganography method has minimal aural distortive affects while preserving both first and second order cover statistics, making it less susceptible to most steganalysis attacks. Our research approach involves reviewing the common numerical methods used in common binary-based algorithms. We then describe basic concepts and challenges when attempting to implement complex embedding algorithms that are based on redundant number systems. Finally, we introduce a novel class of numerical based multiple bit-line decomposition systems, which we define as Adjunctive Numerical Representations. The system is primarily described using basic PCM techniques in uncompressed audio files however extended applications for alternate multimedia is addressed. This new embedding system will not only provide the statistical stability required for effective steganography but will also give us an improvement in the embedding capacity in this class of multimedia carrier files. This novelty of our approach is demonstrated by an ability to embed high capacity covert data while simultaneously providing a means for rapid, indexed data recovery.

  14. High capacity fiber optic sensor networks using hybrid multiplexing techniques and their applications

    NASA Astrophysics Data System (ADS)

    Sun, Qizhen; Li, Xiaolei; Zhang, Manliang; Liu, Qi; Liu, Hai; Liu, Deming

    2013-12-01

    Fiber optic sensor network is the development trend of fiber senor technologies and industries. In this paper, I will discuss recent research progress on high capacity fiber sensor networks with hybrid multiplexing techniques and their applications in the fields of security monitoring, environment monitoring, Smart eHome, etc. Firstly, I will present the architecture of hybrid multiplexing sensor passive optical network (HSPON), and the key technologies for integrated access and intelligent management of massive fiber sensor units. Two typical hybrid WDM/TDM fiber sensor networks for perimeter intrusion monitor and cultural relics security are introduced. Secondly, we propose the concept of "Microstructure-Optical X Domin Refecltor (M-OXDR)" for fiber sensor network expansion. By fabricating smart micro-structures with the ability of multidimensional encoded and low insertion loss along the fiber, the fiber sensor network of simple structure and huge capacity more than one thousand could be achieved. Assisted by the WDM/TDM and WDM/FDM decoding methods respectively, we built the verification systems for long-haul and real-time temperature sensing. Finally, I will show the high capacity and flexible fiber sensor network with IPv6 protocol based hybrid fiber/wireless access. By developing the fiber optic sensor with embedded IPv6 protocol conversion module and IPv6 router, huge amounts of fiber optic sensor nodes can be uniquely addressed. Meanwhile, various sensing information could be integrated and accessed to the Next Generation Internet.

  15. Integration and flight demonstration of a high-capacity monogroove heat-pipe radiator

    NASA Technical Reports Server (NTRS)

    Rankin, J. G.

    1984-01-01

    The cancellation of the TDRS-B satellite as the payload for the eighth Space Shuttle mission provided a unique opportunity to demonstrate on-orbit operation of the high-capacity monogroove heat pipe used in the space constructible radiator subsystem. In less than 4 months, a flight experiment was conceived, designed, fabricated, tested, integrated with a payload carrier, installed in the Orbiter Challenger payload bay, and successfully operated in flight. Still color photographs and direct crew visual observation of color changes in a pattern of temperature-sensitive liquid-crystal tapes provided the temperature data necessary to verify successful on-orbit startup and orbital transient response of the heat pipe when subjected to a heat load from its attached electrical heaters. This successful on-orbit demonstration verified analytical design tools and provided confidence in the use of high-capacity heat pipes for future space applications. The flight experiment hardware and the integration and test activities that led to the flight are described, and the actual flight results are compared to analytical performance predictions.

  16. The H60Si6C54 heterofullerene as high-capacity hydrogen storage medium

    NASA Astrophysics Data System (ADS)

    Yong, Yongliang; Zhou, Qingxiao; Li, Xiaohong; Lv, Shijie

    2016-07-01

    With the great success in Si atoms doped C60 fullerene and the well-established methods for synthesis of hydrogenated carbon fullerenes, this leads naturally to wonder whether Si-doped fullerenes are possible for special applications such as hydrogen storage. Here by using first-principles calculations, we design a novel high-capacity hydrogen storage material, H60Si6C54 heterofullerene, and confirm its geometric stability. It is found that the H60Si6C54 heterofullerene has a large HOMO-LUMO gap and a high symmetry, indicating it is high chemically stable. Further, our finite temperature simulations indicate that the H60Si6C54 heterofullerene is thermally stable at 300 K. H2 molecules would enter into the cage from the Si-hexagon ring because of lower energy barrier. Through our calculation, a maximum of 21 H2 molecules can be stored inside the H60Si6C54 cage in molecular form, leading to a gravimetric density of 11.11 wt% for 21H2@H60Si6C54 system, which suggests that the hydrogenated Si6C54 heterofullerene could be suitable as a high-capacity hydrogen storage material.

  17. All-solid-state sodium batteries using amorphous TiS3 electrode with high capacity

    NASA Astrophysics Data System (ADS)

    Tanibata, Naoto; Matsuyama, Takuya; Hayashi, Akitoshi; Tatsumisago, Masahiro

    2015-02-01

    All-solid-state sodium cells (Na15Sn4/Na3PS4 glass-ceramic/a-TiS3) showed a high capacity of over 300 mAh per gram of TiS3 at the 1st discharge-charge cycle. The capacity was gradually decreased to 100 mAh g-1 at the 10th cycle. Nyquist plots of the cell showed that the resistance of the a-TiS3 composite electrode became larger with the discharge-charge cycles. The XRD patterns of the a-TiS3 composite electrode before and after the 1st cycle indicated that the a-TiS3 was still amorphous during discharge-charge process. The Raman bands attributable to a-TiS3 were also observed after the 1st cycle. The SEM images and EDX mapping indicated that the a-TiS3 particles aggregated in the electrode after the 10th cycle. The all-solid-state sodium cell using a-TiS3 composite electrode with acetylene black as a conductive additive showed the high capacity of over 300 mAh g-1 for 5 cycles.

  18. High-capacity, transient retention of direction-of-motion information for multiple moving objects

    PubMed Central

    Shooner, Christopher; Tripathy, Srimant P.; Bedell, Harold E.; Öğmen, Haluk

    2011-01-01

    The multiple-object tracking paradigm (MOT) has been used extensively for studying dynamic visual attention, but the basic mechanisms which subserve this capability are as yet unknown. Among the unresolved issues surrounding MOT are the relative importance of motion (as opposed to positional) information and the role of various memory mechanisms. We sought to quantify the capacity and dynamics for retention of direction-of-motion information when viewing a multiple-object motion stimulus similar to those used in MOT. Observers viewed three to nine objects in random linear motion and then reported motion direction after motion ended. Using a partial-report paradigm and varying the parameters of set size and time of retention, we found evidence for two complementary memory systems, one transient with high capacity and a second sustained system with low capacity. For the transient high-capacity memory, retention capacity was equally high whether object motion lasted several seconds or a fraction of a second. Also, a graded deterioration in performance with increased set size lends support to a flexible-capacity theory of MOT. PMID:20884557

  19. On-bead antibody-small molecule conjugation using high-capacity magnetic beads.

    PubMed

    Nath, Nidhi; Godat, Becky; Benink, Hélène; Urh, Marjeta

    2015-11-01

    Antibodies labeled with small molecules such as fluorophore, biotin or drugs play an important role in various areas of biological research, drug discovery and diagnostics. However, the majority of current methods for labeling antibodies is solution-based and has several limitations including the need for purified antibodies at high concentrations and multiple buffer exchange steps. In this study, a method (on-bead conjugation) is described that addresses these limitations by combining antibody purification and conjugation in a single workflow. This method uses high capacity-magnetic Protein A or Protein G beads to capture antibodies directly from cell media followed by conjugation with small molecules and elution of conjugated antibodies from the beads. High-capacity magnetic antibody capture beads are key to this method and were developed by combining porous and hydrophilic cellulose beads with oriented immobilization of Protein A and Protein G using HaloTag technology. With a variety of fluorophores it is shown that the on-bead conjugation method is compatible with both thiol- and amine-based chemistry. This method enables simple and rapid processing of multiple samples in parallel with high-efficiency antibody recovery. It is further shown that recovered antibodies are functional and compatible with downstream applications. PMID:26316179

  20. Examining a Bidirectional Association Between Depressive Symptoms and Diabetes

    PubMed Central

    Golden, Sherita Hill; Lazo, Mariana; Carnethon, Mercedes; Bertoni, Alain G.; Schreiner, Pamela J.; Roux, Ana V. Diez; Lee, Hochang Benjamin; Lyketsos, Constantine

    2008-01-01

    Context Depressive symptoms are associated with development of type 2 diabetes, but it is unclear whether type 2 diabetes is a risk factor for elevated depressive symptoms. Objective To examine the bidirectional association between depressive symptoms and type 2 diabetes. Design, Setting, and Participants Multi-Ethnic Study of Atherosclerosis, a longitudinal, ethnically diverse cohort study of US men and women aged 45 to 84 years enrolled in 2000-2002 and followed up until 2004-2005. Main Outcome Measures Elevated depressive symptoms defined by Center for Epidemiologic Studies Depression Scale (CES-D) score of 16 or higher, use of antidepressant medications, or both. The CES-D score was also modeled continuously. Participants were categorized as normal fasting glucose (<100 mg/dL), impaired fasting glucose (100-125 mg/dL), or type 2 diabetes (≥126 mg/dL or receiving treatment). Analysis 1 included 5201 participants without type 2 diabetes at baseline and estimated the relative hazard of incidenttype2diabetesover3.2yearsforthosewithandwithoutdepressivesymptoms.Analysis 2 included 4847 participants without depressive symptoms at baseline and calculated the relative odds of developing depressive symptoms over 3.1 years for those with and without type 2 diabetes. Results In analysis 1, the incidence rate of type 2 diabetes was 22.0 and 16.6 per 1000 person-years for those with and without elevated depressive symptoms, respectively. The risk of incident type 2 diabetes was 1.10 times higher for each 5-unit increment in CES-D score (95% confidence interval [CI], 1.02-1.19) after adjustment for demographic factors and body mass index. This association persisted following adjustment for metabolic, inflammatory, socioeconomic, or lifestyle factors, although it was no longer statistically significant following adjustment for the latter (relative hazard, 1.08; 95% CI, 0.99-1.19). In analysis 2, the incidence rates of elevated depressive symptoms per 1000-person years were

  1. Glucose control.

    PubMed

    Preiser, Jean-Charles

    2013-01-01

    Stress-related hyperglycemia is a common finding in acutely ill patients, and is related to the severity and outcome of the critical illness. The pathophysiology of stress hyperglycemia includes hormonal and neural signals, leading to increased production of glucose by the liver and peripheral insulin resistance mediated by the translocation of transmembrane glucose transporters. In one pioneering study, tight glycemic control by intensive insulin therapy in critically ill patients was associated with improved survival. However, this major finding was not confirmed in several other prospective randomized controlled trials. The reasons underlying the discrepancy between the first and the subsequent studies could include nutritional strategy (amount of calories provided, use of parenteral nutrition), case-mix, potential differences in the optimal blood glucose level (BG) in different types of patients, hypoglycemia and its correction, and the magnitude of glucose variability. Therefore, an improved understanding of the physiology and pathophysiology of glycemic regulation during acute illness is needed. Safe and effective glucose control will need improvement in the definition of optimal BG and in the measurement techniques, perhaps including continuous monitoring of insulin algorithms and closed-loop systems. PMID:23075589

  2. Self-assembled asymmetric membrane containing micron-size germanium for high capacity lithium ion batteries

    DOE PAGESBeta

    Byrd, Ian; Chen, Hao; Webber, Theron; Li, Jianlin; Wu, Ji

    2015-10-23

    We report the formation of novel asymmetric membrane electrode containing micron-size (~5 μm) germanium powders through a self-assembly phase inversion method for high capacity lithium ion battery anode. 850 mA h g-1 capacity (70%) can be retained at a current density of 600 mA g-1 after 100 cycles with excellent rate performance. Such a high retention rate has rarely been seen for pristine micron-size germanium anodes. Moreover, scanning electron microscope studies reveal that germanium powders are uniformly embedded in a networking porous structure consisting of both nanopores and macropores. It is believed that such a unique porous structure can efficientlymore » accommodate the ~260% volume change during germanium alloying and de-alloying process, resulting in an enhanced cycling performance. Finally, these porous membrane electrodes can be manufactured in large scale using a roll-to-roll processing method.« less

  3. A high capacity multiple watermarking scheme based on Fourier descriptor and Sudoku

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Zheng, Huimin

    2015-12-01

    Digital watermark is a type of technology to hide some significant information which is mainly used to protect digital data. A high capacity multiple watermarking method is proposed, which adapts the Fourier descriptor to pre-process the watermarks, while a Sudoku puzzle is used as a reference matrix in embedding process and a key in extraction process. It can dramatically reduce the required capacity by applying Fourier descriptor. Meanwhile, the security of watermarks can be guaranteed due to the Sudoku puzzle. Unlike previous algorithms applying Sudoku puzzle in spatial domain, the proposed algorithm works in transformed domain by applying LWT2.In addition, the proposed algorithm can detect the temper location accurately. The experimental results demonstrated that the goals mentioned above have been achieved.

  4. A Major Constituent of Brown Algae for Use in High-Capacity Li-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Kovalenko, Igor; Zdyrko, Bogdan; Magasinski, Alexandre; Hertzberg, Benjamin; Milicev, Zoran; Burtovyy, Ruslan; Luzinov, Igor; Yushin, Gleb

    2011-10-01

    The identification of similarities in the material requirements for applications of interest and those of living organisms provides opportunities to use renewable natural resources to develop better materials and design better devices. In our work, we harness this strategy to build high-capacity silicon (Si) nanopowder-based lithium (Li)-ion batteries with improved performance characteristics. Si offers more than one order of magnitude higher capacity than graphite, but it exhibits dramatic volume changes during electrochemical alloying and de-alloying with Li, which typically leads to rapid anode degradation. We show that mixing Si nanopowder with alginate, a natural polysaccharide extracted from brown algae, yields a stable battery anode possessing reversible capacity eight times higher than that of the state-of-the-art graphitic anodes.

  5. A high-capacity model for one shot association learning in the brain

    PubMed Central

    Einarsson, Hafsteinn; Lengler, Johannes; Steger, Angelika

    2014-01-01

    We present a high-capacity model for one-shot association learning (hetero-associative memory) in sparse networks. We assume that basic patterns are pre-learned in networks and associations between two patterns are presented only once and have to be learned immediately. The model is a combination of an Amit-Fusi like network sparsely connected to a Willshaw type network. The learning procedure is palimpsest and comes from earlier work on one-shot pattern learning. However, in our setup we can enhance the capacity of the network by iterative retrieval. This yields a model for sparse brain-like networks in which populations of a few thousand neurons are capable of learning hundreds of associations even if they are presented only once. The analysis of the model is based on a novel result by Janson et al. on bootstrap percolation in random graphs. PMID:25426060

  6. Graphdiyne as a high-capacity lithium ion battery anode material

    NASA Astrophysics Data System (ADS)

    Jang, Byungryul; Koo, Jahyun; Park, Minwoo; Lee, Hosik; Nam, Jaewook; Kwon, Yongkyung; Lee, Hoonkyung

    2013-12-01

    Using the first-principles calculations, we explored the feasibility of using graphdiyne, a 2D layer of sp and sp2 hybrid carbon networks, as lithium ion battery anodes. We found that the composite of the Li-intercalated multilayer α-graphdiyne was C6Li7.31 and that the calculated voltage was suitable for the anode. The practical specific/volumetric capacities can reach up to 2719 mAh g-1/2032 mAh cm-3, much greater than the values of ˜372 mAh g-1/˜818 mAh cm-3, ˜1117 mAh g-1/˜1589 mAh cm-3, and ˜744 mAh g-1 for graphite, graphynes, and γ-graphdiyne, respectively. Our calculations suggest that multilayer α-graphdiyne can serve as a promising high-capacity lithium ion battery anode.

  7. An FDMA system concept for 30/20 GHz high capacity domestic satellite service

    NASA Technical Reports Server (NTRS)

    Berk, G.; Jean, P. N.; Rotholz, E.; White, B. E.

    1982-01-01

    The paper summarizes a feasibility study of a multibeam FDMA satellite system operating in the 30/20 GHz band. The system must accommodate a very high volume of traffic within the restrictions of a 5 kW solar cell array and a 2.5 GHz bandwidth. Multibeam satellite operation reduces the DC power demand and allows reuse of the available bandwidth. Interferences among the beams are brought to acceptable levels by appropriate frequency assignments. A transponder design is presented; it is greatly simplified by the application of a regional concept. System analysis shows that MSK modulation is appropriate for a high-capacity system because it conserves the frequency spectrum. Rain attenuation, a serious problem in this frequency band, is combatted with sufficient power margins and with coding. Link budgets, cost analysis, and weight and power calculations are also discussed. A satellite-routed FDMA system compares favorably in performance and cost with a satellite-switched TDMA system.

  8. Mono-layer BC2 a high capacity anode material for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Hardikar, Rahul; Samanta, Atanu; Han, Sang Soo; Lee, Kwang-Ryeol; Singh, Abhishek

    2015-04-01

    Mono-layer of graphene with high surface area compared to the bulk graphite phase, shows less Li uptake. The Li activity or kinetics can be modified via defects and/or substitutional doping. Boron and Nitrogen are the best known dopants for carbonaceous anode materials. In particular, boron doped graphene shows higher capacity and better Li adsorption compared to Nitrogen doped graphene. Here, using first principles density functional theory calculations, we study the spectrum of boron carbide (BCx) mono-layer phases in order to estimate the maximum gravimetric capacity that can be achieved by substitutional doping in graphene. Our results show that uniformly boron doped BC2 phase shows a high capacity of? 1400 mAh/g, much higher than previously reported capacity of BC3. Supported by Korea Institute of Science and Technology.

  9. Synergistic Combinations of Multiple Chemotherapeutic Agents in High Capacity Poly(2-oxazoline) Micelles

    PubMed Central

    Han, Yingchao; He, Zhijian; Schulz, Anita; Bronich, Tatiana K.; Jordan, Rainer; Luxenhofer, Robert; Kabanov, Alexander V.

