Science.gov

Sample records for high-dose three-dimensional radiation

  1. Radiative transfer for a three-dimensional raining cloud

    NASA Technical Reports Server (NTRS)

    Haferman, J. L.; Krajewski, W. F.; Smith, T. F.; Sanchez, A.

    1993-01-01

    Satellite-sensor-based microwave brightness temperatures for a three-dimensional raining cloud over a reflecting surface are computed by using a radiative transfer model based on the discrete-ordinates solution procedure. The three-dimensional model applied to a plane layer is validated by comparison with results from a one-dimensional model that is available in the literature. Results examining the effects of cloud height, rainfall rate, surface reflectance, rainfall footprint area, and satellite viewing position on one- and three-dimensional brightness temperature calculations are reported. The numerical experiments indicate that, under certain conditions, three-dimensional effects are significant in the analysis of satellite-sensor-based rainfall retrieval algorithms. The results point to the need to consider carefully three-dimensional effects as well as surface reflectance effects when interpreting satellite-measured radiation data.

  2. Cone Beam CT-Based Three-Dimensional Planning in High-Dose-Rate Brachytherapy for Cervical Cancer

    SciTech Connect

    Al-Halabi, Hani; Portelance, Lorraine; Duclos, Marie; Reniers, Brigitte; Bahoric, Boris; Souhami, Luis

    2010-07-15

    Purpose: To evaluate dose-volume histograms (DVHs) of bladder and rectum from the use of cone beam CT (CBCT)-based three-dimensional (3D) treatment planning in intracavitary high-dose-rate brachytherapy (HDRB) for cervical cancer patients and to compare these parameters with International Commission on Radiation Units and Measurements (ICRU) of rectal and bladder reference point dose measurements. Methods and Materials: Thirteen patients with cervical cancer underwent HDRB insertions. CT-compatible tandem and ovoid applicators were used to obtain intraoperative CBCT images. The use of a rectal tube and injection of bladder contrast before scanning facilitated contouring the rectum and bladder. All patients underwent intraoperative orthogonal x-ray filming, and treatments were prescribed using standard two-dimensional planning and dosimetry. DVHs for the bladder and rectum were constructed for each treatment. The minimum dose in the most irradiated 2.0-cm{sup 3} volume of bladder (B{sub D2V}) and rectum (R{sub D2V}) were determined from DVHs and compared to ICRU reference point estimates of bladder (B{sub ICRU}) and rectum (R{sub ICRU}) doses. Results: Twenty-six CBCT-based plans were evaluated. The median B{sub ICRU} dose (347 cGy; range, 164-601 cGy) was significantly lower (p < 0.001) than the median B{sub D2V} (594 cGy; range, 260-969 cGy). The median R{sub ICRU} dose (405 cGy; range, 189-700 cGy) was also significantly lower (p = 0.037) than the median R{sub D2V} (488 cGy; range, 227-786 cGy). Conclusions: CBCT-based 3D planning can be used in HDRB for cervical cancer and is a convenient alternative to CT-based planning, with the advantage of minimizing applicator motion. Correlation with late effects will further define the role of CBCT-based 3D dosimetry in HDRB planning.

  3. Radiation hardness of three-dimensional polycrystalline diamond detectors

    SciTech Connect

    Lagomarsino, Stefano Sciortino, Silvio; Bellini, Marco; Corsi, Chiara; Cindro, Vladimir; Kanxheri, Keida; Servoli, Leonello; Morozzi, Arianna; Passeri, Daniele; Schmidt, Christian J.

    2015-05-11

    The three-dimensional concept in particle detection is based on the fabrication of columnar electrodes perpendicular to the surface of a solid state radiation sensor. It permits to improve the radiation resistance characteristics of a material by lowering the necessary bias voltage and shortening the charge carrier path inside the material. If applied to a long-recognized exceptionally radiation-hard material like diamond, this concept promises to pave the way to the realization of detectors of unprecedented performances. We fabricated conventional and three-dimensional polycrystalline diamond detectors, and tested them before and after neutron damage up to 1.2 ×10{sup 16 }cm{sup −2}, 1 MeV-equivalent neutron fluence. We found that the signal collected by the three-dimensional detectors is up to three times higher than that of the conventional planar ones, at the highest neutron damage ever experimented.

  4. Prospective Clinical Trial of Bladder Filling and Three-Dimensional Dosimetry in High-Dose-Rate Vaginal Cuff Brachytherapy

    SciTech Connect

    Stewart, Alexandra J.; Cormack, Robert A.; Lee, Hang; Xiong Li; Hansen, Jorgen L.; O'Farrell, Desmond A.; Viswanathan, Akila N.

    2008-11-01

    Purpose: To investigate the effect of bladder filling on dosimetry and to determine the best bladder dosimetric parameter for vaginal cuff brachytherapy. Methods and Materials: In this prospective clinical trial, a total of 20 women underwent vaginal cylinder high-dose-rate brachytherapy. The bladder was full for Fraction 2 and empty for Fraction 3. Dose-volume histogram and dose-surface histogram values were generated for the bladder, rectum, and urethra. The midline maximal bladder point (MBP) and the midline maximal rectal point were recorded. Paired t tests, Pearson correlations, and regression analyses were performed. Results: The volume and surface area of the irradiated bladder were significantly smaller when the bladder was empty than when full. Of the several dose-volume histogram and dose-surface histogram parameters evaluated, the bladder maximal dose received by 2 cm{sup 3} of tissue, volume of bladder receiving {>=}50% of the dose, volume of bladder receiving {>=}70% of the dose, and surface area of bladder receiving {>=}50% of the dose significantly predicted for the difference between the empty vs. full filling state. The volume of bladder receiving {>=}70% of the dose and the maximal dose received by 2 cm{sup 3} of tissue correlated significantly with the MBP. Bladder filling did not alter the volume or surface area of the rectum irradiated. However, an empty bladder did result in the nearest point of bowel being significantly closer to the vaginal cylinder than when the bladder was full. Conclusions: Patients undergoing vaginal cuff brachytherapy treated with an empty bladder have a lower bladder dose than those treated with a full bladder. The MBP correlated well with the volumetric assessments of bladder dose and provided a noninvasive method for reporting the MBP dose using three-dimensional imaging. The MBP can therefore be used as a surrogate for complex dosimetry in the clinic.

  5. High dose bystander effects in spatially fractionated radiation therapy

    PubMed Central

    Asur, Rajalakshmi; Butterworth, Karl T.; Penagaricano, Jose A.; Prise, Kevin M.; Griffin, Robert J.

    2014-01-01

    Traditional radiotherapy of bulky tumors has certain limitations. Spatially fractionated radiation therapy (GRID) and intensity modulated radiotherapy (IMRT) are examples of advanced modulated beam therapies that help in significant reductions in normal tissue damage. GRID refers to the delivery of a single high dose of radiation to a large treatment area that is divided into several smaller fields, while IMRT allows improved dose conformity to the tumor target compared to conventional three-dimensional conformal radiotherapy. In this review, we consider spatially fractionated radiotherapy approaches focusing on GRID and IMRT, and present complementary evidence from different studies which support the role of radiation induced signaling effects in the overall radiobiological rationale for these treatments. PMID:24246848

  6. High-dose-rate Three-dimensional Conformal Radiotherapy Combined with Active Breathing Control for Stereotactic Body Radiotherapy of Early-stage Non-small-cell Lung Cancer.

    PubMed

    Wang, Ruozheng; Yin, Yong; Qin, Yonghui; Yu, Jinming

    2015-12-01

    The purpose of this study was to evaluate the feasibility and benefits of using high-dose-rate three-dimensional conformal radiotherapy (3D-CRT) combined with active breathing control (ABC) for stereotactic body radiotherapy (SBRT) of patients with early-stage non-small-cell lung cancer (NSCLC). Eight patients with early-stage NSCLC underwent CT scans under standard free-breathing (FB) and moderately deep inspiration breath-hold (mDIBH) with ABC. Two high-dose-rate 3D-CRT plans (1000 Mu/min) were designed based on the CT scans with FB and mDIBH. The maximal dose (D1%), minimal dose (D99%), conformity index (CI), and homogeneity index (HI) of the planning target volume (PTV), and dose-volume indices of the organs at risk between each plan were compared. The mean PTV volume decreased from 158.04 cm(3) with FB to 76.90 cm(3) with mDIBH (p < 0.05). When mDIBH was used, increases in the affected lung volume (by 47%), contralateral lung volume (by 55%), and total lung volume (by 50%) were observed compared to FB (p < 0.05). The V5-V40 of the affected lung (Vx represented the percentage volume of organs receiving at least the x Gy), V5-V40 and the mean dose for the total lung, V5-V40 and mean dose of the chest wall, and the maximum dose of the spinal cord were less for mDIBH than FB (p < 0.05). There were no significant differences in CI, HI, D1%, or D99% for the PTV between the plans. In conclusion, high-dose-rate 3D-CRT combined with ABC reduced the radiation dose to the lungs and chest wall without affecting the dose distribution in SBRT of early-stage NSCLC patients. PMID:24988055

  7. TWILIGHT: A Cellular Framework for Three-Dimensional Radiative Transfer

    NASA Astrophysics Data System (ADS)

    Khatami, David; Madore, Barry

    2015-01-01

    We describe a new framework for solving three-dimensional radiative transfer of arbitrary geometries, including a full characterisation of the wavelength-dependent anisotropic scattering, absorption, and thermal reemission of light by dust. By adopting a cellular approach to discretising the light and dust, the problem can be efficiently solved through a fully deterministic iterative process. As a proof of concept we present TWILIGHT, our implementation of the cellular approach, in order to demonstrate and benchmark the new method. TWILIGHT simultaneously renders over one hundred unique images of a given environment with no additional slowdown, enabling a close study of inclination effects of three-dimensional dust geometries. In addition to qualitative rendering tests, TWILIGHT is successfully tested against two Monte-Carlo radiative transfer benchmarks, producing similar brightness profiles at varying inclinations. With the proof-of-concept established, we describe the improvements and current developments underway using the cellular framework, including a technique to resolve the subgrid physics of dust radiative transfer from micron-scale grain models to kiloparsec-sized dust environments.

  8. Realistic three-dimensional radiative transfer simulations of observed precipitation

    NASA Astrophysics Data System (ADS)

    Adams, I. S.; Bettenhausen, M. H.

    2013-12-01

    Remote sensing observations of precipitation typically utilize a number of instruments on various platforms. Ground validation campaigns incorporate ground-based and airborne measurements to characterize and study precipitating clouds, while the precipitation measurement constellation envisioned by the Global Precipitation Measurement (GPM) mission includes measurements from differing space-borne instruments. In addition to disparities such as frequency channel selection and bandwidth, measurement geometry and resolution differences between observing platforms result in inherent inconsistencies between data products. In order to harmonize measurements from multiple passive radiometers, a framework is required that addresses these differences. To accomplish this, we have implemented a flexible three-dimensional radiative transfer model. As its core, the radiative transfer model uses the Atmospheric Radiative Transfer Simulator (ARTS) version 2 to solve the radiative transfer equation in three dimensions using Monte Carlo integration. Gaseous absorption is computed with MonoRTM and formatted into look-up tables for rapid processing. Likewise, scattering properties are pre-computed using a number of publicly available codes, such as T-Matrix and DDSCAT. If necessary, a melting layer model can be applied to the input profiles. Gaussian antenna beams estimate the spatial resolutions of the passive measurements, and realistic bandpass characteristics can be included to properly account for the spectral response of the simulated instrument. This work presents three-dimensional simulations of WindSat brightness temperatures for an oceanic rain event sampled by the Tropical Rainfall Measuring Mission (TRMM) satellite. The 2B-31 combined Precipitation Radar / TRMM Microwave Imager (TMI) retrievals provide profiles that are the input to the radiative transfer model. TMI brightness temperatures are also simulated. Comparisons between monochromatic, pencil beam simulations and

  9. Three-Dimensional Radiative Transfer on a Massively Parallel Computer.

    NASA Astrophysics Data System (ADS)

    Vath, Horst Michael

    1994-01-01

    We perform three-dimensional radiative transfer calculations on the MasPar MP-1, which contains 8192 processors and is a single instruction multiple data (SIMD) machine, an example of the new generation of massively parallel computers. To make radiative transfer calculations efficient, we must re-consider the numerical methods and methods of storage of data that have been used with serial machines. We developed a numerical code which efficiently calculates images and spectra of astrophysical systems as seen from different viewing directions and at different wavelengths. We use this code to examine a number of different astrophysical systems. First we image the HI distribution of model galaxies. Then we investigate the galaxy NGC 5055, which displays a radial asymmetry in its optical appearance. This can be explained by the presence of dust in the outer HI disk far beyond the optical disk. As the formation of dust is connected to the presence of stars, the existence of dust in outer regions of this galaxy could have consequences for star formation at a time when this galaxy was just forming. Next we use the code for polarized radiative transfer. We first discuss the numerical computation of the required cyclotron opacities and use them to calculate spectra of AM Her systems, binaries containing accreting magnetic white dwarfs. Then we obtain spectra of an extended polar cap. Previous calculations did not consider the three -dimensional extension of the shock. We find that this results in a significant underestimate of the radiation emitted in the shock. Next we calculate the spectrum of the intermediate polar RE 0751+14. For this system we obtain a magnetic field of ~10 MG, which has consequences for the evolution of intermediate polars. Finally we perform 3D radiative transfer in NLTE in the two-level atom approximation. To solve the transfer equation in this case, we adapt the short characteristic method and examine different acceleration methods to obtain the

  10. Radiation dosimetry using three-dimensional optical random access memories

    NASA Technical Reports Server (NTRS)

    Moscovitch, M.; Phillips, G. W.

    2001-01-01

    Three-dimensional optical random access memories (3D ORAMs) are a new generation of high-density data storage devices. Binary information is stored and retrieved via a light induced reversible transformation of an ensemble of bistable photochromic molecules embedded in a polymer matrix. This paper describes the application of 3D ORAM materials to radiation dosimetry. It is shown both theoretically and experimentally, that ionizing radiation in the form of heavy charged particles is capable of changing the information originally stored on the ORAM material. The magnitude and spatial distribution of these changes are used as a measure of the absorbed dose, particle type and energy. The effects of exposure on 3D ORAM materials have been investigated for a variety of particle types and energies, including protons, alpha particles and 12C ions. The exposed materials are observed to fluoresce when exposed to laser light. The intensity and the depth of the fluorescence is dependent on the type and energy of the particle to which the materials were exposed. It is shown that these effects can be modeled using Monte Carlo calculations. The model provides a better understanding of the properties of these materials. which should prove useful for developing systems for charged particle and neutron dosimetry/detector applications. c2001 Published by Elsevier Science B.V.

  11. THREE-DIMENSIONAL RADIATION TRANSFER IN YOUNG STELLAR OBJECTS

    SciTech Connect

    Whitney, B. A.; Honor, J.; Robitaille, T. P.; Bjorkman, J. E.; Dong, R.; Wolff, M. J.; Wood, K.

    2013-08-15

    We have updated our publicly available dust radiative transfer code (HOCHUNK3D) to include new emission processes and various three-dimensional (3D) geometries appropriate for forming stars. The 3D geometries include warps and spirals in disks, accretion hotspots on the central star, fractal clumping density enhancements, and misaligned inner disks. Additional axisymmetric (2D) features include gaps in disks and envelopes, ''puffed-up inner rims'' in disks, multiple bipolar cavity walls, and iteration of disk vertical structure assuming hydrostatic equilibrium (HSEQ). We include the option for simple power-law envelope geometry, which, combined with fractal clumping and bipolar cavities, can be used to model evolved stars as well as protostars. We include non-thermal emission from polycyclic aromatic hydrocarbons (PAHs) and very small grains, and external illumination from the interstellar radiation field. The grid structure was modified to allow multiple dust species in each cell; based on this, a simple prescription is implemented to model dust stratification. We describe these features in detail, and show example calculations of each. Some of the more interesting results include the following: (1) outflow cavities may be more clumpy than infalling envelopes. (2) PAH emission in high-mass stars may be a better indicator of evolutionary stage than the broadband spectral energy distribution slope; and related to this, (3) externally illuminated clumps and high-mass stars in optically thin clouds can masquerade as young stellar objects. (4) Our HSEQ models suggest that dust settling is likely ubiquitous in T Tauri disks, in agreement with previous observations.

  12. CT based three dimensional dose-volume evaluations for high-dose rate intracavitary brachytherapy for cervical cancer

    PubMed Central

    2014-01-01

    Background In this study, high risk clinical target volumes (HR-CTVs) according to GEC-ESTRO guideline were contoured retrospectively based on CT images taken at the time of high-dose rate intracavitary brachytherapy (HDR-ICBT) and correlation between clinical outcome and dose of HR-CTV were analyzed. Methods Our study population consists of 51 patients with cervical cancer (Stages IB-IVA) treated with 50 Gy external beam radiotherapy (EBRT) using central shield combined with 2–5 times of 6 Gy HDR-ICBT with or without weekly cisplatin. Dose calculation was based on Manchester system and prescribed dose of 6 Gy were delivered for point A. CT images taken at the time of each HDR-ICBT were reviewed and HR-CTVs were contoured. Doses were converted to the equivalent dose in 2 Gy (EQD2) by applying the linear quadratic model (α/β = 10 Gy). Results Three-year overall survival, Progression-free survival, and local control rate was 82.4%, 85.3% and 91.7%, respectively. Median cumulative dose of HR-CTV D90 was 65.0 Gy (52.7-101.7 Gy). Median length from tandem to the most lateral edge of HR-CTV at the first ICBT was 29.2 mm (range, 18.0-51.9 mm). On univariate analysis, both LCR and PFS was significantly favorable in those patients D90 for HR-CTV was 60 Gy or greater (p = 0.001 and 0.03, respectively). PFS was significantly favorable in those patients maximum length from tandem to edge of HR-CTV at first ICBT was shorter than 3.5 cm (p = 0.042). Conclusion Volume-dose showed a relationship to the clinical outcome in CT based brachytherapy for cervical carcinoma. PMID:24938757

  13. Three-dimensional, position-sensitive radiation detection

    DOEpatents

    He, Zhong; Zhang, Feng

    2010-04-06

    Disclosed herein is a method of determining a characteristic of radiation detected by a radiation detector via a multiple-pixel event having a plurality of radiation interactions. The method includes determining a cathode-to-anode signal ratio for a selected interaction of the plurality of radiation interactions based on electron drift time data for the selected interaction, and determining the radiation characteristic for the multiple-pixel event based on both the cathode-to-anode signal ratio and the electron drift time data. In some embodiments, the method further includes determining a correction factor for the radiation characteristic based on an interaction depth of the plurality of radiation interactions, a lateral distance between the selected interaction and a further interaction of the plurality of radiation interactions, and the lateral positioning of the plurality of radiation interactions.

  14. Preliminary results of a three-dimensional radiative transfer model

    SciTech Connect

    O`Hirok, W.

    1995-09-01

    Clouds act as the primary modulator of the Earth`s radiation at the top of the atmosphere, within the atmospheric column, and at the Earth`s surface. They interact with both shortwave and longwave radiation, but it is primarily in the case of shortwave where most of the uncertainty lies because of the difficulties in treating scattered solar radiation. To understand cloud-radiative interactions, radiative transfer models portray clouds as plane-parallel homogeneous entities to ease the computational physics. Unfortunately, clouds are far from being homogeneous, and large differences between measurement and theory point to a stronger need to understand and model cloud macrophysical properties. In an attempt to better comprehend the role of cloud morphology on the 3-dimensional radiation field, a Monte Carlo model has been developed. This model can simulate broadband shortwave radiation fluxes while incorporating all of the major atmospheric constituents. The model is used to investigate the cloud absorption anomaly where cloud absorption measurements exceed theoretical estimates and to examine the efficacy of ERBE measurements and cloud field experiments. 3 figs.

  15. Understanding Accretion Disks through Three Dimensional Radiation MHD Simulations

    NASA Astrophysics Data System (ADS)

    Jiang, Yan-Fei

    I study the structures and thermal properties of black hole accretion disks in the radiation pressure dominated regime. Angular momentum transfer in the disk is provided by the turbulence generated by the magneto-rotational instability (MRI), which is calculated self-consistently with a recently developed 3D radiation magneto-hydrodynamics (MHD) code based on Athena. This code, developed by my collaborators and myself, couples both the radiation momentum and energy source terms with the ideal MHD equations by modifying the standard Godunov method to handle the stiff radiation source terms. We solve the two momentum equations of the radiation transfer equations with a variable Eddington tensor (VET), which is calculated with a time independent short characteristic module. This code is well tested and accurate in both optically thin and optically thick regimes. It is also accurate for both radiation pressure and gas pressure dominated flows. With this code, I find that when photon viscosity becomes significant, the ratio between Maxwell stress and Reynolds stress from the MRI turbulence can increase significantly with radiation pressure. The thermal instability of the radiation pressure dominated disk is then studied with vertically stratified shearing box simulations. Unlike the previous results claiming that the radiation pressure dominated disk with MRI turbulence can reach a steady state without showing any unstable behavior, I find that the radiation pressure dominated disks always either collapse or expand until we have to stop the simulations. During the thermal runaway, the heating and cooling rates from the simulations are consistent with the general criterion of thermal instability. However, details of the thermal runaway are different from the predictions of the standard alpha disk model, as many assumptions in that model are not satisfied in the simulations. We also identify the key reasons why previous simulations do not find the instability. The thermal

  16. Three Dimensional Radiative Transfer In Tropical Deep Convective Clouds.

    NASA Astrophysics Data System (ADS)

    di Giuseppe, F.

    In this study the focus is on the interaction between short-wave radiation with a field of tropical deep convective events generated using a 3D cloud resolving model (CRM) to assess the significance of 3D radiative transport (3DRT). It is not currently un- derstood what magnitude of error is involved when a two stream approximation is used to describe the radiative transfer through such a cloud field. It seems likely that deep convective clouds could be the most complex to represent, and that the error in neglecting horizontal transport could be relevant in these cases. The field here con- sidered has an extention of roughly 90x90 km, approximately equivalent to the grid box dimension of many global models. The 3DRT results are compared both with the calculations obtained by an Independent Pixel Approximation (IPA) approch and by the Plane Parallel radiative scheme (PP) implemented in ECMWF's Forecast model. The differences between the three calculations are used to assess both problems in current GCM's representation of radiative heating and inaccuracies in the dynamical response of CRM simulations due to the Independent Column Approximation (ICA). The understanding of the mechanisms involved in the main 3DRT/1D differences is the starting point for the future attempt to develop a parameterization procedure.

  17. Three-dimensional architecture for solid state radiation detectors

    DOEpatents

    Parker, Sherwood

    1999-01-01

    A radiation-damage resistant radiation detector is formed on a substrate formed of a material doped with a first conductivity type dopant. The detector includes at least one first electrode formed of first conductivity type dopant, and at least one second electrode that is spaced-apart from the first electrode and formed of a second conductivity type dopant. Each first and second electrode penetrates into the substrate from a substrate surface, and one or more electrodes may penetrate entirely through the substrate, that is traversing from one surface to the other surface. Particulate and/or electromagnetic radiation penetrating at least a surface of the substrate releases electrons and holes in substrate regions. Because the electrodes may be formed entirely through the substrate thickness, the released charges will be a relatively small distance from at least a portion of such an electrode, e.g., a distance less than the substrate thickness. The electrons and/or holes traverse the small distance and are collected by said electrodes, thus promoting rapid detection of the radiation. By providing one or more electrodes with a dopant profile radially graded in a direction parallel to a substrate surface, an electric field results that promotes rapid collection of released electrons and said holes. Monolithic combinations of such detectors may be fabricated including CMOS electronics to process radiation signals.

  18. Three-dimensional architecture for solid state radiation detectors

    DOEpatents

    Parker, S.

    1999-03-30

    A radiation-damage resistant radiation detector is formed on a substrate formed of a material doped with a first conductivity type dopant. The detector includes at least one first electrode formed of first conductivity type dopant, and at least one second electrode that is spaced-apart from the first electrode and formed of a second conductivity type dopant. Each first and second electrode penetrates into the substrate from a substrate surface, and one or more electrodes may penetrate entirely through the substrate, that is traversing from one surface to the other surface. Particulate and/or electromagnetic radiation penetrating at least a surface of the substrate releases electrons and holes in substrate regions. Because the electrodes may be formed entirely through the substrate thickness, the released charges will be a relatively small distance from at least a portion of such an electrode, e.g., a distance less than the substrate thickness. The electrons and/or holes traverse the small distance and are collected by said electrodes, thus promoting rapid detection of the radiation. By providing one or more electrodes with a dopant profile radially graded in a direction parallel to a substrate surface, an electric field results that promotes rapid collection of released electrons and said holes. Monolithic combinations of such detectors may be fabricated including CMOS electronics to process radiation signals. 45 figs.

  19. Three Dimensional Atmospheric Radiative Transfer-Applications and Methods Comparison

    NASA Technical Reports Server (NTRS)

    Cahalan, Robert F.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    We review applications of 3D radiative transfer in the atmosphere, emphasizing the wide spectrum of scales important to remote sensing and modeling of cloud fields, and the characteristic scales introduced into observed radiances and fluxes by the distribution of photon pathlengths at conservative and absorbing wavelengths. We define the "plane-parallel bias", which is a measure of the importance of 3D cloud structure in large-scale models, and the "independent pixel errors" that quantify the significance of 3D effects in remote sensing, and emphasize their relative magnitude and scale dependence. A variety of approaches in current use in 3D radiative transfer, and issues of speed, accuracy, and flexibility are summarized. We also describe a recently initiated "International Intercomparison of 3-Dimensional Radiation Codes", or I3RC. I3RC is a 3-phase effort that has as its goals to: (1) understand the errors and limits of 3D methods; (2) provide "baseline" cases for future 3D code development; (3) promote sharing of 3D tools; (4) derive guidelines for 3D tool selection; and (5) improve atmospheric science education in 3D radiative transfer. Selected results from Phases 1 and 2 of I3RC are discussed. These are taken from five cloud fields: a 1D field of bar clouds, a 2D radar-derived field, a 3D Landsat-derived field, a stratiform cloud from the model of C. Moeng, and a convective cloud from the model of B. Stevens. Computations have been carried out for three monochromatic wavelengths (one conservative, one absorptive, and one thermal) and two solar zenith angles (0, 60 degrees).

  20. Formation of globular clusters induced by external ultraviolet radiation II: Three-dimensional radiation hydrodynamics simulations

    NASA Astrophysics Data System (ADS)

    Abe, Makito; Umemura, Masayuki; Hasegawa, Kenji

    2016-08-01

    We explore the possibility of the formation of globular clusters under ultraviolet (UV) background radiation. One-dimensional spherical symmetric radiation hydrodynamics (RHD) simulations by Hasegawa et al. have demonstrated that the collapse of low-mass (106-7 M⊙) gas clouds exposed to intense UV radiation can lead to the formation of compact star clusters like globular clusters (GCs) if gas clouds contract with supersonic infall velocities. However, three-dimensional effects, such as the anisotropy of background radiation and the inhomogeneity in gas clouds, have not been studied so far. In this paper, we perform three-dimensional RHD simulations in a semi-cosmological context, and reconsider the formation of compact star clusters in strong UV radiation fields. As a result, we find that although anisotropic radiation fields bring an elongated shadow of neutral gas, almost spherical compact star clusters can be procreated from a "supersonic infall" cloud, since photo-dissociating radiation suppresses the formation of hydrogen molecules in the shadowed regions and the regions are compressed by UV heated ambient gas. The properties of resultant star clusters match those of GCs. On the other hand, in weak UV radiation fields, dark matter-dominated star clusters with low stellar density form due to the self-shielding effect as well as the positive feedback by ionizing photons. Thus, we conclude that the "supersonic infall" under a strong UV background is a potential mechanism to form GCs.

  1. Three-dimensional radiative transfer on a massively parallel computer

    NASA Astrophysics Data System (ADS)

    Vath, H. M.

    1994-04-01

    We perform 3D radiative transfer calculations in non-local thermodynamic equilibrium (NLTE) in the simple two-level atom approximation on the Mas-Par MP-1, which contains 8192 processors and is a single instruction multiple data (SIMD) machine, an example of the new generation of massively parallel computers. On such a machine, all processors execute the same command at a given time, but on different data. To make radiative transfer calculations efficient, we must re-consider the numerical methods and storage of data. To solve the transfer equation, we adopt the short characteristic method and examine different acceleration methods to obtain the source function. We use the ALI method and test local and non-local operators. Furthermore, we compare the Ng and the orthomin methods of acceleration. We also investigate the use of multi-grid methods to get fast solutions for the NLTE case. In order to test these numerical methods, we apply them to two problems with and without periodic boundary conditions.

  2. Delay-Line Three-Dimensional Position Sensitive Radiation Detection

    NASA Astrophysics Data System (ADS)

    Jeong, Manhee

    High-resistivity silicon(Si) in large volumes and with good charge carrier transport properties has been produced and achieved success as a radiation detector material over the past few years due to its relatively low cost as well as the availability of well-established processing technologies. One application of that technology is in the fabrication of various position-sensing topologies from which the incident radiation's direction can be determined. We have succeeded in developing the modeling tools for investigating different position-sensing schemes and used those tools to examine both amplitude-based and time-based methods, an assessment that indicates that fine position-sensing can be achieved with simpler readout designs than are conventionally deployed. This realization can make ubiquitous and inexpensive deployment of special nuclear materials (SNM) detecting technology becomes more feasible because if one can deploy position-sensitive semiconductor detectors with only one or two contacts per side. For this purpose, we have described the delay-line radiation detector and its optimized fabrication. The semiconductor physics were simulated, the results from which guided the fabrication of the guard ring structure and the detector electrode, both of which included metal-field-plates. The measured improvement in the leakage current was confirmed with the fabricated devices, and the structures successfully suppressed soft-breakdown. We also demonstrated that fabricating an asymmetric strip-line structure successfully minimizing the pulse shaping and increases the distance through which one can propagate the information of the deposited charge distribution. With fabricated delay-line detectors we can acquire alpha spectra (Am-241) and gamma spectra (Ba-133, Co-57 and Cd-109). The delay-line detectors can therefore be used to extract the charge information from both ion and gamma-ray interactions. Furthermore, standard charge-sensitive circuits yield high SNR

  3. Measurement of three-dimensional radiation dose distributions using MRI.

    PubMed

    Prasad, P V; Nalcioglu, O; Rabbani, B

    1991-10-01

    Recent investigations have shown that nuclear magnetic resonance (NMR) can be used in conjunction with a suitable chemical dosimeter to estimate the dose from ionizing radiation (Gore et al., Phys Med. Biol. 29, 1189-1197, 1984). Based on this fact it was proposed that spatial dose distributions can be measured in gels infused with the chemical dosimeter using NMR imaging. There have been few such attempts and they provided only qualitative results. In this paper, we report results demonstrating the feasibility of obtaining quantitative dose distribution measurements by this technique. It is shown that quantitative dose distribution measurements necessitate the calculation of relaxation rate maps. We have determined that the spin-spin relaxation rate is a more sensitive parameter than the spin-lattice relaxation rate. It is also demonstrated that the addition of chemical sensitizers could improve the dose sensitivity of the measured NMR parameters. The two features characterizing a photon beam, depth-dose relationship, and beam profile as measured by this technique are in good agreement with the measurements using conventional methods, ionization chambers, and film dosimetry. PMID:1924718

  4. Three-dimensional imaging of optically opaque materials using nonionizing terahertz radiation.

    PubMed

    Wallace, Vincent P; Macpherson, Emma; Zeitler, J Axel; Reid, Caroline

    2008-12-01

    Terahertz electromagnetic radiation has already been shown to have a wide number of uses. We consider specific applications of terahertz time-domain imaging that are inherently three-dimensional. This paper highlights the ability of terahertz radiation to reveal subsurface information as we exploit the fact that the radiation can penetrate optically opaque materials such as clothing, cardboard, plastics, and to some extent biological tissue. Using interactive science publishing tools, we concentrate on full three-dimensional terahertz data from three specific areas of application, namely, security, pharmaceutical, and biomedical. PMID:19037404

  5. Three-dimensional visualization of shear wave propagation generated by dual acoustic radiation pressure

    NASA Astrophysics Data System (ADS)

    Mochizuki, Yuta; Taki, Hirofumi; Kanai, Hiroshi

    2016-07-01

    An elastic property of biological soft tissue is an important indicator of the tissue status. Therefore, quantitative and noninvasive methods for elasticity evaluation have been proposed. Our group previously proposed a method using acoustic radiation pressure irradiated from two directions for elastic property evaluation, in which by measuring the propagation velocity of the shear wave generated by the acoustic radiation pressure inside the object, the elastic properties of the object were successfully evaluated. In the present study, we visualized the propagation of the shear wave in a three-dimensional space by the synchronization of signals received at various probe positions. The proposed method succeeded in visualizing the shear wave propagation clearly in the three-dimensional space of 35 × 41 × 4 mm3. These results show the high potential of the proposed method to estimate the elastic properties of the object in the three-dimensional space.

  6. Three-dimensional radiation dosimetry for gamma knife using a gel dosimeter

    NASA Astrophysics Data System (ADS)

    Hussain, Kazi Muazzam

    The use of three-dimensional radiation dosimetry has been limited. With the use of water phantoms and ionization chambers, it has been possible to determine three dimensional dose distributions on a gross scale for cobalt 60 and linear accelerator sources. This method has been somewhat useful for traditional radiotherapy. There is, however, a need for more precise dosimetry, particularly with stereotactic radiosurgery. Most gamma knife facilities use either thermoluminescant dosimetry or film, neither of which provides three dimensional dose distributions. To overcome this limitation, we have developed a gel dosimetry system that relies on the production of a ferric ion-xylenol orange colored complex. This work demonstrates the use of laser light and a detector to quantify radiation-induced colorimetric changes in absorbance for the gel dosimeter. The absorbance has been reconstructed by the back projection technique to demonstrate the applicability of the gel dosimeter to gamma knife 3D-dose distributions.

  7. Equivalent Biochemical Control and Improved Prostate-Specific Antigen Nadir After Permanent Prostate Seed Implant Brachytherapy Versus High-Dose Three-Dimensional Conformal Radiotherapy and High-Dose Conformal Proton Beam Radiotherapy Boost

    SciTech Connect

    Jabbari, Siavash; Weinberg, Vivian K.; Shinohara, Katsuto; Speight, Joycelyn L.; Gottschalk, Alexander R.; Hsu, I.-C.; Pickett, Barby; McLaughlin, Patrick W.; Sandler, Howard M.; Roach, Mack

    2010-01-15

    Purpose: Permanent prostate implant brachytherapy (PPI), three-dimensional conformal radiotherapy (3D-CRT), and conformal proton beam radiotherapy (CPBRT) are used in the treatment of localized prostate cancer, although no head-to-head trials have compared these modalities. We studied the biochemical control (biochemical no evidence of disease [bNED]) and prostate-specific antigen (PSA) nadir achieved with contemporary PPI, and evaluated it against 3D-CRT and CPBRT. Patients and Methods: A total of 249 patients were treated with PPI at the University of California, San Francisco, and the outcomes were compared with those from a 3D-CRT cohort and the published results of a high-dose CPBRT boost (CPBRTB) trial. For each comparison, subsets of the PPI cohort were selected with patient and disease criteria similar to those of the reference group. Results: With a median follow-up of 5.3 years, the bNED rate at 5 and 7 years achieved with PPI was 92% and 86%, respectively, using the American Society for Therapeutic Radiology and Oncology (ASTRO) definition, and 93% using the PSA nadir plus 2 ng/mL definition. Using the ASTRO definition, a 5-year bNED rate of 78% was achieved for the 3D-CRT patients compared with 94% for a comparable PPI subset and 93% vs. 92%, respectively, using the PSA nadir plus 2 ng/mL definition. The median PSA nadir for patients treated with PPI and 3D-CRT was 0.10 and 0.40 ng/mL, respectively (p < .0001). For the CPBRT comparison, the 5-year bNED rate after a CPBRTB was 91% using the ASTRO definition vs. 93% for a similar group of PPI patients. A greater proportion of PPI patients achieved a lower PSA nadir compared with those achieved in the CPBRTB trial (PSA nadir <=0.5 ng/mL, 91% vs. 59%, respectively). Conclusion: We have demonstrated excellent outcomes in low- to intermediate-risk patients treated with PPI, suggesting at least equivalent 5-year bNED rates and a greater proportion of men achieving lower PSA nadirs compared with 3D-CRT or

  8. Multigroup Three-Dimensional Direct Integration Method Radiation Transport Analysis Code System.

    Energy Science and Technology Software Center (ESTSC)

    1987-09-18

    Version 00 TRISTAN solves the three-dimensional, fixed-source, Boltzmann transport equation for neutrons or gamma rays in rectangular geometry. The code can solve an adjoint problem as well as a usual transport problem. TRISTAN is a suitable tool to analyze radiation shielding problems such as streaming and deep penetration problems.

  9. High-resolution three-dimensional imaging by synchrotron-radiation computed laminography

    NASA Astrophysics Data System (ADS)

    Helfen, L.; Baumbach, T.; Pernot, P.; Mikulík, P.; DiMichiel, M.; Baruchel, J.

    2006-08-01

    The methodical development and first instrumental implementation of computed laminography / tomosynthesis using synchrotron radiation are presented. The technique was developed for three-dimensional imaging of flat and laterally extended objects with high spatial resolution. This paper introduces the fundamental principle of the imaging process and discusses the method's particularities in comparison to computed tomography and computed laminography / digital tomosynthesis. Introducing a simple scanning geometry adapted to the particular experimental conditions of synchrotron imaging set-ups (such as the stationary source and a parallel beam) allows us to combine the advantages of laminography and those provided by synchrotron radiation, for instance monochromatic radiation in order to avoid beam hardening artefacts, high beam intensity for achieving high spatial resolution and fast scanning times or spatial coherence for exploiting phase contrast. The potential of the method for three-dimensional imaging of microelectronic devices is demonstrated by examples of flip-chip bonded and wire-bonded devices.

  10. Recent Developments in Three Dimensional Radiation Transport Using the Green's Function Technique

    NASA Technical Reports Server (NTRS)

    Rockell, Candice; Tweed, John; Blattnig, Steve R.; Mertens, Christopher J.

    2010-01-01

    In the future, astronauts will be sent into space for longer durations of time compared to previous missions. The increased risk of exposure to dangerous radiation, such as Galactic Cosmic Rays and Solar Particle Events, is of great concern. Consequently, steps must be taken to ensure astronaut safety by providing adequate shielding. In order to better determine and verify shielding requirements, an accurate and efficient radiation transport code based on a fully three dimensional radiation transport model using the Green's function technique is being developed

  11. Hawking radiation of spin-1 particles from a three-dimensional rotating hairy black hole

    SciTech Connect

    Sakalli, I.; Ovgun, A.

    2015-09-15

    We study the Hawking radiation of spin-1 particles (so-called vector particles) from a three-dimensional rotating black hole with scalar hair using a Hamilton–Jacobi ansatz. Using the Proca equation in the WKB approximation, we obtain the tunneling spectrum of vector particles. We recover the standard Hawking temperature corresponding to the emission of these particles from a rotating black hole with scalar hair.

  12. Hawking radiation of spin-1 particles from a three-dimensional rotating hairy black hole

    NASA Astrophysics Data System (ADS)

    Sakalli, I.; Ovgun, A.

    2015-09-01

    We study the Hawking radiation of spin-1 particles (so-called vector particles) from a three-dimensional rotating black hole with scalar hair using a Hamilton-Jacobi ansatz. Using the Proca equation in the WKB approximation, we obtain the tunneling spectrum of vector particles. We recover the standard Hawking temperature corresponding to the emission of these particles from a rotating black hole with scalar hair.

  13. Three-dimensional surface grid generation for calculation of thermal radiation shape factors

    NASA Technical Reports Server (NTRS)

    Aly, Hany M.

    1992-01-01

    A technique is described to generate three dimensional surface grids suitable for calculating shape factors for thermal radiative heat transfer. The surface under consideration is approximated by finite triangular elements generated in a special manner. The grid is generated by dividing the surface into a two dimensional array of nodes. Each node is defined by its coordinates. Each set of four adjacent nodes is used to construct two triangular elements. Each triangular element is characterized by the vector representation of its vertices. Vector algebra is used to calculate all desired geometric properties of grid elements. The properties are used to determine the shape factor between the element and an area element in space. The grid generation can be graphically displayed using any software with three dimensional features. DISSPLA was used to view the grids.

  14. Three-dimensional radiative transfer calculations on an SIMD machine applied to accretion disks

    NASA Astrophysics Data System (ADS)

    Vath, H.

    We have developed a tool to solve the radiative transfer equation for a three-dimensional astrophysical object on the SIMD computer MasPar MP-1. With this tool we can rapidly calculate the image of such an object as seen from an arbitrary direction and at an arbitrary wavelength. Such images and spectra can then be used to directly compare observations with the model. This tool can be applied to many different areas in astrophysics, e.g., HI disks of galaxies and polarized radiative transfer of accretion columns onto white dwarfs. Here we use this tool to calculate the image and spectrum of a simple model of an accretion disk.

  15. Three-dimensional radiative transfer using a Fourier-transform matrix-operator method

    NASA Technical Reports Server (NTRS)

    Martonchik, J. V.; Diner, D. J.

    1985-01-01

    The three-dimensional equation of transfer for a scattering medium with planar geometry is solved by using a spatial Fourier transform and extending matrix-operator techniques developed previously for the one-dimensional equation. Doubling and adding algorithms were derived by means of an interaction principle for computing the Fourier-transformed radiation field. The resulting expressions fully describe the radiative transfer process in a scattering medium, inhomogeneous in the x-, y- and z-directions, illuminated from above by an arbitrarily general intensity field and bounded from below by a surface with completely general reflection properties.

  16. Modelling canopy scale solar induced chlorophyll fluorescence simulated by the three dimensional radiative transfer model

    NASA Astrophysics Data System (ADS)

    Kobayashi, H.; Nagai, S.; Inoue, T.; Yang, W.; Ichii, K.

    2014-12-01

    Recent studies show that the vegetation canopy scale sun-induced chlorophyll fluorescence (SIF) can be observed from satellite. To understand how the canopy scale bidirectional fluorescence observations are related to three-dimensional fluorescence distribution within a plant canopy, it is necessary to evaluate canopy scale fluorescence emission using a detailed plant canopy radiative transfer model. In this study, we developed a three-dimensional plant canopy radiative transfer model that can simulate the bidirectional chlorophyll fluorescence radiance and show several preliminary results of fluorescence distribution at the tree level. To simulate the three dimensional variations in chlorophyll fluorescence from trees, we measured tree structures using a terrestrial LiDAR instrument. The measurements were conducted in Yokohama, Japan (35°22'49" N 139°37'29" E). Three Japanese cherry trees (Cerasus Speciosa) were chosen for our study (Figure 1). Leaf-level sun-induced chlorophyll fluorescence (SIF) is also necessary as an input of radiative transfer model. To measure the leaf-level SIF, we used high spectral resolution spectroradiometer (HR 4000, Ocean Optics Inc. USA). The spectral resolution of this instrument is 0.05 nm (full width half maximum). The spectral range measured was 720 to 780 nm. From the spectral radiance measurements, we estimated SIF using the three band Fraunhofer Line Depth (3FLD) method. The effect of solar and view zenith angles, multiple scattering depends on many factors such as back ground reflectance, leaf reflectance transmittance and landscape structures. To understand how the SIF from both sparse and dense forest stands vary with sun and view angles and optical variables, it is necessary to conduct further sensitivity analysis. Radiative transfer simulation will help understand SIF emission at variety of forest canopy cases.

  17. On the Development of a Deterministic Three-Dimensional Radiation Transport Code

    NASA Technical Reports Server (NTRS)

    Rockell, Candice; Tweed, John

    2011-01-01

    Since astronauts on future deep space missions will be exposed to dangerous radiations, there is a need to accurately model the transport of radiation through shielding materials and to estimate the received radiation dose. In response to this need a three dimensional deterministic code for space radiation transport is now under development. The new code GRNTRN is based on a Green's function solution of the Boltzmann transport equation that is constructed in the form of a Neumann series. Analytical approximations will be obtained for the first three terms of the Neumann series and the remainder will be estimated by a non-perturbative technique . This work discusses progress made to date and exhibits some computations based on the first two Neumann series terms.

  18. Extending generalized Kubelka-Munk to three-dimensional radiative transfer.

    PubMed

    Sandoval, Christopher; Kim, Arnold D

    2015-08-10

    The generalized Kubelka-Munk (gKM) approximation is a linear transformation of the double spherical harmonics of order one (DP1) approximation of the radiative transfer equation. Here, we extend the gKM approximation to study problems in three-dimensional radiative transfer. In particular, we derive the gKM approximation for the problem of collimated beam propagation and scattering in a plane-parallel slab composed of a uniform absorbing and scattering medium. The result is an 8×8 system of partial differential equations that is much easier to solve than the radiative transfer equation. We compare the solutions of the gKM approximation with Monte Carlo simulations of the radiative transfer equation to identify the range of validity for this approximation. We find that the gKM approximation is accurate for isotropic scattering media that are sufficiently thick and much less accurate for anisotropic, forward-peaked scattering media. PMID:26368374

  19. Three-dimensional radiative flow with variable thermal conductivity and porous medium

    NASA Astrophysics Data System (ADS)

    Hayat, T.; Shehzad, S. A.; Alsaadi, F. E.; Alsaedi, A.

    2013-06-01

    This investigation deals with the three-dimensional boundary layer flow in a porous medium. The flow is induced by an exponentially stretching surface. Analysis is presented in the presence of heat transfer. Two cases, namely prescribed surface temperature (PST) and prescribed surface heat flux (PHF), are considered. Effects of thermal radiation are also present. The nonlinear partial differential equations are reduced into the ordinary differential equations. Series solutions are developed for the velocities and temperatures. Convergence of series solutions is checked via graphs and numerical values. Results are displayed and discussed for both PST and PHF cases.

  20. MHD three-dimensional flow of nanofluid with velocity slip and nonlinear thermal radiation

    NASA Astrophysics Data System (ADS)

    Hayat, Tasawar; Imtiaz, Maria; Alsaedi, Ahmed; Kutbi, Marwan A.

    2015-12-01

    An analysis has been carried out for the three dimensional flow of viscous nanofluid in the presence of partial slip and thermal radiation effects. The flow is induced by a permeable stretching surface. Water is treated as a base fluid and alumina as a nanoparticle. Fluid is electrically conducting in the presence of applied magnetic field. Entire different concept of nonlinear thermal radiation is utilized in the heat transfer process. Different from the previous literature, the nonlinear system for temperature distribution is solved and analyzed. Appropriate transformations reduce the nonlinear partial differential system to ordinary differential system. Convergent series solutions are computed for the velocity and temperature. Effects of different parameters on the velocity, temperature, skin friction coefficient and Nusselt number are computed and examined. It is concluded that heat transfer rate increases when temperature and radiation parameters are increased.

  1. Fast evaluation of Sommerfeld integrals for EM scattering and radiation by three-dimensional buried objects

    SciTech Connect

    Cui, T.J.; Chew, W.C.

    1999-03-01

    This paper presents a fast method for electromagnetic scattering and radiation problems pertinent to three-dimensional (3-D) buried objects. In this approach, a new symmetrical form of the Green`s function is derived, which can reduce the number of Sommerfeld integrals involved in the buried objects problem. The integration along steepest descent paths and leading-order approximations are introduced to evaluate these Sommerfeld integrals, which can greatly accelerate the computation. Based on the fast evaluation of Sommerfeld integrals, the radiation of an arbitrarily oriented electric dipole buried in a half space is first analyzed and computed. Then, the scattering by buried dielectric objects and conducting objects is considered using the method of moments (MOM). Numerical results show that the fast method can save tremendous CPU time in radiation and scattering problems involving buried objects.

  2. Evaluation of two radiative parameterizations using a three-dimensional large-eddy simulation microphysical model

    SciTech Connect

    Kogan, Y.L.; Kogan, Z.N.; Lilly, D.K.; Khairoutdinov, M.F.

    1995-04-01

    Stratocumulus clouds in the marine boundary layer exert a tremendous impact on the planetary radiation balance because of their persistence and large cover. Even small biases in the representation of their radiative parameters can produce large errors in the simulated planetary radiation balance. General circulation models (GCMs) and climate models most commonly use two parameterizations of cloud optical depth. The first employs as input parameters the climatological or in some other way averaged cloud droplet effective radius and liquid water path. The second concerns droplet concentration, mean droplet radius and cloud geometrical thickness. Both parameterizations are obtained from a general theoretical expression for cloud optical depth. This paper contrasts these two parameterizations with the general theoretical definition, using a set of cloud drop distribution functions generated by the CIMMS three-dimensional large-eddy simulation (LES) stratocumulus cloud microphysical model.

  3. The Coupling of Finite Element and Integral Equation Representations for Efficient Three-Dimensional Modeling of Electromagnetic Scattering and Radiation

    NASA Technical Reports Server (NTRS)

    Cwik, Tom; Zuffada, Cinzia; Jamnejad, Vahraz

    1996-01-01

    Finite element modeling has proven useful for accurtely simulating scattered or radiated fields from complex three-dimensional objects whose geometry varies on the scale of a fraction of a wavelength.

  4. Implementation of Localized Ensemble Assimilation for a Three-Dimensional Radiation Belt Model (Invited)

    NASA Astrophysics Data System (ADS)

    Godinez, H. C.; Chen, Y.; Kellerman, A. C.; Subbotin, D.; Shprits, Y.

    2013-12-01

    Earth's outer radiation belt is very dynamic and energetic electrons therein undergo constant changes due to acceleration, loss, and trans- port processes. In this work we improve the accuracy of simulated electron phase space density (PSD) of the Versatile Electron Radiation Belt (VERB) code, a three-dimensional radiation belt model, by implementing the localized ensemble transform Kalman filter (LETKF) assimilation method. Assimilation methods based on Kalman filtering have been successfully applied to one-dimensional radial diffusion radiation belt models, where it has been shown to greatly improve the model estimation of electron phase space density (PSD). This work expands upon previous research by implementing the LETKF method to assimilate observed electron density into VERB, a three-dimensional radiation belt model. In particular, the LETKF will perform the assimilation locally, where the size of the local region is defined by the diffusion of electrons in the model. This will enable the optimal assimilation of data throughout the model consistently with the flow of electrons. Two sets of assimilation experiments are presented. The first is an identical-twin experiment, where artificial data is generated from the same model, with the purpose of verifying the assimilation method. In the second set of experiments, real PSD observational data from missions such as CRRES and/or the Van Allen Probes are assimilated into VERB. The results show that data assimilation significantly improves the accuracy of the VERB model by efficiently including the available observations at the appropriate pitch angles, energy levels, and L-shell regions throughout the model.

  5. High-resolution three-dimensional imaging of flat objects by synchrotron-radiation computed laminography

    NASA Astrophysics Data System (ADS)

    Helfen, L.; Baumbach, T.; Mikulík, P.; Kiel, D.; Pernot, P.; Cloetens, P.; Baruchel, J.

    2005-02-01

    Computed laminography with synchrotron radiation is developed and carried out for three-dimensional imaging of flat, laterally extended objects with high spatial resolution. Particular experimental conditions of a stationary synchrotron source have been taken into account by a scanning geometry different from that employed with movable conventional laboratory x-ray sources. Depending on the mechanical precision of the sample manipulation system, high spatial resolution down to the scale of 1μm can be attained nondestructively, even for objects of large lateral size. Furthermore, high beam intensity and the parallel-beam geometry enables easy use of monochromatic radiation for optimizing contrast and reducing imaging artifacts. Simulations and experiments on a test object demonstrate the feasibility of the method. Application to the inspection of solder joints in a flip-chip bonded device shows the potential for quality assurance of microsystem devices.

  6. Simulation of radiation effects on three-dimensional computer optical memories

    NASA Technical Reports Server (NTRS)

    Moscovitch, M.; Emfietzoglou, D.

    1997-01-01

    A model was developed to simulate the effects of heavy charged-particle (HCP) radiation on the information stored in three-dimensional computer optical memories. The model is based on (i) the HCP track radial dose distribution, (ii) the spatial and temporal distribution of temperature in the track, (iii) the matrix-specific radiation-induced changes that will affect the response, and (iv) the kinetics of transition of photochromic molecules from the colored to the colorless isomeric form (bit flip). It is shown that information stored in a volume of several nanometers radius around the particle's track axis may be lost. The magnitude of the effect is dependent on the particle's track structure.

  7. Simulation of radiation effects on three-dimensional computer optical memories

    SciTech Connect

    Moscovitch, M.; Emfietzoglou, D.

    1997-01-01

    A model was developed to simulate the effects of heavy charged-particle (HCP) radiation on the information stored in three-dimensional computer optical memories. The model is based on (i) the HCP track radial dose distribution, (ii) the spatial and temporal distribution of temperature in the track, (iii) the matrix-specific radiation-induced changes that will affect the response, and (iv) the kinetics of transition of photochromic molecules from the colored to the colorless isomeric form (bit flip). It is shown that information stored in a volume of several nanometers radius around the particle{close_quote}s track axis may be lost. The magnitude of the effect is dependent on the particle{close_quote}s track structure. {copyright} {ital 1997 American Institute of Physics.}

  8. Three-dimensional Culture Conditions Lead to Decreased Radiation Induced Crytoxicity in Human Mammary Epithelial Cells

    SciTech Connect

    Sowa, Marianne B.; Chrisler, William B.; Zens, Kyra D.; Ashjian, Emily J.; Opresko, Lee K.

    2010-05-01

    For both targeted and non-targeted exposures, the cellular responses to ionizing radiation have predominantly been measured in two dimensional monolayer cultures. Although convenient for biochemical analysis, the true interactions in vivo depend upon complex interactions between cells themselves and the surrounding extra cellular matrix. This study directly compares the influence of culture conditions on radiation induced cytotoxicity following exposure to low-LET ionizing radiation. Using a three dimensional (3D) human mammary epithelial tissue model, we have found a protective effect of 3D cell culture on cell survival after irradiation. The initial state of the cells (i.e., 2D vs. 3D culture) at the time of irradiation does not alter survival, nor does the presence of extracellular matrix during and after exposure to dose, but long term culture in 3D which offers significant reduction in cytotoxicity at a given dose (e.g. ~4 fold increased survival at 5 Gy). The cell cycle delay induced following exposure to 2 and 5 Gy was almost identical between 2D and 3D culture conditions and cannot account for the observed differences in radiation responses. However the amount of apoptosis following radiation exposure is significantly decreased in 3D culture relative to the 2D monolayer after the same dose. A likely mechanism of the cytoprotective effect afforded by 3D culture conditions is the down regulation of radiation induced apoptosis in 3D structures

  9. A global three-dimensional radiation magneto-hydrodynamic simulation of super-eddington accretion disks

    SciTech Connect

    Jiang, Yan-Fei; Stone, James M.; Davis, Shane W.

    2014-12-01

    We study super-Eddington accretion flows onto black holes using a global three-dimensional radiation magneto-hydrodynamical simulation. We solve the time-dependent radiative transfer equation for the specific intensities to accurately calculate the angular distribution of the emitted radiation. Turbulence generated by the magneto-rotational instability provides self-consistent angular momentum transfer. The simulation reaches inflow equilibrium with an accretion rate ∼220 L {sub Edd}/c {sup 2} and forms a radiation-driven outflow along the rotation axis. The mechanical energy flux carried by the outflow is ∼20% of the radiative energy flux. The total mass flux lost in the outflow is about 29% of the net accretion rate. The radiative luminosity of this flow is ∼10 L {sub Edd}. This yields a radiative efficiency ∼4.5%, which is comparable to the value in a standard thin disk model. In our simulation, vertical advection of radiation caused by magnetic buoyancy transports energy faster than photon diffusion, allowing a significant fraction of the photons to escape from the surface of the disk before being advected into the black hole. We contrast our results with the lower radiative efficiencies inferred in most models, such as the slim disk model, which neglect vertical advection. Our inferred radiative efficiencies also exceed published results from previous global numerical simulations, which did not attribute a significant role to vertical advection. We briefly discuss the implications for the growth of supermassive black holes in the early universe and describe how these results provided a basis for explaining the spectrum and population statistics of ultraluminous X-ray sources.

  10. Optimization of MAGIC gel formulation for three-dimensional radiation therapy dosimetry.

    PubMed

    Luci, J J; Whitney, H M; Gore, J C

    2007-05-21

    Polymer gel dosimetry aims to provide three-dimensional images of radiation therapy dose distributions in irradiated aqueous gels. The first gels required manufacture in an oxygen-free environment, but later the MAGIC formulation was introduced, which could be made in normal atmospheric conditions. Here we report our studies of the effects of variations in the composition of the MAGIC gel performed in order to optimize its performance over the useful dose range of 0 to 20 Gy. A new formulation (termed 'MAGIC-2') is comprised of 87% water, 4% methacrylic acid, 9% gelatin, 17.38 x 10(-6) M Cu(2+) and a molar ratio of ascorbic acid to [Cu(2+)] of 1000:1. MAGIC-2 has a dose-response slope-to-intercept ratio that is 78% greater than the original formulation and other more favorable properties. PMID:17473340

  11. Scattering and radiation analysis of three-dimensional cavity arrays via a hybrid finite element method

    NASA Technical Reports Server (NTRS)

    Jin, Jian-Ming; Volakis, John L.

    1992-01-01

    A hybrid numerical technique is presented for a characterization of the scattering and radiation properties of three-dimensional cavity arrays recessed in a ground plane. The technique combines the finite element and boundary integral methods and invokes Floquet's representation to formulate a system of equations for the fields at the apertures and those inside the cavities. The system is solved via the conjugate gradient method in conjunction with the Fast Fourier Transform (FFT) thus achieving an O(N) storage requirement. By virtue of the finite element method, the proposed technique is applicable to periodic arrays comprised of cavities having arbitrary shape and filled with inhomogeneous dielectrics. Several numerical results are presented, along with new measured data, which demonstrate the validity, efficiency, and capability of the technique.

  12. Three-dimensional aspects of radiative transfer in remote sensing of precipitation: Application to the 1986 COHMEX storm

    NASA Technical Reports Server (NTRS)

    Haferman, J. L.; Krajewski, W. F.; Smith, T. F.

    1994-01-01

    Several multifrequency techniques for passive microwave estimation of precipitation based on the absorption and scattering properties of hydrometers have been proposed in the literature. In the present study, plane-parallel limitations are overcome by using a model based on the discrete-ordinates method to solve the radiative transfer equation in three-dimensional rectangular domains. This effectively accounts for the complexity and variety of radiation problems encountered in the atmosphere. This investigation presents result for plane-parallel and three-dimensional radiative transfer for a precipitating system, discusses differences between these results, and suggests possible explanations for these differences. Microphysical properties were obtained from the Colorado State University Regional Atmospehric Modeling System and represent a hailstorm observed during the 1986 Cooperative Huntsville Meteorological Experiment. These properties are used as input to a three-dimensional radiative transfer model in order to simulate satellite observation of the storm. The model output consists of upwelling brightness temperatures at several of the frequencies on the Special Sensor Microwave/Imager. The radiative transfer model accounts for scattering and emission of atmospheric gases and hydrometers in liquid and ice phases. Brightness temperatures obtained from the three-dimensional model of this investigation indicate that horizontal inhomogeneities give rise to brightness temperature fields that can be quite different from fields obtained using plane-parallel radiative transfer theory. These differences are examined for various resolutions of the satellite sensor field of view. In adddition, the issue of boundary conditions for three-dimensional atmospheric radiative transfer is addressed.

  13. Three-dimensional mixed convection flow of viscoelastic fluid with thermal radiation and convective conditions.

    PubMed

    Hayat, Tasawar; Ashraf, Muhammad Bilal; Alsulami, Hamed H; Alhuthali, Muhammad Shahab

    2014-01-01

    The objective of present research is to examine the thermal radiation effect in three-dimensional mixed convection flow of viscoelastic fluid. The boundary layer analysis has been discussed for flow by an exponentially stretching surface with convective conditions. The resulting partial differential equations are reduced into a system of nonlinear ordinary differential equations using appropriate transformations. The series solutions are developed through a modern technique known as the homotopy analysis method. The convergent expressions of velocity components and temperature are derived. The solutions obtained are dependent on seven sundry parameters including the viscoelastic parameter, mixed convection parameter, ratio parameter, temperature exponent, Prandtl number, Biot number and radiation parameter. A systematic study is performed to analyze the impacts of these influential parameters on the velocity and temperature, the skin friction coefficients and the local Nusselt number. It is observed that mixed convection parameter in momentum and thermal boundary layers has opposite role. Thermal boundary layer is found to decrease when ratio parameter, Prandtl number and temperature exponent are increased. Local Nusselt number is increasing function of viscoelastic parameter and Biot number. Radiation parameter on the Nusselt number has opposite effects when compared with viscoelastic parameter. PMID:24608594

  14. Evaluating a three dimensional model of diffuse photosynthetically active radiation in maize canopies

    NASA Astrophysics Data System (ADS)

    Wang, Xiping; Guo, Yan; Li, Baoguo; Wang, Xiyong; Ma, Yuntao

    2006-07-01

    Diffuse photosynthetically active radiation (DPAR) is important during overcast days and for plant parts shaded from the direct beam radiation. Simulation of DPAR interception by individual plant parts of a canopy, separately from direct beam photosynthetically active radiation (PAR), may give important insights into plant ecology. This paper presents a model to simulate the interception of DPAR in plant canopies. A sub-model of a virtual maize canopy was reconstructed. Plant surfaces were represented as small triangular facets positioned according to three-dimensionally (3D) digitized data collected in the field. Then a second sub-model to simulate the 3D DPAR distribution in the canopy was developed by dividing the sky hemisphere into a grid of fine cells that allowed for the anisotropic distribution of DPAR over the sky hemisphere. This model, DSHP (Dividing Sky Hemisphere with Projecting), simulates which DSH (Divided Sky Hemisphere) cells are directly visible from a facet in the virtual canopy, i.e. not obscured by other facets. The DPAR reaching the center of a facet was calculated by summing the amounts of DPAR present in every DSH cell. The distribution of DPAR in a canopy was obtained from the calculated DPARs intercepted by all facets in the canopy. This DSHP model was validated against DPAR measurements made in an actual maize ( Zea mays L.) canopy over selected days during the early filling stage. The simulated and measured DPAR at different canopy depths showed a good agreement with a R 2 equaling 0.78 ( n=120).

  15. Three-Dimensional Mixed Convection Flow of Viscoelastic Fluid with Thermal Radiation and Convective Conditions

    PubMed Central

    Hayat, Tasawar; Ashraf, Muhammad Bilal; Alsulami, Hamed H.; Alhuthali, Muhammad Shahab

    2014-01-01

    The objective of present research is to examine the thermal radiation effect in three-dimensional mixed convection flow of viscoelastic fluid. The boundary layer analysis has been discussed for flow by an exponentially stretching surface with convective conditions. The resulting partial differential equations are reduced into a system of nonlinear ordinary differential equations using appropriate transformations. The series solutions are developed through a modern technique known as the homotopy analysis method. The convergent expressions of velocity components and temperature are derived. The solutions obtained are dependent on seven sundry parameters including the viscoelastic parameter, mixed convection parameter, ratio parameter, temperature exponent, Prandtl number, Biot number and radiation parameter. A systematic study is performed to analyze the impacts of these influential parameters on the velocity and temperature, the skin friction coefficients and the local Nusselt number. It is observed that mixed convection parameter in momentum and thermal boundary layers has opposite role. Thermal boundary layer is found to decrease when ratio parameter, Prandtl number and temperature exponent are increased. Local Nusselt number is increasing function of viscoelastic parameter and Biot number. Radiation parameter on the Nusselt number has opposite effects when compared with viscoelastic parameter. PMID:24608594

  16. Dispersion engineering of metasurfaces for dual-frequency quasi-three-dimensional cloaking of microwave radiators.

    PubMed

    Jiang, Zhi Hao; Werner, Douglas H

    2016-05-01

    In this work, the design methodology and experimental investigation of compact and lightweight dispersive coatings, comprised by multiple layers of anisotropic metasurfaces, which are capable of cloaking radiators at multiple frequencies are presented. To determine the required surface electromagnetic properties for each layer, an analytical model is developed for predicting the scattering from a cylinder surrounded by multiple layers of anisotropic metasurfaces subject to plane-wave illumination at a general oblique incidence angle. Particularly, two different metasurface coating solutions with different dispersive properties are designed to provide more than 10 dB scattering width suppression at two pre-selected frequencies within a field-of-view (FOV) of ± 20° off normal incidence. Both coating designs implemented using metasurfaces are fabricated and measured, experimentally demonstrating the simultaneous suppression of mutual coupling and quasi-three-dimensional radiation blockage at the two pre-selected frequency ranges. At the same time, the functionality of the coated monopole is still well-maintained. The performance comparison further sheds light on how the optimal performance can be obtained by properly exploiting the dispersion of each metasurface layer of the coating. In addition, the cloaking effect is retained even when the distance between the radiators is significantly reduced. The concept and general design methodology presented here can be extended for applications that would benefit from cloaking multi-spectral terahertz as well as optical antennas. PMID:27137576

  17. Observations of Three-Dimensional Radiative Effects that Influence Satellite Retrievals of Cloud Properties

    NASA Technical Reports Server (NTRS)

    Varnai, Tamas; Marshak, Alexander; Lau, William K. M. (Technical Monitor)

    2001-01-01

    This paper examines three-dimensional (3D) radiative effects, which arise from horizontal radiative interactions between areas that have different cloud properties. Earlier studies have argued that these effects can cause significant uncertainties in current satellite retrievals of cloud properties, because the retrievals rely on one-dimensional (1D) theory and do not consider the effects of horizontal changes in cloud properties. This study addresses two questions: which retrieved cloud properties are influenced by 3D radiative effects, and where 3D effects tend to occur? The influence of 3D effects is detected from the wayside illumination and shadowing make clouds appear asymmetric: Areas appear brighter if the cloud top surface is tilted toward, rather than away from, the Sun. The analysis of 30 images by the Moderate Resolution Imaging Spectroradiometer (MODIS) reveals that retrievals of cloud optical thickness and cloud water content are most influenced by 3D effects, whereas retrievals of cloud particle size are much less affected. The results also indicate that while 3D effects are strongest at cloud edges, cloud top variability in cloud interiors, even in overcast regions, also produces considerable 3D effects. Finally, significant 3D effects are found in a wide variety of situations, ranging from thin clouds to thick ones and from low clouds to high ones.

  18. Feasibility and efficacy of high-dose three-dimensional-conformal radiotherapy in cirrhotic patients with small-size hepatocellular carcinoma non-eligible for curative therapies-mature results of the French Phase II RTF-1 trial

    SciTech Connect

    Mornex, Francoise . E-mail: francoise.mornex@chu-lyon.fr; Girard, Nicolas; Beziat, Christophe; Kubas, Abdul; Khodri, Mustapha; Trepo, Christian; Merle, Philippe

    2006-11-15

    Purpose: Hepatocellular carcinoma (HCC) is a poor prognosis tumor, and only 20% of patients will benefit from curative therapies (surgery, liver transplantation, percutaneous ablation). Although conventional radiotherapy has been traditionally regarded as inefficient and toxic for cirrhotic patients, three-dimensional conformal radiotherapy (3DCRT) has provided promising preliminary data for the treatment of HCC. Methods and Materials: Prospective phase II trial including Child-Pugh A/B cirrhotic patients with small-size HCC (1 nodule {<=}5 cm, or 2 nodules {<=}3 cm) nonsuitable for curative treatments, to assess tolerance and efficacy of high-dose (66 Gy, 2 Gy/fraction) 3DCRT. Results: Twenty-seven patients were enrolled. Among the 25 assessable patients, tumor response was observed for 23 patients (92%), with complete response for 20 patients (80%), and partial response for 3 patients (12%). Stable disease was observed in 2 patients (8%). Grade 4 toxicities occurred in 2 of 11 (22%) Child-Pugh B patients only. Child-Pugh A patients tolerated treatment well, and 3/16 (19%) developed asymptomatic Grade 3 toxicities. Conclusion: High-dose 3DCRT is a noninvasive, well-tolerated modality that is highly suitable for the treatment of small HCCs in cirrhotic patients, with promising results. However, additional trials are needed to optimize this technique and formally compare it with the usual curative approaches.

  19. Implementation of Ensemble Data Assimilation for a Three-Dimensional Radiation Belt Model

    NASA Astrophysics Data System (ADS)

    Godinez, H. C.; Chen, Y.; Shprits, Y.; Kellerman, A. C.; Subbotin, D.

    2013-05-01

    Earth's outer radiation belt is very dynamic and undergoes constant changes due to acceleration, loss, and transport processes of the energetic electrons. In this work the ensemble Kalman filter (EnKF) assimilation method is applied to the Versatile Electron Radiation Belt (VERB) code, a three-dimensional radiation belt model developed at the University of California Los Angeles. The VERB model includes radial, pitch angle, and energy diffusion caused by low-latitude and high-latitude chorus, plasma- spheric hiss, and electromagnetic ion cyclotron (EMIC) waves. Assimi- lation methods based on Kalman filtering have been successfully applied to one-dimensional radial diffusion radiation belt models, where it has been shown that assimilating real observational data into the radiation belt models greatly improves the accuracy of electron PSD estimation. In our work we implement the EnKF for assimilation of real electron PSD data into the VERB model. In particular the assimilation is performed locally along the direction of the dominant diffusion of electrons in the model. This will enable the correct assimilation of data to be consistent with the flow of electrons throughout the model. Two set of assimila- tion experiments are presented. The first is an identical-twin experiment, where artificial data is generated from the same model, with the purpose of validating the assimilation method. In the second set of experiments, real PSD observational data from CRRES are assimilated into VERB in order to improve the model estimation of the electron PSD distribution. The results show that data assimilation significantly improves the accu- racy of the VERB model by efficiently including observations to correct the model PSD estimation.

  20. PAKAL: A THREE-DIMENSIONAL MODEL TO SOLVE THE RADIATIVE TRANSFER EQUATION

    SciTech Connect

    De la Luz, Victor; Lara, Alejandro; Mendoza-Torres, J. E.; Selhorst, Caius L.

    2010-06-15

    We present a new numerical model called 'Pakal' intended to solve the radiative transfer equation in a three-dimensional (3D) geometry, using the approximation for a locally plane-parallel atmosphere. Pakal uses pre-calculated radial profiles of density and temperature (based on hydrostatic, hydrodynamic, or MHD models) to compute the emission from 3D source structures with high spatial resolution. Then, Pakal solves the radiative transfer equation in a set of (3D) ray paths, going from the source to the observer. Pakal uses a new algorithm to compute the radiative transfer equation by using an intelligent system consisting of three structures: a cellular automaton; an expert system; and a program coordinator. The code outputs can be either two-dimensional maps or one-dimensional profiles, which reproduce the observations with high accuracy, giving detailed physical information about the environment where the radiation was generated and/or transmitted. We present the model applied to a 3D solar radial geometry, assuming a locally plane-parallel atmosphere, and thermal free-free radio emission from hydrogen-helium gas in thermodynamic equilibrium. We also present the convergence test of the code. We computed the synthetic spectrum of the centimetric-millimetric solar emission and found better agreement with observations (up to 10{sup 4} K at 20 GHz) than previous models reported in the literature. The stability and convergence test show the high accuracy of the code. Finally, Pakal can improve the integration time by up to an order of magnitude compared against linear integration codes.

