Science.gov

Sample records for high-density eeg study

  1. Propofol Anesthesia and Sleep: A High-Density EEG Study

    PubMed Central

    Murphy, Michael; Bruno, Marie-Aurelie; Riedner, Brady A.; Boveroux, Pierre; Noirhomme, Quentin; Landsness, Eric C.; Brichant, Jean-Francois; Phillips, Christophe; Massimini, Marcello; Laureys, Steven; Tononi, Giulio; Boly, Melanie

    2011-01-01

    Study Objectives: The electrophysiological correlates of anesthetic sedation remain poorly understood. We used high-density electroencephalography (hd-EEG) and source modeling to investigate the cortical processes underlying propofol anesthesia and compare them to sleep. Design: 256-channel EEG recordings in humans during propofol anesthesia. Setting: Hospital operating room. Patients or Participants: 8 healthy subjects (4 males) Interventions: N/A Measurements and Results: Initially, propofol induced increases in EEG power from 12–25 Hz. Loss of consciousness (LOC) was accompanied by the appearance of EEG slow waves that resembled the slow waves of NREM sleep. We compared slow waves in propofol to slow waves recorded during natural sleep and found that both populations of waves share similar cortical origins and preferentially propagate along the mesial components of the default network. However, propofol slow waves were spatially blurred compared to sleep slow waves and failed to effectively entrain spindle activity. Propofol also caused an increase in gamma (25–40 Hz) power that persisted throughout LOC. Source modeling analysis showed that this increase in gamma power originated from the anterior and posterior cingulate cortices. During LOC, we found increased gamma functional connectivity between these regions compared to the wakefulness. Conclusions: Propofol anesthesia is a sleep-like state and slow waves are associated with diminished consciousness even in the presence of high gamma activity. Citation: Murphy M; Bruno MA; Riedner BA; Boveroux P; Noirhomme Q; Landsness EC; Brichant JF; Phillips C; Massimini M; Laureys S; Tononi G; Boly M. Propofol anesthesia and sleep: a high-density EEG study. SLEEP 2011;34(3):283-291. PMID:21358845

  2. A practical method for quickly determining electrode positions in high-density EEG studies.

    PubMed

    He, Ping; Estepp, Justin R

    2013-04-29

    This report describes a simple and practical method for determining electrode positions in high-density EEG studies. This method reduces the number of electrodes for which accurate three-dimensional location must be measured, thus minimizing experimental set-up time and the possibility of digitization error. For each electrode cap, a reference data set is first established by placing the cap on a reference head and digitizing the 3-D position of each channel. A set of control channels are pre-selected that should be adequately distributed over the cap. A simple choice could be the standard 19 channels of the International 10-20 system or their closest substitutes. In a real experiment, only the 3-D positions of these control channels need to be measured and the position of each of the remaining channels are calculated from the position data of the same channels in the reference data set using a local transformation determined by the nearest three or four pairs of control channels. Six BioSemi ActiveTwo caps of different size and channel numbers were used to evaluate the method. Results show that the mean prediction error is about 2mm and is comparable with the residual uncertainty in direct position measurement using a Polhemus digitizer. PMID:23485737

  3. Dissociating temporal attention from spatial attention and motor response preparation: A high-density EEG study.

    PubMed

    Faugeras, Frédéric; Naccache, Lionel

    2016-01-01

    Engagement of various forms of attention and response preparation determines behavioral performance during stimulus-response tasks. Many studies explored the respective properties and neural signatures of each of these processes. However, very few experiments were conceived to explore their interaction. In the present work we used an auditory target detection task during which both temporal attention on the one side, and spatial attention and motor response preparation on the other side could be explicitly cued. Both cueing effects speeded response times, and showed strictly additive effects. Target ERP analysis revealed modulations of N1 and P3 responses by these two forms of cueing. Cue-target interval analysis revealed two main effects paralleling behavior. First, a typical contingent negative variation (CNV), induced by the cue and resolved immediately after target onset, was found larger for temporal attention cueing than for spatial and motor response cueing. Second, a posterior and late cue-P3 complex showed the reverse profile. Analyses of lateralized readiness potentials (LRP) revealed both patterns of motor response inhibition and activation. Taken together these results help to clarify and disentangle the respective effects of temporal attention on the one hand, and of the combination of spatial attention and motor response preparation on the other hand on brain activity and behavior. PMID:26433120

  4. Understanding Actions of Others: The Electrodynamics of the Left and Right Hemispheres. A High-Density EEG Neuroimaging Study

    PubMed Central

    Ortigue, Stephanie; Sinigaglia, Corrado; Rizzolatti, Giacomo; Grafton, Scott T.

    2010-01-01

    Background When we observe an individual performing a motor act (e.g. grasping a cup) we get two types of information on the basis of how the motor act is done and the context: what the agent is doing (i.e. grasping) and the intention underlying it (i.e. grasping for drinking). Here we examined the temporal dynamics of the brain activations that follow the observation of a motor act and underlie the observer's capacity to understand what the agent is doing and why. Methodology/Principal Findings Volunteers were presented with two-frame video-clips. The first frame (T0) showed an object with or without context; the second frame (T1) showed a hand interacting with the object. The volunteers were instructed to understand the intention of the observed actions while their brain activity was recorded with a high-density 128-channel EEG system. Visual event-related potentials (VEPs) were recorded time-locked with the frame showing the hand-object interaction (T1). The data were analyzed by using electrical neuroimaging, which combines a cluster analysis performed on the group-averaged VEPs with the localization of the cortical sources that give rise to different spatio-temporal states of the global electrical field. Electrical neuroimaging results revealed four major steps: 1) bilateral posterior cortical activations; 2) a strong activation of the left posterior temporal and inferior parietal cortices with almost a complete disappearance of activations in the right hemisphere; 3) a significant increase of the activations of the right temporo-parietal region with simultaneously co-active left hemispheric sources, and 4) a significant global decrease of cortical activity accompanied by the appearance of activation of the orbito-frontal cortex. Conclusions/Significance We conclude that the early striking left hemisphere involvement is due to the activation of a lateralized action-observation/action execution network. The activation of this lateralized network mediates the

  5. A high-density EEG study of differences between three high speeds of simulated forward motion from optic flow in adult participants

    PubMed Central

    Vilhelmsen, Kenneth; van der Weel, F. R. (Ruud); van der Meer, Audrey L. H.

    2015-01-01

    A high-density EEG study was conducted to investigate evoked and oscillatory brain activity in response to high speeds of simulated forward motion. Participants were shown an optic flow pattern consisting of a virtual road with moving poles at either side of it, simulating structured forward motion at different driving speeds (25, 50, and 75 km/h) with a static control condition between each motion condition. Significant differences in N2 latencies and peak amplitudes between the three speeds of visual motion were found in parietal channels of interest P3 and P4. As motion speed increased, peak latency increased while peak amplitude decreased which might indicate that higher driving speeds are perceived as more demanding resulting in longer latencies, and as fewer neurons in the motion sensitive areas of the adult brain appear to be attuned to such high visual speeds this could explain the observed inverse relationship between speed and amplitude. In addition, significant differences between alpha de-synchronizations for forward motion and alpha synchronizations in the static condition were found in the parietal midline (PM) source. It was suggested that the alpha de-synchronizations reflect an activated state related to the visual processing of simulated forward motion, whereas the alpha synchronizations in response to the static condition reflect a deactivated resting period. PMID:26578903

  6. Parieto-frontal circuits during observation of hidden and visible motor acts in children. A high-density EEG source imaging study.

    PubMed

    Berchio, Cristina; Rihs, Tonia A; Michel, Christoph M; Brunet, Denis; Apicella, Fabio; Muratori, Filippo; Gallese, Vittorio; Umiltà, Maria A

    2014-03-01

    Several studies showed that in the human brain specific premotor and parietal areas are activated during the execution and observation of motor acts. The activation of this premotor-parietal network displaying the so-called Mirror Mechanism (MM) was proposed to underpin basic forms of action understanding. However, the functional properties of the MM in children are still largely unknown. In order to address this issue, we recorded high-density EEG from 12 children (6 female, 6 male; average age 10.5, SD ±2.15). Data were collected when children observed video clips showing hands grasping objects in two different experimental conditions: (1) Full Vision, in which the motor act was fully visible; (2) Hidden, in which the interaction between the hand and the object was not visible. Event-related potentials (ERPs) and topographic map analyses were used to investigate the temporal pattern of the ERPs and their brain source of localization, employing a children template of the Montreal Neurological Institute. Results showed that two different parieto-premotor circuits are activated by the observation of object-related hand reaching-to-grasping motor acts in children. The first circuit comprises the ventral premotor and the inferior parietal cortices. The second one comprises the dorsal premotor and superior parietal cortices. The activation of both circuits is differently lateralized and modulated in time, and influenced by the amount of visual information available about the hand grasping-related portion of the observed motor acts. PMID:24026809

  7. Moving mirrors: a high-density EEG study investigating the effect of camera movements on motor cortex activation during action observation.

    PubMed

    Heimann, Katrin; Umiltà, Maria Alessandra; Guerra, Michele; Gallese, Vittorio

    2014-09-01

    Action execution-perception links (mirror mechanism) have been repeatedly suggested to play crucial roles in social cognition. Remarkably, the designs of most studies exploring this topic so far excluded even the simplest traces of social interaction, such as a movement of the observer toward another individual. This study introduces a new design by investigating the effects of camera movements, possibly simulating the observer's own approaching movement toward the scene. We conducted a combined high-density EEG and behavioral study investigating motor cortex activation during action observation measured by event-related desynchronization and resynchronization (ERD/ERS) of the mu rhythm. Stimuli were videos showing a goal-related hand action filmed while using the camera in four different ways: filming from a fixed position, zooming in on the scene, approaching the scene by means of a dolly, and approaching the scene by means of a steadycam. Results demonstrated a consistently stronger ERD of the mu rhythm for videos that were filmed while approaching the scene with a steadycam. Furthermore, videos in which the zoom was applied reliably demonstrated a stronger rebound. A rating task showed that videos in which the camera approached the scene were felt as more involving and the steadycam was most able to produce a visual experience close to the one of a human approaching the scene. These results suggest that filming technique predicts time course specifics of ERD/ERS during action observation with only videos simulating the natural vision of a walking human observer eliciting a stronger ERD than videos filmed from a fixed position. This demonstrates the utility of ecologically designed studies for exploring social cognition. PMID:24666130

  8. Cortical Source Analysis of High-Density EEG Recordings in Children

    PubMed Central

    Bathelt, Joe; O'Reilly, Helen; de Haan, Michelle

    2014-01-01

    EEG is traditionally described as a neuroimaging technique with high temporal and low spatial resolution. Recent advances in biophysical modelling and signal processing make it possible to exploit information from other imaging modalities like structural MRI that provide high spatial resolution to overcome this constraint1. This is especially useful for investigations that require high resolution in the temporal as well as spatial domain. In addition, due to the easy application and low cost of EEG recordings, EEG is often the method of choice when working with populations, such as young children, that do not tolerate functional MRI scans well. However, in order to investigate which neural substrates are involved, anatomical information from structural MRI is still needed. Most EEG analysis packages work with standard head models that are based on adult anatomy. The accuracy of these models when used for children is limited2, because the composition and spatial configuration of head tissues changes dramatically over development3.  In the present paper, we provide an overview of our recent work in utilizing head models based on individual structural MRI scans or age specific head models to reconstruct the cortical generators of high density EEG. This article describes how EEG recordings are acquired, processed, and analyzed with pediatric populations at the London Baby Lab, including laboratory setup, task design, EEG preprocessing, MRI processing, and EEG channel level and source analysis.  PMID:25045930

  9. Pain catastrophizing and cortical responses in amputees with varying levels of phantom limb pain: a high-density EEG brain-mapping study.

    PubMed

    Vase, Lene; Egsgaard, Line Lindhardt; Nikolajsen, Lone; Svensson, Peter; Jensen, Troels Staehelin; Arendt-Nielsen, Lars

    2012-05-01

    Pain catastrophizing has been associated with phantom limb pain, but so far the cortical processes and the brain regions involved in this relationship have not been investigated. It was therefore tested whether catastrophizing was related to (1) spontaneous pain, (2) somatosensory activity and (3) cortical responses in phantom limb pain patients. The cortical responses were investigated via electroencephalography (EEG) as it has a high temporal resolution which may be ideal for investigating especially the attentional and hypervigilance aspect of catastrophizing to standardized acute stimuli. Eighteen upper limb amputees completed the pain catastrophizing scale. Patients' spontaneous pain levels (worst and average pain, numerical rating scales) and thresholds to electrical stimulation (sensory detection and VRS2: intense but not painful) were determined. Non-painful electrical stimuli were applied to both the affected and non-affected arm, while high-resolution (128 channels) EEG signals were recorded. Catastrophizing accounted for significant amounts of the variance in relation to spontaneous pain, especially worst pain (64.1%), and it was significantly associated with thresholds. At the affected side, catastrophizing was significantly related to the power RMS of the N/P135 dipole located in the area around the secondary somatosensory cortex which has been shown to be associated with arousal and expectations. These findings corroborate the attentional model of pain catastrophizing by indicating that even non-painful stimuli are related to enhanced attention to and negative expectations of stimuli, and they suggest that memory processes may be central to understanding the link between catastrophizing and pain. PMID:22349560

  10. MRI with and without a high-density EEG cap--what makes the difference?

    PubMed

    Klein, Carina; Hänggi, Jürgen; Luechinger, Roger; Jäncke, Lutz

    2015-02-01

    Besides the benefit of combining electroencephalography (EEG) and magnetic resonance imaging (MRI), much effort has been spent to develop algorithms aimed at successfully cleaning the EEG data from MRI-related gradient and ballistocardiological artifacts. However, there are also studies showing a negative influence of the EEG on MRI data quality. Therefore, in the present study, we focused for the first time on the influence of the EEG on morphometric measurements of T1-weighted MRI data (voxel- and surfaced-based morphometry). Here, we demonstrate a strong influence of the EEG on cortical thickness, surface area, and volume as well as subcortical volumes due to local EEG-related inhomogeneities of the static magnetic (B0) and the gradient field (B1). In a second step, we analyzed the signal-to-noise ratios for both the anatomical and the functional data when recorded simultaneously with EEG and MRI and compared them to the ratios of the MRI data without simultaneous EEG measurements. These analyses revealed consistently lower signal-to-noise ratios for anatomical as well as functional MRI data during simultaneous EEG registration. In contrast, further analyses of T2*-weighted images provided reliable results independent of whether including the individuals' T1-weighted image with or without the EEG cap in the fMRI preprocessing stream. Based on our findings, we strongly recommend against using the structural images obtained during simultaneous EEG-MRI recordings for further anatomical data analysis. PMID:25482268

  11. A high-density EEG investigation into steady state binaural beat stimulation.

    PubMed

    Goodin, Peter; Ciorciari, Joseph; Baker, Kate; Carey, Anne-Marie; Carrey, Anne-Marie; Harper, Michelle; Kaufman, Jordy

    2012-01-01

    Binaural beats are an auditory phenomenon that has been suggested to alter physiological and cognitive processes including vigilance and brainwave entrainment. Some personality traits measured by the NEO Five Factor Model have been found to alter entrainment using pulsing light stimuli, but as yet no studies have examined if this occurs using steady state presentation of binaural beats for a relatively short presentation of two minutes. This study aimed to examine if binaural beat stimulation altered vigilance or cortical frequencies and if personality traits were involved. Thirty-one participants were played binaural beat stimuli designed to elicit a response at either the Theta (7 Hz) or Beta (16 Hz) frequency bands while undertaking a zero-back vigilance task. EEG was recorded from a high-density electrode cap. No significant differences were found in vigilance or cortical frequency power during binaural beat stimulation compared to a white noise control period. Furthermore, no significant relationships were detected between the above and the Big Five personality traits. This suggests a short presentation of steady state binaural beats are not sufficient to alter vigilance or entrain cortical frequencies at the two bands examined and that certain personality traits were not more susceptible than others. PMID:22496862

  12. A High-Density EEG Investigation into Steady State Binaural Beat Stimulation

    PubMed Central

    Goodin, Peter; Ciorciari, Joseph; Baker, Kate; Carrey, Anne-Marie; Harper, Michelle; Kaufman, Jordy

    2012-01-01

    Binaural beats are an auditory phenomenon that has been suggested to alter physiological and cognitive processes including vigilance and brainwave entrainment. Some personality traits measured by the NEO Five Factor Model have been found to alter entrainment using pulsing light stimuli, but as yet no studies have examined if this occurs using steady state presentation of binaural beats for a relatively short presentation of two minutes. This study aimed to examine if binaural beat stimulation altered vigilance or cortical frequencies and if personality traits were involved. Thirty-one participants were played binaural beat stimuli designed to elicit a response at either the Theta (7 Hz) or Beta (16 Hz) frequency bands while undertaking a zero-back vigilance task. EEG was recorded from a high-density electrode cap. No significant differences were found in vigilance or cortical frequency power during binaural beat stimulation compared to a white noise control period. Furthermore, no significant relationships were detected between the above and the Big Five personality traits. This suggests a short presentation of steady state binaural beats are not sufficient to alter vigilance or entrain cortical frequencies at the two bands examined and that certain personality traits were not more susceptible than others. PMID:22496862

  13. The electrophysiological correlates of the working memory subcomponents: evidence from high-density EEG and coherence analysis.

    PubMed

    Rutar Gorišek, Veronika; Belič, Aleš; Manouilidou, Christina; Koritnik, Blaž; Repovš, Grega; Bon, Jure; Žibert, Janez; Zidar, Janez

    2015-12-01

    Synchronization between prefrontal (executive) and posterior (association) cortices seems a plausible mechanism for temporary maintenance of information. However, while EEG studies reported involvement of (pre)frontal midline structures in synchronization, functional neuroimaging elucidated the importance of lateral prefrontal cortex (PFC) in working memory (WM). Verbal and spatial WM rely on lateralized subsystems (phonological loop and visuospatial sketchpad, respectively), yet only trends for hemispheric dissociation of networks supporting rehearsal of verbal and spatial information were identified by EEG. As oscillatory activity is WM load dependent, we applied an individually tailored submaximal load for verbal (V) and spatial (S) task to enhance synchronization in the relevant functional networks. To map these networks, we used high-density EEG and coherence analysis. Our results imply that the synchronized activity is limited to highly specialized areas that correspond well with the areas identified by functional neuroimaging. In both V and S task, two independent networks of theta synchronization involving dorsolateral PFC of each hemisphere were revealed. In V task, left prefrontal and left parietal areas were functionally coupled in gamma frequencies. Theta synchronization thus provides the necessary interface for storage and manipulation of information, while left-lateralized gamma synchronization could represent the EEG correlate of the phonological loop. PMID:26209929

  14. Statistical parametric mapping of LORETA using high density EEG and individual MRI: application to mismatch negativities in schizophrenia.

    PubMed

    Park, Hae-Jeong; Kwon, Jun Soo; Youn, Tak; Pae, Ji Soo; Kim, Jae-Jin; Kim, Myung-Sun; Ha, Kyoo-Seob

    2002-11-01

    We describe a method for the statistical parametric mapping of low resolution electromagnetic tomography (LORETA) using high-density electroencephalography (EEG) and individual magnetic resonance images (MRI) to investigate the characteristics of the mismatch negativity (MMN) generators in schizophrenia. LORETA, using a realistic head model of the boundary element method derived from the individual anatomy, estimated the current density maps from the scalp topography of the 128-channel EEG. From the current density maps that covered the whole cortical gray matter (up to 20,000 points), volumetric current density images were reconstructed. Intensity normalization of the smoothed current density images was used to reduce the confounding effect of subject specific global activity. After transforming each image into a standard stereotaxic space, we carried out statistical parametric mapping of the normalized current density images. We applied this method to the source localization of MMN in schizophrenia. The MMN generators, produced by a deviant tone of 1,200 Hz (5% of 1,600 trials) under the standard tone of 1,000 Hz, 80 dB binaural stimuli with 300 msec of inter-stimulus interval, were measured in 14 right-handed schizophrenic subjects and 14 age-, gender-, and handedness-matched controls. We found that the schizophrenic group exhibited significant current density reductions of MMN in the left superior temporal gyrus and the left inferior parietal gyrus (P < 0. 0005). This study is the first voxel-by-voxel statistical mapping of current density using individual MRI and high-density EEG. PMID:12391570

  15. Pattern Recognition With Adaptive-Thresholds For Sleep Spindle In High Density EEG Signals

    PubMed Central

    Gemignani, Jessica; Agrimi, Jacopo; Cheli, Enrico; Gemignani, Angelo; Laurino, Marco; Allegrini, Paolo; Landi, Alberto; Menicucci, Danilo

    2016-01-01

    Sleep spindles are electroencephalographic oscillations peculiar of non-REM sleep, related to neuronal mechanisms underlying sleep restoration and learning consolidation. Based on their very singular morphology, sleep spindles can be visually recognized and detected, even though this approach can lead to significant mis-detections. For this reason, many efforts have been put in developing a reliable algorithm for spindle automatic detection, and a number of methods, based on different techniques, have been tested via visual validation. This work aims at improving current pattern recognition procedures for sleep spindles detection by taking into account their physiological sources of variability. We provide a method as a synthesis of the current state of art that, improving dynamic threshold adaptation, is able to follow modification of spindle characteristics as a function of sleep depth and inter-subjects variability. The algorithm has been applied to physiological data recorded by a high density EEG in order to perform a validation based on visual inspection and on evaluation of expected results from normal night sleep in healthy subjects. PMID:26736332

  16. Antidepressant Effects of Selective Slow Wave Sleep Deprivation in Major Depression: A High-Density EEG Investigation

    PubMed Central

    Landsness, Eric C.; Goldstein, Michael R.; Peterson, Michael J.; Tononi, Giulio; Benca, Ruth M.

    2011-01-01

    Sleep deprivation can acutely reverse depressive symptoms in some patients with major depression. Because abnormalities in slow wave sleep are one of the most consistent biological markers of depression, it is plausible that the antidepressant effects of sleep deprivation are due to the effects on slow wave homeostasis. This study tested the prediction that selectively reducing slow waves during sleep (slow wave deprivation; SWD), without disrupting total sleep time, will lead to an acute reduction in depressive symptomatology. As part of a multi-night, cross-over design study, participants with major depression (non-medicated; n = 17) underwent baseline, SWD, and recovery sleep sessions, and were recorded with high-density EEG (hdEEG). During SWD, acoustic stimuli were played to suppress subsequent slow waves, without waking up the participant. The effects of SWD on depressive symptoms were assessed with both self-rated and researcher-administered scales. Participants experienced a significant decrease in depressive symptoms according to both self-rated (p = .007) and researcher-administered (p = .010) scales, while vigilance was unaffected. The reduction in depressive symptoms correlated with the overnight dissipation of fronto-central slow wave activity (SWA) on baseline sleep, the rebound in right frontal all-night SWA on recovery sleep, and the amount of REM sleep on the SWD night. In addition to highlighting the benefits of hdEEG in detecting regional changes in brain activity, these findings suggest that SWD may help to better understand the pathophysiology of depression and may be a useful tool for the neuromodulatory reversal of depressive symptomatology. PMID:21397252

  17. Combining computer game-based behavioural experiments with high-density EEG and infrared gaze tracking.

    PubMed

    Yoder, Keith J; Belmonte, Matthew K

    2010-01-01

    Experimental paradigms are valuable insofar as the timing and other parameters of their stimuli are well specified and controlled, and insofar as they yield data relevant to the cognitive processing that occurs under ecologically valid conditions. These two goals often are at odds, since well controlled stimuli often are too repetitive to sustain subjects' motivation. Studies employing electroencephalography (EEG) are often especially sensitive to this dilemma between ecological validity and experimental control: attaining sufficient signal-to-noise in physiological averages demands large numbers of repeated trials within lengthy recording sessions, limiting the subject pool to individuals with the ability and patience to perform a set task over and over again. This constraint severely limits researchers' ability to investigate younger populations as well as clinical populations associated with heightened anxiety or attentional abnormalities. Even adult, non-clinical subjects may not be able to achieve their typical levels of performance or cognitive engagement: an unmotivated subject for whom an experimental task is little more than a chore is not the same, behaviourally, cognitively, or neurally, as a subject who is intrinsically motivated and engaged with the task. A growing body of literature demonstrates that embedding experiments within video games may provide a way between the horns of this dilemma between experimental control and ecological validity. The narrative of a game provides a more realistic context in which tasks occur, enhancing their ecological validity (Chaytor & Schmitter-Edgecombe, 2003). Moreover, this context provides motivation to complete tasks. In our game, subjects perform various missions to collect resources, fend off pirates, intercept communications or facilitate diplomatic relations. In so doing, they also perform an array of cognitive tasks, including a Posner attention-shifting paradigm (Posner, 1980), a go/no-go test of motor

  18. Combining Computer Game-Based Behavioural Experiments With High-Density EEG and Infrared Gaze Tracking

    PubMed Central

    Yoder, Keith J.; Belmonte, Matthew K.

    2010-01-01

    Experimental paradigms are valuable insofar as the timing and other parameters of their stimuli are well specified and controlled, and insofar as they yield data relevant to the cognitive processing that occurs under ecologically valid conditions. These two goals often are at odds, since well controlled stimuli often are too repetitive to sustain subjects' motivation. Studies employing electroencephalography (EEG) are often especially sensitive to this dilemma between ecological validity and experimental control: attaining sufficient signal-to-noise in physiological averages demands large numbers of repeated trials within lengthy recording sessions, limiting the subject pool to individuals with the ability and patience to perform a set task over and over again. This constraint severely limits researchers' ability to investigate younger populations as well as clinical populations associated with heightened anxiety or attentional abnormalities. Even adult, non-clinical subjects may not be able to achieve their typical levels of performance or cognitive engagement: an unmotivated subject for whom an experimental task is little more than a chore is not the same, behaviourally, cognitively, or neurally, as a subject who is intrinsically motivated and engaged with the task. A growing body of literature demonstrates that embedding experiments within video games may provide a way between the horns of this dilemma between experimental control and ecological validity. The narrative of a game provides a more realistic context in which tasks occur, enhancing their ecological validity (Chaytor & Schmitter-Edgecombe, 2003). Moreover, this context provides motivation to complete tasks. In our game, subjects perform various missions to collect resources, fend off pirates, intercept communications or facilitate diplomatic relations. In so doing, they also perform an array of cognitive tasks, including a Posner attention-shifting paradigm (Posner, 1980), a go/no-go test of motor

  19. EEG Studies with Young Children.

    ERIC Educational Resources Information Center

    Flohr, John W.; Miller, Daniel C.; deBeus, Roger

    2000-01-01

    Describes how electroencephalogram (EEG) data are collected and how brain function is measured. Discusses studies on the effects of music experiences with adult subjects and studies focusing on the effects of music training on EEG activity of children and adolescents. Considers the implications of the studies and the future directions of this…

  20. Concordance of Epileptic Networks Associated with Epileptic Spikes Measured by High-Density EEG and Fast fMRI

    PubMed Central

    Jäger, Vera; Dümpelmann, Matthias; LeVan, Pierre; Ramantani, Georgia; Mader, Irina; Schulze-Bonhage, Andreas; Jacobs, Julia

    2015-01-01

    Objective The present study aims to investigate whether a newly developed fast fMRI called MREG (magnetic resonance encephalography) measures metabolic changes related to interictal epileptic discharges (IED). For this purpose BOLD changes are correlated with the IED distribution and variability. Methods Patients with focal epilepsy underwent EEG-MREG using a 64 channel cap. IED voltage maps were generated using 32 and 64 channels and compared regarding their correspondence to the BOLD response. The extents of IEDs (defined as number of channels with >50% of maximum IED negativity) were correlated with the extents of positive and negative BOLD responses. Differences in inter-spike variability were investigated between interictal epileptic discharges (IED) sets with and without concordant positive or negative BOLD responses. Results 17 patients showed 32 separate IED types. In 50% of IED types the BOLD changes could be confirmed by another independent imaging method. The IED extent significantly correlated with the positive BOLD extent (p = 0.04). In 6 patients the 64-channel EEG voltage maps better reflected the positive or negative BOLD response than the 32-channel EEG; in all others no difference was seen. Inter-spike variability was significantly lower in IED sets with than without concordant positive or negative BOLD responses (with p = 0.04). Significance Higher density EEG and fast fMRI seem to improve the value of EEG-fMRI in epilepsy. The correlation of positive BOLD and IED extent could suggest that widespread BOLD responses reflect the IED network. Inter-spike variability influences the likelihood to find IED concordant positive or negative BOLD responses, which is why single IED analysis may be promising. PMID:26496480

  1. Bedside functional brain imaging in critically-ill children using high-density EEG source modeling and multi-modal sensory stimulation.

    PubMed

    Eytan, Danny; Pang, Elizabeth W; Doesburg, Sam M; Nenadovic, Vera; Gavrilovic, Bojan; Laussen, Peter; Guerguerian, Anne-Marie

    2016-01-01

    Acute brain injury is a common cause of death and critical illness in children and young adults. Fundamental management focuses on early characterization of the extent of injury and optimizing recovery by preventing secondary damage during the days following the primary injury. Currently, bedside technology for measuring neurological function is mainly limited to using electroencephalography (EEG) for detection of seizures and encephalopathic features, and evoked potentials. We present a proof of concept study in patients with acute brain injury in the intensive care setting, featuring a bedside functional imaging set-up designed to map cortical brain activation patterns by combining high density EEG recordings, multi-modal sensory stimulation (auditory, visual, and somatosensory), and EEG source modeling. Use of source-modeling allows for examination of spatiotemporal activation patterns at the cortical region level as opposed to the traditional scalp potential maps. The application of this system in both healthy and brain-injured participants is demonstrated with modality-specific source-reconstructed cortical activation patterns. By combining stimulation obtained with different modalities, most of the cortical surface can be monitored for changes in functional activation without having to physically transport the subject to an imaging suite. The results in patients in an intensive care setting with anatomically well-defined brain lesions suggest a topographic association between their injuries and activation patterns. Moreover, we report the reproducible application of a protocol examining a higher-level cortical processing with an auditory oddball paradigm involving presentation of the patient's own name. This study reports the first successful application of a bedside functional brain mapping tool in the intensive care setting. This application has the potential to provide clinicians with an additional dimension of information to manage critically-ill children

  2. High-density FRC formation studies on FRX-L.

    SciTech Connect

    Taccetti, J. M.; Intrator, Thomas; Zhang, S.; Wurden, G. A.; Begay, D. W.; Mignardot, E. R.; Waganaar, W. J.; Siemon, R. E.; Tuszewski, M. G.; Sanchez, P. G.; Degnan, J. H.; Sommars, W.

    2002-01-01

    FRX-L (Field Reversed configuration experiment - Liner) is a magnetized-target injector for magnetized target fusion (MTF) experiments. It was designed with the goal of producing high-density n-1017 cm3 field reversed configurations (FRCs) and translating them into an aluminum liner (1-mm thick, 10-cm diameter cylindrical shell) for further compression to fusion conditions. Although operation at these high densities leads to shorter FRC lifetimes, our application requires thlat the plasma live only long enough to be translated and compressed, or on the order of 10-20 ps. Careful study of FRC formation in situ will be done in the present experiment to differentiate between effects introduced in future experiments by translation, trapping, and compression of the FRC. We present current results on the optimization of the FRC formation process on RX-L and compare the results with those from past experiments.

  3. Algorithm to find high density EEG scalp coordinates and analysis of their correspondence to structural and functional regions of the brain

    PubMed Central

    Giacometti, Paolo; Perdue, Katherine L.; Diamond, Solomon G.

    2014-01-01

    Background Interpretation and analysis of electroencephalography (EEG) measurements relies on the correspondence of electrode scalp coordinates to structural and functional regions of the brain. New Method An algorithm is introduced for automatic calculation of the International 10–20, 10-10, and 10-5 scalp coordinates of EEG electrodes on a boundary element mesh of a human head. The EEG electrode positions are then used to generate parcellation regions of the cerebral cortex based on proximity to the EEG electrodes. Results The scalp electrode calculation method presented in this study effectively and efficiently identifies EEG locations without prior digitization of coordinates. The average of electrode proximity parcellations of the cortex were tabulated with respect to structural and functional regions of the brain in a population of 20 adult subjects. Comparison with Existing Methods Parcellations based on electrode proximity and EEG sensitivity were compared. The parcellation regions based on sensitivity and proximity were found to have 44.0 ± 11.3% agreement when demarcated by the International 10–20, 32.4 ± 12.6% by the 10-10, and 24.7 ± 16.3% by the 10-5 electrode positioning system. Conclusions The EEG positioning algorithm is a fast and easy method of locating EEG scalp coordinates without the need for digitized electrode positions. The parcellation method presented summarizes the EEG scalp locations with respect to brain regions without computation of a full EEG forward model solution. The reference table of electrode proximity versus cortical regions may be used by experimenters to select electrodes that correspond to anatomical and functional regions of interest. PMID:24769168

  4. Experimental study of high density foods for the Space Operations Center

    NASA Technical Reports Server (NTRS)

    Ahmed, S. M.

    1981-01-01

    The experimental study of high density foods for the Space Operations Center is described. A sensory evaluation of the high density foods was conducted first to test the acceptability of the products. A shelf-life study of the high density foods was also conducted for three different time lengths at three different temperatures. The nutritional analysis of the high density foods is at present incomplete.

  5. Scoping study. High density polyethylene (HDPE) in salstone service

    SciTech Connect

    Phifer, Mark A.

    2005-02-18

    An evaluation of the use of high density polyethylene (HDPE) geomembranes in Saltstone service has been conducted due to the potential benefits that could be derived from such usage. HDPE is one of the simplest hydrocarbon polymers and one of the most common polymers utilized in the production of geomembranes, which means that its costs are relatively low. Additionally, HDPE geomembranes have an extremely low permeability and an extremely low water vapor diffusional flux, which means that it is a good barrier to contaminant transport. The primary consideration in association with HDPE geomembranes in Saltstone service is the potential impact of Saltstone on the degradation of the HDPE geomembranes. Therefore, the evaluation documented herein has primarily focused upon the potential HDPE degradation in Saltstone service.

  6. High Density Electroencephalography in Sleep Research: Potential, Problems, Future Perspective

    PubMed Central

    Lustenberger, Caroline; Huber, Reto

    2012-01-01

    High density EEG (hdEEG) during sleep combines the superior temporal resolution of EEG recordings with high spatial resolution. Thus, this method allows a topographical analysis of sleep EEG activity and thereby fosters the shift from a global view of sleep to a local one. HdEEG allowed to investigate sleep rhythms in terms of their characteristic behavior (e.g., the traveling of slow waves) and in terms of their relationship to cortical functioning (e.g., consciousness and cognitive abilities). Moreover, recent studies successfully demonstrated that hdEEG can be used to study brain functioning in neurological and neuro-developmental disorders, and to evaluate therapeutic approaches. This review highlights the potential, the problems, and future perspective of hdEEG in sleep research. PMID:22593753

  7. The Mozart Effect: A quantitative EEG study.

    PubMed

    Verrusio, Walter; Ettorre, Evaristo; Vicenzini, Edoardo; Vanacore, Nicola; Cacciafesta, Mauro; Mecarelli, Oriano

    2015-09-01

    The aim of this study is to investigate the influence of Mozart's music on brain activity through spectral analysis of the EEG in young healthy adults (Adults), in healthy elderly (Elderly) and in elderly with Mild Cognitive Impairment (MCI). EEG recording was performed at basal rest conditions and after listening to Mozart's K448 or "Fur Elise" Beethoven's sonatas. After listening to Mozart, an increase of alpha band and median frequency index of background alpha rhythm activity (a pattern of brain wave activity linked to memory, cognition and open mind to problem solving) was observed both in Adults and in Elderly. No changes were observed in MCI. After listening to Beethoven, no changes in EEG activity were detected. This results may be representative of the fact that said Mozart's music is able to "activate" neuronal cortical circuits related to attentive and cognitive functions. PMID:26036835

  8. EEG

    MedlinePlus

    ... is also used to: Evaluate problems with sleep ( sleep disorders ) Monitor the brain during brain surgery An EEG ... in some cases) Seizure disorder (such as epilepsy) Sleep disorder (such as narcolepsy ) Swelling of the brain (edema)

  9. EEG

    MedlinePlus

    ... is also used to: Evaluate problems with sleep ( sleep disorders ) Monitor the brain during brain surgery An EEG ... in some cases) Seizure disorder (such as epilepsy) Sleep disorder (such as narcolepsy ) Swelling of the brain (edema) ...

  10. Concordance between distributed EEG source localization and simultaneous EEG-fMRI studies of epileptic spikes.

    PubMed

    Grova, C; Daunizeau, J; Kobayashi, E; Bagshaw, A P; Lina, J-M; Dubeau, F; Gotman, J

    2008-01-15

    In order to analyze where epileptic spikes are generated, we assessed the level of concordance between EEG source localization using distributed source models and simultaneous EEG-fMRI which measures the hemodynamic correlates of EEG activity. Data to be compared were first estimated on the same cortical surface and two comparison strategies were used: (1) MEM-concordance: a comparison between EEG sources localized with the Maximum Entropy on the Mean (MEM) method and fMRI clusters showing a significant hemodynamic response. Minimal geodesic distances between local extrema and overlap measurements between spatial extents of EEG sources and fMRI clusters were used to quantify MEM-concordance. (2) fMRI-relevance: estimation of the fMRI-relevance index alpha quantifying if sources located in an fMRI cluster could explain some scalp EEG data, when this fMRI cluster was used to constrain the EEG inverse problem. Combining MEM-concordance and fMRI-relevance (alpha) indexes, each fMRI cluster showing a significant hemodynamic response (p<0.05 corrected) was classified according to its concordance with EEG data. Nine patients with focal epilepsy who underwent EEG-fMRI examination followed by EEG recording outside the scanner were selected for this study. Among the 62 fMRI clusters analyzed (7 patients), 15 (24%) found in 6 patients were highly concordant with EEG according to both MEM-concordance and fMRI-relevance. EEG concordance was found for 5 clusters (8%) according to alpha only, suggesting sources missed by the MEM. No concordance with EEG was found for 30 clusters (48%) and for 10 clusters (16%) alpha was significantly negative, suggesting EEG-fMRI discordance. We proposed two complementary strategies to assess and classify EEG-fMRI concordance. We showed that for most patients, part of the hemodynamic response to spikes was highly concordant with EEG sources, whereas other fMRI clusters in response to the same spikes were found distant or discordant with EEG

  11. [Quantitative pharmaco-EEG study of nootropics].

    PubMed

    Kinoshita, T

    1990-01-01

    A treatment of geriatric disorders is one of the current major problems socially as well as medically. Thus nootropics have become one of the biggest topics in drug developments. Unfortunately, it is still very difficult to assess brain dysfunctions and therapeutic efficacies of these drugs objectively. Giurgea has proposed a new drug category, "nootropic", as those substances which possess an anti-dementia action, yet the general concept remains obscure. The present author expand the concept that those substances which improve the vigilance level to be included. The author has been engaged with computer assisted pharmaco-electroencephalography and research of nootropics for last several years. Based on the own experiences, the author presented the CNS effects of five different substances such as meclofenoxate, amantadine, piracetam, teniloxazine and WEB-1881, which were regarded as nootropics from various reasons. Single dose of each substances was administered in healthy young volunteers, and teniloxazine was given to geriatric patients. EEG changes induced by these substances in normal subjects were an increase of alpha activity, particularly in higher frequency range above 9.5 Hz, and an associated decrease of slow activity and of fast activity, which are different from those of the other psychotropic drugs. Multivariate analysis of variance (MANOVA) of EEG parameters has confirmed that the response of WEB-1881 was most manifest in frontal area. This suggests that WEB-1881 might activate linguistic learning and memory process. In the patient study, the induced EEG changes were an increase of alpha activity associated with a decrease of slow activity, while fast activity did not show any changes. However, the EEG changes in the patient study were quite similar to those of normal volunteer study for the most part. It is relevant to infer the efficacy of nootropics in geriatric patients from acute normal volunteer study. In physiological aging process, alpha

  12. Brain dynamics of upstream perceptual processes leading to visual object recognition: a high density ERP topographic mapping study.