    2012-01-01

    Many effective drugs for cancer treatment are poorly water-soluble. In combination chemotherapy, needed excipients in additive formulations are often toxic and restrict their applications in clinical intervention. Here, we report on amphiphilic poly(2-oxazoline)s (POx) micelles as a promising high capacity delivery platform for multi-drug cancer chemotherapy. A variety of binary and ternary drugs combinations of paclitaxel (PTX), docetaxel (DTX), 17-allylamino-17-demethoxygeldanamycin (17-AAG), etoposide (ETO) and bortezomib (BTZ) were solubilized in defined polymeric micelles achieving unprecedented high total loading capacities of up to 50 wt.% drug per final formulation. Multi-drug loaded POx micelles showed enhanced stability in comparison to single-drug loaded micelles. Drug ratio dependent synergistic cytotoxicity of micellar ETO/17-AAG was observed in MCF-7 cancer cells and of micellar BTZ/17-AAG in MCF-7, PC3, MDA-MB-231 and HepG2 cells. PMID:22681126

  10. Progress in High-Capacity Core-Shell Cathode Materials for Rechargeable Lithium Batteries.

    PubMed

    Myung, Seung-Taek; Noh, Hyung-Joo; Yoon, Sung-June; Lee, Eung-Ju; Sun, Yang-Kook

    2014-02-20

    High-energy-density rechargeable batteries are needed to fulfill various demands such as self-monitoring analysis and reporting technology (SMART) devices, energy storage systems, and (hybrid) electric vehicles. As a result, high-energy electrode materials enabling a long cycle life and reliable safety need to be developed. To ensure these requirements, new material chemistries can be derived from combinations of at least two compounds in a secondary particle with varying chemical composition and primary particle morphologies having a core-shell structure and spherical cathode-active materials, specifically a nanoparticle core and shell, nanoparticle core and nanorod shell, and nanorod core and shell. To this end, several layer core-shell cathode materials were developed to ensure high capacity, reliability, and safety. PMID:26270835

  11. Design of a Two-stage High-capacity Stirling Cryocooler Operating below 30K

    NASA Astrophysics Data System (ADS)

    Wang, Xiaotao; Dai, Wei; Zhu, Jian; Chen, Shuai; Li, Haibing; Luo, Ercang

    The high capacity cryocooler working below 30K can find many applications such as superconducting motors, superconducting cables and cryopump. Compared to the GM cryocooler, the Stirling cryocooler can achieve higher efficiency and more compact structure. Because of these obvious advantages, we have designed a two stage free piston Stirling cryocooler system, which is driven by a moving magnet linear compressor with an operating frequency of 40 Hz and a maximum 5 kW input electric power. The first stage of the cryocooler is designed to operate in the liquid nitrogen temperature and output a cooling power of 100 W. And the second stage is expected to simultaneously provide a cooling power of 50 W below the temperature of 30 K. In order to achieve the best system efficiency, a numerical model based on the thermoacoustic model was developed to optimize the system operating and structure parameters.

  12. Bismuth sulfide: A high-capacity anode for sodium-ion batteries

    NASA Astrophysics Data System (ADS)

    Sun, Wenping; Rui, Xianhong; Zhang, Dan; Jiang, Yinzhu; Sun, Ziqi; Liu, Huakun; Dou, Shixue

    2016-03-01

    Exploring high-performance anode materials is currently one of the most urgent issues towards practical sodium-ion batteries (SIBs). In this work, Bi2S3 is demonstrated to be a high-capacity anode for SIBs for the first time. The specific capacity of Bi2S3 nanorods achieves up to 658 and 264 mAh g-1 at a current density of 100 and 2000 mA g-1, respectively. A full cell with Na3V2(PO4)3-based cathode is also assembled as a proof of concept and delivers 340 mAh g-1 at 100 mA g-1. The sodium storage mechanism of Bi2S3 is investigated by ex-situ XRD coupled with high-resolution TEM (HRTEM), and it is found that sodium storage is achieved by a combined conversion-intercalation mechanism.

  13. Self-assembled asymmetric membrane containing micron-size germanium for high capacity lithium ion batteries

    SciTech Connect

    Byrd, Ian; Chen, Hao; Webber, Theron; Li, Jianlin; Wu, Ji

    2015-10-23

    We report the formation of novel asymmetric membrane electrode containing micron-size (~5 μm) germanium powders through a self-assembly phase inversion method for high capacity lithium ion battery anode. 850 mA h g-1 capacity (70%) can be retained at a current density of 600 mA g-1 after 100 cycles with excellent rate performance. Such a high retention rate has rarely been seen for pristine micron-size germanium anodes. Moreover, scanning electron microscope studies reveal that germanium powders are uniformly embedded in a networking porous structure consisting of both nanopores and macropores. It is believed that such a unique porous structure can efficiently accommodate the ~260% volume change during germanium alloying and de-alloying process, resulting in an enhanced cycling performance. Finally, these porous membrane electrodes can be manufactured in large scale using a roll-to-roll processing method.

  14. DTCWT based high capacity steganography using coefficient replacement and adaptive scaling

    NASA Astrophysics Data System (ADS)

    Sathisha, N.; Priya, R.; Babu, K. Suresh; Raja, K. B.; Venugopal, K. R.; Patnaik, L. M.

    2013-12-01

    The steganography is used for secure communication. In this paper we propose Dual Tree Complex Wavelet Transform (DTCWT) based high capacity steganography using coefficient replacement and adaptive scaling. The DTCWT is applied on cover image and Lifting Wavelet Transform2 (LWT2) is applied on payload to convert spatial domain into transform domain. The new concept of replacing HH sub band coefficients of DTCWT of cover image by LL sub band coefficients of payload is introduced to generate intermediate stego object. The adaptive scaling factor is used based on entropy of cover image to scale down intermediate stego object coefficient values to generate final stego object. It is observed that the capacity and security are increased in the proposed algorithm compared to existing algorithms.

  15. High capacity data hiding scheme based on (7, 4) Hamming code.

    PubMed

    Cao, Zekun; Yin, Zhaoxia; Hu, Honghe; Gao, Xiangping; Wang, Liangmin

    2016-01-01

    Aiming to embed large amount of data while minimize the sum of costs of all changed pixels, a novel high capacity data hiding scheme based on (7, 4) Hamming code is realized by a family of algorithms. Firstly, n (n = 1, 2, 3) cover pixels are assigned to one set according to the payload. Then, 128 binary strings of length seven are divided into eight sets according to the syndrome of every binary string. Binary strings that share the same syndrome are classified into one set. Finally, a binary string in a certain set determined by the data to be embedded is chosen to modify some of the least significant bits of the n cover pixels. The experimental results demonstrate that the image quality of the proposed method with high embedding payload is superior to those of the related schemes. PMID:27026872

  16. High-capacity stationary phases containing heavy atoms for HPLC separation of fullerenes

    SciTech Connect

    Kimata, Kazuhiro |; Hirose, Tsunehisa; Moriuchi, Kouji; Hosoya, Ken; Araki, Takeo; Tanaka, Nobuo

    1995-08-01

    A high-capacity stationary phase for the separation of fullerenes was prepared by immobilizing 3-[(pentabromobenzyl)oxy]propylsilyl (PBB) groups onto silica surfaces. The stationary phase was developed by a reciprocal approach. This was possible by finding the structure of solvents that provided high solubilities as well as high eluent strength for chromatographic elution of fullerenes. The increased solubility and increased eluent strength for C{sub 60} seen with solvents containing heavy heteroatoms suggested the preferential interaction of C{sub 60} with such solvent molecules. The stationary phases containing sulfur, chlorine, or bromine in fact resulted in longer retention of fullerenes. The PBB silica showed high retentivity with excellent efficiency for fullerenes, permitting the use of solvents providing high solubilities, such as carbon disulfide and 1,2,4-trichlorobenzene for gramscale separations with ordinary HPLC equipment. 22 refs., 6 figs., 3 tabs.

  17. Multiwalled carbon nanotube@a-C@Co9S8 nanocomposites: a high-capacity and long-life anode material for advanced lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Zhou, Yanli; Yan, Dong; Xu, Huayun; Liu, Shuo; Yang, Jian; Qian, Yitai

    2015-02-01

    A one-dimensional MWCNT@a-C@Co9S8 nanocomposite has been prepared via a facile solvothermal reaction followed by a calcination process. The amorphous carbon layer between Co9S8 and MWCNT acts as a linker to increase the loading of sulfides on MWCNT. When evaluated as anode materials for lithium ion batteries, the MWCNT@a-C@Co9S8 nanocomposite shows the advantages of high capacity and long life, superior to Co9S8 nanoparticles and MWCNT@Co9S8 nanocomposites. The reversible capacity could be retained at 662 mA h g-1 after 120 cycles at 1 A g-1. The efficient synthesis and excellent performances of this nanocomposite offer numerous opportunities for other sulfides as a new anode for lithium ion batteries.A one-dimensional MWCNT@a-C@Co9S8 nanocomposite has been prepared via a facile solvothermal reaction followed by a calcination process. The amorphous carbon layer between Co9S8 and MWCNT acts as a linker to increase the loading of sulfides on MWCNT. When evaluated as anode materials for lithium ion batteries, the MWCNT@a-C@Co9S8 nanocomposite shows the advantages of high capacity and long life, superior to Co9S8 nanoparticles and MWCNT@Co9S8 nanocomposites. The reversible capacity could be retained at 662 mA h g-1 after 120 cycles at 1 A g-1. The efficient synthesis and excellent performances of this nanocomposite offer numerous opportunities for other sulfides as a new anode for lithium ion batteries. Electronic supplementary information (ESI) available: Infrared spectrogram (IR) of glucose treated MWCNT; TEM images of MWCNT@a-C treated by different concentrations of glucose; SEM and TEM images of the intermediate product obtained from the solvothermal reaction between thiourea and Co(Ac)2; EDS spectrum of MWCNT@a-C@Co9S8 composites; SEM and TEM images of MWCNT@Co9S8 nanocomposites obtained without the hydrothermal treatment by glucose; SEM and TEM images of Co9S8 nanoparticles; Galvanostatic discharge-charge profiles and cycling performance of MWCNT@a-C; TEM images

  18. High-Capacity and Rapid Removal of Refractory NOM Using Nanoscale Anion Exchange Resin.

    PubMed

    Johnson, Billy R; Eldred, Tim B; Nguyen, Andy T; Payne, William M; Schmidt, Emily E; Alansari, Amir Y; Amburgey, James E; Poler, Jordan C

    2016-07-20

    As human health concerns over disinfection byproducts (DBP) in drinking water increase, so does the need to develop new materials that remove them rapidly and at high capacity. Ion exchange (IEX) is an effective method for the removal of natural organic matter (NOM), especially anion exchange resins (AERs) with quaternary ammonium functional groups. However, capacity is limited in existing commercial resin materials because adsorbates can only interact with the outermost surface area, which makes these products inefficient on a mass basis. We have synthesized a novel "NanoResin" exploiting the enhanced NOM removal of the quaternary ammonium resin while utilizing the vast surface area of SWCNTs, which act as scaffolding for the resin. Our nanomaterials show increased adsorption capacity compared to commercially available adsorbents, in a fraction of the time. This NanoResin requires only about 10 s to reach ion-exchange equilibrium. Comparatively, commercial AERs only achieved partial removal after more than 30 min. High capacity adsorption of a low molecular weight (MW) surrogate has been measured. NOM removal was demonstrated in solutions of both low and high specific UV absorbance (SUVA) composition with these nanomaterials. Additionally, the NanoResin showed enhanced removal of a NOM concentrate sample taken from Myrtle Beach, SC, demonstrating NanoResin is an effective method of removal for refractory NOM in a natural aqueous environment. Synthesis and characterization of the polymers and nanomaterials are presented below. Adsorption capacity, adsorption kinetics, and the regeneration and reusability of these new materials for NOM removal are described. The open matrix microstructure precludes any intraparticle diffusion of adsorbates; thus, these nanomaterials act as a "contact resin". PMID:27348616

  19. Bidirectional scattering of light from tree leaves

    NASA Technical Reports Server (NTRS)

    Brakke, Thomas W.; Smith, James A.; Harnden, Joann M.

    1989-01-01

    A laboratory goniometer consisting of an He-Ne laser (632.8 nm), vertical leaf holder, and silicon photovoltaic detector was used to measure the bidirectional scattering (both transmittance and reflectance) of red oak and red maple. The illumination angles were 0, 30, and 60 deg, and the scattering was recorded approximately every 10 deg in the principal plane. The scattering profiles obtained show the non-Lambertian characteristics of the scattering, particularly for the off-nadir illumination directions. The transmitted light was more isotropic than the reflected light.

  20. Bidirectional extracellular matrix signaling during tissue morphogenesis

    PubMed Central

    Gjorevski, Nikolce; Nelson, Celeste M.

    2009-01-01

    Normal tissue development and function are regulated by the interplay between cells and their surrounding extracellular matrix (ECM). The ECM provides biochemical and mechanical contextual information that is conveyed from the cell membrane through the cytoskeleton to the nucleus to direct cell phenotype. Cells, in turn, remodel the ECM and thereby sculpt their local microenvironment. Here we review the mechanisms by which cells interact with, respond to, and influence the ECM, with particular emphasis placed on the role of this bidirectional communication during tissue morphogenesis. We also discuss the implications for successful engineering of functional tissues ex vivo. PMID:19896886

  1. Bi-directional planar slide mechanism

    DOEpatents

    Bieg, Lothar F.

    2003-11-04

    A bi-directional slide mechanism. A pair of master and slave disks engages opposite sides of the platform. Rotational drivers are connected to master disks so the disks rotate eccentrically about their respective axes of rotation. Opposing slave disks are connected to master disks on opposite sides of the platform by a circuitous mechanical linkage, or are electronically synchronized together using stepper motors, to effect coordinated motion. The synchronized eccentric motion of the pairs of master/slave disks compels smooth linear motion of the platform forwards and backwards without backlash. The apparatus can be incorporated in a MEMS device.

  2. TOOL ASSEMBLY WITH BI-DIRECTIONAL BEARING

    DOEpatents

    Longhurst, G.E.

    1961-07-11

    A two-direction motion bearing which is incorporated in a refueling nuclear fuel element trsnsfer tool assembly is described. A plurality of bi- directional bearing assembliesare fixed equi-distantly about the circumference of the transfer tool assembly to provide the tool assembly with a bearing surface- for both axial and rotational motion. Each bi-directional bearing assembly contains a plurality of circumferentially bulged rollers mounted in a unique arrangement which will provide a bearing surface for rotational movement of the tool assembly within a bore. The bi-direc tional bearing assembly itself is capable of rational motion and thus provides for longitudinal movement of the tool assembly.

  3. Bidirectional Drive-And-Brake Mechanism

    NASA Technical Reports Server (NTRS)

    Swan, Scott A.

    1991-01-01

    Vehicle that crawls along monorail combines features of both bicycle and railroad handcar. Bidirectional drive-and-brake mechanism includes selectable-pawl-and-ratchet overrunning clutch (drive mechanism) and mating stationary and rotating conical surfaces pressing against each other (brake mechanism). Operates similarly to bicycle drive-and-brake mechanism except limits rotation of sprocket in both directions and brakes at both limits. Conceived for use by astronaut traveling along structure in outer space, concept also applied on Earth to make very small railraod handcars or crawling vehicles for use on large structures, in pipelines under construction, or underwater.

  4. Glucose Variability

    PubMed Central

    2013-01-01

    The proposed contribution of glucose variability to the development of the complications of diabetes beyond that of glycemic exposure is supported by reports that oxidative stress, the putative mediator of such complications, is greater for intermittent as opposed to sustained hyperglycemia. Variability of glycemia in ambulatory conditions defined as the deviation from steady state is a phenomenon of normal physiology. Comprehensive recording of glycemia is required for the generation of any measurement of glucose variability. To avoid distortion of variability to that of glycemic exposure, its calculation should be devoid of a time component. PMID:23613565

  5. Personalized recommendation based on heat bidirectional transfer

    NASA Astrophysics Data System (ADS)

    Ma, Wenping; Feng, Xiang; Wang, Shanfeng; Gong, Maoguo

    2016-02-01

    Personalized recommendation has become an increasing popular research topic, which aims to find future likes and interests based on users' past preferences. Traditional recommendation algorithms pay more attention to forecast accuracy by calculating first-order relevance, while ignore the importance of diversity and novelty that provide comfortable experiences for customers. There are some levels of contradictions between these three metrics, so an algorithm based on bidirectional transfer is proposed in this paper to solve this dilemma. In this paper, we agree that an object that is associated with history records or has been purchased by similar users should be introduced to the specified user and recommendation approach based on heat bidirectional transfer is proposed. Compared with the state-of-the-art approaches based on bipartite network, experiments on two benchmark data sets, Movielens and Netflix, demonstrate that our algorithm has better performance on accuracy, diversity and novelty. Moreover, this method does better in exploiting long-tail commodities and cold-start problem.