  1. Apparatus and method for high dose rate brachytherapy radiation treatment

    DOEpatents

    Macey, Daniel J.; Majewski, Stanislaw; Weisenberger, Andrew G.; Smith, Mark Frederick; Kross, Brian James

    2005-01-25

    A method and apparatus for the in vivo location and tracking of a radioactive seed source during and after brachytherapy treatment. The method comprises obtaining multiple views of the seed source in a living organism using: 1) a single PSPMT detector that is exposed through a multiplicity of pinholes thereby obtaining a plurality of images from a single angle; 2) a single PSPMT detector that may obtain an image through a single pinhole or a plurality of pinholes from a plurality of angles through movement of the detector; or 3) a plurality of PSPMT detectors that obtain a plurality of views from different angles simultaneously or virtually simultaneously. The plurality of images obtained from these various techniques, through angular displacement of the various acquired images, provide the information required to generate the three dimensional images needed to define the location of the radioactive seed source within the body of the living organism.

  2. Target volume definition for three-dimensional conformal radiation therapy of lung cancer.

    PubMed

    Armstrong, J G

    1998-06-01

    Three-dimensional conformal radiation therapy (3DCRT) is a mode of high precision radiotherapy which has the potential to improve the therapeutic ratio of radiation therapy for locally advanced non-small cell lung cancer. The preliminary clinical experience with 3DCRT has been promising and justifies further endeavour to refine its clinical application and ultimately test its role in randomized trials. There are several steps to be taken before 3DCRT evolves into an effective single modality for the treatment of lung cancer and before it is effectively integrated with chemotherapy. This article addresses core issues in the process of target volume definition for the application of 3DCRT technology to lung cancer. The International Commission on Radiation Units and Measurements Report no. 50 definitions of target volumes are used to identify the factors influencing target volumes in lung cancer. The rationale for applying 3DCRT to lung cancer is based on the frequency of failure to eradicate gross tumour with conventional approaches. It may therefore be appropriate to ignore subclinical or microscopic extensions when designing a clinical target volume, thereby restricting target volume size and allowing dose escalation. When the clinical target volume is expanded to a planning target volume, an optimized margin would result in homogeneous irradiation to the highest dose feasible within normal tissue constraints. To arrive at such optimized margins, multiple factors, including data acquisition, data transfer, patient movement, treatment reproducibility, and internal organ and target volume motion, must be considered. These factors may vary significantly depending on technology and techniques, and published quantitative analyses are no substitute for meticulous attention to detail and audit of performance. PMID:9849380

  3. Three-dimensional Čerenkov tomography of energy deposition from ionizing radiation beams.

    PubMed

    Glaser, Adam K; Voigt, William H A; Davis, Scott C; Zhang, Rongxiao; Gladstone, David J; Pogue, Brian W

    2013-03-01

    Since its discovery during the 1930s the Čerenkov effect (light emission from charged particles traveling faster than the local speed of light in a dielectric medium) has been paramount in the development of high-energy physics research. The ability of the emitted light to describe a charged particle's trajectory, energy, velocity, and mass has allowed scientists to study subatomic particles, detect neutrinos, and explore the properties of interstellar matter. However, to our knowledge, all applications of the process to date have focused on the identification of particles themselves, rather than their effect upon the surroundings through which they travel. Here we explore a novel application of the Čerenkov effect for the recovery of the spatial distribution of ionizing radiation energy deposition in a medium and apply it to the issue of dose determination in medical physics. By capturing multiple projection images of the Čerenkov light induced by a medical linear accelerator x-ray photon beam, we demonstrate the successful three-dimensional tomographic reconstruction of the imparted dose distribution. PMID:23455248

  4. A High Spatial Resolution Three Dimensional Version of the SASKTRAN Radiative Transfer Model

    NASA Astrophysics Data System (ADS)

    Zawada, D.; Dueck, S.; Lloyd, N. D.; Bourassa, A. E.; Degenstein, D. A.

    2013-12-01

    For the past decade the SASKTRAN radiative transfer model has been used, along with OSIRIS measurements of spectrally dispersed limb scattered sunlight, to retrieve vertical profiles of atmospheric constituents such as ozone, nitrogen dioxide and stratospheric aerosol. SASKTRAN is a spherical geometry, multiple scatter model that uses a successive orders approach. Until recently SASKTRAN has relied on horizontal homogeneity of the atmospheric constituents for its simulations. This paper details recent advances to the SASKTRAN model that now allow it to accurately and quickly calculate the diffuse radiance field in the presence of two and three dimensional structure within the atmospheric state. Included is a description of the modifications along with an analysis of the similarities and differences between the original model and the new version in the presence of structures that are found near realistic ozone hole conditions. These results demonstrate the utility of the SASKTRAN model for use in the retrievals associated with the Canadian Atmospheric Tomography System (CATS), an OSIRIS follow-on instrument, that is currently funded under the auspices of the Canadian Space Agency.

  5. Monte Carlo Three-dimensional Radiative Transfer Modelling of Off Axis Situations

    NASA Astrophysics Data System (ADS)

    Friedeburg, C. V.; Morgner, A.; Wagner, T.; Wenig, M.; Platt, U.

    Off-Axis DOAS measurements with non-artificial scattered light, based upon the renowned DOAS technique, allow to optimize the sensitivity of the technique for the trace gas profile in question by strongly increasing the light's path through the relevant atmosphere layers. Multi-Axis-(MAX) DOAS probe several directions simultaneously or sequentially to increase the spatial resolution. Several devices (ground based, air- borne and ship-built) are operated by our group in the framework of the SCIAMACHY validation. Radiative transfer models are an essential requirement for the interpretation of these measurements and their conversion into detailed profile data. Apart from some existing Monte Carlo Models most codes use analytical algorithms to solve the radia- tive transfer equation for given atmospheric conditions. For specific circumstances, e.g. photon scattering within clouds, these approaches are not efficient enough to pro- vide sufficient accuracy. Also horizontal gradients in atmospheric parameters have to be taken into account. To meet the needs of measurement situations for all kinds of scattered light DOAS platforms, a three dimensional full spherical Monte Carlo model was devised. Here we present Air Mass Factors (AMF) to calculate vertical column densities (VCD) from measured slant column densities (SCD). Sensitivity studies on the influence of the wavelength and telescope direction used, of the altitude of profile layers, albedo, refraction and basic aerosols are shown. Also modelled intensity series are compared with radiometer data.

  6. Three-dimensional Čerenkov tomography of energy deposition from ionizing radiation beams

    PubMed Central

    Glaser, Adam K.; Voigt, William H.A.; Davis, Scott C.; Zhang, Rongxiao; Gladstone, David J.; Pogue, Brian W.

    2013-01-01

    Since its discovery during the 1930’s, the Čerenkov effect (light emission from charged particles traveling faster than the local speed of light in a dielectric medium) has been paramount in the development of high-energy physics research. The ability of the emitted light to describe a charged particle’s trajectory, energy, velocity, and mass has allowed scientists to study subatomic particles, detect neutrinos, and explore the properties of interstellar matter. However, all applications of the process to date have focused on identification of particle’s themselves, rather than their effect upon the surroundings through which they travel. Here, we explore a novel application of the Čerenkov effect for the recovery of the spatial distribution of ionizing radiation energy deposition in a medium, and apply it to the issue of dose determination in medical physics. By capturing multiple projection images of the Čerenkov light induced by a medical linear accelerator (LINAC) x-ray photon beam, we demonstrate the successful three-dimensional (3D) tomographic reconstruction of the imparted dose distribution for the first time. PMID:23455248

  7. Radiative Effect of Clouds on Tropospheric Chemistry in a Global Three-Dimensional Chemical Transport Model

    NASA Technical Reports Server (NTRS)

    Liu, Hongyu; Crawford, James H.; Pierce, Robert B.; Norris, Peter; Platnick, Steven E.; Chen, Gao; Logan, Jennifer A.; Yantosca, Robert M.; Evans, Mat J.; Kittaka, Chieko; Feng, Yan; Tie, Xuexi

    2006-01-01

    Clouds exert an important influence on tropospheric photochemistry through modification of solar radiation that determines photolysis frequencies (J-values). We assess the radiative effect of clouds on photolysis frequencies and key oxidants in the troposphere with a global three-dimensional (3-D) chemical transport model (GEOS-CHEM) driven by assimilated meteorological observations from the Goddard Earth Observing System data assimilation system (GEOS DAS) at the NASA Global Modeling and Assimilation Office (GMAO). We focus on the year of 2001 with the GEOS-3 meteorological observations. Photolysis frequencies are calculated using the Fast-J radiative transfer algorithm. The GEOS-3 global cloud optical depth and cloud fraction are evaluated and generally consistent with the satellite retrieval products from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the International Satellite Cloud Climatology Project (ISCCP). Results using the linear assumption, which assumes linear scaling of cloud optical depth with cloud fraction in a grid box, show global mean OH concentrations generally increase by less than 6% because of the radiative effect of clouds. The OH distribution shows much larger changes (with maximum decrease of approx.20% near the surface), reflecting the opposite effects of enhanced (weakened) photochemistry above (below) clouds. The global mean photolysis frequencies for J[O1D] and J[NO2] in the troposphere change by less than 5% because of clouds; global mean O3 concentrations in the troposphere increase by less than 5%. This study shows tropical upper tropospheric O3 to be less sensitive to the radiative effect of clouds than previously reported (approx.5% versus approx.20-30%). These results emphasize that the dominant effect of clouds is to influence the vertical redistribution of the intensity of photochemical activity while global average effects remain modest, again contrasting with previous studies. Differing vertical distributions

  8. Using Synchrotron Radiation Microtomography to Investigate Multi-scale Three-dimensional Microelectronic Packages.

    PubMed

    Carlton, Holly D; Elmer, John W; Li, Yan; Pacheco, Mario; Goyal, Deepak; Parkinson, Dilworth Y; MacDowell, Alastair A

    2016-01-01

    Synchrotron radiation micro-tomography (SRµT) is a non-destructive three-dimensional (3D) imaging technique that offers high flux for fast data acquisition times with high spatial resolution. In the electronics industry there is serious interest in performing failure analysis on 3D microelectronic packages, many which contain multiple levels of high-density interconnections. Often in tomography there is a trade-off between image resolution and the volume of a sample that can be imaged. This inverse relationship limits the usefulness of conventional computed tomography (CT) systems since a microelectronic package is often large in cross sectional area 100-3,600 mm(2), but has important features on the micron scale. The micro-tomography beamline at the Advanced Light Source (ALS), in Berkeley, CA USA, has a setup which is adaptable and can be tailored to a sample's properties, i.e., density, thickness, etc., with a maximum allowable cross-section of 36 x 36 mm. This setup also has the option of being either monochromatic in the energy range ~7-43 keV or operating with maximum flux in white light mode using a polychromatic beam. Presented here are details of the experimental steps taken to image an entire 16 x 16 mm system within a package, in order to obtain 3D images of the system with a spatial resolution of 8.7 µm all within a scan time of less than 3 min. Also shown are results from packages scanned in different orientations and a sectioned package for higher resolution imaging. In contrast a conventional CT system would take hours to record data with potentially poorer resolution. Indeed, the ratio of field-of-view to throughput time is much higher when using the synchrotron radiation tomography setup. The description below of the experimental setup can be implemented and adapted for use with many other multi-materials. PMID:27167469

  9. Cell Type-dependent Gene Transcription Profile in Three Dimensional Human Skin Tissue Model Exposed to Low Doses of Ionizing Radiation: Implications for Medical Exposures

    SciTech Connect

    Freiin von Neubeck, Claere H.; Shankaran, Harish; Karin, Norman J.; Kauer, Paula M.; Chrisler, William B.; Wang, Xihai; Robinson, Robert J.; Waters, Katrina M.; Tilton, Susan C.; Sowa, Marianne B.

    2012-04-17

    The concern over possible health risks from exposures to low doses of ionizing radiation has been driven largely by the increase in medical exposures, the routine implementation of X-ray backscatter devices for airport security screening, and, most recently, the nuclear incident in Japan. Due to a paucity of direct epidemiological data at very low doses, cancer risk must be estimated from high dose exposure scenarios. However, there is increasing evidence that low and high dose exposures result in different signaling events and may have different mechanisms of cancer induction. We have examined the radiation induced temporal response of an in vitro three dimensional (3D) human skin tissue model using microarray-based transcriptional profiling. Our data shows that exposure to 100 mGy of X-rays is sufficient to affect gene transcription. Cell type specific analysis showed significant changes in gene expression with the levels of > 1400 genes altered in the dermis and > 400 genes regulated in the epidermis. The two cell types rarely exhibited overlapping responses at the mRNA level. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) measurements validated the microarray data in both regulation direction and value. Key pathways identified relate to cell cycle regulation, immune responses, hypoxia, reactive oxygen signaling, and DNA damage repair. We discuss in particular the role of proliferation and emphasizing how the disregulation of cellular signaling in normal tissue may impact progression towards radiation induced secondary diseases.

  10. INVESTIGATING THE RELIABILITY OF CORONAL EMISSION MEASURE DISTRIBUTION DIAGNOSTICS USING THREE-DIMENSIONAL RADIATIVE MAGNETOHYDRODYNAMIC SIMULATIONS

    SciTech Connect

    Testa, Paola; De Pontieu, Bart; Martinez-Sykora, Juan; Hansteen, Viggo; Carlsson, Mats

    2012-10-10

    Determining the temperature distribution of coronal plasmas can provide stringent constraints on coronal heating. Current observations with the Extreme ultraviolet Imaging Spectrograph (EIS) on board Hinode and the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory provide diagnostics of the emission measure distribution (EMD) of the coronal plasma. Here we test the reliability of temperature diagnostics using three-dimensional radiative MHD simulations. We produce synthetic observables from the models and apply the Monte Carlo Markov chain EMD diagnostic. By comparing the derived EMDs with the 'true' distributions from the model, we assess the limitations of the diagnostics as a function of the plasma parameters and the signal-to-noise ratio of the data. We find that EMDs derived from EIS synthetic data reproduce some general characteristics of the true distributions, but usually show differences from the true EMDs that are much larger than the estimated uncertainties suggest, especially when structures with significantly different density overlap along the line of sight. When using AIA synthetic data the derived EMDs reproduce the true EMDs much less accurately, especially for broad EMDs. The differences between the two instruments are due to the: (1) smaller number of constraints provided by AIA data and (2) broad temperature response function of the AIA channels which provide looser constraints to the temperature distribution. Our results suggest that EMDs derived from current observatories may often show significant discrepancies from the true EMDs, rendering their interpretation fraught with uncertainty. These inherent limitations to the method should be carefully considered when using these distributions to constrain coronal heating.

  11. Three-dimensional dosimetry of small megavoltage radiation fields using radiochromic gels and optical CT scanning

    NASA Astrophysics Data System (ADS)

    Babic, Steven; McNiven, Andrea; Battista, Jerry; Jordan, Kevin

    2009-04-01

    The dosimetry of small fields as used in stereotactic radiotherapy, radiosurgery and intensity-modulated radiation therapy can be challenging and inaccurate due to partial volume averaging effects and possible disruption of charged particle equilibrium. Consequently, there exists a need for an integrating, tissue equivalent dosimeter with high spatial resolution to avoid perturbing the radiation beam and artificially broadening the measured beam penumbra. In this work, radiochromic ferrous xylenol-orange (FX) and leuco crystal violet (LCV) micelle gels were used to measure relative dose factors (RDFs), percent depth dose profiles and relative lateral beam profiles of 6 MV x-ray pencil beams of diameter 28.1, 9.8 and 4.9 mm. The pencil beams were produced via stereotactic collimators mounted on a Varian 2100 EX linear accelerator. The gels were read using optical computed tomography (CT). Data sets were compared quantitatively with dosimetric measurements made with radiographic (Kodak EDR2) and radiochromic (GAFChromic® EBT) film, respectively. Using a fast cone-beam optical CT scanner (Vista™), corrections for diffusion in the FX gel data yielded RDFs that were comparable to those obtained by minimally diffusing LCV gels. Considering EBT film-measured RDF data as reference, cone-beam CT-scanned LCV gel data, corrected for scattered stray light, were found to be in agreement within 0.5% and -0.6% for the 9.8 and 4.9 mm diameter fields, respectively. The validity of the scattered stray light correction was confirmed by general agreement with RDF data obtained from the same LCV gel read out with a laser CT scanner that is less prone to the acceptance of scattered stray light. Percent depth dose profiles and lateral beam profiles were found to agree within experimental error for the FX gel (corrected for diffusion), LCV gel (corrected for scattered stray light), and EBT and EDR2 films. The results from this study reveal that a three-dimensional dosimetry method

  12. Laser-processed three dimensional graphitic electrodes for diamond radiation detectors

    NASA Astrophysics Data System (ADS)

    Caylar, Benoît; Pomorski, Michal; Bergonzo, Philippe

    2013-07-01

    We have used an original approach for diamond detectors where three dimensional buried graphitic electrodes are processed in the bulk of a diamond substrate via laser-induced graphitization. Prototype made of polycrystalline chemical vapor deposition diamond was fabricated using a nanosecond UV laser. Its charge collection efficiency was evaluated using α-particles emitted by a 241-Americium source. An improved charge collection efficiency was measured proving that laser micro-machining of diamond is a valid option for the future fabrication of three dimensional diamond detectors.

  13. Laser-processed three dimensional graphitic electrodes for diamond radiation detectors

    SciTech Connect

    Caylar, Benoı-carett; Pomorski, Michal; Bergonzo, Philippe

    2013-07-22

    We have used an original approach for diamond detectors where three dimensional buried graphitic electrodes are processed in the bulk of a diamond substrate via laser-induced graphitization. Prototype made of polycrystalline chemical vapor deposition diamond was fabricated using a nanosecond UV laser. Its charge collection efficiency was evaluated using α-particles emitted by a 241-Americium source. An improved charge collection efficiency was measured proving that laser micro-machining of diamond is a valid option for the future fabrication of three dimensional diamond detectors.

  14. Carcinoma of the anal canal: Intensity modulated radiation therapy (IMRT) versus three-dimensional conformal radiation therapy (3DCRT)

    SciTech Connect

    Sale, Charlotte; Moloney, Phillip; Mathlum, Maitham

    2013-12-15

    Patients with anal canal carcinoma treated with standard conformal radiotherapy frequently experience severe acute and late toxicity reactions to the treatment area. Roohipour et al. (Dis Colon Rectum 2008; 51: 147–53) stated a patient's tolerance of chemoradiation to be an important prediction of treatment success. A new intensity modulated radiation therapy (IMRT) technique for anal carcinoma cases has been developed at the Andrew Love Cancer Centre aimed at reducing radiation to surrounding healthy tissue. A same-subject repeated measures design was used for this study, where five anal carcinoma cases at the Andrew Love Cancer Centre were selected. Conformal and IMRT plans were generated and dosimetric evaluations were performed. Each plan was prescribed a total of 54 Gray (Gy) over a course of 30 fractions to the primary site. The IMRT plans resulted in improved dosimetry to the planning target volume (PTV) and reduction in radiation to the critical structures (bladder, external genitalia and femoral heads). Statistically there was no difference between the IMRT and conformal plans in the dose to the small and large bowel; however, the bowel IMRT dose–volume histogram (DVH) doses were consistently lower. The IMRT plans were superior to the conformal plans with improved dose conformity and reduced radiation to the surrounding healthy tissue. Anecdotally it was found that patients tolerated the IMRT treatment better than the three-dimensional (3D) conformal radiation therapy. This study describes and compares the planning techniques.

  15. Statistics Analysis of the Uncertainties in Cloud Optical Depth Retrievals Caused by Three-Dimensional Radiative Effects

    NASA Technical Reports Server (NTRS)

    Varnai, Tamas; Marshak, Alexander

    2000-01-01

    This paper presents a simple approach to estimate the uncertainties that arise in satellite retrievals of cloud optical depth when the retrievals use one-dimensional radiative transfer theory for heterogeneous clouds that have variations in all three dimensions. For the first time, preliminary error bounds are set to estimate the uncertainty of cloud optical depth retrievals. These estimates can help us better understand the nature of uncertainties that three-dimensional effects can introduce into retrievals of this important product of the MODIS instrument. The probability distribution of resulting retrieval errors is examined through theoretical simulations of shortwave cloud reflection for a wide variety of cloud fields. The results are used to illustrate how retrieval uncertainties change with observable and known parameters, such as solar elevation or cloud brightness. Furthermore, the results indicate that a tendency observed in an earlier study, clouds appearing thicker for oblique sun, is indeed caused by three-dimensional radiative effects.

  16. Nanotube-based three-dimensional albumin composite obtained using continuous laser radiation

    SciTech Connect

    Ageeva, S. A.; Bobrinetskii, I. I.; Nevolin, V. K. Podgaetskii, V. M.; Selishchev, S. V.; Simunin, M. M.; Konov, V. I.; Savranskii, V. V.

    2009-12-15

    The possibility of developing three-dimensional nanostructures for damaged bone and tissue restoration, including treatment of human congenital malformation is considered. Four types of multiwalled and single-walled carbon nanotubes fabricated by chemical vapor deposition via disproportionation on Fe clusters and thermal cathode sputtering in an inert gas were studied. The nanomaterial's topography was studied by atomic-force microscopy. The possibility of using 3D nanocomposites as a biosolder for laser biowelding of cartilaginous tissue was shown. The compatibility of biological tissues with a nanocomposite material in vivo introduced under the perichondrium of ear cartilage of a rabbit was validated.

  17. Long-Term Outcomes After High-Dose Postprostatectomy Salvage Radiation Treatment

    SciTech Connect

    Goenka, Anuj; Magsanoc, Juan Martin; Pei Xin; Schechter, Michael; Kollmeier, Marisa; Cox, Brett; Scardino, Peter T.; Eastham, James A.; Zelefsky, Michael J.

    2012-09-01

    Purpose: To review the impact of high-dose radiotherapy (RT) in the postprostatectomy salvage setting on long-term biochemical control and distant metastases-free survival, and to identify clinical and pathologic predictors of outcomes. Methods and Materials: During 1988-2007, 285 consecutive patients were treated with salvage RT (SRT) after radical prostatectomy. All patients were treated with either three-dimensional conformal RT or intensity-modulated RT. Two hundred seventy patients (95%) were treated to a dose {>=}66 Gy, of whom 205 (72%) received doses {>=}70 Gy. Eighty-seven patients (31%) received androgen-deprivation therapy as a component of their salvage treatment. All clinical and pathologic records were reviewed to identify treatment risk factors and response. Results: The median follow-up time after SRT was 60 months. Seven-year actuarial prostate-specific antigen (PSA) relapse-free survival and distant metastases-free survival were 37% and 77%, respectively. Independent predictors of biochemical recurrence were vascular invasion (p < 0.01), negative surgical margins (p < 0.01), presalvage PSA level >0.4 ng/mL (p < 0.01), androgen-deprivation therapy (p = 0.03), Gleason score {>=}7 (p = 0.02), and seminal vesicle involvement (p = 0.05). Salvage RT dose {>=}70 Gy was not associated with improvement in biochemical control. A doubling time <3 months was the only independent predictor of metastatic disease (p < 0.01). There was a trend suggesting benefit of SRT dose {>=}70 Gy in preventing clinical local failure in patients with radiographically visible local disease at time of SRT (7 years: 90% vs. 79.1%, p = 0.07). Conclusion: Salvage RT provides effective long-term biochemical control and freedom from metastasis in selected patients presenting with detectable PSA after prostatectomy. Androgen-deprivation therapy was associated with improvement in biochemical progression-free survival. Clinical local failures were rare but occurred most commonly in

  18. A finite element-boundary integral method for scattering and radiation by two- and three-dimensional structures

    NASA Technical Reports Server (NTRS)

    Jin, Jian-Ming; Volakis, John L.; Collins, Jeffery D.

    1991-01-01

    A review of a hybrid finite element-boundary integral formulation for scattering and radiation by two- and three-dimensional composite structures is presented. In contrast to other hybrid techniques involving the finite element method, the proposed one is in principle exact and can be implemented using a low O(N) storage. This is of particular importance for large scale applications and is a characteristic of the boundary chosen to terminate the finite element mesh, usually as close to the structure as possible. A certain class of these boundaries lead to convolutional boundary integrals which can be evaluated via the fast Fourier transform (FFT) without a need to generate a matrix; thus, retaining the O(N) storage requirement. The paper begins with a general description of the method. A number of two- and three-dimensional applications are then given, including numerical computations which demonstrate the method's accuracy, efficiency, and capability.

  19. Gene expression profiling in undifferentiated thyroid carcinoma induced by high-dose radiation.

    PubMed

    Bang, Hyun Soon; Choi, Moo Hyun; Kim, Cha Soon; Choi, Seung Jin

    2016-06-01

    Published gene expression studies for radiation-induced thyroid carcinogenesis have used various methodologies. In this study, we identified differential gene expression in a human thyroid epithelial cell line after exposure to high-dose γ-radiation. HTori-3 cells were exposed to 5 or 10 Gy of ionizing radiation using two dose rates (high-dose rate: 4.68 Gy/min, and low-dose rate: 40 mGy/h) and then implanted into the backs of BALB/c nude mice after 4 (10 Gy) or 5 weeks (5 Gy). Decreases in cell viability, increases in giant cell frequency, anchorage-independent growth in vitro, and tumorigenicity in vivo were observed. Particularly, the cells irradiated with 5 Gy at the high-dose rate or 10 Gy at the low-dose rate demonstrated more prominent tumorigenicity. Gene expression profiling was analyzed via microarray. Numerous genes that were significantly altered by a fold-change of >50% following irradiation were identified in each group. Gene expression analysis identified six commonly misregulated genes, including CRYAB, IL-18, ZNF845, CYP24A1, OR4N4 and VN1R4, at all doses. These genes involve apoptosis, the immune response, regulation of transcription, and receptor signaling pathways. Overall, the altered genes in high-dose rate (HDR) 5 Gy and low-dose rate (LDR) 10 Gy were more than those of LDR 5 Gy and HDR 10 Gy. Thus, we investigated genes associated with aggressive tumor development using the two dosage treatments. In this study, the identified gene expression profiles reflect the molecular response following high doses of external radiation exposure and may provide helpful information about radiation-induced thyroid tumors in the high-dose range. PMID:27006382

  20. Gene expression profiling in undifferentiated thyroid carcinoma induced by high-dose radiation

    PubMed Central

    Bang, Hyun Soon; Choi, Moo Hyun; Kim, Cha Soon; Choi, Seung Jin

    2016-01-01

    Published gene expression studies for radiation-induced thyroid carcinogenesis have used various methodologies. In this study, we identified differential gene expression in a human thyroid epithelial cell line after exposure to high-dose γ-radiation. HTori-3 cells were exposed to 5 or 10 Gy of ionizing radiation using two dose rates (high-dose rate: 4.68 Gy/min, and low-dose rate: 40 mGy/h) and then implanted into the backs of BALB/c nude mice after 4 (10 Gy) or 5 weeks (5 Gy). Decreases in cell viability, increases in giant cell frequency, anchorage-independent growth in vitro, and tumorigenicity in vivo were observed. Particularly, the cells irradiated with 5 Gy at the high-dose rate or 10 Gy at the low-dose rate demonstrated more prominent tumorigenicity. Gene expression profiling was analyzed via microarray. Numerous genes that were significantly altered by a fold-change of >50% following irradiation were identified in each group. Gene expression analysis identified six commonly misregulated genes, including CRYAB, IL-18, ZNF845, CYP24A1, OR4N4 and VN1R4, at all doses. These genes involve apoptosis, the immune response, regulation of transcription, and receptor signaling pathways. Overall, the altered genes in high-dose rate (HDR) 5 Gy and low-dose rate (LDR) 10 Gy were more than those of LDR 5 Gy and HDR 10 Gy. Thus, we investigated genes associated with aggressive tumor development using the two dosage treatments. In this study, the identified gene expression profiles reflect the molecular response following high doses of external radiation exposure and may provide helpful information about radiation-induced thyroid tumors in the high-dose range. PMID:27006382

  1. Three-dimensional conformal radiation therapy in the liver: MRI findings along a time continuum.

    PubMed

    Lall, Chandana; Bhargava, Puneet; Sandrasegaran, Kumaresan; Shanbhogue, Alampady K; Ramsinghani, Nilam; Koh, Young Whan; Choi, Jin Young; Choi, Joon-Il

    2015-01-01

    Recent development of 3-dimensional conformal radiation therapies provides a concentrated radiation dose to the tumor. To achieve this goal, a complex design of multiple narrow beamlets is used to shape the radiation exposure to conform to the shape of the tumor. Imaging findings after novel radiation therapy techniques differ from those of conventional radiation therapy. This article discusses changes in the liver parenchyma and tumor after conformal radiation therapy focusing on magnetic resonance imaging. PMID:25700224

  2. Theoretical, experimental and numerical methods for investigating the characteristics of laser radiation scattered in the integrated-optical waveguide with three-dimensional irregularities

    SciTech Connect

    Egorov, Alexander A

    2011-07-31

    We consider theoretical, experimental and numerical methods which make it possible to analyse the key characteristics of laser radiation scattered in the integrated-optical waveguide with three-dimensional irregularities. The main aspects of the three-dimensional vector electrodynamic problem of waveguide scattering are studied. The waveguide light scattering method is presented and its main advantages over the methods of single scattering of laser radiation are discussed. The experimental setup and results of measurements are described. Theoretical and experimental results confirming the validity of the vector theory of three-dimensional waveguide scattering of laser radiation developed by the author are compared for the first time. (fiber and integrated optics)

  3. Magnetic field effect in three-dimensional flow of an Oldroyd-B nanofluid over a radiative surface

    NASA Astrophysics Data System (ADS)

    Shehzad, S. A.; Abdullah, Z.; Abbasi, F. M.; Hayat, T.; Alsaedi, A.

    2016-02-01

    This article investigates the convective heat and mass conditions in three-dimensional flow of an Oldroyd-B nanofluid. The stretched flow is electrically conducting in the presence of an applied magnetic field. Thermal radiation effects are accounted in the energy equation. The governing nonlinear problems are computed for the convergent approximate solutions. Influences of different parameters on the dimensionless temperature and nanoparticle concentration fields are shown and examined. Quantities of physical interest namely local Nusselt and Sherwood numbers are computed and analyzed numerically. Comparison in a limiting case is made with the previous published result and an excellent agreement is noted.

  4. Three-Dimensional Characterization of Cell Clusters Using Synchrotron-Radiation-Based Micro-Computed Tomography

    NASA Astrophysics Data System (ADS)

    Müller, Ert; Riedel, Marco; Thurner, Philipp J.

    2006-04-01

    Micro-computed tomography with the highly intense, monochromatic X rays produced by the synchrotron is a superior method to nondestructively measure the local absorption in three-dimensional space. Because biological tissues and cells consist mainly of water as the surrounding medium, higher absorbing agents have to be incorporated into the structures of interest. Even without X-ray optics such as refractive lens, one can uncover the stain distribution with the spatial resolution of about 1 [mu]m. Incorporating the stain at selected cell compartments, for example, binding to the RNA/DNA, their density distribution becomes quantified. In this communication, we demonstrate that tomograms obtained at the beamlines BW2 and W2 (HASYLAB at DESY, Hamburg, Germany) and 4S (SLS, Villigen, Switzerland) clearly show that the RNA/DNA-stained HEK 293 cell clusters have a core of high density and a peripheral part of lower density, which correlate with results of optical microscopy. The inner part of the clusters is associated with nonvital cells as the result of insufficient oxygen and nutrition supply. This necrotic part is surrounded by (6 ± 1) layers of vital cells.

  5. Dispersion characteristics of three-dimensional dielectric-loaded grating for terahertz Smith-Purcell radiation

    SciTech Connect

    Cao, Miaomiao Li, Ke; University of Chinese Academy of Sciences, Beijing 100049 ; Liu, Wenxin Wang, Yong

    2014-02-15

    In this paper, a dielectric-loaded grating for Smith-Purcell device is proposed. The three-dimensional (3D) analytical theory for hot dispersion relation is obtained by using field matched method, which is solved by numerical simulations. The first and second order growth rates for the proposal model are analyzed, which is obtained by expanding hot dispersion equation at the operating point. The results show that the dispersion can be effectively weakened by introducing dielectric-loaded grating, in which the cutoff frequency is affected by the grating thickness. The dispersion curve becomes flatter and shifts towards lower frequency at the optimum grating parameters. The 3D particle-in-cell (PIC) simulation is also performed and the results are in good agreement with theoretical calculations. Comparing the first order growth rate with the second one, it reveals that the discrepancy is small when electron beam parameters are selected with small values. Otherwise, the discrepancy is large and cannot be ignored. To accurately describe the process of beam-wave interaction, the second order growth rate is necessary to apply.

  6. Tumor-Endothelial Cell Three-dimensional Spheroids: New Aspects to Enhance Radiation and Drug Therapeutics12

    PubMed Central

    Upreti, Meenakshi; Jamshidi-Parsian, Azemat; Koonce, Nathan A; Webber, Jessica S; Sharma, Sunil K; Asea, Alexzander AA; Mader, Mathew J; Griffin, Robert J

    2011-01-01

    Classic cancer research for several decades has focused on understanding the biology of tumor cells in vitro. However, extending these findings to in vivo settings has been impeded owing to limited insights on the impact of microenvironment on tumor cells. We hypothesized that tumor cell biology and treatment response would be more informative when done in the presence of stromal components, like endothelial cells, which exist in the tumor microenvironment. To that end, we have developed a system to grow three-dimensional cultures of GFP-4T1 mouse mammary tumor and 2H11 murine endothelial cells in hanging drops of medium in vitro. The presence of 2H11 endothelial cells in these three-dimensional cocultures was found to sensitize 4T1-GFP tumor cells to chemotherapy (Taxol) and, at the same time, protect cells from ionizing radiation. These spheroidal cultures can also be implanted into the dorsal skinfold window chamber of mice for fluorescence imaging of vascularization and disease progression/treatment response. We observed rapid neovascularization of the tumor-endothelial spheroids in comparison to tumor spheroids grown in nude mice. Molecular analysis revealed pronounced up-regulation of several proangiogenic factors in the tumor tissue derived from the tumor-endothelial spheroids compared with tumor-only spheroids. Furthermore, the rate of tumor growth from tumor-endothelial spheroids in mice was faster than the tumor cell-only spheroids, resulting in greater metastasis to the lung. This three-dimensional coculture model presents an improved way to investigate more pertinent aspects of the therapeutic potential for radiation and/or chemotherapy alone and in combination with antiangiogenic agents. PMID:22191001

  7. Spatially resolved measurement of high doses in microbeam radiation therapy using samarium doped fluorophosphate glasses

    SciTech Connect

    Okada, Go; Morrell, Brian; Koughia, Cyril; Kasap, Safa; Edgar, Andy; Varoy, Chris; Belev, George; Wysokinski, Tomasz; Chapman, Dean

    2011-09-19

    The measurement of spatially resolved high doses in microbeam radiation therapy has always been a challenging task, where a combination of high dose response and high spatial resolution (microns) is required for synchrotron radiation peaked around 50 keV. The x-ray induced Sm{sup 3+}{yields} Sm{sup 2+} valence conversion in Sm{sup 3+} doped fluorophosphates glasses has been tested for use in x-ray dosimetry for microbeam radiation therapy. The conversion efficiency depends almost linearly on the dose of irradiation up to {approx}5 Gy and saturates at doses exceeding {approx}80 Gy. The conversion shows strong correlation with x-ray induced absorbance of the glass which is related to the formation of phosphorus-oxygen hole centers. When irradiated through a microslit collimator, a good spatial resolution and high ''peak-to-valley'' contrast have been observed by means of confocal photoluminescence microscopy.

  8. Three-Dimensional Conformal Radiation Therapy for Esophageal Squamous Cell Carcinoma: Is Elective Nodal Irradiation Necessary?

    SciTech Connect

    Zhao Kuaile; Ma Jinbo; Liu Guang; Wu Kailiang; Shi Xuehui; Jiang Guoliang

    2010-02-01

    Purpose: To evaluate the local control, survival, and toxicity associated with three-dimensional conformal radiotherapy (3D-CRT) for squamous cell carcinoma (SCC) of the esophagus, to determine the appropriate target volumes, and to determine whether elective nodal irradiation is necessary in these patients. Methods and Materials: A prospective study of 3D-CRT was undertaken in patients with esophageal SCC without distant metastases. Patients received 68.4 Gy in 41 fractions over 44 days using late-course accelerated hyperfractionated 3D-CRT. Only the primary tumor and positive lymph nodes were irradiated. Isolated out-of-field regional nodal recurrence was defined as a recurrence in an initially uninvolved regional lymph node. Results: All 53 patients who made up the study population tolerated the irradiation well. No acute or late Grade 4 or 5 toxicity was observed. The median survival time was 30 months (95% confidence interval, 17.7-41.8). The overall survival rate at 1, 2, and 3 years was 77%, 56%, and 41%, respectively. The local control rate at 1, 2, and 3 years was 83%, 74%, and 62%, respectively. Thirty-nine of the 53 patients (74%) showed treatment failure. Seventeen of the 39 (44%) developed an in-field recurrence, 18 (46%) distant metastasis with or without regional failure, and 3 (8%) an isolated out-of-field nodal recurrence only. One patient died of disease in an unknown location. Conclusions: In patients treated with 3D-CRT for esophageal SCC, the omission of elective nodal irradiation was not associated with a significant amount of failure in lymph node regions not included in the planning target volume. Local failure and distant metastases remained the predominant problems.

  9. Natural element method for solving radiative transfer with or without conduction in three-dimensional complex geometries

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Ma, Yu; Yi, Hong-Liang; Tan, He-Ping

    2013-11-01

    A meshless method called as the natural element method (NEM) is developed for solving radiative heat transfer problem in 3D complex enclosures filled with an absorbing, emitting and scattering medium. The boundary surfaces are supposed to be opaque, diffuse as well as gray. The shape functions used in NEM are constructed by the natural neighbor interpolations, which are strictly interpolant and the essential boundary conditions can be imposed directly. The NEM solutions dealing with the radiative heat transfer with or without conduction are validated by comparison with some cases reported by the literature. Furthermore, the radiative heat transfer in cubic enclosures with or without an inner hollow sphere, cylinder and elliptical cylinder is also examined to demonstrate the applicability of the present method towards various three-dimensional geometries. For pure radiative transfer, both the cases of radiative non-equilibrium and radiative equilibrium are investigated. For combined conduction and radiation heat transfer, effects of various parameters such as the conduction-radiation parameter, the scattering albedo, the extinction coefficient, and the boundary emissivity are analyzed on the temperature distributions.

  10. Three-dimensional tomographic imaging for dynamic radiation behavior study using infrared imaging video bolometers in large helical device plasma.

    PubMed

    Sano, Ryuichi; Peterson, Byron J; Teranishi, Masaru; Iwama, Naofumi; Kobayashi, Masahiro; Mukai, Kiyofumi; Pandya, Shwetang N

    2016-05-01

    A three-dimensional (3D) tomography system using four InfraRed imaging Video Bolometers (IRVBs) has been designed with a helical periodicity assumption for the purpose of plasma radiation measurement in the large helical device. For the spatial inversion of large sized arrays, the system has been numerically and experimentally examined using the Tikhonov regularization with the criterion of minimum generalized cross validation, which is the standard solver of inverse problems. The 3D transport code EMC3-EIRENE for impurity behavior and related radiation has been used to produce phantoms for numerical tests, and the relative calibration of the IRVB images has been carried out with a simple function model of the decaying plasma in a radiation collapse. The tomography system can respond to temporal changes in the plasma profile and identify the 3D dynamic behavior of radiation, such as the radiation enhancement that starts from the inboard side of the torus, during the radiation collapse. The reconstruction results are also consistent with the output signals of a resistive bolometer. These results indicate that the designed 3D tomography system is available for the 3D imaging of radiation. The first 3D direct tomographic measurement of a magnetically confined plasma has been achieved. PMID:27250418

  11. Three-dimensional tomographic imaging for dynamic radiation behavior study using infrared imaging video bolometers in large helical device plasma

    NASA Astrophysics Data System (ADS)

    Sano, Ryuichi; Peterson, Byron J.; Teranishi, Masaru; Iwama, Naofumi; Kobayashi, Masahiro; Mukai, Kiyofumi; Pandya, Shwetang N.

    2016-05-01

    A three-dimensional (3D) tomography system using four InfraRed imaging Video Bolometers (IRVBs) has been designed with a helical periodicity assumption for the purpose of plasma radiation measurement in the large helical device. For the spatial inversion of large sized arrays, the system has been numerically and experimentally examined using the Tikhonov regularization with the criterion of minimum generalized cross validation, which is the standard solver of inverse problems. The 3D transport code EMC3-EIRENE for impurity behavior and related radiation has been used to produce phantoms for numerical tests, and the relative calibration of the IRVB images has been carried out with a simple function model of the decaying plasma in a radiation collapse. The tomography system can respond to temporal changes in the plasma profile and identify the 3D dynamic behavior of radiation, such as the radiation enhancement that starts from the inboard side of the torus, during the radiation collapse. The reconstruction results are also consistent with the output signals of a resistive bolometer. These results indicate that the designed 3D tomography system is available for the 3D imaging of radiation. The first 3D direct tomographic measurement of a magnetically confined plasma has been achieved.

  12. Calibration of three-dimensional ultrasound images for image-guided radiation therapy.

    PubMed

    Bouchet, L G; Meeks, S L; Goodchild, G; Bova, F J; Buatti, J M; Friedman, W A

    2001-02-01

    A new technique of patient positioning for radiotherapy/radiosurgery of extracranial tumours using three-dimensional (3D) ultrasound images has been developed. The ultrasound probe position is tracked within the treatment room via infrared light emitting diodes (IRLEDs) attached to the probe. In order to retrieve the corresponding room position of the ultrasound image, we developed an initial ultrasound probe calibration technique for both 2D and 3D ultrasound systems. This technique is based on knowledge of points in both room and image coordinates. We first tested the performance of three algorithms in retrieving geometrical transformations using synthetic data with different noise levels. Closed form solution algorithms (singular value decomposition and Horn's quaternion algorithms) were shown to outperform the Hooke and Jeeves iterative algorithm in both speed and accuracy. Furthermore, these simulations show that for a random noise level of 2.5, 5, 7.5 and 10 mm, the number of points required for a transformation accuracy better than 1 mm is 25, 100, 200 and 500 points respectively. Finally, we verified the tracking accuracy of this system using a specially designed ultrasound phantom. Since ultrasound images have a high noise level, we designed an ultrasound phantom that provides a large number of points for the calibration. This tissue equivalent phantom is made of nylon wires, and its room position is optically tracked using IRLEDs. By obtaining multiple images through the nylon wires, the calibration technique uses an average of 300 points for 3D ultrasound volumes and 200 for 2D ultrasound images, and its stability is very good for both rotation (standard deviation: 0.4 degrees) and translation (standard deviation: 0.3 mm) transformations. After this initial calibration procedure, the position of any voxel in the ultrasound image volume can be determined in world space, thereby allowing real-time image guidance of therapeutic procedures. Finally, the

  13. Effect of high doses of gamma radiation on the functional characteristics of amniotic membrane

    NASA Astrophysics Data System (ADS)

    Singh, Rita; Purohit, Sumita; Chacharkar, M. P.

    2007-06-01

    The effect of different doses of gamma radiation viz. 25, 36 and 50 kGy on the chemical and functional characteristics of the amniotic membrane was studied. The change in the chemical structure of amniotic membranes at high doses of gamma irradiation was evaluated by means of Infrared (IR) Spectroscopy. The degradation of amnion on irradiation with gamma rays could produce a relative variation in IR absorption troughs. This kind of variation was absent in the samples irradiated to doses of 25, 36 and 50 kGy indicating no qualitative change in the material property of amnion. No significant differences in the water absorption capacity and water vapour transmission rate of amniotic membranes irradiated to different doses were observed. Impermeability of the amniotic membranes to different microorganisms was also not affected at high doses of gamma radiation. Gamma irradiation at doses of 25-50 kGy did not evoke undesirable changes in the functional properties of the amniotic membrane.

  14. Radiation Effect On Three Dimensional Vertical Channel Flow Through Porous Medium

    NASA Astrophysics Data System (ADS)

    Guria, M.

    2015-12-01

    The flow of a viscous incompressible fluid through a vertical channel in the presence of radiation immersed in a porous medium has been studied. Approximate solutions have been obtained for the velocity and temperature fields, shear stresses and rate of heat transfer using the perturbation technique. It is found that the primary velocity decreases with an increase in the radiation parameter as well as the Prandtl number for cooling of the plate. It is also found that with an increase in the permeability parameter, the primary velocity increases for cooling of the plate. The magnitude of the secondary velocity decreases near the plate y = 0 and increases near the plate y = d with an increase in the permeability parameter. The temperature distribution decreases with an increase of the radiation parameter as wall as the Prandtl number for cooling of the plate. The shear stresses and the rate of heat transfer, which are of physical interest, are presented in the form of tables.

  15. Silicon-based three-dimensional microstructures for radiation dosimetry in hadrontherapy

    SciTech Connect

    Guardiola, C. Solberg, T.; Carabe, A.; Quirion, D.; Pellegrini, G.; Fleta, C.; Esteban, S.; Lozano, M.; Cortés-Giraldo, M. A.; Gómez, F.

    2015-07-13

    In this work, we propose a solid-state-detector for use in radiation microdosimetry. This device improves the performance of existing dosimeters using customized 3D-cylindrical microstructures etched inside silicon. The microdosimeter consists of an array of micro-sensors that have 3D-cylindrical electrodes of 15 μm diameter and a depth of 5 μm within a silicon membrane, resulting in a well-defined micrometric radiation sensitive volume. These microdetectors have been characterized using an {sup 241}Am source to assess their performance as radiation detectors in a high-LET environment. This letter demonstrates the capability of this microdetector to be used to measure dose and LET in hadrontherapy centers for treatment plan verification as part of their patient-specific quality control program.

  16. A three dimensional radiative transfer method for optical remote sensing of vegetated land surfaces

    NASA Technical Reports Server (NTRS)

    Asrar, Ghassem; Myneni, Ranga B.; Choudhury, Bhaskar J.

    1991-01-01

    In the application of remote sensing at optical wavelengths to vegetated surfaces from satellite borne high resolution instruments, an understanding of the various physical mechanisms that contribute to the measured signal is important. A numerical method of solving the radiative transfer equation in three dimensions is reported. The reliability of coding and accuracy of the algorithm are evaluated by benchmarching. Parametrization of the methods and results of a simulation are presented. The method is tested with experimental data of canopy bidirectional reflectance factors. The effect of spatial heterogeneity on the relationship between the simple ratio and normalized vrs absorbed Photosynthetically Active Radiation (PAR) is discussed.

  17. Extreme events in resonant radiation from three-dimensional light bullets

    NASA Astrophysics Data System (ADS)

    Roger, T.; Majus, D.; Tamosauskas, G.; Panagiotopoulos, P.; Kolesik, M.; Genty, G.; GražulevičiÅ«tÄ--, I.; Dubietis, A.; Faccio, D.

    2014-09-01

    We report measurements that show extreme events in the statistics of resonant radiation emitted from spatiotemporal light bullets. We trace the origin of these extreme events back to instabilities leading to steep gradients in the temporal profile of the intense light bullet that occur during the initial collapse dynamics. Numerical simulations reproduce the extreme valued statistics of the resonant radiation which are found to be intrinsically linked to the simultaneous occurrence of both temporal and spatial self-focusing dynamics. Small fluctuations in both the input energy and in the spatial phase curvature explain the observed extreme behavior.

  18. New lattice Boltzmann method for the simulation of three-dimensional radiation transfer in turbid media.

    PubMed

    McHardy, Christopher; Horneber, Tobias; Rauh, Cornelia

    2016-07-25

    Based on the kinetic theory of photons, a new lattice Boltzmann method for the simulation of 3D radiation transport is presented. The method was successfully validated with Monte Carlo simulations of radiation transport in optical thick absorbing and non-absorbing turbid media containing either isotropic or anisotropic scatterers. Moreover, for the approximation of Mie-scattering, a new iterative algebraic approach for the discretization of the scattering phase function was developed, ensuring full conservation of energy and asymmetry after discretization. It was found that the main error sources of the method are caused by linearization and ray effects and suggestions for further improvement of the method are made. PMID:27464152

  19. Radiation bronchitis and stenosis secondary to high dose rate endobronchial irradiation

    SciTech Connect

    Speiser, B.L. ); Spratling, L.

    1993-03-15

    The purpose of the study was to describe a new clinical entity observed in follow-up bronchoscopies in patients who were treated with high dose rate and medium dose rate remote afterloading brachytherapy of the tracheobronchial tree. Patients were treated by protocol with medium dose rate, 47 patients receiving 1000 cGy at a 5 mm depth times three fractions, high dose rate 144 patients receiving 1000 cGy at a 10 mm depth for three fractions and high dose rate 151 patients receiving cGy at a 10 mm depth for three fractions followed by bronchoscopy. Incidence of this entity was 9% for the first group, 12% for the second, and 13% for the third group. Reactions were grade 1 consisting of mild inflammatory response with a partial whitish circumferential membrane in an asymptomatic patient; grade 2, thicker complete white circumferential membrane with cough and/or obstructive problems requiring intervention; grade 3, severe inflammatory response with marked membranous exudate and mild fibrotic reaction; and grade 4 a predominant fibrotic reaction with progressive stenosis. Variables associated with a slightly increased incidence of radiation bronchitis and stenosis included: large cell carcinoma histology, curative intent, prior laser photoresection, and/or concurrent external radiation. Survival was the strongest predictor of the reaction. Radiation bronchitis and stenosis is a new clinical entity that must be identified in bronchial brachytherapy patients and treated appropriately. 23 refs., 3 figs., 7 tabs.

  20. Radiation dose delivered to the proximal penis as a predictor of the risk of erectile dysfunction after three-dimensional conformal radiotherapy for localized prostate cancer

    SciTech Connect

    Wernicke, A. Gabriella; Valicenti, Richard . E-mail: richard.valicenti@mail.tju.edu; DiEva, Kelly; Houser, Christopher; Pequignot, Ed

    2004-12-01

    Purpose/objective: In this study, we evaluated in a serial manner whether radiation dose to the bulb of the penis is predictive of erectile dysfunction, ejaculatory difficulty (EJ), and overall satisfaction with sex life (quality of life) by using serial validated self-administered questionnaires. Methods and materials: Twenty-nine potent men with AJCC Stage II prostate cancer treated with three-dimensional conformal radiation therapy alone to a median dose 72.0 Gy (range: 66.6-79.2 Gy) were evaluated by determining the doses received by the penile bulb. The penile bulb was delineated volumetrically, and the dose-volume histogram was obtained on each patient. Results: The median follow-up time was 35 months (range, 16-43 months). We found that for D{sub 30}, D{sub 45}, D{sub 60}, and D{sub 75} (doses to a percent volume of PB: 30%, 45%, 60%, and 75%), higher than the corresponding median dose (defined as high-dose group) correlated with an increased risk of impotence (erectile dysfunction firmness score = 0) (odds ratio [OR] = 7.5, p = 0.02; OR = 7.5, p = 0.02; OR = 8.6, p = 0.008; and OR = 6.9, p = 0.015, respectively). Similarly, for EJD D{sub 30}, D{sub 45}, D{sub 60}, and D{sub 75}, doses higher than the corresponding median ones correlated with worsening ejaculatory function score (EJ = 0 or 1) (OR = 8, p = 0.013; OR = 8, p 0.013; OR = 9.2, p = 0.015; and OR = 8, p = 0.026, respectively). For quality of life, low ({<=}median dose) dose groups of patients improve over time, whereas high-dose groups of patients worsen. Conclusions: This study supports the existence of a penile bulb dose-volume relationship underlying the development of radiation-induced erectile dysfunction. Our data may guide the use of inverse treatment planning to maximize the probability of maintaining sexual potency after radiation therapy.

  1. Estimation of radiation-induced cancer from three-dimensional dose distributions: Concept of organ equivalent dose

    SciTech Connect

    Schneider, Uwe . E-mail: uwe.schneider@psi.ch; Zwahlen, Daniel; Ross, Dieter; Kaser-Hotz, Barbara

    2005-04-01

    Purpose: Estimates of secondary cancer risk after radiotherapy are becoming more important for comparative treatment planning. Modern treatment planning systems provide accurate three-dimensional dose distributions for each individual patient. These data open up new possibilities for more precise estimates of secondary cancer incidence rates in the irradiated organs. We report a new method to estimate organ-specific radiation-induced cancer incidence rates. The concept of an organ equivalent dose (OED) for radiation-induced cancer assumes that any two dose distributions in an organ are equivalent if they cause the same radiation-induced cancer incidence. Methods and Materials: The two operational parameters of the OED concept are the organ-specific cancer incidence rate at low doses, which is taken from the data of the atomic bomb survivors, and cell sterilization at higher doses. The effect of cell sterilization in various organs was estimated by analyzing the secondary cancer incidence data of patients with Hodgkin's disease who were treated with radiotherapy in between 1962 and 1993. The radiotherapy plans used at the time the patients had been treated were reconstructed on a fully segmented whole body CT scan. The dose distributions were calculated in individual organs for which cancer incidence data were available. The model parameter that described cell sterilization was obtained by analyzing the dose and cancer incidence rates for the individual organs. Results: We found organ-specific cell radiosensitivities that varied from 0.017 for the mouth and pharynx up to 1.592 for the bladder. Using the two model parameters (organ-specific cancer incidence rate and the parameter characterizing cell sterilization), the OED concept can be applied to any three-dimensional dose distribution to analyze cancer incidence. Conclusion: We believe that the concept of OED presented in this investigation represents a first step in assessing the potential risk of secondary

  2. Radiation Parameterization for Three-Dimensional Inhomogeneous Cirrus Clouds Applied to ARM Data and Climate Models

    SciTech Connect

    Kuo-Nan Liou

    2003-12-29

    OAK-B135 (a) We developed a 3D radiative transfer model to simulate the transfer of solar and thermal infrared radiation in inhomogeneous cirrus clouds. The model utilized a diffusion approximation approach (four-term expansion in the intensity) employing Cartesian coordinates. The required single-scattering parameters, including the extinction coefficient, single-scattering albedo, and asymmetry factor, for input to the model, were parameterized in terms of the ice water content and mean effective ice crystal size. The incorporation of gaseous absorption in multiple scattering atmospheres was accomplished by means of the correlated k-distribution approach. In addition, the strong forward diffraction nature in the phase function was accounted for in each predivided spatial grid based on a delta-function adjustment. The radiation parameterization developed herein is applied to potential cloud configurations generated from GCMs to investigate broken clouds and cloud-overlapping effects on the domain-averaged heating rate. Cloud inhomogeneity plays an important role in the determination of flux and heating rate distributions. Clouds with maximum overlap tend to produce less heating than those with random overlap. Broken clouds show more solar heating as well as more IR cooling as compared to a continuous cloud field (Gu and Liou, 2001). (b) We incorporated a contemporary radiation parameterization scheme in the UCLA atmospheric GCM in collaboration with the UCLA GCM group. In conjunction with the cloud/radiation process studies, we developed a physically-based cloud cover formation scheme in association with radiation calculations. The model clouds were first vertically grouped in terms of low, middle, and high types. Maximum overlap was then used for each cloud type, followed by random overlap among the three cloud types. Fu and Liou's 1D radiation code with modification was subsequently employed for pixel-by-pixel radiation calculations in the UCLA GCM. We showed

  3. A three-dimensional radiative transfer method for optical remote sensing of vegetated land surfaces

    NASA Technical Reports Server (NTRS)

    Myneni, R. B.; Asrar, G.; Hall, F. G.

    1992-01-01

    A numerical method for solving the radiative transfer equation in three spatial dimensions is briefly discussed focusing on an efficient acceleration algorithm. The reliability of coding and accuracy of the algorithm are evaluated by benchmarking. Parameterization of the method and results of a simulation are presented to document the utility of the method for remote sensing applications. Attention is also given to a simple model of the hot spot effect and sample calculations.

  4. Three-dimensional relativistic pair plasma reconnection with radiative feedback in the Crab Nebula

    SciTech Connect

    Cerutti, B.; Werner, G. R.; Uzdensky, D. A.; Begelman, M. C. E-mail: greg.werner@colorado.edu E-mail: mitch@jila.colorado.edu

    2014-02-20

    The discovery of rapid synchrotron gamma-ray flares above 100 MeV from the Crab Nebula has attracted new interest in alternative particle acceleration mechanisms in pulsar wind nebulae. Diffuse shock-acceleration fails to explain the flares because particle acceleration and emission occur during a single or even sub-Larmor timescale. In this regime, the synchrotron energy losses induce a drag force on the particle motion that balances the electric acceleration and prevents the emission of synchrotron radiation above 160 MeV. Previous analytical studies and two-dimensional (2D) particle-in-cell (PIC) simulations indicate that relativistic reconnection is a viable mechanism to circumvent the above difficulties. The reconnection electric field localized at X-points linearly accelerates particles with little radiative energy losses. In this paper, we check whether this mechanism survives in three dimension (3D), using a set of large PIC simulations with radiation reaction force and with a guide field. In agreement with earlier works, we find that the relativistic drift kink instability deforms and then disrupts the layer, resulting in significant plasma heating but few non-thermal particles. A moderate guide field stabilizes the layer and enables particle acceleration. We report that 3D magnetic reconnection can accelerate particles above the standard radiation reaction limit, although the effect is less pronounced than in 2D with no guide field. We confirm that the highest-energy particles form compact bunches within magnetic flux ropes, and a beam tightly confined within the reconnection layer, which could result in the observed Crab flares when, by chance, the beam crosses our line of sight.

  5. Long-term androgen deprivation increases Grade 2 and higher late morbidity in prostate cancer patients treated with three-dimensional conformal radiation therapy

    SciTech Connect

    Feigenberg, Steven J. . E-mail: S_Feigenberg@fccc.edu; Hanlon, Alexandra L.; Horwitz, Eric M.; Uzzo, Robert G.; Eisenberg, Debra; Pollack, Alan

    2005-06-01

    Purpose: To determine whether the use of androgen deprivation (AD) increases late morbidity when combined with high-dose three-dimensional conformal radiation therapy (3D-CRT). Methods and materials: Between May 1989 and November 1998, 1,204 patients were treated for prostate cancer with 3D-CRT to a median dose of 74 Gy. Patients were evaluated every 3-6 months. No AD was given to 945 patients, whereas 140 and 119 patients, respectively, received short-term AD (STAD; {<=}6 months) and long-term AD (LTAD; > 6 months). Radiation morbidity was graded according to the Fox Chase modification of the Late Effects Normal Tissue Task Force late morbidity scale. Covariates in the multivariate analysis (MVA) included age, history of diabetes mellitus, prostate-specific antigen (PSA) level, Gleason score, T category, RT field size, total RT dose, use of rectal shielding, and AD status (no AD vs. STAD vs. LTAD). Results: The only independent predictor for Grade 2 or higher genitourinary (GU) morbidity in the MVA was the use of AD (p = 0.0065). The 5-year risk of Grade 2 or higher GU morbidity was 8% for no AD, 8% for STAD, and 14% for LTAD (p = 0.02). Independent predictors of Grade 2 or higher gastrointestinal (GI) morbidity in the MVA were the use of AD (p = 0.0079), higher total radiation dose (p < 0.0001), the lack of a rectal shield (p = 0.0003), and older age (p = 0.0009). The 5-year actuarial risk of Grade 2 or higher GI morbidity was 17% for no AD vs. 18% for STAD and 26% for LTAD (p = 0.017). Conclusions: The use of LTAD seems to significantly increase the risk of both GU and GI morbidity for patients treated with 3D-CRT.

  6. Comparison of low and high dose ionising radiation using topological analysis of gene coexpression networks

    PubMed Central

    2012-01-01

    Background The growing use of imaging procedures in medicine has raised concerns about exposure to low-dose ionising radiation (LDIR). While the disastrous effects of high dose ionising radiation (HDIR) is well documented, the detrimental effects of LDIR is not well understood and has been a topic of much debate. Since little is known about the effects of LDIR, various kinds of wet-lab and computational analyses are required to advance knowledge in this domain. In this paper we carry out an “upside-down pyramid” form of systems biology analysis of microarray data. We characterised the global genomic response following 10 cGy (low dose) and 100 cGy (high dose) doses of X-ray ionising radiation at four time points by analysing the topology of gene coexpression networks. This study includes a rich experimental design and state-of-the-art computational systems biology methods of analysis to study the differences in the transcriptional response of skin cells exposed to low and high doses of radiation. Results Using this method we found important genes that have been linked to immune response, cell survival and apoptosis. Furthermore, we also were able to identify genes such as BRCA1, ABCA1, TNFRSF1B, MLLT11 that have been associated with various types of cancers. We were also able to detect many genes known to be associated with various medical conditions. Conclusions Our method of applying network topological differences can aid in identifying the differences among similar (eg: radiation effect) yet very different biological conditions (eg: different dose and time) to generate testable hypotheses. This is the first study where a network level analysis was performed across two different radiation doses at various time points, thereby illustrating changes in the cellular response over time. PMID:22594378

  7. Experimental observation of anomalous thermal radiation from a three-dimensional metallic photonic crystal.

    PubMed

    Hsieh, Mei-Li; Lin, Shawn-Yu; Bur, James A; Shenoi, Rajeev

    2015-06-12

    We report some striking results on thermal radiation properties of a resonantly coupled cavity photonic crystal (PhC) at elevated temperatures (T = 400-900 K). We experimentally found that at resonant wavelengths, λ = 1.1, 1.64, 2.85 μm, the PhC emission is spectrally selective, quasi-coherent, directional, and shows significant deviation from Planck's blackbody law at equilibrium. The presence of non-equilibrium effects, driven by strong thermal excitation and cavity resonance, may be the major cause for our experimental observation. PMID:25990113

  8. A Novel Implementation of Massively Parallel Three Dimensional Monte Carlo Radiation Transport

    NASA Astrophysics Data System (ADS)

    Robinson, P. B.; Peterson, J. D. L.

    2005-12-01

    The goal of our summer project was to implement the difference formulation for radiation transport into Cosmos++, a multidimensional, massively parallel, magneto hydrodynamics code for astrophysical applications (Peter Anninos - AX). The difference formulation is a new method for Symbolic Implicit Monte Carlo thermal transport (Brooks and Szöke - PAT). Formerly, simultaneous implementation of fully implicit Monte Carlo radiation transport in multiple dimensions on multiple processors had not been convincingly demonstrated. We found that a combination of the difference formulation and the inherent structure of Cosmos++ makes such an implementation both accurate and straightforward. We developed a "nearly nearest neighbor physics" technique to allow each processor to work independently, even with a fully implicit code. This technique coupled with the increased accuracy of an implicit Monte Carlo solution and the efficiency of parallel computing systems allows us to demonstrate the possibility of massively parallel thermal transport. This work was performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48

  9. A three-dimensional phase space dynamical model of the Earth{close_quote}s radiation belt

    SciTech Connect

    Boscher, D.M.; Beutier, T.; Bourdarie, S.

    1996-07-01

    A three dimensional phase space model of the Earth{close_quote}s radiation belt is presented. We have taken into account the magnetic and electric radial diffusions, the pitch angle diffusions due to Coulomb interactions and interactions with the plasmaspheric hiss, and the Coulomb drag. First, a steady state of the belt is presented. Two main maxima are obtained, corresponding to the inner and outer parts of the belt. Then, we have modelled a simple injection at the external boundary. The particle transport seems like what was measured aboard satellites. A high energy particle loss is found, by comparing the model results and the measurements. It remains to be explained. {copyright} {ital 1996 American Institute of Physics.}

  10. The development and investigation of a prototype three-dimensional compensator for whole brain radiation therapy

    NASA Astrophysics Data System (ADS)

    Keall, Paul; Arief, Isti; Shamas, Sofia; Weiss, Elisabeth; Castle, Steven

    2008-05-01

    Whole brain radiation therapy (WBRT) is the standard treatment for patients with brain metastases, and is often used in conjunction with stereotactic radiotherapy for patients with a limited number of brain metastases, as well as prophylactic cranial irradiation. The use of open fields (conventionally used for WBRT) leads to higher doses to the brain periphery if dose is prescribed to the brain center at the largest lateral radius. These dose variations potentially compromise treatment efficacy and translate to increased side effects. The goal of this research was to design and construct a 3D 'brain wedge' to compensate dose heterogeneities in WBRT. Radiation transport theory was invoked to calculate the desired shape of a wedge to achieve a uniform dose distribution at the sagittal plane for an ellipsoid irradiated medium. The calculations yielded a smooth 3D wedge design to account for the missing tissue at the peripheral areas of the brain. A wedge was machined based on the calculation results. Three ellipsoid phantoms, spanning the mean and ± two standard deviations from the mean cranial dimensions were constructed, representing 95% of the adult population. Film was placed at the sagittal plane for each of the three phantoms and irradiated with 6 MV photons, with the wedge in place. Sagittal plane isodose plots for the three phantoms demonstrated the feasibility of this wedge to create a homogeneous distribution with similar results observed for the three phantom sizes, indicating that a single wedge may be sufficient to cover 95% of the adult population. The sagittal dose is a reasonable estimate of the off-axis dose for whole brain radiation therapy. Comparing the dose with and without the wedge the average minimum dose was higher (90% versus 86%), the maximum dose was lower (107% versus 113%) and the dose variation was lower (one standard deviation 2.7% versus 4.6%). In summary, a simple and effective 3D wedge for whole brain radiotherapy has been developed

  11. Spot Radiative Ignition and Subsequent Three Dimensional Flame Spread Over Thin Cellulose Fuels

    NASA Technical Reports Server (NTRS)

    Olson, Sandra L.; Kashiwagi, T.; Kikuchi, M.; Fujita, O.; Ito, K.

    1999-01-01

    Spontaneous radiative ignition and transition to flame spread over thin cellulose fuel samples was studied aboard the USMP-3 STS-75 Space Shuttle mission, and in three test series in the 10 second Japan Microgravity Center (JAMIC). A focused beam from a tungsten/halogen lamp was used to ignite the center of the fuel sample while an external air flow was varied from 0 to 10 cm/s. Non-piloted radiative ignition of the paper was found to occur more easily in microgravity than in normal gravity. Ignition of the sample was achieved under all conditions studied (shuttle cabin air, 21%-50% O2 in JAMIC), with transition to flame spread occurring for all but the lowest oxygen and flow conditions. While radiative ignition in a quiescent atmosphere was achieved, the flame quickly extinguished in air. The ignition delay time was proportional to the gas-phase mixing time, which is estimated using the inverse flow rate. The ignition delay was a much stronger function of flow at lower oxygen concentrations. After ignition, the flame initially spread only upstream, in a fan-shaped pattern. The fan angle increased with increasing external flow and oxygen concentration from zero angle (tunneling flame spread) at the limiting 0.5 cm/s external air flow, to 90 degrees (semicircular flame spread) for external flows at and above 5 cm/s, and higher oxygen concentrations. The fan angle was shown to be directly related to the limiting air flow velocity. Despite the convective heating from the upstream flame, the downstream flame was inhibited due to the 'oxygen shadow' of the upstream flame for the air flow conditions studied. Downstream flame spread rates in air, measured after upstream flame spread was complete and extinguished, were slower than upstream flame spread rates at the same flow. The quench regime for the transition to flame spread was skewed toward the downstream, due to the augmenting role of diffusion for opposed flow flame spread, versus the canceling effect of diffusion

  12. Delayed activation of human microglial cells by high dose ionizing radiation.

    PubMed

    Chen, Hongxin; Chong, Zhao Zhong; De Toledo, Sonia M; Azzam, Edouard I; Elkabes, Stella; Souayah, Nizar

    2016-09-01

    Recent studies have shown that microglia affects the fate of neural stem cells in response to ionizing radiation, which suggests a role for microglia in radiation-induced degenerative outcomes. We therefore investigated the effects of γ-irradiation on cell survival, proliferation, and activation of microglia and explored associated mechanisms. Specifically, we evaluated cellular and molecular changes associated with exposure of human microglial cells (CHME5) to low and high doses of acute cesium-137 γ rays. Twenty-four hours after irradiation, cell cycle analyses revealed dose-dependent decreases in the fraction of cells in S and G2/M phase, which correlated with significant oxidative stress. By one week after irradiation, 20-30% of the cells exposed to high doses of γ rays underwent apoptosis, which correlated with significant concomitant decrease in metabolic activity as assessed by the MTT assay, and microglial activation as judged by both morphological changes and increased expression of Glut-5 and CR43. These changes were associated with increases in the mRNA levels for IL-1α, IL-10 and TNFα. Together, the results show that human CHME5 microglia are relatively resistant to low and moderate doses of γ rays, but are sensitive to acute high doses, and that CHME5 cells are a useful tool for in vitro study of human microglia. PMID:27265419

  13. Polarized radiance fields under a dynamic ocean surface: a three-dimensional radiative transfer solution

    SciTech Connect

    You Yu; Zhai Pengwang; Kattawar, George W.; Yang Ping

    2009-06-01

    The hybrid matrix operator, Monte Carlo (HMOMC) method previously reported [Appl. Opt.47, 1063-1071 (2008)APOPAI0003-693510.1364/AO.47.001063] is improved by neglecting higher-order terms in the coupling of the matrix operators and by introducing a dual grid scheme. The computational efficiency for solving the vector radiative transfer equation in a full 3D coupled atmosphere-surface-ocean system is substantially improved, and, thus, large-scale simulations of the radiance distribution become feasible. The improved method is applied to the computation of the polarized radiance field under realistic surface waves simulated by the power spectral density method. To the authors' best knowledge, this is the first time that the polarized radiance field under a dynamic ocean surface and the underwater image of an object above such an ocean surface have been reported.

  14. Effect of ionizing radiation on acinar morphogenesis of human prostatic epithelial cells under three-dimensional culture conditions.