    PubMed

    Schettino, Antonio; Loeys, Tom; Delplanque, Sylvain; Pourtois, Gilles

    2011-04-01

    Recent studies suggest that visual object recognition is a proactive process through which perceptual evidence accumulates over time before a decision can be made about the object. However, the exact electrophysiological correlates and time-course of this complex process remain unclear. In addition, the potential influence of emotion on this process has not been investigated yet. We recorded high density EEG in healthy adult participants performing a novel perceptual recognition task. For each trial, an initial blurred visual scene was first shown, before the actual content of the stimulus was gradually revealed by progressively adding diagnostic high spatial frequency information. Participants were asked to stop this stimulus sequence as soon as they could correctly perform an animacy judgment task. Behavioral results showed that participants reliably gathered perceptual evidence before recognition. Furthermore, prolonged exploration times were observed for pleasant, relative to either neutral or unpleasant scenes. ERP results showed distinct effects starting at 280 ms post-stimulus onset in distant brain regions during stimulus processing, mainly characterized by: (i) a monotonic accumulation of evidence, involving regions of the posterior cingulate cortex/parahippocampal gyrus, and (ii) true categorical recognition effects in medial frontal regions, including the dorsal anterior cingulate cortex. These findings provide evidence for the early involvement, following stimulus onset, of non-overlapping brain networks during proactive processes eventually leading to visual object recognition. PMID:21237274

  13. Spectral modulation of frontal EEG during motor skill acquisition: a mobile EEG study.

    PubMed

    Wong, Savio W H; Chan, Rosa H M; Mak, Joseph N

    2014-01-01

    This study investigates the modulation of frontal EEG dynamics with respect to progress in motor skill acquisition using a wireless EEG system with a single dry sensor. Participants were required to complete repeated trials of a computerized visual-motor task similar to mirror drawing while the EEG was collected. In each trial, task performance of the participants was summarized with a familiarity index which took into account the performance accuracy, completion rate and time. Our findings demonstrated that certain EEG power spectra decreased with an increase in motor task familiarity. In particular, frontal EEG activities in delta and theta bands of the whole trial and in gamma band in the middle of the trial are having a significant negative relationship with the overall familiarity level of the task. The findings suggest that frontal EEG spectra are significantly modulated during motor skill acquisition. Results of this study shed light on the possibility of simultaneous monitoring of brain activity during an unconstrained natural task with a single dry sensor mobile EEG in an everyday environment. PMID:24095979

  14. Cognitive MMN and P300 in mild cognitive impairment and Alzheimer's disease: A high density EEG-3D vector field tomography approach.

    PubMed

    Papadaniil, Chrysa D; Kosmidou, Vasiliki E; Tsolaki, Anthoula; Tsolaki, Magda; Kompatsiaris, Ioannis Yiannis; Hadjileontiadis, Leontios J

    2016-10-01

    Precise preclinical detection of dementia for effective treatment and stage monitoring is of great importance. Miscellaneous types of biomarkers, e.g., biochemical, genetic, neuroimaging, and physiological, have been proposed to diagnose Alzheimer's disease (AD), the usual suspect behind manifested cognitive decline, and mild cognitive impairment (MCI), a neuropathology prior to AD that does not affect cognitive functions. Event related potential (ERP) methods constitute a non-invasive, inexpensive means of analysis and have been proposed as sensitive biomarkers of cognitive impairment; besides, various ERP components are strongly linked with working memory, attention, sensory processing and motor responses. In this study, an auditory oddball task is employed, to acquire high density electroencephalograhy recordings from healthy elderly controls, MCI and AD patients. The mismatch negativity (MMN) and P300 ERP components are then extracted and their relationship with neurodegeneration is examined. Then, the neural activation at these components is reconstructed using the 3D vector field tomography (3D-VFT) inverse solution. The results reveal a decline of both ERPs amplitude, and a statistically significant prolongation of their latency as cognitive impairment advances. For the MMN, higher brain activation is usually localized in the inferior frontal and superior temporal gyri in the controls. However, in AD, parietal sites exhibit strong activity. Stronger P300 generators are mostly found in the frontal lobe for the controls, but in AD they often shift to the temporal lobe. Reduction in inferior frontal source strength and the switch of the maximum intensity area to parietal and superior temporal sites suggest that these areas, especially the former, are of particular significance when neurodegenerative disorders are investigated. The modulation of MMN and P300 can serve to produce biomarkers of dementia and its progression, and brain imaging can further contribute

  15. Electroencephalograph (EEG) study of brain bistable illusion

    NASA Astrophysics Data System (ADS)

    Meng, Qinglei; Hong, Elliot; Choa, Fow-Sen

    2015-05-01

    Bistable illusion reflects two different kinds of interpretations for a single image, which is currently known as a competition between two groups of antagonism of neurons. Recent research indicates that these two groups of antagonism of neurons express different comprehension, while one group is emitting a pulse, the other group will be restrained. On the other hand, when this inhibition mechanism becomes weaker, the other antagonism neurons group will take over the interpretation. Since attention plays key roles controlling cognition, is highly interesting to find the location and frequency band used by brain (with either top-down or bottom-up control) to reach deterministic visual perceptions. In our study, we used a 16-channel EEG system to record brain signals from subjects while conducting bistable illusion testing. An extra channel of the EEG system was used for temporal marking. The moment when subjects reach a perception switch, they click the channel and mark the time. The recorded data were presented in form of brain electrical activity map (BEAM) with different frequency bands for analysis. It was found that the visual cortex in the on the right side between parietal and occipital areas was controlling the switching of perception. In the periods with stable perception, we can constantly observe all the delta, theta, alpha and beta waves. While the period perception is switching, almost all theta, alpha, and beta waves were suppressed by delta waves. This result suggests that delta wave may control the processing of perception switching.

  16. Fusiform gyrus responses to neutral and emotional faces in children with autism spectrum disorders: a high density ERP study.

    PubMed

    Apicella, Fabio; Sicca, Federico; Federico, Rosario R; Campatelli, Giulia; Muratori, Filippo

    2013-08-15

    Face processing is a neural mechanism that allows understanding social information and cues conveyed by faces, whose dysfunction has been postulated to underlie some of the behavioral impairments characterizing autism spectrum disorders (ASD). A special region of the cortex, the fusiform gyrus (FG), is believed to be the specific area for processing face features and emotions. However, behavioral, fMRI and ERP studies addressed to investigate the role of FG dysfunction in ASD have led to conflicting results. Using a high-density EEG system, we recorded the face-sensitive ERP to neutral and emotional (happiness and fearful) faces, as a measure of early activity of the FG, in children with high functioning ASD. By controlling a number of experimental and clinical variables that could have biased previous research--such as gaze direction, attention to tasks, stimulus appearance and clinical profiles--we aimed to assess the effective role of the FG in the face emotion processing deficit hypothesized in ASD. No significant differences in early face-sensitive ERP components were found between ASD and neurotypical children. However, a systematic latency delay and amplitude reduction of all early potentials were observed in the ASD group, regardless of the stimulus, although more evident for emotions. Therefore, we can assume a diffuse dysfunction of neural mechanisms and networks in driving and integrating social information conveyed by faces, in particular when emotions are involved, rather than a specific impairment of the FG-related face processing circuit. Nevertheless, there is need of further investigation. PMID:23124137

  17. Using EEG to Study Cognitive Development: Issues and Practices

    ERIC Educational Resources Information Center

    Bell, Martha Ann; Cuevas, Kimberly

    2012-01-01

    Developmental research is enhanced by use of multiple methodologies for examining psychological processes. The electroencephalogram (EEG) is an efficient and relatively inexpensive method for the study of developmental changes in brain-behavior relations. In this review, we highlight some of the challenges for using EEG in cognitive development…

  18. Study of short haul high-density V/STOL transportation systems, volume 1

    NASA Technical Reports Server (NTRS)

    Solomon, H. L.

    1972-01-01

    The relative advantages of STOL aircraft concepts were examined by simulating the operations of a short haul high-density intercity STOL system set in two arenas, the California corridor and the Chicago-Detroit-Cleveland triangle, during the 1980 time period. The study was constrained to the use of three aircraft concepts designated as the deflected slipstream turboprop, externally blown flap, and augmentor wing turbofan configurations. The projected demographic, economic, travel demand, and travel characteristics of the representative arenas were identified. The STOL airline operating scenarios were then formulated and through the use of the aerospace modal split simulation program, the traveler modal choices involving alternative STOL concepts were estimated in the context of the total transportation environment for 1980. System combinations that presented the best potential for economic return and traveler acceptance were then identified for each STOL concept.

  19. Using EEG to Study Cognitive Development: Issues and Practices

    PubMed Central

    Bell, Martha Ann; Cuevas, Kimberly

    2012-01-01

    Developmental research is enhanced by use of multiple methodologies for examining psychological processes. The electroencephalogram (EEG) is an efficient and relatively inexpensive method for the study of developmental changes in brain-behavior relations. In this review, we highlight some of the challenges for using EEG in cognitive development research. We also list best practices for incorporating this methodology into the study of early cognitive processes. Consideration of these issues is critical for making an informed decision regarding implementation of EEG methodology. PMID:23144592

  20. Spatially revolved high density electroencephalography

    NASA Astrophysics Data System (ADS)

    Wu, Jerry; Szu, Harold; Chen, Yuechen; Guo, Ran; Gu, Xixi

    2015-05-01

    Electroencephalography (EEG) measures voltage fluctuations resulting from ionic current flows within the neurons of the brain. In practice, EEG refers to the recording of the brain's spontaneous electrical activity over a short period of time, several tens of minutes, as recorded from multiple electrodes placed on the scalp. In order to improve the resolution and the distortion cause by the hair and scalp, large array magnetoencephalography (MEG) systems are introduced. The major challenge is to systematically compare the accuracy of epileptic source localization with high electrode density to that obtained with sparser electrode setups. In this report, we demonstrate a two dimension (2D) image Fast Fourier Transform (FFT) analysis along with utilization of Peano (space-filling) curve to further reduce the hardware requirement for high density EEG and improve the accuracy and performance of the high density EEG analysis. The brain-computer interfaces (BCIs) in this work is enhanced by A field-programmable gate array (FPGA) board with optimized two dimension (2D) image Fast Fourier Transform (FFT) analysis.

  1. Revising the high-density lipoprotein targeting strategies - insights from human and preclinical studies.

    PubMed

    Nesan, Dinushan; Ng, Dominic S

    2014-12-01

    In recent years, the high-density lipoprotein (HDL) hypothesis has been challenged. Several completed randomized clinical trials continue to fall short in demonstrating HDL, or at least HDL-cholesterol (HDL-C) levels, as being a consistent target in the prevention of cardiovascular diseases. However, population studies and findings in lipid modifying trials continue to strongly support HDL-C as a superb risk predictor. It is increasingly evident that the complexity of HDL metabolism confounds the use of HDL-C concentration as a unified target. However, important insights continue to emerge from the post hoc analyses of recently completed (i) fibrate-based FIELD and ACCORD trials, including the unexpected beneficial effect of fibrates in microvascular diseases, (ii) the niacin-based AIM-HIGH and HPS2-THRIVE studies, (iii) recombinant HDL-based as well as (iv) the completed CETP inhibitor-based trials. These together with on-going mechanistic studies on novel pathways, which include the unique roles of microRNAs, post-translational remodeling of HDL and novel pathways related to HDL modulators will provide valuable insights to guide how best to refocus and redesign the conceptual framework for selecting HDL-based targets. PMID:25115413

  2. Inhibitory control and visuo-spatial reversibility in Piaget's seminal number conservation task: a high-density ERP study.

    PubMed

    Borst, Grégoire; Simon, Grégory; Vidal, Julie; Houdé, Olivier

    2013-01-01

    The present high-density event-related potential (ERP) study on 13 adults aimed to determine whether number conservation relies on the ability to inhibit the overlearned length-equals-number strategy and then imagine the shortening of the row that was lengthened. Participants performed the number-conservation task and, after the EEG session, the mental imagery task. In the number-conservation task, first two rows with the same number of tokens and the same length were presented on a computer screen (COV condition) and then, the tokens in one of the two rows were spread apart (INT condition). Participants were instructed to determine whether the two rows had an identical number of tokens. In the mental imagery task, two rows with different lengths but the same number of tokens were presented and participants were instructed to imagine the tokens in the longer row aligning with the tokens in the shorter row. In the number-conservation task, we found that the amplitudes of the centro-parietal N2 and fronto-central P3 were higher in the INT than in the COV conditions. In addition, the differences in response times between the two conditions were correlated with the differences in the amplitudes of the fronto-central P3. In light of previous results reported on the number-conservation task in adults, the present results suggest that inhibition might be necessary to succeed the number-conservation task in adults even when the transformation of the length of one of the row is displayed. Finally, we also reported correlations between the speed at which participants could imagine the shortening of one of the row in the mental imagery task, the speed at which participants could determine that the two rows had the same number of tokens after the tokens in one of the row were spread apart and the latency of the late positive parietal component in the number-conservation task. Therefore, performing the number-conservation task might involve mental transformation processes in

  3. Two Distinct Synchronization Processes in the Transition to Sleep: A High-Density Electroencephalographic Study

    PubMed Central

    Siclari, Francesca; Bernardi, Giulio; Riedner, Brady A.; LaRocque, Joshua J.; Benca, Ruth M.; Tononi, Giulio

    2014-01-01

    affected by experimental manipulations and sleep disorders. Citation: Siclari F, Bernardi G, Riedner BA, LaRocque JJ, Benca RM, Tononi G. Two distinct synchronization processes in the transition to sleep: a high-density electroencephalographic study. SLEEP 2014;37(10):1621-1637. PMID:25197810

  4. The Default Mode Network and EEG Regional Spectral Power: A Simultaneous fMRI-EEG Study

    PubMed Central

    Werner, Cornelius J.; Hitz, Konrad; Boers, Frank; Kawohl, Wolfram; Shah, N. Jon

    2014-01-01

    Electroencephalography (EEG) frequencies have been linked to specific functions as an “electrophysiological signature” of a function. A combination of oscillatory rhythms has also been described for specific functions, with or without predominance of one specific frequency-band. In a simultaneous fMRI-EEG study at 3 T we studied the relationship between the default mode network (DMN) and the power of EEG frequency bands. As a methodological approach, we applied Multivariate Exploratory Linear Optimized Decomposition into Independent Components (MELODIC) and dual regression analysis for fMRI resting state data. EEG power for the alpha, beta, delta and theta-bands were extracted from the structures forming the DMN in a region-of-interest approach by applying Low Resolution Electromagnetic Tomography (LORETA). A strong link between the spontaneous BOLD response of the left parahippocampal gyrus and the delta-band extracted from the anterior cingulate cortex was found. A positive correlation between the beta-1 frequency power extracted from the posterior cingulate cortex (PCC) and the spontaneous BOLD response of the right supplementary motor cortex was also established. The beta-2 frequency power extracted from the PCC and the precuneus showed a positive correlation with the BOLD response of the right frontal cortex. Our results support the notion of beta-band activity governing the “status quo” in cognitive and motor setup. The highly significant correlation found between the delta power within the DMN and the parahippocampal gyrus is in line with the association of delta frequencies with memory processes. We assumed “ongoing activity” during “resting state” in bringing events from the past to the mind, in which the parahippocampal gyrus is a relevant structure. Our data demonstrate that spontaneous BOLD fluctuations within the DMN are associated with different EEG-bands and strengthen the conclusion that this network is characterized by a specific

  5. Irish study of high-density Schizophrenia families: Field methods and power to detect linkage

    SciTech Connect

    Kendler, K.S.; Straub, R.E.; MacLean, C.J.

    1996-04-09

    Large samples of multiplex pedigrees will probably be needed to detect susceptibility loci for schizophrenia by linkage analysis. Standardized ascertainment of such pedigrees from culturally and ethnically homogeneous populations may improve the probability of detection and replication of linkage. The Irish Study of High-Density Schizophrenia Families (ISHDSF) was formed from standardized ascertainment of multiplex schizophrenia families in 39 psychiatric facilities covering over 90% of the population in Ireland and Northern Ireland. We here describe a phenotypic sample and a subset thereof, the linkage sample. Individuals were included in the phenotypic sample if adequate diagnostic information, based on personal interview and/or hospital record, was available. Only individuals with available DNA were included in the linkage sample. Inclusion of a pedigree into the phenotypic sample required at least two first, second, or third degree relatives with non-affective psychosis (NAP), one of whom had schizophrenia (S) or poor-outcome schizoaffective disorder (PO-SAD). Entry into the linkage sample required DNA samples on at least two individuals with NAP, of whom at least one had S or PO-SAD. Affection was defined by narrow, intermediate, and broad criteria. 75 refs., 6 tabs.

  6. Methods for Estimating Environmental Effects and Constraints on NexGen: High Density Case Study

    NASA Technical Reports Server (NTRS)

    Augustine, S.; Ermatinger, C.; Graham, M.; Thompson, T.

    2010-01-01

    This document provides a summary of the current methods developed by Metron Aviation for the estimate of environmental effects and constraints on the Next Generation Air Transportation System (NextGen). This body of work incorporates many of the key elements necessary to achieve such an estimate. Each section contains the background and motivation for the technical elements of the work, a description of the methods used, and possible next steps. The current methods described in this document were selected in an attempt to provide a good balance between accuracy and fairly rapid turn around times to best advance Joint Planning and Development Office (JPDO) System Modeling and Analysis Division (SMAD) objectives while also supporting the needs of the JPDO Environmental Working Group (EWG). In particular this document describes methods applied to support the High Density (HD) Case Study performed during the spring of 2008. A reference day (in 2006) is modeled to describe current system capabilities while the future demand is applied to multiple alternatives to analyze system performance. The major variables in the alternatives are operational/procedural capabilities for airport, terminal, and en route airspace along with projected improvements to airframe, engine and navigational equipment.

  7. High-Density Lipoprotein Function Measurement in Human Studies: Focus on Cholesterol Efflux Capacity

    PubMed Central

    Rohatgi, Anand

    2015-01-01

    A low plasma level of high-density lipoprotein (HDL) cholesterol (HDL-C) is a major risk factor for the development of atherosclerotic cardiovascular disease (ASCVD). However, several observations have highlighted the shortcomings of using cholesterol content as the sole reflection of HDL metabolism. In particular, several large randomized controlled trials of extended release niacin and cholesteryl-ester transfer protein (CETP) inhibitors on background statin therapy have failed to show improvement in ASCVD outcomes despite significant increases in HDL-C. Reverse cholesterol transport (RCT) is the principal HDL function that impacts macrophage foam cell formation and other functions such as endothelial activation of endothelial nitric oxide synthase, monocyte adhesion, and platelet aggregation. Cholesterol efflux from macrophages to plasma/serum reflects the first critical step of RCT and is considered a key anti-atherosclerotic function of HDL. Whether this function is operative in humans remains to be seen, but recent studies assessing cholesterol efflux in humans suggest that the cholesterol efflux capacity (CEC) of human plasma or serum is a potent marker of ASCVD risk. This review describes the methodology of measuring CEC ex vivo from human samples and the findings to date linking CEC to human disease. Studies to date confirm that CEC can be reliably measured using stored human blood samples as cholesterol acceptors and suggest that CEC may be a promising new biomarker for atherosclerotic and metabolic diseases. Further studies are needed to standardize measurements and clarify the role CEC may play in predicting risk of developing disease and response to therapies. PMID:25968932

  8. High-Density Lipoprotein Function Measurement in Human Studies: Focus on Cholesterol Efflux Capacity.

    PubMed

    Rohatgi, Anand

    2015-01-01

    A low plasma level of high-density lipoprotein (HDL) cholesterol (HDL-C) is a major risk factor for the development of atherosclerotic cardiovascular disease (ASCVD). However, several observations have highlighted the shortcomings of using cholesterol content as the sole reflection of HDL metabolism. In particular, several large randomized controlled trials of extended release niacin and cholesteryl-ester transfer protein (CETP) inhibitors on background statin therapy have failed to show improvement in ASCVD outcomes despite significant increases in HDL-C. Reverse cholesterol transport (RCT) is the principal HDL function that impacts macrophage foam cell formation and other functions such as endothelial activation of endothelial nitric oxide synthase, monocyte adhesion, and platelet aggregation. Cholesterol efflux from macrophages to plasma/serum reflects the first critical step of RCT and is considered a key anti-atherosclerotic function of HDL. Whether this function is operative in humans remains to be seen, but recent studies assessing cholesterol efflux in humans suggest that the cholesterol efflux capacity (CEC) of human plasma or serum is a potent marker of ASCVD risk. This review describes the methodology of measuring CEC ex vivo from human samples and the findings to date linking CEC to human disease. Studies to date confirm that CEC can be reliably measured using stored human blood samples as cholesterol acceptors and suggest that CEC may be a promising new biomarker for atherosclerotic and metabolic diseases. Further studies are needed to standardize measurements and clarify the role CEC may play in predicting risk of developing disease and response to therapies. PMID:25968932

  9. On the "dependence" of "independent" group EEG sources; an EEG study on two large databases.

    PubMed

    Congedo, Marco; John, Roy E; De Ridder, Dirk; Prichep, Leslie; Isenhart, Robert

    2010-06-01

    The aim of this work is to study the coherence profile (dependence) of robust eyes-closed resting EEG sources isolated by group blind source separation (gBSS). We employ a test-retest strategy using two large sample normative databases (N = 57 and 84). Using a BSS method in the complex Fourier domain, we show that we can rigourously study the out-of-phase dependence of the extracted components, albeit they are extracted so as to be in-phase independent (by BSS definition). Our focus on lagged communication between components effectively yields dependence measures unbiased by volume conduction effects, which is a major concern about the validity of any dependence measures issued by EEG measurements. We are able to show the organization of the extracted components in two networks. Within each network components oscillate coherently with multiple-frequency dynamics, whereas between networks they exchange information at non-random multiple time-lag rates. PMID:19802727

  10. Elevated High-Density Lipoprotein Cholesterol and Age-Related Macular Degeneration: The Alienor Study

    PubMed Central

    Cougnard-Grégoire, Audrey; Delyfer, Marie-Noëlle; Korobelnik, Jean-François; Rougier, Marie-Bénédicte; Le Goff, Mélanie; Dartigues, Jean-François; Barberger-Gateau, Pascale; Delcourt, Cécile

    2014-01-01

    Background Lipid metabolism and particularly high-density lipoprotein (HDL) may be involved in the pathogenic mechanism of age-related macular degeneration (AMD). However, conflicting results have been reported in the associations of AMD with plasma HDL and other lipids, which may be confounded by the recently reported associations of AMD with HDL-related genes. We explored the association of AMD with plasma lipid levels and lipid-lowering medication use, taking into account most of HDL-related genes associated with AMD. Methods The Alienor study is a population-based study on age-related eye diseases performed in 963 elderly residents of Bordeaux (France). AMD was graded from non mydriatic color retinal photographs in three exclusive stages: no AMD (n = 430 subjects, 938 eyes); large soft distinct drusen and/or large soft indistinct drusen and/or reticular drusen and/or pigmentary abnormalities (early AMD, n = 176, 247); late AMD (n = 40, 61). Associations of AMD with plasma lipids (HDL, total cholesterol (TC), Low-density lipoprotein (LDL), and triglycerides (TG)) were estimated using Generalized Estimating Equation logistic regressions. Statistical analyses included 646 subjects with complete data. Results After multivariate adjustment for age, sex, educational level, smoking, BMI, lipid-lowering medication use, cardiovascular disease and diabetes, and for all relevant genetic polymorphisms (ApoE2, ApoE4, CFH Y402H, ARMS2 A69S, LIPC rs10468017, LIPC rs493258, LPL rs12678919, ABCA1 rs1883025 and CETP rs3764261), higher HDL was significantly associated with an increased risk of early (OR = 2.45, 95%CI: 1.54–3.90; P = 0.0002) and any AMD (OR = 2.29, 95%CI: 1.46–3.59; P = 0.0003). Association with late AMD was far from statistical significance (OR = 1.58, 95%CI: 0.48–5.17; p = 0.45). No associations were found for any stage of AMD with TC, LDL and TG levels, statin or fibrate drug use. Conclusions This study suggests that

  11. Neonatal hemodynamic response to visual cortex activity: high-density near-infrared spectroscopy study

    NASA Astrophysics Data System (ADS)

    Liao, Steve M.; Gregg, Nick M.; White, Brian R.; Zeff, Benjamin W.; Bjerkaas, Katelin A.; Inder, Terrie E.; Culver, Joseph P.

    2010-03-01

    The neurodevelopmental outcome of neonatal intensive care unit (NICU) infants is a major clinical concern with many infants displaying neurobehavioral deficits in childhood. Functional neuroimaging may provide early recognition of neural deficits in high-risk infants. Near-infrared spectroscopy (NIRS) has the advantage of providing functional neuroimaging in infants at the bedside. However, limitations in traditional NIRS have included contamination from superficial vascular dynamics in the scalp. Furthermore, controversy exists over the nature of normal vascular, responses in infants. To address these issues, we extend the use of novel high-density NIRS arrays with multiple source-detector distances and a superficial signal regression technique to infants. Evaluations of healthy term-born infants within the first three days of life are performed without sedation using a visual stimulus. We find that the regression technique significantly improves brain activation signal quality. Furthermore, in six out of eight infants, both oxy- and total hemoglobin increases while deoxyhemoglobin decreases, suggesting that, at term, the neurovascular coupling in the visual cortex is similar to that found in healthy adults. These results demonstrate the feasibility of using high-density NIRS arrays in infants to improve signal quality through superficial signal regression, and provide a foundation for further development of high-density NIRS as a clinical tool.

  12. High-density lipoprotein subfractions and carotid plaque: The Northern Manhattan Study

    PubMed Central

    Tiozzo, Eduard; Gardener, Hannah; Hudson, Barry I.; Dong, Chuanhui; Della-Morte, David; Crisby, Milita; Goldberg, Ronald B.; Elkind, Mitchell S.V.; Cheung, Ying Kuen; Wright, Clinton B.; Sacco, Ralph L.; Rundek, Tatjana

    2016-01-01

    Objective The objective of this cross-sectional analysis was to investigate the relation between two major high-density lipoprotein cholesterol (HDL-C) subfractions (HDL2-C and HDL3-C) and carotid plaque in a population based cohort. Methods We evaluated 988 stroke-free participants (mean age 66±8 years; 40% men; 66% Hispanic and 34% Non-Hispanic) with available data on HDL subfractions using precipitation method and carotid plaque area and thickness assessed by a high-resolution 2D ultrasound. The associations between HDL-C subfractions and plaque measurements were analyzed by quantile regression. Results Plaque was present in 56% of the study population. Among those with plaque, the mean±SD plaque area was 19.40±20.46 mm2 and thickness 2.30±4.45 mm. The mean±SD total HDL-C was 46±14 mg/dl, HDL2-C 14±8 mg/dl, and HDL3-C 32±8 mg/dl. After adjusting for demographics and vascular risk factors, there was an inverse association between HDL3-C and plaque area (per mg/dl: beta= −0.26 at the 75th percentile, p=0.001 and beta= −0.32 at the 90th percentile, p=0.02). A positive association was observed between HDL2-C and plaque thickness (per mg/dl; beta= 0.02 at the 90% percentile, p=0.003). HDL-C was associated with plaque area (per mg/dl: beta= −0.18 at the 90th percentile, p=0.01), but only among Hispanics. Conclusion In our cohort we observed an inverse association between HDL3-C and plaque area and a positive association between HDL2-C and plaque thickness. HDL-C subfractions may have different contributions to the risk of vascular disease. More studies are needed to fully elucidate HDL-C anti-atherosclerotic functions in order to improve HDL-based treatments in prevention of vascular disease and stroke. PMID:25240111

  13. Genome-wide association studies identified novel loci for non-high-density lipoprotein cholesterol and its postprandial lipemic response

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Non-high-density lipoprotein cholesterol (NHDL) is an independent and superior predictor of CVD risk as compared to low-density lipoprotein alone. It represents a spectrum of atherogenic lipid fractions with possibly a distinct genomic signature. We performed genome-wide association studies (GWAS) t...

  14. Study on Electrodeless Electric Propulsion in High-Density Helicon Plasma with Permanent Magnets

    NASA Astrophysics Data System (ADS)

    Ishii, Takamichi; Ishii, Hiroki; Otsuka, Shuhei; Teshigahara, Naoto; Fujitsuka, Hiroaki; Waseda, Shimpei; Kuwahara, Daisuke; Shinohara, Shunjiro

    To establish electrodeless electric propulsion, we have been developing a new electrodeless plasma acceleration thruster using high-density helicon plasmas and permanent magnets, and characterizing them by, e.g., electrostatic and magnetic probes, a high-resolution spectrometer (measuring argon line intensity and line intensity ratio to derive plasma parameters), and a high-speed camera measurements (deriving radial distribution of electron density), in addition to a laser induced fluorescence (LIF) method to measure plasma flow velocity, where they are under development. Here, we will present preliminary acceleration methods using such as Rotating Magnetic Field coil and m = 0 coil along with results of various measurements mentioned above to estimate the plasma performance.

  15. Executive Dysfunction and Reward Dysregulation: A High-Density Electrical Mapping Study in Cocaine Abusers

    PubMed Central

    Morie, Kristen P.; De Sanctis, Pierfilippo; Garavan, Hugh; Foxe, John J.

    2015-01-01

    Executive function deficits and reward dysregulation, which mainly manifests as anhedonia, are well documented in drug abusers. We investigated specific aspects of executive function (inhibitory control and cognitive control), as well as anhedonia, in a cohort of current cocaine abusers in order to ascertain to what extent these factors are associated with more severe drug dependence. Participants filled out questionnaires relating to anhedonia and their addiction history. Participants also performed a response inhibition task while high-density event-related potentials (ERPs) were recorded. Electrophysiological responses to successful inhibitions (N2/P3 components) and to commission errors (ERN/Pe components) were compared between 23 current users of cocaine and 27 non-using controls. A regression model was performed to determine the association of our measures of reward dysregulation and executive function with addiction severity. As expected, cocaine users performed more poorly than controls on the inhibitory control task and showed significant electrophysiological differences. They were also generally more anhedonic than controls. Higher levels of anhedonia were associated with more severe substance use, whereas the level of executive dysfunction was not associated with more severe substance use. However, N2 amplitude was associated with duration of drug use. Further, inhibitory control and anhedonia were correlated, but only in controls. These data suggest that while executive dysfunction characterizes drug abuse, it is anhedonia, independent of executive dysfunction, that is most strongly associated with more severe use. PMID:24911989

  16. Automatic temporal expectancy: a high-density event-related potential study.

    PubMed

    Mento, Giovanni; Tarantino, Vincenza; Sarlo, Michela; Bisiacchi, Patrizia Silvia

    2013-01-01

    How we compute time is not fully understood. Questions include whether an automatic brain mechanism is engaged in temporally regular environmental structure in order to anticipate events, and whether this can be dissociated from task-related processes, including response preparation, selection and execution. To investigate these issues, a passive temporal oddball task requiring neither time-based motor response nor explicit decision was specifically designed and delivered to participants during high-density, event-related potentials recording. Participants were presented with pairs of audiovisual stimuli (S1 and S2) interspersed with an Inter-Stimulus Interval (ISI) that was manipulated according to an oddball probabilistic distribution. In the standard condition (70% of trials), the ISI lasted 1,500 ms, while in the two alternative, deviant conditions (15% each), it lasted 2,500 and 3,000 ms. The passive over-exposition to the standard ISI drove participants to automatically and progressively create an implicit temporal expectation of S2 onset, reflected by the time course of the Contingent Negative Variation response, which always peaked in correspondence to the point of S2 maximum expectation and afterwards inverted in polarity towards the baseline. Brain source analysis of S1- and ISI-related ERP activity revealed activation of sensorial cortical areas and the supplementary motor area (SMA), respectively. In particular, since the SMA time course synchronised with standard ISI, we suggest that this area is the major cortical generator of the temporal CNV reflecting an automatic, action-independent mechanism underlying temporal expectancy. PMID:23650537

  17. Chain dynamics of selectively deuterated fatty acids in high-density lipoproteins studied by deuterium NMR

    SciTech Connect

    Parmar, Y.I.; Gorrissen, H.; Wassall, S.R.; Cushley, R.J.

    1985-01-01

    Deuterium order parameters have been determined for approximately 5 mol% selectively deuterated palmitic acid incorporated into the outer monolayer of high-density lipoproteins (HDL/sub 3/). The values are SCD = 0.38 for (2,2-/sup 2/H/sub 2/)palmitic acid, 0.38 for (4,4-/sup 2/H/sub 2/)palmitic acid, 0.37 for (5,5,6,6-/sup 2/H/sub 4/)palmitic acid, 0.23 for (11,11,12,12-/sup 2/H/sub 4/)palmitic acid, and 0.05 for (16,16,16-/sup 2/H/sub 3/)palmitic acid. Comparison of the acyl chain order parameters in HDL/sub 3/ with acyl chain order parameters determined recently for approximately 5 mol% deuterated palmitic acid in sonicated unilamellar vesicles, composed of the same ratio of phosphatidylcholine/sphingomyelin (85/15 w/w) found in HDL/sub 3/, shows that acyl chain order in the HDL/sub 3/ monolayer is approximately 3-5 times higher than in the vesicle bilayer. The acyl chain order in the lipoprotein monolayer is approximately 1.5-2 times higher than in the bilayer of phosphatidylcholine multilamellar dispersions. Deuterium longitudinal relaxation times have been measured for deuterated palmitic acid in HDL/sub 3/, and the values T/sub 1/ approximately 16 ms for C/sub 2/H/sub 2/ and 170 ms for C/sub 2/H/sub 3/ groups are a factor of more than 2 times smaller than found in phospholipid bilayers.

  18. Investigating the neural basis of cooperative joint action. An EEG hyperscanning study.

    PubMed

    Astolfi, L; Toppi, J; Vogel, P; Mattia, D; Babiloni, F; Ciaramidaro, A; Siniatchkin, M

    2014-01-01

    The aim of the present study is to investigate the neurophysiological basis of the cognitive functions underlying the execution of joint actions, by means of the recent technique called hyperscanning. Neuroelectrical hyperscanning is based on the simultaneous recording of brain activity from multiple subjects and includes the analysis of the functional relation between the brain activity of all the interacting individuals. We recorded simultaneous high density electroencephalography (hdEEG) from 16 pairs of subjects involved in a computerized joint action paradigm, with controlled levels of cooperation. Results of cortical connectivity analysis returned significant differences, in terms of inter-brain functional causal links, between the condition of cooperative joint action and a condition in which the subjects were told they were interacting with a PC, while actually interacting with another human subject. Such differences, described by selected brain connectivity indices, point toward an integration between the two subjects' brain activity in the cooperative condition, with respect to control conditions. PMID:25571089

  19. EEG longitudinal studies in febrile convulsions. Genetic aspects.

    PubMed

    Doose, H; Ritter, K; Völzke, E

    1983-05-01

    It was the purpose of the study to obtain viewpoints on the genetics of febrile convulsions and their relationship to epilepsy by EEG long term follow up. 89 children with febrile convulsions could be followed up to the age of 11 to 13 years (in total 1046 EEG records). The study was concentrated on genetically determined EEG patterns: bilaterally synchronous spikes and waves, photosensitivity and 4-7 cps rhythms. The statistical evaluation was based on standards derived from known strict age dependence of the different patterns. Theta rhythms were found in 54%, spikes and waves of the resting record in 49% and photosensitivity in 42%. In total, genetically determined EEG patterns were found in 81% of the cases which were sufficiently investigated according to given standards. Spikes and waves are strongly age dependent with a maximum at the age of 5-6 years and appear very inconstantly. Theta rhythms and spikes and waves are closely correlated. Spikes and waves are a heterogeneous phenomenon. The type described here must be interpreted as a facultative symptom of the same functional anomaly which forms the basis of 4-7 cps rhythms. The possible pathophysiological basis of the pattern is discussed.--Photosensitivity is interpreted as the symptom of a genetically independent pathogenetic mechanism, which can lead to additive effects by interaction with other genetic abnormalities as well as exogenous factors.--The pathogenesis of febrile convulsions is multifactorial in the strict sense. While the exogenous pathogenetic factors are rather uniform, the genetic predisposition apparently is not. It is based on different genetic anomalies. Each of them is polygenically determined. In the individual case one or different factors can be involved. The genetic predisposition to febrile convulsions is definitely not only polygenic, but of heterogeneous nature. Finally the genetic relationship between febrile convulsions and epilepsy is discussed. PMID:6877532

  20. Neurobiological Correlates of EMDR Monitoring – An EEG Study

    PubMed Central

    Pagani, Marco; Di Lorenzo, Giorgio; Verardo, Anna Rita; Nicolais, Giampaolo; Monaco, Leonardo; Lauretti, Giada; Russo, Rita; Niolu, Cinzia; Ammaniti, Massimo; Fernandez, Isabel; Siracusano, Alberto

    2012-01-01

    Background Eye Movement Desensitization and Reprocessing (EMDR) is a recognized first-line treatment for psychological trauma. However its neurobiological bases have yet to be fully disclosed. Methods Electroencephalography (EEG) was used to fully monitor neuronal activation throughout EMDR sessions including the autobiographical script. Ten patients with major psychological trauma were investigated during their first EMDR session (T0) and during the last one performed after processing the index trauma (T1). Neuropsychological tests were administered at the same time. Comparisons were performed between EEGs of patients at T0 and T1 and between EEGs of patients and 10 controls who underwent the same EMDR procedure at T0. Connectivity analyses were carried out by lagged phase synchronization. Results During bilateral ocular stimulation (BS) of EMDR sessions EEG showed a significantly higher activity on the orbito-frontal, prefrontal and anterior cingulate cortex in patients at T0 shifting towards left temporo-occipital regions at T1. A similar trend was found for autobiographical script with a higher firing in fronto-temporal limbic regions at T0 moving to right temporo-occipital cortex at T1. The comparisons between patients and controls confirmed the maximal activation in the limbic cortex of patients occurring before trauma processing. Connectivity analysis showed decreased pair-wise interactions between prefrontal and cingulate cortex during BS in patients as compared to controls and between fusiform gyrus and visual cortex during script listening in patients at T1 as compared to T0. These changes correlated significantly with those occurring in neuropsychological tests. Conclusions The ground-breaking methodology enabled our study to image for the first time the specific activations associated with the therapeutic actions typical of EMDR protocol. The findings suggest that traumatic events are processed at cognitive level following successful EMDR therapy, thus

  1. Study of short haul high-density V/STOL transportation systems. Volume 2: Appendices

    NASA Technical Reports Server (NTRS)

    Solomon, H. L.

    1972-01-01

    Essential supporting data to the short haul transportation study are presented. The specific appendices are arena characteristics, aerospace transportation analysis computer program, economics, model calibration, STOLport siting and services path selection, STOL schedule definition, tabulated California corridor results, and tabulated Midwest arena results.

  2. Application of x-ray-laser interferometry to study high-density laser-produced plasmas

    SciTech Connect

    Wan, A.S.; Da Silva, L.B.; Barbee, T.W. Jr.; Cauble, R.; Celliers, P.; Libby, S.B.; London, R.A.; Moreno, J.C.; Trebes, J.E.; Weber, F.

    1996-02-01

    Collisionally pumped soft-x-ray lasers now operate over a wavelength range extending from 4 to 40 nm. With the recent advances in the development of multilayer mirrors and beam splitters in the soft-x-ray regime, we can utilize the unique properties of x-ray lasers to study large, rapidly evolving laser-driven plasmas with high electron densities. Using a neonlike yttrium x-ray laser, which operates at a wavelength of 15.5 nm, we have performed a series of radiography, moir{acute e} deflectometry, and interferometry experiments to characterize plasmas relevant to inertial confinement fusion. We describe experiments using a soft-x-ray laser interferometer, operated in the Mach{endash}Zehnder configuration, to study CH plasmas. The two-dimensional density profiles obtained from the interferograms allow us to validate and benchmark our numerical models used to study the physics of laser{endash}plasma interactions. {copyright} {ital 1996 Optical Society of America.}

  3. Simulation studies and fabrication of microtraps with long aspect ratio to store high density of positrons

    NASA Astrophysics Data System (ADS)

    Narimannezhad, Alireza

    Conventionally, non-neutral antimatter is stored using a Penning-Malmberg trap, a single tube with aspect ratios being of the order of less than 10:1. Parallel microtubes with aspect ratios of 1000:1 have the potential to store many orders of magnitude more with substantially lower end electrode potential than conventional traps. In this study, the charged particles storage capacity of these microtraps (micro-Penning-Malmberg traps) with radii of the order of tens of microns was explored. Simulation studies of the motions of charged particles were conducted with particle-in-cell plasma code WARP and the Charged Particle Optics (CPO) program. It was presented how to evaluate and lower the numerical noise by controlling the modeling parameters so the simulated plasma evolves toward computational equilibrium. The local equilibrium distribution, where longitudinal force balance is satisfied along each magnetic field line, was attained in 10 μs for plasmas initialized with a uniform density and Boltzmann energy distribution. To reach global equilibrium longer runs were performed using a fast particle mover code. Charge clouds developed the expected radial density distribution (that of a soft edge) and rigid rotation evolved to some extent. The plasma confinement time and its thermalization were independent of the length showing the length-dependency, reported in experiments, is due to fabrication and field asymmetries. Simulation demonstrated each microtrap with 50 microm radius immersed in a 7 T magnetic field could store positrons indefinitely with a density of 1.6x1011 cm-3 while the confinement voltage was only 10 V. For microtraps with radii between 100 μm and 3 μm, the particle density scaled as radius-2. Plasma confinement time was also independent of trap length. A unique approach for the fabrication of long-aspect ratio microtubes was presented for 100 μm microtraps. Standard processes such as photolithography, deep reactive ion etching, sputtering and

  4. Degraded effectiveness studies for major developmental systems and high-density items. Final report

    SciTech Connect

    Baldauf, J.J.; Wick, C.H.