  6. Controlled Bidirectional Quantum Secure Direct Communication

    PubMed Central

    Chou, Yao-Hsin; Lin, Yu-Ting; Zeng, Guo-Jyun; Lin, Fang-Jhu; Chen, Chi-Yuan

    2014-01-01

    We propose a novel protocol for controlled bidirectional quantum secure communication based on a nonlocal swap gate scheme. Our proposed protocol would be applied to a system in which a controller (supervisor/Charlie) controls the bidirectional communication with quantum information or secret messages between legitimate users (Alice and Bob). In this system, the legitimate users must obtain permission from the controller in order to exchange their respective quantum information or secret messages simultaneously; the controller is unable to obtain any quantum information or secret messages from the decoding process. Moreover, the presence of the controller also avoids the problem of one legitimate user receiving the quantum information or secret message before the other, and then refusing to help the other user decode the quantum information or secret message. Our proposed protocol is aimed at protecting against external and participant attacks on such a system, and the cost of transmitting quantum bits using our protocol is less than that achieved in other studies. Based on the nonlocal swap gate scheme, the legitimate users exchange their quantum information or secret messages without transmission in a public channel, thus protecting against eavesdroppers stealing the secret messages. PMID:25006596

  7. Bidirectional telemetry controller for neuroprosthetic devices.

    PubMed

    Sharma, Vishnu; McCreery, Douglas B; Han, Martin; Pikov, Victor

    2010-02-01

    We present versatile multifunctional programmable controller with bidirectional data telemetry, implemented using existing commercial microchips and standard Bluetooth protocol, which adds convenience, reliability, and ease-of-use to neuroprosthetic devices. Controller, weighing 190 g, is placed on animal's back and provides bidirectional sustained telemetry rate of 500 kb/s , allowing real-time control of stimulation parameters and viewing of acquired data. In continuously-active state, controller consumes approximately 420 mW and operates without recharge for 8 h . It features independent 16-channel current-controlled stimulation, allowing current steering; customizable stimulus current waveforms; recording of stimulus voltage waveforms and evoked neuronal responses with stimulus artifact blanking circuitry. Flexibility, scalability, cost-efficiency, and a user-friendly computer interface of this device allow use in animal testing for variety of neuroprosthetic applications. Initial testing of the controller has been done in a feline model of brainstem auditory prosthesis. In this model, the electrical stimulation is applied to the array of microelectrodes implanted in the ventral cochlear nucleus, while the evoked neuronal activity was recorded with the electrode implanted in the contralateral inferior colliculus. Stimulus voltage waveforms to monitor the access impedance of the electrodes were acquired at the rate of 312 kilosamples/s. Evoked neuronal activity in the inferior colliculus was recorded after the blanking (transient silencing) of the recording amplifier during the stimulus pulse, allowing the detection of neuronal responses within 100 mus after the end of the stimulus pulse applied in the cochlear nucleus. PMID:19933010

  8. Bidirectional Data Collaborations in Distributed Research

    PubMed Central

    Haynes, Kevin; Selvam, Nandini; Cziraky, Mark J.

    2016-01-01

    Introduction: The need for collaborations with bidirectional data exchange within and across distributed research networks has increased. Currently Existing Activities: This commentary will present currently publically available activities including the Sentinel Initiative, the Patient-Centered Outcomes Research Network (PCORnet), and the NIH Research Collaboratory. Current Technical and Governance Challenges: Even with the advances made in this arena, several technical and governance challenges remain including the evolution of clinically rich data sources and modes of care, availability of longitudinal data resources through data linkage, and the processes to share data and link data resources while ensuring privacy and proprietary control of data. Perspective: These activities will require enhanced levels of trust between entities involved in the delivery of healthcare (Trust 2.0) in addition to the trust health plans and health systems have with patients (Trust 1.0). Recent public funding announcements and public access to data resources will likely improve the landscape of bidirectional data collaborations in distributed research. PMID:27141518

  9. [Novel bidirectional promoter from human genome].

    PubMed

    Orekhova, A S; Sverdlova, P S; Spirin, P V; Leonova, O G; Popenko, V I; Prasolov, V S; Rubtsov, P M

    2011-01-01

    In human and other mammalian genomes a number of closely linked gene pairs transcribed in opposite directions are found. According to bioinformatic analysis up to 10% of human genes are arranged in this way. In present work the fragment of human genome was cloned that separates genes localized at 2p13.1 and oriented "head-to-head", coding for hypothetical proteins with unknown functions--CCDC (Coiled Coil Domain Containing) 142 and TTC (TetraTricopeptide repeat Containing) 31. Intergenic CCDC142-TTC31 region overlaps with CpG-island and contains a number of potential binding sites for transcription factors. This fragment functions as bidirectional promoter in the system ofluciferase reporter gene expression upon transfection of human embryonic kidney (HEK293) cells. The vectors containing genes of two fluorescent proteins--green (EGFP) and red (DsRed2) in opposite orientations separated by the fragment of CCDC142-TTC31 intergenic region were constructed. In HEK293 cells transfected with these vectors simultaneous expression of two fluorescent proteins is observed. Truncated versions of intergenic region were obtained and their promoter activity measured. Minimal promoter fragment contains elements Inr, BRE, DPE characteristic for TATA-less promoters. Thus, from the human genome the novel bidirectional promoter was cloned that can be used for simultaneous constitutive expression of two genes in human cells. PMID:21790010

  10. Effects of Noise on Asymmetric Bidirectional Controlled Teleportation

    NASA Astrophysics Data System (ADS)

    Nie, Yi-you; Sang, Ming-huang

    2016-07-01

    We present a scheme for asymmetric bidirectional controlled teleportation via a six-qubit cluster state in noisy environments, which includes the phase-damping and amplitude-damping channels. We analytically derive the fidelities of the asymmetric bidirectional controlled teleportation process in these two noise channels. We show that the fidelities only depend on the initial state and the noisy rate.

  11. Kinetics of Oligonucleotide Hybridization to DNA Probe Arrays on High-Capacity Porous Silica Substrates

    PubMed Central

    Glazer, Marc I.; Fidanza, Jacqueline A.; McGall, Glenn H.; Trulson, Mark O.; Forman, Jonathan E.; Frank, Curtis W.

    2007-01-01

    We have investigated the kinetics of DNA hybridization to oligonucleotide arrays on high-capacity porous silica films that were deposited by two techniques. Films created by spin coating pure colloidal silica suspensions onto a substrate had pores of ∼23 nm, relatively low porosity (35%), and a surface area of 17 times flat glass (for a 0.3-μm film). In the second method, latex particles were codeposited with the silica by spin coating and then pyrolyzed, which resulted in larger pores (36 nm), higher porosity (65%), and higher surface area (26 times flat glass for a 0.3-μm film). As a result of these favorable properties, the templated silica hybridized more quickly and reached a higher adsorbed target density (11 vs. 8 times flat glass at 22°C) than the pure silica. Adsorption of DNA onto the high-capacity films is controlled by traditional adsorption and desorption coefficients, as well as by morphology factors and transient binding interactions between the target and the probes. To describe these effects, we have developed a model based on the analogy to diffusion of a reactant in a porous catalyst. Adsorption values (ka, kd, and K) measured on planar arrays for the same probe/target system provide the parameters for the model and also provide an internally consistent comparison for the stability of the transient complexes. The interpretation of the model takes into account factors not previously considered for hybridization in three-dimensional films, including the potential effects of heterogeneous probe populations, partial probe/target complexes during diffusion, and non-1:1 binding structures. The transient complexes are much less stable than full duplexes (binding constants for full duplexes higher by three orders of magnitude or more), which may be a result of the unique probe density and distribution that is characteristic of the photolithographically patterned arrays. The behavior at 22°C is described well by the predictive equations for

  12. Quantifying the Contribution of the Liver to Glucose Homeostasis: A Detailed Kinetic Model of Human Hepatic Glucose Metabolism

    PubMed Central

    König, Matthias; Bulik, Sascha; Holzhütter, Hermann-Georg

    2012-01-01

    Despite the crucial role of the liver in glucose homeostasis, a detailed mathematical model of human hepatic glucose metabolism is lacking so far. Here we present a detailed kinetic model of glycolysis, gluconeogenesis and glycogen metabolism in human hepatocytes integrated with the hormonal control of these pathways by insulin, glucagon and epinephrine. Model simulations are in good agreement with experimental data on (i) the quantitative contributions of glycolysis, gluconeogenesis, and glycogen metabolism to hepatic glucose production and hepatic glucose utilization under varying physiological states. (ii) the time courses of postprandial glycogen storage as well as glycogen depletion in overnight fasting and short term fasting (iii) the switch from net hepatic glucose production under hypoglycemia to net hepatic glucose utilization under hyperglycemia essential for glucose homeostasis (iv) hormone perturbations of hepatic glucose metabolism. Response analysis reveals an extra high capacity of the liver to counteract changes of plasma glucose level below 5 mM (hypoglycemia) and above 7.5 mM (hyperglycemia). Our model may serve as an important module of a whole-body model of human glucose metabolism and as a valuable tool for understanding the role of the liver in glucose homeostasis under normal conditions and in diseases like diabetes or glycogen storage diseases. PMID:22761565

  13. Concomitant bidirectional transport during peritoneal dialysis can be explained by a structured interstitium.

    PubMed

    Stachowska-Pietka, Joanna; Waniewski, Jacek; Flessner, Michael F; Lindholm, Bengt

    2016-06-01

    Clinical and animal studies suggest that peritoneal absorption of fluid and protein from dialysate to peritoneal tissue, and to blood and lymph circulation, occurs concomitantly with opposite flows of fluid and protein, i.e., from blood to dialysate. However, until now a theoretical explanation of this phenomenon has been lacking. A two-phase distributed model is proposed to explain the bidirectional, concomitant transport of fluid, albumin and glucose through the peritoneal transport system (PTS) during peritoneal dialysis. The interstitium of this tissue is described as an expandable two-phase structure with phase F (water-rich, colloid-poor region) and phase C (water-poor, colloid-rich region) with fluid and solute exchange between them. A low fraction of phase F is assumed in the intact tissue, which can be significantly increased under the influence of hydrostatic pressure and tissue hydration. The capillary wall is described using the three-pore model, and the conditions in the peritoneal cavity are assumed commencing 3 min after the infusion of glucose 3.86% dialysis fluid. Computer simulations demonstrate that peritoneal absorption of fluid into the tissue, which occurs via phase F at the rate of 1.8 ml/min, increases substantially the interstitial pressure and tissue hydration in both phases close to the peritoneal cavity, whereas the glucose-induced ultrafiltration from blood occurs via phase C at the rate of 15 ml/min. The proposed model delineating the phenomenon of concomitant bidirectional transport through PTS is based on a two-phase structure of the interstitium and provides results in agreement with clinical and experimental data. PMID:26945084

  14. The infectious BAC genomic DNA expression library: a high capacity vector system for functional genomics.

    PubMed

    Lufino, Michele M P; Edser, Pauline A H; Quail, Michael A; Rice, Stephen; Adams, David J; Wade-Martins, Richard

    2016-01-01

    Gene dosage plays a critical role in a range of cellular phenotypes, yet most cellular expression systems use heterologous cDNA-based vectors which express proteins well above physiological levels. In contrast, genomic DNA expression vectors generate physiologically-relevant levels of gene expression by carrying the whole genomic DNA locus of a gene including its regulatory elements. Here we describe the first genomic DNA expression library generated using the high-capacity herpes simplex virus-1 amplicon technology to deliver bacterial artificial chromosomes (BACs) into cells by viral transduction. The infectious BAC (iBAC) library contains 184,320 clones with an average insert size of 134.5 kb. We show in a Chinese hamster ovary (CHO) disease model cell line and mouse embryonic stem (ES) cells that this library can be used for genetic rescue studies in a range of contexts including the physiological restoration of Ldlr deficiency, and viral receptor expression. The iBAC library represents an important new genetic analysis tool openly available to the research community. PMID:27353647

  15. Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance.

    PubMed

    Chao, Dongliang; Zhu, Changrong; Yang, Peihua; Xia, Xinhui; Liu, Jilei; Wang, Jin; Fan, Xiaofeng; Savilov, Serguei V; Lin, Jianyi; Fan, Hong Jin; Shen, Ze Xiang

    2016-01-01

    Sodium-ion batteries are a potentially low-cost and safe alternative to the prevailing lithium-ion battery technology. However, it is a great challenge to achieve fast charging and high power density for most sodium-ion electrodes because of the sluggish sodiation kinetics. Here we demonstrate a high-capacity and high-rate sodium-ion anode based on ultrathin layered tin(II) sulfide nanostructures, in which a maximized extrinsic pseudocapacitance contribution is identified and verified by kinetics analysis. The graphene foam supported tin(II) sulfide nanoarray anode delivers a high reversible capacity of ∼1,100 mAh g(-1) at 30 mA g(-1) and ∼420 mAh g(-1) at 30 A g(-1), which even outperforms its lithium-ion storage performance. The surface-dominated redox reaction rendered by our tailored ultrathin tin(II) sulfide nanostructures may also work in other layered materials for high-performance sodium-ion storage. PMID:27358085

  16. High-capacity method for hiding data in the discrete cosine transform domain

    NASA Astrophysics Data System (ADS)

    Qazanfari, Kazem; Safabakhsh, Reza

    2013-10-01

    Steganography is the art and science of hiding data in different media such as texts, audios, images, and videos. Data hiding techniques are generally divided into two groups: spatial and frequency domain techniques. Spatial domain methods generally have low security and, as a result, are less attractive to researchers. Discrete cosine transform (DCT) is the most common transform domain used in steganography and JPEG compression. Since a large number of the DCT coefficients of JPEG images are zero, the capacity of DCT domain-based steganography methods is not very high. We present a high-capacity method for hiding messages in the DCT domain. We describe the method in two classes where the receiver has and where the receiver does not have the cover image. In each class, we consider three cases for each coefficient. By considering n coefficients, there are 3n different situations. The method embeds ⌊log2 3n⌋ bits in these n coefficients. We show that the maximum reachable capacity by our method is 58% higher than the other general steganography methods. Experimental results show that the histogram-based steganalysis methods cannot detect the stego images produced by the proposed method while the capacity is increased significantly.

  17. A high-capacity steganography scheme for JPEG2000 baseline system.

    PubMed

    Zhang, Liang; Wang, Haili; Wu, Renbiao

    2009-08-01

    Hiding capacity is very important for efficient covert communications. For JPEG2000 compressed images, it is necessary to enlarge the hiding capacity because the available redundancy is very limited. In addition, the bitstream truncation makes it difficult to hide information. In this paper, a high-capacity steganography scheme is proposed for the JPEG2000 baseline system, which uses bit-plane encoding procedure twice to solve the problem due to bitstream truncation. Moreover, embedding points and their intensity are determined in a well defined quantitative manner via redundancy evaluation to increase hiding capacity. The redundancy is measured by bit, which is different from conventional methods which adjust the embedding intensity by multiplying a visual masking factor. High volumetric data is embedded into bit-planes as low as possible to keep message integrality, but at the cost of an extra bit-plane encoding procedure and slightly changed compression ratio. The proposed method can be easily integrated into the JPEG2000 image coder, and the produced stego-bitstream can be decoded normally. Simulation shows that the proposed method is feasible, effective, and secure. PMID:19398405

  18. Li2C2, a High-Capacity Cathode Material for Lithium Ion Batteries.

    PubMed

    Tian, Na; Gao, Yurui; Li, Yurong; Wang, Zhaoxiang; Song, Xiaoyan; Chen, Liquan

    2016-01-11

    As a typical alkaline earth metal carbide, lithium carbide (Li2C2) has the highest theoretical specific capacity (1400 mA h g(-1)) among all the reported lithium-containing cathode materials for lithium ion batteries. Herein, the feasibility of using Li2C2 as a cathode material was studied. The results show that at least half of the lithium can be extracted from Li2C2 and the reversible specific capacity reaches 700 mA h g(-1). The C≡C bond tends to rotate to form C4 (C≡C⋅⋅⋅C≡C) chains during lithium extraction, as indicated with the first-principles molecular dynamics (FPMD) simulation. The low electronic and ionic conductivity are believed to be responsible for the potential gap between charge and discharge, as is supported with density functional theory (DFT) calculations and Arrhenius fitting results. These findings illustrate the feasibility to use the alkali and alkaline earth metal carbides as high-capacity electrode materials for secondary batteries. PMID:26609636

  19. New High Capacity Cathode Materials for Rechargeable Li-ion Batteries: Vanadate-Borate Glasses

    NASA Astrophysics Data System (ADS)

    Afyon, Semih; Krumeich, Frank; Mensing, Christian; Borgschulte, Andreas; Nesper, Reinhard

    2014-11-01

    V2O5 based materials are attractive cathode alternatives due to the many oxidation state switches of vanadium bringing about a high theoretical specific capacity. However, significant capacity losses are eminent for crystalline V2O5 phases related to the irreversible phase transformations and/or vanadium dissolution starting from the first discharge cycle. These problems can be circumvented if amorphous or glassy vanadium oxide phases are employed. Here, we demonstrate vanadate-borate glasses as high capacity cathode materials for rechargeable Li-ion batteries for the first time. The composite electrodes of V2O5 - LiBO2 glass with reduced graphite oxide (RGO) deliver specific energies around 1000 Wh/kg and retain high specific capacities in the range of ~ 300 mAh/g for the first 100 cycles. V2O5 - LiBO2 glasses are considered as promising cathode materials for rechargeable Li-ion batteries fabricated through rather simple and cost-efficient methods.

  20. Graphdiyne as a high-capacity lithium ion battery anode material

    SciTech Connect

    Jang, Byungryul; Koo, Jahyun; Park, Minwoo; Kwon, Yongkyung; Lee, Hoonkyung; Lee, Hosik; Nam, Jaewook

    2013-12-23

    Using the first-principles calculations, we explored the feasibility of using graphdiyne, a 2D layer of sp and sp{sup 2} hybrid carbon networks, as lithium ion battery anodes. We found that the composite of the Li-intercalated multilayer α-graphdiyne was C{sub 6}Li{sub 7.31} and that the calculated voltage was suitable for the anode. The practical specific/volumetric capacities can reach up to 2719 mAh g{sup −1}/2032 mAh cm{sup −3}, much greater than the values of ∼372 mAh g{sup −1}/∼818 mAh cm{sup −3}, ∼1117 mAh g{sup −1}/∼1589 mAh cm{sup −3}, and ∼744 mAh g{sup −1} for graphite, graphynes, and γ-graphdiyne, respectively. Our calculations suggest that multilayer α-graphdiyne can serve as a promising high-capacity lithium ion battery anode.

  1. Carbon Nanofiber/3D Nanoporous Silicon Hybrids as High Capacity Lithium Storage Materials.

    PubMed

    Park, Hyeong-Il; Sohn, Myungbeom; Kim, Dae Sik; Park, Cheolho; Choi, Jeong-Hee; Kim, Hansu

    2016-04-21

    Carbon nanofiber (CNF)/3D nanoporous (3DNP) Si hybrid materials were prepared by chemical etching of melt-spun Si/Al-Cu-Fe alloy nanocomposites, followed by carbonization using a pitch. CNFs were successfully grown on the surface of 3DNP Si particles using residual Fe impurities after acidic etching, which acted as a catalyst for the growth of CNFs. The resulting CNF/3DNP Si hybrid materials showed an enhanced cycle performance up to 100 cycles compared to that of the pristine Si/Al-Cu-Fe alloy nanocomposite as well as that of bare 3DNP Si particles. These results indicate that CNFs and the carbon coating layer have a beneficial effect on the capacity retention characteristics of 3DNP Si particles by providing continuous electron-conduction pathways in the electrode during cycling. The approach presented here provides another way to improve the electrochemical performances of porous Si-based high capacity anode materials for lithium-ion batteries. PMID:26970098

  2. Enhanced Dissociation of Intact Proteins with High Capacity Electron Transfer Dissociation

    NASA Astrophysics Data System (ADS)

    Riley, Nicholas M.; Mullen, Christopher; Weisbrod, Chad R.; Sharma, Seema; Senko, Michael W.; Zabrouskov, Vlad; Westphall, Michael S.; Syka, John E. P.; Coon, Joshua J.