    PubMed

    Wang, T; X, S Ma; Kong, D; Yi, H; Wang, X; Liang, B; Xu, H; He, M; Jia, L; Qased, A B; Yang, Y; Liu, X

    2012-01-01

    Homeostasis is maintained by the interplay of multiple factors that directly or indirectly regulate cell proliferation and cell death. Complex multiple interactions between cells and the extracellular matrix occur during acinar morphogenesis and changes in these might indicate carcinogenesis of cells from a normal to a malignant, invasive phenotype. In this study, the human prostatic epithelial cell line RWPE-1 was cultured under three-dimensional (3-D) culture conditions, and the effect of ionizing radiation on acinar morphogenesis and its association with autophagy were discussed. The results illustrated that formation of specific spheroid (acinar) structures was detectable under 3-D culture conditions. Radiation induced the disruption of acini in different cell models using either gene overexpression (Akt) or gene knock-down (Beclin 1 and ATG7). Introduction of Akt not only accelerated the growth of cells (i.e., caused the cells to manifest elongating and microspike-like structures that are obviously different from structures seen in wild-type RWPE-1 cells under two-dimensional conditions), but also changed their morphological characteristics under 3-D culture conditions. Knock-down of autophagy-related genes (Beclin 1 and ATG7) increased the radiosensitivity of cells under 3-D culture conditions, and cells died of non-apoptotic death after radiation. The results suggested that ionizing radiation may change the cell phenotype and the formation of acini. Additionally even the autophagy mechanism may play a role in these processes. PMID:22296497

  15. Validating the MYSTIC three-dimensional radiative transfer model with observations from the complex topography of Arizona's Meteor Crater

    NASA Astrophysics Data System (ADS)

    Mayer, B.; Hoch, S. W.; Whiteman, C. D.

    2010-05-01

    The MYSTIC three-dimensional Monte-Carlo radiative transfer model has been extended to simulate solar and thermal irradiances with a rigorous consideration of topography. Forward as well as backward Monte Carlo simulations are possible for arbitrarily oriented surfaces and we demonstrate that the backward Monte Carlo technique is superior to the forward method for applications involving topography, by greatly reducing the computational demands. MYSTIC is used to simulate the short- and longwave radiation fields during a clear day and night in and around Arizona's Meteor Crater, a bowl-shaped, 165-m-deep basin with a diameter of 1200 m. The simulations are made over a 4 by 4 km domain using a 10-m horizontal resolution digital elevation model and meteorological input data collected during the METCRAX (Meteor Crater Experiment) field experiment in 2006. Irradiance (or radiative flux) measurements at multiple locations inside the crater are then used to evaluate the simulations. MYSTIC is shown to realistically model the complex interactions between topography and the radiative field, resolving the effects of terrain shading, terrain exposure, and longwave surface emissions. The effects of surface temperature variations and of temperature stratification within the crater atmosphere on the near-surface longwave irradiance are then evaluated with additional simulations.

  16. Validating the MYSTIC three-dimensional radiative transfer model with observations from the complex topography of Arizona's Meteor Crater

    NASA Astrophysics Data System (ADS)

    Mayer, B.; Hoch, S. W.; Whiteman, C. D.

    2010-09-01

    The MYSTIC three-dimensional Monte-Carlo radiative transfer model has been extended to simulate solar and thermal irradiances with a rigorous consideration of topography. Forward as well as backward Monte Carlo simulations are possible for arbitrarily oriented surfaces and we demonstrate that the backward Monte Carlo technique is superior to the forward method for applications involving topography, by greatly reducing the computational demands. MYSTIC is used to simulate the short- and longwave radiation fields during a clear day and night in and around Arizona's Meteor Crater, a bowl-shaped, 165-m-deep basin with a diameter of 1200 m. The simulations are made over a 4 by 4 km2 domain using a 10-m horizontal resolution digital elevation model and meteorological input data collected during the METCRAX (Meteor Crater Experiment) field experiment in 2006. Irradiance (or radiative flux) measurements at multiple locations inside the crater are then used to evaluate the simulations. MYSTIC is shown to realistically model the complex interactions between topography and the radiative field, resolving the effects of terrain shading, terrain exposure, and longwave surface emissions. The effects of surface temperature variations and of temperature stratification within the crater atmosphere on the near-surface longwave irradiance are then evaluated with additional simulations.

  17. Three-dimensional acoustic radiation force on an arbitrarily located elastic sphere.

    PubMed

    Baresch, Diego; Thomas, Jean-Louis; Marchiano, Régis

    2013-01-01

    This work aims to model the acoustic radiation forces acting on an elastic sphere placed in an inviscid fluid. An expression of the axial and transverse forces exerted on the sphere is derived. The analysis is based on the scattering of an arbitrary acoustic field expanded in the spherical coordinate system centered on the spherical scatterer. The sphere is allowed to be arbitrarily located. The special case of high order Bessel beams, acoustical vortices, are considered. These types of beams have a helicoidal wave front, i.e., a screw-type phase singularity and hence, the beam has a central dark core of zero amplitude surrounded by an intense ring. Depending on the sphere's radius, different radial equilibrium positions may exist and the sphere can be set in rotation around the beam axis by an azimuthal force. This confirms the pseudo-angular moment transfer from the beam to the sphere. Cases where the axial force is directed opposite to the direction of the beam propagation are investigated and the potential use of Bessel beams as tractor beams is demonstrated. Numerical results provide an impetus for further designing acoustical tweezers for potential applications in particle entrapment and remote controlled manipulation. PMID:23297880

  18. Quantifying the Effects of Radiation on Tumour Vasculature with High-Frequency Three-Dimensional Power Doppler Ultrasound

    NASA Astrophysics Data System (ADS)

    Hupple, Clinton

    Recent evidence suggests that radiation may have a significant effect on tumour vasculature in addition to damaging tumour cell DNA. It is well established that endothelial cells are among the first cells to respond after administration of ionizing radiation in both normal and tumour tissues. It has also been suggested that microvascular dysfunction may regulate tumour response to radiotherapy at high doses. However, due to limitations in imaging the microcirculation this response is not well characterized. Advances in high-frequency ultrasound and computation methods now make it possible to acquire and analyze 3-D ultrasound data of tumour blood flow in tumour microcirculation. This thesis outlines the work done to test the hypothesis that single dose 8 Gy radiotherapy produces changes in tumour blood vessels which can be quantified using high-frequency power Doppler ultrasound. In addition, the issue of reproducibility of power Doppler measurements and the relationship between histopathology and power Doppler measurements have been examined.

  19. MAGIC-type polymer gel for three-dimensional dosimetry: intensity-modulated radiation therapy verification.

    PubMed

    Gustavsson, Helen; Karlsson, Anna; Bäck, Sven A J; Olsson, Lars E; Haraldsson, Pia; Engström, Per; Nyström, Håkan

    2003-06-01

    A new type of polymer gel dosimeter, which responds well to absorbed dose even when manufactured in the presence of normal levels of oxygen, was recently described by Fong et al. [Phys. Med. Biol. 46, 3105-3113 (2001)] and referred to by the acronym MAGIC. The aim of this study was to investigate the feasibility of using this new type of gel for intensity-modulated radiation therapy (IMRT) verification. Gel manufacturing was carried out in room atmosphere under normal levels of oxygen. IMRT inverse treatment planning was performed using the Helios software. The gel was irradiated using a linear accelerator equipped with a dynamic multileaf collimator, and intensity modulation was achieved using sliding window technique. The response to absorbed dose was evaluated using magnetic resonance imaging. Measured and calculated dose distributions were compared with regard to in-plane isodoses and dose volume histograms. In addition, the spatial and dosimetric accuracy was evaluated using the gamma formalism. Good agreement between calculated and measured data was obtained. In the isocenter plane, the 70% and 90% isodoses acquired using the different methods are mostly within 2 mm, with up to 3 mm disagreement at isolated points. For the planning target volume (PTV), the calculated mean relative dose was 96.8 +/- 2.5% (1 SD) and the measured relative mean dose was 98.6 +/- 2.2%. Corresponding data for an organ at risk was 34.4 +/- 0.9% and 32.7 +/- 0.7%, respectively. The gamma criterion (3 mm spatial/3% dose deviation) was fulfilled for 94% of the pixels in the target region. Discrepancies were found in hot spots the upper and lower parts of the PTV, where the measured dose was up to 11% higher than calculated. This was attributed to sub optimal scatter kernels used in the treatment planning system dose calculations. Our results indicate great potential for IMRT verification using MAGIC-type polymer gel. PMID:12852552

  20. Chemistry in the First Hydrostatic Core Stage by Adopting Three-dimensional Radiation Hydrodynamic Simulations

    NASA Astrophysics Data System (ADS)

    Furuya, Kenji; Aikawa, Yuri; Tomida, Kengo; Matsumoto, Tomoaki; Saigo, Kazuya; Tomisaka, Kohji; Hersant, Franck; Wakelam, Valentine

    2012-10-01

    We investigate molecular evolution from a molecular cloud core to a first hydrostatic core in three spatial dimensions. We perform a radiation hydrodynamic simulation in order to trace fluid parcels, in which molecular evolution is investigated, using a gas-phase and grain-surface chemical reaction network. We derive spatial distributions of molecular abundances and column densities in the molecular cloud core harboring the first core. We find that the total gas and ice abundances of many species in a cold era (10 K) remain unaltered until the temperature reaches ~500 K. The gas abundances in the warm envelope and the outer layer of the first core (T <~ 500 K) are mainly determined via the sublimation of ice-mantle species. Above 500 K, the abundant molecules, such as H2CO, start to be destroyed, and simple molecules, such as CO, H2O, and N2, are reformed. On the other hand, some molecules are effectively formed at high temperature; carbon chains, such as C2H2 and cyanopolyynes, are formed at temperatures >700 K. We also find that large organic molecules, such as CH3OH and HCOOCH3, are associated with the first core (r <~ 10 AU). Although the abundances of these molecules in the first core stage are comparable to or less than in the protostellar stage (hot corino), reflecting the lower luminosity of the central object, their column densities in our model are comparable to the observed values toward the prototypical hot corino, IRAS 16293-2422. We propose that these large organic molecules can be good tracers of the first cores.

  1. CHEMISTRY IN THE FIRST HYDROSTATIC CORE STAGE BY ADOPTING THREE-DIMENSIONAL RADIATION HYDRODYNAMIC SIMULATIONS

    SciTech Connect

    Furuya, Kenji; Aikawa, Yuri; Tomida, Kengo; Tomisaka, Kohji; Matsumoto, Tomoaki; Saigo, Kazuya; Hersant, Franck; Wakelam, Valentine

    2012-10-20

    We investigate molecular evolution from a molecular cloud core to a first hydrostatic core in three spatial dimensions. We perform a radiation hydrodynamic simulation in order to trace fluid parcels, in which molecular evolution is investigated, using a gas-phase and grain-surface chemical reaction network. We derive spatial distributions of molecular abundances and column densities in the molecular cloud core harboring the first core. We find that the total gas and ice abundances of many species in a cold era (10 K) remain unaltered until the temperature reaches {approx}500 K. The gas abundances in the warm envelope and the outer layer of the first core (T {approx}< 500 K) are mainly determined via the sublimation of ice-mantle species. Above 500 K, the abundant molecules, such as H{sub 2}CO, start to be destroyed, and simple molecules, such as CO, H{sub 2}O, and N{sub 2}, are reformed. On the other hand, some molecules are effectively formed at high temperature; carbon chains, such as C{sub 2}H{sub 2} and cyanopolyynes, are formed at temperatures >700 K. We also find that large organic molecules, such as CH{sub 3}OH and HCOOCH{sub 3}, are associated with the first core (r {approx}< 10 AU). Although the abundances of these molecules in the first core stage are comparable to or less than in the protostellar stage (hot corino), reflecting the lower luminosity of the central object, their column densities in our model are comparable to the observed values toward the prototypical hot corino, IRAS 16293-2422. We propose that these large organic molecules can be good tracers of the first cores.

  2. Membrane Signaling Induced by High Doses of Ionizing Radiation in the Endothelial Compartment. Relevance in Radiation Toxicity

    PubMed Central

    Corre, Isabelle; Guillonneau, Maëva; Paris, François

    2013-01-01

    Tumor areas can now be very precisely delimited thanks to technical progress in imaging and ballistics. This has also led to the development of novel radiotherapy protocols, delivering higher doses of ionizing radiation directly to cancer cells. Despite this, radiation toxicity in healthy tissue remains a major issue, particularly with dose-escalation in these new protocols. Acute and late tissue damage following irradiation have both been linked to the endothelium irrigating normal tissues. The molecular mechanisms involved in the endothelial response to high doses of radiation are associated with signaling from the plasma membrane, mainly via the acid sphingomyelinase/ceramide pathway. This review describes this signaling pathway and discusses the relevance of targeting endothelial signaling to protect healthy tissues from the deleterious effects of high doses of radiation. PMID:24252908

  3. The Effect of High Dose Radioiodine Therapy on Formation of Radiation Retinopathy During Thyroid Cancer Treatment

    PubMed Central

    Kaçar Güveli, Tülay; Özkan, Sezer; Öner Tamam, Müge; Uyanık, Ercan; Ediz, Nurcan; Mülazımoğlu, Mehmet; Özpaçacı, Tevfik

    2014-01-01

    Objective: Non-thyroidal complication of high-dose radioiodine therapy for thyroid carcinoma might cause salivary and lacrimal gland dysfunction, which may be transient or permanent in a dose-dependent manner. However, radiation retinopathy complicating 131I therapy, has not been previously well characterized. The aim of this study was to evaluate the extent of retinal damage among patients who had received high doses of radioiodine treatment. Methods: Forty eyes of 20 patients (3 male, 17 female) who received 250-1000 mCi during 131I therapy and on ophthalmological follow up for a year after the last treatment were included in the study. Mean age of the study group was 50 years (range 25-70 years). In ophthalmologic examination, visual acuity was measured in order to determine visual loss. Intraocular pressure was measured in all the patients. Then lens examination was carried out with slit lamp biomicroscopy in order to investigate cataract or partial lens opacities. Fundus observation was carried out through the dilated pupil with slit lamp biomicroscopy using 90 D noncontact lens. Result: The best corrected visual aquity with Snellen chart was found as 1.0 in 36 eyes (90%) and between 0.6 and 0.9 (10%) in 4 eyes (10%). At the biomicroscopic fundus examination, retinal hemorrhage consistent with radiation retinopathy, microaneurysm, microinfarction, edema or exudation, vitreus hemorrhage, partial or total optical disc pallor indicating papillopathy in the optic disc were not observed in any of the eyes. Conclusion: This result indicates that there is not any significant correlation between repeated high-dose radioiodine therapy and radiation retinopathy in differentiated thyroid carcinomas. Even though there is not a significant restriction in use of higher doses of radioiodine therapy in differentiated thyroid carcinoma, more extensive studies are needed in order to obtain more accurate data on possible occurrence of retinopathy. PMID:25541931

  4. Conservative surgery for low rectal carcinoma after high-dose radiation. Functional and oncologic results.

    PubMed Central

    Rouanet, P; Fabre, J M; Dubois, J B; Dravet, F; Saint Aubert, B; Pradel, J; Ychou, M; Solassol, C; Pujol, H

    1995-01-01

    OBJECTIVE: Using a prospective, nonrandomized study, the authors evaluated the morbidity and functional and oncologic results of conservative surgery for cancer of the lower third of the rectum after high-dose radiation. SUMMARY BACKGROUND DATA: Colo-anal anastomosis has made sphincter conservation for low rectal carcinoma technically feasible. The limits to conservative surgery currently are oncologic rather than technical. Adjuvant radiotherapy has proven its benefit in terms of regional control, with a dose relationship. METHODS: Since June 1990, 27 patients with distal rectal adenocarcinoma were treated by preoperative radiotherapy (40 + 20 Gy delivered with three fields) and curative surgery. The mean distance from the anal verge was 47 mm (27-57 mm), and none of the tumors were fixed (15 T2, 12 T3). RESULTS: Mortality and morbidity were not increased by high-dose preoperative radiation. Twenty-one patients underwent conservative surgery (78%-17 total proctectomies and colo-anal anastomoses, 4 trans-anal resections). After colo-anal anastomosis, all patients with colonic pouch had good results; two patients had moderate results and one patient had poor results after straight colo-anal anastomosis. With a mean follow-up of 24 months, the authors noted 1 postoperative death, 2 disease-linked deaths, 1 controlled regional recurrence, 2 evolutive patients with pulmonary metastases, and 21 disease-free patients. CONCLUSIONS: These first results confirm the possibility of conservative surgery for low rectal carcinoma after high-dose radiation. A prospective, randomized trial could be induced to determine the real role of the 20 Gy boost on the sphincter-saving decision. PMID:7826163

  5. Effects of high dose intraperitoneal cytosine arabinoside on the radiation tolerance of the rat spinal cord

    SciTech Connect

    Menten, J.; Landuyt, W.; van der Kogel, A.J.; Ang, K.K.; van der Schueren, E.

    1989-07-01

    The effect of intraperitoneal high dose (9 g/kg) cytosine arabinoside (Ara-C) on the early delayed radiation response of the rat cervical spinal cord has been studied. When given 2 hrs before irradiation, systemically administered Ara-C significantly reduces the isoeffect doses for the induction of paralysis due to white matter necrosis by a factor of approximately 1.2 for both a single irradiation treatment and for a two fraction irradiation with 24 hr interval. No effect on the latency time to develop paralysis was recorded.

  6. Combined methotrexate and high-dose vincristine chemotherapy with radiation therapy for small cell bronchogenic carcinoma

    SciTech Connect

    Holoye, P.Y.; Libnoch, J.A.; Anderson, T.; Cox, J.D.; Byhardt, R.W.; Hoffmann, R.G.

    1985-04-01

    The addition of methotrexate to a previously described regimen of cyclophosphamide, Adriamycin (doxorubicin), and high-dose vincristine (VAC) was tested in 50 evaluable patients with small cell bronchogenic carcinoma. Prophylactic whole brain radiation therapy was given during the first chemotherapy course and consolidation radiation therapy was given to the mediastinum and primary site after achieving partial or complete remission. The addition of methotrexate did not improve the incidence of complete remission as compared to a previous regimen without it. The addition of radiation therapy improved the local control rate. The high-dose vincristine in this and a previous CAV study improved the incidence of complete remission in both limited and extensive disease presentation as compared with the authors previous experience and induced an acceptable and reversible neurotoxicity. Moderate dose consolidation radiotherapy to the lung primary and mediastinum was effective in improving local control. The distinction between limited and extensive disease was found to be vague, as 22% of the patients could be shifted from one group to the other depending on definition. The evaluation of the various staging procedures indicates that bone scan gave a small number of truly abnormal tests. Isotopic brain and liver-spleen scan could be duplicated by computerized axial tomography (CAT). CAT scan of abdomen disclosed unexpected extension to the retroperitoneal nodes and adrenals.

  7. Modelling the effects of plasmaspheric hiss and lightning-generated whistlers in three dimensional radiation belt models

    NASA Astrophysics Data System (ADS)

    Glauert, Sarah; Horne, Richard; Meredith, Nigel

    2014-05-01

    In the Earth's radiation belts the relativistic electron flux is highly variable and can change by orders of magnitude in a few hours. Since these energetic electrons can damage satellites, understanding the causes of this variation is important. Three dimensional diffusion models of this high-energy electron population solve a Fokker-Planck equation for the phase-space density and can include the effects of radial transport, wave-particle interactions and collisions. Various different wave-particle interactions can be included in the models. We present results from the BAS Radiation Belt Model using new diffusion coefficients for plasmaspheric hiss and lightning-generated whistlers. These diffusion coefficients, based on observations of the wave properties, depend on L, energy, pitch-angle and geomagnetic activity. We show that losses due to plasmaspheric hiss depend critically on the wave-normal angle distribution and that a model where the peak of the distribution depends on latitude best reproduces the observed decay rates. Higher frequency waves (˜ 1-2 kHz) only make a significant contribution to losses for L∗ < 3 and the highest frequencies (2-5 kHz), representing lightning-generated whistlers, have a limited effect on relativistic electrons for L∗ > 2.

  8. High-dose MVCT image guidance for stereotactic body radiation therapy

    SciTech Connect

    Westerly, David C.; Schefter, Tracey E.; Kavanagh, Brian D.; Chao, Edward; Lucas, Dan; Flynn, Ryan T.; Miften, Moyed

    2012-08-15

    Purpose: Stereotactic body radiation therapy (SBRT) is a potent treatment for early stage primary and limited metastatic disease. Accurate tumor localization is essential to administer SBRT safely and effectively. Tomotherapy combines helical IMRT with onboard megavoltage CT (MVCT) imaging and is well suited for SBRT; however, MVCT results in reduced soft tissue contrast and increased image noise compared with kilovoltage CT. The goal of this work was to investigate the use of increased imaging doses on a clinical tomotherapy machine to improve image quality for SBRT image guidance. Methods: Two nonstandard, high-dose imaging modes were created on a tomotherapy machine by increasing the linear accelerator (LINAC) pulse rate from the nominal setting of 80 Hz, to 160 Hz and 300 Hz, respectively. Weighted CT dose indexes (wCTDIs) were measured for the standard, medium, and high-dose modes in a 30 cm solid water phantom using a calibrated A1SL ion chamber. Image quality was assessed from scans of a customized image quality phantom. Metrics evaluated include: contrast-to-noise ratios (CNRs), high-contrast spatial resolution, image uniformity, and percent image noise. In addition, two patients receiving SBRT were localized using high-dose MVCT scans. Raw detector data collected after each scan were used to reconstruct standard-dose images for comparison. Results: MVCT scans acquired using a pitch of 1.0 resulted in wCTDI values of 2.2, 4.7, and 8.5 cGy for the standard, medium, and high-dose modes respectively. CNR values for both low and high-contrast materials were found to increase with the square root of dose. Axial high-contrast spatial resolution was comparable for all imaging modes at 0.5 lp/mm. Image uniformity was improved and percent noise decreased as the imaging dose increased. Similar improvements in image quality were observed in patient images, with decreases in image noise being the most notable. Conclusions: High-dose imaging modes are made possible on a

  9. Radiation-induced liver disease in three-dimensional conformal radiation therapy for primary liver carcinoma: The risk factors and hepatic radiation tolerance

    SciTech Connect

    Liang Shixiong; Zhu Xiaodong; Xu Zhiyong

    2006-06-01

    Purpose: To identify risk factors relevant to radiation-induced liver disease (RILD) and to determine the hepatic tolerance to radiation. Methods and Materials: The data of 109 primary liver carcinomas (PLC) treated with hypofractionated three-dimensional conformal radiation therapy (3D-CRT) were analyzed. Seventeen patients were diagnosed with RILD and 13 of 17 died of it. Results: The risk factors for RILD were late T stage, large gross tumor volume, presence of portal vein thrombosis, association with Child-Pugh Grade B cirrhosis, and acute hepatic toxicity. Multivariate analyses demonstrated that the severity of hepatic cirrhosis was a unique independent predictor. For Child-Pugh Grade A patients, the hepatic radiation tolerance was as follows: (1) Mean dose to normal liver (MDTNL) of 23 Gy was tolerable. (2) For cumulative dose-volume histogram, the tolerable volume percentages would be less than: V{sub 5} of 86%, V{sub 1} of 68%, V{sub 15} of 59%, V{sub 2} of 49%, V{sub 25} of 35%, V{sub 3} of 28%, V{sub 35} of 25%, and V{sub 4} of 20%. (3) Tolerable MDTNL could be estimated by MDTNL (Gy) = -1.686 + 0.023 * normal liver volume (cm{sup 3}). Conclusion: The predominant risk factor for RILD was the severity of hepatic cirrhosis. The hepatic tolerance to radiation could be estimated by dosimetric parameters.

  10. Implementation and modification of a three-dimensional radiation stress formulation for surf zone and rip-current applications

    USGS Publications Warehouse

    Kumar, N.; Voulgaris, G.; Warner, J.C.

    2011-01-01

    Regional Ocean Modeling System (ROMS v 3.0), a three-dimensional numerical ocean model, was previously enhanced for shallow water applications by including wave-induced radiation stress forcing provided through coupling to wave propagation models (SWAN, REF/DIF). This enhancement made it suitable for surf zone applications as demonstrated using examples of obliquely incident waves on a planar beach and rip current formation in longshore bar trough morphology (Haas and Warner, 2009). In this contribution, we present an update to the coupled model which implements a wave roller model and also a modified method of the radiation stress term based on Mellor (2008, 2011a,b,in press) that includes a vertical distribution which better simulates non-conservative (i.e., wave breaking) processes and appears to be more appropriate for sigma coordinates in very shallow waters where wave breaking conditions dominate. The improvements of the modified model are shown through simulations of several cases that include: (a) obliquely incident spectral waves on a planar beach; (b) obliquely incident spectral waves on a natural barred beach (DUCK'94 experiment); (c) alongshore variable offshore wave forcing on a planar beach; (d) alongshore varying bathymetry with constant offshore wave forcing; and (e) nearshore barred morphology with rip-channels. Quantitative and qualitative comparisons to previous analytical, numerical, laboratory studies and field measurements show that the modified model replicates surf zone recirculation patterns (onshore drift at the surface and undertow at the bottom) more accurately than previous formulations based on radiation stress (Haas and Warner, 2009). The results of the model and test cases are further explored for identifying the forces operating in rip current development and the potential implication for sediment transport and rip channel development. Also, model analysis showed that rip current strength is higher when waves approach at angles of 5

  11. RADIATIVE AND MOMENTUM-BASED MECHANICAL ACTIVE GALACTIC NUCLEUS FEEDBACK IN A THREE-DIMENSIONAL GALAXY EVOLUTION CODE

    SciTech Connect

    Choi, Ena; Ostriker, Jeremiah P.; Naab, Thorsten; Johansson, Peter H.

    2012-08-01

    We study the growth of black holes (BHs) in galaxies using three-dimensional smoothed particle hydrodynamic simulations with new implementations of the momentum mechanical feedback, and restriction of accreted elements to those that are gravitationally bound to the BH. We also include the feedback from the X-ray radiation emitted by the BH, which heats the surrounding gas in the host galaxies, and adds radial momentum to the fluid. We perform simulations of isolated galaxies and merging galaxies and test various feedback models with the new treatment of the Bondi radius criterion. We find that overall the BH growth is similar to what has been obtained by earlier works using the Springel, Di Matteo, and Hernquist algorithms. However, the outflowing wind velocities and mechanical energy emitted by winds are considerably higher (v{sub w} {approx} 1000-3000 km s{sup -1}) compared to the standard thermal feedback model (v{sub w} {approx} 50-100 km s{sup -1}). While the thermal feedback model emits only 0.1% of BH released energy in winds, the momentum feedback model emits more than 30% of the total energy released by the BH in winds. In the momentum feedback model, the degree of fluctuation in both radiant and wind output is considerably larger than in standard treatments. We check that the new model of BH mass accretion agrees with analytic results for the standard Bondi problem.

  12. Three-dimensional evaluation of the compression and recovery behavior in a flexible graphite sheet by synchrotron radiation microtomography

    SciTech Connect

    Kobayashi, M.; Toda, H.; Takeuchi, A.; Uesugi, K.; Suzuki, Y.

    2012-07-15

    The compression and unloading behavior of flexible graphite sheets was investigated using synchrotron radiation microtomography with 1 {mu}m voxel size. The recovery ratio of the flexible graphite sheet was measured accurately by in-situ observation. The three-dimensional strain distribution in the interior of the specimen was obtained using the microstructural tracking method. The inner strain distribution with micrometer scale indicated inhomogeneous deformation. The microstructural tracking analysis revealed that deformation units exist in the flexible graphite sheet. The units seem to deform, affecting the neighboring units with each other. The units had a similar size and shape with compacted exfoliated graphite worms that constitute the flexible graphite sheet. Microscopic deformations during compression and unloading are surely affected by the microstructure of the sheet. Highlights: Black-Right-Pointing-Pointer The compression and recovery behavior was investigated using microtomography. Black-Right-Pointing-Pointer The tracking analysis revealed that deformation units exist in the specimen. Black-Right-Pointing-Pointer Each unit deforms in relation to the neighboring unit.

  13. High-resolution three-dimensional visualization of the rat spinal cord microvasculature by synchrotron radiation micro-CT

    SciTech Connect

    Hu, Jianzhong; Cao, Yong; Wu, Tianding; Li, Dongzhe; Lu, Hongbin

    2014-10-15

    Purpose: Understanding the three-dimensional (3D) morphology of the spinal cord microvasculature has been limited by the lack of an effective high-resolution imaging technique. In this study, synchrotron radiation microcomputed tomography (SRµCT), a novel imaging technique based on absorption imaging, was evaluated with regard to the detection of the 3D morphology of the rat spinal cord microvasculature. Methods: Ten Sprague-Dawley rats were used in this ex vivo study. After contrast agent perfusion, their spinal cords were isolated and scanned using conventional x-rays, conventional micro-CT (CµCT), and SRµCT. Results: Based on contrast agent perfusion, the microvasculature of the rat spinal cord was clearly visualized for the first time ex vivo in 3D by means of SRµCT scanning. Compared to conventional imaging techniques, SRµCT achieved higher resolution 3D vascular imaging, with the smallest vessel that could be distinguished approximately 7.4 μm in diameter. Additionally, a 3D pseudocolored image of the spinal cord microvasculature was generated in a single session of SRµCT imaging, which was conducive to detailed observation of the vessel morphology. Conclusions: The results of this study indicated that SRµCT scanning could provide higher resolution images of the vascular network of the spinal cord. This modality also has the potential to serve as a powerful imaging tool for the investigation of morphology changes in the 3D angioarchitecture of the neurovasculature in preclinical research.

  14. Three-dimensional Effects and Shortwave Cloud Radiative Forcing Associated with Shallow Cumuli Over Central North America

    SciTech Connect

    Berg, Larry K.; Kassianov, Evgueni I.; Long, Charles N.; Mills, Jr., David

    2009-09-30

    Shallow cumuli are ubiquitous over large areas of the globe, including both the interior of continents and the trade wind regions over the oceans. Measurements made at the Atmospheric Radiation Measurement (ARM) Climate Research Facility, located in central North America, provide a unique long-term data set that can be used to investigate the influence that these clouds have on the shortwave surface energy budget at a continental location. Using data collected for the summers of 2000 through 2007, inclusive, over 900 hours with fair-weather cumuli were identified using data from a Total Sky Imager, cloud-radar and lidar. Data from a suite of surface radiometers was used to determine the shortwave forcing. This analysis estimates the three-dimensional effects of shallow cumuli by examining the occurrences of both positive and negative shortwave forcing. We show that the average surface shortwave forcing is approximately -45.5 W m-2. When the data are adjusted to account for periods without shallow clouds, the shortwave forcing over the entire summer (defined as May through August) are reduced in magnitude, with forcings of -2.1 W m-2.

  15. Three-dimensional effects and shortwave cloud radiative forcing associated with shallow cumuli over the central North America

    NASA Astrophysics Data System (ADS)

    Berg, Larry K.; Mills, David, Jr.; Kassianov, Evgueni I.; Long, Charles N.

    2009-09-01

    Shallow cumuli are ubiquitous over large areas of the globe, including both the interior of continents and the trade wind regions over the oceans. Measurements made at the Atmospheric Radiation Measurement (ARM) Climate Research Facility, located in central North America, provide a unique long-term data set that can be used to investigate the influence that these clouds have on the shortwave surface energy budget at a continental location. Using data collected for the summers of 2000 through 2007, inclusive, over 900 hours with fair-weather cumuli were identified using data from a Total Sky Imager, cloud-radar and lidar. Data from a suite of surface radiometers was used to determine the shortwave forcing. This analysis estimates the three-dimensional effects of shallow cumuli by examining the occurrences of both positive and negative shortwave forcing. We show that the average surface shortwave forcing is approximately -45.5 W m-2. When the data are adjusted to account for periods without shallow clouds, the shortwave forcing over the entire summer (defined as May through August) are reduced in magnitude, with forcings of -2.1 W m-2.

  16. Effect of nonlinear three-dimensional optimized reconstruction algorithm filter on image quality and radiation dose: Validation on phantoms

    SciTech Connect

    Bai Mei; Chen Jiuhong; Raupach, Rainer; Suess, Christoph; Tao Ying; Peng Mingchen

    2009-01-15

    A new technique called the nonlinear three-dimensional optimized reconstruction algorithm filter (3D ORA filter) is currently used to improve CT image quality and reduce radiation dose. This technical note describes the comparison of image noise, slice sensitivity profile (SSP), contrast-to-noise ratio, and modulation transfer function (MTF) on phantom images processed with and without the 3D ORA filter, and the effect of the 3D ORA filter on CT images at a reduced dose. For CT head scans the noise reduction was up to 54% with typical bone reconstruction algorithms (H70) and a 0.6 mm slice thickness; for liver CT scans the noise reduction was up to 30% with typical high-resolution reconstruction algorithms (B70) and a 0.6 mm slice thickness. MTF and SSP did not change significantly with the application of 3D ORA filtering (P>0.05), whereas noise was reduced (P<0.05). The low contrast detectability and MTF of images obtained at a reduced dose and filtered by the 3D ORA were equivalent to those of standard dose CT images; there was no significant difference in image noise of scans taken at a reduced dose, filtered using 3D ORA and standard dose CT (P>0.05). The 3D ORA filter shows good potential for reducing image noise without affecting image quality attributes such as sharpness. By applying this approach, the same image quality can be achieved whilst gaining a marked dose reduction.

  17. Airborne observations and simulations of three-dimensional radiative interactions between Arctic boundary layer clouds and ice floes

    NASA Astrophysics Data System (ADS)

    Schäfer, M.; Bierwirth, E.; Ehrlich, A.; Jäkel, E.; Wendisch, M.

    2015-07-01

    Based on airborne spectral imaging observations, three-dimensional (3-D) radiative effects between Arctic boundary layer clouds and highly variable Arctic surfaces were identified and quantified. A method is presented to discriminate between sea ice and open water under cloudy conditions based on airborne nadir reflectivity γλ measurements in the visible spectral range. In cloudy cases the transition of γλ from open water to sea ice is not instantaneous but horizontally smoothed. In general, clouds reduce γλ above bright surfaces in the vicinity of open water, while γλ above open sea is enhanced. With the help of observations and 3-D radiative transfer simulations, this effect was quantified to range between 0 and 2200 m distance to the sea ice edge (for a dark-ocean albedo of αwater = 0.042 and a sea-ice albedo of αice = 0.91 at 645 nm wavelength). The affected distance Δ L was found to depend on both cloud and sea ice properties. For a low-level cloud at 0-200 m altitude, as observed during the Arctic field campaign VERtical Distribution of Ice in Arctic clouds (VERDI) in 2012, an increase in the cloud optical thickness τ from 1 to 10 leads to a decrease in Δ L from 600 to 250 m. An increase in the cloud base altitude or cloud geometrical thickness results in an increase in Δ L; for τ = 1/10 Δ L = 2200 m/1250 m in case of a cloud at 500-1000 m altitude. To quantify the effect for different shapes and sizes of ice floes, radiative transfer simulations were performed with various albedo fields (infinitely long straight ice edge, circular ice floes, squares, realistic ice floe field). The simulations show that Δ L increases with increasing radius of the ice floe and reaches maximum values for ice floes with radii larger than 6 km (500-1000 m cloud altitude), which matches the results found for an infinitely long, straight ice edge. Furthermore, the influence of these 3-D radiative effects on the retrieved cloud optical properties was investigated

  18. Three Dimensional Fusion CT Decreases Radiation Exposure, Procedure Time and Contrast Use during Fenestrated Endovascular Aortic Repair

    PubMed Central

    McNally, Michael M.; Scali, Salvatore T.; Feezor, Robert J.; Neal, Daniel; Huber, Thomas S.; Beck, Adam W.

    2014-01-01

    Objectives Endovascular surgery has revolutionized the treatment of aortic aneurysms; however these improvements have come at the cost of increased radiation and contrast exposure, particularly for more complex procedures. Three dimensional (3D) fusion computed tomographic (CT) imaging is a new technology that may facilitate these repairs. The purpose of this analysis was to determine the impact of utilizing intraoperative 3D fusion CT on performance of fenestrated endovascular aortic repair. Methods A review of our institutional database was performed to identify patients undergoing fenestrated/branched endovascular aortic repair (FEVAR). Subjects treated using 3D fusion CT were compared to patients treated in the immediate 12-month period prior to implementation of this technology when procedures were performed in a standard hybrid operating room without CT fusion capabilities. Primary endpoints included patient radiation exposure (air kerma area product: milliGray; mGy*cm2), fluoroscopy time (minutes; min), contrast usage (mL) and procedure time (min). Patients were grouped by number of aortic graft fenestrations revascularized with a stentgraft and operative outcomes were compared. Results A total of 72 patients (N = 41 before vs. N = 31 after 3D fusion CT implementation) underwent FEVAR from September 2012 through March 2014. For 2-vessel fenestrated endografts, there was a significant decrease in radiation exposure (3400±1900 vs. 1380±520 mGy*cm2; P=.001), fluoroscopy time (63±29 vs. 41±11min; P=.02), and contrast usage (69±16 vs. 26±8 mL; P=.0002) with intraoperative 3D fusion CT. Similarly, for combined 3 and 4-vessel FEVAR, significantly decreased radiation exposure (5400±2225 vs. 2700±1400 mGy*cm2; P<.0001), fluoroscopy time (89±36 vs 6±21min; P=.02), contrast usage (90±25 vs. 39±17mL; P<.0001), as well as procedure time (330±100 vs. 230±50min; P=.002) was noted. Estimated blood loss was significantly less (P<.0001) and length of stay had a

  19. Pilot Study on Image Quality and Radiation Dose of CT Colonography with Adaptive Iterative Dose Reduction Three-Dimensional

    PubMed Central

    Shen, Hesong; Liang, Dan; Luo, Mingyue; Duan, Chaijie; Cai, Wenli; Zhu, Shanshan; Qiu, Jianping; Li, Wenru

    2015-01-01

    Objective To investigate image quality and radiation dose of CT colonography (CTC) with adaptive iterative dose reduction three-dimensional (AIDR3D). Methods Ten segments of porcine colon phantom were collected, and 30 pedunculate polyps with diameters ranging from 1 to 15 mm were simulated on each segment. Image data were acquired with tube voltage of 120 kVp, and current doses of 10 mAs, 20 mAs, 30 mAs, 40 mAs, 50 mAs, respectively. CTC images were reconstructed using filtered back projection (FBP) and AIDR3D. Two radiologists blindly evaluated image quality. Quantitative evaluation of image quality included image noise, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR). Qualitative image quality was evaluated with a five-score scale. Radiation dose was calculated based on dose-length product. Ten volunteers were examined supine 50 mAs with FBP and prone 20 mAs with AIDR3D, and image qualities were assessed. Paired t test was performed for statistical analysis. Results For 20 mAs with AIDR3D and 50 mAs with FBP, image noise, SNRs and CNRs were (16.4 ± 1.6) HU vs. (16.8 ± 2.6) HU, 1.9 ± 0.2 vs. 1.9 ± 0.4, and 62.3 ± 6.8 vs. 62.0 ± 6.2, respectively; qualitative image quality scores were 4.1 and 4.3, respectively; their differences were all not statistically significant. Compared with 50 mAs with FBP, radiation dose (1.62 mSv) of 20 mAs with AIDR3D was decreased by 60.0%. There was no statistically significant difference in image noise, SNRs, CNRs and qualitative image quality scores between prone 20 mAs with AIDR3D and supine 50 mAs with FBP in 10 volunteers, the former reduced radiation dose by 61.1%. Conclusion Image quality of CTC using 20 mAs with AIDR3D could be comparable to standard 50 mAs with FBP, radiation dose of the former reduced by about 60.0% and was only 1.62 mSv. PMID:25635839

  20. Radiation tolerant nanocrystalline ZrN films under high dose heavy-ion irradiations

    SciTech Connect

    Jiao, L.; Wang, H.; Yu, K. Y.; Chen, D.; Jacob, C.; Shao, L.; Zhang, X.

    2015-04-14

    ZrN, a refractory ceramic material, finds many potential applications in advanced nuclear reactors. However, the grain size dependent radiation response in nanocrystalline (nc) ZrN under high dose heavy ion irradiation has not yet been studied to date. Here, we compare the radiation response of nc-ZrN films (with a respective average grain size of ∼9 and 31 nm) to Fe{sup 2+} ion irradiations up to a damage level of 10 displacements-per-atom (dpa). The ZrN film with the average grain size of 9 nm shows prominently enhanced radiation tolerance as evidenced by suppressed grain growth, alleviated radiation softening, as well as reduced variation in electrical resistivity. In contrast, ZrN with the larger average grain size of 31 nm shows prominent radiation softening and resistivity increase, attributed to the high density of defect cluster formed inside the grains. The influence of grain boundaries on enhanced irradiation tolerance in nc-ZrN is discussed.

  1. Three-dimensional radiation-hydrodynamics calculations of the envelopes of young planets embedded in protoplanetary disks

    SciTech Connect

    D'Angelo, Gennaro; Bodenheimer, Peter E-mail: peter@ucolick.org

    2013-11-20

    We perform global three-dimensional (3D) radiation-hydrodynamics calculations of the envelopes surrounding young planetary cores of 5, 10, and 15 Earth masses, located in a protoplanetary disk at 5 and 10 AU from a solar-mass star. We apply a nested-grid technique to resolve the thermodynamics of the disk at the orbital-radius length scale and that of the envelope at the core-radius length scale. The gas is modeled as a solar mixture of molecular and atomic hydrogen, helium, and their ions. The equation of state accounts for both gas and radiation, and gas energy includes contributions from rotational and vibrational states of molecular hydrogen and from ionization of atomic species. Dust opacities are computed from first principles, applying the full Mie theory. One-dimensional (1D) calculations of planet formation are used to supplement the 3D calculations by providing energy deposition rates in the envelope due to solids accretion. We compare 1D and 3D envelopes and find that masses and gas accretion rates agree within factors of 2, and so do envelope temperatures. The trajectories of passive tracers are used to define the size of 3D envelopes, resulting in radii much smaller than the Hill radius and smaller than the Bondi radius. The moments of inertia and angular momentum of the envelopes are determined and the rotation rates are derived from the rigid-body approximation, resulting in slow bulk rotation. We find that the polar flattening is ≲ 0.05. The dynamics of the accretion flow are examined by tracking the motion of tracers that move into the envelope. The anisotropy of this flow is characterized in terms of both its origin and impact site at the envelope surface. Gas merges with the envelope preferentially at mid- to high latitudes.

  2. Formation of Overheated Regions and Truncated Disks around Black Holes: Three-dimensional General Relativistic Radiation-magnetohydrodynamics Simulations

    NASA Astrophysics Data System (ADS)

    Takahashi, Hiroyuki R.; Ohsuga, Ken; Kawashima, Tomohisa; Sekiguchi, Yuichiro

    2016-07-01

    Using three-dimensional general relativistic radiation-magnetohydrodynamics simulations of accretion flows around stellar mass black holes, we report that the relatively cold disk (≳ {10}7 {{K}}) is truncated near the black hole. Hot and less dense regions, of which the gas temperature is ≳ {10}9 {{K}} and more than 10 times higher than the radiation temperature (overheated regions), appear within the truncation radius. The overheated regions also appear above as well as below the disk, sandwiching the cold disk, leading to the effective Compton upscattering. The truncation radius is ∼ 30{r}{{g}} for \\dot{M}∼ {L}{{Edd}}/{c}2, where {r}{{g}},\\dot{M},{L}{Edd},c are the gravitational radius, mass accretion rate, Eddington luminosity, and light speed, respectively. Our results are consistent with observations of a very high state, whereby the truncated disk is thought to be embedded in the hot rarefied regions. The truncation radius shifts inward to ∼ 10{r}{{g}} with increasing mass accretion rate \\dot{M}∼ 100{L}{{Edd}}/{c}2, which is very close to an innermost stable circular orbit. This model corresponds to the slim disk state observed in ultraluminous X-ray sources. Although the overheated regions shrink if the Compton cooling effectively reduces the gas temperature, the sandwich structure does not disappear at the range of \\dot{M}≲ 100{L}{{Edd}}/{c}2. Our simulations also reveal that the gas temperature in the overheated regions depends on black hole spin, which would be due to efficient energy transport from black hole to disks through the Poynting flux, resulting in gas heating.

  3. Formation of Overheated Regions and Truncated Disks around Black Holes: Three-dimensional General Relativistic Radiation-magnetohydrodynamics Simulations

    NASA Astrophysics Data System (ADS)

    Takahashi, Hiroyuki R.; Ohsuga, Ken; Kawashima, Tomohisa; Sekiguchi, Yuichiro

    2016-07-01

    Using three-dimensional general relativistic radiation-magnetohydrodynamics simulations of accretion flows around stellar mass black holes, we report that the relatively cold disk (≳ {10}7 {{K}}) is truncated near the black hole. Hot and less dense regions, of which the gas temperature is ≳ {10}9 {{K}} and more than 10 times higher than the radiation temperature (overheated regions), appear within the truncation radius. The overheated regions also appear above as well as below the disk, sandwiching the cold disk, leading to the effective Compton upscattering. The truncation radius is ˜ 30{r}{{g}} for \\dot{M}˜ {L}{{Edd}}/{c}2, where {r}{{g}},\\dot{M},{L}{Edd},c are the gravitational radius, mass accretion rate, Eddington luminosity, and light speed, respectively. Our results are consistent with observations of a very high state, whereby the truncated disk is thought to be embedded in the hot rarefied regions. The truncation radius shifts inward to ˜ 10{r}{{g}} with increasing mass accretion rate \\dot{M}˜ 100{L}{{Edd}}/{c}2, which is very close to an innermost stable circular orbit. This model corresponds to the slim disk state observed in ultraluminous X-ray sources. Although the overheated regions shrink if the Compton cooling effectively reduces the gas temperature, the sandwich structure does not disappear at the range of \\dot{M}≲ 100{L}{{Edd}}/{c}2. Our simulations also reveal that the gas temperature in the overheated regions depends on black hole spin, which would be due to efficient energy transport from black hole to disks through the Poynting flux, resulting in gas heating.

  4. Comparison of three dimensional conformal radiation therapy, intensity modulated radiation therapy and volumetric modulated arc therapy for low radiation exposure of normal tissue in patients with prostate cancer.

    PubMed

    Cakir, Aydin; Akgun, Zuleyha; Fayda, Merdan; Agaoglu, Fulya

    2015-01-01

    Radiotherapy has an important role in the treatment of prostate cancer. Three-dimensional conformal radiation therapy (3D-CRT), intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) techniques are all applied for this purpose. However, the risk of secondary radiation-induced bladder cancer is significantly elevated in irradiated patients compared surgery-only or watchful waiting groups. There are also reports of risk of secondary cancer with low doses to normal tissues. This study was designed to compare received volumes of low doses among 3D-CRT, IMRT and VMAT techniques for prostate patients. Ten prostate cancer patients were selected retrospectively for this planning study. Treatment plans were generated using 3D-CRT, IMRT and VMAT techniques. Conformity index (CI), homogenity index (HI), receiving 5 Gy of the volume (V5%), receiving 2 Gy of the volume (V2%), receiving 1 Gy of the volume (V1%) and monitor units (MUs) were compared. This study confirms that VMAT has slightly better CI while thev olume of low doses was higher. VMAT had lower MUs than IMRT. 3D-CRT had the lowest MU, CI and HI. If target coverage and normal tissue sparing are comparable between different treatment techniques, the risk of second malignancy should be a important factor in the selection of treatment. PMID:25921146

  5. Phase I Study of Concurrent High-Dose Three-Dimensional Conformal Radiotherapy With Chemotherapy Using Cisplatin and Vinorelbine for Unresectable Stage III Non-Small-Cell Lung Cancer

    SciTech Connect

    Sekine, Ikuo; Sumi, Minako; Ito, Yoshinori; Horinouchi, Hidehito; Nokihara, Hiroshi; Yamamoto, Noboru; Kunitoh, Hideo; Ohe, Yuichiro; Kubota, Kaoru; Tamura, Tomohide

    2012-02-01

    Purpose: To determine the maximum tolerated dose in concurrent three-dimensional conformal radiotherapy (3D-CRT) with chemotherapy for unresectable Stage III non-small-cell lung cancer (NSCLC). Patients and Methods: Eligible patients with unresectable Stage III NSCLC, age {>=}20 years, performance status 0-1, percent of volume of normal lung receiving 20 GY or more (V{sub 20}) {<=}30% received three to four cycles of cisplatin (80 mg/m{sup 2} Day 1) and vinorelbine (20 mg/m{sup 2} Days 1 and 8) repeated every 4 weeks. The doses of 3D-CRT were 66 Gy, 72 Gy, and 78 Gy at dose levels 1 to 3, respectively. Results: Of the 17, 16, and 24 patients assessed for eligibility, 13 (76%), 12 (75%), and 6 (25%) were enrolled at dose levels 1 to 3, respectively. The main reasons for exclusion were V{sub 20} >30% (n = 10) and overdose to the esophagus (n = 8) and brachial plexus (n = 2). There were 26 men and 5 women, with a median age of 60 years (range, 41-75). The full planned dose of radiotherapy could be administered to all the patients. Grade 3-4 neutropenia and febrile neutropenia were noted in 24 (77%) and 5 (16%) of the 31 patients, respectively. Grade 4 infection, Grade 3 esophagitis, and Grade 3 pulmonary toxicity were noted in 1 patient, 2 patients, and 1 patient, respectively. The dose-limiting toxicity was noted in 17% of the patients at each dose level. The median survival and 3-year and 4-year survival rates were 41.9 months, 72.3%, and 49.2%, respectively. Conclusions: 72 Gy was the maximum dose that could be achieved in most patients, given the predetermined normal tissue constraints.

  6. External beam radiation therapy followed by high-dose-rate brachytherapy for inoperable superficial esophageal carcinoma

    SciTech Connect

    Pasquier, David . E-mail: d-pasquier@o-lambret.fr; Mirabel, Xavier; Adenis, Antoine; Rezvoy, Nicolas; Hecquet, Genevieve; Fournier, Charles; Coche-Dequeant, Bernard; Prevost, Bernard; Castelain, Bernard; Lartigau, Eric

    2006-08-01

    Purpose: The aim of this study was to retrospectively evaluate the feasibility, efficacy, and tolerance of external beam radiotherapy followed by high-dose-rate brachytherapy in inoperable patients with superficial esophageal cancer. Patients and Methods: From November 1992 to May 1999, 66 patients with superficial esophageal cancer were treated with exclusive radiotherapy. The median age was 60 years (range, 41-85). Fifty-three percent of them were ineligible for surgery owing to synchronous or previously treated head-and-neck cancer. Most of the patients (n = 49) were evaluated with endoscopic ultrasonography (EUS) or computed tomography (CT). The mean doses of external beam radiotherapy and high-dose rate brachytherapy were 57.1 Gy ({+-}4.83) and 8.82 Gy ({+-}3.98), respectively. The most frequently used regimen was 60 Gy followed by 7 Gy at 5 mm depth in two applications. Results: Among patients evaluated with EUS or CT, the complete response rate was 98%. The 3-, 5-, and 7-year survival rates were 57.9%, 35.6%, and 26.6%, respectively. Median overall survival was 3.8 years. The 5-year relapse-free survival and cause-specific survival were 54.6% and 76.9%. The 5-year overall, relapse-free, and cause-specific survival of the whole population of 66 patients was 33%, 53%, and 77%, respectively. Local failure occurred in 15 of 66 patients; 6 were treated with brachytherapy. Severe late toxicity (mostly esophageal stenosis) rated according to the Radiation Therapy Oncology Group/European Organization for Research and Treatment of Cancer scale occurred in 6 of 66 patients (9%). Conclusion: This well tolerated regimen may be a therapeutic alternative for inoperable patients with superficial esophageal cancer. Only a randomized study could be able to check the potential benefit of brachytherapy after external beam radiation in superficial esophageal cancer.

  7. Adaptive Iterative Dose Reduction Using Three Dimensional Processing (AIDR3D) Improves Chest CT Image Quality and Reduces Radiation Exposure

    PubMed Central

    Yamashiro, Tsuneo; Miyara, Tetsuhiro; Honda, Osamu; Kamiya, Hisashi; Murata, Kiyoshi; Ohno, Yoshiharu; Tomiyama, Noriyuki; Moriya, Hiroshi; Koyama, Mitsuhiro; Noma, Satoshi; Kamiya, Ayano; Tanaka, Yuko; Murayama, Sadayuki

    2014-01-01

    Objective To assess the advantages of Adaptive Iterative Dose Reduction using Three Dimensional Processing (AIDR3D) for image quality improvement and dose reduction for chest computed tomography (CT). Methods Institutional Review Boards approved this study and informed consent was obtained. Eighty-eight subjects underwent chest CT at five institutions using identical scanners and protocols. During a single visit, each subject was scanned using different tube currents: 240, 120, and 60 mA. Scan data were converted to images using AIDR3D and a conventional reconstruction mode (without AIDR3D). Using a 5-point scale from 1 (non-diagnostic) to 5 (excellent), three blinded observers independently evaluated image quality for three lung zones, four patterns of lung disease (nodule/mass, emphysema, bronchiolitis, and diffuse lung disease), and three mediastinal measurements (small structure visibility, streak artifacts, and shoulder artifacts). Differences in these scores were assessed by Scheffe's test. Results At each tube current, scans using AIDR3D had higher scores than those without AIDR3D, which were significant for lung zones (p<0.0001) and all mediastinal measurements (p<0.01). For lung diseases, significant improvements with AIDR3D were frequently observed at 120 and 60 mA. Scans with AIDR3D at 120 mA had significantly higher scores than those without AIDR3D at 240 mA for lung zones and mediastinal streak artifacts (p<0.0001), and slightly higher or equal scores for all other measurements. Scans with AIDR3D at 60 mA were also judged superior or equivalent to those without AIDR3D at 120 mA. Conclusion For chest CT, AIDR3D provides better image quality and can reduce radiation exposure by 50%. PMID:25153797

  8. Identifying cell and molecular stress after radiation in a three-dimensional (3-D) model of oral mucositis

    SciTech Connect

    Lambros, Maria Polikandritou; Parsa, Cyrus; Mulamalla, HariChandana; Orlando, Robert; Lau, Bernard; Huang, Ying; Pon, Doreen; Chow, Moses

    2011-02-04

    Research highlights: {yields} We irradiated a 3-D human oral cell culture of keratinocytes and fibroblasts with 12 and 2 Gy. {yields} 6 h after irradiation the histopathology and apoptosis of the 3-D culture were evaluated. Microarrays were used to assess the gene expression in the irradiated 3-D tissue. {yields} 12 Gy induced significant histopathologic changes and cellular apoptosis. {yields} 12 Gy significantly affected genes of the NF-kB pathway, inflammatory cytokines and DAMPs. -- Abstract: Mucositis is a debilitating adverse effect of chemotherapy and radiation treatment. It is important to develop a simple and reliable in vitro model, which can routinely be used to screen new drugs for prevention and treatment of mucositis. Furthermore, identifying cell and molecular stresses especially in the initiation phase of mucositis in this model will help towards this end. We evaluated a three-dimensional (3-D) human oral cell culture that consisted of oral keratinocytes and fibroblasts as a model of oral mucositis. The 3-D cell culture model was irradiated with 12 or 2 Gy. Six hours after the irradiation we evaluated microscopic sections of the cell culture for evidence of morphologic changes including apoptosis. We used microarrays to compare the expression of several genes from the irradiated tissue with identical genes from tissue that was not irradiated. We found that irradiation with 12 Gy induced significant histopathologic effects including cellular apoptosis. Irradiation significantly affected the expression of several genes of the NF-kB pathway and several inflammatory cytokines, such as IL-1B, 1L-8, NF-kB1, and FOS compared to tissue that was not irradiated. We identified significant upregulation of several genes that belong to damage-associated molecular patterns (DAMPs) such as HMB1, S100A13, SA10014, and SA10016 in the 3-D tissues that received 12 Gy but not in tissues that received 2 Gy. In conclusion, this model quantifies radiation damage and this

  9. High doses of gamma radiation suppress allergic effect induced by food lectin

    NASA Astrophysics Data System (ADS)

    Vaz, Antônio F. M.; Souza, Marthyna P.; Vieira, Leucio D.; Aguiar, Jaciana S.; Silva, Teresinha G.; Medeiros, Paloma L.; Melo, Ana M. M. A.; Silva-Lucca, Rosemeire A.; Santana, Lucimeire A.; Oliva, Maria L. V.; Perez, Katia R.; Cuccovia, Iolanda M.; Coelho, Luana C. B. B.; Correia, Maria T. S.

    2013-04-01

    One of the most promising areas for the development of functional foods lies in the development of effective methods to reduce or eliminate food allergenicity, but few reports have summarized information concerning the progress made with food irradiation. In this study, we investigated the relationship between allergenicity and molecular structure of a food allergen after gamma irradiation and evaluate the profile of the allergic response to irradiated allergens. Cramoll, a lectin isolated from a bean and used as a food allergen, was irradiated and the possible structural changes were accompanied by spectrofluorimetry, circular dichroism and microcalorimetry. Subsequently, sensitized animals subjected to intragastric administration of non-irradiated and irradiated Cramoll were treated for 7 days. Then, body weight, leukocytes, cytokine profiles and histological parameters were also determined. Cramoll showed complete inhibition of intrinsic activity after high radiation doses. Changes in fluorescence and CD spectra with a simultaneous collapse of the tertiary structure followed by a pronounced decrease of native secondary structure were observed after irradiation. After oral challenge, sensitized mice demonstrate an association between Cramoll intake, body weight loss, eosinophilia, lymphocytic infiltrate in the gut and Eotaxin secretion. Irradiation significantly reduces, according to the dose, the effects observed by non-irradiated food allergens. We confirm that high-dose radiation may render protein food allergens innocuous by irreversibly compromising their molecular structure.

  10. Skin wound trauma, following high-dose radiation exposure, amplifies and prolongs skeletal tissue loss.

    PubMed

    Swift, Joshua M; Swift, Sibyl N; Smith, Joan T; Kiang, Juliann G; Allen, Matthew R

    2015-12-01

    The present study investigated the detrimental effects of non-lethal, high-dose (whole body) γ-irradiation on bone, and the impact that radiation combined with skin trauma (i.e. combined injury) has on long-term skeletal tissue health. Recovery of bone after an acute dose of radiation (RI; 8 Gy), skin wounding (15-20% of total body skin surface), or combined injury (RI+Wound; CI) was determined 3, 7, 30, and 120 days post-irradiation in female B6D2F1 mice and compared to non-irradiated mice (SHAM) at each time-point. CI mice demonstrated long-term (day 120) elevations in serum TRAP 5b (osteoclast number) and sclerostin (bone formation inhibitor), and suppression of osteocalcin levels through 30 days as compared to SHAM (p<0.05). Radiation-induced reductions in distal femur trabecular bone volume fraction and trabecular number through 120 days post-exposure were significantly greater than non-irradiated mice (p<0.05) and were exacerbated in CI mice by day 30 (p<0.05). Negative alterations in trabecular bone microarchitecture were coupled with extended reductions in cancellous bone formation rate in both RI and CI mice as compared to Sham (p<0.05). Increased osteoclast surface in CI animals was observed for 3 days after irradiation and remained elevated through 120 days (p<0.01). These results demonstrate a long-term, exacerbated response of bone to radiation when coupled with non-lethal wound trauma. Changes in cancellous bone after combined trauma were derived from extended reductions in osteoblast-driven bone formation and increases in osteoclast activity. PMID:26335157

  11. High-Dose-Rate Intraoperative Radiation Therapy for Recurrent Head-and-Neck Cancer

    SciTech Connect

    Perry, David J.; Chan, Kelvin; Wolden, Suzanne; Zelefsky, Michael J.; Chiu, Johnny; Cohen, Gilad; Zaider, Marco; Kraus, Dennis; Shah, Jatin; Lee, Nancy

    2010-03-15

    Purpose: To report the use of high-dose-rate intraoperative radiation therapy (HDR-IORT) for recurrent head-and-neck cancer (HNC) at a single institution. Methods and Materials: Between July 1998 and February 2007, 34 patients with recurrent HNC received 38 HDR-IORT treatments using a Harrison-Anderson-Mick applicator with Iridium-192. A single fraction (median, 15 Gy; range, 10-20 Gy) was delivered intraoperatively after surgical resection to the region considered at risk for close or positive margins. In all patients, the target region was previously treated with external beam radiation therapy (median dose, 63 Gy; range, 24-74 Gy). The 1- and 2-year estimates for in-field local progression-free survival (LPFS), locoregional progression-free survival (LRPFS), distant metastases-free survival (DMFS), and overall survival (OS) were calculated. Results: With a median follow-up for surviving patients of 23 months (range, 6-54 months), 8 patients (24%) are alive and without evidence of disease. The 1- and 2-year LPFS rates are 66% and 56%, respectively, with 13 (34%) in-field recurrences. The 1- and 2-year DMFS rates are 81% and 62%, respectively, with 10 patients (29%) developing distant failure. The 1- and 2-year OS rates are 73% and 55%, respectively, with a median time to OS of 24 months. Severe complications included cellulitis (5 patients), fistula or wound complications (3 patients), osteoradionecrosis (1 patient), and radiation-induced trigeminal neuralgia (1 patient). Conclusions: HDR-IORT has shown encouraging local control outcomes in patients with recurrent HNC with acceptable rates of treatment-related morbidity. Longer follow-up with a larger cohort of patients is needed to fully assess the benefit of this procedure.

  12. Optically erasable samarium-doped fluorophosphate glasses for high-dose measurements in microbeam radiation therapy

    NASA Astrophysics Data System (ADS)

    Morrell, B.; Okada, G.; Vahedi, S.; Koughia, C.; Edgar, A.; Varoy, C.; Belev, G.; Wysokinski, T.; Chapman, D.; Sammynaiken, R.; Kasap, S. O.

    2014-02-01

    Previous work has demonstrated that fluorophosphate (FP) glasses doped with trivalent samarium (Sm3+) can be used as a dosimetric detector in microbeam radiation therapy (MRT) to measure high radiation doses and large dose variations with a resolution in the micrometer range. The present work addresses the use of intense optical radiation at 405 nm to erase the recorded dose information in Sm3+-doped FP glass plates and examines the underlying physics. We have evaluated both the conversion and optical erasure of Sm3+-doped FP glasses using synchrotron-generated high-dose x-rays at the Canadian Light Source. The Sm-ion valency conversion is accompanied by the appearance of x-ray induced optical absorbance due to the trapping of holes and electrons into phosphorus-oxygen hole (POHC) and electron (POEC) capture centers. Nearly complete Sm2+ to Sm3+ reconversion (erasure) may be achieved by intense optical illumination. Combined analysis of absorbance and electron spin resonance measurements indicates that the optical illumination causes partial disappearance of the POHC and the appearance of new POEC. The suggested model for the observed phenomena is based on the release of electrons during the Sm2+ to Sm3+ reconversion process, the capture of these electrons by POHC (and hence their disappearance), or by PO groups, with the appearance of new and/or additional POEC. Optical erasure may be used as a practical means to erase the recorded data and permits the reuse of these Sm-doped FP glasses in monitoring dose in MRT.

  13. Optically erasable samarium-doped fluorophosphate glasses for high-dose measurements in microbeam radiation therapy

    SciTech Connect

    Morrell, B.; Okada, G.; Vahedi, S.; Koughia, C. Kasap, S. O.; Edgar, A.; Varoy, C.; Belev, G.; Wysokinski, T.; Chapman, D.; Sammynaiken, R.

    2014-02-14

    Previous work has demonstrated that fluorophosphate (FP) glasses doped with trivalent samarium (Sm{sup 3+}) can be used as a dosimetric detector in microbeam radiation therapy (MRT) to measure high radiation doses and large dose variations with a resolution in the micrometer range. The present work addresses the use of intense optical radiation at 405 nm to erase the recorded dose information in Sm{sup 3+}-doped FP glass plates and examines the underlying physics. We have evaluated both the conversion and optical erasure of Sm{sup 3+}-doped FP glasses using synchrotron-generated high-dose x-rays at the Canadian Light Source. The Sm-ion valency conversion is accompanied by the appearance of x-ray induced optical absorbance due to the trapping of holes and electrons into phosphorus-oxygen hole (POHC) and electron (POEC) capture centers. Nearly complete Sm{sup 2+} to Sm{sup 3+} reconversion (erasure) may be achieved by intense optical illumination. Combined analysis of absorbance and electron spin resonance measurements indicates that the optical illumination causes partial disappearance of the POHC and the appearance of new POEC. The suggested model for the observed phenomena is based on the release of electrons during the Sm{sup 2+} to Sm{sup 3+} reconversion process, the capture of these electrons by POHC (and hence their disappearance), or by PO groups, with the appearance of new and/or additional POEC. Optical erasure may be used as a practical means to erase the recorded data and permits the reuse of these Sm-doped FP glasses in monitoring dose in MRT.

  14. Genetic compensation of high dose radiation-induced damage in an anhydrobiotic insect

    NASA Astrophysics Data System (ADS)

    Gusev, Oleg; Nakahara, Yuichi; Sakashita, Tetsuya; Kikawada, Takahiro; Okuda, Takashi

    Anhydrobiotic larvae of African chironomid Polypedilum vanderplanki are known to show an extremely high tolerance against a range of stresses. The tolerance against various extreme environments exhibited by that insect might be due to being almost completely desiccated replacing water with trehalose, a state where little or no chemical reactions occur. From 2005 dried larvae of this insect are being used in a number of space experiments, both inside and outside of ISS as a model organism for estimation the limits of higher organisms' resistance to space environment stresses and long-term storage of the alive anhydrobiotic organisms during continues spaceflight. We have shown previously that both hydrated and dried larvae of Polypedilum vanderplanki have very higher tolerance against both highand low-linear energy transfer (LET), surviving after 7000Gy irradiation. It was suggested that the larvae would have effective DNA-reparation system in addition to artificial protection provided by glass-stage without water. In the present study we conducted analysis of stress-related gene expression in the larvae after 70-2000 Gy irradiations. Both DNA damage level and activity of DNA-reparation, anti-apoptotic and protein-damage related genes were analyzed. Direct visualization of DNA damage in the larvae fat body cells using Comet Assay showed that fragmented by radiation DNA is re-arranged within 76-98 hours after exposure. We found that massive overexpression of hsp and anti-oxidant genes occur in larvae entering anhydrobiosis , and provides refolding of proteins after rehydration. In the irradiated larvae overexpression of DNA-reparation enzymes anti-apoptotic genes was confirmed, suggesting that survival after high-dose irradiation is a result of combination of highly effective blocking of entering the apoptosis after severe DNA damage and DNA reparation.

  15. Mixed convection radiative flow of three dimensional Maxwell fluid over an inclined stretching sheet in presence of thermophoresis and convective condition

    SciTech Connect

    Ashraf, M. Bilal; Hayat, T.; Shehzad, S. A.; Alsaedi, A.

    2015-02-15

    Three dimensional radiative flow of Maxwell fluid over an inclined stretching surface with convective boundary condition is investigated. Heat and mass transfer analysis is taken into account with thermophoresis effects. Similarity transformations are utilized to reduce the partial differential equations into ordinary differential equations. Series solutions of velocity, temperature and concentration are developed. Influence of different parameters Biot number, therrmophoretic parameter, Deborah number, ratio parameter, inclined stretching angle, radiation parameter, mixed convection parameter and concentration buoyancy parameter on the non-dimensional velocity components, temperature and concentration are plotted and discussed in detail. Physical quantities of interests are tabulated and examined.

  16. A numerical study of three-dimensional flame propagation over thin solids in purely forced concurrent flow including gas-phase radiation

    NASA Astrophysics Data System (ADS)

    Feier, Ioan I., Jr.

    The effect of flame radiation on concurrent-flow flame spread over a thin solid sample of finite width in a low-speed wind tunnel is modeled using three-dimensional full Navier-Stokes equations and three-dimensional flame radiation transfer equations. The formulation includes the conservation of mass, momentum, energy, and species: fuel vapor, oxygen, carbon dioxide and water vapor. The SN discrete ordinates method is used to solve the radiation transfer equation with a mean absorption coefficient kappa = Ckappa p, where kappap is the Planck mean absorption coefficient of the gas mixture. The varying parameter C has a value between 0 and 1; C represents the strength of flame radiation. In addition, the solid fuel absorptivity alpha is varied to ascertain the effect of flame radiation heat feedback to the solid. The flow tunnel modeled has a dimension of 10x10x30 cm, the solid fuel has a width of 6-cm with two 1-cm inert strips as edges. Incoming forced flow velocity (5 cm/s) of 21% oxygen is assumed. For comparison with the three-dimensional results, corresponding two-dimensional computations are also performed. Detailed spatial flame profiles, solid surface profiles, and heat fluxes are presented. Increasing the flame radiation strength decreases the flame length. Although flame radiation provides an additional heat transfer mechanism to preheat the solid, it is insufficient to offset the decreased convective heating due to the shorter flame; the net effect is a slower spread rate. The percentage of unreacted fuel vapor that escapes from the flame is under 2%. It is theorized that some of the pyrolyzed fuel vapor diffuses sideway and reacts at the flame edges. A radiative energy balance is analyzed also. Flame radiative feedback to the solid plays a more important role in two-dimensional flames. With high solid fuel absorptivity, a peak in the flame spread rate occurs at an intermediate value of flame radiation strength---due to the competition between two

  17. Monte Carlo Study of Radiation Dose Enhancement by Gadolinium in Megavoltage and High Dose Rate Radiotherapy

    PubMed Central

    Zhang, Daniel G.; Feygelman, Vladimir; Moros, Eduardo G.; Latifi, Kujtim; Zhang, Geoffrey G.

    2014-01-01

    MRI is often used in tumor localization for radiotherapy treatment planning, with gadolinium (Gd)-containing materials often introduced as a contrast agent. Motexafin gadolinium is a novel radiosensitizer currently being studied in clinical trials. The nanoparticle technologies can target tumors with high concentration of high-Z materials. This Monte Carlo study is the first detailed quantitative investigation of high-Z material Gd-induced dose enhancement in megavoltage external beam photon therapy. BEAMnrc, a radiotherapy Monte Carlo simulation package, was used to calculate dose enhancement as a function of Gd concentration. Published phase space files for the TrueBeam flattening filter free (FFF) and conventional flattened 6MV photon beams were used. High dose rate (HDR) brachytherapy with Ir-192 source was also investigated as a reference. The energy spectra difference caused a dose enhancement difference between the two beams. Since the Ir-192 photons have lower energy yet, the photoelectric effect in the presence of Gd leads to even higher dose enhancement in HDR. At depth of 1.8 cm, the percent mean dose enhancement for the FFF beam was 0.38±0.12, 1.39±0.21, 2.51±0.34, 3.59±0.26, and 4.59±0.34 for Gd concentrations of 1, 5, 10, 15, and 20 mg/mL, respectively. The corresponding values for the flattened beam were 0.09±0.14, 0.50±0.28, 1.19±0.29, 1.68±0.39, and 2.34±0.24. For Ir-192 with direct contact, the enhanced were 0.50±0.14, 2.79±0.17, 5.49±0.12, 8.19±0.14, and 10.80±0.13. Gd-containing materials used in MRI as contrast agents can also potentially serve as radiosensitizers in radiotherapy. This study demonstrates that Gd can be used to enhance radiation dose in target volumes not only in HDR brachytherapy, but also in 6 MV FFF external beam radiotherapy, but higher than the currently used clinical concentration (>5 mg/mL) would be needed. PMID:25275550

  18. Three-dimensional visualization of morphology and ventilation procedure (air flow and diffusion) of a subdivision of the acinus using synchrotron radiation microtomography of the human lung specimens

    NASA Astrophysics Data System (ADS)

    Shimizu, Kenji; Ikura, Hirohiko; Ikezoe, Junpei; Nagareda, Tomofumi; Yagi, Naoto; Umetani, Keiji; Imai, Yutaka

    2004-04-01

    We have previously reported a synchrotron radiation (SR) microtomography system constructed at the bending magnet beamline at the SPring-8. This system has been applied to the lungs obtained at autopsy and inflated and fixed by Heitzman"s method. Normal lung and lung specimens with two different types of pathologic processes (fibrosis and emphysema) were included. Serial SR microtomographic images were stacked to yield the isotropic volumetric data with high-resolution (12 μm3 in voxel size). Within the air spaces of a subdivision of the acinus, each voxel is segmented three-dimensionally using a region growing algorithm ("rolling ball algorithm"). For each voxel within the segmented air spaces, two types of voxel coding have been performed: single-seeded (SS) coding and boundary-seeded (BS) coding, in which the minimum distance from an initial point as the only seed point and all object boundary voxels as a seed set were calculated and assigned as the code values to each voxel, respectively. With these two codes, combinations of surface rendering and volume rendering techniques were applied to visualize three-dimensional morphology of a subdivision of the acinus. Furthermore, sequentially filling process of air into a subdivision of the acinus was simulated under several conditions to visualize the ventilation procedure (air flow and diffusion). A subdivision of the acinus was reconstructed three-dimensionally, demonstrating the normal architecture of the human lung. Significant differences in appearance of ventilation procedure were observed between normal and two pathologic processes due to the alteration of the lung architecture. Three-dimensional reconstruction of the microstructure of a subdivision of the acinus and visualization of the ventilation procedure (air flow and diffusion) with SR microtomography would offer a new approach to study the morphology, physiology, and pathophysiology of the human respiratory system.