    1985-09-01

    The Army Materiel System Analysis Activity was tasked by the Army Nuclear and Chemical Agency to evaluate the survivability/sustainability of major US Army developmental systems in a NBC environment. Three areas were of interest: decontaminability, hardness, and compatibility. The Vulnerability Lethality Division of the Ballistic Research Laboratory was asked to evaluate compatibility of fourteen systems with operators in chemical protective clothing. This clothing, referred to as Mission Oriented Protective Posture (MOPP) may be worn to provide various levels of protection. The most protective, level IV, requires all equipment to be worn and sealed. The physiological abilities of personnel functioning in this equipment are encumbered by the restriction of the MOPP gear. Restriction manifested by a decrease in the accuracy of completing a task or a combination of changes in both rate and accuracy. For the purpose of this study, degradation is defined as the difference between the time to accomplish a task in Battle Dress Uniform and accomplishing the same task in MOPPIV. This task was divided in two parts: first, determine 12 hour mission profiles and second, calculate degraded effectiveness.

  5. Self-Referential Processing in Depressed Adolescents: A High-Density ERP Study

    PubMed Central

    Auerbach, Randy P.; Stanton, Colin H.; Proudfit, Greg Hajcak; Pizzagalli, Diego A.

    2015-01-01

    Despite the alarming increase in the prevalence of depression during adolescence, particularly among female adolescents, the pathophysiology of depression in adolescents remains largely unknown. Event-related potentials (ERPs) provide an ideal approach to investigate cognitive-affective processes associated with depression in adolescents, especially in the context of negative self-referential processing biases. In this study, healthy (n = 30) and depressed (n = 22) female adolescents completed a self-referential encoding task while ERP data were recorded. To examine cognitive-affective processes associated with self-referential processing, P1, P2, and late positive potential (LPP) responses to negative and positive words were investigated, and intracortical sources of scalp effects were probed using Low Resolution Electromagnetic Tomography (LORETA). Additionally, we tested whether key cognitive processes (e.g., maladaptive self-view, self-criticism) previously implicated in depression related to ERP components. Relative to healthy female subjects, depressed females endorsed more negative and fewer positive words, and free recalled and recognized fewer positive words. With respect to ERPs, compared to healthy female adolescents, depressed adolescents exhibited greater P1 amplitudes following negative words, which was associated with a more maladaptive self-view and self-criticism. In both early and late LPP responses, depressed females showed greater activity following negative versus positive words, whereas healthy females demonstrated the opposite pattern. For both P1 and LPP, LORETA revealed reduced inferior frontal gyrus activity in response to negative words in depressed versus healthy female adolescents. Collectively, these findings suggest that the P1 and LPP reflect biased self-referential processing in female adolescents with depression. Potential treatment implications are discussed. PMID:25643205

  6. Flow Regime Study in a High Density Circulating Fluidized Bed Riser with an Abrupt Exit

    SciTech Connect

    Mei, J.S.; Shadle, L.J.; Yue, P.C.; Monazam, E.R.

    2007-01-01

    Flow regime study was conducted in a 0.3 m diameter, 15.5 m height circulating fluidized bed (CFB) riser with an abrupt exit at the National Energy Technology Laboratory of the U.S. Department of Energy. Local particle velocities were measured at various radial positions and riser heights using an optical fiber probe. On-line measurement of solid circulating rate was continuously recorded by the Spiral. Glass beads of mean diameter 61 μm and particle density of 2,500 kg/m3 were used as bed material. The CFB riser was operated at various superficial gas velocities ranging from 3 to 7.6 m/s and solid mass flux from 20 to 550 kg/m2-s. At a constant riser gas velocity, transition from fast fluidization to dense suspension upflow (DSU) regime started at the bottom of the riser with increasing solid flux. Except at comparatively low riser gas velocity and solid flux, the apparent solid holdup at the top exit region was higher than the middle section of the riser. The solid fraction at this top region could be much higher than 7% under high riser gas velocity and solid mass flux. The local particle velocity showed downward flow near the wall at the top of the riser due to its abrupt exit. This abrupt geometry reflected the solids and, therefore, caused solid particles traveling downward along the wall. However, at location below, but near, the top of the riser the local particle velocities were observed flowing upward at the wall. Therefore, DSU was identified in the upper region of the riser with an abrupt exit while the fully developed region, lower in the riser, was still exhibiting core-annular flow structure. Our data were compared with the flow regime boundaries proposed by Kim et al. [1] for distinguishing the dilute pneumatic transport, fast fluidization, and DSU.

  7. Target Speaker Detection with Concealed EEG Around the Ear

    PubMed Central

    Mirkovic, Bojana; Bleichner, Martin G.; De Vos, Maarten; Debener, Stefan

    2016-01-01

    Target speaker identification is essential for speech enhancement algorithms in assistive devices aimed toward helping the hearing impaired. Several recent studies have reported that target speaker identification is possible through electroencephalography (EEG) recordings. If the EEG system could be reduced to acceptable size while retaining the signal quality, hearing aids could benefit from the integration with concealed EEG. To compare the performance of a multichannel around-the-ear EEG system with high-density cap EEG recordings an envelope tracking algorithm was applied in a competitive speaker paradigm. The data from 20 normal hearing listeners were concurrently collected from the traditional state-of-the-art laboratory wired EEG system and a wireless mobile EEG system with two bilaterally-placed around-the-ear electrode arrays (cEEGrids). The results show that the cEEGrid ear-EEG technology captured neural signals that allowed the identification of the attended speaker above chance-level, with 69.3% accuracy, while cap-EEG signals resulted in the accuracy of 84.8%. Further analyses investigated the influence of ear-EEG signal quality and revealed that the envelope tracking procedure was unaffected by variability in channel impedances. We conclude that the quality of concealed ear-EEG recordings as acquired with the cEEGrid array has potential to be used in the brain-computer interface steering of hearing aids. PMID:27512364

  8. Target Speaker Detection with Concealed EEG Around the Ear.

    PubMed

    Mirkovic, Bojana; Bleichner, Martin G; De Vos, Maarten; Debener, Stefan

    2016-01-01

    Target speaker identification is essential for speech enhancement algorithms in assistive devices aimed toward helping the hearing impaired. Several recent studies have reported that target speaker identification is possible through electroencephalography (EEG) recordings. If the EEG system could be reduced to acceptable size while retaining the signal quality, hearing aids could benefit from the integration with concealed EEG. To compare the performance of a multichannel around-the-ear EEG system with high-density cap EEG recordings an envelope tracking algorithm was applied in a competitive speaker paradigm. The data from 20 normal hearing listeners were concurrently collected from the traditional state-of-the-art laboratory wired EEG system and a wireless mobile EEG system with two bilaterally-placed around-the-ear electrode arrays (cEEGrids). The results show that the cEEGrid ear-EEG technology captured neural signals that allowed the identification of the attended speaker above chance-level, with 69.3% accuracy, while cap-EEG signals resulted in the accuracy of 84.8%. Further analyses investigated the influence of ear-EEG signal quality and revealed that the envelope tracking procedure was unaffected by variability in channel impedances. We conclude that the quality of concealed ear-EEG recordings as acquired with the cEEGrid array has potential to be used in the brain-computer interface steering of hearing aids. PMID:27512364

  9. Influence of total cholesterol, high density lipoprotein cholesterol, and triglycerides on risk of cerebrovascular disease: the Copenhagen City Heart Study.

    PubMed Central

    Lindenstrøm, E.; Boysen, G.; Nyboe, J.

    1994-01-01

    OBJECTIVE--To estimate the influence of plasma total cholesterol, high density lipoprotein cholesterol, and triglycerides on risk of cerebrovascular disease. DESIGN--The Copenhagen City Heart Study is a prospective observational survey with two cardiovascular examinations at five year intervals. Non-fasting plasma lipids were measured in participants once at each examination, along with other variables. The Cox regression model was used to establish the effect of the factors recorded on cerebrovascular events of mostly, but not exclusively, ischaemic origin. SUBJECTS--19,698 women and men at least 20 years old, randomly selected after age stratification from an area of central Copenhagen. MAIN OUTCOME MEASURES--Initial cases of stroke and transient ischaemic attack recorded from hospital records and death certificates from 1976 through 1988. RESULTS--660 non-haemorrhagic and 33 haemorrhagic events were recorded. Total cholesterol was positively associated with risk of non-haemorrhagic events, but only for levels > 8 mmol/l, corresponding to the upper 5% of the distribution in the study population. For lower plasma cholesterol values the relative risk remained nearly constant. Plasma triglyceride concentration was significantly, positively associated with risk of non-haemorrhagic events. The relative risk corresponding to an increase of 1 mmol/l was 1.12 (95% confidence interval 1.07 to 1.16). There was a negative, log linear association between high density lipoprotein cholesterol and risk of non-haemorrhagic events (0.53 (0.34 to 0.83)). There was no indication that the effects of plasma lipids were different in women and men. CONCLUSIONS--The pattern of the association between plasma cholesterol and risk of ischaemic cerebrovascular disease was not log linear, and the increased risk was confined to the upper 5% of the cholesterol distribution. Further studies should concentrate on the association between plasma cholesterol and verified haemorrhagic stroke. PMID

  10. Comparative Analysis of CNV Calling Algorithms: Literature Survey and a Case Study Using Bovine High-Density SNP Data

    PubMed Central

    Xu, Lingyang; Hou, Yali; Bickhart, Derek M.; Song, Jiuzhou; Liu, George E.

    2013-01-01

    Copy number variations (CNVs) are gains and losses of genomic sequence between two individuals of a species when compared to a reference genome. The data from single nucleotide polymorphism (SNP) microarrays are now routinely used for genotyping, but they also can be utilized for copy number detection. Substantial progress has been made in array design and CNV calling algorithms and at least 10 comparison studies in humans have been published to assess them. In this review, we first survey the literature on existing microarray platforms and CNV calling algorithms. We then examine a number of CNV calling tools to evaluate their impacts using bovine high-density SNP data. Large incongruities in the results from different CNV calling tools highlight the need for standardizing array data collection, quality assessment and experimental validation. Only after careful experimental design and rigorous data filtering can the impacts of CNVs on both normal phenotypic variability and disease susceptibility be fully revealed.

  11. Mass Spectrometry-Based Proteomic Study Makes High-Density Lipoprotein a Biomarker for Atherosclerotic Vascular Disease

    PubMed Central

    Yang, Chao-Yuh; Tsai, Fuu-Jen; Lin, Shih-Yi

    2015-01-01

    High-density lipoprotein (HDL) is a lipid and protein complex that consists of apolipoproteins and lower level HDL-associated enzymes. HDL dysfunction is a factor in atherosclerosis and decreases patient survival. Mass spectrometry- (MS-) based proteomics provides a high throughput approach for analyzing the composition and modifications of complex HDL proteins in diseases. HDL can be separated according to size, surface charge, electronegativity, or apoprotein composition. MS-based proteomics on subfractionated HDL then allows investigation of lipoprotein roles in diseases. Herein, we review recent developments in MS-based quantitative proteomic techniques, HDL proteomics and lipoprotein modifications in diseases, and HDL subfractionation studies. We also discuss future directions and perspectives in MS-based proteomics on HDL. PMID:26090384

  12. Reasoning from transitive premises: an EEG study.

    PubMed

    Bonnefond, Mathilde; Castelain, Thomas; Cheylus, Anne; Van der Henst, Jean-Baptiste

    2014-10-01

    Neuroimaging studies have contributed to a major advance in understanding the neural and cognitive mechanisms underpinning deductive reasoning. However, the dynamics of cognitive events associated with inference making have been largely neglected. Using electroencephalography, the present study aims at describing the rapid sequence of processes involved in performing transitive inference (A B; B C therefore "A C"; with AB meaning "A is to the left of B"). The results indicate that when the second premise can be integrated into the first one (e.g. A B; B C) its processing elicits a P3b component. In contrast, when the second premise cannot be integrated into the first premise (e.g. A B; D C), a P600-like components is elicited. These ERP components are discussed with respect to cognitive expectations. PMID:25014410

  13. Study of EEG during Sternberg Tasks with Different Direction of Arrangement for Letters

    NASA Astrophysics Data System (ADS)

    Kamihoriuchi, Kenji; Nuruki, Atsuo; Matae, Tadashi; Kurono, Asutsugu; Yunokuchi, Kazutomo

    In previous study, we recorded electroencephalogram (EEG) of patients with dementia and healthy subjects during Sternberg task. But, only one presentation method of Sternberg task was considered in previous study. Therefore, we examined whether the EEG was different in two different presentation methods wrote letters horizontally and wrote letters vertically in this study. We recorded EEG of six healthy subjects during Sternberg task using two different presentation methods. The result was not different in EEG topography of all subjects. In all subjects, correct rate increased in case of vertically arranged letters.

  14. Development of grouped icEEG for the study of cognitive processing

    PubMed Central

    Kadipasaoglu, Cihan M.; Forseth, Kiefer; Whaley, Meagan; Conner, Christopher R.; Rollo, Matthew J.; Baboyan, Vatche G.; Tandon, Nitin

    2015-01-01

    Invasive intracranial EEG (icEEG) offers a unique opportunity to study human cognitive networks at an unmatched spatiotemporal resolution. To date, the contributions of icEEG have been limited to the individual-level analyses or cohorts whose data are not integrated in any way. Here we discuss how grouped approaches to icEEG overcome challenges related to sparse-sampling, correct for individual variations in response and provide statistically valid models of brain activity in a population. By the generation of whole-brain activity maps, grouped icEEG enables the study of intra and interregional dynamics between distributed cortical substrates exhibiting task-dependent activity. In this fashion, grouped icEEG analyses can provide significant advances in understanding the mechanisms by which cortical networks give rise to cognitive functions. PMID:26257673

  15. Treating Addiction: Perspectives from EEG and Imaging Studies on Psychedelics.

    PubMed

    Tófoli, L F; de Araujo, D B

    2016-01-01

    Despite reports of apparent benefits, social and political pressure beginning in the late 1960s effectively banned scientific inquiry into psychedelic substances. Covert examination of psychedelics persisted through the 1990s; the turn of the century and especially the past 10 years, however, has seen a resurgent interest in psychedelic substances (eg, LSD, ayahuasca, psilocybin). This chapter outlines relevant EEG and brain imaging studies evaluating the effects of psychedelics on the brain. This chapter also reviews evidence of the use of psychedelics as adjunct therapy for a number of psychiatric and addictive disorders. In particular, psychedelics appear to have efficacy in treating depression and alcohol-use disorders. PMID:27503452

  16. Oscillatory EEG Correlates of Arithmetic Strategies: A Training Study

    PubMed Central

    Grabner, Roland H.; De Smedt, Bert

    2012-01-01

    There has been a long tradition of research on mathematics education showing that children and adults use different strategies to solve arithmetic problems. Neurophysiological studies have recently begun to investigate the brain correlates of these strategies. The existing body of data, however, reflect static end points of the learning process and do not provide information on how brain activity changes in response to training or intervention. In this study, we explicitly address this issue by training participants in using fact retrieval strategies. We also investigate whether brain activity related to arithmetic fact learning is domain-specific or whether this generalizes to other learning materials, such as the solution of figural-spatial problems. Twenty adult students were trained on sets of two-digit multiplication problems and figural-spatial problems. After the training, they were presented with the trained and untrained problems while their brain activity was recorded by means of electroencephalography (EEG). In both problem types, the training resulted in accuracies over 90% and significant decreases in solution times. Analyses of the oscillatory EEG data also revealed training effects across both problem types. Specifically, we observed training-related activity increases in the theta band (3–6 Hz) and decreases in the lower alpha band (8–10 Hz), especially over parietooccipital and parietal brain regions. These results provide the first evidence that a short-term fact retrieval training results in significant changes in oscillatory EEG activity. These findings further corroborate the role of the theta band in the retrieval of semantic information from memory and suggest that theta activity is sensitive to fact retrieval not only in mental arithmetic but also in other domains. PMID:23162495

  17. Electroencephalograph (EEG) study on self-contemplating image formation

    NASA Astrophysics Data System (ADS)

    Meng, Qinglei; Hong, Elliot; Choa, Fow-Sen

    2016-05-01

    Electroencephalography (EEG) is one of the most widely used electrophysiological monitoring methods and plays a significant role in studies of human brain electrical activities. Default mode network (DMN), is a functional connection of brain regions that are activated while subjects are not in task positive state or not focused on the outside world. In this study, EEG was used for human brain signals recording while all subjects were asked to sit down quietly on a chair with eyes closed and thinking about some parts of their own body, such as left and right hands, left and right ears, lips, nose, and the images of faces that they were familiar with as well as doing some simple mathematical calculation. The time is marker when the image is formed in the subject's mind. By analyzing brain activity maps 300ms right before the time marked instant for each of the 4 wave bands, Delta, Theta, Alpha and Beta waves. We found that for most EEG datasets during this 300ms, Delta wave activity would mostly locate at the frontal lobe or the visual cortex, and the change and movement of activities are slow. Theta wave activity tended to rotate along the edge of cortex either clockwise or counterclockwise. Beta wave behaved like inquiry types of oscillations between any two regions spread over the cortex. Alpha wave activity looks like a mix of the Theta and Beta activities but more close to Theta activity. From the observation we feel that Beta and high Alpha are playing utility role for information inquiry. Theta and low Alpha are likely playing the role of binding and imagination formation in DMN operations.

  18. Application of a High-Density Oligonucleotide Microarray Approach To Study Bacterial Population Dynamics during Uranium Reduction and Reoxidation†

    PubMed Central

    Brodie, Eoin L.; DeSantis, Todd Z.; Joyner, Dominique C.; Baek, Seung M.; Larsen, Joern T.; Andersen, Gary L.; Hazen, Terry C.; Richardson, Paul M.; Herman, Donald J.; Tokunaga, Tetsu K.; Wan, Jiamin M.; Firestone, Mary K.

    2006-01-01

    Reduction of soluble uranium U(VI) to less-soluble uranium U(IV) is a promising approach to minimize migration from contaminated aquifers. It is generally assumed that, under constant reducing conditions, U(IV) is stable and immobile; however, in a previous study, we documented reoxidation of U(IV) under continuous reducing conditions (Wan et al., Environ. Sci. Technol. 2005, 39:6162-6169). To determine if changes in microbial community composition were a factor in U(IV) reoxidation, we employed a high-density phylogenetic DNA microarray (16S microarray) containing 500,000 probes to monitor changes in bacterial populations during this remediation process. Comparison of the 16S microarray with clone libraries demonstrated successful detection and classification of most clone groups. Analysis of the most dynamic groups of 16S rRNA gene amplicons detected by the 16S microarray identified five clusters of bacterial subfamilies responding in a similar manner. This approach demonstrated that amplicons of known metal-reducing bacteria such as Geothrix fermentans (confirmed by quantitative PCR) and those within the Geobacteraceae were abundant during U(VI) reduction and did not decline during the U(IV) reoxidation phase. Significantly, it appears that the observed reoxidation of uranium under reducing conditions occurred despite elevated microbial activity and the consistent presence of metal-reducing bacteria. High-density phylogenetic microarrays constitute a powerful tool, enabling the detection and monitoring of a substantial portion of the microbial population in a routine, accurate, and reproducible manner. PMID:16957256

  19. Pharmaco-EEG Studies in Animals: An Overview of Contemporary Translational Applications.

    PubMed

    Drinkenburg, Wilhelmus H I M; Ruigt, Gé S F; Ahnaou, Abdallah

    2015-01-01

    The contemporary value of animal pharmaco-electroencephalography (p-EEG)-based applications are strongly interlinked with progress in recording and neuroscience analysis methodology. While p-EEG in humans and animals has been shown to be closely related in terms of underlying neuronal substrates, both translational and back-translational approaches are being used to address extrapolation issues and optimize the translational validity of preclinical animal p-EEG paradigms and data. Present applications build further on animal p-EEG and pharmaco-sleep EEG findings, but also on stimulation protocols, more specifically pharmaco-event-related potentials. Pharmaceutical research into novel treatments for neurological and psychiatric diseases has employed an increasing number of pharmacological as well as transgenic models to assess the potential therapeutic involvement of different neurochemical systems and novel drug targets as well as underlying neuronal connectivity and synaptic function. Consequently, p-EEG studies, now also readily applied in modeled animals, continue to have an important role in drug discovery and development, with progressively more emphasis on its potential as a central readout for target engagement and as a (translational) functional marker of neuronal circuit processes underlying normal and pathological brain functioning. In a similar vein as was done for human p-EEG studies, the contribution of animal p-EEG studies can further benefit by adherence to guidelines for methodological standardization, which are presently under construction by the International Pharmaco-EEG Society (IPEG). PMID:26901596

  20. Study on Bayes Discriminant Analysis of EEG Data

    PubMed Central

    Shi, Yuan; He, DanDan; Qin, Fang

    2014-01-01

    Objective: In this paper, we have done Bayes Discriminant analysis to EEG data of experiment objects which are recorded impersonally come up with a relatively accurate method used in feature extraction and classification decisions. Methods: In accordance with the strength of α wave, the head electrodes are divided into four species. In use of part of 21 electrodes EEG data of 63 people, we have done Bayes Discriminant analysis to EEG data of six objects. Results In use of part of EEG data of 63 people, we have done Bayes Discriminant analysis, the electrode classification accuracy rates is 64.4%. Conclusions: Bayes Discriminant has higher prediction accuracy, EEG features (mainly αwave) extract more accurate. Bayes Discriminant would be better applied to the feature extraction and classification decisions of EEG data. PMID:25852784

  1. A technique to consider mismatches between fMRI and EEG/MEG sources for fMRI-constrained EEG/MEG source imaging: a preliminary simulation study

    NASA Astrophysics Data System (ADS)

    Im, Chang-Hwan; Lee, Soo Yeol

    2006-12-01

    fMRI-constrained EEG/MEG source imaging can be a powerful tool in studying human brain functions with enhanced spatial and temporal resolutions. Recent studies on the combination of fMRI and EEG/MEG have suggested that fMRI prior information could be readily implemented by simply imposing different weighting factors to cortical sources overlapping with the fMRI activations. It has been also reported, however, that such a hard constraint may cause severe distortions or elimination of meaningful EEG/MEG sources when there are distinct mismatches between the fMRI activations and the EEG/MEG sources. If one wants to obtain the actual EEG/MEG source locations and uses the fMRI prior information as just an auxiliary tool to enhance focality of the distributed EEG/MEG sources, it is reasonable to weaken the strength of fMRI constraint when severe mismatches between fMRI and EEG/MEG sources are observed. The present study suggests an efficient technique to automatically adjust the strength of fMRI constraint according to the mismatch level. The use of the proposed technique rarely affects the results of conventional fMRI-constrained EEG/MEG source imaging if no major mismatch between the two modalities is detected; while the new results become similar to those of typical EEG/MEG source imaging without fMRI constraint if the mismatch level is significant. A preliminary simulation study using realistic EEG signals demonstrated that the proposed technique can be a promising tool to selectively apply fMRI prior information to EEG/MEG source imaging.

  2. Maturation of EEG Power Spectra in Early Adolescence: A Longitudinal Study

    ERIC Educational Resources Information Center

    Cragg, Lucy; Kovacevic, Natasa; McIntosh, Anthony Randal; Poulsen, Catherine; Martinu, Kristina; Leonard, Gabriel; Paus, Tomas

    2011-01-01

    This study investigated the fine-grained development of the EEG power spectra in early adolescence, and the extent to which it is reflected in changes in peak frequency. It also sought to determine whether sex differences in the EEG power spectra reflect differential patterns of maturation. A group of 56 adolescents were tested at age 10 years and…

  3. Effects of Drawing on Alpha Activity: A Quantitative EEG Study with Implications for Art Therapy

    ERIC Educational Resources Information Center

    Belkofer, Christopher M.; Van Hecke, Amy Vaughan; Konopka, Lukasz M.

    2014-01-01

    Little empirical evidence exists as to how materials used in art therapy affect the brain and its neurobiological functioning. This pre/post within-groups study utilized the quantitative electroencephalogram (qEEG) to measure residual effects in the brain after 20 minutes of drawing. EEG recordings were conducted before and after participants (N =…

  4. Genome-wide association studies identified novel loci for non-high-density lipoprotein cholesterol and its postprandial lipemic response

    PubMed Central

    An, Ping; Straka, Robert J.; Pollin, Toni I.; Feitosa, Mary F.; Wojczynski, Mary K.; Daw, E. Warwick; O'Connell, Jeffrey R.; Gibson, Quince; Ryan, Kathleen A.; Hopkins, Paul N.; Tsai, Michael Y.; Lai, Chao-Qiang; Province, Michael A.; Ordovas, Jose M.; Shuldiner, Alan R; Arnett, Donna K.; Borecki, Ingrid B.

    2014-01-01

    Non-high-density lipoprotein cholesterol (NHDL) is an independent and superior predictor of CVD risk as compared to LDL alone. It represents a spectrum of atherogenic lipid fractions with possibly a distinct genomic signature. We performed genome-wide association studies (GWAS) to identify loci influencing baseline NHDL and its postprandial lipemic (PPL) response. We carried out GWAS in 4,241 participants of European descent. Our discovery cohort included 928 subjects from the Genetics of Lipid-Lowering Drugs and Diet Network (GOLDN) Study. Our replication cohorts included 3,313 subjects from the Heredity and Phenotype Intervention (HAPI) Heart Study and Family Heart Study (FamHS). A linear mixed model using the kinship matrix was used for association tests. The best association signal was found in a tri-genic region at RHOQ-PIGF-CRIPT for baseline NHDL (lead SNP rs6544903, discovery p = 7e-7, MAF = 2%; validation p = 6e-4 at 0.1 kb upstream neighboring SNP rs3768725, and 5e-4 at 0.7 kb downstream neighboring SNP rs6733143, MAF = 10%). The lead and neighboring SNPs were not perfect surrogate proxies to each other (D′ = 1, r2 = 0.003) but they seemed to be partially dependent (likelihood ration test p = 0.04). Other suggestive loci (discovery p < 1e-6) included LOC100419812 and LOC100288337 for baseline NHDL, and LOC100420502 and CDH13 for NHDL PPL response that were not replicated (p > 0.01). The current and first GWAS of NHDL yielded an interesting common variant in RHOQ-PIGF-CRIPT influencing baseline NHDL levels. Another common variant in CDH13 for NHDL response to dietary high fat intake challenge was also suggested. Further validations for both loci from large independent studies, especially interventional studies, are warranted. PMID:24604477

  5. Prospective Cohort Study Evaluating the Prognostic Value of Simple EEG Parameters in Postanoxic Coma.

    PubMed

    Azabou, Eric; Fischer, Catherine; Mauguiere, François; Vaugier, Isabelle; Annane, Djillali; Sharshar, Tarek; Lofaso, Fréderic

    2016-01-01

    We prospectively studied early bedside standard EEG characteristics in 61 acute postanoxic coma patients. Five simple EEG features, namely, isoelectric, discontinuous, nonreactive to intense auditory and nociceptive stimuli, dominant delta frequency, and occurrence of paroxysms were classified yes or no. Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and area under the receiver operating characteristic curve (AUC) of each of these variables for predicting an unfavorable outcome, defined as death, persistent vegetative state, minimally conscious state, or severe neurological disability, as assessed 1 year after coma onset were computed as well as Synek's score. The outcome was unfavorable in 56 (91.8%) patients. Sensitivity, specificity, PPV, NPV, and AUC of nonreactive EEG for predicting an unfavorable outcome were 84%, 80%, 98%, 31%, and 0.82, respectively; and were all very close to the ones of Synek score>3, which were 82%, 80%, 98%, 29%, and 0.81, respectively. Specificities for predicting an unfavorable outcome were 100% for isoelectric, discontinuous, or dominant delta activity EEG. These 3 last features were constantly associated to unfavorable outcome. Absent EEG reactivity strongly predicted an unfavorable outcome in postanoxic coma, and performed as accurate as a Synek score>3. Analyzing characteristics of some simple EEG features may easily help nonneurophysiologist physicians to investigate prognostic issue of postanoxic coma patient. In this study (a) discontinuous, isoelectric, or delta-dominant EEG were constantly associated with unfavorable outcome and (b) nonreactive EEG performed prognostic as accurate as a Synek score>3. PMID:26545818

  6. Physical inactivity interacts with an endothelial lipase polymorphism to modulate high density lipoprotein cholesterol in the GOLDN study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    BACKGROUND: Plasma high density lipoprotein (HDL) cholesterol (HDL-C) concentration is highly heritable but is also modifiable by environmental factors including physical activity. HDL-C response to exercise varies among individuals, and this variability may be associated with genetic polymorphism...

  7. The neural dynamics of somatosensory processing and adaptation across childhood: a high-density electrical mapping study.

    PubMed

    Uppal, Neha; Foxe, John J; Butler, John S; Acluche, Frantzy; Molholm, Sophie

    2016-03-01

    Young children are often hyperreactive to somatosensory inputs hardly noticed by adults, as exemplified by irritation to seams or labels in clothing. The neurodevelopmental mechanisms underlying changes in sensory reactivity are not well understood. Based on the idea that neurodevelopmental changes in somatosensory processing and/or changes in sensory adaptation might underlie developmental differences in somatosensory reactivity, high-density electroencephalography was used to examine how the nervous system responds and adapts to repeated vibrotactile stimulation over childhood. Participants aged 6-18 yr old were presented with 50-ms vibrotactile stimuli to the right wrist over the median nerve at 5 blocked interstimulus intervals (ranging from ∼7 to ∼1 stimulus per second). Somatosensory evoked potentials (SEPs) revealed three major phases of activation within the first 200 ms, with scalp topographies suggestive of neural generators in contralateral somatosensory cortex. Although overall SEPs were highly similar for younger, middle, and older age groups (6.1-9.8, 10.0-12.9, and 13.0-17.8 yr old), there were significant age-related amplitude differences in initial and later phases of the SEP. In contrast, robust adaptation effects for fast vs. slow presentation rates were observed that did not differ as a function of age. A greater amplitude response in the later portion of the SEP was observed for the youngest group and may be related to developmental changes in responsivity to somatosensory stimuli. These data suggest the protracted development of the somatosensory system over childhood, whereas adaptation, as assayed in this study, is largely in place by ∼7 yr of age. PMID:26763781

  8. PAGAT gel dosimeters for dose distribution measurements in the vicinity of high-density implants: A preliminary study

    NASA Astrophysics Data System (ADS)

    Asena, A.; Kairn, T.; Crowe, S. B.; Smith, S. T.; Trapp, J. V.

    2015-01-01

    This work examined the suitability of the PAGAT gel dosimeter for use in dose distribution measurements around high-density implants. An assessment of the gels reactivity with various metals was performed and no corrosive effects were observed. An artefact reduction technique was also investigated in order to minimise scattering of the laser light in the optical CT scans. The potential for attenuation and backscatter measurements using this gel dosimeter were examined for a temporary tissue expander's internal magnetic port.

  9. Studying the default mode and its mindfulness-induced changes using EEG functional connectivity

    PubMed Central

    Glicksohn, Joseph; Goldstein, Abraham

    2014-01-01

    The default mode network (DMN) has been largely studied by imaging, but not yet by neurodynamics, using electroencephalography (EEG) functional connectivity (FC). mindfulness meditation (MM), a receptive, non-elaborative training is theorized to lower DMN activity. We explored: (i) the usefulness of EEG-FC for investigating the DMN and (ii) the MM-induced EEG-FC effects. To this end, three MM groups were compared with controls, employing EEG-FC (–MPC, mean phase coherence). Our results show that: (i) DMN activity was identified as reduced overall inter-hemispheric gamma MPC during the transition from resting state to a time production task and (ii) MM-induced a state increase in alpha MPC as well as a trait decrease in EEG-FC. The MM-induced EEG-FC decrease was irrespective of expertise or band. Specifically, there was a relative reduction in right theta MPC, and left alpha and gamma MPC. The left gamma MPC was negatively correlated with MM expertise, possibly related to lower internal verbalization. The trait lower gamma MPC supports the notion of MM-induced reduction in DMN activity, related with self-reference and mind-wandering. This report emphasizes the possibility of studying the DMN using EEG-FC as well as the importance of studying meditation in relation to it. PMID:24194576

  10. High density polyethylene (HDPE)/poly(ethylene terephthalate) (PET) polymer blend studies related to recycling co-mingled plastics

    NASA Astrophysics Data System (ADS)

    Tsai, Pang-Yen

    Polymer blends of virgin high density polyethylene (HDPE) and poly(ethylene terephthalate) (PET) were studied as an attempt to relate the microstructure to the mechanical properties of the blends. The virgin blends were prepared by extrusion and then injection molded into specimens for characterization. Two of the virgin blends were tested for possible compatibilization using a styrene-ethylene-butylene-styrene (SEBS) block copolymer. In addition, six blends of post-consumer resins (PCRs) of HDPE and PET were included in this work for comparison. The moduli of the virgin blends showed positive deviation from those expected from the rule of mixtures. The synergism of the composite moduli can be explained partly by a Poisson's effect. Yield strengths of the blends molded at low injection chamber temperatures (200sp°, 230sp°, and 250sp°C) followed the rule of mixtures well, because PET filaments found in the composites had very high length to diameter ratios. When the injection chamber temperature was above the PET melting point (˜254sp°C), PET filaments were found to break down into particles, and the yield strengths of the blends coincided with the values expected from the inverse rule of mixtures. Impact strengths of the virgin blends were much less than that of a HDPE homopolymer due to poor interfacial bonding between HDPE and PET. Compatibilization appeared to be advantageous since it dramatically improved the impact strength of the virgin blends. SEM micrographs of impact fractured surfaces revealed that the improved adhesion from compatibilization and the presence of numerous uniaxially aligned PET filaments in the HDPE substrate can account for the significant increases in fracture resistance of the compatibilized blends. Mechanical performance of the PCRs was inferior to that of the virgin blends. Aside from polymer degradation and contamination due to repeated processing and handling, absence of PET filaments and interfacial bonding could be

  11. Rehearsing biological motion in working memory: an EEG study.

    PubMed

    Gao, Zaifeng; Bentin, Shlomo; Shen, Mowei

    2015-01-01

    Holding biological motion (BM), the movements of animate entities, in working memory (WM) is important to our daily social life. However, how BM is maintained in WM remains unknown. The current study investigated this issue and hypothesized that, analogous to BM perception, the human mirror neuron system (MNS) is involved in rehearsing BM in WM. To examine the MNS hypothesis of BM rehearsal, we used an EEG index of mu suppression (8-12 Hz), which has been linked to the MNS. Using a change detection task, we manipulated the BM memory load in three experiments. We predicted that mu suppression in the maintenance phase of WM would be modulated by the BM memory load; moreover, a negative correlation between the number of BM stimuli in WM and the degree of mu suppression may emerge. The results of Experiment 1 were in line with our predictions and revealed that mu suppression increased as the memory load increased from two to four BM stimuli; however, mu suppression then plateaued, as WM could only hold, at most, four BM stimuli. Moreover, the predicted negative correlation was observed. Corroborating the findings of Experiment 1, Experiment 2 further demonstrated that once participants used verbal codes to process the motion information, the mu suppression or modulation by memory load vanished. Finally, Experiment 3 demonstrated that the findings in Experiment 1 were not limited to one specific type of stimuli. Together, these results provide evidence that the MNS underlies the process of rehearsing BM in WM. PMID:25061930

  12. Atomic force microscopic study of the structure of high-density polyethylene deformed in liquid medium by crazing mechanism.