    2016-03-01

    Electron transfer dissociation (ETD) is a valuable tool for protein sequence analysis, especially for the fragmentation of intact proteins. However, low product ion signal-to-noise often requires some degree of signal averaging to achieve high quality MS/MS spectra of intact proteins. Here we describe a new implementation of ETD on the newest generation of quadrupole-Orbitrap-linear ion trap Tribrid, the Orbitrap Fusion Lumos, for improved product ion signal-to-noise via ETD reactions on larger precursor populations. In this new high precursor capacity ETD implementation, precursor cations are accumulated in the center section of the high pressure cell in the dual pressure linear ion trap prior to charge-sign independent trapping, rather than precursor ion sequestration in only the back section as is done for standard ETD. This new scheme increases the charge capacity of the precursor accumulation event, enabling storage of approximately 3-fold more precursor charges. High capacity ETD boosts the number of matching fragments identified in a single MS/MS event, reducing the need for spectral averaging. These improvements in intra-scan dynamic range via reaction of larger precursor populations, which have been previously demonstrated through custom modified hardware, are now available on a commercial platform, offering considerable benefits for intact protein analysis and top down proteomics. In this work, we characterize the advantages of high precursor capacity ETD through studies with myoglobin and carbonic anhydrase.

  3. MEO based secured, robust, high capacity and perceptual quality image watermarking in DWT-SVD domain.

    PubMed

    Gunjal, Baisa L; Mali, Suresh N

    2015-01-01

    The aim of this paper is to present multiobjective evolutionary optimizer (MEO) based highly secured and strongly robust image watermarking technique using discrete wavelet transform (DWT) and singular value decomposition (SVD). Many researchers have failed to achieve optimization of perceptual quality and robustness with high capacity watermark embedding. Here, we achieved optimized peak signal to noise ratio (PSNR) and normalized correlation (NC) using MEO. Strong security is implemented through eight different security levels including watermark scrambling by Fibonacci-Lucas transformation (FLT). Haar wavelet is selected for DWT decomposition to compare practical performance of wavelets from different wavelet families. The technique is non-blind and tested with cover images of size 512x512 and grey scale watermark of size 256x256. The achieved perceptual quality in terms of PSNR is 79.8611dBs for Lena, 87.8446 dBs for peppers and 93.2853 dBs for lake images by varying scale factor K1 from 1 to 5. All candidate images used for testing namely Lena, peppers and lake images show exact recovery of watermark giving NC equals to 1. The robustness is tested against variety of attacks on watermarked image. The experimental demonstration proved that proposed method gives NC more than 0.96 for majority of attacks under consideration. The performance evaluation of this technique is found superior to all existing hybrid image watermarking techniques under consideration. PMID:25830081

  4. Origin of voltage decay in high-capacity layered oxide electrodes

    NASA Astrophysics Data System (ADS)

    Sathiya, M.; Abakumov, A. M.; Foix, D.; Rousse, G.; Ramesha, K.; Saubanère, M.; Doublet, M. L.; Vezin, H.; Laisa, C. P.; Prakash, A. S.; Gonbeau, D.; Vantendeloo, G.; Tarascon, J.-M.

    2015-02-01

    Although Li-rich layered oxides (Li1+xNiyCozMn1-x-y-zO2 > 250 mAh g-1) are attractive electrode materials providing energy densities more than 15% higher than today’s commercial Li-ion cells, they suffer from voltage decay on cycling. To elucidate the origin of this phenomenon, we employ chemical substitution in structurally related Li2RuO3 compounds. Li-rich layered Li2Ru1-yTiyO3 phases with capacities of ~240 mAh g-1 exhibit the characteristic voltage decay on cycling. A combination of transmission electron microscopy and X-ray photoelectron spectroscopy studies reveals that the migration of cations between metal layers and Li layers is an intrinsic feature of the charge-discharge process that increases the trapping of metal ions in interstitial tetrahedral sites. A correlation between these trapped ions and the voltage decay is established by expanding the study to both Li2Ru1-ySnyO3 and Li2RuO3; the slowest decay occurs for the cations with the largest ionic radii. This effect is robust, and the finding provides insights into new chemistry to be explored for developing high-capacity layered electrodes that evade voltage decay.

  5. The infectious BAC genomic DNA expression library: a high capacity vector system for functional genomics

    PubMed Central

    Lufino, Michele M. P.; Edser, Pauline A. H.; Quail, Michael A.; Rice, Stephen; Adams, David J.; Wade-Martins, Richard

    2016-01-01

    Gene dosage plays a critical role in a range of cellular phenotypes, yet most cellular expression systems use heterologous cDNA-based vectors which express proteins well above physiological levels. In contrast, genomic DNA expression vectors generate physiologically-relevant levels of gene expression by carrying the whole genomic DNA locus of a gene including its regulatory elements. Here we describe the first genomic DNA expression library generated using the high-capacity herpes simplex virus-1 amplicon technology to deliver bacterial artificial chromosomes (BACs) into cells by viral transduction. The infectious BAC (iBAC) library contains 184,320 clones with an average insert size of 134.5 kb. We show in a Chinese hamster ovary (CHO) disease model cell line and mouse embryonic stem (ES) cells that this library can be used for genetic rescue studies in a range of contexts including the physiological restoration of Ldlr deficiency, and viral receptor expression. The iBAC library represents an important new genetic analysis tool openly available to the research community. PMID:27353647

  6. Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance

    NASA Astrophysics Data System (ADS)

    Chao, Dongliang; Zhu, Changrong; Yang, Peihua; Xia, Xinhui; Liu, Jilei; Wang, Jin; Fan, Xiaofeng; Savilov, Serguei V.; Lin, Jianyi; Fan, Hong Jin; Shen, Ze Xiang

    2016-06-01

    Sodium-ion batteries are a potentially low-cost and safe alternative to the prevailing lithium-ion battery technology. However, it is a great challenge to achieve fast charging and high power density for most sodium-ion electrodes because of the sluggish sodiation kinetics. Here we demonstrate a high-capacity and high-rate sodium-ion anode based on ultrathin layered tin(II) sulfide nanostructures, in which a maximized extrinsic pseudocapacitance contribution is identified and verified by kinetics analysis. The graphene foam supported tin(II) sulfide nanoarray anode delivers a high reversible capacity of ~1,100 mAh g-1 at 30 mA g-1 and ~420 mAh g-1 at 30 A g-1, which even outperforms its lithium-ion storage performance. The surface-dominated redox reaction rendered by our tailored ultrathin tin(II) sulfide nanostructures may also work in other layered materials for high-performance sodium-ion storage.

  7. Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance

    PubMed Central

    Chao, Dongliang; Zhu, Changrong; Yang, Peihua; Xia, Xinhui; Liu, Jilei; Wang, Jin; Fan, Xiaofeng; Savilov, Serguei V.; Lin, Jianyi; Fan, Hong Jin; Shen, Ze Xiang

    2016-01-01

    Sodium-ion batteries are a potentially low-cost and safe alternative to the prevailing lithium-ion battery technology. However, it is a great challenge to achieve fast charging and high power density for most sodium-ion electrodes because of the sluggish sodiation kinetics. Here we demonstrate a high-capacity and high-rate sodium-ion anode based on ultrathin layered tin(II) sulfide nanostructures, in which a maximized extrinsic pseudocapacitance contribution is identified and verified by kinetics analysis. The graphene foam supported tin(II) sulfide nanoarray anode delivers a high reversible capacity of ∼1,100 mAh g−1 at 30 mA g−1 and ∼420 mAh g−1 at 30 A g−1, which even outperforms its lithium-ion storage performance. The surface-dominated redox reaction rendered by our tailored ultrathin tin(II) sulfide nanostructures may also work in other layered materials for high-performance sodium-ion storage. PMID:27358085

  8. High-capacity battery cathode prelithiation to offset initial lithium loss

    NASA Astrophysics Data System (ADS)

    Sun, Yongming; Lee, Hyun-Wook; Seh, Zhi Wei; Liu, Nian; Sun, Jie; Li, Yuzhang; Cui, Yi

    2016-01-01

    Loss of lithium in the initial cycles appreciably reduces the energy density of lithium-ion batteries. Anode prelithiation is a common approach to address the problem, although it faces the issues of high chemical reactivity and instability in ambient and battery processing conditions. Here we report a facile cathode prelithiation method that offers high prelithiation efficacy and good compatibility with existing lithium-ion battery technologies. We fabricate cathode additives consisting of nanoscale mixtures of transition metals and lithium oxide that are obtained by conversion reactions of metal oxide and lithium. These nanocomposites afford a high theoretical prelithiation capacity (typically up to 800 mAh g-1, 2,700 mAh cm-3) during charging. We demonstrate that in a full-cell configuration, the LiFePO4 electrode with a 4.8% Co/Li2O additive shows 11% higher overall capacity than that of the pristine LiFePO4 electrode. The use of the cathode additives provides an effective route to compensate the large initial lithium loss of high-capacity anode materials and improves the electrochemical performance of existing lithium-ion batteries.

  9. New high capacity cathode materials for rechargeable Li-ion batteries: vanadate-borate glasses.

    PubMed

    Afyon, Semih; Krumeich, Frank; Mensing, Christian; Borgschulte, Andreas; Nesper, Reinhard

    2014-01-01

    V2O5 based materials are attractive cathode alternatives due to the many oxidation state switches of vanadium bringing about a high theoretical specific capacity. However, significant capacity losses are eminent for crystalline V2O5 phases related to the irreversible phase transformations and/or vanadium dissolution starting from the first discharge cycle. These problems can be circumvented if amorphous or glassy vanadium oxide phases are employed. Here, we demonstrate vanadate-borate glasses as high capacity cathode materials for rechargeable Li-ion batteries for the first time. The composite electrodes of V2O5 - LiBO(2) glass with reduced graphite oxide (RGO) deliver specific energies around 1000 Wh/kg and retain high specific capacities in the range of ~ 300 mAh/g for the first 100 cycles. V2O5 - LiBO(2) glasses are considered as promising cathode materials for rechargeable Li-ion batteries fabricated through rather simple and cost-efficient methods. PMID:25408200

  10. A reference standard for bidirectional reflection distribution function and bidirectional transmission distribution function measurement

    NASA Technical Reports Server (NTRS)

    Witherow, William K. (Inventor)

    1988-01-01

    A Lambertian reference standard for uniformly scattering a beam of light is constructed of a plate having a planar surface with a layer of glue disposed on the surface. An evenly packed layer of monodisperse spheres is set in the layer, and when the standard is used for bi-directional (BRDF) measurements, the spheres are coated with a layer of highly relective substance, such as gold or silver. When the standard is used for bi-directional transmittance distribution function (BTDF) measurements, the spheres are of a transparent material and are provided with a roughened surface, as by acid etching. In this case, the layer of glue is an optical cement, and the plate is of glass, with the spheres, the layer, and the plate all possessing a similar refractive index.

  11. Bygiene: The New Paradigm of Bidirectional Hygiene

    PubMed Central

    Al-Ghalith, Gabriel A.; Knights, Dan

    2015-01-01

    The pervasive dogma surrounding the evolution of virulence — namely, that a pathogen’s virulence decreases over time to prevent threatening its host — is an archaic assertion that is more appropriately cast as an optimization of virulence cost and benefit. However, the prevailing attitudes underlying practices of medical hygiene and sanitization remain entrenched in these passé ideas. This is true despite the emergence of evidence linking those practices to mounting virulence and antimicrobial resistance in the hospital. It is, therefore, our position that just as the microbe has sought an optimized balance in virulence, so should we seek such an optimized balance in vigilance, complementing warfare with restoration. We call this approach “bygiene,” or bidirectional hygiene. PMID:26604859

  12. Bidirectional solar wind electron heat flux events

    NASA Technical Reports Server (NTRS)

    Gosling, J. T.; Baker, D. N.; Bame, S. J.; Feldman, W. C.; Zwickl, R. D.; Smith, E. J.

    1987-01-01

    ISEE 3 plasma and magnetic field data are used here to document the general characteristics of bidirectional electron heat flux events (BEHFEs). Significant field rotations often occur at the beginning and/or end of such events and, at times, the large-field rotations characteristic of 'magnetic clouds' are present. Approximately half of all BEHFEs are associated with and follow interplanetary shocks, while the other events have no obvious shock associations. When shock-associated, the delay from shock passage typically is about 13 hours, corresponding to a radial separation of about 0.16 AU. When independent of any shock association, BEHFEs typically are about 0.13 AU thick in the radial direction. It is suggested that BEHFEs are one of the more prominent signatures of coronal mass ejection events in the solar wind at 1 AU.

  13. Two coding strategies for bidirectional associative memory--

    SciTech Connect

    Wang, Y.-F.; Cruz, J.B. Jr.; Mulligan, J.H. Jr. )

    1990-03-01

    Enhancements of the encoding strategy of a discrete bidirectional associative memory (BAM) are presented. There are two major concepts in this paper. They are multiple training, which can be guaranteed to achieve recall of a single trained pair under suitable initial conditions of data, and dummy augmentation, which can be guaranteed to achieve recall of all trained pairs if attaching dummy data to the training pairs is allowable. In representative computer simulations, multiple training has been shown to lead to an improvement over the original strategy for recall of multiple pairs as well. The authors also discuss a sufficient condition for a correlation matrix to make the energies of the training pairs be local minima. The use of multiple training and dummy augmentation concepts are illustrated, and theorems underlying the results are presented.

  14. Bygiene: The New Paradigm of Bidirectional Hygiene.

    PubMed

    Al-Ghalith, Gabriel A; Knights, Dan

    2015-12-01

    The pervasive dogma surrounding the evolution of virulence - -namely, that a pathogen's virulence decreases over time to prevent threatening its host -- is an archaic assertion that is more appropriately cast as an optimization of virulence cost and benefit. However, the prevailing attitudes underlying practices of medical hygiene and sanitization remain entrenched in these passé ideas. This is true despite the emergence of evidence linking those practices to mounting virulence and antimicrobial resistance in the hospital. It is, therefore, our position that just as the microbe has sought an optimized balance in virulence, so should we seek such an optimized balance in vigilance, complementing warfare with restoration. We call this approach "bygiene," or bidirectional hygiene. PMID:26604859

  15. Bidirectional Telemetry Controller for Neuroprosthetic Devices

    PubMed Central

    Sharma, Vishnu; McCreery, Douglas B.; Han, Martin; Pikov, Victor

    2010-01-01

    We present versatile multifunctional programmable controller with bidirectional data telemetry, implemented using existing commercial microchips and standard Bluetooth protocol, which adds convenience, reliability, and ease-of-use to neuroprosthetic devices. Controller, weighing 190 g, is placed on animal's back and provides bidirectional sustained telemetry rate of 500 kb/s, allowing real-time control of stimulation parameters and viewing of acquired data. In continuously-active state, controller consumes ∼420 mW and operates without recharge for 8 h. It features independent 16-channel current-controlled stimulation, allowing current steering; customizable stimulus current waveforms; recording of stimulus voltage waveforms and evoked neuronal responses with stimulus artifact blanking circuitry. Flexibility, scalability, cost-efficiency, and a user-friendly computer interface of this device allow use in animal testing for variety of neuroprosthetic applications. Initial testing of the controller has been done in a feline model of brainstem auditory prosthesis. In this model, the electrical stimulation is applied to the array of microelectrodes implanted in the ventral cochlear nucleus, while the evoked neuronal activity was recorded with the electrode implanted in the contralateral inferior colliculus. Stimulus voltage waveforms to monitor the access impedance of the electrodes were acquired at the rate of 312 kilosamples/s. Evoked neuronal activity in the inferior colliculus was recorded after the blanking (transient silencing) of the recording amplifier during the stimulus pulse, allowing the detection of neuronal responses within 100 μs after the end of the stimulus pulse applied in the cochlear nucleus. PMID:19933010

  16. Efficient Provider Authentication for Bidirectional Broadcasting Service

    NASA Astrophysics Data System (ADS)

    Ohtake, Go; Hanaoka, Goichiro; Ogawa, Kazuto

    Provider authentication is necessary in bidirectional broadcasting services, and a digital signature scheme is often used to prevent an adversary from attempting impersonation. The cost of secure signing key management is extremely high. In addition, the key has to be updated very often, since it is frequently used. The result is that the verification key also has to be updated very often, and its redistribution cost is huge. These costs are real and substantive problems, especially when the number of users is large. In this paper, we propose a system that dramatically reduces these costs. In the system, the signing key is updated, but the corresponding verification key does not have to be updated. This means that the signing key can be updated without any cost for redistributing the verification key and that the system is secure against the threat of signing key leakage, since the key can be frequently updated. Moreover, we propose a new key management method that divides a conventional key management server's role into two. The use of a key-insulated signature (KIS) scheme enables low-cost and more secure key management with two servers. Finally, to make a bidirectional broadcasting service more secure even if the signing key is leaked, we developed a new strong KIS scheme. We performed an experiment that assessed the cost of our strong KIS scheme and found that it is sufficiently low. Accordingly, a provider authentication system employing this scheme would be more efficient and would have lower key redistribution and network costs in comparison with conventional authentication systems.