  19. Transient radiation effects following high dose I-131 therapy for differentiated thyroid cancer (DTC)

    SciTech Connect

    Khan, S.; Waxman, A.; Ramanna, L.

    1994-05-01

    There is limited information regarding the incidence of post-I-131 therapeutic side effects in pts. undergoing high-dose I-131 therapy for DTC. The purpose of the current study is to characterize side effects experienced by patients following 150 mCi.

  20. Three-dimensional MHD boundary layer flow due to an axisymmetric shrinking sheet with radiation, viscous dissipation and heat source/sink

    NASA Astrophysics Data System (ADS)

    Madhu, M.; Balaswamy, B.; Kishan, N.

    2016-05-01

    An analysis is made to study a three dimensional MHD boundary layer flow and heat transfer due to a porous axisymmetric shrinking sheet. The governing partial differential equations of momentum and energy are transformed into self similar non-linear ordinary differential equations by using the suitable similarity transformations. These equations are, then solved by using the variational finite element method. The flow phenomena is characterised by the magnetic parameter M, suction parameter S, porosity parameter Kp, heat source/sink parameter Q, Prandtl number Pr, Eckert number Ec and radiation parameter Rd. The numerical results of the velocity and temperature profiles are obtained and displayed graphically.

  1. The Effectiveness of Intensity Modulated Radiation Therapy versus Three-Dimensional Radiation Therapy in Prostate Cancer: A Meta-Analysis of the Literatures

    PubMed Central

    Zheng, Tianying; Shi, Huashan; Liu, Yang; Feng, Shijian; Hao, Meiqin; Ye, Lei; Wu, Xueqian; Yang, Cheng

    2016-01-01

    Background and Purpose Intensity modulated radiation therapy (IMRT) can deliver higher doses with less damage of healthy tissues compared with three-dimensional radiation therapy (3DCRT). However, for the scenarios with better clinical outcomes for IMRT than 3DCRT in prostate cancer, the results remain ambiguous. We performed a meta-analysis to assess whether IMRT can provide better clinical outcomes in comparison with 3DCRT in patients diagnosed with prostate cancer. Materials and Methods We conducted a meta-analysis of 23 studies (n = 9556) comparing the clinical outcomes, including gastrointestinal (GI) toxicity, genitourinary (GU) toxicity, biochemical controland overall survival (OS). Results IMRT was significantly associated with decreased 2–4 grade acute GI toxicity [risk ratio (RR) = 0.59 (95% confidence interval (CI), 0.44, 0.78)], late GI toxicity [RR = 0.54, 95%CI (0.38, 0.78)], late rectal bleeding [RR = 0.48, 95%CI (0.27, 0.85)], and achieved better biochemical control[RR = 1.17, 95%CI (1.08, 1.27)] in comparison with 3DCRT. IMRT and 3DCRT remain the same in regard of grade 2–4 acute rectal toxicity [RR = 1.03, 95%CI (0.45, 2.36)], late GU toxicity [RR = 1.03, 95%CI (0.82, 1.30)] and overall survival [RR = 1.07, 95%CI (0.96, 1.19)], while IMRT slightly increased the morbidity of grade 2–4 acute GU toxicity [RR = 1.08, 95%CI (1.00, 1.17)]. Conclusions Although some bias cannot be ignored, IMRT appears to be a better choice for the treatment of prostate cancer when compared with 3DCRT. PMID:27171271

  2. Mechanism of action for anti-radiation vaccine in reducing the biological impact of high-dose gamma irradiation

    NASA Astrophysics Data System (ADS)

    Maliev, Vladislav; Popov, Dmitri; Jones, Jeffrey A.; Casey, Rachael C.

    Ionizing radiation is a major health risk of long-term space travel, the biological consequences of which include genetic and oxidative damage. In this study, we propose an original mechanism by which high doses of ionizing radiation induce acute toxicity. We identified biological components that appear in the lymphatic vessels shortly after high-dose gamma irradiation. These radiation-induced toxins, which we have named specific radiation determinants (SRD), were generated in the irradiated tissues and then circulated throughout the body via the lymph circulation and bloodstream. Depending on the type of SRD elicited, different syndromes of acute radiation sickness (ARS) were expressed. The SRDs were developed into a vaccine used to confer active immunity against acute radiation toxicity in immunologically naïve animals. Animals that were pretreated with SRDs exhibited resistance to lethal doses of gamma radiation, as measured by increased survival times and survival rates. In comparison, untreated animals that were exposed to similar large doses of gamma radiation developed acute radiation sickness and died within days. This phenomenon was observed in a number of mammalian species. Initial analysis of the biochemical characteristics indicated that the SRDs were large molecular weight (200-250 kDa) molecules that were comprised of a mixture of protein, lipid, carbohydrate, and mineral. Further analysis is required to further identify the SRD molecules and the biological mechanism by which they mediate the toxicity associated with acute radiation sickness. By doing so, we may develop an effective specific immunoprophylaxis as a countermeasure against the acute effects of ionizing radiation.

  3. Hit-size effectiveness theory applied to high doses of low LET radiation for pink mutations in Tradescantia

    SciTech Connect

    Varma, M.N.; Bond, V.P.; Matthews, G.

    1985-01-01

    A hit-size effectiveness function which represents the probability of inducing a pink mutation in Tradescantia as a function of lineal energy density has been obtained (1) using observed pink mutation data for seven different radiation qualities and their respective single event microdosimetric spectra. In obtaining this function only the linear portions of dose-response curves were used. A significant improvement of the concepts embodied in the proposed hit-size effectiveness theory would be the demonstration of its applicability at high doses (where multiple hits are produced) and high dose rates (at which no significant biological repair takes place). In this article details are given on preliminary calculations of the pink mutation frequency in Tradescantia at 1, 5, 10, 20, and 60 rads for 250 kVp x rays, using the multi-hit spectra and the hit-size effectiveness function obtained on the basis of single hit microdosimetric spectra as outline in (1). A comparison of the calculated and observed pink mutation frequencies indicate excellent agreement and suggests the possibility of obtaining the hit-size effectiveness function from high dose biological-effect data obtained using low-LET radiations. 6 refs., 3 figs., 3 tabs.

  4. Quantum-mechanical calculation of three-dimensional atom-diatom collisions in the presence of intense laser radiation

    NASA Technical Reports Server (NTRS)

    Devries, P. L.; George, T. F.

    1979-01-01

    A formalism is presented for describing the collision of fluorine with the hydrogen molecule in the presence of intense radiation. For a laser frequency on the order of the spin-orbit splitting of fluorine, the interaction of the molecular system with the radiation occurs at relatively long range where, for this system, the electric dipole is vanishingly small. Hence the interaction occurs due to the magnetic dipole coupling. Even so, at low collision energies a substantial enhancement of the quenching cross section is found for a radiation intensity of 10 to the 11th W/sq cm.

  5. High-dose radiation improved local tumor control and overall survival in patients with inoperable/unresectable non-small-cell lung cancer: Long-term results of a radiation dose escalation study

    SciTech Connect

    Kong, F.-M. . E-mail: Fengkong@med.umich.edu; Haken, Randall K. ten; Schipper, Matthew J.; Sullivan, Molly A.; Chen, Ming; Lopez, Carlos; Kalemkerian, Gregory P.; Hayman, James A.

    2005-10-01

    Purpose: To determine whether high-dose radiation leads to improved outcomes in patients with non-small-cell lung cancer (NSCLC). Methods and Materials: This analysis included 106 patients with newly diagnosed or recurrent Stages I-III NSCLC, treated with 63-103 Gy in 2.1-Gy fractions, using three-dimensional conformal radiation therapy (3D-CRT) per a dose escalation trial. Targets included the primary tumor and any lymph nodes {>=}1 cm, without intentionally including negative nodal regions. Nineteen percent of patients (20/106) received neoadjuvant chemotherapy. Patient, tumor, and treatment factors were evaluated for association with outcomes. Estimated median follow-up was 8.5 years. Results: Median survival was 19 months, and 5-year overall survival (OS) was 13%. Multivariate analysis revealed weight loss (p = 0.011) and radiation dose (p = 0.0006) were significant predictors for OS. The 5-year OS was 4%, 22%, and 28% for patients receiving 63-69, 74-84, and 92-103 Gy, respectively. Although presence of nodal disease was negatively associated with locoregional control under univariate analysis, radiation dose was the only significant predictor when multiple variables were included (p = 0.015). The 5-year control rate was 12%, 35%, and 49% for 63-69, 74-84, and 92-103 Gy, respectively. Conclusions: Higher dose radiation is associated with improved outcomes in patients with NSCLC treated in the range of 63-103 Gy.

  6. Development and testing of gallium arsenide photoconductive detectors for ultra-fast, high dose rate electron and photon radiation measurements

    NASA Astrophysics Data System (ADS)

    Kharashvili, George

    Real time radiation dose measurements often present a challenge in high dose rate environments, like those needed for testing survivability of electronic devices or biological agents. Dosimetry needs at particle accelerator facilities require development of devices with fast (tens of picoseconds or less) response to pulsed radiation, linear response over a wide range of dose rates (up to 1011 Gy/s), high resistance to radiation damage, and successful operation in mixed gamma and neutron environments. Gallium arsenide photoconductive detectors (GaAs PCDs) have been shown to exhibit many of these desirable characteristics, especially the fast time response, when neutron irradiation is used to introduce displacement damage in the crystalline lattice of GaAs, hence improving the time response characteristics of the devices at the expense of their sensitivity. The objective of this project was to develop and test GaAs PCDs for ultra fast, high dose rate electron and bremsstrahlung radiation measurements. Effects of neutron pre-irradiation and detector size on the PCD properties were also investigated. GaAs PCDs with three different neutron irradiation levels (0, ˜1014, and 5 x 1015 n/cm 2 (1-MeV equivalent in GaAs) were fabricated. The devices were tested with 7, 20 and 38-MeV electron pulses produced by linear accelerators operating at the L-band frequency of 1.3-GHz and the S-band frequency of 2.8-GHz. In addition, detector responses at high dose rates were tested with 33-ns wide, 7-MeV maximum energy bremsstrahlung pulses produced by a pulse-power accelerator. The time response characteristics and the dose-rate ranges of application of the GaAs PCDs were determined. Several operational issues were identified. Recommendations on how to improve the PCD fabrication procedure and diagnostic capabilities for the high intensity radiation research are also discussed.

  7. Using synchrotron radiation inline phase-contrast imaging computed tomography to visualize three-dimensional printed hybrid constructs for cartilage tissue engineering.

    PubMed

    Olubamiji, Adeola D; Izadifar, Zohreh; Zhu, Ning; Chang, Tuanjie; Chen, Xiongbiao; Eames, B Frank

    2016-05-01

    Synchrotron radiation inline phase-contrast imaging combined with computed tomography (SR-inline-PCI-CT) offers great potential for non-invasive characterization and three-dimensional visualization of fine features in weakly absorbing materials and tissues. For cartilage tissue engineering, the biomaterials and any associated cartilage extracellular matrix (ECM) that is secreted over time are difficult to image using conventional absorption-based imaging techniques. For example, three-dimensional printed polycaprolactone (PCL)/alginate/cell hybrid constructs have low, but different, refractive indices and thicknesses. This paper presents a study on the optimization and utilization of inline-PCI-CT for visualizing the components of three-dimensional printed PCL/alginate/cell hybrid constructs for cartilage tissue engineering. First, histological analysis using Alcian blue staining and immunofluorescent staining assessed the secretion of sulfated glycosaminoglycan (GAGs) and collagen type II (Col2) in the cell-laden hybrid constructs over time. Second, optimization of inline PCI-CT was performed by investigating three sample-to-detector distances (SDD): 0.25, 1 and 3 m. Then, the optimal SDD was utilized to visualize structural changes in the constructs over a 42-day culture period. The results showed that there was progressive secretion of cartilage-specific ECM by ATDC5 cells in the hybrid constructs over time. An SDD of 3 m provided edge-enhancement fringes that enabled simultaneous visualization of all components of hybrid constructs in aqueous solution. Structural changes that might reflect formation of ECM also were evident in SR-inline-PCI-CT images. Summarily, SR-inline-PCI-CT images captured at the optimized SDD enables visualization of the different components in hybrid cartilage constructs over a 42-day culture period. PMID:27140161

  8. Evidence for Three-Dimensional Radiative Effects in MODIS Cloud Optical Depths Retrieved at Back Scattering View Angles

    NASA Technical Reports Server (NTRS)

    Varnai, Tamas; Marshak, Alexander

    2003-01-01

    This study addresses the question whether 1D radiative transfer theory describes well the angular distribution of shortwave cloud reflection. The statistical analysis of a large set of MODIS observations indicates that in oblique backward scattering directions, cloud reflection is stronger than 1D theory would predict. After considering a variety of possible causes, the paper concludes that the most likely reason for the increase lies in 3D radiative interactions. The results' main implication is that cloud optical depths retrieved at back scattering view angles larger than about 50 degrees tend to be overestimated and should be used only with great caution.

  9. Three-dimensional inhomogeneous rain fields: implications for the distribution of intensity and polarization of the microwave thermal radiation.

    NASA Astrophysics Data System (ADS)

    Ilyushin, Yaroslaw; Kutuza, Boris

    Observations and mapping of the upwelling thermal radiation of the Earth is the very promising remote sensing technique for the global monitoring of the weather and precipitations. For reliable interpretation of the observation data, numerical model of the microwave radiative transfer in the precipitating atmosphere is necessary. In the present work, numerical simulations of thermal microwave radiation in the rain have been performed at three wavelengths (3, 8 and 22 mm). Radiative properties of the rain have been simulated using public accessible T-matrix codes (Mishchenko, Moroz) for non-spherical particles of fixed orientation and realistic raindrop size distributions (Marshall-Palmer) within the range of rain intensity 1-100 mm/h. Thermal radiation of infinite flat slab medium and isolated rain cell of kilometer size has been simulated with finite difference scheme for the vectorial radiative transfer equation (VRTE) in dichroic scattering medium. Principal role of cell structure of the rain field in the formation of angular and spatial distribution of the intensity and polarization of the upwelling thermal radiation has been established. Possible approaches to interpretation of satellite data are also discussed. It is necessary that spatial resolution of microwave radiometers be less than rain cell size. At the present time the resolution is approximately 15 km. It can be considerably improved, for example by two-dimensional synthetic aperture millimeter-wave radiometric interferometer for measuring full-component Stokes vector of emission from hydrometeors. The estimates show that in millimeter band it is possible to develop such equipment with spatial resolution of the order of 1-2 km, which is significantly less than the size of rain cell, with sensitivity 0.3-0.5 K. Under this condition the second Stokes parameter may by successfully measured and may be used for investigation of precipitation regions. Y-shaped phased array antenna is the most promising to

  10. Three-dimensional, two-species magnetohydrodynamic studies of the early time behaviors of the Combined Release and Radiation Effects Satellite G2 barium release

    SciTech Connect

    Xie, Lianghai Li, Lei; Wang, Jingdong; Zhang, Yiteng

    2014-04-15

    We present a three-dimensional, two-species (Ba{sup +} and H{sup +}) MHD model to study the early time behaviors of a barium release at about 1 R{sub E} like Combined Release and Radiation Effects Satellite G2, with emphasis placed on the three-dimensional evolution of the barium cloud and its effects on the ambient plasma environment. We find that the perturbations caused by the cloud are the combined results of the initial injection, the radial expansion, and the diamagnetic effect and propagate as fast MHD waves in the magnetosphere. In return, the transverse expansion and the cross-B motion of barium ions are constrained by the magnetic force, which lead to a field-aligned striation of ions and the decoupling of these ions from the neutrals. Our simulation shows the formation and collapse of the diamagnetic cavity in the barium cloud. The estimated time scale for the cavity evolution might be much shorter if photoionization time scale and field aligned expansion of barium ions are considered. In addition, our two species MHD simulation also finds the snowplow effect resulting from the momentum coupling between barium ions and background H{sup +}, which creates density hole and bumps in the background H{sup +} when barium ions expanding along the magnetic field lines.

  11. Three-dimensional sonoembryology.

    PubMed

    Benoit, Bernard; Hafner, Tomislav; Kurjak, Asim; Kupesić, Sanja; Bekavac, Ivanka; Bozek, Tomislav

    2002-01-01

    Three-dimensional (3D) ultrasound plays an important role in obstetrics, predominantly for assessing fetal anatomy. Presenting volume data in a standard anatomic orientation valuably assists both ultrasonographers and pregnant patients to recognize the anatomy more readily. Three-dimensional ultrasound is advantageous in studying normal embryonic and/or fetal development, as well as providing information for families at risk for specific congenital anomalies by confirming normality. This method offers advantages in assessing the embryo in the first trimester due to its ability to obtain multiplanar images through endovaginal volume acquisition. Rotation allows the systematic review of anatomic structures and early detection of fetal anomalies. Three-dimensional ultrasound imaging in vivo compliments pathologic and histologic evaluation of the developing embryo, giving rise to a new term: 3D sonoembryology. Rapid technological development will allow real-time 3D ultrasound to provide improved and expanded patient care on the one side, and increased knowledge of developmental anatomy on the other. PMID:11933658

  12. High-Dose Radiation May Be No Better for Low-Risk Prostate Cancer

    MedlinePlus

    ... Radiation May Be No Better for Low-Risk Prostate Cancer Study finds no benefits in disease progression, survival ... doses of radiation may not benefit low-risk prostate cancer patients, a new review suggests. "In the field ...

  13. Development and validation of a black carbon mixing state resolved three-dimensional model: Aging processes and radiative impact

    SciTech Connect

    Matsui, H.; Koike, Makoto; Kondo, Yutaka; Moteki, N.; Fast, Jerome D.; Zaveri, Rahul A.

    2013-03-16

    : A new two-dimensional aerosol bin scheme, which resolves both aerosol size and black carbon (BC) mixing state for BC aging processes (e.g., condensation and coagulation), has been developed and implemented into the WRF-chem model (MS-resolved WRF-chem). The mixing state of BC simulated by this model is compared with direct measurements over the East Asian region in spring 2009. Model simulations generally reproduce the observed features of the BC mixing state, such as the size-dependent number fractions of BC-containing and BC-free particles and the coating thickness of BC-containing particles. Sensitivity simulations show that the condensation process is dominant for the growth of thinly coated BC particles, while the coagulation process is necessary to produce thickly coated BC particles. Off-line optical and radiative calculations assuming an average mixing state for each size bin show that the domain- and period-averaged absorption coefficient and heating rate by aerosols are overestimated by 30 – 40% in the boundary layer compared with a benchmark simulation with the detailed treatment of mixing state. The absolute value of aerosol radiative forcing is also overestimated (10%, 3 W m-2) at the surface. However, these overestimations are reduced considerably when all the parameters (including mass and number concentration) are calculated with the simple treatment of mixing state. This is because the overestimation of radiative parameters due to higher absorption efficiency (compared with the benchmark simulation) is largely canceled by the underestimation of BC concentrations due to efficient wet removal processes. The overall errors in radiative forcing can be much smaller because of this cancellation but for the wrong reasons.

  14. Development and validation of a black carbon mixing state resolved three-dimensional model: Aging processes and radiative impact

    NASA Astrophysics Data System (ADS)

    Matsui, H.; Koike, M.; Kondo, Y.; Moteki, N.; Fast, J. D.; Zaveri, R. A.

    2013-03-01

    A new two-dimensional aerosol bin scheme, which resolves both aerosol size and black carbon (BC) mixing state for BC aging processes (e.g., condensation and coagulation) with 12 size × 10 mixing state bins, has been developed and implemented into the WRF-chem model (MS-resolved WRF-chem). The mixing state of BC simulated by this model is compared with direct measurements over the East Asian region in spring 2009. Model simulations generally reproduce the observed features of the BC mixing state, such as the size-dependent number fractions of BC-containing and BC-free particles and the coating thickness of BC-containing particles. This result shows that the model can simulate realistic BC mixing states in the atmosphere if condensation and coagulation processes are calculated explicitly with the detailed treatment of BC mixing state. Sensitivity simulations show that the condensation process is dominant for the growth of thinly coated BC particles, while the coagulation process is necessary to produce thickly coated BC particles. Off-line optical and radiative calculations assuming an average mixing state for each size bin show that the domain- and period-averaged absorption coefficient and heating rate by aerosols are overestimated by 30-40% in the boundary layer, compared with a benchmark simulation with the detailed treatment of mixing state. The absolute value of aerosol radiative forcing is also overestimated (10%, 3 W m-2) at the surface. However, these overestimations are reduced considerably when all the parameters (including mass and number concentration) are calculated with the simple treatment of mixing state. This is because the overestimation of radiative parameters due to higher absorption efficiency (compared with the benchmark simulation) is largely canceled by the underestimation of BC concentrations due to efficient wet removal processes. The overall errors in radiative forcing can be much smaller because of this cancellation, but for the wrong

  15. Tree crown structural characterization: A study using terrestrial laser scanning and three-dimensional radiative transfer modeling

    NASA Astrophysics Data System (ADS)

    Moorthy, Inian

    Spectroscopic observational data for vegetated environments, have been coupled with 3D physically-based radiative transfer models for retrievals of biochemical and biophysical indicators of vegetation health and condition. With the recent introduction of Terrestrial Laser Scanning (TLS) units, there now exists a means of rapidly measuring intricate structural details of vegetation canopies, which can also serve as input into 3D radiative transfer models. In this investigation, Intelligent Laser Ranging and Imaging System (ILRIS-3D) data was acquired of individual tree crowns in laboratory, and field-based experiments. The ILRIS-3D uses the Time-Of-Flight (TOF) principle to measure the distances of objects based on the time interval between laser pulse exitance and return, upon reflection from an object. At the laboratory-level, this exploratory study demonstrated and validated innovative approaches for retrieving crown-level estimates of Leaf Area Index (LAI) (r2 = 0.98, rmse = 0.26m2/m2), a critical biophysical parameter for vegetation monitoring and modeling. These methods were implemented and expanded in field experiments conducted in olive (Olea europaea L.) orchards in Cordoba, Spain, where ILRIS-3D observations for 24 structurally-variable trees were made. Robust methodologies were developed to characterize diagnostic architectural parameters, such as tree height (r2 = 0.97, rmse = 0.21m), crown width (r 2 = 0.98, rmse = 0.12m), crown height (r2 = 0.81, rmse = 0.11m), crown volume (r2 = 0.99, rmse = 2.6m3), and LAI (r2 = 0.76, rmse = 0.27m2/ m2). These parameters were subsequently used as direct inputs into the Forest LIGHT (FLIGHT) 3D ray tracing model for characterization of the spectral behavior of the olive crowns. Comparisons between FLIGHT-simulated spectra and measured data showed small differences in the visible (< 3%) and near infrared (< 10%) spectral ranges. These differences between model simulations and measurements were significantly correlated

  16. Adjuvant treatment in patients at high risk of recurrence of thymoma: efficacy and safety of a three-dimensional conformal radiation therapy regimen

    PubMed Central

    Perri, Francesco; Pisconti, Salvatore; Conson, Manuel; Pacelli, Roberto; Della Vittoria Scarpati, Giuseppina; Gnoni, Antonio; D’Aniello, Carmine; Cavaliere, Carla; Licchetta, Antonella; Cella, Laura; Giuliano, Mario; Schiavone, Concetta; Falivene, Sara; Di Lorenzo, Giuseppe; Buonerba, Carlo; Ravo, Vincenzo; Muto, Paolo

    2015-01-01

    Background The clinical benefits of postoperative radiation therapy (PORT) for patients with thymoma are still controversial. In the absence of defined guidelines, prognostic factors such as stage, status of surgical margins, and histology are often considered to guide the choice of adjuvant treatment (radiotherapy and/or chemotherapy). In this study, we describe our single-institution experience of three-dimensional conformal PORT administered as adjuvant treatment to patients with thymoma. Methods Twenty-two consecutive thymoma patients (eleven male and eleven female) with a median age of 52 years and treated at our institution by PORT were analyzed. The patients were considered at high risk of recurrence, having at least one of the following features: stage IIB or III, involved resection margins, or thymic carcinoma histology. Three-dimensional conformal PORT with a median total dose on clinical target volume of 50 (range 44–60) Gy was delivered to the tumor bed by 6–20 MV X-ray of the linear accelerator. Follow-up after radiotherapy was done by computed tomography scan every 6 months for 2 years and yearly thereafter. Results Two of the 22 patients developed local recurrence and four developed distant metastases. Median overall survival was 100 months, and the 3-year and 5-year survival rates were 83% and 74%, respectively. Median disease-free survival was 90 months, and the 5-year recurrence rate was 32%. On univariate analysis, pathologic stage III and presence of positive surgical margins had a significant impact on patient prognosis. Radiation toxicity was mild in most patients and no severe toxicity was registered. Conclusion Adjuvant radiotherapy achieved good local control and showed an acceptable toxicity profile in patients with high-risk thymoma. PMID:26089683

  17. Three dimensional Monte Carlo simulation of molecular movement and heat radiation in vacuum devices: Computer code MOVAK3D

    NASA Astrophysics Data System (ADS)

    Class, G.

    1987-07-01

    A program to simulate gas motion and shine through of thermal radiation in fusion reactor vacuum flow channels was developed. The inner surface of the flow channel is described by plane areas (triangles, parallelograms) and by surfaces of revolution. By introducing control planes in the flow path, a variance reduction and shortening of the computation, respectively, are achieved through particle splitting and Russian roulette. The code is written in PL/I and verified using published data. Computer aided input of model data is performed interactively either under IBM-TSO or at a microprocessor (IBM PC-AT). The data files are exchangeable between the IBM-mainframe and IBM-PC computers. Both computers can produce plots of the elaborated channel model. For testing, the simulating computation can likewise be run interactively, whereas the production computation can be issued batchwise. The results of code verification are explained, and examples of channel models and of the interactive mode are given.

  18. Three-dimensional metamaterials

    DOEpatents

    Burckel, David Bruce

    2012-06-12

    A fabrication method is capable of creating canonical metamaterial structures arrayed in a three-dimensional geometry. The method uses a membrane suspended over a cavity with predefined pattern as a directional evaporation mask. Metallic and/or dielectric material can be evaporated at high vacuum through the patterned membrane to deposit resonator structures on the interior walls of the cavity, thereby providing a unit cell of micron-scale dimension. The method can produce volumetric metamaterial structures comprising layers of such unit cells of resonator structures.

  19. Three-dimensional, Time-Resolved, Intrafraction Motion Monitoring Throughout Stereotactic Liver Radiation Therapy on a Conventional Linear Accelerator

    SciTech Connect

    Worm, Esben S.; Høyer, Morten; Fledelius, Walter; Poulsen, Per R.

    2013-05-01

    Purpose: To investigate the time-resolved 3-dimensional (3D) internal motion throughout stereotactic body radiation therapy (SBRT) of tumors in the liver using standard x-ray imagers of a conventional linear accelerator. Methods and Materials: Ten patients with implanted gold markers received 11 treatment courses of 3-fraction SBRT in a stereotactic body-frame on a conventional linear accelerator. Two pretreatment and 1 posttreatment cone-beam computed tomography (CBCT) scans were acquired during each fraction. The CBCT projection images were used to estimate the internal 3D marker motion during CBCT acquisition with 11-Hz resolution by a monoscopic probability-based method. Throughout the treatment delivery by conformal or volumetric modulated arc fields, simultaneous MV portal imaging (8 Hz) and orthogonal kV imaging (5 Hz) were applied to determine the 3D marker motion using either MV/kV triangulation or the monoscopic method when marker segmentation was unachievable in either MV or kV images. The accuracy of monoscopic motion estimation was quantified by also applying monoscopic estimation as a test for all treatments during which MV/kV triangulation was possible. Results: Root-mean-square deviations between monoscopic estimations and triangulations were less than 1.0 mm. The mean 3D intrafraction and intrafield motion ranges during liver SBRT were 17.6 mm (range, 5.6-39.5 mm) and 11.3 mm (2.1-35.5mm), respectively. The risk of large intrafraction baseline shifts correlated with intrafield respiratory motion range. The mean 3D intrafractional marker displacement relative to the first CBCT was 3.4 mm (range, 0.7-14.5 mm). The 3D displacements exceeded 8.8 mm 10% of the time. Conclusions: Highly detailed time-resolved internal 3D motion was determined throughout liver SBRT using standard imaging equipment. Considerable intrafraction motion was observed. The demonstrated methods provide a widely available approach for motion monitoring that, combined with motion

  20. Coupling sky images with three-dimensional radiative transfer models: a new method to estimate cloud optical depth

    NASA Astrophysics Data System (ADS)

    Mejia, F. A.; Kurtz, B.; Murray, K.; Hinkelman, L. M.; Sengupta, M.; Xie, Y.; Kleissl, J.

    2015-10-01

    A method for retrieving cloud optical depth (τc) using a ground-based sky imager (USI) is presented. The Radiance Red-Blue Ratio (RRBR) method is motivated from the analysis of simulated images of various τc produced by a 3-D Radiative Transfer Model (3DRTM). From these images the basic parameters affecting the radiance and RBR of a pixel are identified as the solar zenith angle (θ0), τc, solar pixel angle/scattering angle (ϑs), and pixel zenith angle/view angle (ϑz). The effects of these parameters are described and the functions for radiance, Iλ(τc, θ0, ϑs, ϑz) and the red-blue ratio, RBR(τc, θ0, ϑs, ϑz) are retrieved from the 3DRTM results. RBR, which is commonly used for cloud detection in sky images, provides non-unique solutions for τc, where RBR increases with τc up to about τc = 1 (depending on other parameters) and then decreases. Therefore, the RRBR algorithm uses the measured Iλmeas(ϑs, ϑz), in addition to RBRmeas(ϑs, ϑz) to obtain a unique solution for τc. The RRBR method is applied to images taken by a USI at the Oklahoma Atmospheric Radiation Measurement program (ARM) site over the course of 220 days and validated against measurements from a microwave radiometer (MWR); output from the Min method for overcast skies, and τc retrieved by Beer's law from direct normal irradiance (DNI) measurements. A τc RMSE of 5.6 between the Min method and the USI are observed. The MWR and USI have an RMSE of 2.3 which is well within the uncertainty of the MWR. An RMSE of 0.95 between the USI and DNI retrieved τc is observed. The procedure developed here provides a foundation to test and develop other cloud detection algorithms.

  1. Comparison of intensity-modulated radiotherapy with three-dimensional conformal radiation therapy planning for glioblastoma multiforme

    SciTech Connect

    Chan, Maria F.; Schupak, Karen; Burman, Chandra; Chui, C.-S.; Ling, C. Clifton

    2003-12-31

    This study was designed to assess the feasibility and potential benefit of using intensity-modulated radiotherapy (IMRT) planning for patients newly diagnosed with glioblastoma multiforme (GBM). Five consecutive patients with confirmed histopathologically GBM were entered into the study. These patients were planned and treated with 3-dimensional conformal radiation therapy (3DCRT) using our standard plan of 3 noncoplanar wedged fields. They were then replanned with the IMRT method that included a simultaneous boost to the gross tumor volume (GTV). The dose distributions and dose-volume histograms (DHVs) for the planning treatment volume (PTV), GTV, and the relevant critical structures, as obtained with 3DCRT and IMRT, respectively, were compared. In both the 3DCRT and IMRT plans, 59.4 Gy was delivered to the GTV plus a margin of 2.5 cm, with doses to critical structures below the tolerance threshold. However, with the simultaneous boost in IMRT, a higher tumor dose of {approx}70 Gy could be delivered to the GTV, while still maintaining the uninvolved brain at dose levels of the 3DCRT technique. In addition, our experience indicated that IMRT planning is less labor intensive and time consuming than 3DCRT planning. Our study shows that IMRT planning is feasible and efficient for radiotherapy of GBM. In particular, IMRT can deliver a simultaneous boost to the GTV while better sparing the normal brain and other critical structures.

  2. Three-dimensional imaging of human hippocampal tissue using synchrotron radiation- and grating-based micro computed tomography

    NASA Astrophysics Data System (ADS)

    Hieber, Simone E.; Khimchenko, Anna; Kelly, Christopher; Mariani, Luigi; Thalmann, Peter; Schulz, Georg; Schmitz, Rüdiger; Greving, Imke; Dominietto, Marco; Müller, Bert

    2014-09-01

    Hippocampal sclerosis is a common cause of epilepsy, whereby a neuronal cell loss of more than 50% cells is characteristic. If medication fails the best possible treatment is the extraction of the diseased organ. To analyze the microanatomy of the diseased tissue we scanned a human hippocampus extracted from an epilepsy patient. After the identification of degenerated tissue using magnetic resonance imaging the specimen was reduced in size to fit into a cylindrical container with a diameter of 6 mm. Using synchrotron radiation and grating interferometry we acquired micro computed tomography datasets of the specimen. The present study was one of the first successful phase tomography measurements at the imaging beamline P05 (operated by HZG at the PETRA III storage ring, DESY, Hamburg, Germany). Ring and streak artefacts were reduced by enhanced flat-field corrections, combined wavelet-Fourier filters and bilateral filtering. We improved the flat-field correction by the consideration of the correlation between the projections and the flat-field images. In the present study, the correlation that was based on mean squared differences and evaluated on manually determined reference regions leads to the best artefact reduction. A preliminary segmentation of the abnormal tissue reveals that a clinically relevant study requires the development of even more sophisticated artifact reduction tools or a phase contrast measurement of higher quality.

  3. Signatures of asymmetry in neutron spectra and images predicted by three-dimensional radiation hydrodynamics simulations of indirect drive implosions

    NASA Astrophysics Data System (ADS)

    Chittenden, J. P.; Appelbe, B. D.; Manke, F.; McGlinchey, K.; Niasse, N. P. L.

    2016-05-01

    We present the results of 3D simulations of indirect drive inertial confinement fusion capsules driven by the "high-foot" radiation pulse on the National Ignition Facility. The results are post-processed using a semi-deterministic ray tracing model to generate synthetic deuterium-tritium (DT) and deuterium-deuterium (DD) neutron spectra as well as primary and down scattered neutron images. Results with low-mode asymmetries are used to estimate the magnitude of anisotropy in the neutron spectra shift, width, and shape. Comparisons of primary and down scattered images highlight the lack of alignment between the neutron sources, scatter sites, and detector plane, which limits the ability to infer the ρr of the fuel from a down scattered ratio. Further calculations use high bandwidth multi-mode perturbations to induce multiple short scale length flows in the hotspot. The results indicate that the effect of fluid velocity is to produce a DT neutron spectrum with an apparently higher temperature than that inferred from the DD spectrum and which is also higher than the temperature implied by the DT to DD yield ratio.

  4. Three dimensional location of internal mammary lymph nodes (IMLN) in patients undergoing radiation therapy: Implications for portal planning

    SciTech Connect

    Kaplan, W.D.; Anderson, J.W.; Siddon, R.L.; Connolly, B.T.; McCormick, C.A.; Laffin, S.M.; Rosenbaum, E.M.; Jennings, C.A.; Harris, J.R.

    1985-05-01

    In breast cancer patients (pts.), radiation therapy (RT) techniques must account for individual anatomy to ensure optimal coverage of tumor regions. Knowledge of IMLN localization is often useful when tangential or anterior (AP) portals are used. We have analyzed IMLN localization in 167 pts. who had lymphoscintigraphy (LS) for RT planning. Parallel and slant-hole collimation were used for imaging. Ribs were defined with lead markers, and a chest x-ray was taken to localize marker positions. Rib and interspace (IS) location of each node was recorded. 768 nodes were analyzed for position and RT coverage (Rib 1-IS 5). The X-bar number of nodes was 4/6 pt. with no significant difference in number by age. Cross-over to the opposite IMLN chain occurred in 13.8% of cases (56.5% manubrial, 17.4% midsternal, and 26.1% xiphoid). With nodes in the idealized tangential field (those from IS 2-5, anterior to a 35/sup 0/ plane entering the thorax 3 cm contralateral to midline, at least one node could have been missed in 31 pts. (18.6%), represented by 44 of 768 nodes (5.7%). In conclusion, RT portals based on ''idealized pts.'' can result in both over and undertreated nodes; LS will obviate this and provide data for individualized treatment planning.

  5. Mechanism of Action for Anti-Radiation Vaccine in Reducing the Biological Impact of High-Dose Irradiation

    NASA Technical Reports Server (NTRS)

    Maliev, Vladislav; Popov, Dmitri; Jones, Jeffrey A.; Casey, Rachael C.

    2006-01-01

    Ionizing radiation is a major health risk of long-term space travel, the biological consequences of which include genetic and oxidative damage. In this study, we propose an original mechanism by which high doses of ionizing radiation induce acute toxicity. We identified biological components that appear in the lymphatic vessels shortly after gamma irradiation. These radiation-induced toxins, which we have named specific radiation determinants (SRD), were generated in the irradiated tissues and then collected and circulated throughout the body via the lymph circulation and bloodstream. Depending on the type of SRD elicited, different syndromes of acute radiation sickness (ARS) were expressed. The SRDs were developed into a vaccine used to confer active immunity against acute radiation toxicity in immunologically naive animals. Animals that were pretreated with SRDs exhibited resistance to lethal doses of gamma radiation, as measured by increased survival times and survival rates. In comparison, untreated animals that were exposed to similar large doses of gamma radiation developed acute radiation sickness and died within days. This phenomenon was observed in a number of mammalian species. We partially analyzed the biochemical characteristics of the SRDs. The SRDs were large molecular weight (200-250 kDa) molecules that were comprised of a mixture of protein, lipid, carbohydrate, and mineral. Further analysis is required to further identify the SRD molecules and the biological mechanism by which the mediate the toxicity associated with acute radiation sickness. By doing so, we may develop an effective specific immunoprophylaxis as a countermeasure against the acute effects of ionizing radiation.

  6. Mechanism of Action for Anti-radiation Vaccine in Reducing the Biological Impact of High-dose Gamma Irradiation

    NASA Technical Reports Server (NTRS)

    Maliev, Vladislav; Popov, Dmitri; Jones, Jeffrey A.; Casey, Rachael C.

    2007-01-01

    Ionizing radiation is a major health risk of long-term space travel, the biological consequences of which include genetic and oxidative damage. In this study, we propose an original mechanism by which high doses of ionizing radiation induce acute toxicity. We identified biological components that appear in the lymphatic vessels shortly after gamma irradiation. These radiation-induced toxins, which we have named specific radiation determinants (SRD), were generated in the irradiated tissues and then collected and circulated throughout the body via the lymph circulation and bloodstream. Depending on the type of SRD elicited, different syndromes of acute radiation sickness (ARS) were expressed. The SRDs were developed into a vaccine used to confer active immunity against acute radiation toxicity in immunologically naive animals. Animals that were pretreated with SRDs exhibited resistance to lethal doses of gamma radiation, as measured by increased survival times and survival rates. In comparison, untreated animals that were exposed to similar large doses of gamma radiation developed acute radiation sickness and died within days. This phenomenon was observed in a number of mammalian species. Initial analysis of the biochemical characteristics indicated that the SRDs were large molecular weight (200-250 kDa) molecules that were comprised of a mixture of protein, lipid, carbohydrate, and mineral. Further analysis is required to further identify the SRD molecules and the biological mechanism by which the mediate the toxicity associated with acute radiation sickness. By doing so, we may develop an effective specific immunoprophylaxis as a countermeasure against the acute effects of ionizing radiation.

  7. Three Dimensional Dirac Semimetals

    NASA Astrophysics Data System (ADS)

    Zaheer, Saad

    2014-03-01

    Dirac points on the Fermi surface of two dimensional graphene are responsible for its unique electronic behavior. One can ask whether any three dimensional materials support similar pseudorelativistic physics in their bulk electronic spectra. This possibility has been investigated theoretically and is now supported by two successful experimental demonstrations reported during the last year. In this talk, I will summarize the various ways in which Dirac semimetals can be realized in three dimensions with primary focus on a specific theory developed on the basis of representations of crystal spacegroups. A three dimensional Dirac (Weyl) semimetal can appear in the presence (absence) of inversion symmetry by tuning parameters to the phase boundary separating a bulk insulating and a topological insulating phase. More generally, we find that specific rules governing crystal symmetry representations of electrons with spin lead to robust Dirac points at high symmetry points in the Brillouin zone. Combining these rules with microscopic considerations identifies six candidate Dirac semimetals. Another method towards engineering Dirac semimetals involves combining crystal symmetry and band inversion. Several candidate materials have been proposed utilizing this mechanism and one of the candidates has been successfully demonstrated as a Dirac semimetal in two independent experiments. Work carried out in collaboration with: Julia A. Steinberg, Steve M. Young, J.C.Y. Teo, C.L. Kane, E.J. Mele and Andrew M. Rappe.

  8. Human pulmonary acinar airspace segmentation from three-dimensional synchrotron radiation micro CT images of secondary pulmonary lobule

    NASA Astrophysics Data System (ADS)

    Kawata, Y.; Hosokawa, T.; Niki, N.; Umetani, K.; Nakano, Y.; Ohmatsu, H.; Moriyama, N.; Itoh, H.

    2011-03-01

    The recognition of abnormalities relative to the lobular anatomy has become increasingly important in the diagnosis and differential diagnosis of lung abnormalities at clinical routines of CT examinations. This paper aims for a 3-D microstructural analysis of the pulmonary acinus with isotropic spatial resolution in the range of several micrometers by using micro CT. Previously, we demonstrated the ability of synchrotron radiation micro CT (SRμCT) using offset scan mode in microstructural analysis of the whole part of the secondary pulmonary lobule. In this paper, we present a semi-automatic method to segment the acinar and subacinar airspaces from the secondary pulmonary lobule imaged by the SRμCT. The method began with a segmentation of the tissues such as pleural surface, interlobular septa, alveola wall, or vessel using threshold technique and 3-D connected component analysis. Follow-on stages then constructed 3-D air space separated by tissues and represented branching patterns of airways and airspaces distal to the terminal bronchiole. Finally, a graph-partitioning approach isolated acini whose stems were interactively defined as the terminal bronchiole in the secondary pulmonary lobule. Additionally, the isolated acinar airspace was segmented into subacini in which the airway was considered as the stem using the graph-partitioning approach. Results demonstrate that the proposed method can extract several acinar airspaces from the 3-D SRμCT image of secondary pulmonary lobule and that the extracted acinar airspace enable an accurate quantitative description of the anatomy of the human acinus for interpretation of the basic unit of pulmonary structure and function.

  9. High-dose ionizing radiation-induced hematotoxicity and metastasis in mice model.

    PubMed

    Shin, Jang Woo; Son, Jin Young; Raghavendran, Hanumantha Rao Balaji; Chung, Weon Kyu; Kim, Hyeong Geug; Park, Hye Jung; Jang, Seong Soon; Son, Chang Gue

    2011-12-01

    Radiotherapy induces untargeted effects on normal tissues such as bone marrow. So alteration of microenvironment by ionizing irradiation is supposed to influence dynamic host-cancer ecosystem affecting cancer behavior including metastasis. Herein, the incidence of lung metastasis after high-dose irradiation has been investigated using mice model having real-time condition of leucopenia. C57BL/6 mice were pre-exposed to a X-irradiation dose of 6 Gy on previous days 2, 5, 7, 10. Complete hematological parameters including lymphocyte subpopulation in blood and lung tissues were analyzed. Additionally, a group of mice including a non-irradiated group were inoculated with B16F10 cells (3 × 10(5)/200 μl) via tail vein at the same day, and lung metastasized colonies were compared among groups at day 14 of post-inoculation. We observed that (i) total leucocytes and platelet were gradually depleted by day 10; (ii) lung tissue showed gradual infiltration of leucocytes including neutrophils and lymphocytes; (iii) pulmonary colonies were maximum and minimum on day 5 and 10 respectively; (iv) lymphocyte subpopulation analysis showed most number of natural killer (NK) cells in lung tissues on day 10; (v) gene expression of platelet/endothelial cell adhesion molecule (PECAM) in lung tissues peaked on day 5. To sum-up the study, severity of leucopenia did not influence the incidence of metastasis but blood platelets and microenvironment alteration of targeting tissue may be responsible factors for lung metastasis in our experimental model. PMID:21769700

  10. Laser-guided direct writing for three-dimensional tissue engineering: Analysis and application of radiation forces

    NASA Astrophysics Data System (ADS)

    Nahmias, Yaakov Koby

    Tissue Engineering aims for the creation of functional tissues or organs using a combination of biomaterials and living cells. Artificial tissues can be implanted in patients to restore tissue function that was lost due to trauma, disease, or genetic disorder. Tissue equivalents may also be used to screen the effects of drugs and toxins, reducing the use of animals in research. One of the principle limitations to the size of engineered tissue is oxygen and nutrient transport. Lacking their own vascular bed, cells embedded in the engineered tissue will consume all available oxygen within hours while out branching blood vessels will take days to vascularize the implanted tissue. Establishing capillaries within the tissue prior to implantation can potentially eliminate this limitation. One approach to establishing capillaries within the tissue is to directly write endothelial cells with micrometer accuracy as it is being built. The patterned endothelial cells will then self-assemble into vascular structures within the engineering tissue. The cell patterning technique known as laser-guided direct writing can confine multiple cells in a laser beam and deposit them as a steady stream on any non-absorbing surface with micrometer scale accuracy. By applying the generalized Lorenz-Mie theory for light scattering on laser-guided direct writing we were able to accurately predict the behavior of with various cells and particles in the focused laser. In addition, two dimensionless parameters were identified for general radiation-force based system design. Using laser-guided direct writing we were able to direct the assembly of endothelial vascular structures with micrometer accuracy in two and three dimensions. The patterned vascular structures provided the backbone for subsequent in vitro liver morphogenesis. Our studies show that hepatocytes migrate toward and adhere to endothelial vascular structures in response to endothelial-secreted hepatocyte growth factor (HGF). Our

  11. Ex vivo cultures of glioblastoma in three-dimensional hydrogel maintain the original tumor growth behavior and are suitable for preclinical drug and radiation sensitivity screening

    SciTech Connect

    Jiguet Jiglaire, Carine; Baeza-Kallee, Nathalie; Denicolaï, Emilie; Barets, Doriane; Metellus, Philippe; and others

    2014-02-15

    Identification of new drugs and predicting drug response are major challenges in oncology, especially for brain tumors, because total surgical resection is difficult and radiation therapy or chemotherapy is often ineffective. With the aim of developing a culture system close to in vivo conditions for testing new drugs, we characterized an ex vivo three-dimensional culture system based on a hyaluronic acid-rich hydrogel and compared it with classical two-dimensional culture conditions. U87-MG glioblastoma cells and seven primary cell cultures of human glioblastomas were subjected to radiation therapy and chemotherapy drugs. It appears that 3D hydrogel preserves the original cancer growth behavior and enables assessment of the sensitivity of malignant gliomas to radiation and drugs with regard to inter-tumoral heterogeneity of therapeutic response. It could be used for preclinical assessment of new therapies. - Highlights: • We have compared primary glioblastoma cell culture in a 2D versus 3D-matrix system. • In 3D morphology, organization and markers better recapitulate the original tumor. • 3D-matrix culture might represent a relevant system for more accurate drug screening.

  12. Upregulated epidermal growth factor receptor expression following near-infrared irradiation simulating solar radiation in a three-dimensional reconstructed human corneal epithelial tissue culture model

    PubMed Central

    Tanaka, Yohei; Nakayama, Jun

    2016-01-01

    Background and objective Humans are increasingly exposed to near-infrared (NIR) radiation from both natural (eg, solar) and artificial (eg, electrical appliances) sources. Although the biological effects of sun and ultraviolet (UV) exposure have been extensively investigated, the biological effect of NIR radiation is still unclear. We previously reported that NIR as well as UV induces photoaging and standard UV-blocking materials, such as sunglasses, do not sufficiently block NIR. The objective of this study was to investigate changes in gene expression in three-dimensional reconstructed corneal epithelial tissue culture exposed to broad-spectrum NIR irradiation to simulate solar NIR radiation that reaches human tissues. Materials and methods DNA microarray and quantitative real-time polymerase chain reaction analysis were used to assess gene expression levels in a three-dimensional reconstructed corneal epithelial model composed of normal human corneal epithelial cells exposed to water-filtered broad-spectrum NIR irradiation with a contact cooling (20°C). The water-filter allowed 1,000–1,800 nm wavelengths and excluded 1,400–1,500 nm wavelengths. Results A DNA microarray with >62,000 different probes showed 25 and 150 genes that were up- or downregulated by at least fourfold and twofold, respectively, after NIR irradiation. In particular, epidermal growth factor receptor (EGFR) was upregulated by 19.4-fold relative to control cells. Quantitative real-time polymerase chain reaction analysis revealed that two variants of EGFR in human corneal epithelial tissue were also significantly upregulated after five rounds of 10 J/cm2 irradiation (P<0.05). Conclusion We found that NIR irradiation induced the upregulated expression of EGFR in human corneal cells. Since over half of the solar energy reaching the Earth is in the NIR region, which cannot be adequately blocked by eyewear and thus can induce eye damage with intensive or long-term exposure, protection from both

  13. The susceptibility of TaOx-based memristors to high dose rate ionizing radiation and total ionizing dose

    DOE PAGESBeta

    McLain, Michael Lee; Sheridan, Timothy J.; Hjalmarson, Harold Paul; Mickel, Patrick R.; Hanson, Donald J.; McDonald, Joseph K.; Hughart, David Russell; Marinella, Matthew J.

    2014-11-11

    This paper investigates the effects of high dose rate ionizing radiation and total ionizing dose (TID) on tantalum oxide (TaOx) memristors. Transient data were obtained during the pulsed exposures for dose rates ranging from approximately 5.0 ×107 rad(Si)/s to 4.7 ×108 rad(Si)/s and for pulse widths ranging from 50 ns to 50 μs. The cumulative dose in these tests did not appear to impact the observed dose rate response. Static dose rate upset tests were also performed at a dose rate of ~3.0 ×108 rad(Si)/s. This is the first dose rate study on any type of memristive memory technology. Inmore » addition to assessing the tolerance of TaOx memristors to high dose rate ionizing radiation, we also evaluated their susceptibility to TID. The data indicate that it is possible for the devices to switch from a high resistance off-state to a low resistance on-state in both dose rate and TID environments. The observed radiation-induced switching is dependent on the irradiation conditions and bias configuration. Furthermore, the dose rate or ionizing dose level at which a device switches resistance states varies from device to device; the enhanced susceptibility observed in some devices is still under investigation. As a result, numerical simulations are used to qualitatively capture the observed transient radiation response and provide insight into the physics of the induced current/voltages.« less

  14. High-dose radiation therapy alone by moderate hypofractionation for patients with thoracic esophageal squamous cell carcinoma.

    PubMed

    Oh, Dongryul; Noh, Jae Myoung; Nam, Heerim; Lee, Hyebin; Kim, Tae Gyu; Ahn, Yong Chan

    2016-08-01

    We conducted retrospective analyses to investigate the clinical outcome of thoracic esophageal cancer patients who were treated with high-dose radiation therapy (RT) alone by moderate hypofractionation due to medical unfitness or refusal to receive either surgery or chemo-radiotherapy.Between May 2003 and April 2013, 70 patients were treated with high-dose RT alone with curative aim. The planned total RT dose was 60 Gy in daily 3.0 Gy per fraction. We evaluated the survival outcome, toxicities, and prognostic factors affecting patients' survival.At the time of analysis, 32 patients experienced disease progression. The 2-year overall survival (OS), cancer-specific survival (CSS) and local control (LC) rates were 52.1%, 57.8%, and 68.2%, respectively. Among them, 25 patients had superficial (cT1a-b) esophageal cancers, and the 2-year OS, CSS, and LC rates were 80.0%, 87.3%, and 81.6%, respectively. Multivariate analysis revealed that cT disease (P < 0.001) and tumor location (P = 0.022) were the significant factors for OS. The incidence of grade 3 or higher toxicities were 9.9%, including grade 3 esophagitis (2 patients, 2.8%) and grade 4 or 5 trachea-esophageal fistula (5 patients, 7.1%).High-dose RT alone by moderate hypofractionation had led to reasonable clinical outcomes at acceptable toxicity risk in thoracic esophageal cancer patients who are medically unfit or refuse surgery or chemotherapy, especially for the patients having superficial lesion. PMID:27537591

  15. Comparative MicroRNA Expression Patterns in Fibroblasts after Low and High Doses of Low-LET Radiation Exposure

    NASA Technical Reports Server (NTRS)

    Maes, Olivier C.; Xu, Suying; Hada, Megumi; Wu, Honglu; Wang, Eugenia

    2007-01-01

    Exposure to ionizing radiation causes DNA damage to cells, and provokes a plethora of cellular responses controlled by unique gene-directed signaling pathways. MicroRNAs (miRNAs) are small (22-nucleotide), non-coding RNAs which functionally silence gene expression by either degrading the messages or inhibiting translation. Here we investigate radiation-dependent changes in these negative regulators by comparing the expression patterns of all 462 known human miRNAs in fibroblasts, after exposure to low (0.1 Gy) or high (2 Gy) doses of X-rays at 30 min, 2, 6 and 24 hrs post-treatment. The expression patterns of microRNAs after low and high doses of radiation show a similar qualitative down-regulation trend at early (0.5 hr) and late (24 hr) time points, with a quantitatively steeper slope following the 2 Gy exposures. Interestingly, an interruption of this downward trend is observed after the 2 Gy exposure, i.e. a significant up-regulation of microRNAs at 2 hrs, then reverting to the downward trend by 6 hrs; this interruption at the intermediate time point was not observed with the 0.1 Gy exposure. At the early time point (0.5 hr), candidate gene targets of selected down-regulated microRNAs, common to both 0.1 and 2 Gy exposures, were those functioning in chromatin remodeling. Candidate target genes of unique up-regulated microRNAs seen at a 2 hr intermediate time point, after the 2 Gy exposure only, are those involved in cell death signaling. Finally, putative target genes of down-regulated microRNAs seen at the late (24 hr) time point after either doses of radiation are those involved in the up-regulation of DNA repair, cell signaling and homeostasis. Thus we hypothesize that after radiation exposure, microRNAs acting as hub negative regulators for unique signaling pathways needed to be down-regulated so as to de-repress their target genes for the proper cellular responses, including DNA repair and cell maintenance. The unique microRNAs up-regulated at 2 hr after 2

  16. Three dimensional interactive display

    NASA Technical Reports Server (NTRS)

    Vranish, John M. (Inventor)

    2005-01-01

    A three-dimensional (3-D) interactive display and method of forming the same, includes a transparent capaciflector (TC) camera formed on a transparent shield layer on the screen surface. A first dielectric layer is formed on the shield layer. A first wire layer is formed on the first dielectric layer. A second dielectric layer is formed on the first wire layer. A second wire layer is formed on the second dielectric layer. Wires on the first wire layer and second wire layer are grouped into groups of parallel wires with a turnaround at one end of each group and a sensor pad at the opposite end. An operational amplifier is connected to each of the sensor pads and the shield pad biases the pads and receives a signal from connected sensor pads in response to intrusion of a probe. The signal is proportional to probe location with respect to the monitor screen.

  17. Radiation chemistry of anionic disazo dyes in Cellophane films applications for high-dose dosimetry

    NASA Astrophysics Data System (ADS)

    McLaughlin, William L.

    2003-06-01

    Thin transparent Cellophane films containing anionic disazo "Direct" dyes, e.g. blue Cellophanes, have long been used as monitors of large absorbed doses of ionizing radiation (10-300 kGy) and especially for mapping electron-beam dose profiles. Examples of dyes for such purposes are variations on forms of the disazo dyes, Direct Orange, Direct Violet or Direct Blue. The films have a thickness of 25.6 μm (+0.1 μm) and are available in rolls of either 30 m×0.51 m or 60 m×0.76 m. Such dyed Cellophanes are typically lightfast but can readily be bleached irreversibly by ionizing radiation, as a means of dosimetry using spectrophotometry as the analytical tool. The radiation response is markedly dependent on temperature and relative humidity during irradiation. The reaction is initiated mainly by dehydrogenation and nitrosation upon electrophilic reductive attack on the dye molecule by the thermal electrons, at initial reaction rate constants in the range 10 5-10 6 s -1.

  18. Similarity solution to three dimensional boundary layer flow of second grade nanofluid past a stretching surface with thermal radiation and heat source/sink

    SciTech Connect

    Hayat, T.; Muhammad, Taseer; Shehzad, S. A.; Alsaedi, A.

    2015-01-15

    Development of human society greatly depends upon solar energy. Heat, electricity and water from nature can be obtained through solar power. Sustainable energy generation at present is a critical issue in human society development. Solar energy is regarded one of the best sources of renewable energy. Hence the purpose of present study is to construct a model for radiative effects in three-dimensional of nanofluid. Flow of second grade fluid by an exponentially stretching surface is considered. Thermophoresis and Brownian motion effects are taken into account in presence of heat source/sink and chemical reaction. Results are derived for the dimensionless velocities, temperature and concentration. Graphs are plotted to examine the impacts of physical parameters on the temperature and concentration. Numerical computations are presented to examine the values of skin-friction coefficients, Nusselt and Sherwood numbers. It is observed that the values of skin-friction coefficients are more for larger values of second grade parameter. Moreover the radiative effects on the temperature and concentration are quite reverse.

  19. High-dose external beam radiation for localized prostate cancer: current status and future challenges.

    PubMed

    Nguyen, Paul L; Zietman, Anthony L

    2007-01-01

    Since the 1960s, external beam radiation has been one of the major curative treatment options for patients with clinically localized prostate cancer. Efforts to improve the efficacy of this modality have focused on delivering a higher dose, and several recent randomized trials have confirmed that this higher dose results in improved oncological outcomes, particularly for patients with intermediate-risk disease. Technological advancements over the past 2 decades have allowed highly conformal treatments that spare more normal tissue and reduce early and long-term treatment side effects. In a complementary fashion, methods have been developed for better real-time localization of the prostate such that radiation fields can be shifted before each treatment to match the daily shifts in the position of the target, leading to greater accuracy and allowing for smaller treatment margins that in turn will overlap with less normal tissue. With newer and more expensive technologies such as intensity-modulated radiation therapy and protons being used with increasing frequency for the treatment of prostate cancer, it becomes imperative to study the risks and benefits of each new modality so that informed cost-benefit decisions can be made. Similarly, there has been a growing interest in hypofractionation as a means of exploiting the supposed low alpha/beta ratio of prostate cancer to shorten overall treatment time and thereby improve convenience and lower costs. However, as with any new technology, it is necessary to proceed with caution in the arena of hypofractionation while we await the results of trials that will help us to determine the long-term risks and benefits of hypofractionation and whether biological assumptions about the underlying alpha/beta ratio can translate into a true clinical advantage. PMID:17921728

  20. MESA meets MURaM. Surface effects in main-sequence solar-like oscillators computed using three-dimensional radiation hydrodynamics simulations

    NASA Astrophysics Data System (ADS)

    Ball, W. H.; Beeck, B.; Cameron, R. H.; Gizon, L.

    2016-08-01

    Context. Space-based observations of solar-like oscillators have identified large numbers of stars in which many individual mode frequencies can be precisely measured. However, current stellar models predict oscillation frequencies that are systematically affected by simplified modelling of the near-surface layers. Aims: We use three-dimensional radiation hydrodynamics simulations to better model the near-surface equilibrium structure of dwarfs with spectral types F3, G2, K0 and K5, and examine the differences between oscillation mode frequencies computed in stellar models with and without the improved near-surface equilibrium structure. Methods: We precisely match stellar models to the simulations' gravities and effective temperatures at the surface, and to the temporally- and horizontally-averaged densities and pressures at their deepest points. We then replace the near-surface structure with that of the averaged simulation and compute the change in the oscillation mode frequencies. We also fit the differences using several parametric models currently available in the literature. Results: The surface effect in the stars of solar-type and later is qualitatively similar and changes steadily with decreasing effective temperature. In particular, the point of greatest frequency difference decreases slightly as a fraction of the acoustic cut-off frequency and the overall scale of the surface effect decreases. The surface effect in the hot, F3-type star follows the same trend in scale (i.e. it is larger in magnitude) but shows a different overall variation with mode frequency. We find that a two-term fit using the cube and inverse of the frequency divided by the mode inertia is best able to reproduce the surface terms across all four spectral types, although the scaled solar term and a modified Lorentzian function also match the three cooler simulations reasonably well. Conclusions: Three-dimensional radiation hydrodynamics simulations of near-surface convection can be

  1. Three-dimensional Radiative Transfer Simulations of the Scattering Polarization of the Hydrogen Lyα Line in a Magnetohydrodynamic Model of the Chromosphere-Corona Transition Region

    NASA Astrophysics Data System (ADS)

    Štěpán, J.; Trujillo Bueno, J.; Leenaarts, J.; Carlsson, M.

    2015-04-01

    Probing the magnetism of the upper solar chromosphere requires measuring and modeling the scattering polarization produced by anisotropic radiation pumping in UV spectral lines. Here we apply PORTA (a novel radiative transfer code) to investigate the hydrogen Lyα line in a three-dimensional model of the solar atmosphere resulting from a state of the art magnetohydrodynamic (MHD) simulation. At full spatial resolution the linear polarization signals are very significant all over the solar disk, with a large fraction of the field of view (FOV) showing line-center amplitudes well above the 1% level. Via the Hanle effect the line-center polarization signals are sensitive to the magnetic field of the model's transition region, even when its mean field strength is only 15 G. The breaking of the axial symmetry of the radiation field produces significant forward-scattering polarization in Lyα, without the need of an inclined magnetic field. Interestingly, the Hanle effect tends to decrease such forward-scattering polarization signals in most of the points of the FOV. When the spatial resolution is degraded, the line-center polarization of Lyα drops below the 1% level, reaching values similar to those previously found in one-dimensional (1D) semi-empirical models (i.e., up to about 0.5 %). The center to limb variation (CLV) of the spatially averaged polarization signals is qualitatively similar to that found in 1D models, with the largest line-center amplitudes at μ =cos θ ≈ 0.4 (θ being the heliocentric angle). These results are important, both for designing the needed space-based instrumentation and for a reliable interpretation of future observations of the Lyα polarization.

  2. Three-dimensional non-LTE radiative transfer effects in Fe i lines. III. Line formation in magneto-hydrodynamic atmospheres

    NASA Astrophysics Data System (ADS)

    Holzreuter, R.; Solanki, S. K.

    2015-10-01

    Non-local thermodynamic equilibrium (NLTE) effects in diagnostically important solar Fe i lines are important because of the strong sensitivity of Fe i to ionizing UV radiation, which may lead to a considerable underpopulation of the Fe i levels in the solar atmosphere and, therefore, to a sizeable weakening of Fe i lines. These NLTE effects may be intensified or weakened by horizontal radiative transfer (RT) in a three-dimensionally (3D) structured atmosphere. We analyze the influence of horizontal RT on commonly used Fe i lines in a snapshot of a 3D radiation magneto-hydrodynamic (MHD) simulation of a plage region. NLTE and horizontal RT effects occur with considerable strength (up to 50% in line depth or equivalent width) in the analyzed snapshot. Because they may have either sign, and both signs occur with approximately the same frequency and strength, the net effects are small when considering spatially averaged quantities. The situation in the plage atmosphere turns out to be rather complex. Horizontal transfer leads to line weakening relative to 1D NLTE transfer near the boundaries of kG magnetic elements. Around the centers of these elements, however, we find line strengthening, which is often significant. This behavior contrasts with what is expected from previous 3D RT computations in idealized flux-tube models, which only display line weakening. The origin of this unexpected behavior lies in the fact that magnetic elements are surrounded by dense and relatively cool downflowing gas, which forms the walls of the magnetic elements. The continuum in these dense walls is often formed in colder gas than in the central part of the magnetic elements. Consequently, the central parts of the magnetic element experience a subaverage UV-irradiation leading to the observed 3D NLTE line strengthening.

  3. Black carbon simulations using a size- and mixing-state-resolved three-dimensional model: 1. Radiative effects and their uncertainties

    NASA Astrophysics Data System (ADS)

    Matsui, H.

    2016-02-01

    This study quantifies how uncertainties in the size distribution and mixing state parameters of black carbon (BC) emissions translate into the uncertainties in BC radiative effects by using a particle-size- and mixing-state-resolved three-dimensional model, the Weather Research and Forecasting model with chemistry (WRF-chem) with the Aerosol Two-dimensional bin module for foRmation and Aging Simulation (ATRAS) and the Model for Simulating Aerosol Interactions and Chemistry (MOSAIC). The WRF-chem/ATRAS-MOSAIC model can explicitly calculate BC processes in the atmosphere, such as BC aging due to condensation and coagulation and the resulting enhancement of absorption and cloud condensation nuclei activity, with 12 size and 10 BC mixing state bins (128 bins in total). Fifteen model simulations perturbing the emission parameters within their uncertainties are conducted over East Asia (spring 2009) to understand which parameters and processes are important and which are associated with the uncertainty in evaluating BC radiative effects. The simulations reveal a large variability (uncertainty) of BC optical and radiative variables over the East Asian region (the variability is 58-99%), which corresponds to ranges of BC radiative effect of 1.6-2.8 W m-2 at the top of the atmosphere and from -5.2 to -2.1 W m-2 at the surface over East Asia. BC optical and radiative variables are 3 to 5 times sensitive to the size and the mixing state in emissions than BC mass concentrations (the variability is 20%). The two main causes of the difference in sensitivity are the reduction of the variability of BC mass concentrations by coagulation and the enhancement of the variability of BC absorption by resolving BC mixing state. These complicated responses of aerosol processes can be calculated for the first time using a detailed aerosol model such as ATRAS. The results suggest that the following two points are important in the estimation of BC radiative effects: (1) reduction of the

  4. Three-dimensional registration of synchrotron radiation-based micro-computed tomography images with advanced laboratory micro-computed tomography data from murine kidney casts

    NASA Astrophysics Data System (ADS)

    Thalmann, Peter; Hieber, Simone E.; Schulz, Georg; Deyhle, Hans; Khimchenko, Anna; Kurtcuoglu, Vartan; Olgac, Ufuk; Marmaras, Anastasios; Kuo, Willy; Meyer, Eric P.; Beckmann, Felix; Herzen, Julia; Ehrbar, Stefanie; Müller, Bert

    2014-09-01

    Malfunction of oxygen regulation in kidney and liver may lead to the pathogenesis of chronic diseases. The underlying mechanisms are poorly understood. In kidney, it is hypothesized that renal gas shunting from arteries to veins eliminates excess oxygen. Such shunting is highly dependent on the structure of the renal vascular network. The vascular tree has so far not been quantified under maintenance of its connectivity as three-dimensional imaging of the vessel tree down to the smallest capillaries, which in mouse model are smaller than 5 μm in diameter, is a challenging task. An established protocol uses corrosion casts and applies synchrotron radiation-based micro-computed tomography (SRμCT), which provides the desired spatial resolution with the necessary contrast. However, SRμCT is expensive and beamtime access is limited. We show here that measurements with a phoenix nanotomrm (General Electric, Wunstorf, Germany) can provide comparable results to those obtained with SRμCT, except for regions with small vessel structures, where the signal-to-noise level was significantly reduced. For this purpose the nanotom®m measurement was compared with its corresponding measurement acquired at the beamline P05 at PETRA III at DESY, Hamburg, Germany.

  5. A direct comparison of a depth-dependent Radiation stress formulation and a Vortex force formulation within a three-dimensional coastal ocean model

    NASA Astrophysics Data System (ADS)

    Moghimi, Saeed; Klingbeil, Knut; Gräwe, Ulf; Burchard, Hans

    2013-10-01

    In this study a model system consisting of the three-dimensional General Estuarine Transport Model (GETM) and the third generation wind wave model SWAN was developed. Both models were coupled in two-way mode. The effects of waves were included into the ocean model by implementing the depth-dependent Radiation stress formulation (RS) of Mellor (2011a) and the Vortex force formulation (VF) presented by Bennis et al. (2011). Thus, the developed model system offers a direct comparison of these two formulations. The enhancement of the vertical eddy viscosity due to the energy transfer by white capping and breaking waves was taken into account by means of injecting turbulent kinetic energy at the surface. Wave-current interaction inside the bottom boundary layer was considered as well. The implementation of both wave-averaged formulations was validated against three flume experiments. One of these experiments with long period surface waves (swell), had not been evaluated before. The validation showed the capability of the model system to reproduce the three-dimensional interaction of waves and currents. For the flume test cases the wave-induced water level changes (wave set-up and set-down) and the corresponding depth-integrated wave-averaged velocities were similar for RS and VF. Both formulations produced comparable velocity profiles for short period waves. However, for large period waves, VF overestimated the wave set-down near the main breaking points and RS showed artificial offshore-directed transport at the surface where wave shoaling was taking place. Finally the validated model system was applied to a realistic barred beach scenario. For RS and VF the resulting velocity profiles were similar after being significantly improved by a roller evolution method. Both wave-averaged formulations generally provided similar results, but some shortcomings were revealed. Although VF partly showed significant deviations from the measurements, its results were still physically

  6. Pulmonary Artery Invasion, High-Dose Radiation, and Overall Survival in Patients With Non-Small Cell Lung Cancer

    SciTech Connect

    Han, Cheng-Bo; Wang, Wei-Li; Quint, Leslie; Xue, Jian-Xin; Matuszak, Martha; Ten Haken, Randall; Kong, Feng-Ming

    2014-06-01

    Purpose: To investigate whether high-dose radiation to the pulmonary artery (PA) affects overall survival (OS) in patients with non-small cell lung cancer (NSCLC). Methods and Materials: Patients with medically inoperable/unresectable NSCLC treated with definitive radiation therapy in prospective studies were eligible for this study. Pulmonary artery involvement was defined on the basis of pretreatment chest CT and positron emission tomography/CT fusion. Pulmonary artery was contoured according to the Radiation Therapy Oncology Group protocol 1106 atlas, and dose-volume histograms were generated. Results: A total of 100 patients with a minimum follow-up of 1 year for surviving patients were enrolled: 82.0% underwent concurrent chemoradiation therapy. Radiation dose ranged from 60 to 85.5 Gy in 30-37 fractions. Patients with PA invasion of grade ≤2, 3, 4, and 5 had 1-year OS and median survival of 67% and 25.4 months (95% confidence interval [CI] 15.7-35.1), 62% and 22.2 months (95% CI 5.8-38.6), 90% and 35.8 months (95% CI 28.4-43.2), and 50% and 7.0 months, respectively (P=.601). Two of the 4 patients with grade 5 PA invasion died suddenly from massive hemorrhage at 3 and 4.5 months after completion of radiation therapy. Maximum and mean doses to PA were not significantly associated with OS. The V45, V50, V55, and V60 of PA were correlated significantly with a worse OS (P<.05). Patients with V45 >70% or V60 >37% had significantly worse OS (13.3 vs 37.9 months, P<.001, and 13.8 vs 37.9 months, P=.04, respectively). Conclusions: Grade 5 PA invasion and PA volume receiving more than 45-60 Gy may be associated with inferior OS in patients with advanced NSCLC treated with concurrent chemoradiation.