    PubMed

    Bagrov, D V; Yarysheva, A Y; Rukhlya, E G; Yarysheva, L M; Volynskii, A L; Bakeev, N F

    2014-02-01

    A procedure has been developed for the direct atomic force microscopic (AFM) examination of the native structure of high-density polyethylene (HDPE) deformed in an adsorption-active liquid medium (AALM) by the crazing mechanism. The AFM investigation has been carried out in the presence of a liquid medium under conditions preventing deformed films from shrinkage. Deformation of HDPE in AALM has been shown to proceed through the delocalized crazing mechanism and result in the development of a fibrillar-porous structure. The structural parameters of the crazed polymer have been determined. The obtained AFM images demonstrate a nanosized nonuniformity of the deformation and enable one to observe the structural rearrangements that take place in the deformed polymer after removal of the liquid medium and stress relaxation. A structural similarity has been revealed between HDPE deformed in the AALM and hard elastic polymers. PMID:24283329

  13. A Pilot Study of EEG Source Analysis Based Repetitive Transcranial Magnetic Stimulation for the Treatment of Tinnitus

    PubMed Central

    Wang, Hui; Li, Bei; Feng, Yanmei; Cui, Biao; Wu, Hongmin; Shi, Haibo; Yin, Shankai

    2015-01-01

    Objective Repetitive Transcranial Magnetic Stimulation (rTMS) is a novel therapeutic tool to induce a suppression of tinnitus. However, the optimal target sites are unknown. We aimed to determine whether low-frequency rTMS induced lasting suppression of tinnitus by decreasing neural activity in the cortex, navigated by high-density electroencephalogram (EEG) source analysis, and the utility of EEG for targeting treatment. Methods In this controlled three-armed trial, seven normal hearing patients with tonal tinnitus received a 10-day course of 1-Hz rTMS to the cortex, navigated by high-density EEG source analysis, to the left temporoparietal cortex region, and to the left temporoparietal with sham stimulation. The Tinnitus handicap inventory (THI) and a visual analog scale (VAS) were used to assess tinnitus severity and loudness. Measurements were taken before, and immediately, 2 weeks, and 4 weeks after the end of the interventions. Results Low-frequency rTMS decreased tinnitus significantly after active, but not sham, treatment. Responders in the EEG source analysis-based rTMS group, 71.4% (5/7) patients, experienced a significant reduction in tinnitus loudness, as evidenced by VAS scores. The target site of neuronal generators most consistently associated with a positive response was the frontal lobe in the right hemisphere, sourced using high-density EEG equipment, in the tinnitus patients. After left temporoparietal rTMS stimulation, 42.8% (3/7) patients experienced a decrease in tinnitus loudness. Conclusions Active EEG source analysis based rTMS resulted in significant suppression in tinnitus loudness, showing the superiority of neuronavigation-guided coil positioning in dealing with tinnitus. Non-auditory areas should be considered in the pathophysiology of tinnitus. This knowledge in turn can contribute to investigate the pathophysiology of tinnitus. PMID:26430749

  14. Brain Networks Responsible for Sense of Agency: An EEG Study

    PubMed Central

    Shim, Miseon; Nahab, Fatta B.; Park, Jihye; Kim, Do-Won; Kakareka, John; Miletta, Nathanial; Hallett, Mark

    2015-01-01

    Background Self-agency (SA) is a person’s feeling that his action was generated by himself. The neural substrates of SA have been investigated in many neuroimaging studies, but the functional connectivity of identified regions has rarely been investigated. The goal of this study is to investigate the neural network related to SA. Methods SA of hand movements was modulated with virtual reality. We examined the cortical network relating to SA modulation with electroencephalography (EEG) power spectrum and phase coherence of alpha, beta, and gamma frequency bands in 16 right-handed, healthy volunteers. Results In the alpha band, significant relative power changes and phase coherence of alpha band were associated with SA modulation. The relative power decrease over the central, bilateral parietal, and right temporal regions (C4, Pz, P3, P4, T6) became larger as participants more effectively controlled the virtual hand movements. The phase coherence of the alpha band within frontal areas (F7-FP2, F7-Fz) was directly related to changes in SA. The functional connectivity was lower as the participants felt that they could control their virtual hand. In the other frequency bands, significant phase coherences were observed in the frontal (or central) to parietal, temporal, and occipital regions during SA modulation (Fz-O1, F3-O1, Cz-O1, C3-T4L in beta band; FP1-T6, FP1-O2, F7-T4L, F8-Cz in gamma band). Conclusions Our study suggests that alpha band activity may be the main neural oscillation of SA, which suggests that the neural network within the anterior frontal area may be important in the generation of SA. PMID:26270552

  15. Real-Time Adaptive EEG Source Separation Using Online Recursive Independent Component Analysis.

    PubMed

    Hsu, Sheng-Hsiou; Mullen, Tim R; Jung, Tzyy-Ping; Cauwenberghs, Gert

    2016-03-01

    Independent component analysis (ICA) has been widely applied to electroencephalographic (EEG) biosignal processing and brain-computer interfaces. The practical use of ICA, however, is limited by its computational complexity, data requirements for convergence, and assumption of data stationarity, especially for high-density data. Here we study and validate an optimized online recursive ICA algorithm (ORICA) with online recursive least squares (RLS) whitening for blind source separation of high-density EEG data, which offers instantaneous incremental convergence upon presentation of new data. Empirical results of this study demonstrate the algorithm's: 1) suitability for accurate and efficient source identification in high-density (64-channel) realistically-simulated EEG data; 2) capability to detect and adapt to nonstationarity in 64-ch simulated EEG data; and 3) utility for rapidly extracting principal brain and artifact sources in real 61-channel EEG data recorded by a dry and wearable EEG system in a cognitive experiment. ORICA was implemented as functions in BCILAB and EEGLAB and was integrated in an open-source Real-time EEG Source-mapping Toolbox (REST), supporting applications in ICA-based online artifact rejection, feature extraction for real-time biosignal monitoring in clinical environments, and adaptable classifications in brain-computer interfaces. PMID:26685257

  16. Resting state cortical rhythms in athletes: a high-resolution EEG study.

    PubMed

    Babiloni, Claudio; Marzano, Nicola; Iacoboni, Marco; Infarinato, Francesco; Aschieri, Pierluigi; Buffo, Paola; Cibelli, Giuseppe; Soricelli, Andrea; Eusebi, Fabrizio; Del Percio, Claudio

    2010-01-15

    The present electroencephalographic (EEG) study tested the working hypothesis that the amplitude of resting state cortical EEG rhythms (especially alpha, 8-12 Hz) was higher in elite athletes compared with amateur athletes and non-athletes, as a reflection of the efficiency of underlying back-ground neural synchronization mechanisms. Eyes closed resting state EEG data were recorded in 16 elite karate athletes, 20 amateur karate athletes, and 25 non-athletes. The EEG rhythms of interest were delta (2-4 Hz), theta (4-8 Hz), alpha 1 (8-10.5 Hz), alpha 2 (10.5-13 Hz), beta 1 (13-20 Hz), and beta 2 (20-30 Hz). EEG cortical sources were estimated by low-resolution brain electromagnetic tomography (LORETA). Statistical results showed that the amplitude of parietal and occipital alpha 1 sources was significantly higher in the elite karate athletes than in the non-athletes and karate amateur athletes. Similar results were observed in parietal and occipital delta sources as well as in occipital theta sources. Finally, a control confirmatory experiment showed that the amplitude of parietal and occipital delta and alpha 1 sources was stronger in 8 elite rhythmic gymnasts compared with 14 non-athletes. These results supported the hypothesis that cortical neural synchronization at the basis of eyes-closed resting state EEG rhythms is enhanced in elite athletes than in control subjects. PMID:19879337

  17. Development of a high-density gas-jet target for nuclear astrophysics and reaction studies with rare isotope beams. Final Report

    SciTech Connect

    Uwe, Greife

    2014-08-12

    The purpose of this project was to develop a high-density gas jet target that will enable a new program of transfer reaction studies with rare isotope beams and targets of hydrogen and helium that is not currently possible and will have an important impact on our understanding of stellar explosions and of the evolution of nuclear shell structure away from stability. This is the final closeout report for the project.

  18. Spatio-temporal dynamics of adaptation in the human visual system: A high-density electrical mapping study

    PubMed Central

    Andrade, Gizely N.; Butler, John S.; Mercier, Manuel R.; Molholm, Sophie; Foxe, John J.

    2015-01-01

    When sensory inputs are presented serially, response amplitudes to stimulus repetitions generally decrease as a function of presentation rate, diminishing rapidly as inter-stimulus-intervals (ISIs) fall below a second. This “adaptation” is believed to represent mechanisms by which sensory systems reduce responsivity to consistent environmental inputs, freeing resources to respond to potentially more relevant inputs. While auditory adaptation functions have been relatively well-characterized, considerably less is known about visual adaptation in humans. Here, high-density visual evoked potentials (VEPs) were recorded while two paradigms were used to interrogate visual adaptation. The first presented stimulus pairs with varying ISIs, comparing VEP amplitude to the second stimulus to that of the first (paired-presentation). The second involved blocks of stimulation (N=100) at various ISIs and comparison of VEP amplitude between blocks of differing ISIs (block-presentation). Robust VEP modulations were evident as a function of presentation rate in the block-paradigm with strongest modulations in the 130–150ms and 160–180ms visual processing phases. In paired-presentations, with ISIs of just 200–300 ms, an enhancement of VEP was evident when comparing S2 to S1, with no significant effect of presentation rate. Importantly, in block-presentations, adaptation effects were statistically robust at the individual participant level. These data suggest that a more taxing block-presentation paradigm is better suited to engage visual adaptation mechanisms than a paired-presentation design. The increased sensitivity of the visual processing metric obtained in the block-paradigm has implications for the examination of visual processing deficits in clinical populations. PMID:25688539

  19. Towards out-of-the-lab EEG in uncontrolled environments: Feasibility study of dry EEG recordings during exercise bike riding.

    PubMed

    Kohli, Siddharth; Casson, Alexander J

    2015-08-01

    Conventional EEG (electroencephalography) has relied on wet electrodes which require conductive gel to help the electrodes make contact with the scalp. In recent years many dry electrode EEG systems have become available that do not require this gel. As a result they are quicker and easier to set up, with the potential to record the the EEG in situations and environments where it has not previously been possible. This paper investigates the practicality of using dry EEG in new non-conventional recording situations. In particular it uses a dry EEG recording system to monitor the EEG while a subject is riding an exercise bike. The results show that good-quality EEG, free from high-amplitude motion artefacts, can be collected in this challenging motion rich environment. In the frequency domain a peak of activity is seen over the motor cortex (C4) at 23 Hz starting five minutes after the start of the exercise task, giving initial insights into the on-going operation of the brain during exercise. PMID:26736439

  20. High-density electroencephalography as an innovative tool to explore sleep physiology and sleep related disorders.

    PubMed

    Pisarenco, I; Caporro, M; Prosperetti, C; Manconi, M

    2014-01-01

    High density EEG represents a promising tool to achieve new insights regarding sleep physiology and pathology. It combines the advantages of an EEG technique as an optimal temporal resolution with the spatial resolution of the neuroimaging. So far its application in sleep research contributed to better characterize some of the peculiar microstructural figures of sleep such as spindles and K-complexes, and to understand the fundamental relationships between sleep and synaptic plasticity, learning and consciousness. Its application is not limited to neurophysiology, being recently also applied to study some sleep related psychiatric and neurological disorders such as depression, schizophrenia, attention-deficit hyperactivity disorder, and stroke. adding some interesting new pieces in the pathophysiological puzzle of these diseases. Due to its non-invasive, repetitive and reliable tempo-spatial resolution it is reasonable that the field of application of this tool will be soon enlarged to other areas of neuroscience. The present review aims to offer a complete overview regarding the use of high density EEG over the last decade in sleep research and sleep medicine, including its possible future perspective. PMID:24412343

  1. The early electroclinical manifestations of infantile spasms: A video EEG study

    PubMed Central

    Iype, Mary; Kunju, Puthuvathra Abdul Mohammed; Saradakutty, Geetha; Mohan, Devi; Khan, Shahanaz Ahamed Mohammed

    2016-01-01

    Purpose: Infantile spasms are described as flexor extensor and mixed; but more features of their semiology and ictal electroencephalography (EEG) changes are sparse in the literature. The purpose of the study was to describe the clinical and ictal video-EEG characteristics of consecutive cases with infantile spasms and to try to find an association with the etiology. Materials and Methods: The clinical phenomenology and EEG characteristics on video-EEG were analyzed in 16 babies with infantile spasms. Results: A total of 869 spasms were reviewed. Nine (56.3%) showed focal seizures at least once during the recording and 1 (6.3%) had multifocal myoclonus in addition to the spasms. The duration of the cluster and interval between spasms was totally variable in all patients. Lateralizing phenomena were present in at least some of the spasms in all patients. Unilateral manual automatism in the form of holding the pinna was noted in three patients following the spasm. The ictal EEG activity in the majority (75%) was the slow wave. Four (25%) showed fast generalized spindle-like ictal discharges. Spikes, spike and wave activity, or electrodecremental pattern alone during the ictus was seen in none. On bivariate analysis, no factor noted on the video EEG had association with the etiology. Conclusion: Infantile spasms could be associated with focal and other seizures, has unique, non-uniform and variable semiology from patient to patient. The ictal EEG manifestation in the majority (75%) of our patients was the slow wave transient with 25% showing generalized fast spindle-like activity. PMID:27011629

  2. Canonical Decomposition of Ictal Scalp EEG and Accurate Source Localisation: Principles and Simulation Study

    PubMed Central

    De Vos, Maarten; De Lathauwer, Lieven; Vanrumste, Bart; Van Huffel, Sabine; Van Paesschen, W.

    2007-01-01

    Long-term electroencephalographic (EEG) recordings are important in the presurgical evaluation of refractory partial epilepsy for the delineation of the ictal onset zones. In this paper, we introduce a new concept for an automatic, fast, and objective localisation of the ictal onset zone in ictal EEG recordings. Canonical decomposition of ictal EEG decomposes the EEG in atoms. One or more atoms are related to the seizure activity. A single dipole was then fitted to model the potential distribution of each epileptic atom. In this study, we performed a simulation study in order to estimate the dipole localisation error. Ictal dipole localisation was very accurate, even at low signal-to-noise ratios, was not affected by seizure activity frequency or frequency changes, and was minimally affected by the waveform and depth of the ictal onset zone location. Ictal dipole localisation error using 21 electrodes was around 10.0 mm and improved more than tenfold in the range of 0.5–1.0 mm using 148 channels. In conclusion, our simulation study of canonical decomposition of ictal scalp EEG allowed a robust and accurate localisation of the ictal onset zone. PMID:18301715

  3. Modulation of cortical activity as a result of voluntary postural sway direction: an EEG study

    PubMed Central

    Slobounov, Semyon; Hallett, Mark; Cao, Cheng; Newell, Karl

    2008-01-01

    There is increasing evidence demonstrating the role of the cerebral cortex in human postural control. Modulation of EEG both in voltage and frequency domains has been observed preceding and following self-paced postural movements and those induced by external perturbations. The current study set out to provide additional evidence regarding the role of cerebral cortex in human postural control by specifically examining modulation of EEG as a function of postural sway direction. Twelve neurologically normal subjects were instructed to produce self-paced voluntary postural sways in the anterior-posterior (AP) and medial-lateral (ML) directions. The center of pressure dynamics and EEG both in voltage and frequency domains were extracted by averaging and Morlet wavelet techniques, respectively. The amplitude of movement-related cortical potentials (MRCP) was significantly higher preceding ML sways. Also, time-frequency wavelet coefficients (TF) indicated differential modulation of EEG within alpha, beta and gamma bands as a function of voluntary postural sway direction. Thus, ML sway appear to be more difficult and energy demanding tasks than the AP sway as reflected in differential modulation of EEG. These results are discussed within the conceptual framework of differential patterns of brain activation as a result of postural task complexity. PMID:18639613

  4. A Feasibility Study on a Single-Unit Wireless EEG Sensor

    PubMed Central

    Luan, Bo; Jia, Wenyan; Thirumala, Parthasarathy D.; Balzer, Jeffrey; Gao, Di; Sun, Mingui

    2015-01-01

    The electroencephalography (EEG) is a widely used diagnostic tool for a number of clinical applications, such as diagnosis of epilepsy and study of sleep. Traditionally, to acquire a single channel of EEG signal, at least three electrodes must be installed on the skin separated at certain distances. They must also be connected to an amplifier by electrode leads. These basic requirements are acceptable in most clinical laboratories, but are unacceptable in certain point-of-care applications, such as during patient transportation. In order to remove these requirements, we are designing a single-unit EEG sensor in the size of a U.S. penny. It contains multiple closely spaced dry electrodes that can hook onto the skin, an electronic circuitry for signal amplification, digitization and wireless transmission, and a battery providing power. In this paper, we answer two key questions regarding the feasibility of the single-unit design: 1) can the closely-spaced electrodes obtain EEG signal reliably? and 2) will the electrodes orientated in certain ways improve signal quality? We conducted experiments utilizing closely spaced electrodes to record the alpha wave in the EEG. Our results have shown positive answers to the two feasibility questions. PMID:26213719

  5. Human memory retention and recall processes. A review of EEG and fMRI studies.

    PubMed

    Amin, Hafeezullah; Malik, Aamir S

    2013-10-01

    Human memory is an important concept in cognitive psychology and neuroscience. Our brain is actively engaged in functions of learning and memorization. Generally, human memory has been classified into 2 groups: short-term/working memory, and long-term memory. Using different memory paradigms and brain mapping techniques, psychologists and neuroscientists have identified 3 memory processes: encoding, retention, and recall. These processes have been studied using EEG and functional MRI (fMRI) in cognitive and neuroscience research. This study reviews previous research reported for human memory processes, particularly brain behavior in memory retention and recall processes with the use of EEG and fMRI. We discuss issues and challenges related to memory research with EEG and fMRI techniques. PMID:24141456

  6. High density circuit technology

    NASA Technical Reports Server (NTRS)

    Wade, T. E.

    1979-01-01

    Polyimide dielectric materials were acquired for comparative and evaluative studies in double layer metal processes. Preliminary experiments were performed. Also, the literature indicates that sputtered aluminum films may be successfully patterned using the left-off technique provided the substrate temperature remains low and the argon pressure in the chamber is relatively high at the time of sputtering. Vendors associated with dry processing equipment are identified. A literature search relative to future trends in VLSI fabrication techniques is described.

  7. On the interpretation of synchronization in EEG hyperscanning studies: a cautionary note.

    PubMed

    Burgess, Adrian P

    2013-01-01

    EEG Hyperscanning is a method for studying two or more individuals simultaneously with the objective of elucidating how co-variations in their neural activity (i.e., hyperconnectivity) are influenced by their behavioral and social interactions. The aim of this study was to compare the performance of different hyper-connectivity measures using (i) simulated data, where the degree of coupling could be systematically manipulated, and (ii) individually recorded human EEG combined into pseudo-pairs of participants where no hyper-connections could exist. With simulated data we found that each of the most widely used measures of hyperconnectivity were biased and detected hyper-connections where none existed. With pseudo-pairs of human data we found spurious hyper-connections that arose because there were genuine similarities between the EEG recorded from different people independently but under the same experimental conditions. Specifically, there were systematic differences between experimental conditions in terms of the rhythmicity of the EEG that were common across participants. As any imbalance between experimental conditions in terms of stimulus presentation or movement may affect the rhythmicity of the EEG, this problem could apply in many hyperscanning contexts. Furthermore, as these spurious hyper-connections reflected real similarities between the EEGs, they were not Type-1 errors that could be overcome by some appropriate statistical control. However, some measures that have not previously been used in hyperconnectivity studies, notably the circular correlation co-efficient (CCorr), were less susceptible to detecting spurious hyper-connections of this type. The reason for this advantage in performance is discussed and the use of the CCorr as an alternative measure of hyperconnectivity is advocated. PMID:24399948

  8. On the interpretation of synchronization in EEG hyperscanning studies: a cautionary note

    PubMed Central

    Burgess, Adrian P.

    2013-01-01

    EEG Hyperscanning is a method for studying two or more individuals simultaneously with the objective of elucidating how co-variations in their neural activity (i.e., hyperconnectivity) are influenced by their behavioral and social interactions. The aim of this study was to compare the performance of different hyper-connectivity measures using (i) simulated data, where the degree of coupling could be systematically manipulated, and (ii) individually recorded human EEG combined into pseudo-pairs of participants where no hyper-connections could exist. With simulated data we found that each of the most widely used measures of hyperconnectivity were biased and detected hyper-connections where none existed. With pseudo-pairs of human data we found spurious hyper-connections that arose because there were genuine similarities between the EEG recorded from different people independently but under the same experimental conditions. Specifically, there were systematic differences between experimental conditions in terms of the rhythmicity of the EEG that were common across participants. As any imbalance between experimental conditions in terms of stimulus presentation or movement may affect the rhythmicity of the EEG, this problem could apply in many hyperscanning contexts. Furthermore, as these spurious hyper-connections reflected real similarities between the EEGs, they were not Type-1 errors that could be overcome by some appropriate statistical control. However, some measures that have not previously been used in hyperconnectivity studies, notably the circular correlation co-efficient (CCorr), were less susceptible to detecting spurious hyper-connections of this type. The reason for this advantage in performance is discussed and the use of the CCorr as an alternative measure of hyperconnectivity is advocated. PMID:24399948

  9. Heritability and Molecular-Genetic Basis of Resting EEG Activity: A Genome-Wide Association Study

    PubMed Central

    Malone, Stephen M.; Burwell, Scott J.; Vaidyanathan, Uma; Miller, Michael B.; McGue, Matt; Iacono, William G.

    2014-01-01

    Several EEG parameters are potential endophenotypes for different psychiatric disorders. The present study consists of a comprehensive behavioral- and molecular-genetic analysis of such parameters in a large community sample (N = 4,026) of adolescent twins and their parents, genotyped for 527,829 single nucleotide polymorphisms (SNPs). Biometric heritability estimates ranged from .49 to .85, with a median of .78. The additive effect of all SNPs (SNP heritability) varied across electrodes. Although individual SNPs were not significantly associated with EEG parameters, several genes were associated with delta power. We also obtained an association between the GABRA2 gene and beta power (p < .014), consistent with findings reported by others, although this did not survive Bonferroni correction. If EEG parameters conform to a largely polygenic model of inheritance, larger sample sizes will be required to detect individual variants reliably. PMID:25387704

  10. High density circuit technology

    NASA Technical Reports Server (NTRS)

    Wade, T. E.

    1980-01-01

    Acquisition of polyimide materials for inter-metal dielectrics was obtained from three vendors, with considerable evaluation conducted on the Dupont PI2550 material. Experimental results indicate this material can be patterned using contact printing to line width far below 0.1 mils. Optimum line width is acquired using plasma etch equipment. Metal lift-off experiments on thermal evaporated films were optimized for application to sputtered deposited films. Alternate metal-lift-off experiments are proposed for future investigation. Dry processing equipment studies and future trends in VLSI fabrication techniques are on-going.

  11. Study of the influence of a strong magnetic field on the composition of nuclear matter at high densities and zero temperature

    SciTech Connect

    Coelho, Eduardo L.; Chiapparini, Marcelo; Bracco, Mirian E.

    2013-03-25

    Magnetars are neutron stars with a strong surface magnetic field. Observations of soft gamma-ray and anomalous X-ray pulsars pointed out that the surface magnetic field of magnetars is equal or even greater than 10{sup 15} G. In this work we study the influence of a strong magnetic field on the composition of nuclear matter at high densities and zero temperature. We describe the matter through a relativistic mean-field model with eight light baryons (baryon octet), electrons, muons and with magnetic field. As output of the numerical calculations, we obtain the relative population of each species of particles as function of baryon density.

  12. [The dynamics of emotional states in patients with epilepsy. A phenomenologic EEG analysis study].

    PubMed

    Machleidt, W

    1991-06-01

    The history of the main ideas of psychogenetic epilepsy-theory is outlined. Using the antithesis of omnipotency and impotency further implications of this theoretical approach are explained. Epileptic patients suffer from a deficient structure of their self and do not overcome infantile obsolutistic thought, behavioral and emotional patterns. Their behavior and symptoms exhibit the characteristics of the "all or nothing schema". In particular conflict solving strategies of epileptics consist either in an exaggerated spirit of toleration or in violent outbursts of aggression. Destructive fits of rage, epileptic fits and psychotic derangements can be understood as manifestations of aggression on ontogenetically earlier developmental stages. From this point of view we studied the influence of the emotional states of epileptics on EEG-background activity and discharges: Conflict-centered interviews were recorded simultaneously in ten epileptic patients with EEG- and video-techniques. FFT-spectralanalysed EEG-data and discharges from visually evaluated EEG-records were correlated with hermeneutic analyses and the ratings of the emotional states. Results show significant correlations between spectral EEG-parameters and aggression, anxiety, sorrow and joy. These results were validated by further studies. Normal aggressive episodes were correlated with an increase of power in all frequency-bands. Epileptic discharges occurred in over or latent aggressive impulses. In the theory of the "Kontinuitätsparadigma" a parallelism of two transitional stages is suggested: ranging from normal to pathological aggression with all its symptoms and from EEG-dynamics in normal aggression to typical discharges in epileptic aggression. The latter represents the extreme pathological end of the stage while the former is its starting-point. PMID:1885119

  13. The application study of wavelet packet transformation in the de-noising of dynamic EEG data.

    PubMed

    Li, Yifeng; Zhang, Lihui; Li, Baohui; Wei, Xiaoyang; Yan, Guiding; Geng, Xichen; Jin, Zhao; Xu, Yan; Wang, Haixia; Liu, Xiaoyan; Lin, Rong; Wang, Quan

    2015-01-01

    This paper briefly describes the basic principle of wavelet packet analysis, and on this basis introduces the general principle of wavelet packet transformation for signal den-noising. The dynamic EEG data under +Gz acceleration is made a de-noising treatment by using wavelet packet transformation, and the de-noising effects with different thresholds are made a comparison. The study verifies the validity and application value of wavelet packet threshold method for the de-noising of dynamic EEG data under +Gz acceleration. PMID:26405863

  14. Lateralization of Auditory Language: An EEG Study of Bilingual Crow Indian Adolescents.

    ERIC Educational Resources Information Center

    Vocate, Donna R.

    A study was undertaken to learn whether involvement of the brain's right hemisphere in auditory language processing, a phenomenon found in a previous study of Crow-English bilinguals, was language-specific. Alpha blocking response as measured by electroencephalography (EEG) was used as an indicator of brain activity. It was predicted that (1)…

  15. Comparison of Brain Activity during Drawing and Clay Sculpting: A Preliminary qEEG Study

    ERIC Educational Resources Information Center

    Kruk, Kerry A.; Aravich, Paul F.; Deaver, Sarah P.; deBeus, Roger

    2014-01-01

    A preliminary experimental study examined brain wave frequency patterns of female participants (N = 14) engaged in two different art making conditions: clay sculpting and drawing. After controlling for nonspecific effects of movement, quantitative electroencephalographic (qEEG) recordings were made of the bilateral medial frontal cortex and…

  16. Diagnostic accuracy of microEEG: a miniature, wireless EEG device.

    PubMed

    Grant, Arthur C; Abdel-Baki, Samah G; Omurtag, Ahmet; Sinert, Richard; Chari, Geetha; Malhotra, Schweta; Weedon, Jeremy; Fenton, Andre A; Zehtabchi, Shahriar

    2014-05-01

    Measuring the diagnostic accuracy (DA) of an EEG device is unconventional and complicated by imperfect interrater reliability. We sought to compare the DA of a miniature, wireless, battery-powered EEG device ("microEEG") to a reference EEG machine in emergency department (ED) patients with altered mental status (AMS). Two hundred twenty-five ED patients with AMS underwent 3 EEGs. Two EEGs, EEG1 (Nicolet Monitor, "reference") and EEG2 (microEEG) were recorded simultaneously with EEG cup electrodes using a signal splitter. The remaining study, EEG3, was recorded with microEEG using an electrode cap immediately before or after EEG1/EEG2. The official EEG1 interpretation was considered the gold standard (EEG1-GS). EEG1, 2, and 3 were de-identified and blindly interpreted by two independent readers. A generalized mixed linear model was used to estimate the sensitivity and specificity of these interpretations relative to EEG1-GS and to compute a diagnostic odds ratio (DOR). Seventy-nine percent of EEG1-GS were abnormal. Neither the DOR nor the κf representing interrater reliabilities differed significantly between EEG1, EEG2, and EEG3. The mean setup time was 27 min for EEG1/EEG2 and 12 min for EEG3. The mean electrode impedance of EEG3 recordings was 12.6 kΩ (SD: 31.9 kΩ). The diagnostic accuracy of microEEG was comparable to that of the reference system and was not reduced when the EEG electrodes had high and unbalanced impedances. A common practice with many scientific instruments, measurement of EEG device DA provides an independent and quantitative assessment of device performance. PMID:24727466

  17. Hemodynamic and EEG Time-Courses During Unilateral Hand Movement in Patients with Cortical Myoclonus. An EEG-fMRI and EEG-TD-fNIRS Study.

    PubMed

    Visani, E; Canafoglia, L; Gilioli, I; Sebastiano, D Rossi; Contarino, V E; Duran, D; Panzica, F; Cubeddu, R; Contini, D; Zucchelli, L; Spinelli, L; Caffini, M; Molteni, E; Bianchi, A M; Cerutti, S; Franceschetti, S; Torricelli, A

    2015-11-01

    Multimodal human brain mapping has been proposed as an integrated approach capable of improving the recognition of the cortical correlates of specific neurological functions. We used simultaneous EEG-fMRI (functional magnetic resonance imaging) and EEG-TD-fNIRS (time domain functional near-infrared spectroscopy) recordings to compare different hemodynamic methods with changes in EEG in ten patients with progressive myoclonic epilepsy and 12 healthy controls. We evaluated O2Hb, HHb and Blood oxygen level-dependent (BOLD) changes and event-related desynchronization/synchronization (ERD/ERS) in the α and β bands of all of the subjects while they performed a simple motor task. The general linear model was used to obtain comparable fMRI and TD-fNIRS activation maps. We also analyzed cortical thickness in order to evaluate any structural changes. In the patients, the TD-NIRS and fMRI data significantly correlated and showed a significant lessening of the increase in O2Hb and the decrease in BOLD. The post-movement β rebound was minimal or absent in patients. Cortical thickness was moderately reduced in the motor area of the patients and correlated with the reduction in the hemodynamic signals. The fMRI and TD-NIRS results were consistent, significantly correlated and showed smaller hemodynamic changes in the patients. This finding may be partially attributable to mild cortical thickening. However, cortical hyperexcitability, which is known to generate myoclonic jerks and probably accounts for the lack of EEG β-ERS, did not reflect any increased energy requirement. We hypothesize that this is due to a loss of inhibitory neuronal components that typically fire at high frequencies. PMID:25253050

  18. High density modular avionics packaging

    NASA Astrophysics Data System (ADS)

    Poradish, F.

    Requirements and design configurations for high density modular avionics packaging are examined, with particular attention given to new hardware trends, the design of high-density standard modules (HDSM's), and HDSM requirements. The discussion of the HDSM's covers thermal management, system testability, power supply, and performance specifications. The general design of an integrated HDSM demonstration system currently under construction is briefly described, and some test data are presented.

  19. Study of diffusion bond development in 6061 aluminum and its relationship to future high density fuels fabrication.

    SciTech Connect

    Prokofiev, I.; Wiencek, T.; McGann, D.

    1997-10-07

    Powder metallurgy dispersions of uranium alloys and silicides in an aluminum matrix have been developed by the RERTR program as a new generation of proliferation-resistant fuels. Testing is done with miniplate-type fuel plates to simulate standard fuel with cladding and matrix in plate-type configurations. In order to seal the dispersion fuel plates, a diffusion bond must exist between the aluminum coverplates surrounding the fuel meat. Four different variations in the standard method for roll-bonding 6061 aluminum were studied. They included mechanical cleaning, addition of a getter material, modifications to the standard chemical etching, and welding methods. Aluminum test pieces were subjected to a bend test after each rolling pass. Results, based on 400 samples, indicate that at least a 70% reduction in thickness is required to produce a diffusion bond using the standard rollbonding method versus a 60% reduction using the Type II method in which the assembly was welded 100% and contained open 9mm holes at frame corners.

  20. Streaked optical pyrometry of ion heated compound targets in the study of plasma mix at high density interfaces

    NASA Astrophysics Data System (ADS)

    Dyer, Gilliss; Roycroft, Rebecca; Wagner, Craig; Bernstein, Aaron; Ditmire, Todd; Hegelich, B. Manuel; Albright, Brian; Fernández, Juan; Bang, Woosuk; Bradley, Paul; Gautier, D. Cort; Hamilton, Christopher; Palaniyappan, Sasi; Santiago Cordoba, Miguel; Vold, Erik; Lin, Yin

    2015-11-01

    The interaction and mixing of different species of plasma at high energy density is of fundamental interest for HED physics and relevant to inertial confinement fusion. An ongoing campaign is underway at the Trident laser facility to study the dynamics at the interface of high and low atomic number materials under warm dense matter conditions. The experiments utilize laser-accelerated ions, such as aluminum, to flash heat solid targets to temperatures >1 eV. We report on streaked pyrometry measurements made in a recent experimental run, which shed light on the dynamics of heating induced in various target materials by these ion sources. Timescale as well as spatial extent of the heating can vary greatly depending on the dominant ion species and spectra. This work was supported by NNSA cooperative agreement DE-NA0002008 and the Los Alamos National Laboratory Directed Research and Development Program under the auspices of the U.S. DOE NNSAS, LLC, Los Alamos National Laboratory under Contract No. DE-AC52-06.

  1. Spatiotemporally dissociable neural signatures for generating and updating expectation over time in children: A High Density-ERP study.

    PubMed

    Mento, Giovanni; Vallesi, Antonino

    2016-06-01

    Temporal orienting (TO) is the allocation of attentional resources in time based on the a priori generation of temporal expectancy of relevant stimuli as well as the a posteriori updating of this expectancy as a function of both sensory-based evidence and elapsing time. These processes rely on dissociable cognitive mechanisms and neural networks. Yet, although there is evidence that TO may be a core mechanism for cognitive functioning in childhood, the developmental spatiotemporal neural dynamics of this mechanism are little understood. In this study we employed a combined approach based on the application of distributed source reconstruction on a high spatial resolution ERP data array obtained from eighteen 8- to 12-year-old children completing a TO paradigm in which both the cue (Temporal vs. Neutral) and the SOA (Short vs. Long) were manipulated. Results show both cue (N1) and SOA (CNV, Omission Detection Potential and Anterior Anticipatory Index) ERP effects, which were associated with expectancy generation and updating, respectively. Only cue-related effects were correlated with age, as revealed by a reduction of the N1 delta effect with increasing age. Our data suggest that the neural correlates underlying TO are already established at least from 8 to 12 years of age. PMID:26946428

  2. Flow Regime Study in a Circulating Fluidized Bed Riser with an Abrupt Exit: [1] High Density Suspension

    SciTech Connect

    Mei, J.S.; Lee, G.T.; Seachman, S.M.; Ludlow, J.C.; Shadle, L.J.

    2008-05-13

    Flow regime study was conducted in a 0.3 m diameter, 15.5 m tall circulating fluidized bed (CFB) riser with an abrupt exit at the National Energy Technology Laboratory of the U. S. Department of Energy. A statistical designed test series was conducted including four (4) operating set points and a duplicated center point (therefore a total of 6 operating set points). Glass beads of mean diameter 200 μm and particle density of 2,430 kg/m3 were used as bed material. The CFB riser was operated at various superficial gas velocities ranging from 5.6 to 7.6 m/s and solid mass flux from a low of 86 to a high of 303 kg/m2-s. Results of the apparent solids fraction profile as well as the radial particle velocity profile were analyzed in order to identify the presence of Dense Suspension Upflow (DSU) conditions. DSU regime was found to exist at the bottom of the riser, while the middle section of the riser was still exhibiting core-annular flow structure. Due to the abrupt geometry of the exit, the DSU regime was also found at the top of the riser. In addition the effects of the azimuthal angle, riser gas velocity, and mass solids flux on the particle velocity were investigated and are discussed in this paper.

  3. A high density physical map of chromosome 1BL supports evolutionary studies, map-based cloning and sequencing in wheat

    PubMed Central

    2013-01-01

    Background As for other major crops, achieving a complete wheat genome sequence is essential for the application of genomics to breeding new and improved varieties. To overcome the complexities of the large, highly repetitive and hexaploid wheat genome, the International Wheat Genome Sequencing Consortium established a chromosome-based strategy that was validated by the construction of the physical map of chromosome 3B. Here, we present improved strategies for the construction of highly integrated and ordered wheat physical maps, using chromosome 1BL as a template, and illustrate their potential for evolutionary studies and map-based cloning. Results Using a combination of novel high throughput marker assays and an assembly program, we developed a high quality physical map representing 93% of wheat chromosome 1BL, anchored and ordered with 5,489 markers including 1,161 genes. Analysis of the gene space organization and evolution revealed that gene distribution and conservation along the chromosome results from the superimposition of the ancestral grass and recent wheat evolutionary patterns, leading to a peak of synteny in the central part of the chromosome arm and an increased density of non-collinear genes towards the telomere. With a density of about 11 markers per Mb, the 1BL physical map provides 916 markers, including 193 genes, for fine mapping the 40 QTLs mapped on this chromosome. Conclusions Here, we demonstrate that high marker density physical maps can be developed in complex genomes such as wheat to accelerate map-based cloning, gain new insights into genome evolution, and provide a foundation for reference sequencing. PMID:23800011

  4. Classification of quantitative EEG data by an artificial neural network: a preliminary study.

    PubMed

    Riquelme, L A; Zanuto, B S; Murer, M G; Lombardo, R J

    1996-01-01

    Previous studies from different laboratories have suggested that qEEG could be useful for distinguishing dementia from normality. Our aims were: (1) to study the ability of qEEG to distinguish dementia among different pathological conditions in ambulatory settings; (2) to compare the ability of classical statistical analysis and of neural networks in classifying qEEG data. We were able to obtain a multiple discriminant function using a training set of patients, which classified correctly more than 91% of the qEEGs from an independent group of patients, with less than 5% of false positives. Kohonen's neural network was trained with the same set of patients. This unsupervised learning artificial neural network performed the classification of the independent sample with an accuracy comparable to that of the multiple discriminant function. Our results suggest that the use of unsupervised learning algorithms could be an interesting alternative in the classification of data obtained from psychiatric patients where definition of their clinical profile is not always a simple task. PMID:8927227

  5. EEG correlates of spontaneous self-referential thoughts: a cross-cultural study.

    PubMed

    Knyazev, Gennady G; Savostyanov, Alexander N; Volf, Nina V; Liou, Michelle; Bocharov, Andrey V

    2012-11-01

    The default mode network (DMN) has been mostly investigated using positron emission tomography and functional magnetic resonance imaging (fMRI) and has received mixed support in electroencephalographic (EEG) studies. In this study, after sLORETA transformation of EEG data, we applied group spatial independent component analysis which is routinely used in fMRI research. In three large and diverse samples coming from two different cultures (Russian and Taiwanese), spontaneous EEG data and retrospective questionnaire measures of subject's state, thoughts, and feelings during the EEG registration were collected. Regression analyses showed that appearance of spontaneous self-referential thoughts was best predicted by enhanced alpha activity within the DMN. Diminished theta and delta activity in the superior frontal gyrus and enhanced beta activity in the postcentral gyrus added to the prediction. The enhanced alpha activity prevailed in the posterior DMN hub in Russian, but in the anterior DMN hub in Taiwanese participants. Possible cross-cultural differences in personality and attitudes underlying this difference are discussed. PMID:22985738

  6. Time-varying correlations between delta EEG power and heart rate variability in midlife women: The SWAN Sleep Study

    PubMed Central

    Rothenberger, Scott D.; Krafty, Robert T.; Taylor, Briana J.; Cribbet, Matthew R.; Thayer, Julian F.; Buysse, Daniel J.; Kravitz, Howard M.; Buysse, Evan D.; Hall, Martica H.