  17. Sex steroids and glucose metabolism.

    PubMed

    Allan, Carolyn A

    2014-01-01

    Testosterone levels are lower in men with metabolic syndrome and type 2 diabetes mellitus (T2DM) and also predict the onset of these adverse metabolic states. Body composition (body mass index, waist circumference) is an important mediator of this relationship. Sex hormone binding globulin is also inversely associated with insulin resistance and T2DM but the data regarding estrogen are inconsistent. Clinical models of androgen deficiency including Klinefelter's syndrome and androgen deprivation therapy in the treatment of advanced prostate cancer confirm the association between androgens and glucose status. Experimental manipulation of the insulin/glucose milieu and suppression of endogenous testicular function suggests the relationship between androgens and insulin sensitivity is bidirectional. Androgen therapy in men without diabetes is not able to differentiate the effect on insulin resistance from that on fat mass, in particular visceral adiposity. Similarly, several small clinical studies have examined the efficacy of exogenous testosterone in men with T2DM, however, the role of androgens, independent of body composition, in modifying insulin resistance is uncertain. PMID:24457840

  18. Blacktip reef sharks (Carcharhinus melanopterus) show high capacity for wound healing and recovery following injury.

    PubMed

    Chin, Andrew; Mourier, Johann; Rummer, Jodie L

    2015-01-01

    Wound healing is important for sharks from the earliest life stages, for example, as the 'umbilical scar' in viviparous species heals, and throughout adulthood, when sharks can incur a range of external injuries from natural and anthropogenic sources. Despite anecdotal accounts of rapid healing in elasmobranchs, data regarding recovery and survival of individuals from different wound or injury types has not been systematically collected. The present study documented: (i) 'umbilical scar' healing in wild-caught, neonatal blacktip reef sharks while being reared for 30 days in flow-through laboratory aquaria in French Polynesia; (ii) survival and recovery of free-swimming blacktip reef sharks in Australia and French Polynesia following a range of injuries; and (iii) long-term survival following suspected shark-finning activities. Laboratory monitoring, tag-recapture records, telemetry data and photo-identification records suggest that blacktip reef sharks have a high capacity to survive and recover from small or even large and severe wounds. Healing rates, recovery and survival are important factors to consider when assessing impacts of habitat degradation and fishing stress on shark populations. The present study suggests that individual survival may depend more on handling practices and physiological stress rather than the extent of physical injury. These observations also contribute to discussions regarding the ethics of tagging practices used in elasmobranch research and provide baseline healing rates that may increase the accuracy in estimating reproductive timing inferred from mating scars and birth dates for neonatal sharks based on umbilical scar healing status. PMID:27293741

  19. Blacktip reef sharks (Carcharhinus melanopterus) show high capacity for wound healing and recovery following injury

    PubMed Central

    Chin, Andrew; Mourier, Johann; Rummer, Jodie L.

    2015-01-01

    Wound healing is important for sharks from the earliest life stages, for example, as the ‘umbilical scar’ in viviparous species heals, and throughout adulthood, when sharks can incur a range of external injuries from natural and anthropogenic sources. Despite anecdotal accounts of rapid healing in elasmobranchs, data regarding recovery and survival of individuals from different wound or injury types has not been systematically collected. The present study documented: (i) ‘umbilical scar’ healing in wild-caught, neonatal blacktip reef sharks while being reared for 30 days in flow-through laboratory aquaria in French Polynesia; (ii) survival and recovery of free-swimming blacktip reef sharks in Australia and French Polynesia following a range of injuries; and (iii) long-term survival following suspected shark-finning activities. Laboratory monitoring, tag-recapture records, telemetry data and photo-identification records suggest that blacktip reef sharks have a high capacity to survive and recover from small or even large and severe wounds. Healing rates, recovery and survival are important factors to consider when assessing impacts of habitat degradation and fishing stress on shark populations. The present study suggests that individual survival may depend more on handling practices and physiological stress rather than the extent of physical injury. These observations also contribute to discussions regarding the ethics of tagging practices used in elasmobranch research and provide baseline healing rates that may increase the accuracy in estimating reproductive timing inferred from mating scars and birth dates for neonatal sharks based on umbilical scar healing status. PMID:27293741

  20. High Capacity Nanoporous Silicon Carrier for Systemic Delivery of Gene Silencing Therapeutics

    PubMed Central

    Kim, Han-Cheon; Guo, Xiaojing; Qin, Guoting; Yang, Yong; Wolfram, Joy; Mu, Chaofeng; Xia, Xiaojun; Gu, Jianhua; Liu, Xuewu; Mao, Zong-Wan; Ferrari, Mauro; Shen, Haifa

    2013-01-01

    Gene silencing agents such as small interfering RNA (siRNA) and microRNA offer the promise to modulate expression of almost every gene for the treatment of human diseases including cancer. However, lack of vehicles for effective systemic delivery to the disease organs has greatly limited their in vivo applications. In this study, we developed a high capacity polycation-functionalized nanoporous silicon (PCPS) platform comprised of nanoporous silicon microparticles functionalized with arginine-polyethyleneimine inside the nanopores for effective delivery of gene silencing agents. Incubation of MDA-MB-231 human breast cancer cells with PCPS loaded with STAT3 siRNA (PCPS/STAT3) or GRP78 siRNA (PCPS/GRP78) resulted in 91% and 83% reduction of STAT3 and GRP78 gene expression in vitro. Treatment of cells with a microRNA-18a mimic in PCPS (PCPS/miR-18) knocked down 90% expression of the microRNA-18a target gene ATM. Systemic delivery of PCPS/STAT3 siRNA in murine model of MDA-MB-231 breast cancer enriched particles in tumor tissues and reduced STAT3 expression in cancer cells, causing significant reduction of cancer stem cells in the residual tumor tissue. At the therapeutic dosage, PCPS/STAT3 siRNA did not trigger acute immune response in FVB mice, including changes in serum cytokines, chemokines and colony-stimulating factors. In addition, weekly dosing of PCPS/STAT3 siRNA for four weeks did not cause signs of sub-acute toxicity based on changes in body weight, hematology, blood chemistry, and major organ histology. Collectively, the results suggest that we have developed a safe vehicle for effective delivery of gene silencing agents. PMID:24131405

  1. First Clinical Experience with a High-Capacity Implantable Infusion Pump for Continuous Intravenous Chemotherapy

    SciTech Connect

    Damascelli, Bruno; Patelli, Gianluigi; Frigerio, Laura F.; Lanocita, Rodolfo; Di Tolla, Giuseppe; Marchiano, Alfonso; Spreafico, Carlo; Garbagnati, Francesco; Bonalumi, Maria G.; Monfardini, Lorenzo; Ticha, Vladimira; Prino, Aurelio

    1999-01-15

    Purpose: To evaluate the efficiency of a new high-capacity pump for systemic venous chemotherapy and to verify the quality of implantation by interventional radiology staff. Methods: A total of 47 infusion pumps with a 60-ml reservoir and variable flow rates (2, 6, 8, or 12 ml/24 hr) were implanted by radiologists in 46 patients with solid tumor metastases requiring treatment with a single, continuously infused cytostatic agent. The reservoir was refilled transcutaneously, usually once weekly. The flow accuracy of the pump was assessed from actual drug delivery recorded on 34 patients over a minimum observation period of 180 days. Results: No early complications occurred in any of the 47 implants in 46 patients. A total of 12 (25.53%) complications occurred between 3 and 24 months after implantation. Seven (14.90%) of these were due to the external design of the pump, while five (10.63%) were related to the central venous catheter. In the 34 patients available for pump evaluation (follow-up of at least 180 days), the system was used for a total of 14,191 days (range 180-911 days, mean 417.38 days), giving an overall complication rate of 0.84 per 1000 days of operation. The mean flow rate accuracy was 90.26%. Conclusion: The new implantable pump showed good flow rate accuracy and reliable operation. The pump-related complications were related to its external design and have now been corrected by appropriate modifications. From a radiologic and surgical viewpoint, the venous implantation procedure is identical to that of conventional vascular access devices and can be performed by radiologists familiar with these techniques. The current limitations lie in the high cost of the pump and, for certain drugs, the short time between refills.

  2. High-Capacity Layered-Spinel Cathodes for Li-Ion Batteries.

    PubMed

    Nayak, Prasant Kumar; Levi, Elena; Grinblat, Judith; Levi, Mikhael; Markovsky, Boris; Munichandraiah, N; Sun, Yang Kook; Aurbach, Doron

    2016-09-01

    Li and Mn-rich layered oxides with the general structure x Li2 MnO3 ⋅(1-x) LiMO2 (M=Ni, Mn, Co) are promising cathode materials for Li-ion batteries because of their high specific capacity, which may be greater than 250 mA h g(-1) . However, these materials suffer from high first-cycle irreversible capacity, gradual capacity fading, limited rate capability and discharge voltage decay upon cycling, which prevent their commercialization. The decrease in average discharge voltage is a major issue, which is ascribed to a structural layered-to-spinel transformation upon cycling of these oxide cathodes in wide potential ranges with an upper limit higher than 4.5 V and a lower limit below 3 V versus Li. By using four elements systems (Li, Mn, Ni, O) with appropriate stoichiometry, it is possible to prepare high capacity composite cathode materials that contain LiMn1.5 Ni0.5 O4 and Lix Mny Niz O2 components. The Li and Mn-rich layered-spinel cathode materials studied herein exhibit a high specific capacity (≥200 mA h g(-1) ) with good capacity retention upon cycling in a wide potential domain (2.4-4.9 V). The effect of constituent phases on their electrochemical performance, such as specific capacity, cycling stability, average discharge voltage, and rate capability, are explored here. This family of materials can provide high specific capacity, high rate capability, and promising cycle life. Using Co-free cathode materials is also an obvious advantage of these systems. PMID:27530465

  3. A Low Cost, High Capacity Regenerable Sorbent for Pre-combustion CO{sub 2} Capture

    SciTech Connect

    Alptekin, Gokhan

    2012-09-30

    The overall objective of the proposed research is to develop a low cost, high capacity CO{sub 2} sorbent and demonstrate its technical and economic viability for pre-combustion CO{sub 2} capture. The specific objectives supporting our research plan were to optimize the chemical structure and physical properties of the sorbent, scale-up its production using high throughput manufacturing equipment and bulk raw materials and then evaluate its performance, first in bench-scale experiments and then in slipstream tests using actual coal-derived synthesis gas. One of the objectives of the laboratory-scale evaluations was to demonstrate the life and durability of the sorbent for over 10,000 cycles and to assess the impact of contaminants (such as sulfur) on its performance. In the field tests, our objective was to demonstrate the operation of the sorbent using actual coal-derived synthesis gas streams generated by air-blown and oxygen-blown commercial and pilot-scale coal gasifiers (the CO{sub 2} partial pressure in these gas streams is significantly different, which directly impacts the operating conditions hence the performance of the sorbent). To support the field demonstration work, TDA collaborated with Phillips 66 and Southern Company to carry out two separate field tests using actual coal-derived synthesis gas at the Wabash River IGCC Power Plant in Terre Haute, IN and the National Carbon Capture Center (NCCC) in Wilsonville, AL. In collaboration with the University of California, Irvine (UCI), a detailed engineering and economic analysis for the new CO{sub 2} capture system was also proposed to be carried out using Aspen PlusTM simulation software, and estimate its effect on the plant efficiency.

  4. Pulsed sonication for alumina coatings on high-capacity oxides: Performance in lithium-ion cells

    NASA Astrophysics Data System (ADS)

    Pol, Vilas G.; Li, Yan; Dogan, Fulya; Secor, Ethan; Thackeray, Michael M.; Abraham, Daniel P.

    2014-07-01

    High-capacity xLi2MnO3·(1 - x)LiMO2 (M = Ni, Mn, Co) oxides show relatively rapid performance degradation when cycled at voltages >4.5 V vs. Li/Li+. Previous research has indicated that modifying the oxide surfaces with coatings, such as alumina, reduces cell impedance rise and improves capacity retention. In this article, we demonstrate pulsed-sonication as a rapid and effective approach for coating alumina on Li1.2Ni0.175Mn0.525Co0.1O2 (0.5Li2MnO3·0.5LiNi0.44Mn0.31Co0.25O2) particles. Oxide integrity and morphology is maintained after the sonochemical process and subsequent heat-treatment. Energy dispersive spectroscopy (EDS) X-ray elemental maps show uniform coating of all secondary particles. 27Al Magic Angle Spinning (MAS) NMR data confirm the presence of alumina and mainly indicate octahedral aluminum occupancy in a six-coordinate environment with oxygen. Full cells containing electrodes with the alumina-coated particles demonstrate lower initial impedance rise and better capacity retention during extended cycling to high voltages. However, the coating has a negligible effect on the voltage hysteresis and voltage fade behavior displayed by these oxides. The various data indicate that the pulsed sonochemical technique is a viable approach for coating oxide particles. The methodology described herein can easily be extended beyond alumina to include coatings such as AlF3, MgO, and MgF2.

  5. Bidirectional Search in a String with Wavelet Trees

    NASA Astrophysics Data System (ADS)

    Schnattinger, Thomas; Ohlebusch, Enno; Gog, Simon

    Searching for genes encoding microRNAs (miRNAs) is an important task in genome analysis. Because the secondary structure of miRNA (but not the sequence) is highly conserved, the genes encoding it can be determined by finding regions in a genomic DNA sequence that match the structure. It is known that algorithms using a bidirectional search on the DNA sequence for this task outperform algorithms based on unidirectional search. The data structures supporting a bidirectional search (affix trees and affix arrays), however, are rather complex and suffer from their large space consumption. Here, we present a new data structure called bidirectional wavelet index that supports bidirectional search with much less space. With this data structure, it is possible to search for RNA secondary structural patterns in large genomes, for example the human genome.

  6. Effect of particle nonsphericity on bidirectional reflectance of cirrus clouds

    SciTech Connect

    Mishchenko, M.I.; Rossow, W.B.; Macke, A.; Lacis, A.A.

    1996-04-01

    This paper describes the use of the fractal ice particle method to study the differences in bidirectional reflectance caused by the differences in the single scattering phase functions of spherical water droplets and nonspherical ice crystals.

  7. Technology Assessment of High Capacity Data Storage Systems: Can We Avoid a Data Survivability Crisis?

    NASA Technical Reports Server (NTRS)

    Halem, M.; Shaffer, F.; Palm, N.; Salmon, E.; Raghavan, S.; Kempster, L.

    1998-01-01

    This technology assessment of long-term high capacity data storage systems identifies an emerging crisis of severe proportions related to preserving important historical data in science, healthcare, manufacturing, finance and other fields. For the last 50 years, the information revolution, which has engulfed all major institutions of modem society, centered itself on data-their collection, storage, retrieval, transmission, analysis and presentation. The transformation of long term historical data records into information concepts, according to Drucker, is the next stage in this revolution towards building the new information based scientific and business foundations. For this to occur, data survivability, reliability and evolvability of long term storage media and systems pose formidable technological challenges. Unlike the Y2K problem, where the clock is ticking and a crisis is set to go off at a specific time, large capacity data storage repositories face a crisis similar to the social security system in that the seriousness of the problem emerges after a decade or two. The essence of the storage crisis is as follows: since it could take a decade to migrate a peta-byte of data to a new media for preservation, and the life expectancy of the storage media itself is only a decade, then it may not be possible to complete the transfer before an irrecoverable data loss occurs. Over the last two decades, a number of anecdotal crises have occurred where vital scientific and business data were lost or would have been lost if not for major expenditures of resources and funds to save this data, much like what is happening today to solve the Y2K problem. A pr-ime example was the joint NASA/NSF/NOAA effort to rescue eight years worth of TOVS/AVHRR data from an obsolete system, which otherwise would have not resulted in the valuable 20-year long satellite record of global warming. Current storage systems solutions to long-term data survivability rest on scalable architectures

  8. Grafting glycidyl methacrylate to Sepharose gel for fabricating high-capacity protein anion exchangers.

    PubMed

    Wang, Qianqian; Yu, Linling; Sun, Yan

    2016-04-22

    success in the fabrication of high-capacity protein anion exchangers by grafting GMA onto Sepharose gel. PMID:27018187

  9. Preparation of surface modified zinc oxide nanoparticle with high capacity dye removal ability

    SciTech Connect

    Mahmoodi, Niyaz Mohammad; Najafi, Farhood

    2012-07-15

    Highlights: ► Amine-functionalized zinc oxide nanoparticle (AFZON) was synthesized. ► Isotherm and kinetics data followed Langmuir isotherm and pseudo-second order kinetic model, respectively. ► Q{sub 0} of ZON for AB25, DR23 and DR31 was 20, 12 and 15 mg/g, respectively. ► Q{sub 0} of AFZON for AB25, DR23 and DR31 was 1250, 1000 and 1429 mg/g, respectively. ► AFZON was regenerated at pH 12. -- Abstract: In this paper, the surface modification of zinc oxide nanoparticle (ZON) by amine functionalization was studied to prepare high capacity adsorbent. Dye removal ability of amine-functionalized zinc oxide nanoparticle (AFZON) and zinc oxide nanoparticle (ZON) was also investigated. The physical characteristics of AFZON were studied using Fourier transform infrared (FTIR), scanning electron microscopy (SEM) and X-ray diffraction (XRD). Acid Blue 25 (AB25), Direct Red 23 (DR23) and Direct Red 31 (DR31) were used as model compounds. The effect of operational parameters such as dye concentration, adsorbent dosage, pH and salt on dye removal was evaluated. The isotherm and kinetic of dye adsorption were studied. The maximum dye adsorption capacity (Q{sub 0}) was 20 mg/g AB25, 12 mg/g DR23 and 15 mg/g DR31 for ZON and 1250 mg/g AB25, 1000 mg/g DR23 and 1429 mg/g DR31 for AFZON. It was found that dye adsorption followed Langmuir isotherm. Adsorption kinetic of dyes was found to conform to pseudo-second order kinetics. Dye desorption tests (adsorbent regeneration) showed that the maximum dye release of 90% AB25, 86% for DR23 and 90% for DR31 were achieved in aqueous solution at pH 12. Based on the data of the present investigation, it can be concluded that the AFZON being an adsorbent with high dye adsorption capacity might be a suitable alternative to remove dyes from colored aqueous solutions.