  7. Three dimensional Dirac semimetals

    NASA Astrophysics Data System (ADS)

    Zaheer, Saad

    We extend the physics of graphene to three dimensional systems by showing that Dirac points can exist on the Fermi surface of realistic materials in three dimensions. Many of the exotic electronic properties of graphene can be ascribed to the pseudorelativistic behavior of its charge carriers due to two dimensional Dirac points on the Fermi surface. We show that certain nonsymmorphic spacegroups exhibit Dirac points among the irreducible representations of the appropriate little group at high symmetry points on the surface of the Brillouin zone. We provide a list of all Brillouin zone momenta in the 230 spacegroups that can host Dirac points. We describe microscopic considerations necessary to design materials in one of the candidate spacegroups such that the Dirac point appears at the Fermi energy without any additional non-Dirac-like Fermi pockets. We use density functional theory based methods to propose six new Dirac semimetals: BiO 2 and SbO2 in the beta-cristobalite lattice (spacegroup 227), and BiCaSiO4, BiMgSiO4, BiAlInO 4, and BiZnSiO4 in the distorted spinels lattice (spacegroup 74). Additionally we derive effective Dirac Hamiltonians given group representative operators as well as tight binding models incorporating spin-orbit coupling. Finally we study the Fermi surface of zincblende (spacegroup 216) HgTe which is effectively point-like at Gamma in the Brillouin zone and exhibits accidental degeneracies along a threefold rotation axis. Whereas compressive strain gaps the band structure into a topological insulator, tensile strain shifts the accidental degeneracies away from Gamma and enlarges the Fermi surface. States on the Fermi surface exhibit nontrivial spin texture marked by winding of spins around the threefold rotation axis and by spin vortices indicating a change in the winding number. This is confirmed by microscopic calculations performed in tensile strained HgTe and Hg0.5Zn 0.5 Te as well as k.p theory. We conclude with a summary of recent

  8. Image Quality and Radiation Dose of CT Coronary Angiography with Automatic Tube Current Modulation and Strong Adaptive Iterative Dose Reduction Three-Dimensional (AIDR3D)

    PubMed Central

    Shen, Hesong; Dai, Guochao; Luo, Mingyue; Duan, Chaijie; Cai, Wenli; Liang, Dan; Wang, Xinhua; Zhu, Dongyun; Li, Wenru; Qiu, Jianping

    2015-01-01

    Purpose To investigate image quality and radiation dose of CT coronary angiography (CTCA) scanned using automatic tube current modulation (ATCM) and reconstructed by strong adaptive iterative dose reduction three-dimensional (AIDR3D). Methods Eighty-four consecutive CTCA patients were collected for the study. All patients were scanned using ATCM and reconstructed with strong AIDR3D, standard AIDR3D and filtered back-projection (FBP) respectively. Two radiologists who were blinded to the patients' clinical data and reconstruction methods evaluated image quality. Quantitative image quality evaluation included image noise, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR). To evaluate image quality qualitatively, coronary artery is classified into 15 segments based on the modified guidelines of the American Heart Association. Qualitative image quality was evaluated using a 4-point scale. Radiation dose was calculated based on dose-length product. Results Compared with standard AIDR3D, strong AIDR3D had lower image noise, higher SNR and CNR, their differences were all statistically significant (P<0.05); compared with FBP, strong AIDR3D decreased image noise by 46.1%, increased SNR by 84.7%, and improved CNR by 82.2%, their differences were all statistically significant (P<0.05 or 0.001). Segments with diagnostic image quality for strong AIDR3D were 336 (100.0%), 486 (96.4%), and 394 (93.8%) in proximal, middle, and distal part respectively; whereas those for standard AIDR3D were 332 (98.8%), 472 (93.7%), 378 (90.0%), respectively; those for FBP were 217 (64.6%), 173 (34.3%), 114 (27.1%), respectively; total segments with diagnostic image quality in strong AIDR3D (1216, 96.5%) were higher than those of standard AIDR3D (1182, 93.8%) and FBP (504, 40.0%); the differences between strong AIDR3D and standard AIDR3D, strong AIDR3D and FBP were all statistically significant (P<0.05 or 0.001). The mean effective radiation dose was (2.55±1.21) mSv. Conclusion

  9. Synchrotron radiation micro-CT at the micrometer scale for the analysis of the three-dimensional morphology of microcracks in human trabecular bone.

    PubMed

    Larrue, Aymeric; Rattner, Aline; Peter, Zsolt-Andrei; Olivier, Cécile; Laroche, Norbert; Vico, Laurence; Peyrin, Françoise

    2011-01-01

    Bone quality is an important concept to explain bone fragility in addition to bone mass. Among bone quality factors, microdamage which appears in daily life is thought to have a marked impact on bone strength and plays a major role in the repair process. The starting point for all studies designed to further our understanding of how bone microdamage initiate or dissipate energy, or to investigate the impact of age, gender or disease, remains reliable observation and measurement of microdamage. In this study, 3D Synchrotron Radiation (SR) micro-CT at the micrometric scale was coupled to image analysis for the three-dimensional characterization of bone microdamage in human trabecular bone specimens taken from femoral heads. Specimens were imaged by 3D SR micro-CT with a voxel size of 1.4 µm. A new tailored 3D image analysis technique was developed to segment and quantify microcracks. Microcracks from human trabecular bone were observed in different tomographic sections as well as from 3D renderings. New 3D quantitative measurements on the microcrack density and morphology are reported on five specimens. The 3D microcrack density was found between 3.1 and 9.4/mm3 corresponding to a 2D density between 0.55 and 0.76 /mm2. The microcrack length and width measured in 3D on five selected microcrack ranged respectively from 164 µm to 209 µm and 100 µm to 120 µm. This is the first time that various microcracks in unloaded human trabecular bone--from the simplest linear crack to more complex cross-hatch cracks--have been examined and quantified by 3D imaging at this scale. The suspected complex morphology of microcracks is here considerably more evident than in the 2D observations. In conclusion, this technique opens new perspective for the 3D investigation of microcracks and the impact of age, disease or treatment. PMID:21750707

  10. Four-Year Efficacy, Cosmesis, and Toxicity Using Three-Dimensional Conformal External Beam Radiation Therapy to Deliver Accelerated Partial Breast Irradiation

    SciTech Connect

    Chen, Peter Y.; Wallace, Michelle; Mitchell, Christina; Grills, Inga; Kestin, Larry; Fowler, Ashley; Martinez, Alvaro; Vicini, Frank

    2010-03-15

    Purpose: This prospective study examines the use of three-dimensional conformal external beam radiation therapy (3D-CRT) to deliver accelerated partial breast irradiation (APBI). Four-year data on efficacy, cosmesis, and toxicity are presented. Methods: Patients with Stage O, I, or II breast cancer with lesions <=3 cm, negative margins, and negative nodes were eligible. The 3D-CRT delivered was 38.5 Gy in 3.85 Gy/fraction. Ipsilateral breast, ipsilateral nodal, contralateral breast, and distant failure (IBF, INF, CBF, DF) were estimated using the cumulative incidence method. Disease-free, overall, and cancer-specific survival (DFS, OS, CSS) were recorded. The National Cancer Institute Common Terminology Criteria for Adverse Events (version 3) toxicity scale was used to grade acute and late toxicities. Results: Ninety-four patients are evaluable for efficacy. Median patient age was 62 years with the following characteristics: 68% tumor size <1 cm, 72% invasive ductal histology, 77% estrogen receptor (ER) (+), 88% postmenopausal; 88% no chemotherapy and 44% with no hormone therapy. Median follow-up was 4.2 years (range, 1.3-8.3). Four-year estimates of efficacy were IBF: 1.1% (one local recurrence); INF: 0%; CBF: 1.1%; DF: 3.9%; DFS: 95%; OS: 97%; and CSS: 99%. Four (4%) Grade 3 toxicities (one transient breast pain and three fibrosis) were observed. Cosmesis was rated good/excellent in 89% of patients at 4 years. Conclusions: Four-year efficacy, cosmesis, and toxicity using 3D-CRT to deliver APBI appear comparable to other experiences with similar follow-up. However, additional patients, further follow-up, and mature Phase III data are needed to evaluate thoroughly the extent of application, limitations, and complete value of this particular form of APBI.

  11. Prediction of radiation-induced liver disease by Lyman normal-tissue complication probability model in three-dimensional conformal radiation therapy for primary liver carcinoma

    SciTech Connect

    Xu ZhiYong; Liang Shixiong; Zhu Ji; Zhu Xiaodong; Zhao Jiandong; Lu Haijie; Yang Yunli; Chen Long; Wang Anyu; Fu Xiaolong; Jiang Guoliang . E-mail: jianggl@21cn.com

    2006-05-01

    Purpose: To describe the probability of RILD by application of the Lyman-Kutcher-Burman normal-tissue complication (NTCP) model for primary liver carcinoma (PLC) treated with hypofractionated three-dimensional conformal radiotherapy (3D-CRT). Methods and Materials: A total of 109 PLC patients treated by 3D-CRT were followed for RILD. Of these patients, 93 were in liver cirrhosis of Child-Pugh Grade A, and 16 were in Child-Pugh Grade B. The Michigan NTCP model was used to predict the probability of RILD, and then the modified Lyman NTCP model was generated for Child-Pugh A and Child-Pugh B patients by maximum-likelihood analysis. Results: Of all patients, 17 developed RILD in which 8 were of Child-Pugh Grade A, and 9 were of Child-Pugh Grade B. The prediction of RILD by the Michigan model was underestimated for PLC patients. The modified n, m, TD{sub 5} (1) were 1.1, 0.28, and 40.5 Gy and 0.7, 0.43, and 23 Gy for patients with Child-Pugh A and B, respectively, which yielded better estimations of RILD probability. The hepatic tolerable doses (TD{sub 5}) would be MDTNL of 21 Gy and 6 Gy, respectively, for Child-Pugh A and B patients. Conclusions: The Michigan model was probably not fit to predict RILD in PLC patients. A modified Lyman NTCP model for RILD was recommended.

  12. High-dose mode of mortality in Tribolium: A model system for study of radiation injury and repair in non-proliferative tissues

    SciTech Connect

    Cheng, Chihing Christina.

    1989-01-01

    With appropriate doses of ionizing radiation, both the acute, or lethal-midlethal, dose-independent pattern of mortality, and the hyperacute, dose-dependent pattern, were demonstrated within a single insect genus (Tribolium). This demonstration provides resolution of apparently contradictory reports of insect radiation responses in terms of doses required to cause lethality and those based on survival time as a function of dose. A dose-dependent mortality pattern was elicited in adult Tribolium receiving high doses, viz., 300 Gy or greater; its time course was complete in 10 days, before the dose-independent pattern of mortality began. Visual observations of heavily-irradiated Tribolium suggested neural and/or neuromuscular damage, as had been previously proposed by others for lethally-irradiated wasps, flies, and mosquitoes. Results of experiments using fractionated high doses supported the suggestion that the hyperacute or high-dose mode of death is the result of damage to nonproliferative tissues. Relative resistance of a strain to the hyperacute or high-dose mode of death was not correlated with resistance to the midlethal mode, which is believed to be the result of damage to the proliferative cells of the midgut. Using the high-dose mode of death as a model of radiation damage to nonproliferative tissues, the effects of age, and of a moderate priming dose were assessed. Beetles showed age-related increase in sensitivity to the high-dose mode of death, suggesting a decline in capacity to repair radiation damage to postmitotic tissue. This correlated with a decrease (50%) in the amount of repair reflected in the sparing effect of dose-fractionation (SDF) between the age of 1 to 3 months. The age related increase in radiosensitivity was reduced by a moderate priming dose (40 or 65 Gy) given at a young age.

  13. WE-E-BRE-06: High-Dose Microbeam Radiation Induces Different Responses in Tumor Microenvironment Compared to Conventional Seamless Radiation in Window Chamber Tumor Models

    SciTech Connect

    Chang, S; Zhang, J; Hadsell, M; Fontanella, A; Schroeder, T; Palmer, G; Dewhirst, M; Boss, M; Berman, K

    2014-06-15

    Purpose: Microbeam radiation therapy and GRID therapy are different forms of Spatially-Fractioned Radiation Therapy (SFRT) that is fundamentally different from the conventional seamless and temporally fractionated radiation therapy. SFRT is characterized by a ultra-high dose (10s –100s Gy) dose single treatment with drastic inhomogeneity pattern of given spatial frequencies. Preclinical and limited clinical studies have shown that the SFRT treatments may offer significant improvements in reducing treatment toxicity, especially for those patients who have not benefited from the state-of-the-art radiation therapy approaches. This preliminary study aims to elucidate the underlying working mechanisms of SFRT, which currently remains poorly understood. Methods: A genetically engineered 4T1 murine mammary carcinoma cell line and nude mice skin fold window chamber were used. A nanotechnology-based 160kV x-ray irradiator delivered 50Gy (entrance dose) single treatments of microbeam or seamless radiation. Animals were in 3 groups: mock, seamless radiation, and 300μm microbeam radiation. The windows were imaged using a hyperspectral system to capture total hemoglobin/saturation, GFP fluorescence emission, RFP fluorescence emission, and vessel density at 9 time points up to 7 days post radiation. Results: We found unique physiologic changes in different tumor/normal tissue regions and differential effects between seamless and microbeam treatments. They include 1) compared to microbeam and mock radiation seamless radiation damaged more microvasculature in tumor-surrounding normal tissue, 2) a pronounced angiogenic effect was observed with vascular proliferation in the microbeam irradiated portion of the tumor days post treatment (no such effect observed in seamless and mock groups), and 3) a notable change in tumor vascular orientation was observed where vessels initially oriented parallel to the beam length were replaced by vessels running perpendicular to the irradiation

  14. Phase I Three-Dimensional Conformal Radiation Dose Escalation Study in Newly Diagnosed Glioblastoma: Radiation Therapy Oncology Group Trial 98-03

    SciTech Connect

    Tsien, Christina Moughan, Jennifer; Michalski, Jeff M.; Gilbert, Mark R.; Purdy, James; Simpson, Joseph; Kresel, John J.; Curran, Walter J.; Diaz, Aidnag; Mehta, Minesh P.

    2009-03-01

    Purpose: To evaluate in a Phase I trial the feasibility and toxicity of dose-escalated three-dimensional conformal radiotherapy (3D-CRT) concurrent with chemotherapy in patients with primary supratentorial glioblastoma (GBM). Methods and Materials: A total of 209 patients were enrolled. All received 46 Gy in 2-Gy fractions to the first planning target volume (PTV{sub 1}), defined as the gross tumor volume (GTV) plus 1.8 cm. A subsequent boost was given to PTV{sub 2}, defined as GTV plus 0.3 cm. Patients were stratified into two groups (Group 1: PTV{sub 2} <75 cm{sup 3}; Group 2: PTV{sub 2} {>=}75 cm{sup 3}). Four RT dose levels were evaluated: 66, 72, 78, and 84 Gy. Carmustine 80 mg/m{sup 2} was given during RT, then every 8 weeks for 6 cycles. Pretreatment characteristics were well balanced. Results: Acute and late Grade 3/4 RT-related toxicities were no more frequent at higher RT dose or with larger tumors. There were no dose-limiting toxicities (acute Grade {>=}3 irreversible central nervous system toxicities) observed on any dose level in either group. On the basis of the absence of dose-limiting toxicities, dose was escalated to 84 Gy in both groups. Late RT necrosis was noted at 66 Gy (1 patient), 72 Gy (2 patients), 78 Gy (2 patients), and 84 Gy (3 patients) in Group 1. In Group 2, late RT necrosis was noted at 78 Gy (1 patient) and 84 Gy (2 patients). Median time to RT necrosis was 8.8 months (range, 5.1-12.5 months). Median survival in Group 1 was 11.6-19.3 months. Median survival in Group 2 was 8.2-13.9 months. Conclusions: Our study shows the feasibility of delivering higher than standard (60 Gy) RT dose with concurrent chemotherapy for primary GBM, with an acceptable risk of late central nervous system toxicity.

  15. The Value of Botox-A in Acute Radiation Proctitis: Results From a Phase I/II Study Using a Three-Dimensional Scoring System

    SciTech Connect

    Vuong, Te; Waschke, Kevin; Niazi, Tamim; Richard, Carole; Parent, Josee; Liberman, Sender; Mayrand, Serge; Loungnarath, Rasmy; Stein, Barry; Devic, Slobodan

    2011-08-01

    Purpose: Acute radiation proctitis (ARP) is a common side effect of pelvic radiotherapy, and its management is challenging in daily practice. The present phase I/II study evaluates the safety and efficacy of the botulinum toxin A (BTX-A) in ARP treatment for rectal cancer patients undergoing neoadjuvant high-dose-rate endorectal brachytherapy (HDREBT). Methods and Materials: Fifteen patients, treated with neoadjuvant HDREBT, 26-Gy in 4 fractions, received the study treatment that consisted of a single injection of BTX-A into the rectal wall. The injection was performed post-HDREBT and prior to the development of ARP. The control group, 20 such patients, did not receive the BTX-A injection. Both groups had access to standard treatment with hydrocortisone rectal aerosol foam (Cortifoam) and anti-inflammatory and narcotic medication. The ARP was clinically evaluated by self-administered daily questionnaires using visual analog scores to document frequency and urgency of bowel movements, rectal burning/tenesmus, and pain symptoms before and after HDREBT. Results: At the time of this analysis, there was no observed systemic toxicity. Patient compliance with the self-administered questionnaire was 100% from week 1 to 4, 70% during week 5, and 40% during week 6. The maximum tolerated dose was established at the 100-U dose level, and noticeable mean differences were observed in bowel frequency (p = 0.016), urgency (p = 0.007), and pain (p = 0.078). Conclusions: This study confirms the feasibility and efficacy of BTX-A intervention at 100-U dose level for study patients compared to control patients. A phase III study with this dose level is planned to validate these results.

  16. Improvement of Survival Rate for Patients with Hepatocellular Carcinoma Using Transarterial Chemoembolization in Combination with Three-Dimensional Conformal Radiation Therapy: A Meta-Analysis.

    PubMed

    Bai, Houqiao; Gao, Peng; Gao, Hao; Sun, Guangxi; Dong, Chonghai; Han, Jian; Jiang, Guosheng

    2016-01-01

    BACKGROUND Transarterial chemoembolization (TACE) has been used alone or in combination with three-dimensional conformal radiation therapy (3DCRT) for treating hepatocellular carcinoma (HCC). The overall survival rate of HCC patients undergoing both treatments, however, has not been systematically studied. The aim of this meta-analysis-based study was to evaluate the overall efficacy of the combined therapy or monotherapy, thereby providing information for clinical treatment. MATERIAL AND METHODS We searched Google Scholar, PubMed, and Chinese National Knowledge Infrastructure (CNKI) for eligible studies, and a total of 17 case-control studies (including HCC patients treated by TACE plus 3DCRT or TACE alone) were included to perform the meta-analysis. Based on the available data, we assessed the improvements of 1-year, 2-year, and 3-year survival rate for the combination therapy of TACE and 3DCRT or TACE alone. Furthermore, the analysis was also stratified by the tumor response: complete response (CR), partial response (PR), no response (NR) and progressive disease (PD). Statistical analysis was performed using STATA 12 (Stata Statistical Software: Release 12). RESULTS The results show that HCC patients receiving combination therapy have significantly increased overall survival rate when compared to those receiving TACE alone (1-year survival rate: OR=1.95, 95% CI 1.54-2.47, p=7.3×10^-8; 2-year survival rate: OR=1.87, 95% CI 1.49-2.34, p=1.6×10^-7; 3-year survival rate: OR=2.00, 95% CI 1.52-2.64, p=1.8×10^-6). CONCLUSIONS Assessment of tumor response demonstrates that the combination therapy can efficiently increase the tumor response rate (CR+PR: OR=2.29, 95% CI 1.70-3.08, p=1.1×10^-7), with a lower rate of subsequent tumor development (PD: OR=0.25, 95% CI 0.15-0.40, p=5.5×10^-8). PMID:27228411

  17. Dose-Rate Dependence of High-Dose Health Effects in Humans from Photon Radiation with Application to Radiological Terrorism

    SciTech Connect

    Strom, Daniel J.

    2005-01-14

    In 1981, as part of a symposium entitled ''The Control of Exposure of the Public to Ionizing Radiation in the Event of Accident or Attack,'' Lushbaugh, H?bner, and Fry published a paper examining ''radiation tolerance'' of various human health endpoints as a function of dose rate. This paper may not have received the notice it warrants. The health endpoints examined by Lushbaugh et al. were the lethal dose that will kill 50% of people within 60 days of exposure without medical care (LD50/60); severe bone marrow damage in healthy men; severe bone marrow damage in leukemia patients; temporary sterility (azoospermia); reduced male fertility; and late effects such as cancer. Their analysis was grounded in extensive clinical experience and anchored to a few selected data points, and based on the 1968 dose-rate dependence theory of J.L. Bateman. The Lushbaugh et al. paper did not give predictive equations for the relationships, although they were implied in the text, and the relationships were presented in a non-intuitive way. This work derives the parameters needed in Bateman's equation for each health endpoint, tabulates the results, and plots them in a more conventional manner on logarithmic scales. The results give a quantitative indication of how the human organism can tolerate more radiation dose when it is delivered at lower dose rates. For example, the LD50/60 increases from about 3 grays (300 rads) when given at very high dose rates to over 10 grays (1,000 rads) when given at much lower dose rates over periods of several months. The latter figure is borne out by the case of an individual who survived for at least 19 years after receiving doses in the range of 9 to 17 grays (900-1700 rads) over 106 days. The Lushbaugh et al. work shows the importance of sheltering when confronted with long-term exposure to radiological contamination such as would be expected from a radiological dispersion event, reactor accident, or ground-level nuclear explosion.

  18. Lack of benefit of pelvic radiation in prostate cancer patients with a high risk of positive pelvic lymph nodes treated with high-dose radiation

    SciTech Connect

    Vargas, Carlos Enrique; Galalae, Razavan; Demanes, Jeffrey; Harsolia, Asif; Meldolesi, Elisa; Nuernberg, Nils; Schour, Lionel; Martinez, Alvaro . E-mail: amartinez@beaumont.edu

    2005-12-01

    Purpose: The use of pelvic radiation for patients with a high risk of lymph node (LN) metastasis (>15%) remains controversial. We reviewed the data at three institutions treating patients with a combination of external-beam radiation therapy and high-dose-rate brachytherapy to address the prognostic implications of the use of the Roach formula and the benefit of pelvic treatment. Methods and Materials: From 1986 to 2003, 1,491 patients were treated with external-beam radiation therapy and high-dose-rate brachytherapy. The Roach formula [2/3 prostate-specific antigen + (Gleason score -6) x 10] could be calculated for 1,357 patients. Group I consisted of patients having a risk of positive LN {<=}15% (n = 761), Group II had a risk >15% and {<=}30% (n = 422), and Group III had a risk of LN disease >30% (n 174). A >15% risk of having positive LN was found in 596 patients and was used to determine the benefit of pelvic radiation. The pelvis was treated at two of the cancer centers (n = 312), whereas at the third center (n = 284) radiation therapy was delivered to the prostate and seminal vesicles alone. Average biologic effective dose was {>=}100 Gy ({alpha}{beta} = 1.2). Biochemical failure was as per the American Society for Therapeutic Radiology and Oncology definition. Statistics included the log-rank test as well as Cox univariate and multivariate analysis. Results: For all 596 patients with a positive LN risk >15%, median follow-up was 4.3 years, with a mean of 4.8 years. For all cases, median follow-up was 4 years and mean follow-up was 4.4 years. Five-year results for the three groups based on their risk of positive LN were significantly different in terms of biochemical failure (p < 0.001), clinical control (p < 0.001), disease-free survival excluding biochemical failure (p < 0.001), cause-specific survival (p < 0.001), and overall survival (p < 0.001). For all patients with a risk of positive LN >15% (n 596), Group II (>15-30% risk), or Group III (>30% risk

  19. Image guided radiation therapy boost in combination with high-dose-rate intracavitary brachytherapy for the treatment of cervical cancer

    PubMed Central

    Wang, Xianliang; Li, Jie; Yuan, Ke; Yin, Gang; Wan, Bin

    2016-01-01

    Purpose The purpose of this study was to demonstrate the dosimetric and clinical feasibility of image guided radiation therapy (IGRT) combined with high-dose-rate (HDR) intracavitary brachytherapy (ICBT) to improve dose distribution in cervical cancer treatment. Material and methods For 42 cervical cancer patients, magnetic resonance imaging (MRI) scans were acquired after completion of whole pelvic irradiation 45-46 Gy and 5 fractions of B + I (ICBT + IGRT) treatment were subsequently received. The high risk clinical target volume (HRCTV), intermediate risk clinical target volume (IRCTV), bladder, rectum, and sigmoid were contoured on the computed tomography (CT) scans. The total planning aim doses for HRCTV was D90% > 85 Gy, whilst constraints for rectum and sigmoid were D2cc < 75 Gy and D2cc < 90 Gy for bladder in terms of an equivalent dose in 2 Gy (EQD2) for external beam radiotherapy (EBRT) and brachytherapy boost. The IGRT plan was optimized on top of the ICBT dose distribution. A dosimetric comparison was made between B + I and optimized ICBT (O-ICBT) only. Results The mean D90% of HRCTV was comparable for B + I and O-ICBT (p = 0.82). For B + I plan, HRCTV D100%, IRCTV D100%, and IRCTV D90% were significantly increased by a mean of 10.52 Gy, 5.61 Gy, and 2.70 Gy, respectively (p < 0.01). The D2cc for bladder, rectum, and sigmoid were lower by a mean of 21.36, 6.78, and 10.65 Gy, respectively (p < 0.01). The mean rectum V60 Gy value over 42 patients was almost the same for both techniques but for bladder and sigmoid B + I had higher V60 Gy mean values as compared with the O-ICBT. Conclusions B + I can improve dose distribution in cervical cancer treatment; it could be useful for tumors extended beyond the reach of intracavitary/interstitial brachytherapy (IC/ISBT) or for centers that are inexperienced or ill-equipped with IC/ISBT techniques. Additional confirmatory prospective studies with larger numbers of patients and longer follow-up are required to

  20. Patterns of Recurrence Analysis in Newly Diagnosed Glioblastoma Multiforme After Three-Dimensional Conformal Radiation Therapy With Respect to Pre-Radiation Therapy Magnetic Resonance Spectroscopic Findings

    SciTech Connect

    Park, Ilwoo; Chuang, Cynthia F.; Chang, Susan M.; Berger, Mitchel S.; Nelson, Sarah J.

    2007-10-01

    Purpose: To determine whether the combined magnetic resonance imaging (MRI) and magnetic resonance spectroscopy imaging (MRSI) before radiation therapy (RT) is valuable for RT target definition, and to evaluate the feasibility of replacing the current definition of uniform margins by custom-shaped margins based on the information from MRI and MRSI. Methods and Materials: A total of 23 glioblastoma multiforme (GBM) patients underwent MRI and MRSI within 4 weeks after surgery but before the initiation of RT and at 2-month follow-up intervals thereafter. The MRSI data were quantified on the basis of a Choline-to-NAA Index (CNI) as a measure of spectroscopic abnormality. A combined anatomic and metabolic region of interest (MRI/S) consisting of T2-weighted hyperintensity, contrast enhancement (CE), resection cavity, and CNI2 (CNI {>=} 2) based on the pre-RT imaging was compared to the extent of CNI2 and the RT dose distribution. The spatial relationship of the pre-RT MRI/S and the RT dose volume was compared with the extent of CE at each follow-up. Results: Nine patients showed new or increased CE during follow-up, and 14 patients were either stable or had decreased CE. New or increased areas of CE occurred within CNI2 that was covered by 60 Gy in 6 patients and within the CNI2 that was not entirely covered by 60 Gy in 3 patients. New or increased CE resided within the pre-RT MRI/S lesion in 89% (8/9) of the patients with new or increased CE. Conclusion: These data indicate that the definition of RT target volumes according to the combined morphologic and metabolic abnormality may be sufficient for RT targeting.

  1. Three-dimensional marginal separation

    NASA Technical Reports Server (NTRS)

    Duck, Peter W.

    1988-01-01

    The three dimensional marginal separation of a boundary layer along a line of symmetry is considered. The key equation governing the displacement function is derived, and found to be a nonlinear integral equation in two space variables. This is solved iteratively using a pseudo-spectral approach, based partly in double Fourier space, and partly in physical space. Qualitatively, the results are similar to previously reported two dimensional results (which are also computed to test the accuracy of the numerical scheme); however quantitatively the three dimensional results are much different.

  2. Three-dimensional silicon micromachining

    NASA Astrophysics Data System (ADS)

    Azimi, S.; Song, J.; Dang, Z. Y.; Liang, H. D.; Breese, M. B. H.

    2012-11-01

    A process for fabricating arbitrary-shaped, two- and three-dimensional silicon and porous silicon components has been developed, based on high-energy ion irradiation, such as 250 keV to 1 MeV protons and helium. Irradiation alters the hole current flow during subsequent electrochemical anodization, allowing the anodization rate to be slowed or stopped for low/high fluences. For moderate fluences the anodization rate is selectively stopped only at depths corresponding to the high defect density at the end of ion range, allowing true three-dimensional silicon machining. The use of this process in fields including optics, photonics, holography and nanoscale depth machining is reviewed.

  3. Radiation-induced lung fibrosis after treatment of small cell carcinoma of the lung with very high-dose cyclophosphamide

    SciTech Connect

    Trask, C.W.; Joannides, T.; Harper, P.G.; Tobias, J.S.; Spiro, S.G.; Geddes, D.M.; Souhami, R.L.; Beverly, P.C.

    1985-01-01

    Twenty-five previously untreated patients with small cell carcinoma of the lung were treated with cyclophosphamide 160 to 200 mg/kg (with autologous bone marrow support) followed by radiotherapy (4000 cGy) to the primary site and mediastinum. No other treatment was given until relapse occurred. Nineteen patients were assessable at least 4 months after radiotherapy; of these, 15 (79%) developed radiologic evidence of fibrosis, which was symptomatic in 14 (74%). The time of onset of fibrosis was related to the volume of lung irradiated. A retrospective analysis was made of 20 consecutive patients treated with multiple-drug chemotherapy and an identical radiotherapy regimen as part of a randomized trial. Radiologic and symptomatic fibrosis was one half as frequent (35%) as in the high-dose cyclophosphamide group. Very high-dose cyclophosphamide appears to sensitize the lung to radiotherapy and promotes the production of fibrosis.

  4. Three dimensional colorimetric assay assemblies

    SciTech Connect

    Charych, D.; Reichart, A.

    2000-06-27

    A direct assay is described using novel three-dimensional polymeric assemblies which change from a blue to red color when exposed to an analyte, in one case a flu virus. The assemblies are typically in the form of liposomes which can be maintained in a suspension, and show great intensity in their color changes. Their method of production is also described.

  5. Creating Three-Dimensional Scenes

    ERIC Educational Resources Information Center

    Krumpe, Norm

    2005-01-01

    Persistence of Vision Raytracer (POV-Ray), a free computer program for creating photo-realistic, three-dimensional scenes and a link for Mathematica users interested in generating POV-Ray files from within Mathematica, is discussed. POV-Ray has great potential in secondary mathematics classrooms and helps in strengthening students' visualization…

  6. Three-dimensional stellarator codes

    PubMed Central

    Garabedian, P. R.

    2002-01-01

    Three-dimensional computer codes have been used to develop quasisymmetric stellarators with modular coils that are promising candidates for a magnetic fusion reactor. The mathematics of plasma confinement raises serious questions about the numerical calculations. Convergence studies have been performed to assess the best configurations. Comparisons with recent data from large stellarator experiments serve to validate the theory. PMID:12140367

  7. Three dimensional colorimetric assay assemblies

    DOEpatents

    Charych, Deborah; Reichart, Anke

    2000-01-01

    A direct assay is described using novel three-dimensional polymeric assemblies which change from a blue to red color when exposed to an analyte, in one case a flu virus. The assemblies are typically in the form of liposomes which can be maintained in a suspension, and show great intensity in their color changes. Their method of production is also described.

  8. Three-Dimensional Lissajous Figures.

    ERIC Educational Resources Information Center

    D'Mura, John M.

    1989-01-01

    Described is a mechanically driven device for generating three-dimensional harmonic space figures with different frequencies and phase angles on the X, Y, and Z axes. Discussed are apparatus, viewing stereo pairs, equations of motion, and using space figures in classroom. (YP)

  9. A Treatment Planning Method for Sequentially Combining Radiopharmaceutical Therapy and External Radiation Therapy;External beam therapy; Radiopharmaceutical therapy; Three-dimensional dosimetry; Treatment planning

    SciTech Connect

    Hobbs, Robert F.; McNutt, Todd; Baechler, Sebastien; He Bin; Esaias, Caroline E.; Frey, Eric C.; Loeb, David M.; Wahl, Richard L.; Shokek, Ori; Sgouros, George

    2011-07-15

    Purpose: Effective cancer treatment generally requires combination therapy. The combination of external beam therapy (XRT) with radiopharmaceutical therapy (RPT) requires accurate three-dimensional dose calculations to avoid toxicity and evaluate efficacy. We have developed and tested a treatment planning method, using the patient-specific three-dimensional dosimetry package 3D-RD, for sequentially combined RPT/XRT therapy designed to limit toxicity to organs at risk. Methods and Materials: The biologic effective dose (BED) was used to translate voxelized RPT absorbed dose (D{sub RPT}) values into a normalized total dose (or equivalent 2-Gy-fraction XRT absorbed dose), NTD{sub RPT} map. The BED was calculated numerically using an algorithmic approach, which enabled a more accurate calculation of BED and NTD{sub RPT}. A treatment plan from the combined Samarium-153 and external beam was designed that would deliver a tumoricidal dose while delivering no more than 50 Gy of NTD{sub sum} to the spinal cord of a patient with a paraspinal tumor. Results: The average voxel NTD{sub RPT} to tumor from RPT was 22.6 Gy (range, 1-85 Gy); the maximum spinal cord voxel NTD{sub RPT} from RPT was 6.8 Gy. The combined therapy NTD{sub sum} to tumor was 71.5 Gy (range, 40-135 Gy) for a maximum voxel spinal cord NTD{sub sum} equal to the maximum tolerated dose of 50 Gy. Conclusions: A method that enables real-time treatment planning of combined RPT-XRT has been developed. By implementing a more generalized conversion between the dose values from the two modalities and an activity-based treatment of partial volume effects, the reliability of combination therapy treatment planning has been expanded.

  10. Three-dimensional fault drawing

    SciTech Connect

    Dongan, L. )

    1992-01-01

    In this paper, the author presents a structure interpretation based on three-dimensional fault drawing. It is required that fault closure must be based on geological theory, spacial plotting principle and restrictions in seismic exploration. Geological structure can be well ascertained by analysing the shapes and interrelation of the faults which have been drawn through reasonable fault point closure and fault point correlation. According to this method, the interrelation of fault points is determined by first closing corresponding fault points in intersecting sections, then reasonably correlating the relevant fault points. Fault point correlation is not achieved in base map, so its correctness can be improved greatly. Three-dimensional fault closure is achieved by iteratively revising. The closure grid should be densified gradually. The distribution of major fault system is determined prior to secondary faults. Fault interpretation by workstation also follows this procedure.

  11. Three-dimensional obstetric ultrasound.

    PubMed

    Tache, Veronique; Tarsa, Maryam; Romine, Lorene; Pretorius, Dolores H

    2008-04-01

    Three-dimensional ultrasound has gained a significant popularity in obstetrical practice in recent years. The advantage of this modality in some cases is in question, however. This article provides a basic review of volume acquisition, mechanical positioning, and display modalities. Multiple uses of this technique in obstetrical care including first trimester applications and its utility in clarification of fetal anatomy such as brain, face, heart, and skeleton is discussed. PMID:18450140

  12. Three-dimensional coronary angiography

    NASA Astrophysics Data System (ADS)

    Suurmond, Rolf; Wink, Onno; Chen, James; Carroll, John

    2005-04-01

    Three-Dimensional Coronary Angiography (3D-CA) is a novel tool that allows clinicians to view and analyze coronary arteries in three-dimensional format. This will help to find accurate length estimates and to find the optimal viewing angles of a lesion based on the three-dimensional vessel orientation. Various advanced algorithms are incorporated in this 3D processing utility including 3D-RA calibration, ECG phase selection, 2D vessel extraction, and 3D vessel modeling into a utility with optimized workflow and ease-of-use features, which is fully integrated in the environment of the x-ray catheterization lab. After the 3D processing, the 3D vessels can be viewed and manipulated interactively inside the operating room. The TrueView map provides a quick overview of gantry angles with optimal visualization of a single or bifurcation lesion. Vessel length measurements can be performed without risk of underestimating a vessel segment due to foreshortening. Vessel cross sectional diameters can also be measured. Unlike traditional, projection-based quantitative coronary analysis, the additional process of catheter calibration is not needed for diameter measurements. Validation studies show a high reproducibility of the measurements, with little user dependency.

  13. Three-dimensional ultrasound system for guided breast brachytherapy

    SciTech Connect

    De Jean, Paul; Beaulieu, Luc; Fenster, Aaron

    2009-11-15

    Breast-conserving surgery combined with subsequent radiation therapy is a standard procedure in breast cancer treatment. The disadvantage of whole-breast beam irradiation is that it requires 20-25 treatment days, which is inconvenient for patients with limited mobility or who reside far from the treatment center. However, interstitial high-dose-rate (HDR) brachytherapy is an irradiation method requiring only 5 treatment days and that delivers a lower radiation dose to the surrounding healthy tissue. It involves delivering radiation through {sup 192}Ir seeds placed inside the catheters, which are inserted into the breast. The catheters are attached to a HDR afterloader, which controls the seed placement within the catheters and irradiation times to deliver the proper radiation dose. One disadvantage of using HDR brachytherapy is that it requires performing at least one CT scan during treatment planning. The procedure at our institution involves the use of two CT scans. Performing CT scans requires moving the patient from the brachytherapy suite with catheters inserted in their breasts. One alternative is using three-dimensional ultrasound (3DUS) to image the patient. In this study, the authors developed a 3DUS translation scanning system for use in breast brachytherapy. The new system was validated using CT, the current clinical standard, to image catheters in a breast phantom. Once the CT and 3DUS images were registered, the catheter trajectories were then compared. The results showed that the average angular separation between catheter trajectories was 2.4 deg., the average maximum trajectory separation was 1.0 mm, and the average mean trajectory separation was found to be 0.7 mm. In this article, the authors present the 3DUS translation scanning system's capabilities as well as its potential to be used as the primary treatment planning imaging modality in breast brachytherapy.

  14. Three-dimensional ultrasonic colloidal crystals

    NASA Astrophysics Data System (ADS)

    Caleap, Mihai; Drinkwater, Bruce W.

    2016-05-01

    Colloidal assembly represents a powerful method for the fabrication of functional materials. In this article, we describe how acoustic radiation forces can guide the assembly of colloidal particles into structures that serve as microscopic elements in novel acoustic metadevices or act as phononic crystals. Using a simple three-dimensional orthogonal system, we show that a diversity of colloidal structures with orthorhombic symmetry can be assembled with megahertz-frequency (MHz) standing pressure waves. These structures allow rapid tuning of acoustic properties and provide a new platform for dynamic metamaterial applications. xml:lang="fr"

  15. Three-dimensional Camera Phone

    NASA Astrophysics Data System (ADS)

    Iizuka, Keigo

    2004-12-01

    An inexpensive technique for realizing a three-dimensional (3D) camera phone display is presented. Light from the liquid-crystal screen of a camera phone is linearly polarized, and its direction of polarization is easily manipulated by a cellophane sheet used as a half-waveplate. The novel 3D camera phone display is made possible solely by optical components without resorting to computation, so that the 3D image is displayed in real time. Quality of the original image is not sacrificed in the process of converting it into a 3D image.

  16. Dynamics of three-dimensional radiative structures during RMP assisted detached plasmas on the large helical device and its comparison with EMC3-EIRENE modeling

    NASA Astrophysics Data System (ADS)

    Pandya, Shwetang N.; Peterson, Byron J.; Kobayashi, Masahiro; Ida, Katsumi; Mukai, Kiyofumi; Sano, Ryuichi; Miyazawa, Junichi; Tanaka, Hirohiko; Masuzaki, Suguru; Akiyama, Tsuyoshi; Motojima, Gen; Ohno, Noriyasu; LHD Experiment Group

    2016-04-01

    The resonant magnetic perturbation (RMP) island introduced in the stochastic edge of the large helical device (LHD) plasma plays an important role in the stabilization of the plasma detachment (Kobayashi et al 2013 Nucl. Fusion 53 093032). The plasma enters in the sustained detachment phase in the presence of an RMP once the line averaged density exceeds a critical value with a given input power. During detachment the enhanced radiation from the stochastic edge of the LHD undergoes several spatiotemporal changes which are studied quantitatively by an infrared imaging video bolometer (IRVB) diagnostic. The experimental results are compared qualitatively and quantitatively with the radiation predicted by the 3D transport simulation with fluid model, EMC3-EIRENE. A fair amount of qualitative agreement, before and after the detachment, is reported. The issue of overestimated radiation from the model is addressed by changing the free parameters in the EMC3-EIRENE code till the total radiation and the radiation profiles match closely, within a factor of two with the experimental observations. A better quantitative match between the model and the experiment is achieved at higher cross-field impurity diffusion coefficient and lower sputtering coefficient after the detachment. In this article a comparison, the first of its kind, is established between the quantified radiation from the experiments and the synthetic image obtained from the simulation code. This exercise is aimed towards validating the model assumptions against the experimentally measured radiation.

  17. Phase II Trial of Radiation Dose Escalation With Conformal External Beam Radiotherapy and High-Dose-Rate Brachytherapy Combined With Long-Term Androgen Suppression in Unfavorable Prostate Cancer: Feasibility Report

    SciTech Connect

    Valero, Jeanette; Cambeiro, Mauricio; Galan, Carlos; Teijeira, Mercedes; Romero, Pilar; Zudaire, Javier; Moreno, Marta; Ciervide, Raquel; Aristu, Jose Javier; Martinez-Monge, Rafael

    2010-02-01

    Purpose: To determine the feasibility of combined long-term luteinizing hormone-releasing hormone agonist-based androgen suppressive therapy (AST) and dose escalation with high-dose-rate (HDR) brachytherapy for high-risk (HRPC) or very-high-risk prostate cancer (VHRPC). Methods and Materials: Between January 2001 and October 2006, 134 patients (median age, 70 years) with either National Comprehensive Cancer Network criteria-defined HRPC (n = 47, 35.1%) or VHRPC (n = 87, 64.9%) were prospectively enrolled in this Phase II trial. Tumor characteristics included a median pretreatment prostate-specific antigen level of 14.6 ng/mL, a median clinical stage of T2c, and a median Gleason score of 7. Three-dimensional conformal radiotherapy (54 Gy in 30 fractions) was followed by HDR brachytherapy (19 Gy in 4 b.i.d. treatments). Androgen suppressive therapy started 0-3 months before three-dimensional conformal radiotherapy and continued for 2 years. Results: One implant was repositioned with a new procedure (0.7%). Five patients (3.7%) discontinued AST at a median of 13 months (range, 6-18 months) because of disease progression (n = 1), hot flashes (n = 2), fatigue (n = 1), and impotence (n = 1). After a median follow-up of 37.4 months (range, 24-90 months), the highest Radiation Therapy Oncology Group-defined late urinary toxicities were Grade 0 in 47.8%, Grade 1 in 38.1%, Grade 2 in 7.5%, and Grade 3 in 6.7% of patients. Maximal late gastrointestinal toxicities were Grade 0 in 73.1%, Grade 1 in 16.4%, Grade 2 in 7.5%, and Grade 3 in 2.9% of patients. There were no Grade 4 or 5 events. Conclusions: Intermediate-term results show that dose escalation with HDR brachytherapy combined with long-term AST is feasible and has a toxicity profile similar to that reported by previous HDR brachytherapy studies.

  18. Three-dimensional visual stimulator

    NASA Astrophysics Data System (ADS)

    Takeda, Tsunehiro; Fukui, Yukio; Hashimoto, Keizo; Hiruma, Nobuyuki

    1995-02-01

    We describe a newly developed three-dimensional visual stimulator (TVS) that can change independently the directions, distances, sizes, luminance, and varieties of two sets of targets for both eyes. It consists of liquid crystal projectors (LCP's) that generate the flexible images of targets, Badal otometers that change target distances without changing the visual angles, and relay-lens systems that change target directions. A special control program is developed for real-time control of six motors and two LCP's in the TVS together with a three-dimensional optometer III that simultaneously measures eye movement, accommodation, pupil diameter, and head movement. distance, 0 to -20 D; direction, 16 horizontally and 15 vertically; size, 0-2 deg visual angle; and luminance, 10-2-10 2 cd/m2. The target images are refreshed at 60 Hz and speeds with which the target makes a smooth change (ramp stimuli) are size, 10 deg/s. A simple application demonstrates the performance.

  19. Phase 2 Trial of Hypofractionated High-Dose Intensity Modulated Radiation Therapy With Concurrent and Adjuvant Temozolomide for Newly Diagnosed Glioblastoma

    SciTech Connect

    Iuchi, Toshihiko; Hatano, Kazuo; Kodama, Takashi; Sakaida, Tsukasa; Yokoi, Sana; Kawasaki, Koichiro; Hasegawa, Yuzo; Hara, Ryusuke

    2014-03-15

    Purpose/Objectives: To assess the effect and toxicity of hypofractionated high-dose intensity modulated radiation therapy (IMRT) with concurrent and adjuvant temozolomide (TMZ) in 46 patients with newly diagnosed glioblastoma multiforme (GBM). Methods and Materials: All patients underwent postsurgical hypofractionated high-dose IMRT. Three layered planning target volumes (PTVs) were contoured. PTV1 was the surgical cavity and residual tumor on T1-weighted magnetic resonance images with 5-mm margins, PTV2 was the area with 15-mm margins surrounding the PTV1, and PTV3 was the high-intensity area on fluid-attenuated inversion recovery images. Irradiation was performed in 8 fractions at total doses of 68, 40, and 32 Gy for PTV1, PTV2, and PTV3, respectively. Concurrent TMZ was given at 75 mg/m{sup 2}/day for 42 consecutive days. Adjuvant TMZ was given at 150 to 200 mg/m{sup 2}/day for 5 days every 28 days. Overall and progression-free survivals were evaluated. Results: No acute IMRT-related toxicity was observed. The dominant posttreatment failure pattern was dissemination. During a median follow-up time of 16.3 months (range, 4.3-80.8 months) for all patients and 23.7 months (range, 12.4-80.8 months) for living patients, the median overall survival was 20.0 months after treatment. Radiation necrosis was diagnosed in 20 patients and was observed not only in the high-dose field but also in the subventricular zone (SVZ). Necrosis in the SVZ was significantly correlated with prolonged survival (hazard ratio, 4.08; P=.007) but caused deterioration in the performance status of long-term survivors. Conclusions: Hypofractionated high-dose IMRT with concurrent and adjuvant TMZ altered the dominant failure pattern from localized to disseminated and prolonged the survival of patients with GBM. Necrosis in the SVZ was associated with better patient survival, but the benefit of radiation to this area remains controversial.

  20. Brachial Plexus-Associated Neuropathy After High-Dose Radiation Therapy for Head-and-Neck Cancer

    SciTech Connect

    Chen, Allen M.; Hall, William H.; Li, Judy; Beckett, Laurel; Farwell, D. Gregory; Lau, Derick H.; Purdy, James A.

    2012-09-01

    Purpose: To identify clinical and treatment-related predictors of brachial plexus-associated neuropathies after radiation therapy for head-and-neck cancer. Methods and Materials: Three hundred thirty patients who had previously completed radiation therapy for head-and-neck cancer were prospectively screened using a standardized instrument for symptoms of neuropathy thought to be related to brachial plexus injury. All patients were disease-free at the time of screening. The median time from completion of radiation therapy was 56 months (range, 6-135 months). One-hundred fifty-five patients (47%) were treated by definitive radiation therapy, and 175 (53%) were treated postoperatively. Radiation doses ranged from 50 to 74 Gy (median, 66 Gy). Intensity-modulated radiation therapy was used in 62% of cases, and 133 patients (40%) received concurrent chemotherapy. Results: Forty patients (12%) reported neuropathic symptoms, with the most common being ipsilateral pain (50%), numbness/tingling (40%), motor weakness, and/or muscle atrophy (25%). When patients with <5 years of follow-up were excluded, the rate of positive symptoms increased to 22%. On univariate analysis, the following factors were significantly associated with brachial plexus symptoms: prior neck dissection (p = 0.01), concurrent chemotherapy (p = 0.01), and radiation maximum dose (p < 0.001). Cox regression analysis confirmed that both neck dissection (p < 0.001) and radiation maximum dose (p < 0.001) were independently predictive of symptoms. Conclusion: The incidence of brachial plexus-associated neuropathies after radiation therapy for head-and-neck cancer may be underreported. In view of the dose-response relationship identified, limiting radiation dose to the brachial plexus should be considered when possible.

  1. Mortality risk coefficients for radiation-induced cancer at high doses and dose-rates, and extrapolation to the low dose domain.

    PubMed

    Liniecki, J

    1989-01-01

    Risk coefficients for life-long excessive mortality due to radiation-induced cancers are presented, as derived in 1988 by the U.N. Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), principally on the basis of follow-up from A-bomb survivors in Japan, over the period from 1950 through 1985. The data are based on the new, revised dosimetry (DS 86) in the two cities, and reflect the effects of high and intermediate doses of basically low LET radiation delivered instantaneously. The author presents arguments relevant to the extrapolation of the risk to the low dose (dose rate) domain, as outlined by UNSCEAR in its 1986, and the NCRP (USA) in its 1980, (no 64), reports. The arguments are based on models and dose-response relationships for radiation action, derived from data on cellular radiobiology, animal experiments on radiation-induced cancers and life shortening, as well as the available limited human epidemiological evidence. The available information points to the lower effectiveness of sparsely ionizing radiation at low doses and low dose-rates, as compared with that observed for high, acutely delivered doses. The possible range of the reduction values (DREF) is presented. For high LET radiations, the evidence is less extensive and sometimes contradictory; however, it does not point to a reduction of the effectiveness at low doses/dose-rates, relative to the high dose domain. Practical consequences of these facts are considered. PMID:2489419

  2. Randomized Phase II Trial of High-Dose Melatonin and Radiation Therapy for RPA Class 2 Patients With Brain Metastases (RTOG 0119)

    SciTech Connect

    Berk, Lawrence . E-mail: Berklb@moffitt.usf.edu; Berkey, Brian; Rich, Tyvin; Hrushesky, William; Gallagher, Michael; Kudrimoti, Mahesh; McGarry, Ronald C.; Suh, John; Mehta, Minesh

    2007-07-01

    Purpose: To determine if high-dose melatonin for Radiation Therapy Oncology Group (RTOG) recursive partitioning analysis (RPA) Class 2 patients with brain metastases improved survival over historical controls, and to determine if the time of day melatonin was given affected its toxicity or efficacy. RTOG 0119 was a phase II randomized trial for this group of patients. Methods and Materials: RTOG RPA Class 2 patients with brain metastases were randomized to 20 mg of melatonin, given either in the morning (8-9 AM) or in the evening (8-9 PM). All patients received radiation therapy (30 Gy in 10 fractions) in the afternoon. Melatonin was continued until neurologic deterioration or death. The primary endpoint was overall survival time. Neurologic deterioration, as reflected by the Mini-Mental Status Examination, was also measured. Results: Neither of the randomized groups had survival distributions that differed significantly from the historic controls of patients treated with whole-brain radiotherapy. The median survivals of the morning and evening melatonin treatments were 3.4 and 2.8 months, while the RTOG historical control survival was 4.1 months. Conclusions: High-dose melatonin did not show any beneficial effect in this group of patients.

  3. Use of benchmark dose-volume histograms for selection of the optimal technique between three-dimensional conformal radiation therapy and intensity-modulated radiation therapy in prostate cancer

    SciTech Connect

    Luo Chunhui; Yang, Claus Chunli; Narayan, Samir; Stern, Robin L.; Perks, Julian; Goldberg, Zelanna; Ryu, Janice; Purdy, James A.; Vijayakumar, Srinivasan . E-mail: Srinivasan.Vijayakumar@ucdmc.ucdavis.edu

    2006-11-15

    Purpose: The aim of this study was to develop and validate our own benchmark dose-volume histograms (DVHs) of bladder and rectum for both conventional three-dimensional conformal radiation therapy (3D-CRT) and intensity-modulated radiation therapy (IMRT), and to evaluate quantitatively the benefits of using IMRT vs. 3D-CRT in treating localized prostate cancer. Methods and Materials: During the implementation of IMRT for prostate cancer, our policy was to plan each patient with both 3D-CRT and IMRT. This study included 31 patients with T1b to T2c localized prostate cancer, for whom we completed double-planning using both 3D-CRT and IMRT techniques. The target volumes included prostate, either with or without proximal seminal vesicles. Bladder and rectum DVH data were summarized to obtain an average DVH for each technique and then compared using two-tailed paired t test analysis. Results: For 3D-CRT our bladder doses were as follows: mean 28.8 Gy, v60 16.4%, v70 10.9%; rectal doses were: mean 39.3 Gy, v60 21.8%, v70 13.6%. IMRT plans resulted in similar mean dose values: bladder 26.4 Gy, rectum 34.9 Gy, but lower values of v70 for the bladder (7.8%) and rectum (9.3%). These benchmark DVHs have resulted in a critical evaluation of our 3D-CRT techniques over time. Conclusion: Our institution has developed benchmark DVHs for bladder and rectum based on our clinical experience with 3D-CRT and IMRT. We use these standards as well as differences in individual cases to make decisions on whether patients may benefit from IMRT treatment rather than 3D-CRT.

  4. Three-dimensional study of the multi-cavity FEL

    SciTech Connect

    Krishnagopal, S.; Kumar, V.

    1995-12-31

    The Multi-Cavity Free-Electron Laser has been proposed earlier, as a new configuration to obtain short, intense pulses of radiation, the key idea being to pre-bunch the electron beam in a number of very short cavities. Those studies were one-dimensional. Here we use three-dimensional simulations to study the viability of this concept when three-dimensional effects are included, particularly with regard to the transverse modes of the optical beam.

  5. Concomitant 5-fluorouracil infusion and high-dose radiation for stage III non-small cell lung cancer

    SciTech Connect

    Lokich, J.; Chaffey, J.; Neptune, W. )

    1989-09-01

    Thirty patients with Stage III non-small cell lung cancer were entered on a trial to evaluate the feasibility of combined radiation and concomitant 5-fluorouracil infusion. Patients had received prior debulking surgery (nine), induction chemotherapy (16), or no therapy (five). Radiation employed standard fractionation (180-200 rad/day) administered to a median cumulative dose of 5500 rad (range, 4500-6200 rad). 5-Fluorouracil was infused 24 hours per day throughout the period of radiation at a dose of 300 mg/m2/day for a median of 42 days (range, 28-56 days). Radiation complications included pneumonitis three of 30 (10%) and esophagitis (27%). Chemotherapy complications included stomatitis, two of 27 (7%), and hand-foot syndrome, three of 30 (10%). Treatment interruptions were necessary in six of 30 (20%) and four of 30 required parenteral nutrition. At a median follow-up of 12 months 26/30 (87%) maintained local control and eight had distant metastases (three of whom presented with Stage IV disease). 5-Fluorouracil delivered continuously throughout standard fractionation radiation to high cumulative doses is feasible and practical. Comparative clinical trials of the various combined radiation and chemotherapy schedules employed are in order. One additional clinical observation was the identification of six of 30 (20%) with brain metastases at presentation or after 12 months, all of whom had adenocarcinoma histologic subtype.

  6. Three-dimensional coil inductor

    DOEpatents

    Bernhardt, Anthony F.; Malba, Vincent

    2002-01-01

    A three-dimensional coil inductor is disclosed. The inductor includes a substrate; a set of lower electrically conductive traces positioned on the substrate; a core placed over the lower traces; a set of side electrically conductive traces laid on the core and the lower traces; and a set of upper electrically conductive traces attached to the side traces so as to form the inductor. Fabrication of the inductor includes the steps of forming a set of lower traces on a substrate; positioning a core over the lower traces; forming a set of side traces on the core; connecting the side traces to the lower traces; forming a set of upper traces on the core; and connecting the upper traces to the side traces so as to form a coil structure.

  7. The susceptibility of TaOx-based memristors to high dose rate ionizing radiation and total ionizing dose

    SciTech Connect

    McLain, Michael Lee; Sheridan, Timothy J.; Hjalmarson, Harold Paul; Mickel, Patrick R.; Hanson, Donald J.; McDonald, Joseph K.; Hughart, David Russell; Marinella, Matthew J.

    2014-11-11

    This paper investigates the effects of high dose rate ionizing radiation and total ionizing dose (TID) on tantalum oxide (TaOx) memristors. Transient data were obtained during the pulsed exposures for dose rates ranging from approximately 5.0 ×107 rad(Si)/s to 4.7 ×108 rad(Si)/s and for pulse widths ranging from 50 ns to 50 μs. The cumulative dose in these tests did not appear to impact the observed dose rate response. Static dose rate upset tests were also performed at a dose rate of ~3.0 ×108 rad(Si)/s. This is the first dose rate study on any type of memristive memory technology. In addition to assessing the tolerance of TaOx memristors to high dose rate ionizing radiation, we also evaluated their susceptibility to TID. The data indicate that it is possible for the devices to switch from a high resistance off-state to a low resistance on-state in both dose rate and TID environments. The observed radiation-induced switching is dependent on the irradiation conditions and bias configuration. Furthermore, the dose rate or ionizing dose level at which a device switches resistance states varies from device to device; the enhanced susceptibility observed in some devices is still under investigation. As a result, numerical simulations are used to qualitatively capture the observed transient radiation response and provide insight into the physics of the induced current/voltages.

  8. Ionizing radiation and autoimmunity: Induction of autoimmune disease in mice by high dose fractionated total lymphoid irradiation and its prevention by inoculating normal T cells

    SciTech Connect

    Sakaguchi, N.; Sakaguchi, S. Scripps Research Institute, La Jolla, CA PRESTO, JRDC, Institute of Phical and Chemical Research, Tsukuba, Ibaraki ); Miyai, K. )

    1992-11-01

    Ionizing radiation can functionally alter the immune system and break self-tolerance. High dose (42.5 Gy), fractionated (2.5 Gy 17 times) total lymphoid irradiation (TLI) on mice caused various organ-specific autoimmune diseases, such as gastritis, thyroiditis, and orchitis, depending on the radiation dosages, the extent of lymphoid irradiation, and the genetic background of the mouse strains. Radiation-induced tissue damage is not the primary cause of the autoimmune disease because irradiation of the target organs alone failed to elicit the autoimmunity and shielding of the organs from irradiation was unable to prevent it. In contrast, irradiation of both the thymus and the peripheral lymphoid organs/tissues was required for efficient induction of autoimmune disease by TLI. TLI eliminated the majority of mature thymocytes and the peripheral T cells for 1 mo, and inoculation of spleen cell, thymocyte, or bone marrow cell suspensions (prepared from syngeneic nonirradiated mice) within 2 wk after TLI effectively prevented the autoimmune development. Depletion of T cells from the inocula abrogated the preventive activity. CD4[sup +] T cells mediated the autoimmune prevention but CD8[sup +] T cells did not. CD4[sup +] T cells also appeared to mediate the TLI-induced autoimmune disease because CD4[sup +] T cells from disease-bearing TLI mice adoptively transferred the autoimmune disease to syngeneic naive mice. Taken together, these results indicate that high dose, fractionated ionizing radiation on the lymphoid organs/tissues can cause autoimmune disease by affecting the T cell immune system, rather than the target self-Ags, presumably by altering T cell-dependent control of self-reactive T cells. 62 refs., 9 figs., 2 tabs.

  9. Differential Molecular Stress Responses to Low Compared to High Doses of Ionizing Radiation in Normal Human Fibroblasts

    PubMed Central

    Velegzhaninov, Ilya O.; Shadrin, Dmitry M.; Pylina, Yana I.; Ermakova, Anastasia V.; Shostal, Olga A.; Belykh, Elena S.; Kaneva, Anna V.; Ermakova, Olga V.

    2015-01-01

    Understanding the mechanisms producing low dose ionizing radiation specific biological effects represents one of the major challenges of radiation biology. Although experimental evidence does suggest that various molecular stress response pathways may be involved in the production of low dose effects, much of the detail of those mechanisms remains elusive. We hypothesized that the regulation of various stress response pathways upon irradiation may differ from one another in complex dose-response manners, causing the specific and subtle low dose radiation effects. In the present study, the transcription level of 22 genes involved in stress responses were analyzed using RT-qPCR in normal human fibroblasts exposed to a range of gamma-doses from 1 to 200 cGy. Using the alkali comet assay, we also measured the level of DNA damages in dose-response and time-course experiments. We found non-linear dose responses for the repair of DNA damage after exposure to gamma-radiation. Alterations in gene expression were also not linear with dose for several of the genes examined and did not follow a single pattern. Rather, several patterns could be seen. Our results suggest a complex interplay of various stress response pathways triggered by low radiation doses, with various low dose thresholds for different genes. PMID:26675169

  10. Radiation-induced failures and degradation of wireless real-time dosimeter under high-dose-rate irradiation

    NASA Astrophysics Data System (ADS)

    Tsuchiya, K.; Kuroki, K.; Akiba, N.; Kurosawa, K.; Matsumoto, T.; Nishiyama, J.; Harano, H.

    2010-04-01

    Radiation-induced malfunction and degradation of electronic modules in certain operating conditions are described in this report. The cumulative radiation effects on Atmel AVR microcontrollers, and 2.4 GHz and 303 MHz wireless network devices were evaluated under gamma ray irradiation with dose rates of 100, 10 and 3 Gy/h. The radiation-induced malfunctions occurred at doses of 510+/-22 Gy for AVR microcontrollers, and 484+/-111 and 429+/-14 Gy for 2.4 GHz and 303 MHz wireless network devices, respectively, under a 100 Gy/h equivalent dose rate. The degradation of microcontrollers occurred for total ionizing doses between 400 and 600 Gy under X-ray irradiation. In addition, we evaluated the reliability of neutron dosimeters using a standard neutron field. One of the neutron dosimeters gave a reading that was half of the standard field value.

  11. Three dimensional data-assimilative VERB-code simulations of the Earth's radiation belts: Reanalysis during the Van Allen Probe era, and operational forecasting

    NASA Astrophysics Data System (ADS)

    Kellerman, Adam; Shprits, Yuri; Podladchikova, Tatiana; Kondrashov, Dmitri

    2016-04-01

    The Versatile Electron Radiation Belt (VERB) code 2.0 models the dynamics of radiation-belt electron phase space density (PSD) in Earth's magnetosphere. Recently, a data-assimilative version of this code has been developed, which utilizes a split-operator Kalman-filtering approach to solve for electron PSD in terms of adiabatic invariants. A new dataset based on the TS07d magnetic field model is presented, which may be utilized for analysis of past geomagnetic storms, and for initial and boundary conditions in running simulations. Further, a data-assimilative forecast model is introduced, which has the capability to forecast electron PSD several days into the future, given a forecast Kp index. The model assimilates an empirical model capable of forecasting the conditions at geosynchronous orbit. The model currently runs in real time and a forecast is available to view online http://rbm.epss.ucla.edu.

  12. SU-E-T-514: Simultaneously Determination of Radiation Isocentricity of Gantry, Collimator and Couch Using a Commercial Three-Dimensional Dosimetry QA Apparatus

    SciTech Connect

    Yan, S; Song, H; Wu, Q

    2014-06-01

    Purpose: Radiation isocentricity is an important benchmark for a LINAC and is typically determined by 3 separate film star-shots. We developed a technique to simultaneously determine the radiation isocenter of gantry, collimator and couch with a commercial 3D QA apparatus. Methods: The ArcCHECK from SunNuclear was used on two LINACs. It was aligned with room lasers. For gantry rotation, collimator and couch were set to zero and gantry was placed to 0, 49, 213 and 311 degrees. Similarly, a set of collimator/couch angles were chosen with the other two axes at neutral positions. The measured dose matrices were analyzed by an in-house MATLAB program. For each shot, the central axis was determined by computing the FWHM of the diode arrays. The largest inscribed circle from these central axis lines was used to determine isocenter: the radius as the benchmark of isocentricity and the coordinates of the center as the discrepancy of radiation isocenter to the origin defined by lasers. To validate the method, the couch was shifted by ~5 mm in all three directions and measurements were repeated. Results: The radius of the largest inscribed circle for gantry, collimator and couch are (0.3, 0.5, 0.2) mm for one LINAC and (0.2, 0.3, 0.1) mm for the other, in agreement with the film star-shots at annual QA. The discrepancies of radiation isocenter are generally within 1 mm, except gantry rotation on one LINAC due to the drift of foot laser. The differences in positions detected are consistent with the intentional predefined shift. Conclusion: We have demonstrated a technique for the simultaneous measurement of gantry, collimator, and couch isocentricity with a set of carefully chosen irradiation parameters based on the specific construction geometry of the 3D detector ArcCheck. This can replace the standard film star-shots. The future work includes improving operation efficiency.

  13. Comparative toxicity and micronuclei formation in Tribolium castaneum, Callosobruchus maculatus and Sitophilus oryzae exposed to high doses of gamma radiation.

    PubMed

    Ahmadi, Mehrdad; Mozdarani, Hossein; Abd-Alla, Adly M M

    2015-07-01

    The effects of gamma radiation on mortality and micronucleus formation in Tribolium castaneum Herbst, Callosobruchus maculatus (F.) and Sitophilus oryzae (L.) genital cells were evaluated. Two groups of healthy and active adult insects 1-3 and 8-10 days old were irradiated with various doses (50-200 Gy) gamma ray. Seven days post-irradiation; mortality rates and micronucleus formation were assessed in genital cells of the irradiated insects. The results show that with increasing gamma doses, the mortality rate of each species increased and T. castaneum and S. oryzae showed the low and high sensitivity respectively. It was shown that the micronucleus appearance in the tested insects had correlation with amount and intensity of radiation doses. Moreover our results indicate different levels in the genotoxicity of gamma radiation among the insects' genital cells under study. The frequency of micronuclei in genital cells of 1-3 days old insects exposed to 50 and 200 Gy were 12.6 and 38.8 Mn/1000 cells in T. castaneum, 20.8 and 46.8 Mn/1000 cells in C. maculatus and 16.8 and 57.2 Mn/1000 cells in S. oryzae respectively. A high sensitivity of the genital cells to irradiation exposure was seen in S. oryzae correlated with its high mortality rate compared with the other two species. These results might be indicative of inflicting chromosomal damage expressed as micronucleus in high mortality rates observed in the pest population; an indication of genotoxic effects of radiation on the studied species. PMID:25898238

  14. Radiation boundary conditions for the numerical solution of the three-dimensional time-dependent Schroedinger equation with a localized interaction

    SciTech Connect

    Heinen, M.; Kull, H.-J.

    2009-05-15

    Exact radiation boundary conditions on the surface of a sphere are presented for the single-particle time-dependent Schroedinger equation with a localized interaction. With these boundary conditions, numerical computations of spatially unbounded outgoing wave solutions can be restricted to the finite volume of a sphere. The boundary conditions are expressed in terms of the free-particle Green's function for the outside region. The Green's function is analytically calculated by an expansion in spherical harmonics and by the method of Laplace transformation. For each harmonic number a discrete boundary condition between the function values at adjacent radial grid points is obtained. The numerical method is applied to quantum tunneling through a spherically symmetric potential barrier with different angular-momentum quantum numbers l. Calculations for l=0 are compared to exact theoretical results.

  15. THE 2-3 kHz HELIOSPHERIC RADIATION, THE IBEX RIBBON, AND THE THREE-DIMENSIONAL SHAPE OF THE HELIOPAUSE

    SciTech Connect

    Fuselier, Stephen A.; Cairns, Iver H.

    2013-07-10

    Recent Interstellar Boundary Explorer (IBEX) observations indicate that the total dynamic pressure in the interstellar medium is closely partitioned between the plasma and the magnetic field, with an Alfven Mach number M{sub A} {approx} 1 and a sonic Mach number {approx}2. Observations of the IBEX Ribbon provide a unique determination of the orientation of the undraped interstellar magnetic field along the heliopause. There is also a striking correspondence between the Ribbon location and the source locations of 2-3 kHz radiation determined from Voyager observations: the radiation sources north of the ecliptic form a line parallel to but offset by about 30 Degree-Sign from the Ribbon. A general Rankine-Hugoniot analysis is used to argue that the heliopause should not be symmetric about the velocity vector V{sub ISM} of the interstellar medium relative to the Sun (the nominal nose direction). Furthermore, the closest point on the heliopause to the Sun should be on the Ribbon for M{sub A} = 0 and at least 9 Degree-Sign from the nominal nose direction toward the Ribbon for M{sub A} = 1. These new results are combined into a conceptual model of the heliopause that includes (1) a plasma depletion layer formed as the interstellar magnetic field drapes against the heliopause, (2) a minimum inner heliosheath thickness and closest point between the Sun and heliopause along (or close to) the Ribbon rather than in the nominal nose direction (along V{sub ISM}), and (3) inference of an asymmetric heliopause shape from the angular offset of the radio sources and Ribbon and from the Rankine-Hugoniot analysis.