    2014-01-01

    No studies have evaluated the dynamic, time-varying, relationship between delta electroencephalographic (EEG) sleep and high frequency heart rate variability (HF-HRV) in women. Delta EEG and HF-HRV were measured during sleep in 197 midlife women (Mage =52.1, SD =2.2). Delta EEG-HF-HRV correlations in Non-Rapid Eye Movement (NREM) sleep were modeled as whole night averages and as continuous functions of time. The whole-night delta EEG-HF-HRV correlation was positive. Strongest correlations were observed during the first NREM sleep period preceding and following peak delta power. Time-varying correlations between delta EEG-HF-HRV were stronger in participants with sleep-disordered breathing and self-reported insomnia compared to healthy controls. The dynamic interplay between sleep and autonomic activity can be modeled across the night to examine within- and between-participant differences including individuals with and without sleep disorders. PMID:25431173

  7. Contradictory Reasoning Network: An EEG and fMRI Study

    PubMed Central

    Thai, Ngoc Jade; Seri, Stefano; Rotshtein, Pia; Tecchio, Franca

    2014-01-01

    Contradiction is a cornerstone of human rationality, essential for everyday life and communication. We investigated electroencephalographic (EEG) and functional magnetic resonance imaging (fMRI) in separate recording sessions during contradictory judgments, using a logical structure based on categorical propositions of the Aristotelian Square of Opposition (ASoO). The use of ASoO propositions, while controlling for potential linguistic or semantic confounds, enabled us to observe the spatial temporal unfolding of this contradictory reasoning. The processing started with the inversion of the logical operators corresponding to right middle frontal gyrus (rMFG-BA11) activation, followed by identification of contradictory statement associated with in the right inferior frontal gyrus (rIFG-BA47) activation. Right medial frontal gyrus (rMeFG, BA10) and anterior cingulate cortex (ACC, BA32) contributed to the later stages of process. We observed a correlation between the delayed latency of rBA11 response and the reaction time delay during inductive vs. deductive reasoning. This supports the notion that rBA11 is crucial for manipulating the logical operators. Slower processing time and stronger brain responses for inductive logic suggested that examples are easier to process than general principles and are more likely to simplify communication. PMID:24667491

  8. Investigating Cooperative Behavior in Ecological Settings: An EEG Hyperscanning Study.

    PubMed

    Toppi, Jlenia; Borghini, Gianluca; Petti, Manuela; He, Eric J; De Giusti, Vittorio; He, Bin; Astolfi, Laura; Babiloni, Fabio

    2016-01-01

    The coordinated interactions between individuals are fundamental for the success of the activities in some professional categories. We reported on brain-to-brain cooperative interactions between civil pilots during a simulated flight. We demonstrated for the first time how the combination of neuroelectrical hyperscanning and intersubject connectivity could provide indicators sensitive to the humans' degree of synchronization under a highly demanding task performed in an ecological environment. Our results showed how intersubject connectivity was able to i) characterize the degree of cooperation between pilots in different phases of the flight, and ii) to highlight the role of specific brain macro areas in cooperative behavior. During the most cooperative flight phases pilots showed, in fact, dense patterns of interbrain connectivity, mainly linking frontal and parietal brain areas. On the contrary, the amount of interbrain connections went close to zero in the non-cooperative phase. The reliability of the interbrain connectivity patterns was verified by means of a baseline condition represented by formal couples, i.e. pilots paired offline for the connectivity analysis but not simultaneously recorded during the flight. Interbrain density was, in fact, significantly higher in real couples with respect to formal couples in the cooperative flight phases. All the achieved results demonstrated how the description of brain networks at the basis of cooperation could effectively benefit from a hyperscanning approach. Interbrain connectivity was, in fact, more informative in the investigation of cooperative behavior with respect to established EEG signal processing methodologies applied at a single subject level. PMID:27124558

  9. Investigating Cooperative Behavior in Ecological Settings: An EEG Hyperscanning Study

    PubMed Central

    Petti, Manuela; He, Eric J.; De Giusti, Vittorio; He, Bin; Astolfi, Laura; Babiloni, Fabio

    2016-01-01

    The coordinated interactions between individuals are fundamental for the success of the activities in some professional categories. We reported on brain-to-brain cooperative interactions between civil pilots during a simulated flight. We demonstrated for the first time how the combination of neuroelectrical hyperscanning and intersubject connectivity could provide indicators sensitive to the humans’ degree of synchronization under a highly demanding task performed in an ecological environment. Our results showed how intersubject connectivity was able to i) characterize the degree of cooperation between pilots in different phases of the flight, and ii) to highlight the role of specific brain macro areas in cooperative behavior. During the most cooperative flight phases pilots showed, in fact, dense patterns of interbrain connectivity, mainly linking frontal and parietal brain areas. On the contrary, the amount of interbrain connections went close to zero in the non-cooperative phase. The reliability of the interbrain connectivity patterns was verified by means of a baseline condition represented by formal couples, i.e. pilots paired offline for the connectivity analysis but not simultaneously recorded during the flight. Interbrain density was, in fact, significantly higher in real couples with respect to formal couples in the cooperative flight phases. All the achieved results demonstrated how the description of brain networks at the basis of cooperation could effectively benefit from a hyperscanning approach. Interbrain connectivity was, in fact, more informative in the investigation of cooperative behavior with respect to established EEG signal processing methodologies applied at a single subject level. PMID:27124558

  10. A comparative study of synchrony measures for the early diagnosis of Alzheimer's disease based on EEG.

    PubMed

    Dauwels, J; Vialatte, F; Musha, T; Cichocki, A

    2010-01-01

    It is well known that EEG signals of Alzheimer's disease (AD) patients are generally less synchronous than in age-matched control subjects. However, this effect is not always easily detectable. This is especially the case for patients in the pre-symptomatic phase, commonly referred to as mild cognitive impairment (MCI), during which neuronal degeneration is occurring prior to the clinical symptoms appearance. In this paper, various synchrony measures are studied in the context of AD diagnosis, including the correlation coefficient, mean-square and phase coherence, Granger causality, phase synchrony indices, information-theoretic divergence measures, state space based measures, and the recently proposed stochastic event synchrony measures. Experiments with EEG data show that many of those measures are strongly correlated (or anti-correlated) with the correlation coefficient, and hence, provide little complementary information about EEG synchrony. Measures that are only weakly correlated with the correlation coefficient include the phase synchrony indices, Granger causality measures, and stochastic event synchrony measures. In addition, those three families of synchrony measures are mutually uncorrelated, and therefore, they each seem to capture a specific kind of interdependence. For the data set at hand, only two synchrony measures are able to convincingly distinguish MCI patients from age-matched control patients, i.e., Granger causality (in particular, full-frequency directed transfer function) and stochastic event synchrony. Those two measures are used as features to distinguish MCI patients from age-matched control subjects, yielding a leave-one-out classification rate of 83%. The classification performance may be further improved by adding complementary features from EEG; this approach may eventually lead to a reliable EEG-based diagnostic tool for MCI and AD. PMID:19573607

  11. Human brain cortical correlates of short-latency afferent inhibition: a combined EEG-TMS study.

    PubMed

    Ferreri, Florinda; Ponzo, David; Hukkanen, Taina; Mervaala, Esa; Könönen, Mervi; Pasqualetti, Patrizio; Vecchio, Fabrizio; Rossini, Paolo Maria; Määttä, Sara

    2012-07-01

    When linking in time electrical stimulation of the peripheral nerve with transcranial magnetic stimulation (TMS), the excitability of the motor cortex can be modulated to evoke clear inhibition, as reflected by the amplitude decrement in the motor-evoked potentials (MEPs). This specific property, designated short-latency afferent inhibition (SAI), occurs when the nerve-TMS interstimulus interval (ISI) is approximately 25 ms and is considered to be a corticothalamic phenomenon. The aim of the present study was to use the electroencephalographic (EEG) responses to navigated-TMS coregistration to better characterize the neuronal circuits underlying SAI. The present experimental set included magnetic resonance imaging (MRI)-navigated TMS and 60-channel TMS-compatible EEG devices. TMS-evoked EEG responses and MEPs were analyzed in eight healthy volunteers; ISIs between median nerve and cortical stimulation were determined relative to the latency of the individual N20 component of the somatosensory-evoked potential (SEP) obtained after stimulation of the median nerve. ISIs from the latency of the N20 plus 3 ms and N20 plus 10 ms were investigated. In all experimental conditions, TMS-evoked EEG responses were characterized by a sequence of negative deflections peaking at approximately 7, 44, and 100 ms alternating with positive peaks at approximately 30, 60, and 180 ms post-TMS. Moreover, ISI N20+3 ms modulated both EEG-evoked activity and MEPs. In particular, it inhibited MEP amplitudes, attenuated cortical P60 and N100 responses, and induced motor cortex beta rhythm selective decrement of phase locking. The findings of the present experiment suggest the cortical origin of SAI that could result from the cortico-cortical activation of GABAergic-mediated inhibition onto the corticospinal neurons modulated by cholinergic activation able to reducing intralaminar inhibition and promoting intracolumnar inhibition. PMID:22457460

  12. The Effect of Residing Altitude on Levels of High-Density Lipoprotein Cholesterol: A Pilot Study From the Omani Arab Population.

    PubMed

    Al Riyami, Nafila B; Banerjee, Yajnavalka; Al-Waili, Khalid; Rizvi, Syed G; Al-Yahyaee, Said; Hassan, Mohammed O; Albarwani, Sulayma; Al-Rasadi, Khalid; Bayoumi, Riad A

    2015-07-01

    Lower mortality rates from coronary heart disease and higher levels of serum high-density lipoprotein cholesterol (HDL-C) have been observed in populations residing at high altitude. However, this effect has not been investigated in Arab populations, which exhibit considerable genetic homogeneity. We assessed the relationship between residing altitude and HDL-C in 2 genetically similar Omani Arab populations residing at different altitudes. The association between the levels of HDL-C and other metabolic parameters was also investigated. The levels of HDL-C were significantly higher in the high-altitude group compared with the low-altitude group. Stepwise regression analysis showed that altitude was the most significant factor affecting HDL-C, followed by gender, serum triglycerides, and finally the 2-hour postprandial plasma glucose. This finding is consistent with previously published studies from other populations and should be taken into consideration when comparing cardiovascular risk factors in populations residing at different altitudes. PMID:25078070

  13. Photoionization and High Density Gas

    NASA Technical Reports Server (NTRS)

    Kallman, T.; Bautista, M.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We present results of calculations using the XSTAR version 2 computer code. This code is loosely based on the XSTAR v.1 code which has been available for public use for some time. However it represents an improvement and update in several major respects, including atomic data, code structure, user interface, and improved physical description of ionization/excitation. In particular, it now is applicable to high density situations in which significant excited atomic level populations are likely to occur. We describe the computational techniques and assumptions, and present sample runs with particular emphasis on high density situations.

  14. Sleep misperception, EEG characteristics and autonomic nervous system activity in primary insomnia: a retrospective study on polysomnographic data.

    PubMed

    Maes, J; Verbraecken, J; Willemen, M; De Volder, I; van Gastel, A; Michiels, N; Verbeek, I; Vandekerckhove, M; Wuyts, J; Haex, B; Willemen, T; Exadaktylos, V; Bulckaert, A; Cluydts, R

    2014-03-01

    Misperception of Sleep Onset Latency, often found in Primary Insomnia, has been cited to be influenced by hyperarousal, reflected in EEG- and ECG-related indices. The aim of this retrospective study was to examine the association between Central Nervous System (i.e. EEG) and Autonomic Nervous System activity in the Sleep Onset Period and the first NREM sleep cycle in Primary Insomnia (n=17) and healthy controls (n=11). Furthermore, the study examined the influence of elevated EEG and Autonomic Nervous System activity on Stage2 sleep-protective mechanisms (K-complexes and sleep spindles). Confirming previous findings, the Primary Insomnia-group overestimated Sleep Onset Latency and this overestimation was correlated with elevated EEG activity. A higher amount of beta EEG activity during the Sleep Onset Period was correlated with the appearance of K-complexes immediately followed by a sleep spindle in the Primary Insomnia-group. This can be interpreted as an extra attempt to protect sleep continuity or as a failure of the sleep-protective role of the K-complex by fast EEG frequencies following within one second. The strong association found between K-alpha (K-complex within one second followed by 8-12 Hz EEG activity) in Stage2 sleep and a lower parasympathetic Autonomic Nervous System dominance (less high frequency HR) in Slow-wave sleep, further assumes a state of hyperarousal continuing through sleep in Primary Insomnia. PMID:24177246

  15. Refractory Epilepsy-MRI, EEG and CT scan, a Correlative Clinical Study

    PubMed Central

    Nikodijevic, Dijana; Baneva–Dolnenec, Natalija; Petrovska-Cvetkovska, Dragana; Caparoska, Daniela

    2016-01-01

    OBJECTIVES: Refractory epilepsies (RE), as well as, the surgically correctable syndromes, are of great interest, since they affect the very young population of children and adolescents. The early diagnosis and treatment are very important in preventing the psychosocial disability. Therefore MRI and EEG are highly sensitive methods in the diagnosis and localization of epileptogenic focus, but also in pre-surgical evaluation of these patients. The aim of our study is to correlate the imaging findings of EEG, MRI and CT scan in refractory symptomatic epilepsies, and to determine their specificity in detecting the epileptogenic focus. METHODS: The study was prospective with duration of over two years, open-labelled, and involved a group of 37 patients that had been evaluated and diagnosed as refractory epilepsy patients. In the evaluation the type and frequency of seizures were considered, together with the etiologic factors and their association, and finally the risk for developing refractory epilepsy was weighted. EEG and MRI findings and CT scan results were evaluated for their specificity and sensitivity in detecting the epileptogenic focus, and the correlation between them was analyzed. RESULTS: Regarding the type of seizures considered in our study, the patients with PCS (partial complex seizures) dominated, as opposed to those with generalized seizures (GS) (D=1.178, p < 0.05). Positive MRI findings were registered in 28 patients (75.7%). Most of them were patients with hippocampal sclerosis, 12 (42.8%), and also they were found to have the highest risk of developing refractory epilepsy (RE) (Odds ratio = 5.7), and the highest association between the etiologic factor and refractory epilepsy (p < 0.01). In detecting the epileptogenic focus, a significant difference was found (p < 0.01) between MRI and CT scan findings, especially in patients with hippocampal sclerosis and cerebral malformations. There was a strong correlation between the MRI findings and the

  16. Aerodynamic Focusing Of High-Density Aerosols

    SciTech Connect

    Ruiz, D. E.; Fisch, Nathaniel

    2014-02-24

    High-density micron-sized particle aerosols might form the basis for a number of applications in which a material target with a particular shape might be quickly ionized to form a cylindrical or sheet shaped plasma. A simple experimental device was built in order to study the properties of high-density aerosol focusing for 1 m silica spheres. Preliminary results recover previous findings on aerodynamic focusing at low densities. At higher densities, it is demonstrated that the focusing properties change in a way which is consistent with a density dependent Stokes number.

  17. Manual Lymph Drainage Attenuates Frontal EEG Asymmetry in Subjects with Psychological Stress: A Preliminary Study

    PubMed Central

    Shim, Jung-Myo; Kim, Sung-Joong

    2014-01-01

    [Purpose] The purpose of this preliminary study was to investigate the effect of manual lymph drainage (MLD) of the neck on frontal electroencephalogram (EEG) asymmetry in subjects with psychological stress. [Subjects] Thirteen subjects with psychological stress participated in the study. [Methods] Subjects received MLD of the neck for 15 min. [Results] Analysis of the frontal asymmetry index showed that the energy shift in the alpha frequency band from the left hemisphere to the right hemisphere after MLD resulted in greater left-side activation (positive asymmetry values), which could be related to the positive emotional state observed particularly in the F7–F8 area. [Conclusion] These preliminary findings suggest that frontal EEG asymmetry was significantly attenuated after MLD. PMID:24764627

  18. High-density electroencephalography developmental neurophysiological trajectories.

    PubMed

    Dan, Bernard; Pelc, Karine; Cebolla, Ana M; Cheron, Guy

    2015-04-01

    Efforts to document early changes in the developing brain have resulted in the construction of increasingly accurate structural images based on magnetic resonance imaging (MRI) in newborn infants. Tractography diagrams obtained through diffusion tensor imaging have focused on white matter microstructure, with particular emphasis on neuronal connectivity at the level of fibre tract systems. Electroencephalography (EEG) provides a complementary approach with more direct access to brain electrical activity. Its temporal resolution is excellent, and its spatial resolution can be enhanced to physiologically relevant levels, through the combination of high-density recordings (e.g. by using 64 channels in newborn infants) and mathematical models (e.g. inverse modelling computation), to identify generators of different oscillation bands and synchrony patterns. The integration of functional and structural topography of the neonatal brain provides insights into typical brain organization, and the deviations seen in particular contexts, for example the effect of hypoxic-ischaemic insult in terms of damage, eventual reorganization, and functional changes. Endophenotypes can then be used for pathophysiological reasoning, management planning, and outcome measurements, and allow a longitudinal approach to individual developmental trajectories. PMID:25800492

  19. Hemispheric Specialization Varies with EEG Brain Resting States and Phase of Menstrual Cycle

    PubMed Central

    Cacioppo, Stephanie; Bianchi-Demicheli, Francesco; Bischof, Paul; DeZiegler, Dominique; Michel, Christoph M.; Landis, Theodor

    2013-01-01

    A growing body of behavioral studies has demonstrated that women’s hemispheric specialization varies as a function of their menstrual cycle, with hemispheric specialization enhanced during their menstruation period. Our recent high-density electroencephalogram (EEG) study with lateralized emotional versus neutral words extended these behavioral results by showing that hemispheric specialization in men, but not in women under birth-control, depends upon specific EEG resting brain states at stimulus arrival, suggesting that hemispheric specialization may be pre-determined at the moment of the stimulus onset. To investigate whether EEG brain resting state for hemispheric specialization could vary as a function of the menstrual phase, we tested 12 right-handed healthy women over different phases of their menstrual cycle combining high-density EEG recordings and the same lateralized lexical decision paradigm with emotional versus neutral words. Results showed the presence of specific EEG resting brain states, associated with hemispheric specialization for emotional words, at the moment of the stimulus onset during the menstruation period only. These results suggest that the pre-stimulus EEG pattern influencing hemispheric specialization is modulated by the hormonal state. PMID:23638185

  20. Task-related functional connectivity in autism spectrum conditions: an EEG study using wavelet transform coherence

    PubMed Central

    2013-01-01

    Background Autism Spectrum Conditions (ASC) are a set of pervasive neurodevelopmental conditions characterized by a wide range of lifelong signs and symptoms. Recent explanatory models of autism propose abnormal neural connectivity and are supported by studies showing decreased interhemispheric coherence in individuals with ASC. The first aim of this study was to test the hypothesis of reduced interhemispheric coherence in ASC, and secondly to investigate specific effects of task performance on interhemispheric coherence in ASC. Methods We analyzed electroencephalography (EEG) data from 15 participants with ASC and 15 typical controls, using Wavelet Transform Coherence (WTC) to calculate interhemispheric coherence during face and chair matching tasks, for EEG frequencies from 5 to 40 Hz and during the first 400 ms post-stimulus onset. Results Results demonstrate a reduction of interhemispheric coherence in the ASC group, relative to the control group, in both tasks and for all electrode pairs studied. For both tasks, group differences were generally observed after around 150 ms and at frequencies lower than 13 Hz. Regarding within-group task comparisons, while the control group presented differences in interhemispheric coherence between faces and chairs tasks at various electrode pairs (FT7-FT8, TP7-TP8, P7-P8), such differences were only seen for one electrode pair in the ASC group (T7-T8). No significant differences in EEG power spectra were observed between groups. Conclusions Interhemispheric coherence is reduced in people with ASC, in a time and frequency specific manner, during visual perception and categorization of both social and inanimate stimuli and this reduction in coherence is widely dispersed across the brain. Results of within-group task comparisons may reflect an impairment in task differentiation in people with ASC relative to typically developing individuals. Overall, the results of this research support the value of WTC in examining the time

  1. High density carbon dispersion fuels program

    NASA Technical Reports Server (NTRS)

    Salvesen, R. H.; Lavid, M.

    1980-01-01

    High density carbon dispersion fuels were studied. Promising results were obtained which indicate stable carbon loaded fuels with a minimum of 180,000 Btu per gallon can be made and successfully burned in prototype turbine combustors components. Tests were completed which provide insights to obtaining a better understanding of what types of carbon can be successfully formulated and combusted.

  2. Study on the spatial resolution of EEG--effect of electrode density and measurement noise.

    PubMed

    Ryynänen, O; Hyttinen, J; Malmivuo, J

    2004-01-01

    The spatial resolution of electroencephalography (EEG) is studied by means of inverse cortical EEG solution. Special attention is paid to the effect of electrode density and the effect of measurement noise on the spatial resolution. A three-layer spherical head model is used as a volume conductor to obtain the source-field relationship of cortical potentials and scalp potential field. Effect of measurement noise is evaluated with truncated singular value decomposition (TSVD). Also simulations about different electrode systems' ability to separate cortical sources are performed. The results show that as the measurement noise increases the advantage of dense electrode systems decreases. Our results suggest that in clinical measurement environment it is always beneficial to use at least 64 measurement electrodes. In low-noise realistic measurement environment the use of even 256 measurement electrodes is beneficial. PMID:17271283

  3. Longitudinal changes in computerized EEG and mental function of the aged: a nine-year follow-up study.

    PubMed

    Nakano, T; Miyasaka, M; Ohtaka, T; Ohmori, K

    1992-01-01

    Computer-analyzed EEG data and mental functions of the healthy aged (28 survivors and 20 nonsurvivors) were followed for nine years in a study of their relationship with age and longevity. The study revealed that decrease in fast waves occurred from early senescence. The slowing of EEG, the increase in theta waves, and the decrease in alpha frequency became obvious in late senescence, after the late 70s or beyond 80 years. The amount of alpha waves was maintained until the early 80s. The decline of mental functions occurred with the slowing of EEG in late senescence. The slowing of EEG and the lowered scores of psychometrics were closely related to the longevity of life, comparing the survivors and nonsurvivors in retrospect. PMID:1391675

  4. From lab to field conditions: a pilot study on EEG methodology in applied sports sciences.

    PubMed

    Reinecke, Kirsten; Cordes, Marjolijn; Lerch, Christiane; Koutsandréou, Flora; Schubert, Michael; Weiss, Michael; Baumeister, Jochen

    2011-12-01

    Although neurophysiological aspects have become more important in sports and exercise sciences in the last years, it was not possible to measure cortical activity during performance outside a laboratory due to equipment limits or movement artifacts in particular. With this pilot study we want to investigate whether Electroencephalography (EEG) data obtained in a laboratory golf putting performance differ from a suitable putting task under field conditions. Therefore, parameters of the working memory (frontal Theta and parietal Alpha 2 power) were recorded during these two conditions. Statistical calculations demonstrated a significant difference only for Theta power at F4 regarding the two putting conditions "field" and "laboratory". These findings support the idea that brain activity patterns obtained under laboratory conditions are comparable but not equivalent to those obtained under field conditions. Additionally, we were able to show that the EEG methodology seems to be a reliable tool to observe brain activity under field conditions in a golf putting task. However, considering the still existing problems of movement artifacts during EEG measurements, eligible sports and exercises are limited to those being relatively motionless during execution. Further studies are needed to confirm these pilot results. PMID:21800184

  5. Estimating a neutral reference for electroencephalographic recordings: the importance of using a high-density montage and a realistic head model

    NASA Astrophysics Data System (ADS)

    Liu, Quanying; Balsters, Joshua H.; Baechinger, Marc; van der Groen, Onno; Wenderoth, Nicole; Mantini, Dante

    2015-10-01

    Objective. In electroencephalography (EEG) measurements, the signal of each recording electrode is contrasted with a reference electrode or a combination of electrodes. The estimation of a neutral reference is a long-standing issue in EEG data analysis, which has motivated the proposal of different re-referencing methods, among which linked-mastoid re-referencing (LMR), average re-referencing (AR) and reference electrode standardization technique (REST). In this study we quantitatively assessed the extent to which the use of a high-density montage and a realistic head model can impact on the optimal estimation of a neutral reference for EEG recordings. Approach. Using simulated recordings generated by projecting specific source activity over the sensors, we assessed to what extent AR, REST and LMR may distort the scalp topography. We examined the impact electrode coverage has on AR and REST, and how accurate the REST reconstruction is for realistic and less realistic (three-layer and single-layer spherical) head models, and with possible uncertainty in the electrode positions. We assessed LMR, AR and REST also in the presence of typical EEG artifacts that are mixed in the recordings. Finally, we applied them to real EEG data collected in a target detection experiment to corroborate our findings on simulated data. Main results. Both AR and REST have relatively low reconstruction errors compared to LMR, and that REST is less sensitive than AR and LMR to artifacts mixed in the EEG data. For both AR and REST, high electrode density yields low re-referencing reconstruction errors. A realistic head model is critical for REST, leading to a more accurate estimate of a neutral reference compared to spherical head models. With a low-density montage, REST shows a more reliable reconstruction than AR either with a realistic or a three-layer spherical head model. Conversely, with a high-density montage AR yields better results unless precise information on electrode positions

  6. Estimating a neutral reference for electroencephalographic recordings: The importance of using a high-density montage and a realistic head model

    PubMed Central

    Liu, Quanying; Balsters, Joshua H.; Baechinger, Marc; van der Groen, Onno; Wenderoth, Nicole; Mantini, Dante

    2016-01-01

    Objective In electroencephalography (EEG) measurements, the signal of each recording electrode is contrasted with a reference electrode or a combination of electrodes. The estimation of a neutral reference is a long-standing issue in EEG data analysis, which has motivated the proposal of different re-referencing methods, among which linked-mastoid re-referencing (LMR), average re-referencing (AR) and reference electrode standardization technique (REST). In this study we quantitatively assessed the extent to which the use of a high-density montage and a realistic head model can impact on the optimal estimation of a neutral reference for EEG recordings. Approach Using simulated recordings generated by projecting specific source activity over the sensors, we assessed to what extent AR, REST and LMR may distort the scalp topography. We examined the impact electrode coverage has on AR and REST, and how accurate the REST reconstruction is for realistic and less realistic (three-layer and single-layer spherical) head models, and with possible uncertainty in the electrode positions. We assessed LMR, AR and REST also in the presence of typical EEG artifacts that are mixed in the recordings. Finally, we applied them to real EEG data collected in a target detection experiment to corroborate our findings on simulated data. Main results Both AR and REST have relatively low reconstruction errors compared to LMR, and that REST is less sensitive than AR and LMR to artifacts mixed in the EEG data. For both AR and REST, high electrode density yields low re-referencing reconstruction errors. A realistic head model is critical for REST, leading to a more accurate estimate of a neutral reference compared to spherical head models. With a low-density montage, REST shows a more reliable reconstruction than AR either with a realistic or a three-layer spherical head model. Conversely, with a high-density montage AR yields better results unless precise information on electrode positions is

  7. Functional Connectivity and Quantitative EEG in Women with Alcohol Use Disorders: A Resting-State Study.

    PubMed

    Herrera-Díaz, Adianes; Mendoza-Quiñones, Raúl; Melie-Garcia, Lester; Martínez-Montes, Eduardo; Sanabria-Diaz, Gretel; Romero-Quintana, Yuniel; Salazar-Guerra, Iraklys; Carballoso-Acosta, Mario; Caballero-Moreno, Antonio

    2016-05-01

    This study was aimed at exploring the electroencephalographic features associated with alcohol use disorders (AUD) during a resting-state condition, by using quantitative EEG and Functional Connectivity analyses. In addition, we explored whether EEG functional connectivity is associated with trait impulsivity. Absolute and relative powers and Synchronization Likelihood (SL) as a measure of functional connectivity were analyzed in 15 AUD women and fifteen controls matched in age, gender and education. Correlation analysis between self-report impulsivity as measured by the Barratt impulsiveness Scale (BIS-11) and SL values of AUD patients were performed. Our results showed increased absolute and relative beta power in AUD patients compared to matched controls, and reduced functional connectivity in AUD patients predominantly in the beta and alpha bands. Impaired connectivity was distributed at fronto-central and occipito-parietal regions in the alpha band, and over the entire scalp in the beta band. We also found that impaired functional connectivity particularly in alpha band at fronto-central areas was negative correlated with non-planning dimension of impulsivity. These findings suggest that functional brain abnormalities are present in AUD patients and a disruption of resting-state EEG functional connectivity is associated with psychopathological traits of addictive behavior. PMID:26660886

  8. Category-Selectivity in Human Visual Cortex Follows Cortical Topology: A Grouped icEEG Study

    PubMed Central

    Conner, Christopher Richard; Whaley, Meagan Lee; Baboyan, Vatche George; Tandon, Nitin

    2016-01-01

    Neuroimaging studies suggest that category-selective regions in higher-order visual cortex are topologically organized around specific anatomical landmarks: the mid-fusiform sulcus (MFS) in the ventral temporal cortex (VTC) and lateral occipital sulcus (LOS) in the lateral occipital cortex (LOC). To derive precise structure-function maps from direct neural signals, we collected intracranial EEG (icEEG) recordings in a large human cohort (n = 26) undergoing implantation of subdural electrodes. A surface-based approach to grouped icEEG analysis was used to overcome challenges from sparse electrode coverage within subjects and variable cortical anatomy across subjects. The topology of category-selectivity in bilateral VTC and LOC was assessed for five classes of visual stimuli—faces, animate non-face (animals/body-parts), places, tools, and words—using correlational and linear mixed effects analyses. In the LOC, selectivity for living (faces and animate non-face) and non-living (places and tools) classes was arranged in a ventral-to-dorsal axis along the LOS. In the VTC, selectivity for living and non-living stimuli was arranged in a latero-medial axis along the MFS. Written word-selectivity was reliably localized to the intersection of the left MFS and the occipito-temporal sulcus. These findings provide direct electrophysiological evidence for topological information structuring of functional representations within higher-order visual cortex. PMID:27272936

  9. Using tandem mass spectrometry to quantify site-specific chlorination and nitration of proteins: model system studies with high-density lipoprotein oxidized by myeloperoxidase.

    PubMed

    Shao, Baohai; Heinecke, Jay W

    2008-01-01

    Protein oxidation is implicated in atherogenesis and other inflammatory conditions. Measuring levels of chlorinated and nitrated proteins in biological matrices serves as a quantitative index of oxidative stress in vivo. One potential mechanism for oxidative stress involves myeloperoxidase, a heme protein expressed by neutrophils, monocytes, and some populations of macrophages. The enzyme uses hydrogen peroxide to generate an array of cytotoxic oxidants, including hypochlorous acid (HOCl), a potent chlorinating intermediate, and nitrogen dioxide radical, a reactive nitrogen species (RNS). One important target may be high-density lipoprotein (HDL), which is implicated in atherogenesis. This chapter describes liquid chromatography-tandem mass spectrometric methods for quantifying site-specific modifications of proteins that have been oxidized by HOCl or RNS. Our studies center on apolipoprotein A-I, the major HDL protein, which provides an excellent model system for investigating factors that target specific residues for oxidative damage. Our approach is sensitive and rapid, applicable to a wide array of posttranslational modifications, and does not require peptides to be derivatized or labeled with an isotope. PMID:18423210

  10. Sensitivity of the Enhanced Vegetation Index (EVI) and Normalized Difference Vegetation Index (NDVI) to Topographic Effects: A Case Study in High-Density Cypress Forest

    PubMed Central

    Matsushita, Bunkei; Yang, Wei; Chen, Jin; Onda, Yuyichi; Qiu, Guoyu

    2007-01-01

    Vegetation indices play an important role in monitoring variations in vegetation. The Enhanced Vegetation Index (EVI) proposed by the MODIS Land Discipline Group and the Normalized Difference Vegetation Index (NDVI) are both global-based vegetation indices aimed at providing consistent spatial and temporal information regarding global vegetation. However, many environmental factors such as atmospheric conditions and soil background may produce errors in these indices. The topographic effect is another very important factor, especially when the indices are used in areas of rough terrain. In this paper, we theoretically analyzed differences in the topographic effect on the EVI and the NDVI based on a non-Lambertian model and two airborne-based images acquired from a mountainous area covered by high-density Japanese cypress plantation were used as a case study. The results indicate that the soil adjustment factor “L” in the EVI makes it more sensitive to topographic conditions than is the NDVI. Based on these results, we strongly recommend that the topographic effect should be removed in the reflectance data before the EVI was calculated—as well as from other vegetation indices that similarly include a term without a band ratio format (e.g., the PVI and SAVI)—when these indices are used in the area of rough terrain, where the topographic effect on the vegetation indices having only a band ratio format (e.g., the NDVI) can usually be ignored.

  11. Genetic determination of high-density lipoprotein-cholesterol and apolipoprotein A-1 plasma levels in a family study of cardiac catheterization patients

    SciTech Connect

    Prenger, V.L.; Beaty, T.H.; Kwiterovich, P.O. )

    1992-11-01

    Plasma levels of two lipoprotein risk factors, high-density lipoprotein-cholesterol (HDL-C) and apolipoprotein A-1 (apo A-1), have been shown to be negatively associated with the risk of developing coronary artery disease, and several reports have examined familial factors in HDL-C and apo A-1 levels. A number of studies suggest that shared genes influence familial resemblance of these lipoprotein levels far more than do shared environments. Possible mechanisms for the inheritance of these risk factors (HDL-C and apo A-1 plasma levels) are explored using data from 390 individuals in 69 families ascertained through probands undergoing diagnostic cardiac catheterization. Segregation analysis was used to test a series of specific models of inheritance. Evidence for single-locus control of apo A-1 levels, with Mendelian transmission of a dominant allele leading to elevated apo A-1 levels, was seen in these families, although there was additional correlation among sibs present. This locus accounted for 48.6% and 37.2% of the total variation in apo A-1 levels in males and females, respectively. Similar evidence of segregation at a single locus controlling HDL-C levels was not seen in these families. 27 refs., 3 figs., 5 tabs.

  12. High Density Diffusion-Free Nanowell Arrays

    PubMed Central

    Takulapalli, Bharath R; Qiu, Ji; Magee, D. Mitchell; Kahn, Peter; Brunner, Al; Barker, Kristi; Means, Steven; Miersch, Shane; Bian, Xiaofang; Mendoza, Alex; Festa, Fernanda; Syal, Karan; Park, Jin; LaBaer, Joshua; Wiktor, Peter

    2012-01-01

    Proteomics aspires to elucidate the functions of all proteins. Protein microarrays provide an important step by enabling high-throughput studies of displayed proteins. However, many functional assays of proteins include untethered intermediates or products, which could frustrate the use of planar arrays at very high densities because of diffusion to neighboring features. The nucleic acid programmable protein array (NAPPA), is a robust, in situ synthesis method for producing functional proteins just-in-time, which includes steps with diffusible intermediates. We determined that diffusion of expressed proteins led to cross-binding at neighboring spots at very high densities with reduced inter-spot spacing. To address this limitation, we have developed an innovative platform using photolithographically-etched discrete silicon nanowells and used NAPPA as a test case. This arrested protein diffusion and cross-binding. We present confined high density protein expression and display, as well as functional protein-protein interactions, in 8,000 nanowell arrays. This is the highest density of individual proteins in nano-vessels demonstrated on a single slide. We further present proof of principle results on ultra-high density protein arrays capable of up to 24,000 nanowells on a single slide. PMID:22742968

  13. Clinical study of neurorehabilitation in stroke using EEG-based motor imagery brain-computer interface with robotic feedback.

    PubMed

    Ang, Kai Keng; Guan, Cuntai; Chua, Karen Sui Geok; Ang, Beng Ti; Kuah, Christopher; Wang, Chuanchu; Phua, Kok Soon; Chin, Zheng Yang; Zhang, Haihong

    2010-01-01

    This clinical study investigates the ability of hemiparetic stroke patients in operating EEG-based motor imagery brain-computer interface (MI-BCI). It also assesses the efficacy in motor improvements on the stroke-affected upper limb using EEG-based MI-BCI with robotic feedback neurorehabilitation compared to robotic rehabilitation that delivers movement therapy. 54 hemiparetic stroke patients with mean age of 51.8 and baseline Fugl-Meyer Assessment (FMA) 14.9 (out of 66, higher = better) were recruited. Results showed that 48 subjects (89%) operated EEG-based MI-BCI better than at chance level, and their ability to operate EEG-based MI-BCI is not correlated to their baseline FMA (r=0.358). Those subjects who gave consent are randomly assigned to each group (N=11 and 14) for 12 1-hour rehabilitation sessions for 4 weeks. Significant gains in FMA scores were observed in both groups at post-rehabilitation (4.5, 6.2; p=0.032, 0.003) and 2-month post-rehabilitation (5.3, 7.3; p=0.020, 0.013), but no significant differences were observed between groups (p=0.512, 0.550). Hence, this study showed evidences that a majority of hemiparetic stroke patients can operate EEG-based MI-BCI, and that EEG-based MI-BCI with robotic feedback neurorehabilitation is effective in restoring upper extremities motor function in stroke. PMID:21096475

  14. Neural processing of emotions in traumatized children treated with Eye Movement Desensitization and Reprocessing therapy: a hdEEG study

    PubMed Central

    Trentini, Cristina; Pagani, Marco; Fania, Piercarlo; Speranza, Anna Maria; Nicolais, Giampaolo; Sibilia, Alessandra; Inguscio, Lucio; Verardo, Anna Rita; Fernandez, Isabel; Ammaniti, Massimo

    2015-01-01

    Eye Movement Desensitization and Reprocessing (EMDR) therapy has been proven efficacious in restoring affective regulation in post-traumatic stress disorder (PTSD) patients. However, its effectiveness on emotion processing in children with complex trauma has yet to be explored. High density electroencephalography (hdEEG) was used to investigate the effects of EMDR on brain responses to adults’ emotions on children with histories of early maltreatment. Ten school-aged children were examined before (T0) and within one month after the conclusion of EMDR (T1). hdEEGs were recorded while children passively viewed angry, afraid, happy, and neutral faces. Clinical scales were administered at the same time. Correlation analyses were performed to detect brain regions whose activity was linked to children’s traumatic symptom-related and emotional-adaptive problem scores. In all four conditions, hdEEG showed similar significantly higher activity on the right medial prefrontal and fronto-temporal limbic regions at T0, shifting toward the left medial and superior temporal regions at T1. Moreover, significant correlations were found between clinical scales and the same regions whose activity significantly differed between pre- and post-treatment. These preliminary results demonstrate that, after EMDR, children suffering from complex trauma show increased activity in areas implicated in high-order cognitive processing when passively viewing pictures of emotional expressions. These changes are associated with the decrease of depressive and traumatic symptoms, and with the improvement of emotional-adaptive functioning over time. PMID:26594183

  15. Neural processing of emotions in traumatized children treated with Eye Movement Desensitization and Reprocessing therapy: a hdEEG study.

    PubMed

    Trentini, Cristina; Pagani, Marco; Fania, Piercarlo; Speranza, Anna Maria; Nicolais, Giampaolo; Sibilia, Alessandra; Inguscio, Lucio; Verardo, Anna Rita; Fernandez, Isabel; Ammaniti, Massimo

    2015-01-01

    Eye Movement Desensitization and Reprocessing (EMDR) therapy has been proven efficacious in restoring affective regulation in post-traumatic stress disorder (PTSD) patients. However, its effectiveness on emotion processing in children with complex trauma has yet to be explored. High density electroencephalography (hdEEG) was used to investigate the effects of EMDR on brain responses to adults' emotions on children with histories of early maltreatment. Ten school-aged children were examined before (T0) and within one month after the conclusion of EMDR (T1). hdEEGs were recorded while children passively viewed angry, afraid, happy, and neutral faces. Clinical scales were administered at the same time. Correlation analyses were performed to detect brain regions whose activity was linked to children's traumatic symptom-related and emotional-adaptive problem scores. In all four conditions, hdEEG showed similar significantly higher activity on the right medial prefrontal and fronto-temporal limbic regions at T0, shifting toward the left medial and superior temporal regions at T1. Moreover, significant correlations were found between clinical scales and the same regions whose activity significantly differed between pre- and post-treatment. These preliminary results demonstrate that, after EMDR, children suffering from complex trauma show increased activity in areas implicated in high-order cognitive processing when passively viewing pictures of emotional expressions. These changes are associated with the decrease of depressive and traumatic symptoms, and with the improvement of emotional-adaptive functioning over time. PMID:26594183

  16. High-density digital recording

    NASA Technical Reports Server (NTRS)

    Kalil, F. (Editor); Buschman, A. (Editor)

    1985-01-01

    The problems associated with high-density digital recording (HDDR) are discussed. Five independent users of HDDR systems and their problems, solutions, and insights are provided as guidance for other users of HDDR systems. Various pulse code modulation coding techniques are reviewed. An introduction to error detection and correction head optimization theory and perpendicular recording are provided. Competitive tape recorder manufacturers apply all of the above theories and techniques and present their offerings. The methodology used by the HDDR Users Subcommittee of THIC to evaluate parallel HDDR systems is presented.

  17. Primary Low Level of High-Density Lipoprotein Cholesterol and Risks of Coronary Heart Disease, Cardiovascular Disease, and Death: Results From the Multi-Ethnic Study of Atherosclerosis.

    PubMed

    Ahmed, Haitham M; Miller, Michael; Nasir, Khurram; McEvoy, John W; Herrington, David; Blumenthal, Roger S; Blaha, Michael J

    2016-05-15

    Prior studies observing associations between low levels of high-density lipoprotein (HDL) cholesterol and cardiovascular disease (CVD) have often been conducted among persons with metabolic or other lipid abnormalities. In this study, we investigated the association between primary low HDL cholesterol and coronary heart disease (CHD), CVD, and all-cause death after adjustment for confounders in the Multi-Ethnic Study of Atherosclerosis (MESA). Participants who were free of clinical CVD were recruited from 6 US research centers from 2000 to 2002 and followed for a median duration of 10.2 years. We defined "primary low HDL cholesterol" as HDL cholesterol level <40 mg/dL (men) or <50 mg/dL (women), triglyceride level <100 mg/dL, and low-density lipoprotein cholesterol level <100 mg/dL (n = 158). We defined an "optimal" lipid profile as HDL cholesterol ≥40 mg/dL (men) or ≥50 mg/dL (women) and triglycerides and low-density lipoprotein cholesterol <100 mg/dL (n = 780). For participants with primary low HDL cholesterol versus those with an optimal lipid profile, adjusted hazard ratios for total CHD, CVD, and death were 2.25 (95% confidence interval (CI): 1.20, 4.21; P = 0.011), 1.93 (95% CI: 1.11, 3.34; P = 0.020), and 1.11 (95% CI: 0.67, 1.84; P = 0.69), respectively. Participants with primary low HDL cholesterol had higher risks of CHD and CVD than participants with optimal lipid profiles but no difference in survival after a median 10.2 years of follow-up. PMID:27189327

  18. Neural correlates of non-verbal social interactions: a dual-EEG study.

    PubMed

    Ménoret, Mathilde; Varnet, Léo; Fargier, Raphaël; Cheylus, Anne; Curie, Aurore; des Portes, Vincent; Nazir, Tatjana A; Paulignan, Yves

    2014-03-01

    Successful non-verbal social interaction between human beings requires dynamic and efficient encoding of others' gestures. Our study aimed at identifying neural markers of social interaction and goal variations in a non-verbal task. For this, we recorded simultaneously the electroencephalogram from two participants (dual-EEG), an actor and an observer, and their arm/hand kinematics in a real face-to-face paradigm. The observer watched "biological actions" performed by the human actor and "non-biological actions" performed by a robot. All actions occurred within an interactive or non-interactive context depending on whether the observer had to perform a complementary action or not (e.g., the actor presents a saucer and the observer either places the corresponding cup or does nothing). We analysed the EEG signals of both participants (i.e., beta (~20 Hz) oscillations as an index of cortical motor activity and motor related potentials (MRPs)). We identified markers of social interactions by synchronising EEG to the onset of the actor's movement. Movement kinematics did not differ in the two context conditions and the MRPs of the actor were similar in the two conditions. For the observer, however, an observation-related MRP was measured in all conditions but was more negative in the interactive context over fronto-central electrodes. Moreover, this feature was specific to biological actions. Concurrently, the suppression of beta oscillations was observed in the actor's EEG and the observer's EEG rapidly after the onset of the actor's movement. Critically, this suppression was stronger in the interactive than in the non-interactive context despite the fact that movement kinematics did not differ in the two context conditions. For the observer, this modulation was observed independently of whether the actor was a human or a robot. Our results suggest that acting in a social context induced analogous modulations of motor and sensorimotor regions in observer and actor

  19. What's behind an Inference? An EEG Study with Conditional Arguments

    ERIC Educational Resources Information Center

    Bonnefond, Mathilde; Van der Henst, Jean-Baptiste

    2009-01-01

    Conditional reasoning studies typically involve presenting a major conditional premise ("If P then Q"), a minor premise (P) and a conclusion (Q). We describe how most fMRI studies investigate reasoning and point out that these studies neglect to take into consideration the temporal sequence of cognitive steps generated by the interaction of the…

  20. Study of a Coincidence Detector Using a Suspension of Superheated Superconducting Grains in a High Density Dielectric Matrix for Positron Emission Tomography and γ-γ Tagging

    NASA Astrophysics Data System (ADS)

    Bruère Dawson, R.; Maillard, J.; Maurel, G.; Parisi, J.; Silva, J.; Waysand, G.