  10. Functional characterization of open chromatin in bidirectional promoters of rice.

    PubMed

    Fang, Yuan; Wang, Ximeng; Wang, Lei; Pan, Xiucai; Xiao, Jin; Wang, Xiu-E; Wu, Yufeng; Zhang, Wenli

    2016-01-01

    Bidirectional gene pairs tend to be highly coregulated and function in similar biological processes in eukaryotic genomes. Structural features and functional consequences of bidirectional promoters (BDPs) have received considerable attention among diverse species. However, the underlying mechanisms responsible for the bidirectional transcription and coexpression of BDPs remain poorly understood in plants. In this study, we integrated DNase-seq, RNA-seq, ChIP-seq and MNase-seq data and investigated the effect of physical DNase I hypersensitive site (DHS) positions on the transcription of rice BDPs. We found that the physical position of a DHS relative to the TSS of bidirectional gene pairs can affect the expression of the corresponding genes: the closer a DHS is to the TSS, the higher is the expression level of the genes. Most importantly, we observed that the distribution of DHSs plays a significant role in the regulation of transcription and the coexpression of gene pairs, which are possibly mediated by orchestrating the positioning of histone marks and canonical nucleosomes around BDPs. Our results demonstrate that the combined actions of chromatin structures with DHSs, which contain functional cis-elements for interaction with transcriptional machinery, may play an important role in the regulation of the bidirectional transcription or coexpression in rice BDPs. Our findings may help to enhance the understanding of DHSs in the regulation of bidirectional gene pairs. PMID:27558448

  11. Functional characterization of open chromatin in bidirectional promoters of rice

    PubMed Central

    Fang, Yuan; Wang, Ximeng; Wang, Lei; Pan, Xiucai; Xiao, Jin; Wang, Xiu-e; Wu, Yufeng; Zhang, Wenli

    2016-01-01

    Bidirectional gene pairs tend to be highly coregulated and function in similar biological processes in eukaryotic genomes. Structural features and functional consequences of bidirectional promoters (BDPs) have received considerable attention among diverse species. However, the underlying mechanisms responsible for the bidirectional transcription and coexpression of BDPs remain poorly understood in plants. In this study, we integrated DNase-seq, RNA-seq, ChIP-seq and MNase-seq data and investigated the effect of physical DNase I hypersensitive site (DHS) positions on the transcription of rice BDPs. We found that the physical position of a DHS relative to the TSS of bidirectional gene pairs can affect the expression of the corresponding genes: the closer a DHS is to the TSS, the higher is the expression level of the genes. Most importantly, we observed that the distribution of DHSs plays a significant role in the regulation of transcription and the coexpression of gene pairs, which are possibly mediated by orchestrating the positioning of histone marks and canonical nucleosomes around BDPs. Our results demonstrate that the combined actions of chromatin structures with DHSs, which contain functional cis-elements for interaction with transcriptional machinery, may play an important role in the regulation of the bidirectional transcription or coexpression in rice BDPs. Our findings may help to enhance the understanding of DHSs in the regulation of bidirectional gene pairs. PMID:27558448

  12. Passive Resonant Bidirectional Converter with Galvanic Barrier

    NASA Technical Reports Server (NTRS)

    Rosenblad, Nathan S. (Inventor)

    2014-01-01

    A passive resonant bidirectional converter system that transports energy across a galvanic barrier includes a converter using at least first and second converter sections, each section including a pair of transfer terminals, a center tapped winding; a chopper circuit interconnected between the center tapped winding and one of the transfer terminals; an inductance feed winding interconnected between the other of the transfer terminals and the center tap and a resonant tank circuit including at least the inductance of the center tap winding and the parasitic capacitance of the chopper circuit for operating the converter section at resonance; the center tapped windings of the first and second converter sections being disposed on a first common winding core and the inductance feed windings of the first and second converter sections being disposed on a second common winding core for automatically synchronizing the resonant oscillation of the first and second converter sections and transferring energy between the converter sections until the voltage across the pairs of transfer terminals achieves the turns ratio of the center tapped windings.

  13. Single coil bistable, bidirectional micromechanical actuator

    DOEpatents

    Tabat, Ned; Guckel, Henry

    1998-09-15

    Micromechanical actuators capable of bidirectional and bistable operation can be formed on substrates using lithographic processing techniques. Bistable operation of the microactuator is obtained using a single coil and a magnetic core with a gap. A plunger having two magnetic heads is supported for back and forth linear movement with respect to the gap in the magnetic core, and is spring biased to a neutral position in which the two heads are on each side of the gap in the core. The single electrical coil is coupled to the core and is provided with electrical current to attract one of the heads toward the core by reluctance action to drive the plunger to a limit of travel in one direction. The current is then cut off and the plunger returns by spring action toward the gap, whereafter the current is reapplied to the coil to attract the other head of the plunger by reluctance action to drive the plunger to its other limit of travel. This process can be repeated at a time when switching of the actuator is required.

  14. Electromigration failures under bidirectional current stress

    NASA Astrophysics Data System (ADS)

    Tao, Jiang; Cheung, Nathan W.; Hu, Chenming

    1998-01-01

    Electromigration failure under DC stress has been studied for more than 30 years, and the methodologies for accelerated DC testing and design rules have been well established in the IC industry. However, the electromigration behavior and design rules under time-varying current stress are still unclear. In CMOS circuits, as many interconnects carry pulsed-DC (local VCC and VSS lines) and bidirectional AC current (clock and signal lines), it is essential to assess the reliability of metallization systems under these conditions. Failure mechanisms of different metallization systems (Al-Si, Al-Cu, Cu, TiN/Al-alloy/TiN, etc.) and different metallization structures (via, plug and interconnect) under AC current stress in a wide frequency range (from mHz to 500 MHz) has been study in this paper. Based on these experimental results, a damage healing model is developed, and electromigration design rules are proposed. It shows that in the circuit operating frequency range, the "design-rule current" is the time-average current. The pure AC component of the current only contributes to self-heating, while the average (DC component) current contributes to electromigration. To ensure longer thermal-migration lifetime under high frequency AC stress, an additional design rule is proposed to limit the temperature rise due to self-joule heating.

  15. Bidirectional Brush Seals: Post-Test Analysis

    NASA Technical Reports Server (NTRS)

    Hendricks, Robert C.; Wilson, Jack; Wu, Tom Y.; Flower, Ralph; Mullen, Robert L.

    1997-01-01

    A post-test analysis of a set of inside-diameter/outside-diameter (ID/OD) bidirectional brush seals used in three-port wave rotor tests was undertaken to determine brush bristle and configuration wear, pullout, and rotor coating wear. The results suggest that sharp changes in the pressure profiles were not well reflected in bristle tip configuration patterns or wear. Also, positive-to-negative changes in axial pressure gradients appeared to have little effect on the backing plates. Although the brushes had similar porosities, they had very different unpacked arrays. This difference could explain the departure of experimental data from computational fluid dynamics flow predictions for well-packed arrays at higher pressure drops. The rotor wear led to "car-track" scars (upper and lower wear bands) with a whipped surface between the bands. Those bands may have resulted from bristle stiffening at the fence and gap plates during alternate portions of the rotor cycle. Within the bristle response range the wear surface reflected the pressure distribution effect on bristle motion. No sacrificial metallurgical data were taken. The bristles did wear, with correspondingly more wear on the ID brush configurations than on the OD configurations; the complexity in constructing the ID brush was a factor.

  16. Motility states in bidirectional cargo transport

    NASA Astrophysics Data System (ADS)

    Klein, Sarah; Appert-Rolland, Cécile; Santen, Ludger

    2015-09-01

    Intracellular cargos which are transported by molecular motors move stochastically along cytoskeleton filaments. In particular for bidirectionally transported cargos it is an open question whether the characteristics of their motion can result from pure stochastic fluctuations or whether some coordination of the motors is needed. The results of a mean-field (MF) model of cargo-motors dynamics proposed by Müller et al. (Müller M. J. et al., Proc. Natl. Acad. Sci. U.S.A., 105 (2008) 4609) suggest the existence of states which are characterized by a symmetric bimodal distribution of cargo velocities. These states would result from a stochastic tug of war. Here we analyze the influence of the MF assumption on the cargo motion by considering a model that takes explicitly the position of each motor into account. We find that those states with symmetric bimodal distributions then disappear. As the MF model implicitly assumes some stepping synchronization between motors, we introduce a partial synchronization via an artificial mutual motor-motor activation, and show that the results of the MF model are then recovered but, even in this favorable case, only in the limit of a strong motor-motor activation and of a high number of motors. We conclude that the MF assumption is not relevant for intracellular transport.

  17. Dynamic feature analysis in bidirectional pedestrian flows

    NASA Astrophysics Data System (ADS)

    Xiao-Xia, Yang; Winnie, Daamen; Serge, Paul Hoogendoorn; Hai-Rong, Dong; Xiu-Ming, Yao

    2016-02-01

    Analysis of dynamic features of pedestrian flows is one of the most exciting topics in pedestrian dynamics. This paper focuses on the effect of homogeneity and heterogeneity in three parameters of the social force model, namely desired velocity, reaction time, and body size, on the moving dynamics of bidirectional pedestrian flows in the corridors. The speed and its deviation in free flows are investigated. Simulation results show that the homogeneous higher desired speed which is less than a critical threshold, shorter reaction time or smaller body size results in higher speed of flows. The free dynamics is more sensitive to the heterogeneity in desired speed than that in reaction time or in body size. In particular, an inner lane formation is observed in normal lanes. Furthermore, the breakdown probability and the start time of breakdown are focused on. This study reveals that the sizes of homogeneous desired speed, reaction time or body size play more important roles in affecting the breakdown than the heterogeneities in these three parameters do. Project supported jointly by the National Natural Science Foundation of China (Grant No. 61233001) and the Fundamental Research Funds for Central Universities of China (Grant No. 2013JBZ007).

  18. Glucose test (image)

    MedlinePlus

    ... person with diabetes constantly manages their blood's sugar (glucose) levels. After a blood sample is taken and tested, it is determined whether the glucose levels are low or high. If glucose levels ...

  19. Low Blood Glucose (Hypoglycemia)

    MedlinePlus

    ... Other Dental Problems Diabetic Eye Disease Low Blood Glucose (Hypoglycemia) What is hypoglycemia? Hypoglycemia, also called low ... actions can also help prevent hypoglycemia: Check blood glucose levels Knowing your blood glucose level can help ...

  20. Global evaluation of ammonia bi-directional exchange

    NASA Astrophysics Data System (ADS)

    Zhu, L.; Henze, D.; Bash, J.; Jeong, G.-R.; Cady-Pereira, K.; Shephard, M.; Luo, M.; Paulot, F.; Capps, S.

    2015-02-01

    Bi-directional air-surface exchange of ammonia (NH3) has been neglected in many air quality models. In this study, we implement the bi-directional exchange of NH3 in the GEOS-Chem global chemical transport model. We also introduce an updated diurnal variability scheme for NH3 livestock emissions and evaluate the recently developed MASAGE_NH3 bottom up inventory. While updated diurnal variability improves comparison of modeled-to-hourly in situ measurements in the Southeastern US, NH3 concentrations decrease throughout the globe, up to 17 ppb in India and Southeastern China, with corresponding decreases in aerosol nitrate by up to 7 μg m-3. The ammonium (NH4+) soil pool in the bi-directional exchange model largely extends the NH3 lifetime in the atmosphere. Including bi-directional exchange generally increases NH3 gross emissions (7.1%) and surface concentrations (up to 3.9 ppb) throughout the globe in July, except in India and Southeastern China. In April and October, it decreases NH3 gross emissions in the Northern Hemisphere (e.g., 43.6% in April in China) and increases NH3 gross emissions in the Southern Hemisphere. Bi-directional exchange does not largely impact NH4+ wet deposition overall. While bi-directional exchange is fundamentally a better representation of NH3 emissions from fertilizers, emissions from primary sources are still underestimated and thus significant model biases remain when compared to in situ measurements in the US. The adjoint of bi-directional exchange has also been developed for the GEOS-Chem model and is used to investigate the sensitivity of NH3 concentrations with respect to soil pH and fertilizer application rate. This study thus lays the groundwork for future inverse modeling studies to more directly constrain these physical processes rather than tuning bulk uni-directional NH3 emissions.

  1. Integration of high capacity materials into interdigitated mesostructured electrodes for high energy and high power density primary microbatteries

    NASA Astrophysics Data System (ADS)

    Pikul, James H.; Liu, Jinyun; Braun, Paul V.; King, William P.

    2016-05-01

    Microbatteries are increasingly important for powering electronic systems, however, the volumetric energy density of microbatteries lags behind that of conventional format batteries. This paper reports a primary microbattery with energy density 45.5 μWh cm-2 μm-1 and peak power 5300 μW cm-2 μm-1, enabled by the integration of large volume fractions of high capacity anode and cathode chemistry into porous micro-architectures. The interdigitated battery electrodes consist of a lithium metal anode and a mesoporous manganese oxide cathode. The key enabler of the high energy and power density is the integration of the high capacity manganese oxide conversion chemistry into a mesostructured high power interdigitated bicontinuous cathode architecture and an electrodeposited dense lithium metal anode. The resultant energy density is greater than previously reported three-dimensional microbatteries and is comparable to commercial conventional format lithium-based batteries.

  2. Lithographically encoded polymer microtaggant using high-capacity and error-correctable QR code for anti-counterfeiting of drugs.

    PubMed

    Han, Sangkwon; Bae, Hyung Jong; Kim, Junhoi; Shin, Sunghwan; Choi, Sung-Eun; Lee, Sung Hoon; Kwon, Sunghoon; Park, Wook

    2012-11-20

    A QR-coded microtaggant for the anti-counterfeiting of drugs is proposed that can provide high capacity and error-correction capability. It is fabricated lithographically in a microfluidic channel with special consideration of the island patterns in the QR Code. The microtaggant is incorporated in the drug capsule ("on-dose authentication") and can be read by a simple smartphone QR Code reader application when removed from the capsule and washed free of drug. PMID:22930454

  3. Dual-Size Silicon Nanocrystal-Embedded SiO(x) Nanocomposite as a High-Capacity Lithium Storage Material.

    PubMed

    Park, Eunjun; Yoo, Hyundong; Lee, Jaewoo; Park, Min-Sik; Kim, Young-Jun; Kim, Hansu

    2015-07-28

    SiOx-based materials attracted a great deal of attention as high-capacity Li(+) storage materials for lithium-ion batteries due to their high reversible capacity and good cycle performance. However, these materials still suffer from low initial Coulombic efficiency as well as high production cost, which are associated with the complicated synthesis process. Here, we propose a dual-size Si nanocrystal-embedded SiOx nanocomposite as a high-capacity Li(+) storage material prepared via cost-effective sol-gel reaction of triethoxysilane with commercially available Si nanoparticles. In the proposed nanocomposite, dual-size Si nanocrystals are incorporated into the amorphous SiOx matrix, providing a high capacity (1914 mAh g(-1)) with a notably improved initial efficiency (73.6%) and stable cycle performance over 100 cycles. The highly robust electrochemical and mechanical properties of the dual-size Si nanocrystal-embedded SiOx nanocomposite presented here are mainly attributed to its peculiar nanoarchitecture. This study represents one of the most promising routes for advancing SiOx-based Li(+) storage materials for practical use. PMID:26132999

  4. A High-Capacity Adenoviral Hybrid Vector System Utilizing the Hyperactive Sleeping Beauty Transposase SB100X for Enhanced Integration.

    PubMed

    Boehme, Philip; Zhang, Wenli; Solanki, Manish; Ehrke-Schulz, Eric; Ehrhardt, Anja

    2016-01-01

    For efficient delivery of required genetic elements we utilized high-capacity adenoviral vectors in the past allowing high transgene capacities of up to 36 kb. Previously we explored the hyperactive Sleeping Beauty (SB) transposase (HSB5) for somatic integration from the high-capacity adenoviral vectors genome. To further improve this hybrid vector system we hypothesized that the previously described hyperactive SB transposase SB100X will result in significantly improved efficacies after transduction of target cells. Plasmid based delivery of the SB100X system revealed significantly increased integration efficiencies compared with the previously published hyperactive SB transposase HSB5. After optimizing experimental setups for high-capacity adenoviral vectors-based delivery of the SB100X system we observed up to eightfold and 100-fold increased integration efficiencies compared with the previously published hyperactive SB transposase HSB5 and the inactive transposase mSB, respectively. Furthermore, transposon copy numbers per cell were doubled with SB100X compared with HSB5 when using the identical multiplicity of infection. We believe that this improved hybrid vector system represents a valuable tool for achieving stabilized transgene expression in cycling cells and for treatment of numerous genetic disorders. Especially for in vivo approaches this improved adenoviral hybrid vector system will be advantageous because it may potentially allow reduction of the applied viral dose. PMID:27434682

  5. Blood Test: Glucose

    MedlinePlus

    ... Things to Know About Zika & Pregnancy Blood Test: Glucose KidsHealth > For Parents > Blood Test: Glucose Print A A A Text Size What's in ... de sangre: glucosa What It Is A blood glucose test measures the amount of glucose (the main ...

  6. Bidirectional cargo transport: Moving beyond tug-of-war

    PubMed Central

    Hancock, William O.

    2016-01-01

    Preface Vesicles, organelles and other intracellular cargo are transported by kinesin and dynein motors, which move in opposite directions along microtubules. This bidirectional cargo movement is frequently described as a “tug-of-war” between oppositely-directed motors attached to the same cargo. However, although many experimental and modeling studies support the tug-of-war paradigm, numerous knockout and inhibition studies in a variety of systems have found that inhibiting one motor leads to diminished motility in both directions, which is a “paradox of codependence” that challenges it. In an effort to resolve this paradox, three classes of bidirectional transport models, termed microtubule tethering, mechanical activation, and steric disinhibition, are proposed and a general mathematical modeling framework for bidirectional cargo transport is put forward to guide future experiments. PMID:25118718

  7. High Intrinsic Aerobic Capacity Protects against Ethanol-Induced Hepatic Injury and Metabolic Dysfunction: Study Using High Capacity Runner Rat Model.