  16. Three dimensional magnetic abacus memory

    NASA Astrophysics Data System (ADS)

    Zhang, Shilei; Zhang, Jingyan; Baker, Alexander A.; Wang, Shouguo; Yu, Guanghua; Hesjedal, Thorsten

    2014-08-01

    Stacking nonvolatile memory cells into a three-dimensional matrix represents a powerful solution for the future of magnetic memory. However, it is technologically challenging to access the data in the storage medium if large numbers of bits are stacked on top of each other. Here we introduce a new type of multilevel, nonvolatile magnetic memory concept, the magnetic abacus. Instead of storing information in individual magnetic layers, thereby having to read out each magnetic layer separately, the magnetic abacus adopts a new encoding scheme. It is inspired by the idea of second quantisation, dealing with the memory state of the entire stack simultaneously. Direct read operations are implemented by measuring the artificially engineered `quantised' Hall voltage, each representing a count of the spin-up and spin-down layers in the stack. This new memory system further allows for both flexible scaling of the system and fast communication among cells. The magnetic abacus provides a promising approach for future nonvolatile 3D magnetic random access memory.

  17. Three dimensional magnetic abacus memory

    NASA Astrophysics Data System (ADS)

    Zhang, Shilei; Zhang, Jingyan; Baker, Alexander; Wang, Shouguo; Yu, Guanghua; Hesjedal, Thorsten

    2015-03-01

    Stacking nonvolatile memory cells into a three-dimensional matrix represents a powerful solution for the future of magnetic memory. However, it is technologically challenging to access the individual data in the storage medium if large numbers of bits are stacked on top of each other. Here we introduce a new type of multilevel, nonvolatile magnetic memory concept, the magnetic abacus. Instead of storing information in individual magnetic layers, thereby having to read out each magnetic layer separately, the magnetic abacus adopts a new encoding scheme which envisages a classical abacus with the beads operated by electron spins. It is inspired by the idea of second quantization, dealing with the memory state of the entire stack simultaneously. Direct read operations are implemented by measuring the artificially engineered `quantized' Hall voltage, representing a count of the spin-up and spin-down layers in the stack. This concept of `second quantization of memory' realizes the 3D memory architecture with superior reading and operation efficiency, thus is a promising approach for future nonvolatile magnetic random access memory.

  18. Three dimensional magnetic abacus memory.

    PubMed

    Zhang, ShiLei; Zhang, JingYan; Baker, Alexander A; Wang, ShouGuo; Yu, GuangHua; Hesjedal, Thorsten

    2014-01-01

    Stacking nonvolatile memory cells into a three-dimensional matrix represents a powerful solution for the future of magnetic memory. However, it is technologically challenging to access the data in the storage medium if large numbers of bits are stacked on top of each other. Here we introduce a new type of multilevel, nonvolatile magnetic memory concept, the magnetic abacus. Instead of storing information in individual magnetic layers, thereby having to read out each magnetic layer separately, the magnetic abacus adopts a new encoding scheme. It is inspired by the idea of second quantisation, dealing with the memory state of the entire stack simultaneously. Direct read operations are implemented by measuring the artificially engineered 'quantised' Hall voltage, each representing a count of the spin-up and spin-down layers in the stack. This new memory system further allows for both flexible scaling of the system and fast communication among cells. The magnetic abacus provides a promising approach for future nonvolatile 3D magnetic random access memory. PMID:25146338

  19. Dynamic Three-Dimensional Echocardiography

    NASA Astrophysics Data System (ADS)

    Matsusaka, Katsuhiko; Doi, Motonori; Oshiro, Osamu; Chihara, Kunihiro

    2000-08-01

    Conventional three-dimensional (3D) ultrasound imaging equipment for diagnosis requires much time to reconstruct 3D images or fix the view point for observing the 3D image. Thus, it is inconvenient for cardiac diagnosis. In this paper, we propose a new dynamic 3D echocardiography system. The system produces 3D images in real-time and permits changes in view point. This system consists of ultrasound diagnostic equipment, a digitizer and a computer. B-mode images are projected to a virtual 3D space by referring to the position of the probe of the ultrasound diagnosis equipment. The position is obtained by the digitizer to which the ultrasound probe is attached. The 3D cardiac image is constructed from B-mode images obtained simultaneously in the cardiac cycle. To obtain the same moment of heartbeat in the cardiac cycle, this system uses the electrocardiography derived from the diagnosis equipment. The 3D images, which show various scenes of the stage of heartbeat action, are displayed sequentially. The doctor can observe 3D images cut in any plane by pushing a button of the digitizer and zooming with the keyboard. We evaluated our prototype system by observation of a mitral valve in motion.

  20. Three-dimensional display technologies

    PubMed Central

    Geng, Jason

    2014-01-01

    The physical world around us is three-dimensional (3D), yet traditional display devices can show only two-dimensional (2D) flat images that lack depth (i.e., the third dimension) information. This fundamental restriction greatly limits our ability to perceive and to understand the complexity of real-world objects. Nearly 50% of the capability of the human brain is devoted to processing visual information [Human Anatomy & Physiology (Pearson, 2012)]. Flat images and 2D displays do not harness the brain’s power effectively. With rapid advances in the electronics, optics, laser, and photonics fields, true 3D display technologies are making their way into the marketplace. 3D movies, 3D TV, 3D mobile devices, and 3D games have increasingly demanded true 3D display with no eyeglasses (autostereoscopic). Therefore, it would be very beneficial to readers of this journal to have a systematic review of state-of-the-art 3D display technologies. PMID:25530827

  1. Three-dimensional laser microvision.

    PubMed

    Shimotahira, H; Iizuka, K; Chu, S C; Wah, C; Costen, F; Yoshikuni, Y

    2001-04-10

    A three-dimensional (3-D) optical imaging system offering high resolution in all three dimensions, requiring minimum manipulation and capable of real-time operation, is presented. The system derives its capabilities from use of the superstructure grating laser source in the implementation of a laser step frequency radar for depth information acquisition. A synthetic aperture radar technique was also used to further enhance its lateral resolution as well as extend the depth of focus. High-speed operation was made possible by a dual computer system consisting of a host and a remote microcomputer supported by a dual-channel Small Computer System Interface parallel data transfer system. The system is capable of operating near real time. The 3-D display of a tunneling diode, a microwave integrated circuit, and a see-through image taken by the system operating near real time are included. The depth resolution is 40 mum; lateral resolution with a synthetic aperture approach is a fraction of a micrometer and that without it is approximately 10 mum. PMID:18357177

  2. Three-Dimensional Schlieren Measurements

    NASA Astrophysics Data System (ADS)

    Sutherland, Bruce; Cochrane, Andrea

    2004-11-01

    Schlieren systems visualise disturbances that change the index of refraction of a fluid, for example due to temperature or salinity disturbances. `Synthetic schlieren' refers to a recent advance in which these disturbances are visualised with a digital camera and image-processing technology rather than the classical use of parabolic mirrors and a knife-edge. In a typical setup, light from an image of horizontal lines or dots passes almost horizontally through the test section of a fluid to a CCD camera. Refractive index disturbances distort the image and digital comparison of successive images reveals the plan-form structure and time evolution of the disturbances. If the disturbance is effectively two-dimensional, meaning that it is uniform across the line-of-sight of the camera, then its magnitude as well as its structure can measured through simple inversion of an algebraic equation. If the structure is axisymmetric with rotation-axis perpendicular to the line of sight, the magnitude of the disturbance can be measured through inversion of a non-singular square matrix. Here we report upon the extension of this work toward measuring the magnitude of a fully three-dimensional disturbance. This is done by analysing images from two perspectives through the test section and using inversion tomography techniques to reconstruct the disturbance field. The results are tested against theoretical predictions and experimental measurements.

  3. True three-dimensional camera

    NASA Astrophysics Data System (ADS)

    Kornreich, Philipp; Farell, Bart

    2013-01-01

    An imager that can measure the distance from each pixel to the point on the object that is in focus at the pixel is described. This is accomplished by short photo-conducting lightguides at each pixel. In the eye the rods and cones are the fiber-like lightguides. The device uses ambient light that is only coherent in spherical shell-shaped light packets of thickness of one coherence length. Modern semiconductor technology permits the construction of lightguides shorter than a coherence length of ambient light. Each of the frequency components of the broad band light arriving at a pixel has a phase proportional to the distance from an object point to its image pixel. Light frequency components in the packet arriving at a pixel through a convex lens add constructively only if the light comes from the object point in focus at this pixel. The light in packets from all other object points cancels. Thus the pixel receives light from one object point only. The lightguide has contacts along its length. The lightguide charge carriers are generated by the light patterns. These light patterns, and thus the photocurrent, shift in response to the phase of the input signal. Thus, the photocurrent is a function of the distance from the pixel to its object point. Applications include autonomous vehicle navigation and robotic vision. Another application is a crude teleportation system consisting of a camera and a three-dimensional printer at a remote location.

  4. An Absorbed-Dose/Dose-Rate Dependence for the Alanine-EPR Dosimetry System and Its Implications in High-Dose Ionizing Radiation Metrology

    PubMed Central

    Desrosiers, M. F.; Puhl, J. M.; Cooper, S. L.

    2008-01-01

    NIST developed the alanine dosimetry system in the early 1990s to replace radiochromic dye film dosimeters. Later in the decade the alanine system was firmly established as a transfer service for high-dose radiation dosimetry and an integral part of the internal calibration scheme supporting these services. Over the course of the last decade, routine monitoring of the system revealed a small but significant observation that, after examination, led to the characterization of a previously unknown absorbed-dose-dependent, dose-rate effect for the alanine system. Though the potential impact of this effect is anticipated to be extremely limited for NIST’s customer-based transfer dosimetry service, much greater implications may be realized for international measurement comparisons between National Measurement Institutes. PMID:27096113

  5. High resolution three-dimensional visualization and characterization of coronary atherosclerosis in vitro by synchrotron radiation x-ray microtomography and highly localized x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Jin, Hua; Ham, Kyungmin; Chan, Julia Y.; Butler, Leslie G.; Kurtz, Richard L.; Thiam, Serigne; Robinson, James W.; Agbaria, Rezik A.; Warner, Isiah M.; Tracy, Richard E.

    2002-12-01

    Human atherosclerotic plaques in both native and bypass arteries have been visualized using microtomography to provide additional information on the nature of coronary artery disease. Plaques contained within arteries removed from three white males aged 51, 55 and 70 are imaged in three-dimensions with monochromatic synchrotron x-ray radiation. Fields of view are 658 × 658 × 517 voxels, with cubic voxels ranging from 12 to 13 µm on a side. X-ray energies range from 11 to 15 keV (bandpass approximately 10 eV). At lower energies, high local absorption tends to generate reconstruction artefacts, while at higher energies the arterial wall is scarcely visible. At all energies, calcifications are clearly visible and differences are observed between plaques in native arteries (lifetime accumulations) versus bypass arteries (plaques developing in the interval between the heart bypass operation and the autopsy). In order to characterize coronary calcification, a micro-focused, 50 µm2, 25 keV x-ray beam was used to acquire powder diffraction data from selected calcifications. Also, large calcifications were removed from the native arteries and imaged with 25 keV x-ray energy. Calcifications are composed of hydroxyapatite crystallites and an amorphous phase. In summary, native calcifications are larger and have a higher fraction of hydroxyapatite than calcifications from the bypass arteries.

  6. Three-dimensional personalized dosimetry for 188Re liver selective internal radiation therapy based on quantitative post-treatment SPECT studies

    NASA Astrophysics Data System (ADS)

    Shcherbinin, S.; Grimes, J.; Bator, A.; Cwikla, J. B.; Celler, A.

    2014-01-01

    We demonstrate that accurate patient-specific distributions of microspheres labeled with 188Re and resulting absorbed doses can be obtained from single-photon emission computed tomography (SPECT) studies performed after 188Re selective internal radiation therapy when accurate correction methods are employed in image reconstruction. Our quantitative image reconstruction algorithm includes corrections for attenuation, resolution degradations and scatter as well as a window-based compensation for contamination. The procedure has been validated using four phantom experiments containing an 18 ml cylindrical source (82-93 MBq of 188Re activity) simulating a liver tumor. In addition, we applied our approach to post-therapy SPECT studies of ten patients with progressive primary or metastatic liver carcinomas. Our quantitative algorithm accurately (within 9%) recovered 188Re activity from four phantom experiments. In addition, for two patients that received three scans, deviations remained consistent between the measured and the reconstructed activities that were determined from studies with differing severity of the dead-time effect. The analysis of absorbed doses for patient studies allowed us to hypothesize that D90 (the minimum dose received by 90% of the tumor volume) may be a reliable metric relating therapy outcomes to the calculated doses. Among several considered metrics, only D90 showed statistically significant correlation with the overall survival.

  7. Volumetric index of Tl-201 uptake in symptomatic patients after high - dose radiation treatment for high-grade gliomas

    SciTech Connect

    Carvalho, P.A.; Garada, B.M.; Loeffler, J.S. |

    1995-05-01

    To verify the utility of a volumetric estimation of Tl-201 uptake in the context of possible astrocytoma recurrence after surgery, radiotherapy plus stereotactic boost (radiosurgery/brachitherapy), we analyzed sequential Tl-201/Tc99m-HMPAO brain SPECT studies of 28 patients (18 m/10 f). These were categorized as having tumor mass recurrence (TM), infiltrating tumor cells but no definite tumor mass (IT), or radiation changes and necrosis (RCN) after stereotactic biopsy and/or craniotomy. SPECT studies were obtained with a high-resolution dedicated gamma camera (CERASPECT, Digital Scinitgraphics, Inc.) and image acquisition was performed after intravenous Tl-201 (18.5 MBq) and Tc-99m HMPAO (740 MBq). In order to include relevant information about tumor burden, a volumetric index of Tl-201 uptake was expressed in cm{sup 3} related to voxel size (4.6 x 10{sup -3} cc) within an elliptical ROI that included the tumor area. Only voxels with a threshold {ge} 2 in relation to the average scalp Tl-201 uptake were included and this total number of voxels expressed in cc was compared to previously established maximal tumor/scalp Tl-201 uptake ratios (T/S) and histopathology. Results are presented as the median (min-max) and differences were considered significant for p<0.05. Differences were significant between all groups for both ratios and volume indices and correlation between the two variables was 0.90. In conclusion, the volumetric index of Tl-201 is similar to the maximal Tl-201 T/S ratios in discriminating tumor recurrence and radiation necrosis, suggesting a future role for the volumetric index estimation in the evaluation of treatment efficacy and patient follow-up.

  8. A Prospective Exploratory Analysis of Cardiac Biomarkers and Electrocardiogram Abnormalities in Patients Receiving Thoracic Radiation Therapy with High-Dose Heart Exposure

    PubMed Central

    Gomez, Daniel R.; Yusuf, Syed Wamique; Munsell, Mark; Welsh, James W.; Liao, Zhongxing; Lin, Steven H.; Pan, Hubert; Chang, Joe Y.; Komaki, Ritsuko; Cox, James D.; McAleer, Mary Frances; Grosshans, David R.

    2014-01-01

    Introduction Acute effects of incidental cardiac irradiation in patients treated for thoracic cancer are not well characterized. We evaluated longitudinal changes in cardiac biomarkers for patients undergoing conformal radiation therapy (RT) with thoracic malignancies with high-dose cardiac exposure. Methods Twenty-five patients enrolled in a prospective trial (February 2009–December 2012) received ≥45 Gy to the thorax, with pretreatment estimates of ≥20 Gy to the heart. Chemotherapy was allowed except for doxorubicin or fluorouracil. Electrocardiographic (ECG), troponin-I (TnI), and brain natriuretic peptide (BNP) measurements were obtained before RT, within 24 hours of the first fraction, at the end of RT, and at first follow-up (1–2 months). These biomarkers were quantified at specific times and changes from baseline were evaluated with paired t tests. Results The median heart dose was 25.9 Gy (range 10.1–35.1 Gy). After the first RT fraction, no changes were noted in ECG or median Tnl or BNP levels; at the end of RT, two patients had elevated TnI and BNP, but neither difference was statistically significant. At first follow-up, TnI had returned to normal but the median BNP remained elevated (P=0.042). BNP did not increase over time in the 18 patients who received only RT. Twelve patients experienced acute ECG changes during RT, which resolved in seven patients by the next measurement. No patients experienced clinically significant RT-related events. Conclusion Increases in BNP and ECG changes were observed during high doses of radiation to the heart. The findings of this pilot study warrant further investigation and validation. PMID:25521400

  9. Image-guided high-dose-rate brachytherapy: preliminary outcomes and toxicity of a joint interventional radiology and radiation oncology technique for achieving local control in challenging cases

    PubMed Central

    Kishan, Amar U.; Lee, Edward W.; McWilliams, Justin; Lu, David; Genshaft, Scott; Motamedi, Kambiz; Demanes, D. Jeffrey; Park, Sang June; Hagio, Mary Ann; Wang, Pin-Chieh

    2015-01-01

    Purpose To determine the ability of image-guided high-dose-rate brachytherapy (IG-HDR) to provide local control (LC) of lesions in non-traditional locations for patients with heavily pre-treated malignancies. Material and methods This retrospective series included 18 patients treated between 2012 and 2014 with IG-HDR, either in combination with external beam radiotherapy (EBRT; n = 9) or as monotherapy (n = 9). Lesions were located in the pelvis (n = 5), extremity (n = 2), abdomen/retroperitoneum (n = 9), and head/neck (n = 2). All cases were performed in conjunction between interventional radiology and radiation oncology. Toxicity was graded based on CTCAE v4.0 and local failure was determined by RECIST criteria. Kaplan-Meier analysis was performed for LC and overall survival. Results The median follow-up was 11.9 months. Two patients had localized disease at presentation; the remainder had recurrent and/or metastatic disease. Seven patients had prior EBRT, with a median equivalent dose in 2 Gy fractions (EQD2) of 47.0 Gy. The median total EQD2s were 34 Gy and 60.9 Gy for patients treated with monotherapy or combination therapy, respectively. Image-guided high-dose rate brachytherapy was delivered in one to six fractions. Six patients had local failures at a median interval of 5.27 months with a one-year LC rate of 59.3% and a one-year overall survival of 40.7%. Six patients died from their disease at a median interval of 6.85 months from the end of treatment. There were no grade ≥ 3 acute toxicities but two patients had serious long term toxicities. Conclusions We demonstrate a good one year LC rate of nearly 60%, and a favorable toxicity profile when utilizing IG-HDR to deliver high doses of radiation with high precision into targets not readily accessible by other forms of local therapy. These preliminary results suggest that further studies utilizing this approach may be considered for patients with difficult to access lesions that require LC. PMID:26622237

  10. Volumetric techniques: three-dimensional midface modeling

    PubMed Central

    Pierzchała, Ewa; Placek, Waldemar

    2014-01-01

    Aging is a complex process caused by many factors. The most important factors include exposure to UV radiation, smoking, facial muscle movement, gravity, loss and displacement of fat and bone resorption. As a symptom of aging, face loses elasticity, volume and cheerful look. While changing face proportions, the dominant part of a face is its bottom instead of the mid part. The use of three-dimensional face modelling techniques, particularly the mid-face – tear through and cheeks, restores the skin firmness, volume and healthy look. For this purpose the hyaluronic acid is used, calcium hydroxyapatite, and L-polylactic acid fillers. Volumetric techniques require precision and proper selection of the filling agent to give a sense of satisfaction to both the patient and the doctor. PMID:25610354

  11. High-Dose Split-Course Radiation Therapy for Anal Cancer: Outcome Analysis Regarding the Boost Strategy (CORS-03 Study)

    SciTech Connect

    Hannoun-Levi, Jean-Michel; Ortholan, Cecile; Resbeut, Michel; Teissier, Eric; Ronchin, Philippe; Cowen, Didier; Zaccariotto, Audrey; Benezery, Karen; Francois, Eric; Salem, Naji; Ellis, Steve; Azria, David; Gerard, Jean-Pierre

    2011-07-01

    Purpose: To retrospectively assess the clinical outcome in anal cancer patients treated with split-course radiation therapy and boosted through external-beam radiation therapy (EBRT) or brachytherapy (BCT). Methods and Materials: From January 2000 to December 2004, a selected group (162 patients) with invasive nonmetastatic anal squamous cell carcinoma was studied. Tumor staging reported was T1 = 31 patients (19%), T2 = 77 patients (48%), T3 = 42 patients (26%), and T4= 12 patients (7%). Lymph node status was N0-1 (86%) and N2-3 (14%). Patients underwent a first course of EBRT: mean dose 45.1 Gy (range, 39.5-50) followed by a boost: mean dose 17.9 Gy (range, 8-25) using EBRT (76 patients, 47%) or BCT (86 patients, 53%). All characteristics of patients and tumors were well balanced between the BCT and EBRT groups. Results: The mean overall treatment time (OTT) was 82 days (range, 45-143) and 67 days (range, 37-128) for the EBRT and BCT groups, respectively (p < 0.001). The median follow-up was 62 months (range, 2-108). The 5-year cumulative rate of local recurrence (CRLR) was 21%. In the univariate analysis, the prognostic factors for CRLR were as follows: T stage (T1-2 = 15% vs. T3-4 = 36%, p = 0.03), boost technique (BCT = 12% vs. EBRT = 33%, p = 0.002) and OTT (OTT <80 days = 14%, OTT {>=}80 days = 34%, p = 0.005). In the multivariate analysis, BCT boost was the unique prognostic factor (hazard ratio = 0.62 (0.41-0.92). In the subgroup of patients with OTT <80 days, the 5-year CRLR was significantly increased with the BCT boost (BC = 9% vs. EBRT = 28%, p = 0.03). In the case of OTT {>=}80 days, the 5-year CRLR was not affected by the boost technique (BCT = 29% vs. EBRT = 38%, p = 0.21). Conclusion: In anal cancer, when OTT is <80 days, BCT boost is superior to EBRT boost for CRLR. These results suggest investigating the benefit of BCT boost in prospective trials.

  12. Antitransforming growth factor-{beta} antibody 1D11 ameliorates normal tissue damage caused by high-dose radiation

    SciTech Connect

    Anscher, Mitchell S. . E-mail: ansch001@notes.duke.edu; Thrasher, Bradley; Rabbani, Zahid; Teicher, Beverly; Vujaskovic, Zeljko

    2006-07-01

    Purpose The aim of this study was to determine whether a neutralizing transforming growth factor-{beta} (TGF{beta}) antibody can prevent radiation (RT) induced lung injury. Methods and Materials Fractionated and sham right lung irradiation in Fischer 344 rats was delivered to assess the radioprotective effect of the antibodies. Animals were divided into the following groups: (1) control (sham RT, control antibody 13C4); (2) RT (800cGy x 5)+13C4); (3) RT + 0.1 mg/kg 1D11 anti-TGF{beta} antibody; and (4) RT + 1 mg/kg 1D11 antibody. Antibodies were intraperitoneally administered immediately after the last fraction of RT. Animals were sacrificed at 6 and 26 weeks after irradiation. Lungs were assessed for histologic changes, activation of macrophages, expression/activation of TGF{beta} and its signal transduction pathway. Results At 6 weeks post-RT, there was a significant reduction in macrophage accumulation (p = 0.041), alveolar wall thickness (p = 0.0003), and TGF-{beta} activation (p = 0.032) in animals receiving 1.0 mg/kg 1D11 vs. in the control group. However, at 6 weeks, the low dose of 1D11 antibody (0.1 mg/kg) failed to produce any significant changes. At 6 months post-RT, radioprotection is apparent for the group receiving 1.0 mg/kg 1D11, with activated macrophages (p = 0.037), alveolar wall thickness (p = 0.0002), TGF{beta} activation (p = 0.002) and its signal transduction proteins (p < 0.05) compared with the control group. Conclusions Administration of a single dose of 1.0 mg/kg of the anti-TGF{beta} antibody 1D11 resulted in decreased morphologic changes, inflammatory response, and reduced expression and activation of TGF{beta} 6 weeks and 6 months after 40 Gy to the right hemithorax. Targeting the TGF{beta} pathway may be a useful strategy to prevent radiation-induced lung injury.

  13. Image-guided high-dose-rate brachytherapy in inoperable endometrial cancer

    PubMed Central

    Petsuksiri, J; Chansilpa, Y; Hoskin, P J

    2014-01-01

    Inoperable endometrial cancer may be treated with curative aim using radical radiotherapy alone. The radiation techniques are external beam radiotherapy (EBRT) alone, EBRT plus brachytherapy and brachytherapy alone. Recently, high-dose-rate brachytherapy has been used instead of low-dose-rate brachytherapy. Image-guided brachytherapy enables sufficient coverage of tumour and reduction of dose to the organs at risk, thus increasing the therapeutic ratio of treatment. Local control rates with three-dimensional brachytherapy appear better than with conventional techniques (about 90–100% and 70–90%, respectively). PMID:24807067

  14. Mitigation Effect of an FGF-2 Peptide on Acute Gastrointestinal Syndrome After High-Dose Ionizing Radiation

    SciTech Connect

    Zhang Lurong; Sun Weimin; Wang Jianjun; Zhang Mei; Yang Shanmin; Tian Yeping; Vidyasagar, Sadasivan; Pena, Louis A.; Zhang Kunzhong; Cao Yongbing; Yin Liangjie; Wang Wei; Zhang Lei; Schaefer, Katherine L.; Saubermann, Lawrence J.; Swarts, Steven G.; Fenton, Bruce M.; Keng, Peter C.; Okunieff, Paul

    2010-05-01

    Purpose: Acute gastrointestinal syndrome (AGS) resulting from ionizing radiation causes death within 7 days. Currently, no satisfactory agent exists for mitigation of AGS. A peptide derived from the receptor binding domain of fibroblast growth factor 2 (FGF-P) was synthesized and its mitigation effect on AGS was examined. Methods and Materials: A subtotal body irradiation (sub-TBI) model was created to induce gastrointestinal (GI) death while avoiding bone marrow death. After 10.5 to 16 Gy sub-TBI, mice received an intramuscular injection of FGF-P (10 mg/kg/day) or saline (0.2 ml/day) for 5 days; survival (frequency and duration) was measured. Crypt cells and their proliferation were assessed by hematoxylin, eosin, and BrdU staining. In addition, GI hemoccult score, stool formation, and plasma levels of endotoxin, insulin, amylase, interleukin (IL)-6, keratinocyte-derived chemokine (KC) monocyte chemoattractant protein 1 (MCP-1) and tumor necrosis factor (TNF)-alpha were evaluated. Results: Treatment with FGF-P rescued a significant fraction of four strains of mice (33-50%) exposed to a lethal dose of sub-TBI. Use of FGF-P improved crypt survival and repopulation and partially preserved or restored GI function. Furthermore, whereas sub-TBI increased plasma endotoxin levels and several pro-inflammation cytokines (IL-6, KC, MCP-1, and TNF-alpha), FGF-P reduced these adverse responses. Conclusions: The study data support pursuing FGF-P as a mitigator for AGS.

  15. Hypofractionated High-Dose Radiation Therapy for Prostate Cancer: Long-Term Results of a Multi-Institutional Phase II Trial

    SciTech Connect

    Fonteyne, Valerie; Soete, Guy; Arcangeli, Stefano; De Neve, Wilfried; Rappe, Bernard; Storme, Guy; Strigari, Lidia; Arcangeli, Giorgio; De Meerleer, Gert

    2012-11-15

    Purpose: To report late gastrointestinal (GI) and genitourinary (GU) toxicity, biochemical and clinical outcomes, and overall survival after hypofractionated radiation therapy for prostate cancer (PC). Methods and Materials: Three institutions included 113 patients with T1 to T3N0M0 PC in a phase II study. Patients were treated with 56 Gy in 16 fractions over 4 weeks. Late toxicity was scored using Radiation Therapy Oncology Group/European Organization for Research and Treatment of Cancer criteria extended with additional symptoms. Biochemical outcome was reported according to the Phoenix definition for biochemical failure. Results: The incidence of late GI and GU toxicity was low. The 3-year actuarial risk of developing late GU and GI toxicity of grade {>=}2 was 13% and 8% respectively. Five-year biochemical non-evidence of disease (bNED) was 94%. Risk group, T stage, and deviation from planned hormone treatment were significant predictive factors for bNED. Deviation from hormone treatment remained significant in multivariate analysis. Five-year clinical non evidence of disease and overall survival was 95% and 91% respectively. No patient died from PC. Conclusions: Hypofractionated high-dose radiation therapy is a valuable treatment option for patients with PC, with excellent biochemical and clinical outcome and low toxicity.

  16. Sexual Functioning Among Endometrial Cancer Patients Treated With Adjuvant High-Dose-Rate Intra-Vaginal Radiation Therapy

    SciTech Connect

    Damast, Shari; Alektiar, Kaled M.; Goldfarb, Shari; Eaton, Anne; Patil, Sujata; Mosenkis, Jeffrey; Bennett, Antonia; Atkinson, Thomas; Jewell, Elizabeth; Leitao, Mario; Barakat, Richard; Carter, Jeanne; Basch, Ethan

    2012-10-01

    Purpose: We used the Female Sexual Function Index (FSFI) to investigate the prevalence of sexual dysfunction (SD) and factors associated with diminished sexual functioning in early stage endometrial cancer (EC) patients treated with simple hysterectomy and adjuvant brachytherapy. Methods and Materials: A cohort of 104 patients followed in a radiation oncology clinic completed questionnaires to quantify current levels of sexual functioning. The time interval between hysterectomy and questionnaire completion ranged from <6 months to >5 years. Multivariate regression was performed using the FSFI as a continuous variable (score range, 1.2-35.4). SD was defined as an FSFI score of <26, based on the published validation study. Results: SD was reported by 81% of respondents. The mean ({+-} standard deviation) domain scores in order of highest-to-lowest functioning were: satisfaction, 2.9 ({+-}2.0); orgasm, 2.5 ({+-}2.4); desire, 2.4 ({+-}1.3); arousal, 2.2 ({+-}2.0); dryness, 2.1 ({+-}2.1); and pain, 1.9 ({+-}2.3). Compared to the index population in which the FSFI cut-score was validated (healthy women ages 18-74), all scores were low. Compared to published scores of a postmenopausal population, scores were not statistically different. Multivariate analysis isolated factors associated with lower FSFI scores, including having laparotomy as opposed to minimally invasive surgery (effect size, -7.1 points; 95% CI, -11.2 to -3.1; P<.001), lack of vaginal lubricant use (effect size, -4.4 points; 95% CI, -8.7 to -0.2, P=.040), and short time interval (<6 months) from hysterectomy to questionnaire completion (effect size, -4.6 points; 95% CI, -9.3-0.2; P=.059). Conclusions: The rate of SD, as defined by an FSFI score <26, was prevalent. The postmenopausal status of EC patients alone is a known risk factor for SD. Additional factors associated with poor sexual functioning following treatment for EC included receipt of laparotomy and lack of vaginal lubricant use.

  17. Three-dimensional boundary layers approaching separation

    NASA Technical Reports Server (NTRS)

    Williams, J. C., III

    1976-01-01

    The theory of semi-similar solutions of the laminar boundary layer equations is applied to several flows in which the boundary layer approaches a three-dimensional separation line. The solutions obtained are used to deduce the nature of three-dimensional separation. It is shown that in these cases separation is of the "ordinary" type. A solution is also presented for a case in which a vortex is embedded within the three-dimensional boundary layer.

  18. Development of a minipig model for lung injury induced by a single high-dose radiation exposure and evaluation with thoracic computed tomography

    PubMed Central

    Lee, Jong-Geol; Park, Sunhoo; Bae, Chang-Hwan; Jang, Won-Suk; Lee, Sun-Joo; Lee, Dal Nim; Myung, Jae Kyung; Kim, Cheol Hyeon; Jin, Young-Woo; Lee, Seung-Sook; Shim, Sehwan

    2016-01-01

    Radiation-induced lung injury (RILI) due to nuclear or radiological exposure remains difficult to treat because of insufficient clinical data. The goal of this study was to establish an appropriate and efficient minipig model and introduce a thoracic computed tomography (CT)-based method to measure the progression of RILI. Göttingen minipigs were allocated to control and irradiation groups. The most obvious changes in the CT images after irradiation were peribronchial opacification, interlobular septal thickening, and lung volume loss. Hounsfield units (HU) in the irradiation group reached a maximum level at 6 weeks and decreased thereafter, but remained higher than those of the control group. Both lung area and cardiac right lateral shift showed significant changes at 22 weeks post irradiation. The white blood cell (WBC) count, a marker of pneumonitis, increased and reached a maximum at 6 weeks in both peripheral blood and bronchial alveolar lavage fluid. Microscopic findings at 22 weeks post irradiation were characterized by widening of the interlobular septum, with dense fibrosis and an increase in the radiation dose–dependent fibrotic score. Our results also showed that WBC counts and microscopic findings were positively correlated with the three CT parameters. In conclusion, the minipig model can provide useful clinical data regarding RILI caused by the adverse effects of high-dose radiotherapy. Peribronchial opacification, interlobular septal thickening, and lung volume loss are three quantifiable CT parameters that can be used as a simple method for monitoring the progression of RILI. PMID:26712795

  19. Is robotic arm stereotactic body radiation therapy “virtual high dose ratebrachytherapy” for prostate cancer? An analysis of comparative effectiveness using published data [corrected].

    PubMed

    Zaorsky, Nicholas George; Hurwitz, Mark D; Dicker, Adam P; Showalter, Timothy N; Den, Robert B

    2015-05-01

    High-dose rate brachytherapy (HDR-BT) monotherapy and robotic arm (i.e., CyberKnife) stereotactic body radiation therapy (SBRT) are emerging technologies that have become popular treatment options for prostate cancer. Proponents of both HDR-BT monotherapy and robotic arm SBRT claim that these modalities are as efficacious as intensity-modulated radiation therapy in treating prostate cancer. Moreover, proponents of robotic arm SBRT believe it is more effective than HDR-BT monotherapy because SBRT is non-invasive, touting it as 'virtual HDR-BT.' We perform a comparative effective analysis of the two technologies. The tumor control rates and toxicities of HDR-BT monotherapy and robotic arm SBRT are promising. However, at present, it would be inappropriate to state that HDR-BT monotherapy and robotic arm SBRT are as efficacious or effective as other treatment modalities for prostate cancer, which have stronger foundations of evidence. Studies reporting on these technologies have relatively short follow-up time, few patients and are largely retrospective. PMID:25540018

  20. Development of a minipig model for lung injury induced by a single high-dose radiation exposure and evaluation with thoracic computed tomography.

    PubMed

    Lee, Jong-Geol; Park, Sunhoo; Bae, Chang-Hwan; Jang, Won-Suk; Lee, Sun-Joo; Lee, Dal Nim; Myung, Jae Kyung; Kim, Cheol Hyeon; Jin, Young-Woo; Lee, Seung-Sook; Shim, Sehwan

    2016-06-01

    Radiation-induced lung injury (RILI) due to nuclear or radiological exposure remains difficult to treat because of insufficient clinical data. The goal of this study was to establish an appropriate and efficient minipig model and introduce a thoracic computed tomography (CT)-based method to measure the progression of RILI. Göttingen minipigs were allocated to control and irradiation groups. The most obvious changes in the CT images after irradiation were peribronchial opacification, interlobular septal thickening, and lung volume loss. Hounsfield units (HU) in the irradiation group reached a maximum level at 6 weeks and decreased thereafter, but remained higher than those of the control group. Both lung area and cardiac right lateral shift showed significant changes at 22 weeks post irradiation. The white blood cell (WBC) count, a marker of pneumonitis, increased and reached a maximum at 6 weeks in both peripheral blood and bronchial alveolar lavage fluid. Microscopic findings at 22 weeks post irradiation were characterized by widening of the interlobular septum, with dense fibrosis and an increase in the radiation dose-dependent fibrotic score. Our results also showed that WBC counts and microscopic findings were positively correlated with the three CT parameters. In conclusion, the minipig model can provide useful clinical data regarding RILI caused by the adverse effects of high-dose radiotherapy. Peribronchial opacification, interlobular septal thickening, and lung volume loss are three quantifiable CT parameters that can be used as a simple method for monitoring the progression of RILI. PMID:26712795

  1. Long-term Survival and Toxicity in Patients Treated With High-Dose Intensity Modulated Radiation Therapy for Localized Prostate Cancer

    SciTech Connect

    Spratt, Daniel E.; Pei, Xin; Yamada, Josh; Kollmeier, Marisa A.; Cox, Brett; Zelefsky, Michael J.

    2013-03-01

    Purpose: To report long-term survival and toxicity outcomes with the use of high-dose intensity modulated radiation therapy (IMRT) to 86.4 Gy for patients with localized prostate cancer. Methods and Materials: Between August 1997 and December 2008, 1002 patients were treated to a dose of 86.4 Gy using a 5-7 field IMRT technique. Patients were stratified by prognostic risk group based on National Comprehensive Cancer Network risk classification criteria. A total of 587 patients (59%) were treated with neoadjuvant and concurrent androgen deprivation therapy. The median follow-up for the entire cohort was 5.5 years (range, 1-14 years). Results: For low-, intermediate-, and high-risk groups, 7-year biochemical relapse-free survival outcomes were 98.8%, 85.6%, and 67.9%, respectively (P<.001), and distant metastasis-free survival rates were 99.4%, 94.1%, and 82.0% (P<.001), respectively. On multivariate analysis, T stage (P<.001), Gleason score (P<.001), and >50% of initial biopsy positive core (P=.001) were predictive for distant mestastases. No prostate cancer-related deaths were observed in the low-risk group. The 7-year prostate cancer-specific mortality (PCSM) rates, using competing risk analysis for intermediate- and high-risk groups, were 3.3% and 8.1%, respectively (P=.008). On multivariate analysis, Gleason score (P=.004), percentage of biopsy core positivity (P=.003), and T-stage (P=.033) were predictive for PCSM. Actuarial 7-year grade 2 or higher late gastrointestinal and genitourinary toxicities were 4.4% and 21.1%, respectively. Late grade 3 gastrointestinal and genitourinary toxicity was experienced by 7 patients (0.7%) and 22 patients (2.2%), respectively. Of the 427 men with full potency at baseline, 317 men (74%) retained sexual function at time of last follow-up. Conclusions: This study represents the largest cohort of patients treated with high-dose radiation to 86.4 Gy, using IMRT for localized prostate cancer, with the longest follow-up to date

  2. Three-dimensional far-infrared imaging by using perspective thermal images

    NASA Astrophysics Data System (ADS)

    Barada, Daisuke

    2016-06-01

    This paper proposes a method to obtain three-dimensional thermal radiation distribution. In the method, multiple oblique projection thermal images are obtained by moving a target object and three-dimensional thermal radiation distribution is reconstructed based on projection-slice theorem. In experiment, incandescent light bulbs or a plant is used as a sample object. The three-dimensional position measured is coincided with actual position and the principle is experimentally verified.

  3. View Factor Calculation for Three-Dimensional Geometries.

    Energy Science and Technology Software Center (ESTSC)

    1989-06-20

    Version 00 MCVIEW calculates the radiation geometric view factor between surfaces for three dimensional geometries with and without interposed third surface obstructions. It was developed to calculate view factors for input data to heat transfer analysis programs such as SCA-03/TRUMP, SCA-01/HEATING-5 and PSR-199/HEATING-6.

  4. Modern trends and development in high-dose luminescent measurements

    NASA Astrophysics Data System (ADS)

    Kortov, V.

    2014-11-01

    Main application areas of high-dose dosimetry are described. The requirements to the materials for high-dose luminescent detectors are set. The examples of successful high-dose measurements using radiation-resistant phosphors are given. Viability of using materials with deep traps to detect intensive radiation flows is grounded. Characteristics of high-dose measurements using highly sensitive detectors TLD-500 (Al2O3:C) and LiF:Mg,Cu,P are discussed.

  5. Comparison study of the partial-breast irradiation techniques: Dosimetric analysis of three-dimensional conformal radiation therapy, electron beam therapy, and helical tomotherapy depending on various tumor locations

    SciTech Connect

    Kim, Min-Joo; Park, So-Hyun; Son, Seok-Hyun; Cheon, Keum-Seong; Choi, Byung-Ock; Suh, Tae-Suk

    2013-10-01

    The partial-breast irradiation (PBI) technique, an alternative to whole-breast irradiation, is a beam delivery method that uses a limited range of treatment volume. The present study was designed to determine the optimal PBI treatment modalities for 8 different tumor locations. Treatment planning was performed on computed tomography (CT) data sets of 6 patients who had received lumpectomy treatments. Tumor locations were classified into 8 subsections according to breast quadrant and depth. Three-dimensional conformal radiation therapy (3D-CRT), electron beam therapy (ET), and helical tomotherapy (H-TOMO) were utilized to evaluate the dosimetric effect for each tumor location. Conformation number (CN), radical dose homogeneity index (rDHI), and dose delivered to healthy tissue were estimated. The Kruskal-Wallis, Mann-Whitney U, and Bonferroni tests were used for statistical analysis. The ET approach showed good sparing effects and acceptable target coverage for the lower inner quadrant—superficial (LIQ-S) and lower inner quadrant—deep (LIQ-D) locations. The H-TOMO method was the least effective technique as no evaluation index achieved superiority for all tumor locations except CN. The ET method is advisable for treating LIQ-S and LIQ-D tumors, as opposed to 3D-CRT or H-TOMO, because of acceptable target coverage and much lower dose applied to surrounding tissue.

  6. Role of tumor necrosis factor-alpha and TRAIL in high-dose radiation-induced bystander signaling in lung adenocarcinoma.

    PubMed

    Shareef, Mohammed M; Cui, Nuan; Burikhanov, Ravshan; Gupta, Seema; Satishkumar, Sabapathi; Shajahan, Shahin; Mohiuddin, Mohammed; Rangnekar, Vivek M; Ahmed, Mansoor M

    2007-12-15

    In the present study, ionizing radiation (IR)-induced bystander effects were investigated in two lung cancer cell lines. A549 cells were found to be more resistant to radiation-conditioned medium (RCM) obtained from A549 cells when compared with the H460 exposed to RCM procured from H460 cells. Significant release of tumor necrosis factor-alpha (TNF-alpha) was observed in A549 cells after IR/RCM exposure, and the survival was reversed with neutralizing antibody against TNF-alpha. In H460 cells, significant release of TNF-related apoptosis-inducing ligand (TRAIL), but not TNF-alpha, was observed in response to IR, RCM exposure, or RCM + 2Gy, and neutralizing antibody against TRAIL diminished clonogenic inhibition. Mechanistically, TNF-alpha present in RCM of A549 was found to mediate nuclear factor-kappaB (NF-kappaB) translocation to nucleus, whereas the soluble TRAIL present in RCM of H460 cells mobilized the nuclear translocation of PAR-4 (a proapoptotic protein). Analysis of IR-inducible early growth response-1 (EGR-1) function showed that EGR-1 was functional in A549 cells but not in H460 cells. A significant decrease in RCM-mediated apoptosis was observed in both A549 cells stably expressing small interfering RNA EGR-1 and EGR-1(-/-) mouse embryonic fibroblast cells. Thus, the high-dose IR-induced bystander responses in A549 may be dependent on the EGR-1 function and its target gene TNF-alpha. These findings show that the reduced bystander response in A549 cells is due to activation of NF-kappaB signaling by TNF-alpha, whereas enhanced response to IR-induced bystander signaling in H460 cells was due to release of TRAIL associated with nuclear translocation of PAR-4. PMID:18089811

  7. Three-dimensional imaging through scattering media using three-dimensionally coded pattern projection.

    PubMed

    Ando, Takamasa; Horisaki, Ryoichi; Tanida, Jun

    2015-08-20

    We propose a method for visualizing three-dimensional objects in scattering media. Our method is based on active illumination using three-dimensionally coded patterns and a numerical algorithm employing a sparsity constraint. We experimentally demonstrated the proposed imaging method for test charts located three-dimensionally at different depths in the space behind a translucent sheet. PMID:26368767

  8. Three Dimensional Illustrating--Three-Dimensional Vision and Deception of Sensibility

    ERIC Educational Resources Information Center

    Szállassy, Noémi; Gánóczy, Anita; Kriska, György

    2009-01-01

    The wide-spread digital photography and computer use gave the opportunity for everyone to make three-dimensional pictures and to make them public. The new opportunities with three-dimensional techniques give chance for the birth of new artistic photographs. We present in detail the biological roots of three-dimensional visualization, the phenomena…

  9. A Contralateral Esophagus-Sparing Technique to Limit Severe Esophagitis Associated With Concurrent High-Dose Radiation and Chemotherapy in Patients With Thoracic Malignancies

    SciTech Connect

    Al-Halabi, Hani; Paetzold, Peter; Sharp, Gregory C.; Olsen, Christine; Willers, Henning

    2015-07-15

    Purpose: Severe (Radiation Therapy Oncology Group [RTOG] grade 3 or greater) esophagitis generally occurs in 15% to 25% of non–small cell lung cancer (NSCLC) patients undergoing concurrent chemotherapy and radiation therapy (CCRT), which may result in treatment breaks that compromise local tumor control and pose a barrier to dose escalation. Here, we report a novel contralateral esophagus-sparing technique (CEST) that uses intensity modulated radiation therapy (IMRT) to reduce the incidence of severe esophagitis. Methods and Materials: We reviewed consecutive patients with thoracic malignancies undergoing curative CCRT in whom CEST was used. The esophageal wall contralateral (CE) to the tumor was contoured as an avoidance structure, and IMRT was used to guide a rapid dose falloff gradient beyond the target volume in close proximity to the esophagus. Esophagitis was recorded based on the RTOG acute toxicity grading system. Results: We identified 20 consecutive patients treated with CCRT of at least 63 Gy in whom there was gross tumor within 1 cm of the esophagus. The median radiation dose was 70.2 Gy (range, 63-72.15 Gy). In all patients, ≥99% of the planning and internal target volumes was covered by ≥90% and 100% of prescription dose, respectively. Strikingly, no patient experienced grade ≥3 esophagitis (95% confidence limits, 0%-16%) despite the high total doses delivered. The median maximum dose, V45, and V55 of the CE were 60.7 Gy, 2.1 cc, and 0.4 cc, respectively, indicating effective esophagus cross-section sparing by CEST. Conclusion: We report a simple yet effective method to avoid exposing the entire esophagus cross-section to high doses. By using proposed CE dose constraints of V45 <2.5 cc and V55 <0.5 cc, CEST may improve the esophagus toxicity profile in thoracic cancer patients receiving CCRT even at doses above the standard 60- to 63-Gy levels. Prospective testing of CEST is warranted.

  10. Mechanisms of action for an anti-radiation vaccine in reducing the biological impact of high dose and dose-rate, low-linear energy transfer radiation exposure.

    PubMed

    Maliev, V; Popov, D; Casey, R C; Jones, J A

    2007-01-01

    The development of an anti-radiation vaccine could be very useful in reducing acute radiation syndromes. Existing principles for the treatment of acute radiation syndromes are based on the amelioration of progressive pathophysiological changes, using the concept of replacement therapy. Active immunization by small quantities of the essential radiation-induced systemic toxins of what we call the Specific Radiation Determinant (SRD) before irradiation increased duration of life among animals that were irradiated by lethal or sub-lethal doses of gamma-radiation. The SRD toxins possess antigenic properties that are specific to different forms of acute radiation sickness. Intramuscular injection of larger quantities of the SRD toxins induce signs and symptoms in irradiated naive animals similar to those observed in acute radiation syndromes, including death. Providing passive immunization, at variable periods of time following radiation, with preparations of immune-globulins directed at the SRD molecules, can confer some protection in the development of clinical sequelae in irradiated animals. Improved survival rates and times were observed in animals that received lower, sublethal doses of the same SRDs prior to irradiation. Therefore, active immunization can be induced by SRD molecules as a prophylaxis. The protective effects of the immunization begin to manifest 15-35 days after an injection of a biologically active SDR preparation. The SRD molecules are a group of radiation toxins with antigenic properties that correlate specifically with different forms of radiation disease. The SRD molecules are composed of glycoproteins and lipoproteins that accumulate in the lymphatic system of mammals in the first hours after irradiation, and preliminary analysis suggests that they may originate from cellular membrane components. The molecular weight of the SRD group ranges from 200-250 kDa. The SRD molecules were isolated from the lymphatic systems of laboratory animals that

  11. Is intensity-modulated radiotherapy better than conventional radiation treatment and three-dimensional conformal radiotherapy for mediastinal masses in patients with Hodgkin's disease, and is there a role for beam orientation optimization and dose constraints assigned to virtual volumes?

    SciTech Connect

    Girinsky, Theodore . E-mail: girinsky@igr.fr; Pichenot, Charlotte; Beaudre, Anne; Ghalibafian, Mithra; Lefkopoulos, Dimitri

    2006-01-01

    Purpose: To evaluate the role of beam orientation optimization and the role of virtual volumes (VVs) aimed at protecting adjacent organs at risk (OARs), and to compare various intensity-modulated radiotherapy (IMRT) setups with conventional treatment with anterior and posterior fields and three-dimensional conformal radiotherapy (3D-CRT). Methods and Materials: Patients with mediastinal masses in Hodgkin's disease were treated with combined modality therapy (three to six cycles of adriamycin, bleomycin, vinblastine, and dacarbazine [ABVD] before radiation treatment). Contouring and treatment planning were performed with Somavision and CadPlan Helios (Varian Systems, Palo Alto, CA). The gross tumor volume was determined according to the prechemotherapy length and the postchemotherapy width of the mediastinal tumor mass. A 10-mm isotropic margin was added for the planning target volume (PTV). Because dose constraints assigned to OARs led to unsatisfactory PTV coverage, VVs were designed for each patient to protect adjacent OARs. The prescribed dose was 40 Gy to the PTV, delivered according to guidelines from International Commission on Radiation Units and Measurements Report No. 50. Five different IMRT treatment plans were compared with conventional treatment and 3D-CRT. Results: Beam orientation was important with respect to the amount of irradiated normal tissues. The best compromise in terms of PTV coverage and protection of normal tissues was obtained with five equally spaced beams (5FEQ IMRT plan) using dose constraints assigned to VVs. When IMRT treatment plans were compared with conventional treatment and 3D-CRT, dose conformation with IMRT was significantly better, with greater protection of the heart, coronary arteries, esophagus, and spinal cord. The lungs and breasts in women received a slightly higher radiation dose with IMRT compared with conventional treatments. The greater volume of normal tissue receiving low radiation doses could be a cause for

  12. Yttrium oxide based three dimensional metamaterials for visible light cloaking

    NASA Astrophysics Data System (ADS)

    Rai, Pratyush; Kumar, Prashanth S.; Varadan, Vijay K.; Ruffin, Paul; Brantley, Christina; Edwards, Eugene

    2014-04-01

    Metamaterial with negative refractive index is the key phenomenon behind the concept of a cloaking device to hide an object from light in visible spectrum. Metamaterials made of two and three dimensional lattices of periodically placed electromagnetic resonant cells can achieve absorption and propagation of incident electromagnetic radiation as confined electromagnetic fields confined to a waveguide as surface plasmon polaritons, which can be used for shielding an object from in-tune electromagnetic radiation. The periodicity and dimensions of resonant cavity determine the frequency, which are very small as compared to the wavelength of incident light. Till now the phenomena have been demonstrated only for lights in near infrared spectrum. Recent advancements in fabrication techniques have made it possible to fabricate array of three dimensional nanostructures with cross-sections as small as 25 nm that are required for negative refractive index for wavelengths in visible light spectrum of 400-700 nm and for wider view angle. Two types of metamaterial designs, three dimensional concentric split ring and fishnet, are considered. Three dimensional structures consisted of metal-dielectric-metal stacks. The metal is silver and dielectric is yttrium oxide, other than conventional materials such as FR4 and Duroid. High κ dielectric and high refractive index as well as large crystal symmetry of Yttrium oxide has been investigated as encapsulating medium. Dependence of refractive index on wavelength and bandwidth of negative refractive index region are analyzed for application towards cloaking from light in visible spectrum.

  13. Impact of Dose to the Bladder Trigone on Long-Term Urinary Function After High-Dose Intensity Modulated Radiation Therapy for Localized Prostate Cancer

    SciTech Connect

    Ghadjar, Pirus; Zelefsky, Michael J.; Spratt, Daniel E.; Munck af Rosenschöld, Per; Oh, Jung Hun; Hunt, Margie; Kollmeier, Marisa; Happersett, Laura; Yorke, Ellen; Deasy, Joseph O.; Jackson, Andrew

    2014-02-01

    Purpose: To determine the potential association between genitourinary (GU) toxicity and planning dose–volume parameters for GU pelvic structures after high-dose intensity modulated radiation therapy in localized prostate cancer patients. Methods and Materials: A total of 268 patients who underwent intensity modulated radiation therapy to a prescribed dose of 86.4 Gy in 48 fractions during June 2004-December 2008 were evaluated with the International Prostate Symptom Score (IPSS) questionnaire. Dose–volume histograms of the whole bladder, bladder wall, urethra, and bladder trigone were analyzed. The primary endpoint for GU toxicity was an IPSS sum increase ≥10 points over baseline. Univariate and multivariate analyses were done by the Kaplan-Meier method and Cox proportional hazard models, respectively. Results: Median follow-up was 5 years (range, 3-7.7 years). Thirty-nine patients experienced an IPSS sum increase ≥10 during follow-up; 84% remained event free at 5 years. After univariate analysis, lower baseline IPSS sum (P=.006), the V90 of the trigone (P=.006), and the maximal dose to the trigone (P=.003) were significantly associated with an IPSS sum increase ≥10. After multivariate analysis, lower baseline IPSS sum (P=.009) and increased maximal dose to the trigone (P=.005) remained significantly associated. Seventy-two patients had both a lower baseline IPSS sum and a higher maximal dose to the trigone and were defined as high risk, and 68 patients had both a higher baseline IPSS sum and a lower maximal dose to the trigone and were defined as low risk for development of an IPSS sum increase ≥10. Twenty-one of 72 high-risk patients (29%) and 5 of 68 low-risk patients (7%) experienced an IPSS sum increase ≥10 (P=.001; odds ratio 5.19). Conclusions: The application of hot spots to the bladder trigone was significantly associated with relevant changes in IPSS during follow-up. Reduction of radiation dose to the lower bladder and specifically the

  14. Phase II Study of Accelerated High-Dose Radiotherapy With Concurrent Chemotherapy for Patients With Limited Small-Cell Lung Cancer: Radiation Therapy Oncology Group Protocol 0239

    SciTech Connect

    Komaki, Ritsuko; Paulus, Rebecca; Ettinger, David S.; Videtic, Gregory M.M.; Bradley, Jeffrey D.; Glisson, Bonnie S.; Sause, William T.; Curran, Walter J.; Choy, Hak

    2012-07-15

    Purpose: To investigate whether high-dose thoracic radiation given twice daily during cisplatin-etoposide chemotherapy for limited small-cell lung cancer (LSCLC) improves survival, acute esophagitis, and local control rates relative to findings from Intergroup trial 0096 (47%, 27%, and 64%). Patients and Methods: Patients were accrued over a 3-year period from 22 US and Canadian institutions. Patients with LSCLC and good performance status were given thoracic radiation to 61.2 Gy over 5 weeks (daily 1.8-Gy fractions on days 1-22, then twice-daily 1.8-Gy fractions on days 23-33). Cisplatin (60 mg/m{sup 2} IV) was given on day 1 and etoposide (120 mg/m{sup 2} IV) on days 1-3 and days 22-24, followed by 2 cycles of cisplatin plus etoposide alone. Patients who achieved complete response were offered prophylactic cranial irradiation. Endpoints included overall and progression-free survival; severe esophagitis (Common Toxicity Criteria v 2.0) and treatment-related fatalities; response (Response Evaluation Criteria in Solid Tumors); and local control. Results: Seventy-two patients were accrued from June 2003 through May 2006; 71 were evaluable (median age 63 years; 52% female; 58% Zubrod 0). Median survival time was 19 months; at 2 years, the overall survival rate was 36.6% (95% confidence interval [CI] 25.6%-47.7%), and progression-free survival 19.7% (95% CI 11.4%-29.6%). Thirteen patients (18%) experienced severe acute esophagitis, and 2 (3%) died of treatment-related causes; 41% achieved complete response, 39% partial response, 10% stable disease, and 6% progressive disease. The local control rate was 73%. Forty-three patients (61%) received prophylactic cranial irradiation. Conclusions: The overall survival rate did not reach the projected goal; however, rates of esophagitis were lower, and local control higher, than projected. This treatment strategy is now one of three arms of a prospective trial of chemoradiation for LSCLC (Radiation Therapy Oncology Group 0538

  15. Three dimensional optic tissue culture and process

    NASA Technical Reports Server (NTRS)

    Spaulding, Glenn F. (Inventor); Prewett, Tacey L. (Inventor); Goodwin, Thomas J. (Inventor); Francis, Karen M. (Inventor); Cardwell, Delmar R. (Inventor); Oconnor, Kim (Inventor); Fitzgerald, Wendy S. (Inventor); Aten, Laurie A. (Inventor)

    1994-01-01

    A process for artificially producing three-dimensional optic tissue has been developed. The optic cells are cultured in a bioreactor at low shear conditions. The tissue forms normal, functional tissue organization and extracellular matrix.

  16. Three Dimensional Optic Tissue Culture and Process

    NASA Technical Reports Server (NTRS)

    OConnor, Kim C. (Inventor); Spaulding, Glenn F. (Inventor); Goodwin, Thomas J. (Inventor); Aten, Laurie A. (Inventor); Francis, Karen M. (Inventor); Caldwell, Delmar R. (Inventor); Prewett, Tacey L. (Inventor); Fitzgerald, Wendy S. (Inventor)

    1999-01-01

    A process for artificially producing three-dimensional optic tissue has been developed. The optic cells are cultured in a bioireactor at low shear conditions. The tissue forms as normal, functional tissue grows with tissue organization and extracellular matrix formation.

  17. Three-dimensional stellarator equilibria by iteration

    SciTech Connect

    Boozer, A.H.

    1983-02-01

    The iterative method of evaluating plasma equilibria is especially simple in a magnetic coordinate representation. This method is particularly useful for clarifying the subtle constraints of three-dimensional equilibria and studying magnetic surface breakup at high plasma beta.

  18. THREE-DIMENSIONAL MODEL FOR HYPERTHERMIA CALCULATIONS

    EPA Science Inventory

    Realistic three-dimensional models that predict temperature distributions with a high degree of spatial resolution in bodies exposed to electromagnetic (EM) fields are required in the application of hyperthermia for cancer treatment. To ascertain the thermophysiologic response of...

  19. Device fabrication: Three-dimensional printed electronics

    NASA Astrophysics Data System (ADS)

    Lewis, Jennifer A.; Ahn, Bok Y.

    2015-02-01

    Can three-dimensional printing enable the mass customization of electronic devices? A study that exploits this method to create light-emitting diodes based on 'quantum dots' provides a step towards this goal.

  20. Three-dimensional topological insulator based nanospaser

    NASA Astrophysics Data System (ADS)

    Paudel, Hari P.; Apalkov, Vadym; Stockman, Mark I.

    2016-04-01

    After the discovery of the spaser (surface plasmon amplification by stimulated emission of radiation), first proposed by Bergman and Stockman in 2003, it has become possible to deliver optical energy beyond the diffraction limit and generate an intense source of an optical field. The spaser is a nanoplasmonic counterpart of a laser. One of the major advantages of the spaser is its size: A spaser is a truly nanoscopic device whose size can be made smaller than the skin depth of a material to a size as small as the nonlocality radius (˜1 nm). Recently, an electrically pumped graphene based nanospaser has been proposed that operates in the midinfrared region and utilizes a nanopatch of graphene as a source of plasmons and a quantum-well cascade as its gain medium. Here we propose an optically pumped nanospaser based on three-dimensional topological insulator (3D TI) materials, such as Bi2Se3 , that operates at an energy close to the bulk band-gap energy ˜0.3 eV and uses the surface as a source for plasmons and its bulk as a gain medium. Population inversion is obtained in the bulk and the radiative energy of the exciton recombination is transferred to the surface plasmons of the same material to stimulate spasing action. This is truly a nanoscale spaser as it utilizes the same material for dual purposes. We show theoretically the possibility of achieving spasing with a 3D TI. As the spaser operates in the midinfrared spectral region, it can be a useful device for a number of applications, such as nanoscopy, nanolithography, nanospectroscopy, and semiclassical information processing.

  1. Three-Dimensional Icosahedral Phase Field Quasicrystal

    NASA Astrophysics Data System (ADS)

    Subramanian, P.; Archer, A. J.; Knobloch, E.; Rucklidge, A. M.

    2016-08-01

    We investigate the formation and stability of icosahedral quasicrystalline structures using a dynamic phase field crystal model. Nonlinear interactions between density waves at two length scales stabilize three-dimensional quasicrystals. We determine the phase diagram and parameter values required for the quasicrystal to be the global minimum free energy state. We demonstrate that traits that promote the formation of two-dimensional quasicrystals are extant in three dimensions, and highlight the characteristics required for three-dimensional soft matter quasicrystal formation.

  2. A dosimetric analysis of intensity-modulated radiation therapy (IMRT) as an alternative to adjuvant high-dose-rate (HDR) brachytherapy in early endometrial cancer patients

    SciTech Connect

    Aydogan, Bulent . E-mail: baydogan@radonc.uchicago.edu; Mundt, Arno J.; Smith, Brett D.; Mell, Loren K.; Wang, Steve; Sutton, Harold; Roeske, John C.

    2006-05-01

    Purpose: To evaluate the role of intensity-modulated radiation treatment (IMRT) as an alternative to high-dose-rate (HDR) brachytherapy in the treatment of the vagina in postoperative early endometrial cancer patients after surgery. Methods and Materials: Planning computed tomography (CT) scans of 10 patients previously treated with HDR were used in this study. In all cases, a dose of 700 cGy/fraction was prescribed at a distance of 0.5 cm from the cylinder surface. The same CT scans were then used in IMRT planning. In this paradigm, the vaginal cylinder represents a component of a hypothetical immobilization system that would be indexed to the linac treatment table. Results: Our study showed that IMRT provided relatively lower rectal doses than HDR when treatment was prescribed at a distance of 0.5 cm away from the cylinder surface. Maximum rectal doses were lower with IMRT compared with HDR (average: 89.0% vs. 142.6%, respectively, p < 0.05). Moreover, the mean rectal dose was lower in IMRT plans compared with HDR plans with treatment prescribed either to the surface (average: 14.8% vs. 21.4%, respectively, p < 0.05) or to 0.5 cm (average: 19.6% vs. 33.5%, respectively, p < 0.05). IMRT plans had planning target volume (PTV) coverage comparable with HDR (average PTV minimum for treatment prescribed to 0.5 cm: 93.9% vs. 92.1%, p = 0.71, respectively) with less inhomogeneity (average PTV maximum: 110.8% vs. 381.6%, p < 0.05). Conclusion: Our dosimetric analysis suggests that when used in conjunction with a suitable immobilization system, IMRT may provide an alternative to HDR brachytherapy in women with early endometrial cancer after hysterectomy. However, more studies are needed to evaluate the clinical merit of the IMRT in these patients.

  3. Single-Fraction High-Dose-Rate Brachytherapy and Hypofractionated External Beam Radiation Therapy in the Treatment of Intermediate-Risk Prostate Cancer - Long Term Results

    SciTech Connect

    Cury, Fabio L.; Duclos, Marie; Aprikian, Armen; Patrocinio, Horacio; Kassouf, Wassim; Shenouda, George; Faria, Sergio; David, Marc; Souhami, Luis

    2012-03-15

    Purpose: We present the long-term results of a cohort of patients with intermediate-risk prostate cancer (PC) treated with single-fraction high-dose-rate brachytherapy (HDRB) combined with hypofractionated external beam radiation therapy (HypoRT). Methods and Materials: Patients were treated exclusively with HDRB and HypoRT. HDRB delivered a dose of 10 Gy to the prostate surface and HypoRT consisted of 50 Gy delivered in 20 daily fractions. The first 121 consecutive patients with a minimum of 2 years posttreatment follow-up were assessed for toxicity and disease control. Results: The median follow-up was 65.2 months. No acute Grade III or higher toxicity was seen. Late Grade II gastrointestinal toxicity was seen in 9 patients (7.4%) and Grade III in 2 (1.6%). Late Grade III genitourinary toxicity was seen in 2 patients (1.6%). After a 24-month follow-up, a rebiopsy was offered to the first 58 consecutively treated patients, and 44 patients agreed with the procedure. Negative biopsies were found in 40 patients (91%). The 5-year biochemical relapse-free survival rate was 90.7% (95% CI, 84.5-96.9%), with 13 patients presenting biochemical failure. Among them, 9 were diagnosed with distant metastasis. Prostate cancer-specific and overall survival rates at 5 years were 100% and 98.8% (95% CI, 96.4-100%), respectively. Conclusion: The combination of HDRB and HypoRT is well tolerated, with acceptable toxicity rates. Furthermore, results from rebiopsies revealed an encouraging rate of local control. These results confirm that the use of conformal RT techniques, adapted to specific biological tumor characteristics, have the potential to improve the therapeutic ratio in intermediate-risk PC patients.

  4. High-Dose and Extended-Field Intensity Modulated Radiation Therapy for Early-Stage NK/T-Cell Lymphoma of Waldeyer's Ring: Dosimetric Analysis and Clinical Outcome

    SciTech Connect

    Bi, Xi-Wen; Li, Ye-Xiong Fang, Hui; Jin, Jing; Wang, Wei-Hu; Wang, Shu-Lian; Liu, Yue-Ping; Song, Yong-Wen; Ren, Hua; Dai, Jian-Rong

    2013-12-01

    Purpose: To assess the dosimetric benefit, treatment outcome, and toxicity of high-dose and extended-field intensity modulated radiation therapy (IMRT) in patients with early-stage NK/T-cell lymphoma of Waldeyer's ring (WR-NKTCL). Methods and Materials: Thirty patients with early-stage WR-NKTCL who received extended-field IMRT were retrospectively reviewed. The prescribed dose was 50 Gy to the primary involved regions and positive cervical lymph nodes (planning target volume requiring radical irradiation [PTV{sub 50}]) and 40 Gy to the negative cervical nodes (PTV{sub 40}). Dosimetric parameters for the target volume and critical normal structures were evaluated. Locoregional control (LRC), overall survival (OS), and progression-free survival (PFS) were calculated using the Kaplan-Meier method. Results: The median mean doses to the PTV{sub 50} and PTV{sub 40} were 53.2 Gy and 43.0 Gy, respectively. Only 1.4% of the PTV{sub 50} and 0.9% of the PTV{sub 40} received less than 95% of the prescribed dose, indicating excellent target coverage. The average mean doses to the left and right parotid glands were 27.7 and 28.4 Gy, respectively. The 2-year OS, PFS, and LRC rates were 71.2%, 57.4%, and 87.8%. Most acute toxicities were grade 1 to 2, except for grade ≥3 dysphagia and mucositis. The most common late toxicity was grade 1-2 xerostomia, and no patient developed any ≥grade 3 late toxicities. A correlation between the mean dose to the parotid glands and the degree of late xerostomia was observed. Conclusions: IMRT achieves excellent target coverage and dose conformity, as well as favorable survival and locoregional control rates with acceptable toxicities in patients with WR-NKTCL.

  5. Initial Efficacy Results of RTOG 0319: Three-Dimensional Conformal Radiation Therapy (3D-CRT) Confined to the Region of the Lumpectomy Cavity for Stage I/ II Breast Carcinoma

    SciTech Connect

    Vicini, Frank; Winter, Kathryn; Wong, John

    2010-07-15

    Purpose: This prospective study (Radiation Therapy Oncology Group 0319) examines the use of three-dimensional conformal external beam radiotherapy (3D-CRT) to deliver accelerated partial breast irradiation (APBI). Initial data on efficacy and toxicity are presented. Methods and Materials: Patients with Stage I or II breast cancer with lesions {<=}3 cm, negative margins and with {<=}3 positive nodes were eligible. The 3D-CRT was 38.5 Gy in 3.85 Gy/fraction delivered 2x/day. Ipsilateral breast, ipsilateral nodal, contralateral breast, and distant failure (IBF, INF, CBF, DF) were estimated using the cumulative incidence method. Mastectomy-free, disease-free, and overall survival (MFS, DFS, OS) were recorded. The National Cancer Institute Common Terminology Criteria for Adverse Events, version 3, was used to grade acute and late toxicity. Results: Fifty-eight patients were entered and 52 patients are eligible and evaluable for efficacy. The median age of patients was 61 years with the following characteristics: 46% tumor size <1 cm; 87% invasive ductal histology; 94% American Joint Committee on Cancer Stage I; 65% postmenopausal; 83% no chemotherapy; and 71% with no hormone therapy. Median follow-up is 4.5 years (1.7-4.8). Four-year estimates (95% CI) of efficacy are: IBF 6% (0-12%) [4% within field (0-9%)]; INF 2% (0-6%); CBF 0%; DF 8% (0-15%); MFS 90% (78-96%); DFS 84% (71-92%); and OS 96% (85-99%). Only two (4%) Grade 3 toxicities were observed. Conclusions: Initial efficacy and toxicity using 3D-CRT to deliver APBI appears comparable to other experiences with similar follow-up. However, additional patients, further follow-up, and mature Phase III data are needed to evaluate the extent of application, limitations, and value of this particular form of APBI.

  6. A comprehensive dosimetric study of pancreatic cancer treatment using three-dimensional conformal radiation therapy (3DCRT), intensity-modulated radiation therapy (IMRT), volumetric-modulated radiation therapy (VMAT), and passive-scattering and modulated-scanning proton therapy (PT)

    SciTech Connect

    Ding, Xuanfeng; Dionisi, Francesco; Tang, Shikui; Ingram, Mark; Hung, Chun-Yu; Prionas, Evangelos; Lichtenwalner, Phil; Butterwick, Ian; Zhai, Huifang; Yin, Lingshu; Lin, Haibo; Kassaee, Alireza; Avery, Stephen

    2014-07-01

    With traditional photon therapy to treat large postoperative pancreatic target volume, it often leads to poor tolerance of the therapy delivered and may contribute to interrupted treatment course. This study was performed to evaluate the potential advantage of using passive-scattering (PS) and modulated-scanning (MS) proton therapy (PT) to reduce normal tissue exposure in postoperative pancreatic cancer treatment. A total of 11 patients with postoperative pancreatic cancer who had been previously treated with PS PT in University of Pennsylvania Roberts Proton Therapy Center from 2010 to 2013 were identified. The clinical target volume (CTV) includes the pancreatic tumor bed as well as the adjacent high-risk nodal areas. Internal (iCTV) was generated from 4-dimensional (4D) computed tomography (CT), taking into account target motion from breathing cycle. Three-field and 4-field 3D conformal radiation therapy (3DCRT), 5-field intensity-modulated radiation therapy, 2-arc volumetric-modulated radiation therapy, and 2-field PS and MS PT were created on the patients’ average CT. All the plans delivered 50.4 Gy to the planning target volume (PTV). Overall, 98% of PTV was covered by 95% of the prescription dose and 99% of iCTV received 98% prescription dose. The results show that all the proton plans offer significant lower doses to the left kidney (mean and V{sub 18} {sub Gy}), stomach (mean and V{sub 20} {sub Gy}), and cord (maximum dose) compared with all the photon plans, except 3-field 3DCRT in cord maximum dose. In addition, MS PT also provides lower doses to the right kidney (mean and V{sub 18} {sub Gy}), liver (mean dose), total bowel (V{sub 20} {sub Gy} and mean dose), and small bowel (V{sub 15} {sub Gy} absolute volume ratio) compared with all the photon plans and PS PT. The dosimetric advantage of PT points to the possibility of treating tumor bed and comprehensive nodal areas while providing a more tolerable treatment course that could be used for dose

  7. Dose painting to treat single-lobe prostate cancer with hypofractionated high-dose radiation using targeted external beam radiation: Is it feasible?