    2006-01-01

    We demonstrate the feasibility of coincidence detectors based on superheated superconducting grains (SSG) in a high density dielectric matrix (HDDM) for two applications: 1) positron cameras for small animal imaging, where two diametrically opposite cells are simultaneously hit by 511 keV gammas; 2) tagging of γ-γ events in electron positron colliders.

  1. Method for assessing lead, cadmium, mercury and arsenic in high-density polyethylene packaging and study of the migration into yoghurt and simulant.

    PubMed

    Kiyataka, Paulo Henrique M; Dantas, Sílvia T; Pallone, Juliana Azevedo Lima

    2014-01-01

    The purpose of this paper was to assess the concentration of lead (Pb), cadmium (Cd), mercury (Hg) and arsenic (As) in high-density polyethylene (HDPE) packaging intended for contact with yoghurt and the migration of these elements using the food itself and 3% acetic acid as a food simulant in accordance to ANVISA, the Brazilian Health Surveillance Agency. In order to perform this study, it was necessary to develop and validate a method by inductively coupled plasma optical emission spectroscopy (ICP-OES) analysis. For method validation, the parameters linearity, limits of detection (LODs) and quantification (LOQs), accuracy and precision were determined. Fifteen commercial samples of yoghurt, marketed in Campinas - São Paulo (Brazil), were used for the analysis. The packaging and yoghurt were digested in high-pressure ashing equipment (HPA) and the migration of the elements into simulant were determined directly in the solution. The validated method proved adequate and the results obtained showed that all the packaging had levels of Hg and Cd below the LOQ, corresponding to 1.0 and 1.5 μg l(-1), respectively. The highest levels of As and Pb were 0.87 and 462.3 mg kg(-1), respectively. The migration of these elements to the yoghurt after 45 days of contact at 4ºC was below the LOQ for all the samples assessed. The results of specific migration into 3% acetic acid simulant showed the concentrations of Cd, Hg and As below 5, 5 and 10 µg kg(-1), respectively, which are the maximum limits set by ANVISA. However, for three samples the packaging lid showed migration of Pb into simulant ranging from 30.6 to 40.2 μg kg(-1), exceeding the limit set by ANVISA of 10 μg kg(-1). PMID:24444394

  2. Adverse effect of pregnancy on high density lipoprotein (HDL) cholesterol in young adult women. The CARDIA Study. Coronary Artery Risk Development in Young Adults.

    PubMed

    Lewis, C E; Funkhouser, E; Raczynski, J M; Sidney, S; Bild, D E; Howard, B V

    1996-08-01

    The authors analyzed data from the Coronary Artery Risk Development in Young Adults (CARDIA) Study in order to examine associations between parity and lipoproteins. Of 2,787 women recruited in 1985-1986, 2,534 (91%) returned in 1987-1988 and 2,393 (86%) returned in 1990-1991 for repeat evaluations. Two-year change (1987-1988 to 1985-1986) in high density lipoprotein (HDL) cholesterol was significantly different among the parity groups. HDL cholesterol decreased in women who had their first pregnancy of at least 28 weeks duration during follow-up (mean +/- standard error, -3.5 +/- 1.2 mg/dl), and this change was significantly different from the increase in women parous at baseline who had no further pregnancies (2.5 +/- 0.3 mg/dl) and in nullipara (2.4 +/- 0.3 mg/dl). There was a nonsignificant trend for a greater decrease in HDL2 cholesterol fraction in the primipara compared with the other groups. The HDL cholesterol decrease remained significant after controlling for race, age, education, oral contraceptive use, and changes in body mass index, waist-hip ratio, physical activity, smoking status, and alcohol intake. Change in HDL cholesterol was also significantly different among the parity groups in analyses of pregnancies that occurred during the subsequent 3 years of follow-up. There were no differences for change in LDL cholesterol or triglycerides. Potential mechanisms for a detrimental effect of pregnancy on HDL cholesterol include hormonal, body composition, or life-style/behavioral changes. PMID:8686693

  3. Spectroscopic and microscopic studies of self-assembled nc-Si/a-SiC thin films grown by low pressure high density spontaneous plasma processing.

    PubMed

    Das, Debajyoti; Kar, Debjit

    2014-12-14

    In view of suitable applications in the window layer of nc-Si p-i-n solar cells in superstrate configuration, the growth of nc-Si/a-SiC composite films was studied, considering the trade-off relation between individual characteristics of its a-SiC component to provide a wide optical-gap and electrically conducting nc-Si component to simultaneously retain enough crystalline linkages to facilitate proper crystallization to the i-nc-Si absorber-layer during its subsequent growth. Self-assembled nc-Si/a-SiC thin films were spontaneously grown by low-pressure planar inductively coupled plasma CVD, operating in electromagnetic mode, providing high atomic-H density. Spectroscopic simulations of ellipsometry and Raman data, and systematic chemical and structural analysis by XPS, TEM, SEM and AFM were performed. Corresponding to optimized inclusion of C essentially incorporated as Si-C bonds in the network, the optical-gap of the a-SiC component widened, void fraction including the incubation layer thickness reduced. While the bulk crystallinity decreased only marginally, Si-ncs diminished in size with narrower distribution and increased number density. With enhanced C-incorporation, formation of C-C bonds in abundance deteriorates the Si continuous bonding network and persuades growth of an amorphous dominated silicon-carbon heterostructure containing high-density tiny Si-ncs. Stimulated nanocrystallization identified in the Si-network, induced by a limited amount of carbon incorporation, makes the material most suitable for applications in nc-Si solar cells. The novelty of the present work is to enable spontaneous growth of self-assembled superior quality nc-Si/a-SiC thin films and simultaneous spectroscopic simulation-based optimization of properties for utilization in devices. PMID:25342429

  4. Thyroid function modifies the association between ratio of triglyceride to high-density lipoprotein cholesterol and renal function: a multicenter cross-sectional study

    PubMed Central

    Yuan, Zhongshang; Zhao, Meng; Zhang, Bingchang; Zhang, Haiqing; Zhang, Xu; Guan, Qingbo; Ning, Guang; Gao, Ling; Xue, Fuzhong; Zhao, Jiajun

    2015-01-01

    Hypothyroidism was confirmed to be associated with both dyslipidemia and renal dysfunction. However, the impact of thyroid function on the relationship between serum lipid levels and renal function has never been given sufficient attention. In this large-scale multicenter cross-sectional study, the ratio of triglyceride to high-density lipoprotein cholesterol (TG/HDL) and the prevalence of hypothyroidism in CKD subjects were significantly higher than those in non-CKD ones (P < 0.001). After adjustment for potential confounding factors, TG/HDL was shown to be significantly associated with serum Cr levels (β = 0.551; 95%CI, 0.394–0.708), and eGFR (β = −0.481; 95%CI, −0.731–−0.230). The risk for CKD was significantly increased as TG/HDL ratio was elevated (adjusted odds ratio = 1.20; 95%CI, 1.11–1.27). These significant associations were found among subjects with euthyroidism and hypothyroidism rather than hyperthyroidism. Furthermore, the associations between TG/HDL and Cr or CKD status were significantly greater in hypothyroidism than those in euthyroidism (P < 0.05). These results suggested that elevated TG/HDL ratio was associated with renal dysfunction; it exhibited a significantly stronger association with Cr and CKD in hypothyroidism than in euthyroidism. Therefore, more attention should be paid on lipid profile to prevent or delay the occurrence and progression of renal dysfunction, especially for those with hypothyroidism. PMID:26179571

  5. Thyroid function modifies the association between ratio of triglyceride to high-density lipoprotein cholesterol and renal function: a multicenter cross-sectional study.

    PubMed

    Yuan, Zhongshang; Zhao, Meng; Zhang, Bingchang; Zhang, Haiqing; Zhang, Xu; Guan, Qingbo; Ning, Guang; Gao, Ling; Xue, Fuzhong; Zhao, Jiajun

    2015-01-01

    Hypothyroidism was confirmed to be associated with both dyslipidemia and renal dysfunction. However, the impact of thyroid function on the relationship between serum lipid levels and renal function has never been given sufficient attention. In this large-scale multicenter cross-sectional study, the ratio of triglyceride to high-density lipoprotein cholesterol (TG/HDL) and the prevalence of hypothyroidism in CKD subjects were significantly higher than those in non-CKD ones (P < 0.001). After adjustment for potential confounding factors, TG/HDL was shown to be significantly associated with serum Cr levels (β = 0.551; 95%CI, 0.394-0.708), and eGFR (β = -0.481; 95%CI, -0.731--0.230). The risk for CKD was significantly increased as TG/HDL ratio was elevated (adjusted odds ratio = 1.20; 95%CI, 1.11-1.27). These significant associations were found among subjects with euthyroidism and hypothyroidism rather than hyperthyroidism. Furthermore, the associations between TG/HDL and Cr or CKD status were significantly greater in hypothyroidism than those in euthyroidism (P < 0.05). These results suggested that elevated TG/HDL ratio was associated with renal dysfunction; it exhibited a significantly stronger association with Cr and CKD in hypothyroidism than in euthyroidism. Therefore, more attention should be paid on lipid profile to prevent or delay the occurrence and progression of renal dysfunction, especially for those with hypothyroidism. PMID:26179571

  6. Correlation between high density lipoprotein-cholesterol and remodeling index in patients with coronary artery disease: IDEAS (IVUS diagnostic evaluation of atherosclerosis in Singapore)-HDL study.

    PubMed

    Lee, Chi-Hang; Tai, Bee-Choo; Lim, Gek-Hsiang; Chan, Mark Y; Low, Adrian F; Tan, Kathryn C; Chia, Boon-Lock; Tan, Huay-Cheem

    2012-01-01

    Serum level of high density lipoprotein (HDL)-cholesterol is associated with risk of coronary artery disease. We correlated the serum level of cholesterol with coronary artery remodeling index of patients with coronary artery disease. A total of 120 patients with de novo lesions located in native coronary artery were studied. Remodeling index was based on intravascular ultrasound (IVUS) interrogation of the lesions using the static approach, and was defined as external elastic membrane (EEM) area at lesion/average EEM area at proximal and distal reference segments. The average remodeling index was 0.9 (SD: 0.2). The remodeling index was not associated with any of the demographic and coronary risk factors. Stable angina was associated with a low remodeling index. Remodeling index correlated with white blood cell count and HDL-cholesterol, but not with total cholesterol, LDL-cholesterol and triglyceride. In the multiple linear regression analysis, HDL-cholesterol and procedure indication were the only 2 significant predictors of remodeling index. An increase of 1 mg/dL of HDL-cholesterol resulted in a decrease of 0.003 (95% CI: 0.0001, 0.007; P = 0.046) in remodeling index, after adjusting for procedural indications. When stratified according to diabetic status, the negative correlation persisted in non-diabetic (P = 0.023), but not in diabetic, patients (P = 0.707). We found a negative correlation between HDL-cholesterol level and remodeling index. Diabetic status may have an influence on the observed relationship. PMID:21197580

  7. Tinnitus: A Large VBM-EEG Correlational Study

    PubMed Central

    Vanneste, Sven; Van De Heyning, Paul; De Ridder, Dirk

    2015-01-01

    A surprising fact in voxel-based morphometry (VBM) studies performed in tinnitus is that not one single region is replicated in studies of different centers. The question then rises whether this is related to the low sample size of these studies, the selection of non-representative patient subgroups, or the absence of stratification according to clinical characteristics. Another possibility is that VBM is not a good tool to study functional pathologies such as tinnitus, in contrast to pathologies like Alzheimer’s disease where it is known the pathology is related to cell loss. In a large sample of 154 tinnitus patients VBM and QEEG (Quantitative Electroencephalography) was performed and evaluated by a regression analysis. Correlation analyses are performed between VBM and QEEG data. Uncorrected data demonstrated structural differences in grey matter in hippocampal and cerebellar areas related to tinnitus related distress and tinnitus duration. After control for multiple comparisons, only cerebellar VBM changes remain significantly altered. Electrophysiological differences are related to distress, tinnitus intensity, and tinnitus duration in the subgenual anterior cingulate cortex, dorsal anterior cingulate cortex, hippocampus, and parahippocampus, which confirms previous results. The absence of QEEG-VBM correlations suggest functional changes are not reflected by co-occurring structural changes in tinnitus, and the absence of VBM changes (except for the cerebellum) that survive correct statistical analysis in a large study population suggests that VBM might not be very sensitive for studying tinnitus. PMID:25781934

  8. Tinnitus: a large VBM-EEG correlational study.

    PubMed

    Vanneste, Sven; Van De Heyning, Paul; De Ridder, Dirk

    2015-01-01

    A surprising fact in voxel-based morphometry (VBM) studies performed in tinnitus is that not one single region is replicated in studies of different centers. The question then rises whether this is related to the low sample size of these studies, the selection of non-representative patient subgroups, or the absence of stratification according to clinical characteristics. Another possibility is that VBM is not a good tool to study functional pathologies such as tinnitus, in contrast to pathologies like Alzheimer's disease where it is known the pathology is related to cell loss. In a large sample of 154 tinnitus patients VBM and QEEG (Quantitative Electroencephalography) was performed and evaluated by a regression analysis. Correlation analyses are performed between VBM and QEEG data. Uncorrected data demonstrated structural differences in grey matter in hippocampal and cerebellar areas related to tinnitus related distress and tinnitus duration. After control for multiple comparisons, only cerebellar VBM changes remain significantly altered. Electrophysiological differences are related to distress, tinnitus intensity, and tinnitus duration in the subgenual anterior cingulate cortex, dorsal anterior cingulate cortex, hippocampus, and parahippocampus, which confirms previous results. The absence of QEEG-VBM correlations suggest functional changes are not reflected by co-occurring structural changes in tinnitus, and the absence of VBM changes (except for the cerebellum) that survive correct statistical analysis in a large study population suggests that VBM might not be very sensitive for studying tinnitus. PMID:25781934

  9. Decoding the attended speech stream with multi-channel EEG: implications for online, daily-life applications

    NASA Astrophysics Data System (ADS)

    Mirkovic, Bojana; Debener, Stefan; Jaeger, Manuela; De Vos, Maarten

    2015-08-01

    Objective. Recent studies have provided evidence that temporal envelope driven speech decoding from high-density electroencephalography (EEG) and magnetoencephalography recordings can identify the attended speech stream in a multi-speaker scenario. The present work replicated the previous high density EEG study and investigated the necessary technical requirements for practical attended speech decoding with EEG. Approach. Twelve normal hearing participants attended to one out of two simultaneously presented audiobook stories, while high density EEG was recorded. An offline iterative procedure eliminating those channels contributing the least to decoding provided insight into the necessary channel number and optimal cross-subject channel configuration. Aiming towards the future goal of near real-time classification with an individually trained decoder, the minimum duration of training data necessary for successful classification was determined by using a chronological cross-validation approach. Main results. Close replication of the previously reported results confirmed the method robustness. Decoder performance remained stable from 96 channels down to 25. Furthermore, for less than 15 min of training data, the subject-independent (pre-trained) decoder performed better than an individually trained decoder did. Significance. Our study complements previous research and provides information suggesting that efficient low-density EEG online decoding is within reach.

  10. Meditation States and Traits: EEG, ERP, and Neuroimaging Studies

    ERIC Educational Resources Information Center

    Cahn, B. Rael; Polich, John

    2006-01-01

    Neuroelectric and imaging studies of meditation are reviewed. Electroencephalographic measures indicate an overall slowing subsequent to meditation, with theta and alpha activation related to proficiency of practice. Sensory evoked potential assessment of concentrative meditation yields amplitude and latency changes for some components and…

  11. Usefulness of Simultaneous EEG-NIRS Recording in Language Studies

    ERIC Educational Resources Information Center

    Wallois, F.; Mahmoudzadeh, M.; Patil, A.; Grebe, R.

    2012-01-01

    One of the most challenging tasks in neuroscience in language studies, is investigation of the brain's ability to integrate and process information. This task can only be successfully addressed by applying various assessment techniques integrated into a multimodal approach. Each of these techniques has its advantages and disadvantages, but help to…

  12. Abstract art and cortical motor activation: an EEG study

    PubMed Central

    Umilta', M. Alessandra; Berchio, Cristina; Sestito, Mariateresa; Freedberg, David; Gallese, Vittorio

    2012-01-01

    The role of the motor system in the perception of visual art remains to be better understood. Earlier studies on the visual perception of abstract art (from Gestalt theory, as in Arnheim, 1954 and 1988, to balance preference studies as in Locher and Stappers, 2002, and more recent work by Locher et al., 2007; Redies, 2007, and Taylor et al., 2011), neglected the question, while the field of neuroesthetics (Ramachandran and Hirstein, 1999; Zeki, 1999) mostly concentrated on figurative works. Much recent work has demonstrated the multimodality of vision, encompassing the activation of motor, somatosensory, and viscero-motor brain regions. The present study investigated whether the observation of high-resolution digitized static images of abstract paintings by Lucio Fontana is associated with specific cortical motor activation in the beholder's brain. Mu rhythm suppression was evoked by the observation of original art works but not by control stimuli (as in the case of graphically modified versions of these works). Most interestingly, previous visual exposure to the stimuli did not affect the mu rhythm suppression induced by their observation. The present results clearly show the involvement of the cortical motor system in the viewing of static abstract art works. PMID:23162456

  13. The study of the high-density gas distribution in SFRs with the SRT: the test cases of L1641-S3 and CepA-East

    NASA Astrophysics Data System (ADS)

    Codella, C.; Beltrán, M. T.; Panella, D.; Cesaroni, R.; Nesti, R.; Massi, F.

    The star forming process occurs in molecular cores associated with high density and low temperature conditions. In addition, as the young stellar object evolves, its mass loss process interacts with the surrounding medium affecting the structure and the physical conditions of the natal cloud, often creating complex clumpy scenarios. The SRT antenna will allow one to survey star forming regions by using high-density standard tracers and obtaining high angular resolution maps. We present the results obtained from the 22-43 GHz observations of the NH_3, HC_3N, and HC_5N emission carried out with the Medicina and Noto radiotelescopes. The complex CepA-East and L1641-S3 star forming regions have been used as test cases. In the light of the preliminary results of these projects we will discuss the steps ahead possible by the future use of SRT.

  14. MRSA Carriage in Community Outpatients: A Cross-Sectional Prevalence Study in a High-Density Livestock Farming Area along the Dutch-German Border

    PubMed Central

    Paget, John; Aangenend, Helen; Kühn, Malte; Hautvast, Jeannine; van Oorschot, Desiree; Olde Loohuis, Alphons; van der Velden, Koos; Friedrich, Alexander W.; Voss, Andreas; Köck, Robin

    2015-01-01

    Objectives MRSA poses a considerable public health threat to the community. The objectives of this study were to assess the prevalence of MRSA carriage and determine factors that were associated with MRSA carriage among outpatients who had used antibiotics in the previous three months and who lived in a high-density livestock farming area along the Dutch-German border. Methods Cross-sectional prevalence study carried out between November 2011 and June 2012. Nasal swabs and questionnaires were collected in patients (>4 years) who had used antibiotics in the previous three months from twelve Dutch General Practitioners (GPs), seven German GPs and two German outpatient urologists. To assess nasal carriage, swabs were analyzed using selective MRSA agars after broth enrichment. MRSA positive samples were spa typed. Results Data were collected from 513 GP outpatients in the Netherlands, 261 GP outpatients in Germany and 200 urologist outpatients in Germany. The overall prevalence of MRSA carriage was 0.8%, 1.1% and 2.0%, respectively. In the GP outpatient populations, the prevalence was similar in both countries (0.8% and 1.1%, respectively, p = 0.879), all spa types were indicative for livestock-associated MRSA (4xt011 in the Netherlands; 2xt034 and t011 in Germany) and being a farmer, living on or near (<5km) to a farm were associated with MRSA carriage. In the urologist outpatient population, the prevalence was higher (2.0%), all spa types were indicative for healthcare-associated MRSA (t068, t032, t003, t10231) and being a farmer, living on or near to a farm were factors not associated with MRSA carriage. Conclusions The prevalence of MRSA carriage in these community outpatient populations along the Dutch-German border was low. There were striking similarities in livestock-associated MRSA carriage and clonal spread in the outpatient populations seeing their GP in both countries. In contrast, urologist outpatients in Germany were colonized with spa types indicative of

  15. Multivariate genetic determinants of EEG oscillations in schizophrenia and psychotic bipolar disorder from the BSNIP study.

    PubMed

    Narayanan, B; Soh, P; Calhoun, V D; Ruaño, G; Kocherla, M; Windemuth, A; Clementz, B A; Tamminga, C A; Sweeney, J A; Keshavan, M S; Pearlson, G D

    2015-01-01

    Schizophrenia (SZ) and psychotic bipolar disorder (PBP) are disabling psychiatric illnesses with complex and unclear etiologies. Electroencephalogram (EEG) oscillatory abnormalities in SZ and PBP probands are heritable and expressed in their relatives, but the neurobiology and genetic factors mediating these abnormalities in the psychosis dimension of either disorder are less explored. We examined the polygenic architecture of eyes-open resting state EEG frequency activity (intrinsic frequency) from 64 channels in 105 SZ, 145 PBP probands and 56 healthy controls (HCs) from the multisite BSNIP (Bipolar-Schizophrenia Network on Intermediate Phenotypes) study. One million single-nucleotide polymorphisms (SNPs) were derived from DNA. We assessed eight data-driven EEG frequency activity derived from group-independent component analysis (ICA) in conjunction with a reduced subset of 10,422 SNPs through novel multivariate association using parallel ICA (para-ICA). Genes contributing to the association were examined collectively using pathway analysis tools. Para-ICA extracted five frequency and nine SNP components, of which theta and delta activities were significantly correlated with two different gene components, comprising genes participating extensively in brain development, neurogenesis and synaptogenesis. Delta and theta abnormality was present in both SZ and PBP, while theta differed between the two disorders. Theta abnormalities were also mediated by gene clusters involved in glutamic acid pathways, cadherin and synaptic contact-based cell adhesion processes. Our data suggest plausible multifactorial genetic networks, including novel and several previously identified (DISC1) candidate risk genes, mediating low frequency delta and theta abnormalities in psychoses. The gene clusters were enriched for biological properties affecting neural circuitry and involved in brain function and/or development. PMID:26101851

  16. Numerical magnitude processing in abacus-trained children with superior mathematical ability: an EEG study.

    PubMed

    Huang, Jian; Du, Feng-lei; Yao, Yuan; Wan, Qun; Wang, Xiao-Song; Chen, Fei-Yan

    2015-08-01

    Distance effect has been regarded as the best established marker of basic numerical magnitude processes and is related to individual mathematical abilities. A larger behavioral distance effect is suggested to be concomitant with lower mathematical achievement in children. However, the relationship between distance effect and superior mathematical abilities is unclear. One could get superior mathematical abilities by acquiring the skill of abacus-based mental calculation (AMC), which can be used to solve calculation problems with exceptional speed and high accuracy. In the current study, we explore the relationship between distance effect and superior mathematical abilities by examining whether and how the AMC training modifies numerical magnitude processing. Thus, mathematical competencies were tested in 18 abacus-trained children (who accepted the AMC training) and 18 non-trained children. Electroencephalography (EEG) waveforms were recorded when these children executed numerical comparison tasks in both Arabic digit and dot array forms. We found that: (a) the abacus-trained group had superior mathematical abilities than their peers; (b) distance effects were found both in behavioral results and on EEG waveforms; (c) the distance effect size of the average amplitude on the late negative-going component was different between groups in the digit task, with a larger effect size for abacus-trained children; (d) both the behavioral and EEG distance effects were modulated by the notation. These results revealed that the neural substrates of magnitude processing were modified by AMC training, and suggested that the mechanism of the representation of numerical magnitude for children with superior mathematical abilities was different from their peers. In addition, the results provide evidence for a view of non-abstract numerical representation. PMID:26238541

  17. Multivariate genetic determinants of EEG oscillations in schizophrenia and psychotic bipolar disorder from the BSNIP study

    PubMed Central

    Narayanan, B; Soh, P; Calhoun, V D; Ruaño, G; Kocherla, M; Windemuth, A; Clementz, B A; Tamminga, C A; Sweeney, J A; Keshavan, M S; Pearlson, G D

    2015-01-01

    Schizophrenia (SZ) and psychotic bipolar disorder (PBP) are disabling psychiatric illnesses with complex and unclear etiologies. Electroencephalogram (EEG) oscillatory abnormalities in SZ and PBP probands are heritable and expressed in their relatives, but the neurobiology and genetic factors mediating these abnormalities in the psychosis dimension of either disorder are less explored. We examined the polygenic architecture of eyes-open resting state EEG frequency activity (intrinsic frequency) from 64 channels in 105 SZ, 145 PBP probands and 56 healthy controls (HCs) from the multisite BSNIP (Bipolar-Schizophrenia Network on Intermediate Phenotypes) study. One million single-nucleotide polymorphisms (SNPs) were derived from DNA. We assessed eight data-driven EEG frequency activity derived from group-independent component analysis (ICA) in conjunction with a reduced subset of 10 422 SNPs through novel multivariate association using parallel ICA (para-ICA). Genes contributing to the association were examined collectively using pathway analysis tools. Para-ICA extracted five frequency and nine SNP components, of which theta and delta activities were significantly correlated with two different gene components, comprising genes participating extensively in brain development, neurogenesis and synaptogenesis. Delta and theta abnormality was present in both SZ and PBP, while theta differed between the two disorders. Theta abnormalities were also mediated by gene clusters involved in glutamic acid pathways, cadherin and synaptic contact-based cell adhesion processes. Our data suggest plausible multifactorial genetic networks, including novel and several previously identified (DISC1) candidate risk genes, mediating low frequency delta and theta abnormalities in psychoses. The gene clusters were enriched for biological properties affecting neural circuitry and involved in brain function and/or development. PMID:26101851

  18. Numerical magnitude processing in abacus-trained children with superior mathematical ability: an EEG study*

    PubMed Central

    Huang, Jian; Du, Feng-lei; Yao, Yuan; Wan, Qun; Wang, Xiao-song; Chen, Fei-yan

    2015-01-01

    Distance effect has been regarded as the best established marker of basic numerical magnitude processes and is related to individual mathematical abilities. A larger behavioral distance effect is suggested to be concomitant with lower mathematical achievement in children. However, the relationship between distance effect and superior mathematical abilities is unclear. One could get superior mathematical abilities by acquiring the skill of abacus-based mental calculation (AMC), which can be used to solve calculation problems with exceptional speed and high accuracy. In the current study, we explore the relationship between distance effect and superior mathematical abilities by examining whether and how the AMC training modifies numerical magnitude processing. Thus, mathematical competencies were tested in 18 abacus-trained children (who accepted the AMC training) and 18 non-trained children. Electroencephalography (EEG) waveforms were recorded when these children executed numerical comparison tasks in both Arabic digit and dot array forms. We found that: (a) the abacus-trained group had superior mathematical abilities than their peers; (b) distance effects were found both in behavioral results and on EEG waveforms; (c) the distance effect size of the average amplitude on the late negative-going component was different between groups in the digit task, with a larger effect size for abacus-trained children; (d) both the behavioral and EEG distance effects were modulated by the notation. These results revealed that the neural substrates of magnitude processing were modified by AMC training, and suggested that the mechanism of the representation of numerical magnitude for children with superior mathematical abilities was different from their peers. In addition, the results provide evidence for a view of non-abstract numerical representation. PMID:26238541

  19. Study of the functional hyperconnectivity between couples of pilots during flight simulation: an EEG hyperscanning study.

    PubMed

    Astolfi, L; Toppi, J; Borghini, G; Vecchiato, G; Isabella, R; De Vico Fallani, F; Cincotti, F; Salinari, S; Mattia, D; He, B; Caltagirone, C; Babiloni, F

    2011-01-01

    Brain Hyperscanning, i.e. the simultaneous recording of the cerebral activity of different human subjects involved in interaction tasks, is a very recent field of Neuroscience aiming at understanding the cerebral processes generating and generated by social interactions. This approach allows the observation and modeling of the neural signature specifically dependent on the interaction between subjects, and, even more interestingly, of the functional links existing between the activities in the brains of the subjects interacting together. In this EEG hyperscanning study we explored the functional hyperconnectivity between the activity in different scalp sites of couples of Civil Aviation Pilots during different phases of a flight reproduced in a flight simulator. Results shown a dense network of connections between the two brains in the takeoff and landing phases, when the cooperation between them is maximal, in contrast with phases during which the activity of the two pilots was independent, when no or quite few links were shown. These results confirms that the study of the brain connectivity between the activity simultaneously acquired in human brains during interaction tasks can provide important information about the neural basis of the "spirit of the group". PMID:22254810

  20. High density diffusion-free nanowell arrays.

    PubMed

    Takulapalli, Bharath R; Qiu, Ji; Magee, D Mitchell; Kahn, Peter; Brunner, Al; Barker, Kristi; Means, Steven; Miersch, Shane; Bian, Xiaofang; Mendoza, Alex; Festa, Fernanda; Syal, Karan; Park, Jin G; LaBaer, Joshua; Wiktor, Peter

    2012-08-01

    Proteomics aspires to elucidate the functions of all proteins. Protein microarrays provide an important step by enabling high-throughput studies of displayed proteins. However, many functional assays of proteins include untethered intermediates or products, which could frustrate the use of planar arrays at very high densities because of diffusion to neighboring features. The nucleic acid programmable protein array (NAPPA) is a robust in situ synthesis method for producing functional proteins just-in-time, which includes steps with diffusible intermediates. We determined that diffusion of expressed proteins led to cross-binding at neighboring spots at very high densities with reduced interspot spacing. To address this limitation, we have developed an innovative platform using photolithographically etched discrete silicon nanowells and used NAPPA as a test case. This arrested protein diffusion and cross-binding. We present confined high density protein expression and display, as well as functional protein-protein interactions, in 8000 nanowell arrays. This is the highest density of individual proteins in nanovessels demonstrated on a single slide. We further present proof of principle results on ultrahigh density protein arrays capable of up to 24000 nanowells on a single slide. PMID:22742968

  1. Removing ballistocardiogram (BCG) artifact from full-scalp EEG acquired inside the MR scanner with Orthogonal Matching Pursuit (OMP).

    PubMed

    Xia, Hongjing; Ruan, Dan; Cohen, Mark S

    2014-01-01

    Ballistocardiogram (BCG) artifact remains a major challenge that renders electroencephalographic (EEG) signals hard to interpret in simultaneous EEG and functional MRI (fMRI) data acquisition. Here, we propose an integrated learning and inference approach that takes advantage of a commercial high-density EEG cap, to estimate the BCG contribution in noisy EEG recordings from inside the MR scanner. To estimate reliably the full-scalp BCG artifacts, a near-optimal subset (20 out of 256) of channels first was identified using a modified recording setup. In subsequent recordings inside the MR scanner, BCG-only signal from this subset of channels was used to generate continuous estimates of the full-scalp BCG artifacts via inference, from which the intended EEG signal was recovered. The reconstruction of the EEG was performed with both a direct subtraction and an optimization scheme. We evaluated the performance on both synthetic and real contaminated recordings, and compared it to the benchmark Optimal Basis Set (OBS) method. In the challenging non-event-related-potential (non-ERP) EEG studies, our reconstruction can yield more than fourteen-fold improvement in reducing the normalized RMS error of EEG signals, compared to OBS. PMID:25120421

  2. Dynamics of EEG Rhythms Support Distinct Visual Selection Mechanisms in Parietal Cortex: A Simultaneous Transcranial Magnetic Stimulation and EEG Study

    PubMed Central

    Spadone, Sara; Tosoni, Annalisa; Sestieri, Carlo; Romani, Gian Luca; Della Penna, Stefania; Corbetta, Maurizio

    2015-01-01

    Using repetitive transcranial magnetic stimulation (rTMS), we have recently shown a functional anatomical distinction in human parietal cortex between regions involved in maintaining attention to a location [ventral intraparietal sulcus (vIPS)] and a region involved in shifting attention between locations [medial superior parietal lobule (mSPL)]. In particular, while rTMS interference over vIPS impaired target discrimination at contralateral attended locations, interference over mSPL affected performance following shifts of attention regardless of the visual field (Capotosto et al., 2013). Here, using rTMS interference in conjunction with EEG recordings of brain rhythms during the presentation of cues that indicate to either shift or maintain spatial attention, we tested whether this functional anatomical segregation involves different mechanisms of rhythm synchronization. The transient inactivation of vIPS reduced the amplitude of the expected parieto-occipital low-α (8–10 Hz) desynchronization contralateral to the cued location. Conversely, the transient inactivation of mSPL, compared with vIPS, reduced the high-α (10–12 Hz) desynchronization induced by shifting attention into both visual fields. Furthermore, rTMS induced a frequency-specific delay of task-related modulation of brain rhythms. Specifically, rTMS over vIPS or mSPL during maintenance (stay cues) or shifting (shift cues) of spatial attention, respectively, caused a delay of α parieto-occipital desynchronization. Moreover, rTMS over vIPS during stay cues caused a delay of δ (2–4 Hz) frontocentral synchronization. These findings further support the anatomo-functional subdivision of the dorsal attention network in subsystems devoted to shifting or maintaining covert visuospatial attention and indicate that these mechanisms operate in different frequency channels linking frontal to parieto-occipital visual regions. PMID:25589765

  3. Difficulty in clinical identification of neonatal seizures: an EEG monitor study.

    PubMed

    Fenichel, G M

    1987-01-01

    Seventeen newborns were monitored for 24 hours using a three-channel ambulatory EEG (A/EEG). All newborns were thought to be having subtle seizures by the nursery staff. Fifteen of the 17 newborns were recorded as having 1-30 clinical seizures during the time of monitoring. Only one newborn had clinically identified seizures associated with A/EEG discharges. The seizures were characterized by eye rolling. Fifty-two episodes (thought to be seizures) of lip smacking, bicycling, jerking, fisting, staring, stiffening, or any combination of the above occurred in eight newborns without an associated discharge on A/EEG. However, two of the eight had seizure discharges at other times, not associated with any clinical manifestation. Seventy-four apnea spells, thought to be possible seizures, occurred in seven newborns. None was associated with discharges on A/EEG, but one of these newborns had 50 A/EEG discharges unrelated to apnea or other clinical manifestations. PMID:3577211

  4. Study on Brain Dynamics by Non Linear Analysis of Music Induced EEG Signals

    NASA Astrophysics Data System (ADS)

    Banerjee, Archi; Sanyal, Shankha; Patranabis, Anirban; Banerjee, Kaushik; Guhathakurta, Tarit; Sengupta, Ranjan; Ghosh, Dipak; Ghose, Partha

    2016-02-01

    Music has been proven to be a valuable tool for the understanding of human cognition, human emotion, and their underlying brain mechanisms. The objective of this study is to analyze the effect of Hindustani music on brain activity during normal relaxing conditions using electroencephalography (EEG). Ten male healthy subjects without special musical education participated in the study. EEG signals were acquired at the frontal (F3/F4) lobes of the brain while listening to music at three experimental conditions (rest, with music and without music). Frequency analysis was done for the alpha, theta and gamma brain rhythms. The finding shows that arousal based activities were enhanced while listening to Hindustani music of contrasting emotions (romantic/sorrow) for all the subjects in case of alpha frequency bands while no significant changes were observed in gamma and theta frequency ranges. It has been observed that when the music stimulus is removed, arousal activities as evident from alpha brain rhythms remain for some time, showing residual arousal. This is analogous to the conventional 'Hysteresis' loop where the system retains some 'memory' of the former state. This is corroborated in the non linear analysis (Detrended Fluctuation Analysis) of the alpha rhythms as manifested in values of fractal dimension. After an input of music conveying contrast emotions, withdrawal of music shows more retention as evidenced by the values of fractal dimension.

  5. Mapping Brain Injury with Symmetrical-channels' EEG Signal Analysis – A Pilot Study

    PubMed Central

    Yi, LI; Xiao-ping, LIU; Xian-hong, LING; Jing-qi, LI; Wen-wei, YANG; Dan-ke, ZHANG; Li-hua, LI; Yong, YANG

    2014-01-01

    A technique for detecting brain injury at the bedside has great clinical value, but conventional imaging techniques (such as computed tomography [CT] and magnetic resonance imaging) are impractical. In this study, a novel method–the symmetrical channel electroencephalogram (EEG) signal analysis–was developed for this purpose. The study population consisted of 45 traumatic brain injury patients and 10 healthy controls. EEG signals in resting and stimulus states were acquired, and approximate entropy (ApEn) and slow-wave coefficient were extracted to calculate the ratio values of ApEn and SWC for injured and uninjured areas. Statistical analyses showed that the ratio values for both ApEn and SWC between injured and uninjured brain areas differed significantly (P < 0.05) for both resting and name call stimulus states. A set of criteria (range of ratio values) to determine whether a brain area is injured or uninjured was proposed and its reliability was verified by statistical analyses and CT images. PMID:24846704

  6. The Dynamics of Visual Experience, an EEG Study of Subjective Pattern Formation

    PubMed Central

    Elliott, Mark A.; Twomey, Deirdre; Glennon, Mark

    2012-01-01

    Background Since the origin of psychological science a number of studies have reported visual pattern formation in the absence of either physiological stimulation or direct visual-spatial references. Subjective patterns range from simple phosphenes to complex patterns but are highly specific and reported reliably across studies. Methodology/Principal Findings Using independent-component analysis (ICA) we report a reduction in amplitude variance consistent with subjective-pattern formation in ventral posterior areas of the electroencephalogram (EEG). The EEG exhibits significantly increased power at delta/theta and gamma-frequencies (point and circle patterns) or a series of high-frequency harmonics of a delta oscillation (spiral patterns). Conclusions/Significance Subjective-pattern formation may be described in a way entirely consistent with identical pattern formation in fluids or granular flows. In this manner, we propose subjective-pattern structure to be represented within a spatio-temporal lattice of harmonic oscillations which bind topographically organized visual-neuronal assemblies by virtue of low frequency modulation. PMID:22292053

  7. Combining Different Tools for EEG Analysis to Study the Distributed Character of Language Processing.

    PubMed

    Rocha, Armando Freitas da; Foz, Flávia Benevides; Pereira, Alfredo

    2015-01-01

    Recent studies on language processing indicate that language cognition is better understood if assumed to be supported by a distributed intelligent processing system enrolling neurons located all over the cortex, in contrast to reductionism that proposes to localize cognitive functions to specific cortical structures. Here, brain activity was recorded using electroencephalogram while volunteers were listening or reading small texts and had to select pictures that translate meaning of these texts. Several techniques for EEG analysis were used to show this distributed character of neuronal enrollment associated with the comprehension of oral and written descriptive texts. Low Resolution Tomography identified the many different sets (s i ) of neurons activated in several distinct cortical areas by text understanding. Linear correlation was used to calculate the information H(e i ) provided by each electrode of the 10/20 system about the identified s i . H(e i ) Principal Component Analysis (PCA) was used to study the temporal and spatial activation of these sources s i . This analysis evidenced 4 different patterns of H(e i ) covariation that are generated by neurons located at different cortical locations. These results clearly show that the distributed character of language processing is clearly evidenced by combining available EEG technologies. PMID:26713089

  8. Transient haemodynamic events in neurologically compromised infants: a simultaneous EEG and diffuse optical imaging study.