    PubMed

    Szary, Nicholas; Rector, R Scott; Uptergrove, Grace M; Ridenhour, Suzanne E; Shukla, Shivendra D; Thyfault, John P; Koch, Lauren G; Britton, Steven L; Ibdah, Jamal A

    2015-01-01

    Rats artificially selected over several generations for high intrinsic endurance/aerobic capacity resulting in high capacity runners (HCR) has been developed to study the links between high aerobic fitness and protection from metabolic diseases (Wisloff et al., Science, 2005). We have previously shown that the HCR strain have elevated hepatic mitochondrial content and oxidative capacity. In this study, we tested if the elevated hepatic mitochondrial content in the HCR rat would provide "metabolic protection" from chronic ethanol-induced hepatic steatosis and injury. The Leiber-Decarli liquid diet with ethanol (7% v/v; HCR-E) and without (HCR-C) was given to HCR rats (n = 8 per group) from 14 to 20 weeks of age that were weight matched and pair-fed to assure isocaloric intake. Hepatic triglyceride (TG) content and macro- and microvesicular steatosis were significantly greater in HCR-E compared with HCR-C (p < 0.05). In addition, hepatic superoxide dismutase activity and glutathione levels were significantly (p < 0.05) reduced in the HCR-E rats. This hepatic phenotype also was associated with reduced total hepatic fatty acid oxidation (p = 0.03) and β-hydroxyacyl-CoA dehydrogenase activity (p = 0.01), and reductions in microsomal triglyceride transfer protein and apoB-100 protein content (p = 0.01) in HCR-E animals. However, despite these documented hepatic alterations, ethanol ingestion failed to induce significant hepatic liver injury, including no changes in hepatic inflammation, or serum alanine amino transferase (ALTs), free fatty acids (FFAs), triglycerides (TGs), insulin, or glucose. High intrinsic aerobic fitness did not reduce ethanol-induced hepatic steatosis, but protected against ethanol-induced hepatic injury and systemic metabolic dysfunction in a high aerobic capacity rat model. PMID:26610588

  8. High Intrinsic Aerobic Capacity Protects against Ethanol-Induced Hepatic Injury and Metabolic Dysfunction: Study Using High Capacity Runner Rat Model

    PubMed Central

    Szary, Nicholas; Rector, R. Scott; Uptergrove, Grace M.; Ridenhour, Suzanne E.; Shukla, Shivendra D.; Thyfault, John P.; Koch, Lauren G.; Britton, Steven L.; Ibdah, Jamal A.

    2015-01-01

    Rats artificially selected over several generations for high intrinsic endurance/aerobic capacity resulting in high capacity runners (HCR) has been developed to study the links between high aerobic fitness and protection from metabolic diseases (Wisloff et al., Science, 2005). We have previously shown that the HCR strain have elevated hepatic mitochondrial content and oxidative capacity. In this study, we tested if the elevated hepatic mitochondrial content in the HCR rat would provide “metabolic protection” from chronic ethanol-induced hepatic steatosis and injury. The Leiber-Decarli liquid diet with ethanol (7% v/v; HCR-E) and without (HCR-C) was given to HCR rats (n = 8 per group) from 14 to 20 weeks of age that were weight matched and pair-fed to assure isocaloric intake. Hepatic triglyceride (TG) content and macro- and microvesicular steatosis were significantly greater in HCR-E compared with HCR-C (p < 0.05). In addition, hepatic superoxide dismutase activity and glutathione levels were significantly (p < 0.05) reduced in the HCR-E rats. This hepatic phenotype also was associated with reduced total hepatic fatty acid oxidation (p = 0.03) and β-hydroxyacyl-CoA dehydrogenase activity (p = 0.01), and reductions in microsomal triglyceride transfer protein and apoB-100 protein content (p = 0.01) in HCR-E animals. However, despite these documented hepatic alterations, ethanol ingestion failed to induce significant hepatic liver injury, including no changes in hepatic inflammation, or serum alanine amino transferase (ALTs), free fatty acids (FFAs), triglycerides (TGs), insulin, or glucose. High intrinsic aerobic fitness did not reduce ethanol-induced hepatic steatosis, but protected against ethanol-induced hepatic injury and systemic metabolic dysfunction in a high aerobic capacity rat model. PMID:26610588

  9. Quantitative abundance estimates from bidirectional reflectance measurements. [for planetary surfaces

    NASA Technical Reports Server (NTRS)

    Mustard, John F.; Pieters, Carle M.

    1987-01-01

    A simplified approach for estimating mineral abundances in mineral mixtures from bidirectional reflectance measurements is presented. Fundamental to this approach is a priori information concerning reflectance spectra of the individual minerals and an estimate of the particle sizes of the components. Simplified equations for bidirectional reflectance are used to linearize the systematics of spectral mixing. The method was used to determine the relative proportions of olivine, magnetite, enstatite, and anorthite in a mixture; the mass fractions of mixture components were calculated on the basis of known particle diameters. The results indicate that for materials without strongly adsorbing components, the accuracy of abundance determinations is better than 5 percent.

  10. Leaf bidirectional reflectance and transmittance in corn and soybean

    NASA Technical Reports Server (NTRS)

    Walter-Shea, E. A.; Norman, J. M.; Blad, B. L.

    1989-01-01

    Bidirectional optical properties of leaves must be adequately characterized to develop comprehensive and reliably predictive canopy radiative-transfer models. Directional reflectance and transmittance factors of individual corn and soybean leaves were measured at source incidence angles (SIAs) 20, 45, and 70 deg and numerous view angles in the visible and NIR. Bidirectional reflectance distributions changed with increasing SIA, with forward scattering most pronounced at 70 deg. Directional-hemispherical reflectance generally increased and transmittance decreased with increased SIA. Directional-hemispherical reflectance factors were higher and transmittances were lower than the nadir-viewed reflectance component.

  11. Spongelike Nanosized Mn3O4 as a High-Capacity Anode Material for Rechargeable Lithium Batteries

    SciTech Connect

    Gao, Jie; Lowe, Michael A.; Abruna, Hector D.

    2011-07-12

    Mn₃O₄ has been investigated as a high-capacity anode material for rechargeable lithium ion batteries. Spongelike nanosized Mn₃O₄ was synthesized by a simple precipitation method and characterized by powder X-ray diffraction, Raman scattering and scanning electron microscopy. Its electrochemical performance, as an anode material, was evaluated by galvanostatic discharge–charge tests. The results indicate that this novel type of nanosized Mn₃O₄ exhibits a high initial reversible capacity (869 mA h/g) and significantly enhanced first Coulomb efficiency with a stabilized reversible capacity of around 800 mA h/g after over 40 charge/discharge cycles.

  12. Parenting and Children's Externalizing Behavior: Bidirectionality during Toddlerhood

    ERIC Educational Resources Information Center

    Verhoeven, Marjolein; Junger, Marianne; van Aken, Chantal; Dekovic, Maja; van Aken, Marcel A. G.

    2010-01-01

    This study examined the bidirectional relationship between parenting and boys' externalizing behaviors in a four-wave longitudinal study of toddlers. Participants were 104 intact two-parent families with toddler sons. When their sons were 17, 23, 29, and 35 months of age, mothers and fathers reported on a broad range of parenting dimensions…

  13. A bidirectional microphone for the measurement of duct noise

    NASA Astrophysics Data System (ADS)

    La Fontaine, R. F.; Shepherd, I. C.; Cabelli, A.

    1985-08-01

    A bidirectional microphone which resolves acoustic plane waves in ducts into forward and backward propagating components is described. The microphone has a flat frequency response and finds applications in the analysis of duct noise and in the determination of reflection coefficients for various duct configurations. It can also be employed as a unidirectional microphone in active noise attenuators.

  14. Longitudinal Bidirectional Relations between Adolescents' Sympathy and Prosocial Behavior

    ERIC Educational Resources Information Center

    Carlo, Gustavo; Padilla-Walker, Laura M.; Nielson, Matthew G.

    2015-01-01

    Despite the importance of understanding sympathy and prosocial behaviors, research on the development of these tendencies in adolescence remains relatively sparse. In the present study, we examined age trends and bidirectional longitudinal relations in sympathy and prosocial behaviors across early to middle adolescents. Participants were 500…

  15. "Figuring" Bidirectional Home and School Connections along the Biliteracy Continuum

    ERIC Educational Resources Information Center

    Fránquiz, María E.; Leija, María G.; Garza, Irene

    2015-01-01

    This article centers on the significant practices identified by bilingual teachers who participated in Proyecto Bilingüe, a specialized master's degree program. The notion of bidirectional theory of bilingual pedagogy and the theoretical construct of the continua of biliteracy are utilized to illustrate how the teachers centered home and school…

  16. Bidirectional Relations between Authoritative Parenting and Adolescents' Prosocial Behaviors

    ERIC Educational Resources Information Center

    Padilla-Walker, Laura M.; Carlo, Gustavo; Christensen, Katherine J.; Yorgason, Jeremy B.

    2012-01-01

    This study examined the bidirectional relations between authoritative parenting and adolescents' prosocial behavior over a 1-year time period. Data were taken from Time 2 and 3 of the Flourishing Families Project, and included reports from 319 two-parent families with an adolescent child (M age of child at Time 2 = 12.34, SD = 1.06, 52% girls).…

  17. Bidirectional Associations among Sensitive Parenting, Language Development, and Social Competence

    ERIC Educational Resources Information Center

    Barnett, Melissa A.; Gustafsson, Hanna; Deng, Min; Mills-Koonce, W. Roger; Cox, Martha

    2012-01-01

    Rapid changes in language skills and social competence, both of which are linked to sensitive parenting, characterize early childhood. The present study examines bidirectional associations among mothers' sensitive parenting and children's language skills and social competence from 24 to 36?months in a community sample of 174 families. In…

  18. Bidirectional Quantum Teleportation by Using Five-qubit Cluster State

    NASA Astrophysics Data System (ADS)

    Sang, Ming-huang

    2016-03-01

    We propose a scheme for bidirectional quantum teleportation by using a five-qubit cluster state. In our scheme, Alice can transmit an arbitrary two-qubit entangled state to Bob and at the same time Bob can teleport an arbitrary single-qubit state to Alice.

  19. Bi-directional communication: Growth and immunity in domestic livestock

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evidence continues to mount supporting the existence of bi-directional communication pathways between the animal’s growth axis and immune system. For more than three decades, researchers have sought, and identified, linkages between the somatotrophic axis and health in domestic livestock. Early inve...

  20. Bidirectional reflectance function in coastal waters: modeling and validation

    NASA Astrophysics Data System (ADS)

    Gilerson, Alex; Hlaing, Soe; Harmel, Tristan; Tonizzo, Alberto; Arnone, Robert; Weidemann, Alan; Ahmed, Samir

    2011-11-01

    The current operational algorithm for the correction of bidirectional effects from the satellite ocean color data is optimized for typical oceanic waters. However, versions of bidirectional reflectance correction algorithms, specifically tuned for typical coastal waters and other case 2 conditions, are particularly needed to improve the overall quality of those data. In order to analyze the bidirectional reflectance distribution function (BRDF) of case 2 waters, a dataset of typical remote sensing reflectances was generated through radiative transfer simulations for a large range of viewing and illumination geometries. Based on this simulated dataset, a case 2 water focused remote sensing reflectance model is proposed to correct above-water and satellite water leaving radiance data for bidirectional effects. The proposed model is first validated with a one year time series of in situ above-water measurements acquired by collocated multi- and hyperspectral radiometers which have different viewing geometries installed at the Long Island Sound Coastal Observatory (LISCO). Match-ups and intercomparisons performed on these concurrent measurements show that the proposed algorithm outperforms the algorithm currently in use at all wavelengths.

  1. Bi-Directional Communication: Growth and Immunity in Domestic Animals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evidence continues to mount supporting the existence of bi-directional communication pathways between the animal’s growth axis and immune system. For more than three decades, researchers have sought, and identified, linkages between the somatotrophic axis and health in domestic livestock. Early inve...

  2. Dismantling the Bidirectional Relationship between Paediatric Sleep and Anxiety

    ERIC Educational Resources Information Center

    Leahy, Erin; Gradisar, Michael

    2012-01-01

    Background: Sleep-related problems are a common occurrence during childhood and adolescence. Over the past decade, there has been mounting evidence for a relationship between sleep disturbance and anxiety during this developmental period. The literature suggests that these associations are likely complex and bidirectional. That is, sleep…

  3. Internet over a Bi-Directional Satellite Link

    NASA Technical Reports Server (NTRS)

    Griner, Jim; Allman, Mark; Mallasch, Paul; Stewart, David

    1998-01-01

    Various issues associated with "Internet over a Bi-Directional Satellite Link" are presented in viewgraph form. Specific topics include: 1) Comarison of HTTP over several network channels; 2) Improved performance of HTTP when compared to off-the-shelf software; 3) Demonstration setup of the link between Sheraton Airport Hotel, Dulles and NASA LeRC; and 4) HTTP comparison pages.

  4. When High-Capacity Readers Slow Down and Low-Capacity Readers Speed Up: Working Memory and Locality Effects.

    PubMed

    Nicenboim, Bruno; Logačev, Pavel; Gattei, Carolina; Vasishth, Shravan

    2016-01-01

    We examined the effects of argument-head distance in SVO and SOV languages (Spanish and German), while taking into account readers' working memory capacity and controlling for expectation (Levy, 2008) and other factors. We predicted only locality effects, that is, a slowdown produced by increased dependency distance (Gibson, 2000; Lewis and Vasishth, 2005). Furthermore, we expected stronger locality effects for readers with low working memory capacity. Contrary to our predictions, low-capacity readers showed faster reading with increased distance, while high-capacity readers showed locality effects. We suggest that while the locality effects are compatible with memory-based explanations, the speedup of low-capacity readers can be explained by an increased probability of retrieval failure. We present a computational model based on ACT-R built under the previous assumptions, which is able to give a qualitative account for the present data and can be tested in future research. Our results suggest that in some cases, interpreting longer RTs as indexing increased processing difficulty and shorter RTs as facilitation may be too simplistic: The same increase in processing difficulty may lead to slowdowns in high-capacity readers and speedups in low-capacity ones. Ignoring individual level capacity differences when investigating locality effects may lead to misleading conclusions. PMID:27014113

  5. When High-Capacity Readers Slow Down and Low-Capacity Readers Speed Up: Working Memory and Locality Effects

    PubMed Central

    Nicenboim, Bruno; Logačev, Pavel; Gattei, Carolina; Vasishth, Shravan

    2016-01-01

    We examined the effects of argument-head distance in SVO and SOV languages (Spanish and German), while taking into account readers' working memory capacity and controlling for expectation (Levy, 2008) and other factors. We predicted only locality effects, that is, a slowdown produced by increased dependency distance (Gibson, 2000; Lewis and Vasishth, 2005). Furthermore, we expected stronger locality effects for readers with low working memory capacity. Contrary to our predictions, low-capacity readers showed faster reading with increased distance, while high-capacity readers showed locality effects. We suggest that while the locality effects are compatible with memory-based explanations, the speedup of low-capacity readers can be explained by an increased probability of retrieval failure. We present a computational model based on ACT-R built under the previous assumptions, which is able to give a qualitative account for the present data and can be tested in future research. Our results suggest that in some cases, interpreting longer RTs as indexing increased processing difficulty and shorter RTs as facilitation may be too simplistic: The same increase in processing difficulty may lead to slowdowns in high-capacity readers and speedups in low-capacity ones. Ignoring individual level capacity differences when investigating locality effects may lead to misleading conclusions. PMID:27014113

  6. Life cycle environmental impact of high-capacity lithium ion battery with silicon nanowires anode for electric vehicles.

    PubMed

    Li, Bingbing; Gao, Xianfeng; Li, Jianyang; Yuan, Chris

    2014-01-01

    Although silicon nanowires (SiNW) have been widely studied as an ideal material for developing high-capacity lithium ion batteries (LIBs) for electric vehicles (EVs), little is known about the environmental impacts of such a new EV battery pack during its whole life cycle. This paper reports a life cycle assessment (LCA) of a high-capacity LIB pack using SiNW prepared via metal-assisted chemical etching as anode material. The LCA study is conducted based on the average U.S. driving and electricity supply conditions. Nanowastes and nanoparticle emissions from the SiNW synthesis are also characterized and reported. The LCA results show that over 50% of most characterized impacts are generated from the battery operations, while the battery anode with SiNW material contributes to around 15% of global warming potential and 10% of human toxicity potential. Overall the life cycle impacts of this new battery pack are moderately higher than those of conventional LIBs but could be actually comparable when considering the uncertainties and scale-up potential of the technology. These results are encouraging because they not only provide a solid base for sustainable development of next generation LIBs but also confirm that appropriate nanomanufacturing technologies could be used in sustainable product development. PMID:24483341

  7. Demonstration of a high-capacity turboalternator for a 20 K, 20 W space-borne Brayton cryocooler

    NASA Astrophysics Data System (ADS)

    Zagarola, M.; Cragin, K.; Deserranno, D.

    2014-01-01

    NASA is considering multiple missions involving long-term cryogenic propellant storage in space. Liquid hydrogen and oxygen are the typical cryogens as they provide the highest specific impulse of practical chemical propellants. Storage temperatures are nominally 20 K for liquid hydrogen and 90 K for liquid oxygen. Heat loads greater than 10 W at 20 K are predicted for hydrogen storage. Current space cryocoolers have been developed for sensor cooling with refrigeration capacities less than 1 W at 20 K. In 2011, Creare Inc. demonstrated an ultra-low-capacity turboalternator for use in a turbo-Brayton cryocooler. The turboalternator produced up to 5 W of turbine refrigeration at 20 K; equivalent to approximately 3 W of net cryocooler refrigeration. This turboalternator obtained unprecedented operating speeds and efficiencies at low temperatures benefitting from new rotor design and fabrication techniques, and new bearing fabrication techniques. More recently, Creare applied these design and fabrication techniques to a larger and higher capacity 20 K turboalternator. The turboalternator was tested in a high-capacity, low temperature test facility at Creare and demonstrated up to 42 W of turbine refrigeration at 20 K; equivalent to approximately 30 W of net cryocooler refrigeration. The net turbine efficiency was the highest achieved to date at Creare for a space-borne turboalternator. This demonstration was the first step in the development of a high-capacity turbo-Brayton cryocooler for liquid hydrogen storage. In this paper, we will review the design, development and testing of the turboalternator.