    SciTech Connect

    Amini, Arya; Westerly, David C.; Waxweiler, Timothy V.; Ryan, Nicole; Raben, David

    2015-10-01

    Targeted focal therapy strategies for treating single-lobe prostate cancer are under investigation. In this planning study, we investigate the feasibility of treating a portion of the prostate to full-dose external beam radiation with reduced dose to the opposite lobe, compared with full-dose radiation delivered to the entire gland using hypofractionated radiation. For 10 consecutive patients with low- to intermediate-risk prostate cancer, 2 hypofractionated, single-arc volumetric-modulated arc therapy (VMAT) plans were designed. The first plan (standard hypofractionation regimen [STD]) included the entire prostate gland, treated to 70 Gy delivered in 28 fractions. The second dose painting plan (DP) encompassed the involved lobe treated to 70 Gy delivered in 28 fractions, whereas the opposing, uninvolved lobe received 50.4 Gy in 28 fractions. Mean dose to the opposing neurovascular bundle (NVB) was considerably lower for DP vs STD, with a mean dose of 53.9 vs 72.3 Gy (p < 0.001). Mean penile bulb dose was 18.6 Gy for DP vs 19.2 Gy for STD (p = 0.880). Mean rectal dose was 21.0 Gy for DP vs 22.8 Gy for STD (p = 0.356). Rectum V{sub 70} (the volume receiving ≥70 Gy) was 2.01% for DP vs 2.74% for STD (p = 0.328). Bladder V{sub 70} was 1.69% for DP vs 2.78% for STD (p = 0.232). Planning target volume (PTV) maximum dose points were 76.5 and 76.3 Gy for DP and STD, respectively (p = 0.760). This study demonstrates the feasibility of using VMAT for partial-lobe prostate radiation in patients with prostate cancer involving 1 lobe. Partial-lobe prostate plans appeared to spare adjacent critical structures including the opposite NVB.

  8. A method for three-dimensional prostate imaging using transrectal ultrasound.

    PubMed

    Richard, W D; Grimmell, C K; Bedigian, K; Frank, K J

    1993-01-01

    This paper describes a method for forming three-dimensional images of the prostate using transrectal ultrasound. This method extracts three-dimensional images of the prostate from sets of two-dimensional ultrasound images obtained via a special-purpose transrectal ultrasound probe. Each two-dimensional image is segmented and the results used to form a three-dimensional image of the prostate. A method for segmenting two-dimensional images of the prostate based on the Laplacian-of-Gaussian edge operator is described. The three-dimensional imaging method described provides a new, noninvasive method for monitoring gland pathology during radiation therapy. PMID:8518996

  9. Three-Dimensional Vertical-Bloch-Line Memory System

    NASA Technical Reports Server (NTRS)

    Katti, Romney R.; Wu, Jiin-Chuan; Stadler, Henry L.

    1994-01-01

    In proposed magnetic memory system without moving parts, data is stored in stack of two-dimensional vertical-Bloch-line (VBL) memory chips or modules. System similar to one described in "Three-Dimensional Magnetic-Bubble Memory System" (NPO-18533). Each VBL module in this memory system silimar to module described in "Vertical-Bloch-Line Memory" (NPO-18467). Advantages include high storage density, high speed, nonvolatility, and insensitivity to ionizing radiation.

  10. Indirect Tumor Cell Death After High-Dose Hypofractionated Irradiation: Implications for Stereotactic Body Radiation Therapy and Stereotactic Radiation Surgery

    SciTech Connect

    Song, Chang W.; Lee, Yoon-Jin; Griffin, Robert J.; Park, Inhwan; Koonce, Nathan A.; Hui, Susanta; Kim, Mi-Sook; Dusenbery, Kathryn E.; Sperduto, Paul W.; Cho, L. Chinsoo

    2015-09-01

    Purpose: The purpose of this study was to reveal the biological mechanisms underlying stereotactic body radiation therapy (SBRT) and stereotactic radiation surgery (SRS). Methods and Materials: FSaII fibrosarcomas grown subcutaneously in the hind limbs of C3H mice were irradiated with 10 to 30 Gy of X rays in a single fraction, and the clonogenic cell survival was determined with in vivo–in vitro excision assay immediately or 2 to 5 days after irradiation. The effects of radiation on the intratumor microenvironment were studied using immunohistochemical methods. Results: After cells were irradiated with 15 or 20 Gy, cell survival in FSaII tumors declined for 2 to 3 days and began to recover thereafter in some but not all tumors. After irradiation with 30 Gy, cell survival declined continuously for 5 days. Cell survival in some tumors 5 days after 20 to 30 Gy irradiation was 2 to 3 logs less than that immediately after irradiation. Irradiation with 20 Gy markedly reduced blood perfusion, upregulated HIF-1α, and increased carbonic anhydrase-9 expression, indicating that irradiation increased tumor hypoxia. In addition, expression of VEGF also increased in the tumor tissue after 20 Gy irradiation, probably due to the increase in HIF-1α activity. Conclusions: Irradiation of FSaII tumors with 15 to 30 Gy in a single dose caused dose-dependent secondary cell death, most likely by causing vascular damage accompanied by deterioration of intratumor microenvironment. Such indirect tumor cell death may play a crucial role in the control of human tumors with SBRT and SRS.

  11. The Impact of Dose to the Bladder Trigone on Long-Term Urinary function after High-Dose Intensity-Modulated Radiation Therapy for Localized Prostate Cancer

    PubMed Central

    Ghadjar, Pirus; Zelefsky, Michael J.; Spratt, Daniel E.; af Rosenschöld, Per Munck; Oh, Jung Hun; Hunt, Margie; Kollmeier, Marisa; Happersett, Laura; Yorke, Ellen; Deasy, Joseph O.; Jackson, Andrew

    2015-01-01

    Purpose To determine the potential association between genitourinary (GU) toxicity and planning dose-volume parameters for GU pelvic structures after high-dose intensity-modulated radiotherapy (IMRT) in localized prostate cancer patients. Methods and Materials 268 patients who underwent IMRT to a prescribed dose of 86.4 Gy in 48 fractions during 06/2004–12/2008 were evaluated with the International Prostate Symptom Score (IPSS) questionnaire. Dose volume histograms of the whole bladder, bladder wall, urethra, and bladder trigone were analyzed. The primary endpoint for GU toxicity was an IPSS sum increase ≥10 points over baseline. Univariate and multivariate analyses were done by Kaplan-Meier method and Cox proportional hazard models, respectively. Results Median follow-up was 5 years (range, 3–7.7 years). Thirty-nine patients experienced an IPSS sum increase ≥10 during follow-up; 84% remained event free at 5 years. After univariate analysis, lower baseline IPSS sum (P=0.006), the V90 of the trigone (P=0.006), and the maximal dose to the trigone (P=0.003) were significantly associated with an IPSS sum increase ≥10. After multivariate analysis, lower baseline IPSS sum (P=0.009) and increased maximal dose to the trigone (P=0.005) remained significantly associated. Seventy-two patients had both a lower baseline IPSS sum and a higher maximal dose to the trigone and were defined as high-risk and 68 patients had both a higher baseline IPSS sum and a lower maximal dose to the trigone and were defined as low-risk for development of an IPSS sum increase ≥10. Twenty-one of 72 high-risk (29%) and 5 of 68 low-risk (7%) patients experienced an IPSS sum increase ≥10 (P=0.001; odds ratio, 5.19). Conclusions The application of hot spots to the bladder trigone was significantly associated with relevant changes in IPSS during follow-up. Reduction of radiation dose to the lower bladder and specifically the bladder trigone appears to be associated with a reduction in late

  12. Three-dimensional imaging of dislocations by X-ray diffraction laminography

    NASA Astrophysics Data System (ADS)

    Hänschke, D.; Helfen, L.; Altapova, V.; Danilewsky, A.; Baumbach, T.

    2012-12-01

    Synchrotron radiation laminography with X-ray diffraction contrast enables three-dimensional imaging of dislocations in monocrystalline wafers. We outline the principle of the technique, the required experimental conditions, and the reconstruction procedure. The feasibility and the potential of the method are demonstrated by three-dimensional imaging of dislocation loops in an indent-damaged and annealed silicon wafer.

  13. Vision in our three-dimensional world.

    PubMed

    Parker, Andrew J

    2016-06-19

    Many aspects of our perceptual experience are dominated by the fact that our two eyes point forward. Whilst the location of our eyes leaves the environment behind our head inaccessible to vision, co-ordinated use of our two eyes gives us direct access to the three-dimensional structure of the scene in front of us, through the mechanism of stereoscopic vision. Scientific understanding of the different brain regions involved in stereoscopic vision and three-dimensional spatial cognition is changing rapidly, with consequent influences on fields as diverse as clinical practice in ophthalmology and the technology of virtual reality devices.This article is part of the themed issue 'Vision in our three-dimensional world'. PMID:27269595

  14. Three-dimensional microbubble streaming flows

    NASA Astrophysics Data System (ADS)

    Rallabandi, Bhargav; Marin, Alvaro; Rossi, Massimiliano; Kaehler, Christian; Hilgenfeldt, Sascha

    2014-11-01

    Streaming due to acoustically excited bubbles has been used successfully for applications such as size-sorting, trapping and focusing of particles, as well as fluid mixing. Many of these applications involve the precise control of particle trajectories, typically achieved using cylindrical bubbles, which establish planar flows. Using astigmatic particle tracking velocimetry (APTV), we show that, while this two-dimensional picture is a useful description of the flow over short times, a systematic three-dimensional flow structure is evident over long time scales. We demonstrate that this long-time three-dimensional fluid motion can be understood through asymptotic theory, superimposing secondary axial flows (induced by boundary conditions at the device walls) onto the two-dimensional description. This leads to a general framework that describes three-dimensional flows in confined microstreaming systems, guiding the design of applications that profit from minimizing or maximizing these effects.

  15. Topology of three-dimensional separated flows

    NASA Technical Reports Server (NTRS)

    Tobak, M.; Peake, D. J.

    1981-01-01

    Based on the hypothesis that patterns of skin-friction lines and external streamlines reflect the properties of continuous vector fields, topology rules define a small number of singular points (nodes, saddle points, and foci) that characterize the patterns on the surface and on particular projections of the flow (e.g., the crossflow plane). The restricted number of singular points and the rules that they obey are considered as an organizing principle whose finite number of elements can be combined in various ways to connect together the properties common to all steady three dimensional viscous flows. Introduction of a distinction between local and global properties of the flow resolves an ambiguity in the proper definition of a three dimensional separated flow. Adoption of the notions of topological structure, structural stability, and bifurcation provides a framework to describe how three dimensional separated flows originate and succeed each other as the relevant parameters of the problem are varied.

  16. Three dimensional responsive structure of tough hydrogels

    NASA Astrophysics Data System (ADS)

    Yang, Xuxu; Ma, Chunxin; Li, Chi; Xie, Yuhan; Huang, Xiaoqiang; Jin, Yongbin; Zhu, Ziqi; Liu, Junjie; Li, Tiefeng

    2015-04-01

    Three dimensional responsive structures have high value for the application of responsive hydrogels in various fields such as micro fluid control, tissue engineering and micro robot. Whereas various hydrogels with stimuli-responsive behaviors have been developed, designing and fabricating of the three dimensional responsive structures remain challenging. We develop a temperature responsive double network hydrogel with novel fabrication methods to assemble the complex three dimensional responsive structures. The shape changing behavior of the structures can be significantly increased by building blocks with various responsiveness. Mechanical instability is built into the structure with the proper design and enhance the performance of the structure. Finite element simulation are conducted to guide the design and investigate the responsive behavior of the hydrogel structures

  17. Vision in our three-dimensional world

    PubMed Central

    2016-01-01

    Many aspects of our perceptual experience are dominated by the fact that our two eyes point forward. Whilst the location of our eyes leaves the environment behind our head inaccessible to vision, co-ordinated use of our two eyes gives us direct access to the three-dimensional structure of the scene in front of us, through the mechanism of stereoscopic vision. Scientific understanding of the different brain regions involved in stereoscopic vision and three-dimensional spatial cognition is changing rapidly, with consequent influences on fields as diverse as clinical practice in ophthalmology and the technology of virtual reality devices. This article is part of the themed issue ‘Vision in our three-dimensional world’. PMID:27269595

  18. Three-dimensional separation and reattachment

    NASA Technical Reports Server (NTRS)

    Peake, D. J.; Tobak, M.

    1982-01-01

    The separation of three dimensional turbulent boundary layers from the lee of flight vehicles at high angles of attack is investigated. The separation results in dominant, large scale, coiled vortex motions that pass along the body in the general direction of the free stream. In all cases of three dimensional flow separation and reattachment, the assumption of continuous vector fields of skin friction lines and external flow streamlines, coupled with simple laws of topology, provides a flow grammar whose elemental constituents are the singular points: the nodes, spiral nodes (foci), and saddles. The phenomenon of three dimensional separation may be constrained as either a local or a global event, depending on whether the skin friction line that becomes a line of separation originates at a node or a saddle point.

  19. Three-dimensional separation and reattachment

    NASA Technical Reports Server (NTRS)

    Peake, D. J.; Tobak, M.

    1982-01-01

    The separation of three dimensional turbulent boundary layers from the lee of flight vehicles at high angles of attack is investigated. The separation results in dominant, large scale, coiled vortex motions that pass along the body in the general direction of the free stream. In all cases of three dimensional flow separation and reattachment, the assumption of continuous vector fields of skin friction lines and external flow streamlines, coupled with simple laws of topology, provides a flow grammar whose elemental constituents are the singular points: the nodes, spiral nodes (foci), and saddles. The phenomenon of three dimensional separation may be construed as either a local or a global event, depending on whether the skin friction line that becomes a line of separation originates at a node or a saddle point.

  20. Three-Dimensional Robotic Vision System

    NASA Technical Reports Server (NTRS)

    Nguyen, Thinh V.

    1989-01-01

    Stereoscopy and motion provide clues to outlines of objects. Digital image-processing system acts as "intelligent" automatic machine-vision system by processing views from stereoscopic television cameras into three-dimensional coordinates of moving object in view. Epipolar-line technique used to find corresponding points in stereoscopic views. Robotic vision system analyzes views from two television cameras to detect rigid three-dimensional objects and reconstruct numerically in terms of coordinates of corner points. Stereoscopy and effects of motion on two images complement each other in providing image-analyzing subsystem with clues to natures and locations of principal features.

  1. Three-dimensional magnetic bubble memory system

    NASA Technical Reports Server (NTRS)

    Stadler, Henry L. (Inventor); Katti, Romney R. (Inventor); Wu, Jiin-Chuan (Inventor)

    1994-01-01

    A compact memory uses magnetic bubble technology for providing data storage. A three-dimensional arrangement, in the form of stacks of magnetic bubble layers, is used to achieve high volumetric storage density. Output tracks are used within each layer to allow data to be accessed uniquely and unambiguously. Storage can be achieved using either current access or field access magnetic bubble technology. Optical sensing via the Faraday effect is used to detect data. Optical sensing facilitates the accessing of data from within the three-dimensional package and lends itself to parallel operation for supporting high data rates and vector and parallel processing.

  2. Three-Dimensional Extended Bargmann Supergravity.

    PubMed

    Bergshoeff, Eric; Rosseel, Jan

    2016-06-24

    We show that three-dimensional general relativity, augmented with two vector fields, allows for a nonrelativistic limit, different from the standard limit leading to Newtonian gravity, that results in a well-defined action which is of the Chern-Simons type. We show that this three-dimensional "extended Bargmann gravity," after coupling to matter, leads to equations of motion allowing a wider class of background geometries than the ones that one encounters in Newtonian gravity. We give the supersymmetric generalization of these results and point out an important application in the context of calculating partition functions of nonrelativistic field theories using localization techniques. PMID:27391712

  3. Three-Dimensional Extended Bargmann Supergravity

    NASA Astrophysics Data System (ADS)

    Bergshoeff, Eric; Rosseel, Jan

    2016-06-01

    We show that three-dimensional general relativity, augmented with two vector fields, allows for a nonrelativistic limit, different from the standard limit leading to Newtonian gravity, that results in a well-defined action which is of the Chern-Simons type. We show that this three-dimensional "extended Bargmann gravity," after coupling to matter, leads to equations of motion allowing a wider class of background geometries than the ones that one encounters in Newtonian gravity. We give the supersymmetric generalization of these results and point out an important application in the context of calculating partition functions of nonrelativistic field theories using localization techniques.

  4. Growing Three-Dimensional Cocultures Of Cells

    NASA Technical Reports Server (NTRS)

    Wolf, David A.; Goodwin, Thomas J.

    1995-01-01

    Laboratory process provides environmental conditions favoring simultaneous growth of cocultures of mammalian cells of more than one type. Cultures become three-dimensional tissuelike assemblies serving as organoid models of differentiation of cells. Process used, for example, to study growth of human colon cancers, starting from mixtures of normal colonic fibroblasts and partially differentiated colon adenocarcinoma cells.

  5. Three-dimensional colorimetric assay assemblies

    DOEpatents

    Charych, Deborah; Reichert, Anke

    2001-01-01

    A direct assay is described using novel three-dimensional polymeric assemblies which change from a blue to red color when exposed to an analyte, in one case a flue virus. The assemblies are typically in the form of liposomes which can be maintained in a suspension, and show great intensity in their color changes. Their method of production is also described.

  6. Three-Dimensional Visualization of Particle Tracks.

    ERIC Educational Resources Information Center

    Julian, Glenn M.

    1993-01-01

    Suggests ways to bring home to the introductory physics student some of the excitement of recent discoveries in particle physics. Describes particle detectors and encourages the use of the Standard Model along with real images of particle tracks to determine three-dimensional views of tracks. (MVL)

  7. Three-Dimensional Messages for Interstellar Communication

    NASA Astrophysics Data System (ADS)

    Vakoch, Douglas A.

    One of the challenges facing independently evolved civilizations separated by interstellar distances is to communicate information unique to one civilization. One commonly proposed solution is to begin with two-dimensional pictorial representations of mathematical concepts and physical objects, in the hope that this will provide a foundation for overcoming linguistic barriers. However, significant aspects of such representations are highly conventional, and may not be readily intelligible to a civilization with different conventions. The process of teaching conventions of representation may be facilitated by the use of three-dimensional representations redundantly encoded in multiple formats (e.g., as both vectors and as rasters). After having illustrated specific conventions for representing mathematical objects in a three-dimensional space, this method can be used to describe a physical environment shared by transmitter and receiver: a three-dimensional space defined by the transmitter--receiver axis, and containing stars within that space. This method can be extended to show three-dimensional representations varying over time. Having clarified conventions for representing objects potentially familiar to both sender and receiver, novel objects can subsequently be depicted. This is illustrated through sequences showing interactions between human beings, which provide information about human behavior and personality. Extensions of this method may allow the communication of such culture-specific features as aesthetic judgments and religious beliefs. Limitations of this approach will be noted, with specific reference to ETI who are not primarily visual.

  8. Three-dimensional rf structure calculations

    SciTech Connect

    Cooper, R.K.; Browman, M.J.; Weiland, T.

    1988-01-01

    The calculation of three-dimensional rf structures is rapidly approaching adolescence, after having been in its infancy for the last four years. This paper will show the kinds of calculations that are currently being performed in the frequency domain and is a companion paper to one in which time-domain calculations are described. 13 refs., 14 figs.

  9. Three-dimensional RF structure calculations

    NASA Astrophysics Data System (ADS)

    Cooper, R. K.; Browman, M. J.; Weiland, T.

    1989-04-01

    The calculation of three-dimensional rf structures is rapidly approaching adolescence, after having been in its infancy for the last four years. This paper will show the kinds of calculations that are currently being performed in the frequency domain and is a companion paper to one in which time-domain calculations are described.

  10. Three-Dimensional Printing Surgical Applications

    PubMed Central

    Griffin, Michelle F.; Butler, Peter E.

    2015-01-01

    Introduction: Three-dimensional printing, a technology used for decades in the industrial field, gains a lot of attention in the medical field for its potential benefits. With advancement of desktop printers, this technology is accessible and a lot of research is going on in the medical field. Objective: To evaluate its application in surgical field, which may include but not limited to surgical planning, surgical education, implants, and prosthesis, which are the focus of this review. Methods: Research was conducted by searching PubMed, Web of science, and other reliable sources. We included original articles and excluded articles based on animals, those more than 10 years old, and those not in English. These articles were evaluated, and relevant studies were included in this review. Discussion: Three-dimensional printing shows a potential benefit in surgical application. Printed implants were used in patient in a few cases and show successful results; however, longer follow-up and more trials are needed. Surgical and medical education is believed to be more efficient with this technology than the current practice. Printed surgical instrument and surgical planning are also believed to improve with three-dimensional printing. Conclusion: Three-dimensional printing can be a very powerful tool in the near future, which can aid the medical field that is facing a lot of challenges and obstacles. However, despite the reported results, further research on larger samples and analytical measurements should be conducted to ensure this technology's impact on the practice. PMID:26301002

  11. Three-Dimensional Pointers for Stereoscopic Projection.

    ERIC Educational Resources Information Center

    Hayman, H. J. G.

    1984-01-01

    Because class size often limits student opportunity to handle individual models, teachers use stereoscopic projections to demonstrate structural features. Describes three-dimensional pointers for use with different projection systems so teachers can indicate a particular atom or bond to entire classes, avoiding the perspective problems inherent in…

  12. Cohomology of real three-dimensional triquadrics

    NASA Astrophysics Data System (ADS)

    Krasnov, Vyacheslav A.

    2012-02-01

    We consider non-singular intersections of three real five-dimensional quadrics. They are referred to for brevity as real three-dimensional triquadrics. We calculate the dimensions of the cohomology spaces of triquadrics with coefficients in the field of two elements.

  13. Three-dimensional simulations of Nova capsule implosion experiments

    SciTech Connect

    Marinak, M.M.; Tipton, R.E.; Landen, O.L.

    1995-11-01

    Capsule implosion experiments carried out on the Nova laser are simulated with the three-dimensional HYDRA radiation hydrodynamics code. Simulations of ordered near single mode perturbations indicate that structures which evolve into round spikes can penetrate farthest into the hot spot. Bubble-shaped perturbations can burn through the capsule shell fastest, however, causing even more damage. Simulations of a capsule with multimode perturbations shows spike amplitudes evolving in good agreement with a saturation model during the deceleration phase. The presence of sizable low mode asymmetry, caused either by drive asymmetry or perturbations in the capsule shell, can dramatically affect the manner in which spikes approach the center of the hot spot. Three-dimensional coupling between the low mode shell perturbations intrinsic to Nova capsules and the drive asymmetry brings the simulated yields into closer agreement with the experimental values.

  14. Preliminary Toxicity Analysis of 3-Dimensional Conformal Radiation Therapy Versus Intensity Modulated Radiation Therapy on the High-Dose Arm of the Radiation Therapy Oncology Group 0126 Prostate Cancer Trial

    SciTech Connect

    Michalski, Jeff M.; Yan, Yan; Watkins-Bruner, Deborah; Bosch, Walter R.; Winter, Kathryn; Galvin, James M.; Bahary, Jean-Paul; Morton, Gerard C.; Parliament, Matthew B.; Sandler, Howard M.

    2013-12-01

    Purpose: To give a preliminary report of clinical and treatment factors associated with toxicity in men receiving high-dose radiation therapy (RT) on a phase 3 dose-escalation trial. Methods and Materials: The trial was initiated with 3-dimensional conformal RT (3D-CRT) and amended after 1 year to allow intensity modulated RT (IMRT). Patients treated with 3D-CRT received 55.8 Gy to a planning target volume that included the prostate and seminal vesicles, then 23.4 Gy to prostate only. The IMRT patients were treated to the prostate and proximal seminal vesicles to 79.2 Gy. Common Toxicity Criteria, version 2.0, and Radiation Therapy Oncology Group/European Organization for Research and Treatment of Cancer late morbidity scores were used for acute and late effects. Results: Of 763 patients randomized to the 79.2-Gy arm of Radiation Therapy Oncology Group 0126 protocol, 748 were eligible and evaluable: 491 and 257 were treated with 3D-CRT and IMRT, respectively. For both bladder and rectum, the volumes receiving 65, 70, and 75 Gy were significantly lower with IMRT (all P<.0001). For grade (G) 2+ acute gastrointestinal/genitourinary (GI/GU) toxicity, both univariate and multivariate analyses showed a statistically significant decrease in G2+ acute collective GI/GU toxicity for IMRT. There were no significant differences with 3D-CRT or IMRT for acute or late G2+ or 3+ GU toxicities. Univariate analysis showed a statistically significant decrease in late G2+ GI toxicity for IMRT (P=.039). On multivariate analysis, IMRT showed a 26% reduction in G2+ late GI toxicity (P=.099). Acute G2+ toxicity was associated with late G3+ toxicity (P=.005). With dose–volume histogram data in the multivariate analysis, RT modality was not significant, whereas white race (P=.001) and rectal V70 ≥15% were associated with G2+ rectal toxicity (P=.034). Conclusions: Intensity modulated RT is associated with a significant reduction in acute G2+ GI/GU toxicity. There is a trend for a

  15. A Comparison of the Biological Effects of 125I Seeds Continuous Low-Dose-Rate Radiation and 60Co High-Dose-Rate Gamma Radiation on Non-Small Cell Lung Cancer Cells

    PubMed Central

    Chen, Zhijin; Mao, Aiwu; Teng, Gaojun; Liu, Fenju

    2015-01-01

    Objectives To compare the biological effects of 125I seeds continuous low-dose-rate (CLDR) radiation and 60Co γ-ray high-dose-rate (HDR) radiation on non-small cell lung cancer (NSCLC) cells. Materials and Methods A549, H1299 and BEAS-2B cells were exposed to 125I seeds CLDR radiation or 60Co γ-ray HDR radiation. The survival fraction was determined using a colony-forming assay. The cell cycle progression and apoptosis were detected by flow cytometry (FCM). The expression of the apoptosis-related proteins caspase-3, cleaved-caspase-3, PARP, cleaved-PARP, BAX and Bcl-2 were detected by western blot assay. Results After irradiation with 125I seeds CLDR radiation, there was a lower survival fraction, more pronounced cell cycle arrest (G1 arrest and G2/M arrest in A549 and H1299 cells, respectively) and a higher apoptotic ratio for A549 and H1299 cells than after 60Co γ-ray HDR radiation. Moreover, western blot assays revealed that 125I seeds CLDR radiation remarkably up-regulated the expression of Bax, cleaved-caspase-3 and cleaved-PARP proteins and down-regulated the expression of Bcl-2 proteins in A549 and H1299 cells compared with 60Co γ-ray HDR radiation. However, there was little change in the apoptotic ratio and expression of apoptosis-related proteins in normal BEAS-2B cells receiving the same treatment. Conclusions 125I seeds CLDR radiation led to remarkable growth inhibition of A549 and H1299 cells compared with 60Co HDR γ-ray radiation; A549 cells were the most sensitive to radiation, followed by H1299 cells. In contrast, normal BEAS-2B cells were relatively radio-resistant. The imbalance of the Bcl-2/Bax ratio and the activation of caspase-3 and PARP proteins might play a key role in the anti-proliferative effects induced by 125I seeds CLDR radiation, although other possibilities have not been excluded and will be investigated in future studies. PMID:26266801

  16. Transformation equation in three-dimensional photoelasticity.

    PubMed

    Ainola, Leo; Aben, Hillar

    2006-03-01

    Optical phenomena that occur when polarized light passes through an inhomogeneous birefringent medium are complicated, especially when the principal directions of the dielectric tensor rotate on the light ray. This case is typical in three-dimensional photoelasticity, in particular in integrated photoelasticity by stress analysis on the basis of measured polarization transformations. Analysis of polarization transformations in integrated photoelasticity has been based primarily on a system of two first-order differential equations. Using a transformed coordinate in the direction of light propagation, we have derived a single fourth-order differential equation of three-dimensional photoelasticity. For the case of uniform rotation of the principal directions we have obtained an analytical solution. PMID:16539073

  17. Analysis of three-dimensional transonic compressors

    NASA Technical Reports Server (NTRS)

    Bourgeade, A.

    1984-01-01

    A method for computing the three-dimensional transonic flow around the blades of a compressor or of a propeller is given. The method is based on the use of the velocity potential, on the hypothesis that the flow is inviscid, irrotational and isentropic. The equation of the potential is solved in a transformed space such that the surface of the blade is mapped into a plane where the periodicity is implicit. This equation is in a nonconservative form and is solved with the help of a finite difference method using artificial time. A computer code is provided and some sample results are given in order to demonstrate the influence of three-dimensional effects and the blade's rotation.

  18. Three-dimensional visualization of a qutrit

    NASA Astrophysics Data System (ADS)

    Kurzyński, Paweł; Kołodziejski, Adrian; Laskowski, Wiesław; Markiewicz, Marcin

    2016-06-01

    We present a surprisingly simple three-dimensional Bloch sphere representation of a qutrit, i.e., a single three-level quantum system. We start with a symmetric state of a two-qubit system and relate it to the spin-1 representation. Using this representation we associate each qutrit state with a three-dimensional vector a and a metric tensor Γ ̂ which satisfy a .Γ ̂.a ≤1 . This resembles the well known condition for qubit Bloch vectors in which case Γ ̂=1 . In our case the vector a corresponds to spin-1 polarization, whereas the tensor Γ ̂ is a function of polarization uncertainties. Alternatively, a is a local Bloch vector of a symmetric two-qubit state and Γ ̂ is a function of the corresponding correlation tensor.

  19. Three dimensional fabrication at small size scales

    PubMed Central

    Leong, Timothy G.; Zarafshar, Aasiyeh M.; Gracias, David H.

    2010-01-01

    Despite the fact that we live in a three-dimensional (3D) world and macroscale engineering is 3D, conventional sub-mm scale engineering is inherently two-dimensional (2D). New fabrication and patterning strategies are needed to enable truly three-dimensionally-engineered structures at small size scales. Here, we review strategies that have been developed over the last two decades that seek to enable such millimeter to nanoscale 3D fabrication and patterning. A focus of this review is the strategy of self-assembly, specifically in a biologically inspired, more deterministic form known as self-folding. Self-folding methods can leverage the strengths of lithography to enable the construction of precisely patterned 3D structures and “smart” components. This self-assembling approach is compared with other 3D fabrication paradigms, and its advantages and disadvantages are discussed. PMID:20349446

  20. Simulation of complex three-dimensional flows

    NASA Technical Reports Server (NTRS)

    Diewert, G. S.; Rothmund, H. J.; Nakahashi, K.

    1985-01-01

    The concept of splitting is used extensively to simulate complex three dimensional flows on modern computer architectures. Used in all aspects, from initial grid generation to the determination of the final converged solution, splitting is used to enhance code vectorization, to permit solution driven grid adaption and grid enrichment, to permit the use of concurrent processing, and to enhance data flow through hierarchal memory systems. Three examples are used to illustrate these concepts to complex three dimensional flow fields: (1) interactive flow over a bump; (2) supersonic flow past a blunt based conical afterbody at incidence to a free stream and containing a centered propulsive jet; and (3) supersonic flow past a sharp leading edge delta wing at incidence to the free stream.

  1. Three-Dimensional Images For Robot Vision

    NASA Astrophysics Data System (ADS)

    McFarland, William D.

    1983-12-01

    Robots are attracting increased attention in the industrial productivity crisis. As one significant approach for this nation to maintain technological leadership, the need for robot vision has become critical. The "blind" robot, while occupying an economical niche at present is severely limited and job specific, being only one step up from the numerical controlled machines. To successfully satisfy robot vision requirements a three dimensional representation of a real scene must be provided. Several image acquistion techniques are discussed with more emphasis on the laser radar type instruments. The autonomous vehicle is also discussed as a robot form, and the requirements for these applications are considered. The total computer vision system requirement is reviewed with some discussion of the major techniques in the literature for three dimensional scene analysis.

  2. Three-dimensional bio-printing.

    PubMed

    Gu, Qi; Hao, Jie; Lu, YangJie; Wang, Liu; Wallace, Gordon G; Zhou, Qi

    2015-05-01

    Three-dimensional (3D) printing technology has been widely used in various manufacturing operations including automotive, defence and space industries. 3D printing has the advantages of personalization, flexibility and high resolution, and is therefore becoming increasingly visible in the high-tech fields. Three-dimensional bio-printing technology also holds promise for future use in medical applications. At present 3D bio-printing is mainly used for simulating and reconstructing some hard tissues or for preparing drug-delivery systems in the medical area. The fabrication of 3D structures with living cells and bioactive moieties spatially distributed throughout will be realisable. Fabrication of complex tissues and organs is still at the exploratory stage. This review summarize the development of 3D bio-printing and its potential in medical applications, as well as discussing the current challenges faced by 3D bio-printing. PMID:25921944

  3. Real time three dimensional sensing system

    DOEpatents

    Gordon, Steven J.

    1996-01-01

    The invention is a three dimensional sensing system which utilizes two flexibly located cameras for receiving and recording visual information with respect to a sensed object illuminated by a series of light planes. Each pixel of each image is converted to a digital word and the words are grouped into stripes, each stripe comprising contiguous pixels. One pixel of each stripe in one image is selected and an epi-polar line of that point is drawn in the other image. The three dimensional coordinate of each selected point is determined by determining the point on said epi-polar line which also lies on a stripe in the second image and which is closest to a known light plane.

  4. Real time three dimensional sensing system

    DOEpatents

    Gordon, S.J.

    1996-12-31

    The invention is a three dimensional sensing system which utilizes two flexibly located cameras for receiving and recording visual information with respect to a sensed object illuminated by a series of light planes. Each pixel of each image is converted to a digital word and the words are grouped into stripes, each stripe comprising contiguous pixels. One pixel of each stripe in one image is selected and an epi-polar line of that point is drawn in the other image. The three dimensional coordinate of each selected point is determined by determining the point on said epi-polar line which also lies on a stripe in the second image and which is closest to a known light plane. 7 figs.

  5. Three-dimensional imaging modalities in endodontics

    PubMed Central

    Mao, Teresa

    2014-01-01

    Recent research in endodontics has highlighted the need for three-dimensional imaging in the clinical arena as well as in research. Three-dimensional imaging using computed tomography (CT) has been used in endodontics over the past decade. Three types of CT scans have been studied in endodontics, namely cone-beam CT, spiral CT, and peripheral quantitative CT. Contemporary endodontics places an emphasis on the use of cone-beam CT for an accurate diagnosis of parameters that cannot be visualized on a two-dimensional image. This review discusses the role of CT in endodontics, pertaining to its importance in the diagnosis of root canal anatomy, detection of peri-radicular lesions, diagnosis of trauma and resorption, presurgical assessment, and evaluation of the treatment outcome. PMID:25279337

  6. Three-dimensional whispering gallery modes in InGaAs nanoneedle lasers on silicon

    SciTech Connect

    Tran, T.-T. D.; Chen, R.; Ng, K. W.; Ko, W. S.; Lu, F.; Chang-Hasnain, C. J.

    2014-09-15

    As-grown InGaAs nanoneedle lasers, synthesized at complementary metal–oxide–semiconductor compatible temperatures on polycrystalline and crystalline silicon substrates, were studied in photoluminescence experiments. Radiation patterns of three-dimensional whispering gallery modes were observed upon optically pumping the needles above the lasing threshold. Using the radiation patterns as well as finite-difference-time-domain simulations and polarization measurements, all modal numbers of the three-dimensional whispering gallery modes could be identified.

  7. Three-dimensional simulation of vortex breakdown

    NASA Technical Reports Server (NTRS)

    Kuruvila, G.; Salas, M. D.

    1990-01-01

    The integral form of the complete, unsteady, compressible, three-dimensional Navier-Stokes equations in the conservation form, cast in generalized coordinate system, are solved, numerically, to simulate the vortex breakdown phenomenon. The inviscid fluxes are discretized using Roe's upwind-biased flux-difference splitting scheme and the viscous fluxes are discretized using central differencing. Time integration is performed using a backward Euler ADI (alternating direction implicit) scheme. A full approximation multigrid is used to accelerate the convergence to steady state.

  8. Three-dimensional adjustment of trilateration data

    NASA Technical Reports Server (NTRS)

    Sung, L.-Y.; Jackson, D. D.

    1985-01-01

    The three-dimensional locations of the monuments in the USGS Hollister trilateration network were adjusted to fit line length observations observed in 1977, using a Bayesian approach, and incorporating prior elevation estimates as data in the adjustment procedure. No significant discrepancies in the measured line lengths were found, but significant elevation adjustments (up to 1.85 m) were needed to fit the length data.

  9. Three-dimensional Lorentz-violating action

    NASA Astrophysics Data System (ADS)

    Nascimento, J. R.; Petrov, A. Yu.; Wotzasek, C.; Zarro, C. A. D.

    2014-03-01

    We demonstrate the generation of the three-dimensional Chern-Simons-like Lorentz-breaking "mixed" quadratic action via an appropriate Lorentz-breaking coupling of vector and scalar fields to the spinor field and study some features of the scalar QED with such a term. We show that the same term emerges through a nonperturbative method, namely the Julia-Toulouse approach of condensation of charges and defects.

  10. Three-dimensional display of document set

    DOEpatents

    Lantrip, David B.; Pennock, Kelly A.; Pottier, Marc C.; Schur, Anne; Thomas, James J.; Wise, James A.; York, Jeremy

    2009-06-30

    A method for spatializing text content for enhanced visual browsing and analysis. The invention is applied to large text document corpora such as digital libraries, regulations and procedures, archived reports, and the like. The text content from these sources may be transformed to a spatial representation that preserves informational characteristics from the documents. The three-dimensional representation may then be visually browsed and analyzed in ways that avoid language processing and that reduce the analysts' effort.

  11. Three-dimensional display of document set

    DOEpatents

    Lantrip, David B.; Pennock, Kelly A.; Pottier, Marc C.; Schur, Anne; Thomas, James J.; Wise, James A.

    2006-09-26

    A method for spatializing text content for enhanced visual browsing and analysis. The invention is applied to large text document corpora such as digital libraries, regulations and procedures, archived reports, and the like. The text content from these sources may e transformed to a spatial representation that preserves informational characteristics from the documents. The three-dimensional representation may then be visually browsed and analyzed in ways that avoid language processing and that reduce the analysts' effort.

  12. Three-dimensional display of document set

    DOEpatents

    Lantrip, David B [Oxnard, CA; Pennock, Kelly A [Richland, WA; Pottier, Marc C [Richland, WA; Schur, Anne [Richland, WA; Thomas, James J [Richland, WA; Wise, James A [Richland, WA

    2001-10-02

    A method for spatializing text content for enhanced visual browsing and analysis. The invention is applied to large text document corpora such as digital libraries, regulations and procedures, archived reports, and the like. The text content from these sources may be transformed to a spatial representation that preserves informational characteristics from the documents. The three-dimensional representation may then be visually browsed and analyzed in ways that avoid language processing and that reduce the analysts' effort.

  13. Three-Dimensional Dispaly Of Document Set

    DOEpatents

    Lantrip, David B.; Pennock, Kelly A.; Pottier, Marc C.; Schur, Anne; Thomas, James J.; Wise, James A.

    2003-06-24

    A method for spatializing text content for enhanced visual browsing and analysis. The invention is applied to large text document corpora such as digital libraries, regulations and procedures, archived reports, and the like. The text content from these sources may be transformed to a spatial representation that preserves informational characteristics from the documents. The three-dimensional representation may then be visually browsed and analyzed in ways that avoid language processing and that reduce the analysts' effort.

  14. Stress tensor correlators in three dimensional gravity

    NASA Astrophysics Data System (ADS)

    Bagchi, Arjun; Grumiller, Daniel; Merbis, Wout

    2016-03-01

    We calculate holographically arbitrary n -point correlators of the boundary stress tensor in three-dimensional Einstein gravity with negative or vanishing cosmological constant. We provide explicit expressions up to 5-point (connected) correlators and show consistency with the Galilean conformal field theory Ward identities and recursion relations of correlators, which we derive. This provides a novel check of flat space holography in three dimensions.

  15. Three-dimensional ballistocardiography in weightlessness

    NASA Technical Reports Server (NTRS)

    Scano, A.

    1981-01-01

    An experiment is described the aim of which is to record a three dimensional ballistocardiogram under the condition of weightlessness and to compare it with tracings recorded on the same subject on the ground as a means of clarifying the meaning of ballistocardiogram waves in different physiological and perphaps pathological conditions. Another purpose is to investigate cardiovascular and possibly fluid adaptations to weightlessness from data collected almost simultaneously on the same subjects during the other cardiovascular during the other cardiovascular and metabolic experiments.

  16. Three-dimensional motor schema based navigation

    NASA Technical Reports Server (NTRS)

    Arkin, Ronald C.

    1989-01-01

    Reactive schema-based navigation is possible in space domains by extending the methods developed for ground-based navigation found within the Autonomous Robot Architecture (AuRA). Reformulation of two dimensional motor schemas for three dimensional applications is a straightforward process. The manifold advantages of schema-based control persist, including modular development, amenability to distributed processing, and responsiveness to environmental sensing. Simulation results show the feasibility of this methodology for space docking operations in a cluttered work area.

  17. Generating Three-Dimensional Grids About Anything

    NASA Technical Reports Server (NTRS)

    Sorenson, Reese L.

    1991-01-01

    Three-Dimensional Grids About Anything by Poisson's Equation (3DGRAPE) computer program designed to make computational grids in or about almost any shape. Generated by solution of Poisson's differential equations in three dimensions. Program automatically finds its own values for inhomogeneous terms giving near-orthogonality and controlled grid-cell height at boundaries. Grids generated applied to both viscous and inviscid aerodynamic problems, and to problems in other areas of fluid dynamics. Written in 100 percent FORTRAN 77.

  18. Mineralized three-dimensional bone constructs

    NASA Technical Reports Server (NTRS)

    Clarke, Mark S. F. (Inventor); Sundaresan, Alamelu (Inventor); Pellis, Neal R. (Inventor)

    2011-01-01

    The present disclosure provides ex vivo-derived mineralized three-dimensional bone constructs. The bone constructs are obtained by culturing osteoblasts and osteoclast precursors under randomized gravity vector conditions. Preferably, the randomized gravity vector conditions are obtained using a low shear stress rotating bioreactor, such as a High Aspect Ratio Vessel (HARV) culture system. The bone constructs of the disclosure have utility in physiological studies of bone formation and bone function, in drug discovery, and in orthopedics.

  19. Mineralized Three-Dimensional Bone Constructs

    NASA Technical Reports Server (NTRS)

    Clarke, Mark S. F. (Inventor); Sundaresan, Alamelu (Inventor); Pellis, Neal R. (Inventor)

    2013-01-01

    The present disclosure provides ex vivo-derived mineralized three-dimensional bone constructs. The bone constructs are obtained by culturing osteoblasts and osteoclast precursors under randomized gravity vector conditions. Preferably, the randomized gravity vector conditions are obtained using a low shear stress rotating bioreactor, such as a High Aspect Ratio Vessel (HARV) culture system. The bone constructs of the disclosure have utility in physiological studies of bone formation and bone function, in drug discovery, and in orthopedics.

  20. The first three-dimensional vanadium hypophosphite.

    PubMed

    Maouel, Hind A; Alonzo, Véronique; Roisnel, Thierry; Rebbah, Houria; Le Fur, Eric

    2009-07-01

    The title synthesized hypophosphite has the formula V(H(2)PO(2))(3). Its structure is based on VO(6) octahedra and (H(2)PO(2))(-) pseudo-tetrahedra. The asymmetric unit contains two crystallographically distinct V atoms and six independent (H(2)PO(2))(-) groups. The connection of the polyhedra generates [VPO(6)H(2)](6-) chains extended along a, b and c, leading to the first three-dimensional network of an anhydrous transition metal hypophosphite. PMID:19578249

  1. {sup 18}F-Choline Positron Emission Tomography/Computed Tomography–Driven High-Dose Salvage Radiation Therapy in Patients With Biochemical Progression After Radical Prostatectomy: Feasibility Study in 60 Patients

    SciTech Connect

    D'Angelillo, Rolando M.; Sciuto, Rosa; Ramella, Sara; Papalia, Rocco; Jereczek-Fossa, Barbara A.; Trodella, Luca E.; Fiore, Michele; Gallucci, Michele; Maini, Carlo L.; Trodella, Lucio

    2014-10-01

    Purpose: To retrospectively review data of a cohort of patients with biochemical progression after radical prostatectomy, treated according to a uniform institutional treatment policy, to evaluate toxicity and feasibility of high-dose salvage radiation therapy (80 Gy). Methods and Materials: Data on 60 patients with biochemical progression after radical prostatectomy between January 2009 and September 2011 were reviewed. The median value of prostate-specific antigen before radiation therapy was 0.9 ng/mL. All patients at time of diagnosis of biochemical recurrence underwent dynamic {sup 18}F-choline positron emission tomography/computed tomography (PET/CT), which revealed in all cases a local recurrence. High-dose salvage radiation therapy was delivered up to total dose of 80 Gy to 18F-choline PET/CT-positive area. Toxicity was recorded according to the Common Terminology Criteria for Adverse Events, version 3.0, scale. Results: Treatment was generally well tolerated: 54 patients (90%) completed salvage radiation therapy without any interruption. Gastrointestinal grade ≥2 acute toxicity was recorded in 6 patients (10%), whereas no patient experienced a grade ≥2 genitourinary toxicity. No grade 4 acute toxicity events were recorded. Only 1 patient (1.7%) experienced a grade 2 gastrointestinal late toxicity. With a mean follow-up of 31.2 months, 46 of 60 patients (76.6%) were free of recurrence. The 3-year biochemical progression-free survival rate was 72.5%. Conclusions: At early follow-up, {sup 18}F-choline PET/CT-driven high-dose salvage radiation therapy seems to be feasible and well tolerated, with a low rate of toxicity.

  2. Multiparallel Three-Dimensional Optical Microscopy

    NASA Technical Reports Server (NTRS)

    Nguyen, Lam K.; Price, Jeffrey H.; Kellner, Albert L.; Bravo-Zanoquera, Miguel

    2010-01-01

    Multiparallel three-dimensional optical microscopy is a method of forming an approximate three-dimensional image of a microscope sample as a collection of images from different depths through the sample. The imaging apparatus includes a single microscope plus an assembly of beam splitters and mirrors that divide the output of the microscope into multiple channels. An imaging array of photodetectors in each channel is located at a different distance along the optical path from the microscope, corresponding to a focal plane at a different depth within the sample. The optical path leading to each photodetector array also includes lenses to compensate for the variation of magnification with distance so that the images ultimately formed on all the photodetector arrays are of the same magnification. The use of optical components common to multiple channels in a simple geometry makes it possible to obtain high light-transmission efficiency with an optically and mechanically simple assembly. In addition, because images can be read out simultaneously from all the photodetector arrays, the apparatus can support three-dimensional imaging at a high scanning rate.

  3. Teaching and Assessing Three-Dimensional M

    NASA Astrophysics Data System (ADS)

    Bateman, Robert C., Jr.; Booth, Deborah; Sirochman, Rudy; Richardson, Jane; Richardson, David

    2002-05-01

    Structural concepts such as the exact arrangement of a protein in three dimensions are crucial to almost every aspect of biology and chemistry, yet most of us have not been educated in three-dimensional literacy and all of us need a great deal of help in order to perceive and to communicate structural information successfully. It is in the undergraduate biochemistry course where students learn most concepts of molecular structure pertinent to living systems. We are addressing the issue of three-dimensional structural literacy by having undergraduate students construct kinemages, which are plain text scripts derived from Protein Data Bank coordinate files that can be viewed with the program MAGE. These annotated, interactive, three-dimensional illustrations are designed to develop a molecular story and allow exploration in the world of that story. In the process, students become familiar with the structure-based scientific literature and the Protein Data Bank. Our assessment to date has shown that students perceive kinemage authorship to be more helpful in understanding protein structure than simply viewing prepared kinemages. In addition, students perceived kinemage authorship as being beneficial to their career and a significant motivation to learn biochemistry.

  4. Three-dimensional deformation of orthodontic brackets

    PubMed Central

    Melenka, Garrett W; Nobes, David S; Major, Paul W

    2013-01-01

    Braces are used by orthodontists to correct the misalignment of teeth in the mouth. Archwire rotation is a particular procedure used to correct tooth inclination. Wire rotation can result in deformation to the orthodontic brackets, and an orthodontic torque simulator has been designed to examine this wire–bracket interaction. An optical technique has been employed to measure the deformation due to size and geometric constraints of the orthodontic brackets. Images of orthodontic brackets are collected using a stereo microscope and two charge-coupled device cameras, and deformation of orthodontic brackets is measured using a three-dimensional digital image correlation technique. The three-dimensional deformation of orthodontic brackets will be evaluated. The repeatability of the three-dimensional digital image correlation measurement method was evaluated by performing 30 archwire rotation tests using the same bracket and archwire. Finally, five Damon 3MX and five In-Ovation R self-ligating brackets will be compared using this technique to demonstrate the effect of archwire rotation on bracket design. PMID:23762201

  5. Three-dimensional printing of the retina

    PubMed Central

    Lorber, Barbara; Hsiao, Wen-Kai; Martin, Keith R.

    2016-01-01

    Purpose of review Biological three-dimensional printing has received a lot of media attention over recent years with advances made in printing cellular structures, including skin and heart tissue for transplantation. Although limitations exist in creating functioning organs with this method, the hope has been raised that creating a functional retina to cure blindness is within reach. The present review provides an update on the advances made toward this goal. Recent findings It has recently been shown that two types of retinal cells, retinal ganglion cells and glial cells, can be successfully printed using a piezoelectric inkjet printer. Importantly, the cells remained viable and did not change certain phenotypic features as a result of the printing process. In addition, recent advances in the creation of complex and viable three-dimensional cellular structures have been made. Summary Some first promising steps toward the creation of a functional retina have been taken. It now needs to be investigated whether recent findings can be extended to other cells of the retina, including those derived from human tissue, and if a complex and viable retinal structure can be created through three-dimensional printing. PMID:27045545

  6. Three-Dimensional Imaging. Chapter 10

    NASA Technical Reports Server (NTRS)

    Kelso, R. M.; Delo, C.

    1999-01-01

    This chapter is concerned with three-dimensional imaging of fluid flows. Although relatively young, this field of research has already yielded an enormous range of techniques. These vary widely in cost and complexity, with the cheapest light sheet systems being within the budgets of most laboratories, and the most expensive Magnetic Resonance Imaging systems available to a select few. Taking the view that the most likely systems to be developed are those using light sheets, the authors will relate their knowledge and experience of such systems. Other systems will be described briefly and references provided. Flows are inherently three-dimensional in structure; even those generated around nominally 2-D surface geometry. It is becoming increasingly apparent to scientists and engineers that the three-dimensionalities, both large and small scale, are important in terms of overall flow structure and species, momentum, and energy transport. Furthermore, we are accustomed to seeing the world in three dimensions, so it is natural that we should wish to view, measure and interpret flows in three-dimensions. Unfortunately, 3-D images do not lend themselves to convenient presentation on the printed page, and this task is one of the challenges facing us.

  7. Three-Dimensional Audio Client Library

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.

    2005-01-01

    The Three-Dimensional Audio Client Library (3DAudio library) is a group of software routines written to facilitate development of both stand-alone (audio only) and immersive virtual-reality application programs that utilize three-dimensional audio displays. The library is intended to enable the development of three-dimensional audio client application programs by use of a code base common to multiple audio server computers. The 3DAudio library calls vendor-specific audio client libraries and currently supports the AuSIM Gold-Server and Lake Huron audio servers. 3DAudio library routines contain common functions for (1) initiation and termination of a client/audio server session, (2) configuration-file input, (3) positioning functions, (4) coordinate transformations, (5) audio transport functions, (6) rendering functions, (7) debugging functions, and (8) event-list-sequencing functions. The 3DAudio software is written in the C++ programming language and currently operates under the Linux, IRIX, and Windows operating systems.

  8. Optical computed tomography of radiochromic gels for accurate three-dimensional dosimetry

    NASA Astrophysics Data System (ADS)

    Babic, Steven

    In this thesis, three-dimensional (3-D) radiochromic Ferrous Xylenol-orange (FX) and Leuco Crystal Violet (LCV) micelles gels were imaged by laser and cone-beam (Vista(TM)) optical computed tomography (CT) scanners. The objective was to develop optical CT of radiochromic gels for accurate 3-D dosimetry of intensity-modulated radiation therapy (IMRT) and small field techniques used in modern radiotherapy. First, the cause of a threshold dose response in FX gel dosimeters when scanned with a yellow light source was determined. This effect stems from a spectral sensitivity to multiple chemical complexes that are at different dose levels between ferric ions and xylenol-orange. To negate the threshold dose, an initial concentration of ferric ions is needed in order to shift the chemical equilibrium so that additional dose results in a linear production of a coloured complex that preferentially absorbs at longer wavelengths. Second, a low diffusion leuco-based radiochromic gel consisting of Triton X-100 micelles was developed. The diffusion coefficient of the LCV micelle gel was found to be minimal (0.036 + 0.001 mm2 hr-1 ). Although a dosimetric characterization revealed a reduced sensitivity to radiation, this was offset by a lower auto-oxidation rate and base optical density, higher melting point and no spectral sensitivity. Third, the Radiological Physics Centre (RPC) head-and-neck IMRT protocol was extended to 3-D dose verification using laser and cone-beam (Vista(TM)) optical CT scans of FX gels. Both optical systems yielded comparable measured dose distributions in high-dose regions and low gradients. The FX gel dosimetry results were crossed checked against independent thermoluminescent dosimeter and GAFChromicRTM EBT film measurements made by the RPC. It was shown that optical CT scanned FX gels can be used for accurate IMRT dose verification in 3-D. Finally, corrections for FX gel diffusion and scattered stray light in the Vista(TM) scanner were developed to

  9. Comparison of Patient Dose in Two-Dimensional Carotid Arteriography and Three-Dimensional Rotational Angiography

    SciTech Connect

    Tsapaki, Virginia Vano, Eliseo; Mavrikou, Irini; Neofotistou, Vassiliki; Gallego, Juan Jose; Fernandez, Jose Miguel; Santos, Ernesto; Mendez, Jose

    2008-05-15

    Background and Purpose. It is known that interventional neuroradiology (IN) involves high radiation dose to both patients and staff even if performed by trained operators using modern fluoroscopic X-ray equipment and dose-reducing technology. Therefore, every new technology or imaging tool introduced, such as three-dimensional rotational angiography (3D RA), should be evaluated in terms of radiation dose. 3D RA requires a series with a large number of images in comparison with 2D angiography and it is sometimes considered a high-dose IN procedure. The literature is scarce on the 3D RA radiation dose and in particular there are no data on carotid arteriography (CA). The aim of this study was to investigate patient dose differences between 2D and 3D CA. Methods. The study included 35 patients undergoing 2D CA in hospital 1 and 25 patients undergoing 3D CA in hospital 2. Patient technical data collection included information on the kerma area product (KAP), fluoroscopy time (T), total number of series (S), and total number of acquired images (F). Results. Median KAP was 112 Gy cm{sup 2} and 41 Gy cm{sup 2} for hospitals 1 and 2, respectively, median T was 8.2 min and 5.1 min, median S was 13 and 4, and median F was 247 and 242. Entrance surface air-kerma rate, as measured in 'medium' fluoroscopy mode measured in 2D acquisition using a 20 cm phantom of polymethylmethacrylate, was 17.3 mGy/min for hospital 1 and 9.2 mGy/min for hospital 2. Conclusion. 3D CA allows a substantial reduction in patient radiation dose compared with 2D CA, while providing the necessary diagnostic information.

  10. Three-dimensional structure of brain tissue at submicrometer resolution

    NASA Astrophysics Data System (ADS)

    Saiga, Rino; Mizutani, Ryuta; Inomoto, Chie; Takekoshi, Susumu; Nakamura, Naoya; Tsuboi, Akio; Osawa, Motoki; Arai, Makoto; Oshima, Kenichi; Itokawa, Masanari; Uesugi, Kentaro; Takeuchi, Akihisa; Terada, Yasuko; Suzuki, Yoshio

    2016-01-01

    Biological objects are composed of submicrometer structures such as cells and organelles that are essential for their functions. Here, we report on three-dimensional X-ray visualization of cells and organelles at resolutions up to 100 nm by imaging microtomography (micro-CT) equipped with Fresnel zone plate optics. Human cerebral tissue, fruit fly cephalic ganglia, and Escherichia coli bacteria labeled with high atomic-number elements were embedded in epoxy resin and subjected to X-ray microtomography at the BL37XU and BL47XU beamlines of the SPring-8 synchrotron radiation facility. The obtained results indicated that soft tissue structures can be visualized with the imaging microtomography.

  11. Viscosity of alkaline suspensions of ground black and white pepper samples: An indication or an identification of high dose radiation treatment?

    NASA Astrophysics Data System (ADS)

    Schreiber, G. A.; Leffke, A.; Mager, M.; Helle, N.; Bögl, K. W.

    1994-11-01

    Forty-nine pepper samples were taken from retail food stores of different cities in Germany. Most of the black and all white pepper samples showed high viscosity values after jellification in alkaline solution. After irradiation with a γ-ray dose of 6 kGy, viscosity was largely reduced in each case. Some black pepper samples showed a low viscosity level already before irradiation. However, thermoluminescence analysis did not reveal any sign for irradiation treatment prior to examination. Furthermore, the low viscosity level of these samples could not be correlated with a low starch content. It is concluded that the viscosity levels of irradiated white pepper samples clearly reveal high dose irradiation treatment. In case of black peppers it is judged that the method can be used to screen for irradiated samples since it is fast, easy and cheap. However, a positive result should be confirmed by another technique, e.g. thermoluminescence.

  12. Three-dimensional stereo by photometric ratios

    SciTech Connect

    Wolff, L.B.; Angelopoulou, E.

    1994-11-01

    We present a methodology for corresponding a dense set of points on an object surface from photometric values for three-dimensional stereo computation of depth. The methodology utilizes multiple stereo pairs of images, with each stereo pair being taken of the identical scene but under different illumination. With just two stereo pairs of images taken under two different illumination conditions, a stereo pair of ratio images can be produced, one for the ratio of left-hand images and one for the ratio of right-hand images. We demonstrate how the photometric ratios composing these images can be used for accurate correspondence of object points. Object points having the same photometric ratio with respect to two different illumination conditions constitute a well-defined equivalence class of physical constraints defined by local surface orientation relative to illumination conditions. We formally show that for diffuse reflection the photometric ratio is invariant to varying camera characteristics, surface albedo, and viewpoint and that therefore the same photometric ratio in both images of a stereo pair implies the same equivalence class of physical constraints. The correspondence of photometric ratios along epipolar lines in a stereo pair of images under different illumination conditions is a correspondence of equivalent physical constraints, and the determination of depth from stereo can be performed. Whereas illumination planning is required, our photometric-based stereo methodology does not require knowledge of illumination conditions in the actual computation of three-dimensional depth and is applicable to perspective views. This technique extends the stereo determination of three-dimensional depth to smooth featureless surfaces without the use of precisely calibrated lighting. We demonstrate experimental depth maps from a dense set of points on smooth objects of known ground-truth shape, determined to within 1% depth accuracy.

  13. Three-Dimensional Printing in Orthopedic Surgery.

    PubMed

    Eltorai, Adam E M; Nguyen, Eric; Daniels, Alan H

    2015-11-01

    Three-dimensional (3D) printing is emerging as a clinically promising technology for rapid prototyping of surgically implantable products. With this commercially available technology, computed tomography or magnetic resonance images can be used to create graspable objects from 3D reconstructed images. Models can enhance patients' understanding of their pathology and surgeon preoperative planning. Customized implants and casts can be made to match an individual's anatomy. This review outlines 3D printing, its current applications in orthopedics, and promising future directions. PMID:26558661

  14. Three-dimensional quantitative flow diagnostics

    NASA Technical Reports Server (NTRS)

    Miles, Richard B.; Nosenchuck, Daniel M.

    1989-01-01

    The principles, capabilities, and practical implementation of advanced measurement techniques for the quantitative characterization of three-dimensional flows are reviewed. Consideration is given to particle, Rayleigh, and Raman scattering; fluorescence; flow marking by H2 bubbles, photochromism, photodissociation, and vibrationally excited molecules; light-sheet volume imaging; and stereo imaging. Also discussed are stereo schlieren methods, holographic particle imaging, optical tomography, acoustic and magnetic-resonance imaging, and the display of space-filling data. Extensive diagrams, graphs, photographs, sample images, and tables of numerical data are provided.

  15. Three-dimensional x-ray microtomography

    SciTech Connect

    Flannery, B.P.; Deckman, H.W.; Roberge, W.G.; D'Amico, K.L.

    1987-09-18

    The new technique of x-ray microtomography nondestructively generates three-dimensional maps of the x-ray attenuation coefficient inside small samples with approximately 1 percent accuracy and with resolution approaching 1 micrometer. Spatially resolved elemental maps can be produced with synchrotron x-ray sources by scanning samples at energies just above and below characteristic atomic absorption edges. The system consists of a high-resolution imaging x-ray detector and high-speed algorithms for tomographic image reconstruction. The design and operation of the microtomography device are described, and tomographic images that illustrate it performance with both synchrotron and laboratory x-ray sources are presented.

  16. Three dimensional digital holographic aperture synthesis.

    PubMed

    Crouch, Stephen; Kaylor, Brant M; Barber, Zeb W; Reibel, Randy R

    2015-09-01

    Aperture synthesis techniques are applied to temporally and spatially diverse digital holograms recorded with a fast focal-plane array. Because the technique fully resolves the downrange dimension using wide-bandwidth FMCW linear-chirp waveforms, extremely high resolution three dimensional (3D) images can be obtained even at very long standoff ranges. This allows excellent 3D image formation even when targets have significant structure or discontinuities, which are typically poorly rendered with multi-baseline synthetic aperture ladar or multi-wavelength holographic aperture ladar approaches. The background for the system is described and system performance is demonstrated through both simulation and experiments. PMID:26368474

  17. High resolution three-dimensional doping profiler

    DOEpatents

    Thundat, Thomas G.; Warmack, Robert J.

    1999-01-01

    A semiconductor doping profiler provides a Schottky contact at one surface and an ohmic contact at the other. While the two contacts are coupled to a power source, thereby establishing an electrical bias in the semiconductor, a localized light source illuminates the semiconductor to induce a photocurrent. The photocurrent changes in accordance with the doping characteristics of the semiconductor in the illuminated region. By changing the voltage of the power source the depth of the depletion layer can be varied to provide a three dimensional view of the local properties of the semiconductor.

  18. Three-dimensional instability of elliptical flow

    NASA Astrophysics Data System (ADS)

    Bayly, B. J.

    1986-10-01

    A clarification of the physical and mathematical nature of Pierrhumbert's (1986) three-dimensional short-wave inviscid instability of simple two-dimensional elliptical flow is presented. The instabilities found are independent of length scale, extending Pierrhumbert's conclusion that the structures of the instabilities are independent of length scale in the limit of large wave number. The fundamental modes are exact solutions of the nonlinear equations, and they are plane waves whose wave vector rotates elliptically around the z axis with a period of 2(pi)/Omega. The growth rates are shown to be the exponents of a matrix Floquet problem, and good agreement is found with previous results.

  19. Electrode With Porous Three-Dimensional Support

    DOEpatents

    Bernard, Patrick; Dauchier, Jean-Michel; Simonneau, Olivier

    1999-07-27

    Electrode including a paste containing particles of electrochemically active material and a conductive support consisting of a three-dimensional porous material comprising strands delimiting contiguous pores communicating via passages, characterized in that the average width L in .mu.m of said passages is related to the average diameter .O slashed. in .mu.m of said particles by the following equation, in which W and Y are dimensionless coefficients: wherein W=0.16 Y=1.69 X=202.4 .mu.m and Z=80 .mu.m

  20. Three-dimensional simulations of burning thermals

    NASA Astrophysics Data System (ADS)

    Aspden, Andy; Bell, John; Woosley, Stan

    2010-11-01

    Flame ignition in type Ia supernovae (SNe Ia) leads to isolated bubbles of burning buoyant fluid. As a bubble rises due to gravity, it becomes deformed by shear instabilities and transitions to a turbulent buoyant vortex ring. Morton, Taylor and Turner (1956) introduced the entrainment assumption, which can be applied to inert thermals. In this study, we use the entrainment assumption, suitably modified to account for burning, to predict the late-time asymptotic behaviour of these turbulent buoyant vortex rings in SNe Ia. The theory is validated against three- dimensional simulations with adaptive mesh refinement at effective resolutions up to 4096^3.

  1. Three-dimensional lock and key colloids.

    PubMed

    Wang, Yu; Wang, Yufeng; Zheng, Xiaolong; Yi, Gi-Ra; Sacanna, Stefano; Pine, David J; Weck, Marcus

    2014-05-14

    Colloids with well-defined multicavities are synthesized through the hydrolytic removal of silica cluster templates from organo-silica hybrid patchy particles. The geometry of the cavities stems from the originally assembled cluster templates, displaying well-defined three-dimensional symmetries, ranging from spherical, linear, triangular, tetrahedral, trigonal dipyramidal, octahedral, to pentagonal dipyramidal. The concave surface of the cavities is smooth, and the cavity shallowness and size can be varied. These particles with multicavities can act as "lock" particles with multiple "key holes". Up to n "key" particles can self-assemble into the lock particles via depletion interaction, resulting in multivalent, site-specific, reversible, and flexible bonding. PMID:24785203

  2. Dose reconstruction technique using non-rigid registration to evaluate spatial correspondence between high-dose region and late radiation toxicity: a case of tracheobronchial stenosis after external beam radiotherapy combined with endotracheal brachytherapy for tracheal cancer

    PubMed Central

    Murakami, Naoya; Inaba, Koji; Wakita, Akihisa; Nakamura, Satoshi; Okamoto, Hiroyuki; Sato, Jun; Umezawa, Rei; Takahashi, Kana; Igaki, Hiroshi; Ito, Yoshinori; Shigematsu, Naoyuki; Itami, Jun

    2016-01-01

    Purpose Small organ subvolume irradiated by a high-dose has been emphasized to be associated with late complication after radiotherapy. Here, we demonstrate a potential use of surface-based, non-rigid registration to investigate how high-dose volume topographically correlates with the location of late radiation morbidity in a case of tracheobronchial radiation stenosis. Material and methods An algorithm of point set registration was implemented to handle non-rigid registration between contour points on the organ surfaces. The framework estimated the global correspondence between the dose distribution and the varying anatomical structure. We applied it to an 80-year-old man who developed tracheobronchial stenosis 2 years after high-dose-rate endobronchial brachytherapy (HDR-EBT) (24 Gy in 6 Gy fractions) and external beam radiotherapy (EBRT) (40 Gy in 2 Gy fractions) for early-stage tracheal cancer. Results and conclusions Based on the transformation function computed by the non-rigid registration, irradiated dose distribution was reconstructed on the surface of post-treatment tracheobronchial stenosis. For expressing the equivalent dose in a fractional dose of 2 Gy in HDR-EBT, α/β of linear quadratic model was assumed as 3 Gy for the tracheal bronchus. The tracheobronchial surface irradiated by more than 100 Gyαβ3 tended to develop severe stenosis, which attributed to a more than 50% decrease in the luminal area. The proposed dose reconstruction technique can be a powerful tool to predict late radiation toxicity with spatial consideration. PMID:27257421

  3. Three-dimensional television: a broadcaster's perspective

    NASA Astrophysics Data System (ADS)

    Jolly, S. J. E.; Armstrong, M.; Salmon, R. A.

    2009-02-01

    The recent resurgence of interest in the stereoscopic cinema and the increasing availability to the consumer of stereoscopic televisions and computer displays are leading broadcasters to consider, once again, the feasibility of stereoscopic broadcasting. High Definition Television is now widely deployed, and the R&D departments of broadcasters and consumer electronics manufacturers are starting to plan future enhancements to the experience of television. Improving the perception of depth via stereoscopy is a strong candidate technology. In this paper we will consider the challenges associated with the production, transmission and display of different forms of "three-dimensional" television. We will explore options available to a broadcaster wishing to start a 3D service using the technologies available at the present time, and consider how they could be improved to enable many more television programmes to be recorded and transmitted in a 3D-compatible form, paying particular attention to scenarios such as live broadcasting, where the workflows developed for the stereoscopic cinema are inapplicable. We will also consider the opportunities available for broadcasters to reach audiences with "three-dimensional" content via other media in the near future: for example, distributing content via the existing stereoscopic cinema network, or over the Internet to owners of stereoscopic computer displays.

  4. Three-dimensional image signals: processing methods

    NASA Astrophysics Data System (ADS)

    Schiopu, Paul; Manea, Adrian; Craciun, Anca-Ileana; Craciun, Alexandru

    2010-11-01

    Over the years extensive studies have been carried out to apply coherent optics methods in real-time processing, communications and transmission image. This is especially true when a large amount of information needs to be processed, e.g., in high-resolution imaging. The recent progress in data-processing networks and communication systems has considerably increased the capacity of information exchange. We describe the results of literature investigation research of processing methods for the signals of the three-dimensional images. All commercially available 3D technologies today are based on stereoscopic viewing. 3D technology was once the exclusive domain of skilled computer-graphics developers with high-end machines and software. The images capture from the advanced 3D digital camera can be displayed onto screen of the 3D digital viewer with/ without special glasses. For this is needed considerable processing power and memory to create and render the complex mix of colors, textures, and virtual lighting and perspective necessary to make figures appear three-dimensional. Also, using a standard digital camera and a technique called phase-shift interferometry we can capture "digital holograms." These are holograms that can be stored on computer and transmitted over conventional networks. We present some research methods to process "digital holograms" for the Internet transmission and results.