    PubMed

    Cooper, R J; Hebden, Jeremy C; O'Reilly, H; Mitra, S; Michell, A W; Everdell, N L; Gibson, A P; Austin, T

    2011-04-15

    We describe a series of novel simultaneous EEG and diffuse optical imaging studies of newborn infants. These experiments provide evidence of large, transient haemodynamic events which occur repeatedly and consistently within and across several infants with neurological damage, all of whom were diagnosed with seizures. A simple but independent process of rejecting artifacts and identifying events within diffuse optical imaging data is described, and this process is applied to data from 4 neurologically damaged neonates and from 19 healthy, age-matched controls. This method results in the consistent identification of events in three out of four of the neurologically damaged infant group which are dominated by a slow (>30s) and significant increase in oxyhaemoglobin concentration, followed by a rapid and significant decrease before a slow return to baseline. No comparable events are found in any of our control data sets. The importance and physiological implications of our findings are discussed, as is the suitability of a combined EEG and diffuse optical imaging approach to the study and monitoring of neonatal brain injury. PMID:21255658

  9. Combining Different Tools for EEG Analysis to Study the Distributed Character of Language Processing

    PubMed Central

    da Rocha, Armando Freitas; Foz, Flávia Benevides; Pereira, Alfredo

    2015-01-01

    Recent studies on language processing indicate that language cognition is better understood if assumed to be supported by a distributed intelligent processing system enrolling neurons located all over the cortex, in contrast to reductionism that proposes to localize cognitive functions to specific cortical structures. Here, brain activity was recorded using electroencephalogram while volunteers were listening or reading small texts and had to select pictures that translate meaning of these texts. Several techniques for EEG analysis were used to show this distributed character of neuronal enrollment associated with the comprehension of oral and written descriptive texts. Low Resolution Tomography identified the many different sets (si) of neurons activated in several distinct cortical areas by text understanding. Linear correlation was used to calculate the information H(ei) provided by each electrode of the 10/20 system about the identified si. H(ei) Principal Component Analysis (PCA) was used to study the temporal and spatial activation of these sources si. This analysis evidenced 4 different patterns of H(ei) covariation that are generated by neurons located at different cortical locations. These results clearly show that the distributed character of language processing is clearly evidenced by combining available EEG technologies. PMID:26713089

  10. Studies of activated GPIIb/IIIa receptors on the luminal surface of adherent platelets. Paradoxical loss of luminal receptors when platelets adhere to high density fibrinogen.

    PubMed Central

    Coller, B S; Kutok, J L; Scudder, L E; Galanakis, D K; West, S M; Rudomen, G S; Springer, K T

    1993-01-01

    The accessibility of activated GPIIb/IIIa receptors on the luminal surface of platelets adherent to damaged blood vessels or atherosclerotic plaques is likely to play a crucial role in subsequent platelet recruitment. To define better the factors involved in this process, we developed a functional assay to assess the presence of activated, luminal GPIIb/IIIa receptors, based on their ability to bind erythrocytes containing a high density of covalently coupled RGD-containing peptides (thromboerythrocytes). Platelets readily adhered to wells coated with purified type I rat skin collagen and the adherent platelets bound a dense lawn of thromboerythrocytes. With fibrinogen-coated wells, platelet adhesion increased as the fibrinogen-coating concentration increased, reaching a plateau at about 11 micrograms/ml. Thromboerythrocyte binding to the platelets adherent to fibrinogen showed a paradoxical response, increasing at fibrinogen coating concentrations up to approximately 4-6 micrograms/ml and then dramatically decreasing at higher fibrinogen-coating concentrations. Scanning electron microscopy demonstrated that the morphology of platelets adherent to collagen was similar to that of platelets adherent to low density fibrinogen, with extensive filopodia formation and ruffling. In contrast, platelets adherent to high density fibrinogen showed a bland, flattened appearance. Immunogold staining of GPIIb/IIIa receptors demonstrated concentration of the receptors on the filopodia, and depletion of receptors on the flattened portion of the platelets. Thus, there is a paradoxical loss of accessible, activated GPIIb/IIIa receptors on the luminal surface of platelets adherent to high density fibrinogen. Two factors may contribute to this result: engagement of GPIIb/IIIa receptors with fibrinogen on the abluminal surface leading to the loss of luminal receptors, and loss of luminal filopodia that interact with thromboerythrocytes. These data provide insight into the differences

  11. Fixation-related potentials in visual search: a combined EEG and eye tracking study.

    PubMed

    Kamienkowski, Juan E; Ison, Matias J; Quiroga, Rodrigo Quian; Sigman, Mariano

    2012-01-01

    We report a study of concurrent eye movements and electroencephalographic (EEG) recordings while subjects freely explored a search array looking for hidden targets. We describe a sequence of fixation-event related potentials (fERPs) that unfolds during ∼ 400 ms following each fixation. This sequence highly resembles the event-related responses in a replay experiment, in which subjects kept fixation while a sequence of images occurred around the fovea simulating the spatial and temporal patterns during the free viewing experiment. Similar responses were also observed in a second control experiment where the appearance of stimuli was controlled by the experimenters and presented at the center of the screen. We also observed a relatively early component (∼150 ms) that distinguished between targets and distractors only in the freeviewing condition. We present a novel approach to match the critical properties of two conditions (targets/distractors), which can be readily adapted to other paradigms to investigate EEG components during free eye-movements. PMID:22776848

  12. Cortical activity and connectivity of human brain during the prisoner's dilemma: an EEG hyperscanning study.

    PubMed

    Babiloni, F; Astolfi, L; Cincotti, F; Mattia, D; Tocci, A; Tarantino, A; Marciani, Mg; Salinari, S; Gao, S; Colosimo, A; De Vico Fallani, F

    2007-01-01

    A major limitation of the approaches used in most of the studies performed so far for the characterization of the brain responses during social interaction is that only one of the participating brains is measured each time. The "interaction" between cooperating, competing or communicating brains is thus not measured directly, but inferred by independent observations aggregated by cognitive models and assumptions that link behavior and neural activation. In this paper, we use the simultaneous neuroelectric recording of several subjects engaged in cooperative games (EEG hyperscanning). This EEG hyperscanning allow us to observe and model directly the neural signature of human interactions in order to understand the cerebral processes generating and generated by social cooperation or competition. We used a paradigm called Prisoner's dilemma derived from the game theory. Results collected in a population of 22 subjects suggested that the most consistently activated structure in social interaction paradigms is the medial prefrontal cortex, which is found to be active in all the conflict situations analyzed. The role of the anterior cingulated cortex (ACC) assumes a main character being a discriminant factor for the "defect" attitude of the entire population examined. This observation is compatible with the role that the Theory of Mind assigns to the ACC. PMID:18003118

  13. Mapping perception to action in piano practice: a longitudinal DC-EEG study

    PubMed Central

    Bangert, Marc; Altenmüller, Eckart O

    2003-01-01

    Background Performing music requires fast auditory and motor processing. Regarding professional musicians, recent brain imaging studies have demonstrated that auditory stimulation produces a co-activation of motor areas, whereas silent tapping of musical phrases evokes a co-activation in auditory regions. Whether this is obtained via a specific cerebral relay station is unclear. Furthermore, the time course of plasticity has not yet been addressed. Results Changes in cortical activation patterns (DC-EEG potentials) induced by short (20 minute) and long term (5 week) piano learning were investigated during auditory and motoric tasks. Two beginner groups were trained. The 'map' group was allowed to learn the standard piano key-to-pitch map. For the 'no-map' group, random assignment of keys to tones prevented such a map. Auditory-sensorimotor EEG co-activity occurred within only 20 minutes. The effect was enhanced after 5-week training, contributing elements of both perception and action to the mental representation of the instrument. The 'map' group demonstrated significant additional activity of right anterior regions. Conclusion We conclude that musical training triggers instant plasticity in the cortex, and that right-hemispheric anterior areas provide an audio-motor interface for the mental representation of the keyboard. PMID:14575529

  14. EEG, HRV and Psychological Correlates while Playing Bejeweled II: A Randomized Controlled Study.

    PubMed

    Russoniello, Carmen V; O'Brien, Kevin; Parks, Jennifer M

    2009-01-01

    Stress related medical disorders such as cardiovascular disease, diabetes, depression, and anxiety are serious medical issues that can cause disability and death. Interventions to prevent their development and exacerbation are needed. Casual video games (CVGs) are fun, easy to play, spontaneous and tremendously popular. People report that they play these games because they decrease their stress and improve their mood. This study tested this theory by comparing people playing Bejeweled II a popular CVG with control subjects measured under similar conditions. Electroencephalographic (EEG) changes after playing Bejeweled II were consistent with increased mood and corroborated with similar findings on psychological reports. Moreover, heart rate variability (HRV) changes consistent with autonomic nervous system relaxation or decreased physical stress were also recorded. It is concluded, therefore, that playing a CVG like Bejeweled II can increase mood and decrease stress. These finding have broad implications and include the potential development of prescriptive interventions using Bejeweled II to prevent and treat stress related medical disorders. Finally, these findings demonstrate a method using EEG, HRV and psychological correlates to understand the psychophysiological or cybernetic interconnection between participant and video game. PMID:19592761

  15. Preliminary study of Alzheimer's Disease diagnosis based on brain electrical signals using wireless EEG

    NASA Astrophysics Data System (ADS)

    Handayani, N.; Akbar, Y.; Khotimah, S. N.; Haryanto, F.; Arif, I.; Taruno, W. P.

    2016-03-01

    This research aims to study brain's electrical signals recorded using EEG as a basis for the diagnosis of patients with Alzheimer's Disease (AD). The subjects consisted of patients with AD, and normal subjects are used as the control. Brain signals are recorded for 3 minutes in a relaxed condition and with eyes closed. The data is processed using power spectral analysis, brain mapping and chaos test to observe the level of complexity of EEG's data. The results show a shift in the power spectral in the low frequency band (delta and theta) in AD patients. The increase of delta and theta occurs in lobus frontal area and lobus parietal respectively. However, there is a decrease of alpha activity in AD patients where in the case of normal subjects with relaxed condition, brain alpha wave dominates the posterior area. This is confirmed by the results of brain mapping. While the results of chaos analysis show that the average value of MMLE is lower in AD patients than in normal subjects. The level of chaos associated with neural complexity in AD patients with lower neural complexity is due to neuronal damage caused by the beta amyloid plaques and tau protein in neurons.

  16. Pulse artifact detection in simultaneous EEG-fMRI recording based on EEG map topography.

    PubMed

    Iannotti, Giannina R; Pittau, Francesca; Michel, Christoph M; Vulliemoz, Serge; Grouiller, Frédéric

    2015-01-01

    One of the major artifact corrupting electroencephalogram (EEG) acquired during functional magnetic resonance imaging (fMRI) is the pulse artifact (PA). It is mainly due to the motion of the head and attached electrodes and wires in the magnetic field occurring after each heartbeat. In this study we propose a novel method to improve PA detection by considering the strong gradient and inversed polarity between left and right EEG electrodes. We acquired high-density EEG-fMRI (256 electrodes) with simultaneous electrocardiogram (ECG) at 3 T. PA was estimated as the voltage difference between right and left signals from the electrodes showing the strongest artifact (facial and temporal). Peaks were detected on this estimated signal and compared to the peaks in the ECG recording. We analyzed data from eleven healthy subjects, two epileptic patients and four healthy subjects with an insulating layer between electrodes and scalp. The accuracy of the two methods was assessed with three criteria: (i) standard deviation, (ii) kurtosis and (iii) confinement into the physiological range of the inter-peak intervals. We also checked whether the new method has an influence on the identification of epileptic spikes. Results show that estimated PA improved artifact detection in 15/17 cases, when compared to the ECG method. Moreover, epileptic spike identification was not altered by the correction. The proposed method improves the detection of pulse-related artifacts, particularly crucial when the ECG is of poor quality or cannot be recorded. It will contribute to enhance the quality of the EEG increasing the reliability of EEG-informed fMRI analysis. PMID:25307731

  17. Phenomenology of high density disruptions in the TFTR tokamak

    SciTech Connect

    Fredrickson, E.D.; McGuire, K.; Bell, M.; Bush, C.E.; Cavallo, A.; Budny, R.; Janos, A.; Mansfield, D.; Nagayama, Y.; Park, H.; Schivell, J.; Taylor, G.; Zarnstorff, M.C. . Plasma Physics Lab.); Drake, J.; Kleva, R. )

    1992-01-01

    Recent studies on TFTR of high density disruptions have made significant advances in closing the gap between theoretical models of disruptions and the experimental data. For the first time, an (m,n) = (1,1) cold bubble'' precursor to the high density disruptions has been experimentally observed. The precursor resembles the vacuum bubble'' model of disruptions first proposed by Kadomtsev and Pogutse.

  18. Phenomenology of high density disruptions in the TFTR tokamak

    SciTech Connect

    Fredrickson, E.D.; McGuire, K.; Bell, M.; Bush, C.E.; Cavallo, A.; Budny, R.; Janos, A.; Mansfield, D.; Nagayama, Y.; Park, H.; Schivell, J.; Taylor, G.; Zarnstorff, M.C.; Drake, J.; Kleva, R.

    1992-01-01

    Recent studies on TFTR of high density disruptions have made significant advances in closing the gap between theoretical models of disruptions and the experimental data. For the first time, an (m,n) = (1,1) ``cold bubble`` precursor to the high density disruptions has been experimentally observed. The precursor resembles the ``vacuum bubble`` model of disruptions first proposed by Kadomtsev and Pogutse.

  19. Does EEG-Neurofeedback Improve Neurocognitive Functioning in Children with Attention-Deficit/Hyperactivity Disorder? A Systematic Review and a Double-Blind Placebo-Controlled Study

    ERIC Educational Resources Information Center

    Vollebregt, Madelon A.; van Dongen-Boomsma, Martine; Buitelaar, Jan K.; Slaats-Willemse, Dorine

    2014-01-01

    Background: The number of placebo-controlled randomized studies relating to EEG-neurofeedback and its effect on neurocognition in attention-deficient/hyperactivity disorder (ADHD) is limited. For this reason, a double blind, randomized, placebo-controlled study was designed to assess the effects of EEG-neurofeedback on neurocognitive functioning…

  20. Two-color QCD at high density

    NASA Astrophysics Data System (ADS)

    Boz, Tamer; Giudice, Pietro; Hands, Simon; Skullerud, Jon-Ivar; Williams, Anthony G.

    2016-01-01

    QCD at high chemical potential has interesting properties such as deconfinement of quarks. Two-color QCD, which enables numerical simulations on the lattice, constitutes a laboratory to study QCD at high chemical potential. Among the interesting properties of two-color QCD at high density is the diquark condensation, for which we present recent results obtained on a finer lattice compared to previous studies. The quark propagator in two-color QCD at non-zero chemical potential is referred to as the Gor'kov propagator. We express the Gor'kov propagator in terms of form factors and present recent lattice simulation results.

  1. High-density electroencephalographic recordings during sleep in children with disorders of consciousness

    PubMed Central

    Mouthon, Anne-Laure; van Hedel, Hubertus J.A.; Meyer-Heim, Andreas; Kurth, Salome; Ringli, Maya; Pugin, Fiona; Huber, Reto

    2016-01-01

    Introduction A large number of studies have investigated neural correlates of consciousness in adults. However, knowledge about brain function in children with disorders of consciousness (DOC) is very limited. We suggest that EEG recordings during sleep are a promising approach. In healthy adults as well as in children, it has been shown that the activity of sleep slow waves (EEG spectral power 1–4.5 Hz), the primary characteristic of deep sleep, is dependent on use during previous wakefulness. Thus the regulation of slow wave activity (SWA) provides indirect insights into brain function during wakefulness. Methods In the present study, we investigated high-density EEG recordings during sleep in ten healthy children and in ten children with acquired brain injury, including five children with DOC and five children with acquired brain injury without DOC. We used the build-up of SWA to quantify SWA regulation. Results Children with DOC showed a global reduction in the SWA build-up when compared to both, healthy children and children with acquired brain injury without DOC. This reduction was most pronounced over parietal brain areas. Comparisons within the group of children with DOC revealed that the parietal SWA build-up was the lowest in patients showing poor outcome. Longitudinal measurements during the recovery period showed an increase in parietal SWA build-up from the first to the second sleep recording. Conclusions Our results suggest that the reduced parietal SWA regulation may represent a characteristic topographical marker for brain network dysfunction in children with DOC. In the future, the regulation of SWA might be used as a complementary assessment in adult and paediatric patients with DOC. PMID:27104141

  2. [The EEG and thinking].

    PubMed

    Petsche, H

    1990-12-01

    The on-going EEG contains information on thinking strategies during cognitive and creative tasks and during listening to music. This was demonstrated by a method taking use of the fact that both the amount of local current production and the degree of electric coupling of brain regions is characteristically changed by mental tasks. In groups of volunteers the significant changes of absolute power and coherence caused by different mental tasks are computed and entered into schematic brain maps (EEG probability maps). The results indicate the existence of general brain strategies even in mental activities as specific as those referred to above. Moreover, several relationships between EEG, psychological test scores, degree of special education and intelligence were found. Studies with extreme value validation according to intelligence and creativity test scores yielded significant differences between the groups of the best and the poorest performers during a creative task in the EEG. The EEG thus can be conceived of as deterministic chaos with different degrees of organization according to its information content. In this context, the question arises as to a possible function of the EEG for the optimization of thinking processes. PMID:2127009

  3. Spatial patterning of the neonatal EEG suggests a need for a high number of electrodes.

    PubMed

    Odabaee, Maryam; Freeman, Walter J; Colditz, Paul B; Ramon, Ceon; Vanhatalo, Sampsa

    2013-03-01

    There is an increasing demand for source analysis of neonatal EEG, but currently there is inadequate knowledge about i) the spatial patterning of neonatal scalp EEG and hence ii) the number of electrodes needed to capture neonatal EEG in full spatial detail. This study addresses these issues by using a very high density (2.5mm interelectrode spacing) linear electrode array to assess the spatial power spectrum, by using a high density (64 electrodes) EEG cap to assess the spatial extent of the common oscillatory bouts in the neonatal EEG and by using a neonatal size spherical head model to assess the effects of source depth and skull conductivities on the spatial frequency spectrum. The linear array recordings show that the spatial power spectrum decays rapidly until about 0.5-0.8 cycles per centimeter. The dense array EEG recordings show that the amplitude of oscillatory events decays within 4-6 cm to the level of global background activity, and that the higher frequencies (12-20 Hz) show the most rapid spatial decline in amplitude. Simulation with spherical head model showed that realistic variation in skull conductivity and source depths can both introduce orders of magnitude difference in the spatial frequency of the scalp EEG. Calculation of spatial Nyquist frequencies from the spatial power spectra suggests that an interelectrode distance of about 6-10mm would suffice to capture the full spatial texture of the raw EEG signal at the neonatal scalp without spatial aliasing or under-sampling. The spatial decay of oscillatory events suggests that a full representation of their spatial characteristics requires an interelectrode distance of 10-20mm. The findings show that the conventional way of recording neonatal EEG with about 10 electrodes ignores most spatial EEG content, that increasing the electrode density is necessary to improve neonatal EEG source localization and information extraction, and that prospective source models will need to carefully consider the

  4. BCG Artifact Removal for Reconstructing Full-scalp EEG inside the MR Scanner

    PubMed Central

    Xia, Hongjing; Ruan, Dan; Cohen, Mark S.

    2014-01-01

    In simultaneous EEG/fMRI acquisition, the ballistocardiogram (BCG) artifact presents a major challenge for meaningful EEG signal interpretation and needs to be removed. This is very difficult, especially in continuous studies where BCG cannot be removed with averaging. In this study, we take advantage of a high-density EEG-cap and propose an integrated learning and inference approach to estimate the BCG contribution to the overall noisy recording. In particular, we present a special-designed experiment to enable a near-optimal subset selection scheme to identify a small set (20 out of 256 channels), and argue that in real-recording, BCG artifact signal from all channels can be estimated from this set. We call this new approach “Direct Recording Temporal Spatial Encoding” (DRTSE) to reflect these properties. In a preliminary evaluation, the DRTSE is combined with a direct subtraction and an optimization scheme to reconstruct the EEG signal. The performance was compared against the benchmark Optimal Basis Set (OBS) method. In the challenging nonevent-related EEG studies, the DRTSE method, with the optimization-based approach, yields an EEG reconstruction that reduces the normalized RMSE by approximately 13 folds, compared to OBS. PMID:26457321

  5. Novel flexible Dry multipin electrodes for EEG: Signal quality and interfacial impedance of Ti and TiN coatings.

    PubMed

    Fiedler, P; Fonseca, C; Pedrosa, P; Martins, A; Vaz, F; Griebel, S; Haueisen, J

    2013-01-01

    Conventional Silver/Silver-Chloride electrodes are inappropriate for routine high-density EEG and emerging new fields of application like brain computer interfaces. A novel multipin electrode design is proposed. It enables rapid and easy application while maintaining signal quality and patient comfort. The electrode design is described and impedance and EEG tests are performed with Titanium and Titanium Nitride coated electrodes. The results are compared to conventional reference electrodes in a multi-volunteer study. The calculated signal parameters prove the multipin electrode concept to reproducibly acquire EEG signal quality comparable to Ag/AgCl electrodes. The promising results encourage further investigation and can provide a technological base for future preparation-free multichannel EEG systems. PMID:24109745

  6. Denoising preterm EEG by signal decomposition and adaptive filtering: a comparative study.

    PubMed

    Navarro, X; Porée, F; Beuchée, A; Carrault, G

    2015-03-01

    Electroencephalography (EEG) from preterm infant monitoring systems is usually contaminated by several sources of noise that have to be removed in order to correctly interpret signals and perform automated analysis reliably. Band-pass and adaptive filters (AF) continue to be systematically applied, but their efficacy may be decreased facing preterm EEG patterns such as the tracé alternant and slow delta-waves. In this paper, we propose the combination of EEG decomposition with AF to improve the overall denoising process. Using artificially contaminated signals from real EEGs, we compared the quality of filtered signals applying different decomposition techniques: the discrete wavelet transform, the empirical mode decomposition (EMD) and a recent improved version, the complete ensemble EMD with adaptive noise. Simulations demonstrate that introducing EMD-based techniques prior to AF can reduce up to 30% the root mean squared errors in denoised EEGs. PMID:25659233

  7. Cognitive workload modulation through degraded visual stimuli: a single-trial EEG study

    NASA Astrophysics Data System (ADS)

    Yu, K.; Prasad, I.; Mir, H.; Thakor, N.; Al-Nashash, H.

    2015-08-01

    Objective. Our experiments explored the effect of visual stimuli degradation on cognitive workload. Approach. We investigated the subjective assessment, event-related potentials (ERPs) as well as electroencephalogram (EEG) as measures of cognitive workload. Main results. These experiments confirm that degradation of visual stimuli increases cognitive workload as assessed by subjective NASA task load index and confirmed by the observed P300 amplitude attenuation. Furthermore, the single-trial multi-level classification using features extracted from ERPs and EEG is found to be promising. Specifically, the adopted single-trial oscillatory EEG/ERP detection method achieved an average accuracy of 85% for discriminating 4 workload levels. Additionally, we found from the spatial patterns obtained from EEG signals that the frontal parts carry information that can be used for differentiating workload levels. Significance. Our results show that visual stimuli can modulate cognitive workload, and the modulation can be measured by the single trial EEG/ERP detection method.

  8. Genetic control of ethanol action on the central nervous system. An EEG study in twins.

    PubMed

    Propping, P

    1977-03-14

    The purpose of the investigation is to claify the genetic contribution to the interindividual variability of ethanol action on the central nervous system. The 52 adult male healthy twin pairs (26 MZ, 26 DZ) got 1.2 ml/kg ethanol p.o. under standardized conditions; furthermore, 13 non-twin subjects were repeatedly subjected to the same procedure in order to test the intraindividual variability. The EEG was recorded before and 60, 120, 180, and 240 min after alcohol intake. The EEGs were off-line analyzed by means of a computer program for time domain analysis. As was already known, on the average alcohol led to a better synchronisation of the EEG, i.e., the number of beta-waves decreased whereas the number of alpha- and theta-waves increased. The extent of the alcohol effect on the EEG varied enormously between individuals; however, the EEGs of MZ twins proved to react indentically to alcohol loading, whereas the EEGs of DZ twins became mor dissimilar during the course of the experiment. The low-voltage EEG presumably is resistant to alchohol; furthermore, it is supposed that there exists a special beta-prone EEG-type which is also genetic in origin. The identical EEG reaction of MZ twins to alcohol loading could not be attributed to more similar blood alcohol concentrations. It is hypothesized that the differences in the extent of the alcohol effect on the EEG between individuals might reflect differences in the sensitivity of the ascending reticular activating system. In the literature it has frequently been reported that alcoholics have preferentially brain wave patterns which are poorly synchronized. These findings are discussed in the light of the present results. PMID:557449

  9. Differences in Cognitive Processes between Gifted, Intelligent, Creative, and Average Individuals While Solving Complex Problems: An EEG Study.

    ERIC Educational Resources Information Center

    Jausovec, Norbert

    2000-01-01

    Studied differences in cognitive processes related to creativity and intelligence using EEG coherence and power measures in the lower and upper alpha bands. Results of 2 experiments involving 49 and 48 right-handed student teachers suggest that creativity and intelligence are different abilities that also differ in the neurological activity…

  10. Anchors as Semantic Primes in Value Construction: An EEG Study of the Anchoring Effect

    PubMed Central

    Shen, Qiang; Qiu, Wenwei

    2015-01-01

    Previous research regarding anchoring effects has demonstrated that human judgments are often assimilated to irrelevant information. Studies have demonstrated that anchors influence the economic valuation of various products and experiences; however, the cognitive explanations of this effect remain controversial, and its neural mechanisms have rarely been explored. In the current study, we conducted an electroencephalography (EEG) experiment to investigate the anchoring effect on willingness to accept (WTA) for an aversive hedonic experience and the role of anchors in this judgment heuristic. The behavioral results demonstrated that random numbers affect participants’ WTA for listening to pieces of noise. The participants asked for higher pay after comparing their WTA with higher numbers. The EEG results indicated that anchors also influenced the neural underpinnings of the valuation process. Specifically, when a higher anchor number was drawn, larger P2 and late positive potential amplitudes were elicited, reflecting the anticipation of more intensive pain from the subsequent noise. Moreover, higher anchors induced a stronger theta band power increase compared with lower anchors when subjects listened to the noises, indicating that the participants felt more unpleasant during the actual experience of the noise. The levels of unpleasantness during both anticipation and experience were consistent with the semantic information implied by the anchors. Therefore, these data suggest that a semantic priming process underlies the anchoring effect in WTA. This study provides proof for the robustness of the anchoring effect and neural evidence of the semantic priming model. Our findings indicate that activated contextual information, even seemingly irrelevant, can be embedded in the construction of economic value in the brain. PMID:26439926

  11. Hypermethods for EEG hyperscanning.

    PubMed

    Babiloni, Fabio; Cincotti, Febo; Mattia, Donatella; Mattiocco, Marco; De Vico Fallani, Fabrizio; Tocci, Andrea; Bianchi, Luigi; Marciani, Maria Grazia; Astolfi, Laura

    2006-01-01

    Until now, in EEG studies the activity of the brain during simple or complex tasks have been recorded in a single subject. Often, during such EEG recordings, subjects interacts with the external devices or the researchers in order to reproduce conditions similar to the those usually occurring in the real-life. However, in order to study the concurrent activity in subjects interacting in cooperation or competition activities, the issue of the simultaneous recording of their brain activity became mandatory. The simultaneous recording of hemodynamic or neuroelectric activity of the brain is called "hyperscanning". We would like present results obtained by EEG hyperscannings performed on a group of subjects engaged in cooperative games. The EEG hyperscannings have been performed with the simultaneous use of high resolution EEG devices on groups of three and four subjects while they were playing cooperative games. The analysis of such data have been conducted with analysis method that taken into account the particular nature of the data simultaneously gathered from different subjects. We called these methods hypermethods. In particular, we estimate the concurrent activity in multiple brains of the group and we depicted the causal connections between regions of different brains (hyperconnectivity). The resulting causality patterns will link certain areas of the brain of a subject to the waveforms obtained from the other brain areas of another subject of the same group. Results obtained in a study of several groups recorded by the hyperscanning reveals causal links between prefrontal areas of the different subjects when they are performing cooperative games in different frequency bands. Hypermethods for hyperscanning will open a different area for the study of neuroscience, in which the activity of multiple brains during social cooperation could be investigated. In such area the importance of EEG will be relevant due to its temporal and spatial resolution now obtainable w

  12. Investigation of the electrophysiological correlates of negative BOLD response during intermittent photic stimulation: An EEG-fMRI study.

    PubMed

    Maggioni, Eleonora; Zucca, Claudio; Reni, Gianluigi; Cerutti, Sergio; Triulzi, Fabio M; Bianchi, Anna M; Arrigoni, Filippo

    2016-06-01

    Although the occurrence of concomitant positive BOLD responses (PBRs) and negative BOLD responses (NBRs) to visual stimuli is increasingly investigated in neuroscience, it still lacks a definite explanation. Multimodal imaging represents a powerful tool to study the determinants of negative BOLD responses: the integration of functional Magnetic Resonance Imaging (fMRI) and electroencephalographic (EEG) recordings is especially useful, since it can give information on the neurovascular coupling underlying this complex phenomenon. In the present study, the brain response to intermittent photic stimulation (IPS) was investigated in a group of healthy subjects using simultaneous EEG-fMRI, with the main objective to study the electrophysiological mechanisms associated with the intense NBRs elicited by IPS in extra-striate visual cortex. The EEG analysis showed that IPS induced a desynchronization of the basal rhythm, followed by the instauration of a novel rhythm driven by the visual stimulation. The most interesting results emerged from the EEG-informed fMRI analysis, which suggested a relationship between the neuronal rhythms at 10 and 12 Hz and the BOLD dynamics in extra-striate visual cortex. These findings support the hypothesis that NBRs to visual stimuli may be neuronal in origin rather than reflecting pure vascular phenomena. Hum Brain Mapp 37:2247-2262, 2016. © 2016 Wiley Periodicals, Inc. PMID:26987932

  13. Some novel phenomena at high density

    NASA Astrophysics Data System (ADS)

    Berkowitz, Evan Scott

    Astrophysical environments probe matter in ways impossible on Earth. In particular, matter in compact objects are extraordinarily dense. In this thesis we discuss two phenomena that may occur at high density. First, we study toroidal topological solitons called vortons, which can occur in the kaon-condensed color-flavor-locked phase of high-density quark matter, a candidate phase for the core of some neutron stars. We show that vortons have a large radius compared to their thickness if their electrical charge is on the order of 104 times the fundamental charge. We show that shielding of electric fields by electrons dramatically reduces the size of a vorton. Second, we study an unusual phase of degenerate electrons and nonrelativistic Bose-condensed helium nuclei that may exist in helium white dwarfs. We show that this phase supports a previously-unknown gapless mode, known as the half-sound, that radically alters the material's specific heat, and can annihilate into neutrinos. We provide evidence that this neutrino radiation is negligible compared to the star's surface photoemission.

  14. The interplay between feedback-related negativity and individual differences in altruistic punishment: An EEG study.

    PubMed

    Mothes, Hendrik; Enge, Sören; Strobel, Alexander

    2016-04-01

    To date, the interplay betwexen neurophysiological and individual difference factors in altruistic punishment has been little understood. To examine this issue, 45 individuals participated in a Dictator Game with punishment option while the feedback-related negativity (FRN) was derived from the electroencephalogram (EEG). Unlike previous EEG studies on the Dictator Game, we introduced a third party condition to study the effect of fairness norm violations in addition to employing a first person perspective. For the first time, we also examined the role of individual differences, specifically fairness concerns, positive/negative affectivity, and altruism/empathy as well as recipients' financial situation during altruistic punishment. The main results show that FRN amplitudes were more pronounced for unfair than for fair assignments in both the first person and third party perspectives. These findings suggest that FRN amplitudes are sensitive to fairness norm violations and play a crucial role in the recipients' evaluation of dictator assignments. With respect to individual difference factors, recipients' current financial situation affected the FRN fairness effect in the first person perspective, indicating that when being directly affected by the assignments, more affluent participants experienced stronger violations of expectations in altruistic punishment decisions. Regarding individual differences in trait empathy, in the third party condition FRN amplitudes were more pronounced for those who scored lower in empathy. This may suggest empathy as another motive in third party punishment. Independent of the perspective taken, higher positive affect was associated with more punishment behavior, suggesting that positive emotions may play an important role in restoring violated fairness norms. PMID:26530245

  15. Single trial discrimination of individual finger movements on one hand: a combined MEG and EEG study.

    PubMed

    Quandt, F; Reichert, C; Hinrichs, H; Heinze, H J; Knight, R T; Rieger, J W

    2012-02-15

    It is crucial to understand what brain signals can be decoded from single trials with different recording techniques for the development of Brain-Machine Interfaces. A specific challenge for non-invasive recording methods are activations confined to small spatial areas on the cortex such as the finger representation of one hand. Here we study the information content of single trial brain activity in non-invasive MEG and EEG recordings elicited by finger movements of one hand. We investigate the feasibility of decoding which of four fingers of one hand performed a slight button press. With MEG we demonstrate reliable discrimination of single button presses performed with the thumb, the index, the middle or the little finger (average over all subjects and fingers 57%, best subject 70%, empirical guessing level: 25.1%). EEG decoding performance was less robust (average over all subjects and fingers 43%, best subject 54%, empirical guessing level 25.1%). Spatiotemporal patterns of amplitude variations in the time series provided best information for discriminating finger movements. Non-phase-locked changes of mu and beta oscillations were less predictive. Movement related high gamma oscillations were observed in average induced oscillation amplitudes in the MEG but did not provide sufficient information about the finger's identity in single trials. Importantly, pre-movement neuronal activity provided information about the preparation of the movement of a specific finger. Our study demonstrates the potential of non-invasive MEG to provide informative features for individual finger control in a Brain-Machine Interface neuroprosthesis. PMID:22155040

  16. Precaution for volume conduction in rodent cortical electroencephalography using high-density polyimide-based microelectrode arrays on the skull.

    PubMed

    Stienen, P J; Venzi, M; Poppendieck, W; Hoffmann, K P; Åberg, E

    2016-04-01

    In humans, significant progress has been made to link spatial changes in electroencephalographic (EEG) spectral density, connectivity strength, and phase-amplitude modulation to neurological, physiological, and psychological correlates. In contrast, standard rodent EEG techniques employ only few electrodes, which results in poor spatial resolution. Recently, a technique was developed to overcome this limitation in mice. This technique was based on a polyimide-based microelectrode (PBM) array applied on the mouse skull, maintaining a significant number of electrodes with consistent contact, electrode impedance, and mechanical stability. The present study built on this technique by extending it to rats. Therefore, a similar PBM array, but adapted to rats, was designed and fabricated. In addition, this array was connected to a wireless EEG headstage, allowing recording in untethered, freely moving rats. The advantage of a high-density array relies on the assumption that the signal recorded from the different electrodes is generated from distinct sources, i.e., not volume-conducted. Therefore, the utility and validity of the array were evaluated by determining the level of synchrony between channels due to true synchrony or volume conduction during basal vigilance states and following a subanesthetic dose of ketamine. Although the PBM array allowed recording with high signal quality, under both drug and drug-free conditions, high synchronization existed due to volume conduction between the electrodes even in the higher spectral frequency range. Discrimination existed only between frontally and centrally/distally grouped electrode pairs. Therefore, caution should be used in interpreting spatial data obtained from high-density PBM arrays in rodents. PMID:26864767

  17. Judgment of actions in experts: a high-resolution EEG study in elite athletes.

    PubMed

    Babiloni, Claudio; Del Percio, Claudio; Rossini, Paolo M; Marzano, Nicola; Iacoboni, Marco; Infarinato, Francesco; Lizio, Roberta; Piazza, Marina; Pirritano, Mirella; Berlutti, Giovanna; Cibelli, Giuseppe; Eusebi, Fabrizio

    2009-04-01

    The present study tested the two following hypotheses: (i) compared to non-athletes, elite athletes are characterized by a reduced cortical activation during the judgment of sporting observed actions; (ii) in elite athletes, a good judgment of observed sporting actions is related to a low cortical activation. To address these issues, electroencephalographic (EEG) data were recorded in 15 elite rhythmic gymnasts and 13 non-gymnasts. They observed a series of 120 rhythmic gymnastic videos. At the end of each video, the subjects had to judge the artistic/athletic level of the exercise by a scale from 0 to 10. The mismatch between their judgment and that of the coach indexed the degree of action judgment. The EEG cortical sources were estimated by sLORETA. With reference to a pre-stimulus period, the power decrease of alpha (8-12 Hz) rhythms during the videos indexed the cortical activation (event related desynchronization, ERD). Regarding the hypothesis (i), low- and high-frequency alpha ERD was lower in amplitude in the elite rhythmic gymnasts compared to the non-gymnasts in occipital and temporal areas (ventral pathway) and in dorsal pathway. Regarding the hypothesis (ii), in the elite rhythmic gymnasts high-frequency alpha ERD was higher in amplitude with the videos characterized by a high judgment error than those characterized by a low judgment error; this was true in inferior posterior parietal and ventral premotor areas ("mirror" pathway). These results globally suggest that the judgment of observed sporting actions is related to low amplitude of alpha ERD, as a possible index of spatially selective cortical activation ("neural efficiency"). PMID:19111623

  18. Acoustic Oddball during NREM Sleep: A Combined EEG/fMRI Study

    PubMed Central

    Czisch, Michael; Wehrle, Renate; Stiegler, Andrea; Peters, Henning; Andrade, Katia; Holsboer, Florian; Sämann, Philipp G.

    2009-01-01

    Background A condition vital for the consolidation and maintenance of sleep is generally reduced responsiveness to external stimuli. Despite this, the sleeper maintains a level of stimulus processing that allows to respond to potentially dangerous environmental signals. The mechanisms that subserve these contradictory functions are only incompletely understood. Methodology/Principal Findings Using combined EEG/fMRI we investigated the neural substrate of sleep protection by applying an acoustic oddball paradigm during light NREM sleep. Further, we studied the role of evoked K-complexes (KCs), an electroencephalographic hallmark of NREM sleep with a still unknown role for sleep protection. Our main results were: (1) Other than in wakefulness, rare tones did not induce a blood oxygenation level dependent (BOLD) signal increase in the auditory pathway but a strong negative BOLD response in motor areas and the amygdala. (2) Stratification of rare tones by the presence of evoked KCs detected activation of the auditory cortex, hippocampus, superior and middle frontal gyri and posterior cingulate only for rare tones followed by a KC. (3) The typical high frontocentral EEG deflections of KCs were not paralleled by a BOLD equivalent. Conclusions/Significance We observed that rare tones lead to transient disengagement of motor and amygdala responses during light NREM sleep. We interpret this as a sleep protective mechanism to delimit motor responses and to reduce the sensitivity of the amygdala towards further incoming stimuli. Evoked KCs are suggested to originate from a brain state with relatively increased stimulus processing, revealing an activity pattern resembling novelty processing as previously reported during wakefulness. The KC itself is not reflected by increased metabolic demand in BOLD based imaging, arguing that evoked KCs result from increased neural synchronicity without altered metabolic demand. PMID:19707599

  19. The role of attention in processing morphologically complex spoken words: an EEG/MEG study

    PubMed Central

    Leminen, Alina; Lehtonen, Minna; Leminen, Miika; Nevalainen, Päivi; Mäkelä, Jyrki P.; Kujala, Teija

    2013-01-01

    This study determined to what extent morphological processing of spoken inflected and derived words is attention-independent. To answer these questions EEG and MEG responses were recorded from healthy participants while they were presented with spoken Finnish inflected, derived, and monomorphemic words. In the non-attended task, the participants were instructed to ignore the incoming auditory stimuli and concentrate on the silent cartoon. In the attended task, previously reported by Leminen et al. (2011), the participants were to judge the acceptability of each stimulus. Importantly, EEG and MEG responses were time-locked to the onset of critical information [suffix onset for the complex words and uniqueness point (UP) for the monomorphemic words]. Early after the critical point, word type did not interact with task: in both attended and non-attended tasks, the event-related potentials (ERPs) showed larger negativity to derived than inflected or monomorphemic words ~100 ms after the critical point. MEG source waveforms showed a similar pattern. Later than 100 ms after the critical point, there were no differences between word types in the non-attended task either in the ERP or source modeling data. However, in the attended task inflected words elicited larger responses than other words ~200 ms after the critical point. The results suggest different brain representations for derived and inflected words. The early activation after the critical point was elicited both in the non-attended and attended tasks. As this stage of word recognition was not modulated by attention, it can be concluded to reflect an automatic mapping of incoming acoustic information onto stored representations. In contrast, the later differences between word types in the attended task were not observed in the non-attended task. This indicates that later compositional processes at the (morpho)syntactic-semantic level require focused attention. PMID:23316156

  20. Intact inhibitory control processes in abstinent drug abusers (II): a high-density electrical mapping study in former cocaine and heroin addicts.