  8. A General Method of Selecting Quantum Channel for Bidirectional Quantum Teleportation

    NASA Astrophysics Data System (ADS)

    Fu, Hong-Zi; Tian, Xiu-Lao; Hu, Yang

    2014-06-01

    Based on tensor representation and Bell basis measurement in bidirectional quantum teleportation, a criterion that can be used to judge whether a four-qubit quantum state can be regarded as quantum channel or not in bidirectional teleportation is suggested and a theoretical scheme of bidirectional teleportation via four-qubit state as the quantum channel is proposed. In accordance with this criterion we give a general method of selecting quantum channel in bidirectional teleportation, which is determined by the channel parameter matrix R in the Bell basis measurement. This general method provide a theoretical basis for quantum channel selection in bidirectional quantum teleportation experiments.

  9. Glucose-6-phosphate dehydrogenase

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003671.htm Glucose-6-phosphate dehydrogenase test To use the sharing features on this page, please enable JavaScript. Glucose-6-phosphate dehydrogenase (G6PD) is a type of ...

  10. Your Glucose Meter

    MedlinePlus

    ... by Audience For Women Women's Health Topics Your Glucose Meter Share Tweet Linkedin Pin it More sharing ... Español Basic Facts 7 Tips for Testing Your Blood Sugar and Caring for Your Meter Glucose meters test ...

  11. Continuous Glucose Monitoring

    MedlinePlus

    ... catalog. Additional Links ​ Alternative Devices for Taking Insulin Children and Diabetes Glucose Meters Juvenile Diabetes (Teens and Diabetes ) Know Your Blood Glucose Numbers Your Guide to Diabetes: Type 1 and Type 2 Contact Us Health Information Center ...

  12. A Bidirectional High-Power-Quality Grid Interface With a Novel Bidirectional Noninverted Buck Boost Converter for PHEVs

    SciTech Connect

    Onar, Omer C

    2012-01-01

    Plug-in hybrid electric vehicles (PHEVs) will play a vital role in future sustainable transportation systems due to their potential in terms of energy security, decreased environmental impact, improved fuel economy, and better performance. Moreover, new regulations have been established to improve the collective gas mileage, cut greenhouse gas emissions, and reduce dependence on foreign oil. This paper primarily focuses on two major thrust areas of PHEVs. First, it introduces a grid-friendly bidirectional alternating current/direct current ac/dc dc/ac rectifier/inverter for facilitating vehicle-to-grid (V2G) integration of PHEVs. Second, it presents an integrated bidirectional noninverted buck boost converter that interfaces the energy storage device of the PHEV to the dc link in both grid-connected and driving modes. The proposed bidirectional converter has minimal grid-level disruptions in terms of power factor and total harmonic distortion, with less switching noise. The integrated bidirectional dc/dc converter assists the grid interface converter to track the charge/discharge power of the PHEV battery. In addition, while driving, the dc/dc converter provides a regulated dc link voltage to the motor drive and captures the braking energy during regenerative braking.

  13. CSF glucose test

    MedlinePlus

    Glucose test - CSF; Cerebrospinal fluid glucose test ... The glucose level in the CSF should be 50 to 80 mg/100 mL (or greater than 2/3 of the blood sugar level). Note: Normal value ranges may vary slightly ...

  14. High-Capacity Te Anode Confined in Microporous Carbon for Long-Life Na-Ion Batteries.

    PubMed

    Zhang, Juan; Yin, Ya-Xia; Guo, Yu-Guo

    2015-12-23

    Sodium-ion batteries (SIBs) have attracted considerable attention as an alternative energy-storage technology in recent years. Developing advanced sodium storage anode materials with appropriate working potential, high capacity, and good cycling performance is very important. Herein, we demonstrate a nanostructured tellurium@carbon (nano-Te@C) composite by confining nano-Te molecules in the space of carbon micropores as an attractive anode material for SIBs. The nano-Te@C anode presents an appropriate redox potential in the range of 1.05-1.35 V (vs Na(+)/Na), which avoids the Na dendrite problem and achieves a high reversible capacity of 410 mA h g(-1) on the basis of a two-electron redox reaction mechanism. Notably, the nano-Te@C exhibits an admirable long-term cycling stability with a high capacity retention of 90% for 1000 cycles (i.e., ultralow capacity decay of 0.01% per cycle). The excellent electrochemical property of nano-Te@C benefits from the high electroactivity from the nanostructure design and the effective confinement of the microporous carbon host. In addition, a Na-ion full cell by using nano-Te@C as anode and Na2/3Ni1/3Mn2/3O2 as cathode is demonstrated for the first time and exhibits a remarkable capacity retention up to 95% after 150 cycles. The results put new insights for the development of advanced SIBs with long-cycle lifespan. PMID:26618232

  15. [Glucose Metabolism: Stress Hyperglycemia and Glucose Control].

    PubMed

    Tanaka, Katsuya; Tsutsumi, Yasuo M

    2016-05-01

    It is important for the anesthesiologists to understand pathophysiology of perioperative stress hyperglycemia, because it offers strategies for treatment of stress hyperglycemia. The effect of glucose tolerance is different in the choice of the anesthetic agent used in daily clinical setting. Specifically, the volatile anesthetics inhibit insulin secretion after glucose load and affects glucose tolerance. During minor surgery by the remifentanil anesthesia, the stress reaction is hard to be induced, suggesting that we should consider low-dose glucose load. Finally it is necessary to perform the glycemic control of the patients who fell into stress hyperglycemia depending on the individual patient. However, there are a lot of questions to be answered in the future. The prognosis of the perioperative patients is more likely to be greatly improved if we can control stress hyperglycemia. PMID:27319094

  16. A perturbation solution for interlaminar stresses in bidirectional laminates

    NASA Technical Reports Server (NTRS)

    Hsu, P. W.; Herakovich, C. T.

    1977-01-01

    The paper considers a thin elastic bidirectional symmetric composite laminate subjected to a uniform axial strain. All interlaminar stresses are determined by a zeroth-order perturbation analysis of the governing equations. The method of solution considers the laminate to be composed of an interior region (removed from the free edge) and a boundary layer region. The interior region is analyzed by dropping terms related to powers of the thickness-to-width ratio in the dimensionless elasticity equations. The boundary layer region is studied by introducing a stretching transformation to the governing equations. A uniform solution is then formed by satisfying Prandtl's matching principle of perturbation theory. Results for a four-layer bidirectional graphite-epoxy laminate are compared with existing finite-difference results. It is shown that the perturbation analysis provides more insight into the stress distribution near the free edge.

  17. Solar Power Conditioners Using Bidirectional Chopper Circuits Connected in Series

    NASA Astrophysics Data System (ADS)

    Fujita, Hideaki; Mabuchi, Masao; Tsubota, Yasuhiro; Mizogami, Takao

    This paper proposes a new high-efficiency grid-connection inverter suitable for the interface with thin-film solar cells, which is composed of two bidirectional buck converters and an H-bridge PWM converter connected in series. The switching frequencies of the first bidirectional buck converters are equal to the grid frequency, while the second one is operated at the twice of the grid frequency. The combination of these two converter synthesizes an ac rectangular voltage pulse train from the dc input power. The H-bridge PWM converter is operated at 20kHz with a low dc capacitor voltage to compensate for the harmonic voltage included in the rectangular voltage pulse train. As a result, the proposed grid-connection inverter makes it possible to reduce both switching loss and common mode voltage. Experimental results obtained by a 1-kW single-phase inverter demonstrate a high efficiency of 98% without any common mode voltage.

  18. Bidirectional selection between two classes in complex social networks

    NASA Astrophysics Data System (ADS)

    Zhou, Bin; He, Zhe; Jiang, Luo-Luo; Wang, Nian-Xin; Wang, Bing-Hong

    2014-12-01

    The bidirectional selection between two classes widely emerges in various social lives, such as commercial trading and mate choosing. Until now, the discussions on bidirectional selection in structured human society are quite limited. We demonstrated theoretically that the rate of successfully matching is affected greatly by individuals' neighborhoods in social networks, regardless of the type of networks. Furthermore, it is found that the high average degree of networks contributes to increasing rates of successful matches. The matching performance in different types of networks has been quantitatively investigated, revealing that the small-world networks reinforces the matching rate more than scale-free networks at given average degree. In addition, our analysis is consistent with the modeling result, which provides the theoretical understanding of underlying mechanisms of matching in complex networks.

  19. Bidirectional selection between two classes in complex social networks

    PubMed Central

    Zhou, Bin; He, Zhe; Jiang, Luo-Luo; Wang, Nian-Xin; Wang, Bing-Hong

    2014-01-01

    The bidirectional selection between two classes widely emerges in various social lives, such as commercial trading and mate choosing. Until now, the discussions on bidirectional selection in structured human society are quite limited. We demonstrated theoretically that the rate of successfully matching is affected greatly by individuals' neighborhoods in social networks, regardless of the type of networks. Furthermore, it is found that the high average degree of networks contributes to increasing rates of successful matches. The matching performance in different types of networks has been quantitatively investigated, revealing that the small-world networks reinforces the matching rate more than scale-free networks at given average degree. In addition, our analysis is consistent with the modeling result, which provides the theoretical understanding of underlying mechanisms of matching in complex networks. PMID:25524835

  20. Evaluation of complex gonioapparent samples using a bidirectional spectrometer.

    PubMed

    Rogelj, Nina; Penttinen, Niko; Gunde, Marta Klanjšek

    2015-08-24

    Many applications use gonioapparent targets whose appearance depends on irradiation and viewing angles; the strongest effects are provided by light diffraction. These targets, optically variable devices (OVDs), are used in both security and authentication applications. This study introduces a bidirectional spectrometer, which enables to analyze samples with most complex angular and spectral properties. In our work, the spectrometer is evaluated with samples having very different types of reflection, concerning spectral and angular distributions. Furthermore, an OVD containing several different grating patches is evaluated. The device uses automatically adjusting exposure time to provide maximum signal dynamics and is capable of doing steps as small as 0.01°. However, even 2° steps for the detector movement showed that this device is more than capable of characterizing even the most complex reflecting surfaces. This study presents sRGB visualizations, discussion of bidirectional reflection, and accurate grating period calculations for all of the grating samples used. PMID:26368175

  1. Bidirectional synchronization and hierarchical error correction for robust image transmission

    NASA Astrophysics Data System (ADS)

    Li, HongZhi; Chen, Chang W.

    1998-12-01

    In this paper, we present a novel joint source and channel image coding scheme for noisy channel transmission. The proposed scheme consists of two innovative components: (1) Intelligent bi-directional synchronization, and (2) Layered bit-plane error protection. The bi-directional synchronization is able to recover the coding synchronization when any single or even when two consecutive synchronization codes are corrupted by the channel noise. With synchronized partition, unequal error protection for each bit-plane can be designed to suit for a wide range of channel environments. The hierarchical error protection strategy is based on the analysis of bit-plane error sensitivity, aiming at achieving an optimal joint source and channel coding when the compressed image data are transmitted over noisy channels. Experimental results over extensive channel simulations show that the proposed scheme outperforms the approach proposed by Sherwood and Zeger who have reported the best numerical results in the literature.

  2. Bidirectionality in synesthesia: evidence from a multiplication verification task.

    PubMed

    Gevers, Wim; Imbo, Ineke; Cohen Kadosh, Roi; Fias, Wim; Hartsuiker, Robert J

    2010-01-01

    Color-grapheme synesthetes automatically perceive achromatic numbers as colored (e.g., 7 is turquoise). Up until recently, synesthesia was believed to be unidirectional. For instance, the number 7 gives rise to the percept of turquoise but the perception of turquoise does not trigger the number 7. However, some recent studies argue for bidirectional connections Cohen Kadosh et al., 2005; Johnson et al., 2007; Knoch et al., 2005). In this study, a multiplication verification task (e.g., 7 x 2 = 14, true/false?) was used to test bidirectionality. In agreement with previous studies we observed that the presentation of colors evokes numerical magnitudes. The current findings add two important notions to previous studies: (a) The influence of color on the processing of numerical information can be extended to multiplication verification tasks and (b) The perception of color can both facilitate and interfere with the processing of digit-related information. PMID:20178949

  3. Bidirectional imperfect quantum teleportation with a single Bell state

    NASA Astrophysics Data System (ADS)

    Kiktenko, E. O.; Popov, A. A.; Fedorov, A. K.

    2016-06-01

    We present a bidirectional modification of the standard one-qubit teleportation protocol, where both Alice and Bob transfer noisy versions of their qubit states to each other by using single Bell state and auxiliary (trigger) qubits. Three schemes are considered: the first where the actions of parties are governed by two independent quantum random triggers, the second with single random trigger, and the third as a mixture of the first two. We calculate the fidelities of teleportation for all schemes and find a condition on correlation between trigger qubits in the mixed scheme which allows us to overcome the classical fidelity boundary of 2/3. We apply the Choi-Jamiolkowski isomorphism to the quantum channels obtained in order to investigate an interplay between their ability to transfer the information, entanglement-breaking property, and auxiliary classical communication needed to form correlations between trigger qubits. The suggested scheme for bidirectional teleportation can be realized by using current experimental tools.

  4. Bidirectional Reflectance Modeling of Non-homogeneous Plant Canopies

    NASA Technical Reports Server (NTRS)

    Norman, J. M.

    1984-01-01

    Efforts to develop a three dimensional model to predict canopy, bidirectional reflectance for heterogenous plant stands using incident radiation and canopy structural descriptions as inputs are described. Utility programs were developed to cope with the complex output from the 3 dimensional model. In addition an attempt was made to define leaf and soil properties, which are appropriate to the mode, by measuring leaf and soil bidirectional reflectance distribution functions; since almost no data exist on these distributions. In the process it was realized that most models probably are using the wrong leaf spectral properties, and that off-nadir reflectance measurements are difficult to make because of non-Lambertian properties of reference surfaces. Also, in the visible wavebands, rough soil may not be distinguishable from canopies when viewed from above.

  5. A mixing evolution model for bidirectional microblog user networks

    NASA Astrophysics Data System (ADS)

    Yuan, Wei-Guo; Liu, Yun

    2015-08-01

    Microblogs have been widely used as a new form of online social networking. Based on the user profile data collected from Sina Weibo, we find that the number of microblog user bidirectional friends approximately corresponds with the lognormal distribution. We then build two microblog user networks with real bidirectional relationships, both of which have not only small-world and scale-free but also some special properties, such as double power-law degree distribution, disassortative network, hierarchical and rich-club structure. Moreover, by detecting the community structures of the two real networks, we find both of their community scales follow an exponential distribution. Based on the empirical analysis, we present a novel evolution network model with mixed connection rules, including lognormal fitness preferential and random attachment, nearest neighbor interconnected in the same community, and global random associations in different communities. The simulation results show that our model is consistent with real network in many topology features.

  6. The influence of following on bidirectional flow through a doorway

    NASA Astrophysics Data System (ADS)

    Graves, Amy; Diamond, Rachel; Saakashvili, Eduard

    Pedestrian dynamics is a subset of the study of self-propelled particles. We simulate two species of pedestrians undergoing bidirectional flow through a narrow doorway. Using the Helbing-Monlár-Farkas-Vicsek Social Force Model, our pedestrians are soft discs that experience psychosocial and physical contact forces. We vary the ``following'' parameter which determines the degree to which a pedestrian matches its direction of movement to the average of nearby, same-species pedestrians. Current density, efficiency and statistics of bursts and lags are calculated. These indicate that choosing different following parameters for each species affects the efficacy of transport - greater following being associated with lower efficacy. The information entropy associated with velocity and the long time tails of the complementary CDF of lag times are additional indicators of the dynamical consequences of following during bidirectional flow. Acknowledgement is made to the donors of the ACS Petrolium Research Fund, and the Vandervelde-Cheung Fund of Swarthmore College.

  7. Simulation Study of Traffic Accidents in Bidirectional Traffic Models

    NASA Astrophysics Data System (ADS)

    Moussa, Najem

    Conditions for the occurrence of bidirectional collisions are developed based on the Simon-Gutowitz bidirectional traffic model. Three types of dangerous situations can occur in this model. We analyze those corresponding to head-on collision; rear-end collision and lane-changing collision. Using Monte Carlo simulations, we compute the probability of the occurrence of these collisions for different values of the oncoming cars' density. It is found that the risk of collisions is important when the density of cars in one lane is small and that of the other lane is high enough. The influence of different proportions of heavy vehicles is also studied. We found that heavy vehicles cause an important reduction of traffic flow on the home lane and provoke an increase of the risk of car accidents.

  8. Contrasts among bidirectional reflectance of leaves, canopies, and soils

    NASA Technical Reports Server (NTRS)

    Norman, J. M.; Walter, E. A.; Welles, J. M.

    1985-01-01

    Simple models are presented for predicting the bidirectional reflectance distribution functions (BRDFs) for soils and plant canopies viewed from various directions. BRDFs are predicted for bare soil, individual leaves, and plant canopies, and the results are compared with measurements and a three coefficient empirical equation. BRDF measurements for corn and soybean leaves are presented to contrast with canopy and soil distributions. Estimates of the soil, canopy, and leaf BRDFs are combined into a model called Cupid to predict BRDFs for complex natural surfaces.

  9. Aberration analysis and efficiency improvement of a bidirectional optical subassembly

    NASA Astrophysics Data System (ADS)

    Wu, Hao; Huang, Zhangdi; Yu, Ziyan; Qian, Xiaoshi; Xu, Fei; Chen, Beckham; Lu, Yanqing

    2009-10-01

    An approach to improve the coupling efficiency of bidirectional optical subassembly (BOSA) modules is proposed and experimentally demonstrated. We analyzed the wavefront aberration coefficients of a typical BOSA. It was found that the 45-deg wavelength filter induces coma and astigmatism, and then it further deteriorates the laser diode to fiber coupling. We measured the BOSA efficiencies based on a series of different filters. For a typical 0.5-mm filter, 25% coupling efficiency improvement was achieved by optimizing the filter parameters.

  10. Bidirectional reflectance, leaf optical and physiological properties of prairie vegetation

    NASA Technical Reports Server (NTRS)

    Walter-Shea, E. A.; Blad, B. L.; Starks, P. J; Hays, C. J.; Mesarch, M. A.; Middleton, E. M.

    1990-01-01

    A modular multiband radiometer is used to measure reflected radiation from the vegetative surface of a prairie. The data are compared to estimates of incoming radiation by measuring the reflection from a molded halon panel, and the bidirectional reflectance factors are measured at seven view-zenith angles and various incidence angles. The canopy-reflectance results are compared to leaf-optical and other vegetative physiological properties, and a direct relationship is reported.