    PubMed

    Morie, Kristen P; Garavan, Hugh; Bell, Ryan P; De Sanctis, Pierfilippo; Krakowski, Menachem I; Foxe, John J

    2014-07-01

    Response inhibition deficits are well-documented in drug users, and are related to the impulsive tendencies characteristic of the addictive phenotype. Addicts also show significant motivational issues that may accentuate these inhibitory deficits. We investigated the extent to which these inhibitory deficits are present in abstinence. Salience of the task stimuli was also manipulated on the premise that emotionally-valenced inputs might impact inhibitory efficacy by overcoming the blunted responses to everyday environmental inputs characteristic of this population. Participants performed response inhibition tasks consisting of both neutral and emotionally valenced stimuli while high-density event-related potentials (ERPs) were recorded. Electrophysiological responses (N2/P3 components) to successful inhibitions in abstinent abusers (N = 20) and non-using participants (N = 21) were compared. In contrast to previous work in current users, our abstinent cohort showed no detectable behavioral or electrophysiological differences in their inhibitory responses, and no differences on self-reports of impulsivity, despite their long histories of chronic use (mean = 10.3 years). The current findings are consistent with a recovery of inhibitory control processes as a function of abstinence. Abstinent former users, however, did show a reduced modulation, relative to controls, of their ERPs to valenced input while performing successful inhibitions, although contrary to our hypothesis, the use of valenced inputs had no impact on inhibitory performance. Reduced ERP modulation to emotionally valenced inputs may have implications for relapse in emotional contexts outside the treatment center. PMID:23507565

  1. EEG imaging of toddlers during dyadic turn-taking: Mu-rhythm modulation while producing or observing social actions.

    PubMed

    Liao, Yu; Acar, Zeynep Akalin; Makeig, Scott; Deak, Gedeon

    2015-05-15

    Contemporary active-EEG and EEG-imaging methods show particular promise for studying the development of action planning and social-action representation in infancy and early childhood. Action-related mu suppression was measured in eleven 3-year-old children and their mothers during a 'live,' largely unscripted social interaction. High-density EEG was recorded from children and synchronized with motion-captured records of children's and mothers' hand actions, and with video recordings. Independent Component Analysis (ICA) was used to separate brain and non-brain source signals in toddlers' EEG records. EEG source dynamics were compared across three kinds of epochs: toddlers' own actions (execution), mothers' actions (observation), and between-turn intervals (no action). Mu (6-9Hz) power was suppressed in left and right somatomotor cortex during both action execution and observation, as reflected by independent components of individual children's EEG data. These mu rhythm components were accompanied by beta-harmonic (~16Hz) suppression, similar to findings from adults. The toddlers' power spectrum and scalp density projections provide converging evidence of adult-like mu-suppression features. Mu-suppression components' source locations were modeled using an age-specific 4-layer forward head model. Putative sources clustered around somatosensory cortex, near the hand/arm region. The results demonstrate that action-locked, event-related EEG dynamics can be measured, and source-resolved, from toddlers during social interactions with relatively unrestricted social behaviors. PMID:25731992

  2. Subject identification through standard EEG signals during resting states.

    PubMed

    De Vico Fallani, F; Vecchiato, G; Toppi, J; Astolfi, L; Babiloni, F

    2011-01-01

    In the present work, we used the brain electroencephalografic activity as an alternative means to identify individuals. 50 healthy subjects participated to the study and 56 EEG signals were recorded through a high-density cap during one minute of resting state either with eyes open and eyes closed. By computing the power spectrum density (PSD) on segments of 10 seconds, we obtained a feature vector of 40 points, notably the PSD values in the standard frequency range (1-40 Hz), for each EEG channel. By using a naive Bayes classifier and K-fold cross-validations, we observed high correct recognition rates (CRR) at the parieto-occipital electrodes (~78% during eyes open, ~89% during eyes closed). Notably, the eyes closed resting state elicited the highest CRRs at the occipital electrodes (92% O2, 91% O1), suggesting these biometric characteristics as the most suitable, among those investigated here, for identifying individuals. PMID:22254808

  3. Effective Connectivity of Cortical Sensorimotor Networks During Finger Movement Tasks: A Simultaneous fNIRS, fMRI, EEG Study.

    PubMed

    Anwar, A R; Muthalib, M; Perrey, S; Galka, A; Granert, O; Wolff, S; Heute, U; Deuschl, G; Raethjen, J; Muthuraman, Muthuraman

    2016-09-01

    Recently, interest has been growing to understand the underlying dynamic directional relationship between simultaneously activated regions of the brain during motor task performance. Such directionality analysis (or effective connectivity analysis), based on non-invasive electrophysiological (electroencephalography-EEG) and hemodynamic (functional near infrared spectroscopy-fNIRS; and functional magnetic resonance imaging-fMRI) neuroimaging modalities can provide an estimate of the motor task-related information flow from one brain region to another. Since EEG, fNIRS and fMRI modalities achieve different spatial and temporal resolutions of motor-task related activation in the brain, the aim of this study was to determine the effective connectivity of cortico-cortical sensorimotor networks during finger movement tasks measured by each neuroimaging modality. Nine healthy subjects performed right hand finger movement tasks of different complexity (simple finger tapping-FT, simple finger sequence-SFS, and complex finger sequence-CFS). We focused our observations on three cortical regions of interest (ROIs), namely the contralateral sensorimotor cortex (SMC), the contralateral premotor cortex (PMC) and the contralateral dorsolateral prefrontal cortex (DLPFC). We estimated the effective connectivity between these ROIs using conditional Granger causality (GC) analysis determined from the time series signals measured by fMRI (blood oxygenation level-dependent-BOLD), fNIRS (oxygenated-O2Hb and deoxygenated-HHb hemoglobin), and EEG (scalp and source level analysis) neuroimaging modalities. The effective connectivity analysis showed significant bi-directional information flow between the SMC, PMC, and DLPFC as determined by the EEG (scalp and source), fMRI (BOLD) and fNIRS (O2Hb and HHb) modalities for all three motor tasks. However the source level EEG GC values were significantly greater than the other modalities. In addition, only the source level EEG showed a

  4. A semi-automatic method to determine electrode positions and labels from gel artifacts in EEG/fMRI-studies.

    PubMed

    de Munck, Jan C; van Houdt, Petra J; Verdaasdonk, Ruud M; Ossenblok, Pauly P W

    2012-01-01

    The analysis of simultaneous EEG and fMRI data is generally based on the extraction of regressors of interest from the EEG, which are correlated to the fMRI data in a general linear model setting. In more advanced approaches, the spatial information of EEG is also exploited by assuming underlying dipole models. In this study, we present a semi automatic and efficient method to determine electrode positions from electrode gel artifacts, facilitating the integration of EEG and fMRI in future EEG/fMRI data models. In order to visualize all electrode artifacts simultaneously in a single view, a surface rendering of the structural MRI is made using a skin triangular mesh model as reference surface, which is expanded to a "pancake view". Then the electrodes are determined with a simple mouse click for each electrode. Using the geometry of the skin surface and its transformation to the pancake view, the 3D coordinates of the electrodes are reconstructed in the MRI coordinate frame. The electrode labels are attached to the electrode positions by fitting a template grid of the electrode cap in which the labels are known. The correspondence problem between template and sample electrodes is solved by minimizing a cost function over rotations, shifts and scalings of the template grid. The crucial step here is to use the solution of the so-called "Hungarian algorithm" as a cost function, which makes it possible to identify the electrode artifacts in arbitrary order. The template electrode grid has to be constructed only once for each cap configuration. In our implementation of this method, the whole procedure can be performed within 15 min including import of MRI, surface reconstruction and transformation, electrode identification and fitting to template. The method is robust in the sense that an electrode template created for one subject can be used without identification errors for another subject for whom the same EEG cap was used. Furthermore, the method appears to be

  5. Prevalence of High Non-high-density Lipoprotein Cholesterol and Associated Risk Factors in Patients with Diabetes Mellitus in Jilin Province, China: A Cross-sectional Study.

    PubMed

    He, Huan; Zhen, Qing; Li, Yong; Kou, Chang Gui; Tao, Yu Chun; Wang, Chang; Kanu, Joseph Sam; Lu, Yu Ping; Yu, Ming Xi; Zhang, Hui Ping; Yu, Ya Qin; Li, Bo; Liu, Ya Wen

    2016-07-01

    Dyslipidemia is a risk factor for cardiovascular diseases (CVDs) in patients with diabetes, and non-high-density lipoprotein cholesterol (non-HDL-C) is a better predictor of CVDs than low-density lipoprotein cholesterol (LDL-C) in patients with diabetes. Therefore, we aimed to investigate the distribution of non-HDL-C and the prevalence of high non-HDL-C level in Chinese patients with diabetes mellitus and identify the associated risk factors. Non-HDL-C concentration positively correlated with total cholesterol, triglycerides, and LDL-C concentrations. Although both non-HDL-C and LDL-C concentration both related positively with TC concentration, the magnitude of correlation was relatively higher for non-HDL-C. The prevalence of high non-HDL-C (⋝4.14 mmol/L) was higher in two age groups (55-64 years: 46.7%; 65-79 years: 47.3%) than other age groups (18-24 years: 4.2%; 25-34 years: 43.6%; 35-44 years: 38.1%; 45-54 years: 41.0%). It was also higher among overweight (45.1%), generally obese (50.9%), or abdominally obese (47.3%) subjects, compared with normal weight subjects (34.5%). The risk of high non-HDL-C increased with advancing age. Both general obesity [odds ratio (OR)=1.488, 95% confidence interval (CI): 1.003-2.209] and abdominal obesity (OR=1.561, 95% CI: 1.101-2.214) were significantly associated with high non-HDL-C levels. PMID:27554125

  6. A characteristic time sequence of epileptic activity in EEG during dynamic penicillin-induced focal epilepsy--a preliminary study.

    PubMed

    Silfverhuth, Minna J; Kortelainen, Jukka; Ruohonen, Jyrki; Suominen, Kalervo; Niinimäki, Jaakko; Sonkajärvi, Eila; Kiviniemi, Vesa; Alahuhta, Seppo; Jäntti, Ville; Tervonen, Osmo; Seppänen, Tapio

    2011-09-01

    Penicillin-induced focal epilepsy is a well-known model in experimental epilepsy. However, the dynamic evolution of waveforms, DC-level changes, spectral content and coherence are rarely reported. Stimulated by earlier fMRI findings, we also seek for the early signs preceding spiking activity from frequency domain of EEG signal. In this study, EEG data is taken from previous EEG/fMRI series (six pigs, 20-24kg) of an experimental focal epilepsy model, which includes dynamic induction of epileptic activity with penicillin (6000IU) injection into the somatosensory cortex during deep isoflurane anaesthesia. No ictal discharges were recorded with this dose. Spike waveforms, DC-level, time-frequency content and coherence of EEG were analysed. Development of penicillin induced focal epileptic activity was not preceded with specific spectral changes. The beginning of interictal spiking was related to power increase in the frequencies below 6Hz or 20Hz, and continued to a widespread spectral increase. DC-level and coherence changes were clear in one animal. Morphological evolution of epileptic activity was a collection of the low-amplitude monophasic, bipolar, triple or double spike-wave forms, with an increase in amplitude, up to large monophasic spiking. In conclusion, in the time sequence of induced epileptic activity, immediate shifts in DC-level EEG are plausible, followed by the spike activity-related widespread increase in spectral content. Morphological evolution does not appear to follow a clear continuum; rather, intermingled and variable spike or multispike waveforms generally lead to stabilised activity of high-amplitude monophasic spikes. PMID:21511498

  7. Fluid hydrogen at high density - Pressure dissociation

    NASA Technical Reports Server (NTRS)

    Saumon, Didier; Chabrier, Gilles

    1991-01-01

    A model for the Helmholtz free energy of fluid hydrogen at high density and high temperature is developed. This model aims at describing both pressure and temperature dissociation and ionization and bears directly on equations of state of partially ionized plasmas, as encountered in astrophysical situations and high-pressure experiments. This paper focuses on a mixture of hydrogen atoms and molecules and is devoted to the study of the phenomenon of pressure dissociation at finite temperatures. In the present model, the strong interactions are described with realistic potentials and are computed with a modified Weeks-Chandler-Andersen fluid perturbation theory that reproduces Monte Carlo simulations to better than 3 percent. Theoretical Hugoniot curves derived from the model are in excellent agreement with experimental data.

  8. High-Density, Scintillating, Fluoride Glass Calorimeters

    NASA Astrophysics Data System (ADS)

    Akgun, Ugur; Xie, Qiuchen

    2014-03-01

    The unprecedented radiation levels in current Large Hadron Collider runs, and plans to even increase the luminosity creates a need for new detector technologies to be investigated. Here, we propose to use high density, scintillating, fluoride glasses as active media in calorimeters. CHG3 is a special example of this glass family, which has been developed specifically for hadron collider experiments, and is known for fast response time, in addition to high light yield. In this presentation, the results from a computational study on the performances of the two different designs of CHG3 glass calorimeters are reported. First design reads the signal directly from the edge of the glass plate; the second design utilizes wavelength-shifting fibers to carry the signal out of the glass plate. Each simulation model is a sampling calorimeter with 20 alternating layers of glass and iron absorber. By changing the absorber thickness we tested hadronic as well as electromagnetic capabilities of the calorimeter models.

  9. Impact of the reference choice on scalp EEG connectivity estimation

    NASA Astrophysics Data System (ADS)

    Chella, Federico; Pizzella, Vittorio; Zappasodi, Filippo; Marzetti, Laura

    2016-06-01

    Objective. Several scalp EEG functional connectivity studies, mostly clinical, seem to overlook the reference electrode impact. The subsequent interpretation of brain connectivity is thus often biased by the choice of a non-neutral reference. This study aims at systematically investigating these effects. Approach. As EEG reference, we examined the vertex electrode (Cz), the digitally linked mastoids (DLM), the average reference (AVE), and the reference electrode standardization technique (REST). As a connectivity metric, we used the imaginary part of the coherency. We tested simulated and real data (eyes-open resting state) by evaluating the influence of electrode density, the effect of head model accuracy in the REST transformation, and the impact on the characterization of the topology of functional networks from graph analysis. Main results. Simulations demonstrated that REST significantly reduced the distortion of connectivity patterns when compared to AVE, Cz, and DLM references. Moreover, the availability of high-density EEG systems and an accurate knowledge of the head model are crucial elements to improve REST performance, with the individual realistic head model being preferable to the standard realistic head model. For real data, a systematic change of the spatial pattern of functional connectivity depending on the chosen reference was also observed. The distortion of connectivity patterns was larger for the Cz reference, and progressively decreased when using the DLM, the AVE, and the REST. Strikingly, we also showed that network attributes derived from graph analysis, i.e. node degree and local efficiency, are significantly influenced by the EEG reference choice. Significance. Overall, this study highlights that significant differences arise in scalp EEG functional connectivity and graph network properties, in dependence on the chosen reference. We hope that our study will convey the message that caution should be used when interpreting and comparing

  10. Detectability of Fast Ripples (>250 Hz) on the Scalp EEG: A Proof-of-Principle Study with Subdermal Electrodes.

    PubMed

    Pizzo, Francesca; Frauscher, Birgit; Ferrari-Marinho, Taissa; Amiri, Mina; Dubeau, Francois; Gotman, Jean

    2016-05-01

    To evaluate the possibility of detecting fast ripples (FRs) on the surface EEG of patients with focal pharmacoresistant epilepsy, and to investigate the relationship between scalp FRs and localization of the seizure onset zone (SOZ). We included 10 patients undergoing combined surface-intracranial EEG with ≥10 spikes in the surface EEG during the first 30 consecutive minutes of N3 sleep. FRs (≥4 consecutive oscillations above 250 Hz with an amplitude clearly exceeding that of the background) on the surface EEG (F3-C3, C3-P3, Fz-Cz, Cz-Pz, F4-C4, C4-P4) were visually marked, and verified by two EEG experts. FRs were categorized as related to the SOZ, if localized in the brain lobe of the SOZ. Low-amplitude FRs with a rate of 0.09/min were found in 6/10 patients: two exhibited events related to the SOZ, three showed no relationship with the SOZ, and in one patient the SOZ was not identified. It may be possible to detect FRs with surface EEG using subdermal electrodes in patients with focal epilepsy. The relationship between surface FRs and the SOZ remains unclear. Future studies aiming at a higher spatial EEG coverage are needed to elucidate their significance. PMID:26920404

  11. The relationship of Asperger’s syndrome to autism: a preliminary EEG coherence study

    PubMed Central

    2013-01-01

    Background It has long been debated whether Asperger’s Syndrome (ASP) should be considered part of the Autism Spectrum Disorders (ASD) or whether it constitutes a unique entity. The Diagnostic and Statistical Manual, fourth edition (DSM-IV) differentiated ASP from high functioning autism. However, the new DSM-5 umbrellas ASP within ASD, thus eliminating the ASP diagnosis. To date, no clear biomarkers have reliably distinguished ASP and ASD populations. This study uses EEG coherence, a measure of brain connectivity, to explore possible neurophysiological differences between ASP and ASD. Methods Voluminous coherence data derived from all possible electrode pairs and frequencies were previously reduced by principal components analysis (PCA) to produce a smaller number of unbiased, data-driven coherence factors. In a previous study, these factors significantly and reliably differentiated neurotypical controls from ASD subjects by discriminant function analysis (DFA). These previous DFA rules are now applied to an ASP population to determine if ASP subjects classify as control or ASD subjects. Additionally, a new set of coherence based DFA rules are used to determine whether ASP and ASD subjects can be differentiated from each other. Results Using prior EEG coherence based DFA rules that successfully classified subjects as either controls or ASD, 96.2% of ASP subjects are classified as ASD. However, when ASP subjects are directly compared to ASD subjects using new DFA rules, 92.3% ASP subjects are identified as separate from the ASD population. By contrast, five randomly selected subsamples of ASD subjects fail to reach significance when compared to the remaining ASD populations. When represented by the discriminant variable, both the ASD and ASD populations are normally distributed. Conclusions Within a control-ASD dichotomy, an ASP population falls closer to ASD than controls. However, when compared directly with ASD, an ASP population is distinctly separate. The

  12. High density harp for SSCL linac

    SciTech Connect

    Fritsche, C.T.; Krogh, M.L.; Crist, C.E.

    1993-05-01

    AlliedSignal Inc., Kansas City Division, and the Superconducting Super Collider Laboratory (SSCL) are collaboratively developing a high density harp for the SSCL linac. This harp is designed using hybrid microcircuit (HMC) technology to obtain a higher wire density than previously available. The developed harp contains one hundred twenty-eight 33-micron-diameter carbon wires on 0.38-mm centers. The harp features an onboard broken wire detection circuit. Carbon wire preparation and attachment processes were developed. High density surface mount connectors were located. The status of high density harp development will be presented along with planned future activities.

  13. Technical and clinical analysis of microEEG: a miniature wireless EEG device designed to record high-quality EEG in the emergency department

    PubMed Central

    2012-01-01

    Background We describe and characterize the performance of microEEG compared to that of a commercially available and widely used clinical EEG machine. microEEG is a portable, battery-operated, wireless EEG device, developed by Bio-Signal Group to overcome the obstacles to routine use of EEG in emergency departments (EDs). Methods The microEEG was used to obtain EEGs from healthy volunteers in the EEG laboratory and ED. The standard system was used to obtain EEGs from healthy volunteers in the EEG laboratory, and studies recorded from patients in the ED or ICU were also used for comparison. In one experiment, a signal splitter was used to record simultaneous microEEG and standard EEG from the same electrodes. Results EEG signal analysis techniques indicated good agreement between microEEG and the standard system in 66 EEGs recorded in the EEG laboratory and the ED. In the simultaneous recording the microEEG and standard system signals differed only in a smaller amount of 60 Hz noise in the microEEG signal. In a blinded review by a board-certified clinical neurophysiologist, differences in technical quality or interpretability were insignificant between standard recordings in the EEG laboratory and microEEG recordings from standard or electrode cap electrodes in the ED or EEG laboratory. The microEEG data recording characteristics such as analog-to-digital conversion resolution (16 bits), input impedance (>100MΩ), and common-mode rejection ratio (85 dB) are similar to those of commercially available systems, although the microEEG is many times smaller (88 g and 9.4 × 4.4 × 3.8 cm). Conclusions Our results suggest that the technical qualities of microEEG are non-inferior to a standard commercially available EEG recording device. EEG in the ED is an unmet medical need due to space and time constraints, high levels of ambient electrical noise, and the cost of 24/7 EEG technologist availability. This study suggests that using microEEG with an electrode cap

  14. Platform for the study of virtual task-oriented motion and its evaluation by EEG and EMG biopotentials.

    PubMed

    Figueroa-Garcia, Ivan; Aguilar-Leal, Omar; Hernandez-Reynoso, Ana G; Madrigal, Jimena; Fuentes, Rita Q; Huegel, Joel C; Garcia-Gonzalez, Alejandro

    2014-01-01

    This paper presents a platform to study the relationship between upper limb kinematic and biopotential measurements. The platform comprises of a haptic joystick, biopotential acquisition systems and 3D rendered virtual tasks that require user interaction. The haptic joystick, named TeeR, reproduces the pronation-supination and flexion-extension movements of the human arm, which are directly mapped to a 2D graphic display. The biopotential acquisition system is able to record electroencephalography (EEG) and electromyography (EMG) signals and synchronize them with kinematic data obtained from the Tee-R. The 3D virtual tasks are designed to obtain performance measurements from the user interaction. We include an example that depicts the possibilities of application for the study of event-related (de)synchronization (ERD/ERS) based on EEG during motor tasks. PMID:25570173

  15. Modulation of cortical activity in 2D versus 3D virtual reality environments: an EEG study.

    PubMed

    Slobounov, Semyon M; Ray, William; Johnson, Brian; Slobounov, Elena; Newell, Karl M

    2015-03-01

    There is a growing empirical evidence that virtual reality (VR) is valuable for education, training, entertaining and medical rehabilitation due to its capacity to represent real-life events and situations. However, the neural mechanisms underlying behavioral confounds in VR environments are still poorly understood. In two experiments, we examined the effect of fully immersive 3D stereoscopic presentations and less immersive 2D VR environments on brain functions and behavioral outcomes. In Experiment 1 we examined behavioral and neural underpinnings of spatial navigation tasks using electroencephalography (EEG). In Experiment 2, we examined EEG correlates of postural stability and balance. Our major findings showed that fully immersive 3D VR induced a higher subjective sense of presence along with enhanced success rate of spatial navigation compared to 2D. In Experiment 1 power of frontal midline EEG (FM-theta) was significantly higher during the encoding phase of route presentation in the 3D VR. In Experiment 2, the 3D VR resulted in greater postural instability and modulation of EEG patterns as a function of 3D versus 2D environments. The findings support the inference that the fully immersive 3D enriched-environment requires allocation of more brain and sensory resources for cognitive/motor control during both tasks than 2D presentations. This is further evidence that 3D VR tasks using EEG may be a promising approach for performance enhancement and potential applications in clinical/rehabilitation settings. PMID:25448267

  16. Evolution of EEG Motor Rhythms after Spinal Cord Injury: A Longitudinal Study.

    PubMed

    López-Larraz, Eduardo; Montesano, Luis; Gil-Agudo, Ángel; Minguez, Javier; Oliviero, Antonio

    2015-01-01

    Spinal cord injury (SCI) does not only produce a lack of sensory and motor function caudal to the level of injury, but it also leads to a progressive brain reorganization. Chronic SCI patients attempting to move their affected limbs present a significant reduction of brain activation in the motor cortex, which has been linked to the deafferentation. The aim of this work is to study the evolution of the motor-related brain activity during the first months after SCI. Eighteen subacute SCI patients were recruited to participate in bi-weekly experimental sessions during at least two months. Their EEG was recorded to analyze the temporal evolution of the event-related desynchronization (ERD) over the motor cortex, both during motor attempt and motor imagery of their paralyzed hands. The results show that the α and β ERD evolution after SCI is negatively correlated with the clinical progression of the patients during the first months after the injury. This work provides the first longitudinal study of the event-related desynchronization during the subacute phase of spinal cord injury. Furthermore, our findings reveal a strong association between the ERD changes and the clinical evolution of the patients. These results help to better understand the brain transformation after SCI, which is important to characterize the neuroplasticity mechanisms involved after this lesion and may lead to new strategies for rehabilitation and motor restoration of these patients. PMID:26177457

  17. Evolution of EEG Motor Rhythms after Spinal Cord Injury: A Longitudinal Study

    PubMed Central

    López-Larraz, Eduardo; Montesano, Luis; Gil-Agudo, Ángel; Minguez, Javier; Oliviero, Antonio

    2015-01-01

    Spinal cord injury (SCI) does not only produce a lack of sensory and motor function caudal to the level of injury, but it also leads to a progressive brain reorganization. Chronic SCI patients attempting to move their affected limbs present a significant reduction of brain activation in the motor cortex, which has been linked to the deafferentation. The aim of this work is to study the evolution of the motor-related brain activity during the first months after SCI. Eighteen subacute SCI patients were recruited to participate in bi-weekly experimental sessions during at least two months. Their EEG was recorded to analyze the temporal evolution of the event-related desynchronization (ERD) over the motor cortex, both during motor attempt and motor imagery of their paralyzed hands. The results show that the α and β ERD evolution after SCI is negatively correlated with the clinical progression of the patients during the first months after the injury. This work provides the first longitudinal study of the event-related desynchronization during the subacute phase of spinal cord injury. Furthermore, our findings reveal a strong association between the ERD changes and the clinical evolution of the patients. These results help to better understand the brain transformation after SCI, which is important to characterize the neuroplasticity mechanisms involved after this lesion and may lead to new strategies for rehabilitation and motor restoration of these patients. PMID:26177457

  18. Gender and Age Related Effects While Watching TV Advertisements: An EEG Study

    PubMed Central

    Cartocci, Giulia; Cherubino, Patrizia; Rossi, Dario; Modica, Enrica; Maglione, Anton Giulio; di Flumeri, Gianluca; Babiloni, Fabio

    2016-01-01

    The aim of the present paper is to show how the variation of the EEG frontal cortical asymmetry is related to the general appreciation perceived during the observation of TV advertisements, in particular considering the influence of the gender and age on it. In particular, we investigated the influence of the gender on the perception of a car advertisement (Experiment 1) and the influence of the factor age on a chewing gum commercial (Experiment 2). Experiment 1 results showed statistically significant higher approach values for the men group throughout the commercial. Results from Experiment 2 showed significant lower values by older adults for the spot, containing scenes not very enjoyed by them. In both studies, there was no statistical significant difference in the scene relative to the product offering between the experimental populations, suggesting the absence in our study of a bias towards the specific product in the evaluated populations. These evidences state the importance of the creativity in advertising, in order to attract the target population. PMID:27313602

  19. Gender and Age Related Effects While Watching TV Advertisements: An EEG Study.

    PubMed

    Cartocci, Giulia; Cherubino, Patrizia; Rossi, Dario; Modica, Enrica; Maglione, Anton Giulio; di Flumeri, Gianluca; Babiloni, Fabio

    2016-01-01

    The aim of the present paper is to show how the variation of the EEG frontal cortical asymmetry is related to the general appreciation perceived during the observation of TV advertisements, in particular considering the influence of the gender and age on it. In particular, we investigated the influence of the gender on the perception of a car advertisement (Experiment 1) and the influence of the factor age on a chewing gum commercial (Experiment 2). Experiment 1 results showed statistically significant higher approach values for the men group throughout the commercial. Results from Experiment 2 showed significant lower values by older adults for the spot, containing scenes not very enjoyed by them. In both studies, there was no statistical significant difference in the scene relative to the product offering between the experimental populations, suggesting the absence in our study of a bias towards the specific product in the evaluated populations. These evidences state the importance of the creativity in advertising, in order to attract the target population. PMID:27313602

  20. The Study of Object-Oriented Motor Imagery Based on EEG Suppression

    PubMed Central

    Li, Lili; Wang, Jing; Xu, Guanghua; Li, Min; Xie, Jun

    2015-01-01

    Motor imagery is a conventional method for brain computer interface and motor learning. To avoid the great individual difference of the motor imagery ability, object-oriented motor imagery was applied, and the effects were studied. Kinesthetic motor imagery and visual observation were administered to 15 healthy volunteers. The EEG during cue-based simple imagery (SI), object-oriented motor imagery (OI), non-object-oriented motor imagery (NI) and visual observation (VO) was recorded. Study results showed that OI and NI presented significant contralateral suppression in mu rhythm (p < 0.05). Besides, OI exhibited significant contralateral suppression in beta rhythm (p < 0.05). While no significant mu or beta contralateral suppression could be found during VO or SI (p > 0.05). Compared with NI, OI showed significant difference (p < 0.05) in mu rhythm and weak significant difference (p = 0.0612) in beta rhythm over the contralateral hemisphere. The ability of motor imagery can be reflected by the suppression degree of mu and beta frequencies which are the motor related rhythms. Thus, greater enhancement of activation in mirror neuron system is involved in response to object-oriented motor imagery. The object-oriented motor imagery is favorable for improvement of motor imagery ability. PMID:26641241

  1. Analysis of correlation between white matter changes and functional responses in thalamic stroke: a DTI & EEG study.

    PubMed

    Duru, Adil Deniz; Duru, Dilek Göksel; Yumerhodzha, Sami; Bebek, Nerses

    2016-06-01

    Diffusion tensor imaging (DTI) allows in vivo structural brain mapping and detection of microstructural disruption of white matter (WM). One of the commonly used parameters for grading the anisotropic diffusivity in WM is fractional anisotropy (FA). FA value helps to quantify the directionality of the local tract bundle. Therefore, FA images are being used in voxelwise statistical analyses (VSA). The present study used Tract-Based Spatial Statistics (TBSS) of FA images across subjects, and computes the mean skeleton map to detect voxelwise knowledge of the tracts yielding to groupwise comparison. The skeleton image illustrates WM structure and shows any changes caused by brain damage. The microstructure of WM in thalamic stroke is investigated, and the VSA results of healthy control and thalamic stroke patients are reported. It has been shown that several skeleton regions were affected subject to the presence of thalamic stroke (FWE, p < 0.05). Furthermore the correlation of quantitative EEG (qEEG) scores and neurophysiological tests with the FA skeleton for the entire test group is also investigated. We compared measurements that are related to the same fibers across subjects, and discussed implications for VSA of WM in thalamic stroke cases, for the relationship between behavioral tests and FA skeletons, and for the correlation between the FA maps and qEEG scores.Results obtained through the regression analyses did not exceed the corrected statistical threshold values for multiple comparisons (uncorrected, p < 0.05). However, in the regression analysis of FA values and the theta band activity of EEG, cingulum bundle and corpus callosum were found to be related. These areas are parts of the Default Mode Network (DMN) where DMN is known to be involved in resting state EEG theta activity. The relation between the EEG alpha band power values and FA values of the skeleton was found to support the cortico-thalamocortical cycles for both subject groups. Further

  2. High Density Fuel Development for Research Reactors

    SciTech Connect

    Daniel Wachs; Dennis Keiser; Mitchell Meyer; Douglas Burkes; Curtis Clark; Glenn Moore; Jan-Fong Jue; Totju Totev; Gerard Hofman; Tom Wiencek; Yeon So Kim; Jim Snelgrove

    2007-09-01

    An international effort to develop, qualify, and license high and very high density fuels has been underway for several years within the framework of multi-national RERTR programs. The current development status is the result of significant contributions from many laboratories, specifically CNEA in Argentina, AECL in Canada, CEA in France, TUM in Germany, KAERI in Korea, VNIIM, RDIPE, IPPE, NCCP and RIARR in Russia, INL, ANL and Y-12 in USA. These programs are mainly engaged with UMo dispersion fuels with densities from 6 to 8 gU/cm3 (high density fuel) and UMo monolithic fuel with density as high as 16 gU/cm3 (very high density fuel). This paper, mainly focused on the French & US programs, gives the status of high density UMo fuel development and perspectives on their qualification.

  3. High density load bearing insulation peg

    DOEpatents

    Nowobilski, J.J.; Owens, W.J.

    1985-01-29

    A high density peg is disclosed which can support a large load and exhibits excellent thermal resistance produced by a method wherein the peg is made in compliance with specified conditions of time, temperature and pressure. 4 figs.

  4. High density load bearing insulation peg

    DOEpatents

    Nowobilski, Jeffert J.; Owens, William J.

    1985-01-01

    A high density peg which can support a large load and exhibits excellent thermal resistance produced by a method wherein the peg is made in compliance with specified conditions of time, temperature and pressure.

  5. Transcranial direct current stimulation and power spectral parameters: a tDCS/EEG co-registration study

    PubMed Central

    Mangia, Anna L.; Pirini, Marco; Cappello, Angelo

    2014-01-01

    Transcranial direct current stimulation (tDCS) delivers low electric currents to the brain through the scalp. Constant electric currents induce shifts in neuronal membrane excitability, resulting in secondary changes in cortical activity. Concomitant electroencephalography (EEG) monitoring during tDCS can provide valuable information on the tDCS mechanisms of action. This study examined the effects of anodal tDCS on spontaneous cortical activity in a resting brain to disclose possible modulation of spontaneous oscillatory brain activity. EEG activity was measured in ten healthy subjects during and after a session of anodal stimulation of the postero-parietal cortex to detect the tDCS-induced alterations. Changes in the theta, alpha, beta, and gamma power bands were investigated. Three main findings emerged: (1) an increase in theta band activity during the first minutes of stimulation; (2) an increase in alpha and beta power during and after stimulation; (3) a widespread activation in several brain regions. PMID:25147519

  6. Study of Sedative-Hypnotic Effects of Aloe vera L. Aqueous Extract through Behavioral Evaluations and EEG Recording in Rats

    PubMed Central

    Abdollahnejad, Fatemeh; Mosaddegh, Mahmoud; Nasoohi, Sanaz; Mirnajafi-Zadeh, Javad; Kamalinejad, Mohammad; Faizi, Mehrdad

    2016-01-01

    In this study, we investigated the sedative and hypnotic effects of the aqueous extract of Aloe vera on rats. In order to evaluate the overall hypnotic effects of the Aloe vera extract, open field and loss of righting reflex tests were primarily used. The sedative and hypnotic effects of the extract were then confirmed by detection of remarkable raise in the total sleeping time through analysis of electroencephalographic (EEG) recordings of animals. Analysis of the EEG recordings showed that there is concomitant change in Rapid Eye Movement (REM) and None Rapid Eye Movement (NREM) sleep in parallel with the prolonged total sleeping time. Results of the current research show that the extract has sedative-hypnotic effects on both functional and electrical activities of the brain. PMID:27610170

  7. Study of Sedative-Hypnotic Effects of Aloe vera L. Aqueous Extract through Behavioral Evaluations and EEG Recording in Rats.

    PubMed

    Abdollahnejad, Fatemeh; Mosaddegh, Mahmoud; Nasoohi, Sanaz; Mirnajafi-Zadeh, Javad; Kamalinejad, Mohammad; Faizi, Mehrdad

    2016-01-01

    In this study, we investigated the sedative and hypnotic effects of the aqueous extract of Aloe vera on rats. In order to evaluate the overall hypnotic effects of the Aloe vera extract, open field and loss of righting reflex tests were primarily used. The sedative and hypnotic effects of the extract were then confirmed by detection of remarkable raise in the total sleeping time through analysis of electroencephalographic (EEG) recordings of animals. Analysis of the EEG recordings showed that there is concomitant change in Rapid Eye Movement (REM) and None Rapid Eye Movement (NREM) sleep in parallel with the prolonged total sleeping time. Results of the current research show that the extract has sedative-hypnotic effects on both functional and electrical activities of the brain. PMID:27610170

  8. Sensorimotor cortex excitability and connectivity in Alzheimer's disease: A TMS-EEG Co-registration study.

    PubMed

    Ferreri, Florinda; Vecchio, Fabrizio; Vollero, Luca; Guerra, Andrea; Petrichella, Sara; Ponzo, David; Määtta, Sara; Mervaala, Esa; Könönen, Mervi; Ursini, Francesca; Pasqualetti, Patrizio; Iannello, Giulio; Rossini, Paolo Maria; Di Lazzaro, Vincenzo

    2016-06-01

    Several studies have shown that, in spite of the fact that motor symptoms manifest late in the course of Alzheimer's disease (AD), neuropathological progression in the motor cortex parallels that in other brain areas generally considered more specific targets of the neurodegenerative process. It has been suggested that motor cortex excitability is enhanced in AD from the early stages, and that this is related to disease's severity and progression. To investigate the neurophysiological hallmarks of motor cortex functionality in early AD we combined transcranial magnetic stimulation (TMS) with electroencephalography (EEG). We demonstrated that in mild AD the sensorimotor system is hyperexcitable, despite the lack of clinically evident motor manifestations. This phenomenon causes a stronger response to stimulation in a specific time window, possibly due to locally acting reinforcing circuits, while network activity and connectivity is reduced. These changes could be interpreted as a compensatory mechanism allowing for the preservation of sensorimotor programming and execution over a long period of time, regardless of the disease's progression. Hum Brain Mapp 37:2083-2096, 2016. © 2016 Wiley Periodicals, Inc. PMID:26945686

  9. Attentional modulation of the inner ear: a combined otoacoustic emission and EEG study.

    PubMed

    Wittekindt, Anna; Kaiser, Jochen; Abel, Cornelius

    2014-07-23

    Attending to a single stimulus in a complex multisensory environment requires the ability to select relevant information while ignoring distracting input. The underlying mechanism and involved neuronal levels of this attentional gain control are still a matter of debate. Here, we investigated the influence of intermodal attention on different levels of auditory processing in humans. It is known that the activity of the cochlear amplifier can be modulated by efferent neurons of the medial olivocochlear complex. We used distortion product otoacoustic emission (DPOAE) measurements to monitor cochlear activity during an intermodal cueing paradigm. Simultaneously, central auditory processing was assessed by electroencephalography (EEG) with a steady-state paradigm targeting early cortical responses and analysis of alpha oscillations reflecting higher cognitive control of attentional modulation. We found effects of selective attention at all measured levels of the auditory processing: DPOAE levels differed significantly between periods of visual and auditory attention, showing a reduction during visual attention, but no change during auditory attention. Primary auditory cortex activity, as measured by the auditory steady-state response (ASSR), differed between conditions, with higher ASSRs during auditory than visual attention. Furthermore, the analysis of cortical oscillatory activity revealed increased alpha power over occipitoparietal and frontal regions during auditory compared with visual attention, putatively reflecting suppression of visual processing. In conclusion, this study showed both enhanced processing of attended acoustic stimuli in early sensory cortex and reduced processing of distracting input, both at higher cortical levels and at the most peripheral level of the hearing system, the cochlea. PMID:25057201

  10. Does retigabine affect the development of alcohol dependence?--A pharmaco-EEG study.

    PubMed

    Zwierzyńska, Ewa; Andrzejczak, Dariusz; Pietrzak, Bogusława

    2016-01-12

    New antiepileptic drugs have been investigated for their potential role in the treatment of alcohol dependence. One of these drugs is retigabine and this study examines the effect of retigabine co-administered with ethanol on the development of alcohol dependence and the course of acute withdrawal syndrome. A pharmaco-EEG method was used to examine this impact in selected brain structures of rabbits (midbrain reticular formation, hippocampus and frontal cortex). Retigabine was administered p.o. at a dose of 5mg/kg/day with ethanol ad libitum for 6 weeks and then alone for 2 weeks during an abstinence period. Changes in bioelectric activity, which demonstrated the inhibitory effect of alcohol on the brain structures, were already visible after 2 weeks of ethanol administration. In the abstinence period, changes were of a different nature and significant neuronal hyperactivity was observed, particularly in the midbrain reticular formation and the hippocampus. This findings reveal that retigabine decreased ethanol-induced changes during both alcohol administration and abstinence periods. In particular, the modulatory effect of retigabine on the hippocampus may be a significant element of its mechanism of action in alcohol dependence therapy. PMID:26598024