  5. On three-dimensional dilational elastic metamaterials

    NASA Astrophysics Data System (ADS)

    Bückmann, Tiemo; Schittny, Robert; Thiel, Michael; Kadic, Muamer; Milton, Graeme W.; Wegener, Martin

    2014-03-01

    Dilational materials are stable, three-dimensional isotropic auxetics with an ultimate Poisson's ratio of -1. Inspired by previous theoretical work, we design a feasible blueprint for an artificial material, a metamaterial, which approaches the ideal of a dilational material. The main novelty of our work is that we also fabricate and characterize corresponding metamaterial samples. To reveal all modes in the design, we calculate the phonon band structures. On this basis, using cubic symmetry we can unambiguously retrieve all different non-zero elements of the rank-four effective metamaterial elasticity tensor from which all effective elastic metamaterial properties follow. While the elastic properties and the phase velocity remain anisotropic, the effective Poisson's ratio indeed becomes isotropic and approaches -1 in the limit of small internal connections. This finding is also supported by independent, static continuum-mechanics calculations. In static experiments on macroscopic polymer structures fabricated by three-dimensional printing, we measure Poisson's ratios as low as -0.8 in good agreement with the theory. Microscopic samples are also presented.

  6. Three-dimensional fluorescence lifetime tomography

    SciTech Connect

    Godavarty, Anuradha; Sevick-Muraca, Eva M.; Eppstein, Margaret J.

    2005-04-01

    Near-infrared fluorescence tomography using molecularly targeted lifetime-sensitive, fluorescent contrast agents have applications for early-stage cancer diagnostics. Yet, although the measurement of fluorescent lifetime imaging microscopy (FLIM) is extensively used in microscopy and spectroscopy applications, demonstration of fluorescence lifetime tomography for medical imaging is limited to two-dimensional studies. Herein, the feasibility of three-dimensional fluorescence-lifetime tomography on clinically relevant phantom volumes is established, using (i) a gain-modulated intensified charge coupled device (CCD) and modulated laser diode imaging system, (ii) two fluorescent contrast agents, e.g., Indocyanine green and 3-3'-Diethylthiatricarbocyanine iodide differing in their fluorescence lifetime by 0.62 ns, and (iii) a two stage approximate extended Kalman filter reconstruction algorithm. Fluorescence measurements of phase and amplitude were acquired on the phantom surface under different target to background fluorescence absorption (70:1, 100:1) and fluorescence lifetime (1:1, 2.1:1) contrasts at target depths of 1.4-2 cm. The Bayesian tomography algorithm was employed to obtain three-dimensional images of lifetime and absorption owing to the fluorophores.

  7. Two component-three dimensional catalysis

    DOEpatents

    Schwartz, Michael; White, James H.; Sammells, Anthony F.

    2002-01-01

    This invention relates to catalytic reactor membranes having a gas-impermeable membrane for transport of oxygen anions. The membrane has an oxidation surface and a reduction surface. The membrane is coated on its oxidation surface with an adherent catalyst layer and is optionally coated on its reduction surface with a catalyst that promotes reduction of an oxygen-containing species (e.g., O.sub.2, NO.sub.2, SO.sub.2, etc.) to generate oxygen anions on the membrane. The reactor has an oxidation zone and a reduction zone separated by the membrane. A component of an oxygen containing gas in the reduction zone is reduced at the membrane and a reduced species in a reactant gas in the oxidation zone of the reactor is oxidized. The reactor optionally contains a three-dimensional catalyst in the oxidation zone. The adherent catalyst layer and the three-dimensional catalyst are selected to promote a desired oxidation reaction, particularly a partial oxidation of a hydrocarbon.

  8. Nanowired three-dimensional cardiac patches

    NASA Astrophysics Data System (ADS)

    Dvir, Tal; Timko, Brian P.; Brigham, Mark D.; Naik, Shreesh R.; Karajanagi, Sandeep S.; Levy, Oren; Jin, Hongwei; Parker, Kevin K.; Langer, Robert; Kohane, Daniel S.

    2011-11-01

    Engineered cardiac patches for treating damaged heart tissues after a heart attack are normally produced by seeding heart cells within three-dimensional porous biomaterial scaffolds. These biomaterials, which are usually made of either biological polymers such as alginate or synthetic polymers such as poly(lactic acid) (PLA), help cells organize into functioning tissues, but poor conductivity of these materials limits the ability of the patch to contract strongly as a unit. Here, we show that incorporating gold nanowires within alginate scaffolds can bridge the electrically resistant pore walls of alginate and improve electrical communication between adjacent cardiac cells. Tissues grown on these composite matrices were thicker and better aligned than those grown on pristine alginate and when electrically stimulated, the cells in these tissues contracted synchronously. Furthermore, higher levels of the proteins involved in muscle contraction and electrical coupling are detected in the composite matrices. It is expected that the integration of conducting nanowires within three-dimensional scaffolds may improve the therapeutic value of current cardiac patches.

  9. In-lab three-dimensional printing

    PubMed Central

    Partridge, Roland; Conlisk, Noel; Davies, Jamie A.

    2012-01-01

    The development of the microscope in 1590 by Zacharias Janssenby and Hans Lippershey gave the world a new way of visualizing details of morphogenesis and development. More recent improvements in this technology including confocal microscopy, scanning electron microscopy (SEM) and optical projection tomography (OPT) have enhanced the quality of the resultant image. These technologies also allow a representation to be made of a developing tissue’s three-dimensional (3-D) form. With all these techniques however, the image is delivered on a flat two-dimensional (2-D) screen. 3-D printing represents an exciting potential to reproduce the image not simply on a flat screen, but in a physical, palpable three-dimensional structure. Here we explore the scope that this holds for exploring and interacting with the structure of a developing organ in an entirely novel way. As well as being useful for visualization, 3-D printers are capable of rapidly and cost-effectively producing custom-made structures for use within the laboratory. We here describe the advantages of producing hardware for a tissue culture system using an inexpensive in-lab printer. PMID:22652907

  10. Nanowired three-dimensional cardiac patches.

    PubMed

    Dvir, Tal; Timko, Brian P; Brigham, Mark D; Naik, Shreesh R; Karajanagi, Sandeep S; Levy, Oren; Jin, Hongwei; Parker, Kevin K; Langer, Robert; Kohane, Daniel S

    2011-11-01

    Engineered cardiac patches for treating damaged heart tissues after a heart attack are normally produced by seeding heart cells within three-dimensional porous biomaterial scaffolds. These biomaterials, which are usually made of either biological polymers such as alginate or synthetic polymers such as poly(lactic acid) (PLA), help cells organize into functioning tissues, but poor conductivity of these materials limits the ability of the patch to contract strongly as a unit. Here, we show that incorporating gold nanowires within alginate scaffolds can bridge the electrically resistant pore walls of alginate and improve electrical communication between adjacent cardiac cells. Tissues grown on these composite matrices were thicker and better aligned than those grown on pristine alginate and when electrically stimulated, the cells in these tissues contracted synchronously. Furthermore, higher levels of the proteins involved in muscle contraction and electrical coupling are detected in the composite matrices. It is expected that the integration of conducting nanowires within three-dimensional scaffolds may improve the therapeutic value of current cardiac patches. PMID:21946708

  11. Three-dimensional model of lignin structure

    SciTech Connect

    Jurasek, L.

    1995-12-01

    An attempt to build a three-dimensional model of lignin structure using a computer program is described. The program simulates the biosynthesis of spruce lignin by allowing coniferyl alcohol subunits to be added randomly by six different types of linkages, assumed to be most common. The simulated biosynthesis starts from a number of seed points within restricted space, corresponding to 50 mM initial concentration of coniferyl alcohol. Rules of three-dimensional packing of the subunits within the lignin macro-molecule are observed during the simulated biosynthetic process. Branched oligomeric structures thus generated form crosslinks at those positions where the chains grow close enough to form a link. Inter-chain crosslinking usually joins the oligomers into one macromolecule. Intra-chain crosslinks are also formed and result in closed loops. Typically, a macromolecule with molecular weight of approx. 2 x 105 is formed, with internal density of 1.35g/cm3. Various characteristics of the internal structure, such as branching, crosslinking, bond frequencies, and chain length distribution are described. Breakdown of the polymer was also simulated and the effect of closed loops on the weight average molecular weight is shown. The effect of the shape of the biosynthetic space on the degree of crosslinking is discussed and predictions of the overall molecular shape of lignin particles are made.

  12. Three-dimensional flow in Kupffer's Vesicle.

    PubMed

    Montenegro-Johnson, T D; Baker, D I; Smith, D J; Lopes, S S

    2016-09-01

    Whilst many vertebrates appear externally left-right symmetric, the arrangement of internal organs is asymmetric. In zebrafish, the breaking of left-right symmetry is organised by Kupffer's Vesicle (KV): an approximately spherical, fluid-filled structure that begins to form in the embryo 10 hours post fertilisation. A crucial component of zebrafish symmetry breaking is the establishment of a cilia-driven fluid flow within KV. However, it is still unclear (a) how dorsal, ventral and equatorial cilia contribute to the global vortical flow, and (b) if this flow breaks left-right symmetry through mechanical transduction or morphogen transport. Fully answering these questions requires knowledge of the three-dimensional flow patterns within KV, which have not been quantified in previous work. In this study, we calculate and analyse the three-dimensional flow in KV. We consider flow from both individual and groups of cilia, and (a) find anticlockwise flow can arise purely from excess of cilia on the dorsal roof over the ventral floor, showing how this vortical flow is stabilised by dorsal tilt of equatorial cilia, and (b) show that anterior clustering of dorsal cilia leads to around 40 % faster flow in the anterior over the posterior corner. We argue that these flow features are supportive of symmetry breaking through mechano-sensory cilia, and suggest a novel experiment to test this hypothesis. From our new understanding of the flow, we propose a further experiment to reverse the flow within KV to potentially induce situs inversus. PMID:26825450

  13. Three-dimensional turbopump flowfield analysis

    NASA Technical Reports Server (NTRS)

    Sharma, O. P.; Belford, K. A.; Ni, R. H.

    1992-01-01

    A program was conducted to develop a flow prediction method applicable to rocket turbopumps. The complex nature of a flowfield in turbopumps is described and examples of flowfields are discussed to illustrate that physics based models and analytical calculation procedures based on computational fluid dynamics (CFD) are needed to develop reliable design procedures for turbopumps. A CFD code developed at NASA ARC was used as the base code. The turbulence model and boundary conditions in the base code were modified, respectively, to: (1) compute transitional flows and account for extra rates of strain, e.g., rotation; and (2) compute surface heat transfer coefficients and allow computation through multistage turbomachines. Benchmark quality data from two and three-dimensional cascades were used to verify the code. The predictive capabilities of the present CFD code were demonstrated by computing the flow through a radial impeller and a multistage axial flow turbine. Results of the program indicate that the present code operated in a two-dimensional mode is a cost effective alternative to full three-dimensional calculations, and that it permits realistic predictions of unsteady loadings and losses for multistage machines.

  14. Three-dimensional singular points in aerodynamics

    NASA Technical Reports Server (NTRS)

    Unal, Aynur

    1988-01-01

    When three-dimensional separation occurs on a body immersed in a flow governed by the incompressible Navier-Stokes equations, the geometrical surfaces formed by the three vector fields (velocity, vorticity and the skin-friction) and a scalar field (pressure) become interrelated through topological maps containing their respective singular points and extremal points. A mathematically consistent description of these singular points becomes inevitable when we want to study the geometry of the separation. A separated stream surface requires, for example, the existence of a saddle-type singular point on the skin-friction surface. This singular point is actually, in the proper language of mathematics, a saddle of index two. The index is a measure of the dimension of the outset (set leaving the singular point). Hence, when a saddle of index two is specified, a two dimensional surface that becomes separated from the osculating plane of the saddle is implied. The three-dimensional singular point is interpreted mathematically and the most common aerodynamical singular points are discussed through this perspective.

  15. Intersection of three-dimensional geometric surfaces

    NASA Technical Reports Server (NTRS)

    Crisp, V. K.; Rehder, J. J.; Schwing, J. L.

    1985-01-01

    Calculating the line of intersection between two three-dimensional objects and using the information to generate a third object is a key element in a geometry development system. Techniques are presented for the generation of three-dimensional objects, the calculation of a line of intersection between two objects, and the construction of a resultant third object. The objects are closed surfaces consisting of adjacent bicubic parametric patches using Bezier basis functions. The intersection determination involves subdividing the patches that make up the objects until they are approximately planar and then calculating the intersection between planes. The resulting straight-line segments are connected to form the curve of intersection. The polygons in the neighborhood of the intersection are reconstructed and put back into the Bezier representation. A third object can be generated using various combinations of the original two. Several examples are presented. Special cases and problems were encountered, and the method for handling them is discussed. The special cases and problems included intersection of patch edges, gaps between adjacent patches because of unequal subdivision, holes, or islands within patches, and computer round-off error.

  16. Three-dimensional head anthropometric analysis

    NASA Astrophysics Data System (ADS)

    Enciso, Reyes; Shaw, Alex M.; Neumann, Ulrich; Mah, James

    2003-05-01

    Currently, two-dimensional photographs are most commonly used to facilitate visualization, assessment and treatment of facial abnormalities in craniofacial care but are subject to errors because of perspective, projection, lack metric and 3-dimensional information. One can find in the literature a variety of methods to generate 3-dimensional facial images such as laser scans, stereo-photogrammetry, infrared imaging and even CT however each of these methods contain inherent limitations and as such no systems are in common clinical use. In this paper we will focus on development of indirect 3-dimensional landmark location and measurement of facial soft-tissue with light-based techniques. In this paper we will statistically evaluate and validate a current three-dimensional image-based face modeling technique using a plaster head model. We will also develop computer graphics tools for indirect anthropometric measurements in a three-dimensional head model (or polygonal mesh) including linear distances currently used in anthropometry. The measurements will be tested against a validated 3-dimensional digitizer (MicroScribe 3DX).

  17. Adjuvant Chemoradiation for Gastric Cancer Using Epirubicin, Cisplatin, and 5-Fluorouracil Before and After Three-Dimensional Conformal Radiotherapy With Concurrent Infusional 5-Fluorouracil: A Multicenter Study of the Trans-Tasman Radiation Oncology Group

    SciTech Connect

    Leong, Trevor; Joon, Daryl Lim; Willis, David; Jayamoham, Jayasingham; Spry, Nigel; Harvey, Jennifer; Di Iulio, Juliana; Milner, Alvin; Mann, G. Bruce; Michael, Michael

    2011-03-01

    Purpose: The INT0116 study has established postoperative chemoradiotherapy as the standard of care for completely resected gastric adenocarcinoma. However, the optimal chemoradiation regimen remains to be defined. We conducted a prospective, multicenter study to evaluate an alternative chemoradiation regimen that combines more current systemic treatment with modern techniques of radiotherapy delivery. Methods and Materials: Patients with adenocarcinoma of the stomach who had undergone an R0 resection were eligible. Adjuvant therapy consisted of one cycle of epirubicin, cisplatin, and 5-FU (ECF), followed by radiotherapy with concurrent infusional 5-FU, and then two additional cycles of ECF. Radiotherapy was delivered using precisely defined, multiple-field, three-dimensional conformal techniques. Results: A total of 54 assessable patients were enrolled from 19 institutions. The proportion of patients commencing Cycles 1, 2, and 3 of ECF chemotherapy were 100%, 81%, and 67% respectively. In all, 94% of patients who received radiotherapy completed treatment as planned. Grade 3/4 neutropenia occurred in 66% of patients with 7.4% developing febrile neutropenia. Most neutropenic episodes (83%) occurred in the post-radiotherapy period during cycles 2 and 3 of ECF. Grade 3/4 gastrointestinal toxicity occurred in 28% of patients. In all, 35% of radiotherapy treatment plans contained protocol deviations that were satisfactorily amended before commencement of treatment. At median follow-up of 36 months, the 3-year overall survival rate was estimated at 61.6%. Conclusions: This adjuvant regimen using ECF before and after three-dimensional conformal chemoradiation is feasible and can be safely delivered in a cooperative group setting. A regimen similar to this is currently being compared with the INT0116 regimen in a National Cancer Institute-sponsored, randomized Phase III trial.

  18. Determination of the tissue inhomogeneity correction in high dose rate Brachytherapy for Iridium-192 source

    PubMed Central

    Ravikumar, Barlanka; Lakshminarayana, S.

    2012-01-01

    In Brachytherapy treatment planning, the effects of tissue heterogeneities are commonly neglected due to lack of accurate, general and fast three-dimensional (3D) dose-computational algorithms. In performing dose calculations, it is assumed that the tumor and surrounding tissues constitute a uniform, homogeneous medium equivalent to water. In the recent past, three-dimensional computed tomography (3D-CT) based treatment planning for Brachytherapy applications has been popularly adopted. However, most of the current commercially available planning systems do not provide the heterogeneity corrections for Brachytherapy dosimetry. In the present study, we have measured and quantified the impact of inhomogeneity caused by different tissues with a 0.015 cc ion chamber. Measurements were carried out in wax phantom which was employed to measure the heterogeneity. Iridium-192 (192Ir) source from high dose rate (HDR) Brachytherapy machine was used as the radiation source. The reduction of dose due to tissue inhomogeneity was measured as the ratio of dose measured with different types of inhomogeneity (bone, spleen, liver, muscle and lung) to dose measured with homogeneous medium for different distances. It was observed that different tissues attenuate differently, with bone tissue showing maximum attenuation value and lung tissue resulting minimum value and rest of the tissues giving values lying in between those of bone and lung. It was also found that inhomogeneity at short distance is considerably more than that at larger distances. PMID:22363109

  19. Comparative Analysis of Whole-Genome Gene Expression Changes in Cultured Human Embryonic Stem Cells in Response to Low, Clinical Diagnostic Relevant, and High Doses of Ionizing Radiation Exposure.

    PubMed

    Sokolov, Mykyta; Nguyen, Van; Neumann, Ronald

    2015-01-01

    The biological effects of low-dose ionizing radiation (LDIR) exposure in humans are not comprehensively understood, generating a high degree of controversy in published literature. The earliest stages of human development are known to be among the most sensitive to stress exposures, especially genotoxic stresses. However, the risks stemming from exposure to LDIR, particularly within the clinical diagnostic relevant dose range, have not been directly evaluated in human embryonic stem cells (hESCs). Here, we describe the dynamics of the whole genome transcriptional responses of different hESC lines to both LDIR and, as a reference, high-dose IR (HDIR). We found that even doses as low as 0.05 Gy could trigger statistically significant transient changes in a rather limited subset of genes in all hESCs lines examined. Gene expression signatures of hESCs exposed to IR appear to be highly dose-, time-, and cell line-dependent. We identified 50 genes constituting consensus gene expression signature as an early response to HDIR across all lines of hESC examined. We observed substantial differences in biological pathways affected by either LDIR or HDIR in hESCs, suggesting that the molecular mechanisms underpinning the responses of hESC may fundamentally differ depending on radiation doses. PMID:26133243

  20. Three dimensional echocardiography in congenital heart defects

    PubMed Central

    Shirali, Girish S.

    2008-01-01

    Three dimensional echocardiography (3DE) is a new, rapidly evolving modality for cardiac imaging. Important technological advances have heralded an era where practical 3DE scanning is becoming a mainstream modality. We review the modes of 3DE that can be used. The literature has been reviewed for articles that examine the applicability of 3DE to congenital heart defects to visualize anatomy in a spectrum of defects ranging from atrioventricular septal defects to mitral valve abnormalities and Ebstein's anomaly. The use of 3DE color flow to obtain echocardiographic angiograms is illustrated. The state of the science in quantitating right and left ventricular volumetrics is reviewed. Examples of novel applications including 3DE transesophageal echocardiography and image-guided interventions are provided. We also list the limitations of the technique, and discuss potential future developments in the field. PMID:20300232

  1. Three-dimensional modular electronic interconnection system

    NASA Technical Reports Server (NTRS)

    Bolotin, Gary S. (Inventor); Cardone, John (Inventor)

    2001-01-01

    A three-dimensional connection system uses a plurality of printed wiring boards with connectors completely around the printed wiring boards, and connected by an elastomeric interface connector. The device includes internal space to allow room for circuitry. The device is formed by stacking an electronics module, an elastomeric interface board on the electronics module such that the interface board's exterior makes electrical connection with the connectors around the perimeter of the interface board, but the internal portion is open to allow room for the electrical devices on the printed wiring board. A plurality of these devices are stacked between a top stiffener and a bottom device, and held into place by alignment elements.

  2. Modelling of Three-Dimensional Nanographene.

    PubMed

    Mathioudakis, Christos; Kelires, Pantelis C

    2016-12-01

    Monte Carlo simulations and tight-binding calculations shed light on the properties of three-dimensional nanographene, a material composed of interlinked, covalently-bonded nanoplatelet graphene units. By constructing realistic model networks of nanographene, we study its structure, mechanical stability, and optoelectronic properties. We find that the material is nanoporous with high specific surface area, in agreement with experimental reports. Its structure is characterized by randomly oriented and curved nanoplatelet units which retain a high degree of graphene order. The material exhibits good mechanical stability with a formation energy of only ∼0.3 eV/atom compared to two-dimensional graphene. It has high electrical conductivity and optical absorption, with values approaching those of graphene. PMID:26983431

  3. THE THREE DIMENSIONAL THERMAL HYDRAULIC CODE BAGIRA.

    SciTech Connect

    KALINICHENKO,S.D.; KOHUT,P.; KROSHILIN,A.E.; KROSHILIN,V.E.; SMIRNOV,A.V.

    2003-05-04

    BAGIRA - a thermal-hydraulic program complex was primarily developed for using it in nuclear power plant simulator models, but is also used as a best-estimate analytical tool for modeling two-phase mixture flows. The code models allow consideration of phase transients and the treatment of the hydrodynamic behavior of boiling and pressurized water reactor circuits. It provides the capability to explicitly model three-dimensional flow regimes in various regions of the primary and secondary circuits such as, the mixing regions, circular downcomer, pressurizer, reactor core, main primary loops, the steam generators, the separator-reheaters. In addition, it is coupled to a severe-accident module allowing the analysis of core degradation and fuel damage behavior. Section II will present the theoretical basis for development and selected results are presented in Section III. The primary use for the code complex is to realistically model reactor core behavior in power plant simulators providing enhanced training tools for plant operators.

  4. Three-Dimensional Reflectance Traction Microscopy

    PubMed Central

    Jones, Christopher A. R.; Groves, Nicholas Scott; Sun, Bo

    2016-01-01

    Cells in three-dimensional (3D) environments exhibit very different biochemical and biophysical phenotypes compared to the behavior of cells in two-dimensional (2D) environments. As an important biomechanical measurement, 2D traction force microscopy can not be directly extended into 3D cases. In order to quantitatively characterize the contraction field, we have developed 3D reflectance traction microscopy which combines confocal reflection imaging and partial volume correlation postprocessing. We have measured the deformation field of collagen gel under controlled mechanical stress. We have also characterized the deformation field generated by invasive breast cancer cells of different morphologies in 3D collagen matrix. In contrast to employ dispersed tracing particles or fluorescently-tagged matrix proteins, our methods provide a label-free, computationally effective strategy to study the cell mechanics in native 3D extracellular matrix. PMID:27304456

  5. Three-dimensional tori and Arnold tongues

    NASA Astrophysics Data System (ADS)

    Sekikawa, Munehisa; Inaba, Naohiko; Kamiyama, Kyohei; Aihara, Kazuyuki

    2014-03-01

    This study analyzes an Arnold resonance web, which includes complicated quasi-periodic bifurcations, by conducting a Lyapunov analysis for a coupled delayed logistic map. The map can exhibit a two-dimensional invariant torus (IT), which corresponds to a three-dimensional torus in vector fields. Numerous one-dimensional invariant closed curves (ICCs), which correspond to two-dimensional tori in vector fields, exist in a very complicated but reasonable manner inside an IT-generating region. Periodic solutions emerge at the intersections of two different thin ICC-generating regions, which we call ICC-Arnold tongues, because all three independent-frequency components of the IT become rational at the intersections. Additionally, we observe a significant bifurcation structure where conventional Arnold tongues transit to ICC-Arnold tongues through a Neimark-Sacker bifurcation in the neighborhood of a quasi-periodic Hopf bifurcation (or a quasi-periodic Neimark-Sacker bifurcation) boundary.

  6. Three-dimensional structures of magnesium nanopores

    NASA Astrophysics Data System (ADS)

    Wu, Shujing; Zheng, He; Jia, Shuangfeng; Sheng, Huaping; Cao, Fan; Li, Lei; Hu, Shuaishuai; Zhao, Penghui; Zhao, Dongshan; Wang, Jianbo

    2016-03-01

    The optimization of nanopore-based devices is closely related to the nanopore three-dimensional (3D) structures. In this paper, faceted nanopores were fabricated in magnesium (Mg) by aligning the electron beam (e-beam) along the [0001] direction. Detailed structural characterization by transmission electron microscopy reveals the existence of two 3D structures: hexagonal prism-shaped and hourglass-shaped 3D morphologies. Moreover, the 3D structures of nanopores are also found to depend on the widest nanopore diameter-to-thickness ratio (D/t). A plausible formation mechanism for different 3D structures is discussed. Our results incorporate a critical piece of information regarding the nanopore 3D structures in Mg and may serve as an important design guidance for the size- and shape-controllable fabrication of solid-state nanopores applying the e-beam sculpting technique.

  7. Three-dimensional pancreas organogenesis models.

    PubMed

    Grapin-Botton, A

    2016-09-01

    A rediscovery of three-dimensional culture has led to the development of organ biogenesis, homeostasis and disease models applicable to human tissues. The so-called organoids that have recently flourished serve as valuable models bridging between cell lines or primary cells grown on the bottom of culture plates and experiments performed in vivo. Though not recapitulating all aspects of organ physiology, the miniature organs generated in a dish are useful models emerging for the pancreas, starting from embryonic progenitors, adult cells, tumour cells and stem cells. This review focusses on the currently available systems and their relevance to the study of the pancreas, of β-cells and of several pancreatic diseases including diabetes. We discuss the expected future developments for studying human pancreas development and function, for developing diabetes models and for producing therapeutic cells. PMID:27615129

  8. Heterogeneous, three-dimensional texturing of graphene.

    PubMed

    Wang, Michael Cai; Chun, SungGyu; Han, Ryan Steven; Ashraf, Ali; Kang, Pilgyu; Nam, SungWoo

    2015-03-11

    We report a single-step strategy to achieve heterogeneous, three-dimensional (3D) texturing of graphene and graphite by using a thermally activated shape-memory polymer substrate. Uniform arrays of graphene crumples can be created on the centimeter scale by controlling simple thermal processing parameters without compromising the electrical properties of graphene. In addition, we show the capability to selectively pattern crumples from otherwise flat graphene and graphene/graphite in a localized manner, which has not been previously achievable using other methods. Finally, we demonstrate 3D crumpled graphene field-effect transistor arrays in a solution-gated configuration. The presented approach has the capability to conform onto arbitrary 3D surfaces, a necessary prerequisite for adaptive electronics, and will enable facile large-scale topography engineering of not only graphene but also other thin-film and 2D materials in the future. PMID:25667959

  9. Scaffolding for Three-Dimensional Embryonic Vasculogenesis

    NASA Astrophysics Data System (ADS)

    Kraehenbuehl, Thomas P.; Aday, Sezin; Ferreira, Lino S.

    Biomaterial scaffolds have great potential to support efficient vascular differentiation of embryonic stem cells. Vascular cell fate-specific biochemical and biophysical cues have been identified and incorporated into three-dimensional (3D) biomaterials to efficiently direct embryonic vasculogenesis. The resulting vascular-like tissue can be used for regenerative medicine applications, further elucidation of biophysical and biochemical cues governing vasculogenesis, and drug discovery. In this chapter, we give an overview on the following: (1) developmental cues for directed differentiation of human embryonic stem cells (hESCs) into vascular cells, (2) 3D vascular differentiation in embryoid bodies (EBs), (3) preparation of 3D scaffolds for the vascular differentiation of hESCs, and (4) the most significant studies combining scaffolding and hESCs for development of vascular-like tissue.

  10. Multiscale modeling of three-dimensional genome

    NASA Astrophysics Data System (ADS)

    Zhang, Bin; Wolynes, Peter

    The genome, the blueprint of life, contains nearly all the information needed to build and maintain an entire organism. A comprehensive understanding of the genome is of paramount interest to human health and will advance progress in many areas, including life sciences, medicine, and biotechnology. The overarching goal of my research is to understand the structure-dynamics-function relationships of the human genome. In this talk, I will be presenting our efforts in moving towards that goal, with a particular emphasis on studying the three-dimensional organization, the structure of the genome with multi-scale approaches. Specifically, I will discuss the reconstruction of genome structures at both interphase and metaphase by making use of data from chromosome conformation capture experiments. Computationally modeling of chromatin fiber at atomistic level from first principles will also be presented as our effort for studying the genome structure from bottom up.

  11. Three-dimensional joint transform correlator cryptosystem.

    PubMed

    Zea, Alejandro Velez; Barrera Ramirez, John Fredy; Torroba, Roberto

    2016-02-01

    We introduce for the first time, to the best of our knowledge, a three-dimensional experimental joint transform correlator (JTC) cryptosystem allowing the encryption of information for any 3D object, and as an additional novel feature, a second 3D object plays the role of the encoding key. While the JTC architecture is normally used to process 2D data, in this work, we envisage a technique that allows the use of this architecture to protect 3D data. The encrypted object information is contained in the joint power spectrum. We register the key object as a digital off-axis Fourier hologram. The encryption procedure is done optically, while the decryption is carried out by means of a virtual optical system, allowing for flexible implementation of the proposal. We present experimental results to demonstrate the validity and feasibility of the method. PMID:26907433

  12. The Three-Dimensional EIT Wave

    NASA Technical Reports Server (NTRS)

    Thompson, B. J.; Biesecker, D. A.; Gilbert, H. R.; Lawrence, G. R.; Ofman, L.; Wu, S. T.; Warmuth, A.; Fisher, Richard R. (Technical Monitor)

    2002-01-01

    An EIT wave is an impulsive disturbance which has been observed in the EUV, Soft X-ray and white light corona, with corresponding observations in the chromosphere. The effects of these disturbances can be observed across the entire solar disk of the Sun, and throughout the inner heliosphere as well. However, the picture is not complete; observations alone do not establish a complete understanding of the nature of this three-dimensional phenomenon. A number of associated phenomena have been documented, though in most cases causality has not determined. Additionally, it is unclear which factors govern the impulse's ability to affect regions of the corona and heliosphere. We discuss the various observations and the models which provided links between the associated phenomena.

  13. Three dimensional fabric evolution of sheared sand

    SciTech Connect

    Hasan, Alsidqi; Alshibli, Khalid

    2012-10-24

    Granular particles undergo translation and rolling when they are sheared. This paper presents a three-dimensional (3D) experimental assessment of fabric evolution of sheared sand at the particle level. F-75 Ottawa sand specimen was tested under an axisymmetric triaxial loading condition. It measured 9.5 mm in diameter and 20 mm in height. The quantitative evaluation was conducted by analyzing 3D high-resolution x-ray synchrotron micro-tomography images of the specimen at eight axial strain levels. The analyses included visualization of particle translation and rotation, and quantification of fabric orientation as shearing continued. Representative individual particles were successfully tracked and visualized to assess the mode of interaction between them. This paper discusses fabric evolution and compares the evolution of particles within and outside the shear band as shearing continues. Changes in particle orientation distributions are presented using fabric histograms and fabric tensor.

  14. Surface fitting three-dimensional bodies

    NASA Technical Reports Server (NTRS)

    Dejarnette, F. R.; Ford, C. P., III

    1975-01-01

    The geometry of general three-dimensional bodies was generated from coordinates of points in several cross sections. Since these points may not be on smooth curves, they are divided into groups forming segments and general conic sections are curve fit in a least-squares sense to each segment of a cross section. The conic sections are then blended in the longitudinal direction through longitudinal curves. Both the cross-sectional and longitudinal curves may be modified by specifying particular segments as straight lines or specifying slopes at selected points. This method was used to surface fit a 70 deg slab delta wing and the HL-10 Lifting Body. The results for the delta wing were very close to the exact geometry. Although there is no exact solution for the lifting body, the surface fit generated a smooth surface with cross-sectional planes very close to prescribed coordinate points.

  15. Three-dimensional hybrid vortex solitons

    NASA Astrophysics Data System (ADS)

    Driben, Rodislav; Kartashov, Yaroslav V.; Malomed, Boris A.; Meier, Torsten; Torner, Lluis

    2014-06-01

    We show, by means of numerical and analytical methods, that media with a repulsive nonlinearity which grows from the center to the periphery support a remarkable variety of previously unknown complex stationary and dynamical three-dimensional (3D) solitary-wave states. Peanut-shaped modulation profiles give rise to vertically symmetric and antisymmetric vortex states, and novel stationary hybrid states, built of top and bottom vortices with opposite topological charges, as well as robust dynamical hybrids, which feature stable precession of a vortex on top of a zero-vorticity soliton. The analysis reveals stability regions for symmetric, antisymmetric, and hybrid states. In addition, bead-shaped modulation profiles give rise to the first example of exact analytical solutions for stable 3D vortex solitons. The predicted states may be realized in media with a controllable cubic nonlinearity, such as Bose-Einstein condensates.

  16. Three-dimensional hologram display system

    NASA Technical Reports Server (NTRS)

    Mintz, Frederick (Inventor); Chao, Tien-Hsin (Inventor); Bryant, Nevin (Inventor); Tsou, Peter (Inventor)

    2009-01-01

    The present invention relates to a three-dimensional (3D) hologram display system. The 3D hologram display system includes a projector device for projecting an image upon a display medium to form a 3D hologram. The 3D hologram is formed such that a viewer can view the holographic image from multiple angles up to 360 degrees. Multiple display media are described, namely a spinning diffusive screen, a circular diffuser screen, and an aerogel. The spinning diffusive screen utilizes spatial light modulators to control the image such that the 3D image is displayed on the rotating screen in a time-multiplexing manner. The circular diffuser screen includes multiple, simultaneously-operated projectors to project the image onto the circular diffuser screen from a plurality of locations, thereby forming the 3D image. The aerogel can use the projection device described as applicable to either the spinning diffusive screen or the circular diffuser screen.

  17. Three-dimensional tori and Arnold tongues

    SciTech Connect

    Sekikawa, Munehisa; Inaba, Naohiko; Kamiyama, Kyohei; Aihara, Kazuyuki

    2014-03-15

    This study analyzes an Arnold resonance web, which includes complicated quasi-periodic bifurcations, by conducting a Lyapunov analysis for a coupled delayed logistic map. The map can exhibit a two-dimensional invariant torus (IT), which corresponds to a three-dimensional torus in vector fields. Numerous one-dimensional invariant closed curves (ICCs), which correspond to two-dimensional tori in vector fields, exist in a very complicated but reasonable manner inside an IT-generating region. Periodic solutions emerge at the intersections of two different thin ICC-generating regions, which we call ICC-Arnold tongues, because all three independent-frequency components of the IT become rational at the intersections. Additionally, we observe a significant bifurcation structure where conventional Arnold tongues transit to ICC-Arnold tongues through a Neimark-Sacker bifurcation in the neighborhood of a quasi-periodic Hopf bifurcation (or a quasi-periodic Neimark-Sacker bifurcation) boundary.

  18. Towards microscale electrohydrodynamic three-dimensional printing

    NASA Astrophysics Data System (ADS)

    He, Jiankang; Xu, Fangyuan; Cao, Yi; Liu, Yaxiong; Li, Dichen

    2016-02-01

    It is challenging for the existing three-dimensional (3D) printing techniques to fabricate high-resolution 3D microstructures with low costs and high efficiency. In this work we present a solvent-based electrohydrodynamic 3D printing technique that allows fabrication of microscale structures like single walls, crossed walls, lattice and concentric circles. Process parameters were optimized to deposit tiny 3D patterns with a wall width smaller than 10 μm and a high aspect ratio of about 60. Tight bonding among neighbour layers could be achieved with a smooth lateral surface. In comparison with the existing microscale 3D printing techniques, the presented method is low-cost, highly efficient and applicable to multiple polymers. It is envisioned that this simple microscale 3D printing strategy might provide an alternative and innovative way for application in MEMS, biosensor and flexible electronics.

  19. Three-dimensional cultured glioma cell lines

    NASA Technical Reports Server (NTRS)

    Gonda, Steve R. (Inventor); Marley, Garry M. (Inventor)

    1991-01-01

    Three-dimensional glioma spheroids were produced in vitro with size and histological differentiation previously unattained. The spheroids were grown in liquid media suspension in a Johnson Space Center (JSC) Rotating Wall Bioreactor without using support matrices such as microcarrier beads. Spheroid volumes of greater than 3.5 cu mm and diameters of 2.5 mm were achieved with a viable external layer or rim of proliferating cells, a transitional layer beneath the external layer with histological differentiation, and a degenerative central region with a hypoxic necrotic core. Cell debris was evident in the degenerative central region. The necrotics centers of some of the spheroids had hyaline droplets. Granular bodies were detected predominantly in the necrotic center.

  20. Numerical simulation of three dimensional transonic flows

    NASA Technical Reports Server (NTRS)

    Sahu, Jubaraj; Steger, Joseph L.

    1987-01-01

    The three-dimensional flow over a projectile has been computed using an implicit, approximately factored, partially flux-split algorithm. A simple composite grid scheme has been developed in which a single grid is partitioned into a series of smaller grids for applications which require an external large memory device such as the SSD of the CRAY X-MP/48, or multitasking. The accuracy and stability of the composite grid scheme has been tested by numerically simulating the flow over an ellipsoid at angle of attack and comparing the solution with a single grid solution. The flowfield over a projectile at M = 0.96 and 4 deg angle-of-attack has been computed using a fine grid, and compared with experiment.

  1. Three-Dimensional Gear Crack Propagation Studies

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.; Sane, Ashok D.; Drago, Raymond J.; Wawrzynek, Paul A.

    1998-01-01

    Three-dimensional crack growth simulation was performed on a split-tooth gear design using boundary element modeling and linear elastic fracture mechanics. Initial cracks in the fillet of the teeth produced stress intensity factors of greater magnitude (and thus, greater crack growth rates) than those in the root or groove areas of the teeth. Crack growth simulation was performed on a case study to evaluate crack propagation paths. Tooth fracture was predicted from the crack growth simulation for an initial crack in the tooth fillet region. Tooth loads on the uncracked mesh of the split-tooth design were up to five times greater than those on the cracked mesh if equal deflections of the cracked and uncracked teeth were considered. Predicted crack shapes as well as crack propagation life are presented based on calculated stress intensity factors, mixed-mode crack propagation trajectory theories, and fatigue crack growth theories.

  2. Three-dimensional printing physiology laboratory technology.

    PubMed

    Sulkin, Matthew S; Widder, Emily; Shao, Connie; Holzem, Katherine M; Gloschat, Christopher; Gutbrod, Sarah R; Efimov, Igor R

    2013-12-01

    Since its inception in 19th-century Germany, the physiology laboratory has been a complex and expensive research enterprise involving experts in various fields of science and engineering. Physiology research has been critically dependent on cutting-edge technological support of mechanical, electrical, optical, and more recently computer engineers. Evolution of modern experimental equipment is constrained by lack of direct communication between the physiological community and industry producing this equipment. Fortunately, recent advances in open source technologies, including three-dimensional printing, open source hardware and software, present an exciting opportunity to bring the design and development of research instrumentation to the end user, i.e., life scientists. Here we provide an overview on how to develop customized, cost-effective experimental equipment for physiology laboratories. PMID:24043254

  3. Three dimensional thrust chamber life prediction

    NASA Technical Reports Server (NTRS)

    Armstrong, W. H.; Brogren, E. W.

    1976-01-01

    A study was performed to analytically determine the cyclic thermomechanical behavior and fatigue life of three configurations of a Plug Nozzle Thrust Chamber. This thrust chamber is a test model which represents the current trend in nozzle design calling for high performance coupled with weight and volume limitations as well as extended life for reusability. The study involved the use of different materials and material combinations to evaluate their application to the problem of low-cycle fatigue in the thrust chamber. The thermal and structural analyses were carried out on a three-dimensional basis. Results are presented which show plots of continuous temperature histories and temperature distributions at selected times during the operating cycle of the thrust chamber. Computed structural data show critical regions for low-cycle fatigue and the histories of strain within the regions for each operation cycle.

  4. Magneto Transport in Three Dimensional Carbon Nanostructures

    NASA Astrophysics Data System (ADS)

    Datta, Timir; Wang, Lei; Jaroszynski, Jan; Yin, Ming; Alameri, Dheyaa

    Electrical properties of self-assembled three dimensional nanostructures are interesting topic. Here we report temperature dependence of magneto transport in such carbon nanostructures with periodic spherical voids. Specimens with different void diameters in the temperature range from 200 mK to 20 K were studied. Above 2 K, magnetoresistance, MR = [R(B) - R(0)] / R(0), crosses over from quadratic to a linear dependence with the increase of magnetic field [Wang et al., APL 2015; DOI:10.1063/1.4926606]. We observe MR to be non-saturating even up to 18 Tesla. Furthermore, MR demonstrates universality because all experimental data can be collapsed on to a single curve, as a universal function of B/T. Below 2 K, magnetoresistance saturates with increasing field. Quantum Hall like steps are also observed in this low temperature regime. Remarkably, MR of our sample displays orientation independence, an attractive feature for technological applications.

  5. Combined low initial DNA damage and high radiation-induced apoptosis confers clinical resistance to long-term toxicity in breast cancer patients treated with high-dose radiotherapy

    PubMed Central

    2011-01-01

    Background Either higher levels of initial DNA damage or lower levels of radiation-induced apoptosis in peripheral blood lymphocytes have been associated to increased risk for develop late radiation-induced toxicity. It has been recently published that these two predictive tests are inversely related. The aim of the present study was to investigate the combined role of both tests in relation to clinical radiation-induced toxicity in a set of breast cancer patients treated with high dose hyperfractionated radical radiotherapy. Methods Peripheral blood lymphocytes were taken from 26 consecutive patients with locally advanced breast carcinoma treated with high-dose hyperfractioned radical radiotherapy. Acute and late cutaneous and subcutaneous toxicity was evaluated using the Radiation Therapy Oncology Group morbidity scoring schema. The mean follow-up of survivors (n = 13) was 197.23 months. Radiosensitivity of lymphocytes was quantified as the initial number of DNA double-strand breaks induced per Gy and per DNA unit (200 Mbp). Radiation-induced apoptosis (RIA) at 1, 2 and 8 Gy was measured by flow cytometry using annexin V/propidium iodide. Results Mean DSB/Gy/DNA unit obtained was 1.70 ± 0.83 (range 0.63-4.08; median, 1.46). Radiation-induced apoptosis increased with radiation dose (median 12.36, 17.79 and 24.83 for 1, 2, and 8 Gy respectively). We observed that those "expected resistant patients" (DSB values lower than 1.78 DSB/Gy per 200 Mbp and RIA values over 9.58, 14.40 or 24.83 for 1, 2 and 8 Gy respectively) were at low risk of suffer severe subcutaneous late toxicity (HR 0.223, 95%CI 0.073-0.678, P = 0.008; HR 0.206, 95%CI 0.063-0.677, P = 0.009; HR 0.239, 95%CI 0.062-0.929, P = 0.039, for RIA at 1, 2 and 8 Gy respectively) in multivariate analysis. Conclusions A radiation-resistant profile is proposed, where those patients who presented lower levels of initial DNA damage and higher levels of radiation induced apoptosis were at low risk of suffer severe

  6. Three-dimensional image contrast using biospeckle

    NASA Astrophysics Data System (ADS)

    Godinho, Robson Pierangeli; Braga, Roberto A., Jr.

    2010-09-01

    The biospeckle laser (BSL) has been applied in many areas of knowledge and a variety of approaches has been presented to address the best results in biological and non-biological samples, in fast or slow activities, or else in defined flow of materials or in random activities. The methodologies accounted in the literature consider the apparatus used in the image assembling and the way the collected data is processed. The image processing steps presents in turn a variety of procedures with first or second order statistics analysis, and as well with different sizes of data collected. One way to access the biospeckle in defined flow, such as in capillary blood flow in alive animals, was the adoption of the image contrast technique which uses only one image from the illuminated sample. That approach presents some problems related to the resolution of the image, which is reduced during the image contrast processing. In order to help the visualization of the low resolution image formed by the contrast technique, this work presents the three-dimensional procedure as a reliable alternative to enhance the final image. The work based on a parallel processing, with the generation of a virtual map of amplitudes, and maintaining the quasi-online characteristic of the contrast technique. Therefore, it was possible to generate in the same display the observed material, the image contrast result and in addiction the three-dimensional image with adjustable options of rotation. The platform also offers to the user the possibility to access the 3D image offline.

  7. A three-dimensional asymmetric magnetopause model

    NASA Astrophysics Data System (ADS)

    Lin, R. L.; Zhang, X. X.; Liu, S. Q.; Wang, Y. L.; Gong, J. C.

    2010-04-01

    A new three-dimensional asymmetric magnetopause model has been developed for corrected GSM coordinates and parameterized by the solar wind dynamic and magnetic pressures (Pd + Pm), the interplanetary magnetic field (IMF) Bz, and the dipole tilt angle. On the basis of the magnetopause crossings from Geotail, IMP 8, Interball, TC1, Time History of Events and Macroscale Interactions during Substorms (THEMIS), Wind, Cluster, Polar, Los Alamos National Laboratory (LANL), GOES, and Hawkeye, and the corresponding upstream solar wind parameters from ACE, Wind, or OMNI, this model is constructed by the Levenberg-Marquardt method for nonlinear multiparameter fitting step-by-step over the divided regions. The asymmetries of the magnetopause and the indentations near the cusps are appropriately described in this new model. In addition, the saturation effect of IMF Bz on the subsolar distance and the extrapolation for the distant tail magnetopause are also considered. On the basis of this model, the power law index for the subsolar distance versus Pd + Pm is a bit less than -1/6, the northward IMF Bz almost does not influence the magnetopause, and the dipole tilt angle is very important to the north-south asymmetry and the location of indentations. In comparison with the previous empirical magnetopause models based on our database, the new model improves prediction capability to describe the three-dimensional structure of the magnetopause. It is shown that this new model can be used to quantitatively study how Pd + Pm compresses the magnetopause, how the southward IMF Bz erodes the magnetopause, and how the dipole tilt angle influences the north-south asymmetry and the indentations.

  8. Optimization of three-dimensional positron annihilation spectroscopy system (3DPASS) for three-dimensional momentum measurements

    NASA Astrophysics Data System (ADS)

    Williams, Christopher S.; Burggraf, Larry W.; Adamson, Paul E.; Petrosky, James C.

    2011-02-01

    A three-dimensional positron annihilation spectroscopy system (3DPASS) was characterized. 3DPASS permits determination of three-dimensional electron-positron ( e-- e+) momentum distributions by simultaneously measuring angles and energies for coincident two-gamma annihilation photons. 3DPASS collects a single dataset of correlated energies and positions for two coincident annihilation photons from a pair of solid-state double-sided strip detectors (DSSDs). Subpixel-interpolated positions are determined by transient charge analysis. 3DPASS performs simultaneous two-dimensional angular correlation of annihilation radiation (2D ACAR) and two-detector coincidence Doppler-broadening of annihilation radiation (CDBAR) measurements, which are typically collected independently. The 2D ACAR response of 3DPASS was measured for single-crystal Cu and 6H-SiC, with and without compensation for subpixel detection efficiency. Variation of efficiency across the width of DSSD charge collection electrodes was dominated by the event selection criteria required by the subpixel interpolation method. The DBAR resolution was optimized by adjusting the energy range of CDBAR events included in the Doppler-broadening (DB) lineshape. 2D ACAR and DBAR spectra from 3DPASS were compared to previously published results for single-crystal Cu and 6H-SiC. Detailed analysis of the ACAR spectra and the DB lineshapes highlighted momentum features not previously reported.

  9. Dosimetry analyses comparing high-dose-rate brachytherapy, administered as monotherapy for localized prostate cancer, with stereotactic body radiation therapy simulated using CyberKnife.

    PubMed

    Fukuda, Shoichi; Seo, Yuji; Shiomi, Hiroya; Yamada, Yuji; Ogata, Toshiyuki; Morimoto, Masahiro; Konishi, Koji; Yoshioka, Yasuo; Ogawa, Kazuhiko

    2014-11-01

    The purpose of this study was to perform dosimetry analyses comparing high-dose-rate brachytherapy (HDR-BT) with simulated stereotactic body radiotherapy (SBRT). We selected six consecutive patients treated with HDR-BT monotherapy in 2010, and a CyberKnife SBRT plan was simulated for each patient using computed tomography images and the contouring set used in the HDR-BT plan for the actual treatment, but adding appropriate planning target volume (PTV) margins for SBRT. Then, dosimetric profiles for PTVs of the rectum, bladder and urethra were compared between the two modalities. The SBRT plan was more homogenous and provided lower dose concentration but better coverage for the PTV. The maximum doses in the rectum were higher in the HDR-BT plans. However, the HDR-BT plan provided a sharper dose fall-off around the PTV, resulting in a significant and considerable difference in volume sparing of the rectum with the appropriate PTV margins added for SBRT. While the rectum D5cm(3) for HDR-BT and SBRT was 30.7 and 38.3 Gy (P < 0.01) and V40 was 16.3 and 20.8 cm(3) (P < 0.01), respectively, SBRT was significantly superior in almost all dosimetric profiles for the bladder and urethra. These results suggest that SBRT as an alternative to HDR-BT in hypofractionated radiotherapy for prostate cancer might have an advantage for bladder and urethra dose sparing, but for the rectum only when proper PTV margins for SBRT are adopted. PMID:24957754

  10. Randomized Noninferiority Trial of Reduced High-Dose Volume Versus Standard Volume Radiation Therapy for Muscle-Invasive Bladder Cancer: Results of the BC2001 Trial (CRUK/01/004)

    SciTech Connect

    Huddart, Robert A.; Hall, Emma; Hussain, Syed A.; Jenkins, Peter; Rawlings, Christine; Tremlett, Jean; Crundwell, Malcolm; Adab, Fawzi A.; Sheehan, Denise; Syndikus, Isabel; Hendron, Carey; Lewis, Rebecca; Waters, Rachel; James, Nicholas D.

    2013-10-01

    Purpose: To test whether reducing radiation dose to uninvolved bladder while maintaining dose to the tumor would reduce side effects without impairing local control in the treatment of muscle-invasive bladder cancer. Methods and Materials: In this phase III multicenter trial, 219 patients were randomized to standard whole-bladder radiation therapy (sRT) or reduced high-dose volume radiation therapy (RHDVRT) that aimed to deliver full radiation dose to the tumor and 80% of maximum dose to the uninvolved bladder. Participants were also randomly assigned to receive radiation therapy alone or radiation therapy plus chemotherapy in a partial 2 × 2 factorial design. The primary endpoints for the radiation therapy volume comparison were late toxicity and time to locoregional recurrence (with a noninferiority margin of 10% at 2 years). Results: Overall incidence of late toxicity was less than predicted, with a cumulative 2-year Radiation Therapy Oncology Group grade 3/4 toxicity rate of 13% (95% confidence interval 8%, 20%) and no statistically significant differences between groups. The difference in 2-year locoregional recurrence free rate (RHDVRT − sRT) was 6.4% (95% confidence interval −7.3%, 16.8%) under an intention to treat analysis and 2.6% (−12.8%, 14.6%) in the “per-protocol” population. Conclusions: In this study RHDVRT did not result in a statistically significant reduction in late side effects compared with sRT, and noninferiority of locoregional control could not be concluded formally. However, overall low rates of clinically significant toxicity combined with low rates of invasive bladder cancer relapse confirm that (chemo)radiation therapy is a valid option for the treatment of muscle-invasive bladder cancer.

  11. Three-dimensional light trap for reflective particles

    DOEpatents

    Neal, Daniel R.

    1999-01-01

    A system for containing either a reflective particle or a particle having an index of refraction lower than that of the surrounding media in a three-dimensional light cage. A light beam from a single source illuminates an optics system and generates a set of at least three discrete focussed beams that emanate from a single exit aperture and focus on to a focal plane located close to the particle. The set of focal spots defines a ring that surrounds the particle. The set of focussed beams creates a "light cage" and circumscribes a zone of no light within which the particle lies. The surrounding beams apply constraining forces (created by radiation pressure) to the particle, thereby containing it in a three-dimensional force field trap. A diffractive element, such as an aperture multiplexed lens, or either a Dammann grating or phase element in combination with a focusing lens, may be used to generate the beams. A zoom lens may be used to adjust the size of the light cage, permitting particles of various sizes to be captured and contained.

  12. Three-dimensional light trap for reflective particles

    DOEpatents

    Neal, D.R.

    1999-08-17

    A system is disclosed for containing either a reflective particle or a particle having an index of refraction lower than that of the surrounding media in a three-dimensional light cage. A light beam from a single source illuminates an optics system and generates a set of at least three discrete focused beams that emanate from a single exit aperture and focus on to a focal plane located close to the particle. The set of focal spots defines a ring that surrounds the particle. The set of focused beams creates a ``light cage`` and circumscribes a zone of no light within which the particle lies. The surrounding beams apply constraining forces (created by radiation pressure) to the particle, thereby containing it in a three-dimensional force field trap. A diffractive element, such as an aperture multiplexed lens, or either a Dammann grating or phase element in combination with a focusing lens, may be used to generate the beams. A zoom lens may be used to adjust the size of the light cage, permitting particles of various sizes to be captured and contained. 10 figs.

  13. Three-dimensional thermal modeling of electric vehicle batteries

    NASA Astrophysics Data System (ADS)

    Lee, J.; Choi, K. W.; Yao, N. P.; Christianson, C. C.

    1985-10-01

    A generic three-dimensional thermal model was developed for analyzing the thermal behavior of electric-vehicle batteries. The model calculates temperature distribution and excursion of a battery during discharge, change, and open circuit. The model takes into account the effects of heat generation, internal conduction and convection, and external heat dissipation on the temperature distribution in a battery. The three-dimensional feature of the model permits incorporation of various asymmetric boundary conditions; thus the effects of cell orientation and packaging on thermal behavior can be analyzed for a multiple-cell battery pack. Various modes of boundary heat transfer such as radiation, insulation, and natural and forced convections were also included in the model. Model predictions agreed well with the temperature distributions measured in nickel/iron batteries. Application of the thermal model to a closely packed 330-Ah module of five cells indicated that excessive temperature rise will occur upon discharge. Forced air convection is not effective for cooling the module.

  14. Primary and Secondary Three Dimensional Microbatteries

    NASA Astrophysics Data System (ADS)

    Cirigliano, Nicolas

    Today's MEMS devices are limited more so by the batteries that supply their power than the fabrication methods used to build them. Thick battery electrodes are capable of providing adequate energy, but long and tortuous diffusion pathways lead to low power capabilities. On the other hand, thin film batteries can operate at significant current densities but require large surface areas to supply practical energy. This dilemma can be solved by either developing new high capacity materials or by engineering new battery designs that decouple power and energy. Three dimensional batteries redesign traditional configurations to create nonplanar interfaces between battery components. This can be done by introducing hierarchical structures into the electrode shape. Designs such as these provide a maximum surface area over which chemical reactions can occur. Furthermore, by maintaining small feature sizes, ion diffusion and electronic transport distances can remain minimal. Manipulating these properties ensures fast kinetics that are required for high power situations. Energy density is maximized by layering material in the vertical direction, thus ensuring a minimal footprint area. Three dimensional carbon electrodes are fabricated using basic MEMS techniques. A silicon mold is anisotropically etched to produce channels of a predetermined diameter. The channels are then filled using an infiltration technique with electrode slurry. Once dried, the mold is attached to a current collector and etched using a XeF2 process. Electrodes of varying feature sizes have been fabricated using this method with aspect ratios ranging from 3.5:1 to 7:1. 3D carbon electrodes are shown to obtain capacities over 8 mAh/cm2 at 0.1 mA/cm2, or nearly 700% higher than planar carbon electrodes. When assembled with a planar cathode, the battery cell produced an average discharge capacity of 40 J/cm 2 at a current density of 0.2 mA/cm2. This places the energy density values slightly less than thick

  15. A Phase II Study of Synchronous Three-Dimensional Conformal Boost to the Gross Tumor Volume for Patients With Unresectable Stage III Non-Small-Cell Lung Cancer: Results of Korean Radiation Oncology Group 0301 Study

    SciTech Connect

    Cho, Kwan Ho Ahn, Sung Ja; Pyo, Hong Ryull; Kim, Kyu-Sik; Kim, Young-Chul; Moon, Sung Ho; Han, Ji-Youn; Kim, Heung Tae; Koom, Woong Sub; Lee, Jin Soo

    2009-08-01

    Purpose: We evaluated the efficacy of synchronous three-dimensional (3D) conformal boost to the gross tumor volume (GTV) in concurrent chemoradiotherapy for patients with locally advanced non-small-cell lung cancer (NSCLC). Methods and Materials: Eligibility included unresectable Stage III NSCLC with no pleural effusion, no supraclavicular nodal metastases, and Eastern Cooperative Oncology Group performance score of 0-1. Forty-nine patients with pathologically proven NSCLC were enrolled. Eighteen patients had Stage IIIA and 31 had Stage IIIB. By using 3D conformal radiotherapy (RT) techniques, a dose of 1.8 Gy was delivered to the planning target volume with a synchronous boost of 0.6 Gy to the GTV, with a total dose of 60 Gy to the GTV and 45 Gy to the planning target volume in 25 fractions during 5 weeks. All patients received weekly chemotherapy consisting of paclitaxel and carboplatin during RT. Results: With a median follow-up of 36.8 months (range, 29.0-45.5 months) for surviving patients, median survival was 28.1 months. One-, 2- and 3-year overall survival rates were 77%, 56.4%, and 43.8%, respectively. Corresponding local progression-free survival rates were 71.2%, 53.7%, and 53.7%. Compliance was 90% for RT and 88% for chemotherapy. Acute esophagitis of Grade 2 or higher occurred in 29 patients. Two patients with T4 lesions died of massive bleeding and hemoptysis during treatment (Grade 5). Overall late toxicity was acceptable. Conclusions: Based on the favorable outcome with acceptable toxicity, the acceleration scheme using 3D conformal GTV boost in this trial is warranted to compare with conventional fractionation in a Phase III trial.

  16. Genome Resequencing Identifies Unique Adaptations of Tibetan Chickens to Hypoxia and High-Dose Ultraviolet Radiation in High-Altitude Environments

    PubMed Central

    Zhang, Qian; Gou, Wenyu; Wang, Xiaotong; Zhang, Yawen; Ma, Jun; Zhang, Hongliang; Zhang, Ying; Zhang, Hao

    2016-01-01

    Tibetan chicken, unlike their lowland counterparts, exhibit specific adaptations to high-altitude conditions. The genetic mechanisms of such adaptations in highland chickens were determined by resequencing the genomes of four highland (Tibetan and Lhasa White) and four lowland (White Leghorn, Lindian, and Chahua) chicken populations. Our results showed an evident genetic admixture in Tibetan chickens, suggesting a history of introgression from lowland gene pools. Genes showing positive selection in highland populations were related to cardiovascular and respiratory system development, DNA repair, response to radiation, inflammation, and immune responses, indicating a strong adaptation to oxygen scarcity and high-intensity solar radiation. The distribution of allele frequencies of nonsynonymous single nucleotide polymorphisms between highland and lowland populations was analyzed using chi-square test, which showed that several differentially distributed genes with missense mutations were enriched in several functional categories, especially in blood vessel development and adaptations to hypoxia and intense radiation. RNA sequencing revealed that several differentially expressed genes were enriched in gene ontology terms related to blood vessel and respiratory system development. Several candidate genes involved in the development of cardiorespiratory system (FGFR1, CTGF, ADAM9, JPH2, SATB1, BMP4, LOX, LPR, ANGPTL4, and HYAL1), inflammation and immune responses (AIRE, MYO1F, ZAP70, DDX60, CCL19, CD47, JSC, and FAS), DNA repair, and responses to radiation (VCP, ASH2L, and FANCG) were identified to play key roles in the adaptation to high-altitude conditions. Our data provide new insights into the unique adaptations of highland animals to extreme environments. PMID:26907498

  17. Genome Resequencing Identifies Unique Adaptations of Tibetan Chickens to Hypoxia and High-Dose Ultraviolet Radiation in High-Altitude Environments.

    PubMed

    Zhang, Qian; Gou, Wenyu; Wang, Xiaotong; Zhang, Yawen; Ma, Jun; Zhang, Hongliang; Zhang, Ying; Zhang, Hao

    2016-03-01

    Tibetan chicken, unlike their lowland counterparts, exhibit specific adaptations to high-altitude conditions. The genetic mechanisms of such adaptations in highland chickens were determined by resequencing the genomes of four highland (Tibetan and Lhasa White) and four lowland (White Leghorn, Lindian, and Chahua) chicken populations. Our results showed an evident genetic admixture in Tibetan chickens, suggesting a history of introgression from lowland gene pools. Genes showing positive selection in highland populations were related to cardiovascular and respiratory system development, DNA repair, response to radiation, inflammation, and immune responses, indicating a strong adaptation to oxygen scarcity and high-intensity solar radiation. The distribution of allele frequencies of nonsynonymous single nucleotide polymorphisms between highland and lowland populations was analyzed using chi-square test, which showed that several differentially distributed genes with missense mutations were enriched in several functional categories, especially in blood vessel development and adaptations to hypoxia and intense radiation. RNA sequencing revealed that several differentially expressed genes were enriched in gene ontology terms related to blood vessel and respiratory system development. Several candidate genes involved in the development of cardiorespiratory system (FGFR1, CTGF, ADAM9, JPH2, SATB1, BMP4, LOX, LPR, ANGPTL4, and HYAL1), inflammation and immune responses (AIRE, MYO1F, ZAP70, DDX60, CCL19, CD47, JSC, and FAS), DNA repair, and responses to radiation (VCP, ASH2L, and FANCG) were identified to play key roles in the adaptation to high-altitude conditions. Our data provide new insights into the unique adaptations of highland animals to extreme environments. PMID:26907498

  18. Two and three dimensional magnetotelluric inversion

    SciTech Connect

    Booker, J.

    1993-01-01

    Electrical conductivity depends on properties such as the presence of ionic fluids in interconnected pores that are difficult to sense with other remote sensing techniques. Thus improved imaging of underground electrical structure has wide practical importance in exploring for groundwater, mineral and geothermal resources, and in assessing the diffusion of fluids in oil fields and waste sites. Because the electromagnetic inverse problem is fundamentally multi-dimensional, most imaging algorithms saturate available computer power long before they can deal with the complete data set. We have developed an algorithm to directly invert large multi-dimensional data sets that is orders of magnitude faster than competing methods. We have proven that a two-dimensional (2D) version of the algorithm is highly effective for real data and have made substantial progress towards a three-dimensional (3D) version. We are proposing to cure identified shortcomings and substantially expand the utility of the existing 2D program, overcome identified difficulties with extending our method to three-dimensions (3D) and embark on an investigation of related EM imaging techniques which may have the potential for even further increasing resolution.

  19. PLOT3D- DRAWING THREE DIMENSIONAL SURFACES

    NASA Technical Reports Server (NTRS)

    Canright, R. B.

    1994-01-01

    PLOT3D is a package of programs to draw three-dimensional surfaces of the form z = f(x,y). The function f and the boundary values for x and y are the input to PLOT3D. The surface thus defined may be drawn after arbitrary rotations. However, it is designed to draw only functions in rectangular coordinates expressed explicitly in the above form. It cannot, for example, draw a sphere. Output is by off-line incremental plotter or online microfilm recorder. This package, unlike other packages, will plot any function of the form z = f(x,y) and portrays continuous and bounded functions of two independent variables. With curve fitting; however, it can draw experimental data and pictures which cannot be expressed in the above form. The method used is division into a uniform rectangular grid of the given x and y ranges. The values of the supplied function at the grid points (x, y) are calculated and stored; this defines the surface. The surface is portrayed by connecting successive (y,z) points with straight-line segments for each x value on the grid and, in turn, connecting successive (x,z) points for each fixed y value on the grid. These lines are then projected by parallel projection onto the fixed yz-plane for plotting. This program has been implemented on the IBM 360/67 with on-line CDC microfilm recorder.

  20. Three dimensional characterization and archiving system

    SciTech Connect

    Sebastian, R.L.; Clark, R.; Gallman, P.

    1996-04-01

    The Three Dimensional Characterization and Archiving System (3D-ICAS) is being developed as a remote system to perform rapid in situ analysis of hazardous organics and radionuclide contamination on structural materials. Coleman Research and its subcontractors, Thermedics Detection, Inc. (TD) and the University of Idaho (UI) are in the second phase of a three phase program to develop 3D-ICAS to support Decontamination and Decommissioning (D and D) operations. Accurate physical characterization of surfaces and the radioactive and organic is a critical D and D task. Surface characterization includes identification of potentially dangerous inorganic materials, such as asbestos and transite. Real-time remotely operable characterization instrumentation will significantly advance the analysis capabilities beyond those currently employed. Chemical analysis is a primary area where the characterization process will be improved. The 3D-ICAS system robotically conveys a multisensor probe near the surfaces to be inspected. The sensor position and orientation are monitored and controlled using coherent laser radar (CLR) tracking. The CLR also provides 3D facility maps which establish a 3D world view within which the robotic sensor system can operate.

  1. Three-dimensional modeling of ovarian cancer

    PubMed Central

    Erin, White; Hilary, Kenny; Ernst, Lengyel

    2015-01-01

    New models for epithelial ovarian cancer initiation and metastasis are required to obtain a mechanistic understanding of the disease and to develop new therapeutics. Modeling ovarian cancer however is challenging as a result of the genetic heterogeneity of the malignancy, the diverse pathology, the limited availability of human tissue for research, the atypical mechanisms of metastasis, and because the origin is unclear. Insights into the origin of high-grade serous ovarian carcinomas and mechanisms of metastasis have resulted in the generation of novel three-dimensional (3D) culture models that better approximate the behavior of the tumor cells in vivo than prior two-dimensional models. The 3D models aim to recapitulate the tumor microenvironment, which has a critical role in the pathogenesis of ovarian cancer. Ultimately, findings using models that accurately reflect human ovarian cancer biology are likely to translate into improved clinical outcomes. In this review we discuss the design of new 3D culture models of ovarian cancer primarily using human cells, key studies in which these models have been applied, current limitations, and future applications. PMID:25034878

  2. Three-dimensional charge coupled device

    DOEpatents

    Conder, Alan D.; Young, Bruce K. F.

    1999-01-01

    A monolithic three dimensional charged coupled device (3D-CCD) which utilizes the entire bulk of the semiconductor for charge generation, storage, and transfer. The 3D-CCD provides a vast improvement of current CCD architectures that use only the surface of the semiconductor substrate. The 3D-CCD is capable of developing a strong E-field throughout the depth of the semiconductor by using deep (buried) parallel (bulk) electrodes in the substrate material. Using backside illumination, the 3D-CCD architecture enables a single device to image photon energies from the visible, to the ultra-violet and soft x-ray, and out to higher energy x-rays of 30 keV and beyond. The buried or bulk electrodes are electrically connected to the surface electrodes, and an E-field parallel to the surface is established with the pixel in which the bulk electrodes are located. This E-field attracts charge to the bulk electrodes independent of depth and confines it within the pixel in which it is generated. Charge diffusion is greatly reduced because the E-field is strong due to the proximity of the bulk electrodes.

  3. Three-dimensional laser velocimeter simultaneity detector

    NASA Technical Reports Server (NTRS)

    Brown, James L. (Inventor)

    1990-01-01

    A three-dimensional laser Doppler velocimeter has laser optics for a first channel positioned to create a probe volume in space, and laser optics and for second and third channels, respectively, positioned to create entirely overlapping probe volumes in space. The probe volumes and overlap partially in space. The photodetector is positioned to receive light scattered by a particle present in the probe volume, while photodetectors and are positioned to receive light scattered by a particle present in the probe volume. The photodetector for the first channel is directly connected to provide a first channel analog signal to frequency measuring circuits. The first channel is therefore a primary channel for the system. Photodetectors and are respectively connected through a second channel analog signal attenuator to frequency measuring circuits and through a third channel analog signal attenuator to frequency measuring circuits. The second and third channels are secondary channels, with the second and third channels analog signal attenuators and controlled by the first channel measurement burst signal on line. The second and third channels analog signal attenuators and attenuate the second and third channels analog signals only when the measurement burst signal is false.

  4. Three-dimensional urban GIS for Atlanta

    NASA Astrophysics Data System (ADS)

    Bhaumik, Dharmajyoti; Faust, Nickolas L.; Estrada, Diana; Linares, Jairo

    1997-07-01

    Georgia Tech has developed a prototype system for the demonstration of the concepts of a virtual 3D geographic information system (GIS) in an urban environment. The virtual GIS integrates the technologies of GIS, remote sensing, and visualization to provide an interactive tool for the exploration of spatial data. A high density urban environment with terrain elevation, imagery, GIS layers, and three dimensional natural and manmade features is a stressing test for the integration potential of such a virtual 3D GIS. In preparation for the 1996 Olympic Games, Georgia Tech developed two highly detailed 3D databases over parts of Atlanta. A 2.5 meter database was used to depict the downtown Atlanta area with much higher resolution imagery being used for photo- texture of individual Atlanta buildings. Less than 1 meter imagery data was used to show a very accurate map of Georgia Tech, the 1996 Olympic Village. Georgia Tech developed visualization software was integrated via message passing with a traditional GIS package so that all commonly used GIS query and analysis functions could be applied within the 3D environment. This project demonstrates the versatility and productivity that can be accomplished by operating GIS functions within a virtual GIS and multi-media framework.

  5. Three-Dimensional Optical Coherence Tomography

    NASA Technical Reports Server (NTRS)

    Gutin, Mikhail; Wang, Xu-Ming; Gutin, Olga

    2009-01-01

    Three-dimensional (3D) optical coherence tomography (OCT) is an advanced method of noninvasive infrared imaging of tissues in depth. Heretofore, commercial OCT systems for 3D imaging have been designed principally for external ophthalmological examination. As explained below, such systems have been based on a one-dimensional OCT principle, and in the operation of such a system, 3D imaging is accomplished partly by means of a combination of electronic scanning along the optical (Z) axis and mechanical scanning along the two axes (X and Y) orthogonal to the optical axis. In 3D OCT, 3D imaging involves a form of electronic scanning (without mechanical scanning) along all three axes. Consequently, the need for mechanical adjustment is minimal and the mechanism used to position the OCT probe can be correspondingly more compact. A 3D OCT system also includes a probe of improved design and utilizes advanced signal- processing techniques. Improvements in performance over prior OCT systems include finer resolution, greater speed, and greater depth of field.

  6. Two and three dimensional magnetotelluric inversion

    SciTech Connect

    Booker, J.R.

    1994-07-01

    Improved imaging of underground electrical structure has wide practical importance in exploring for groundwater, mineral and geothermal resources, and in characterizing oil fields and waste sites. Because the electromagnetic inverse problem for natural sources is generally multi-dimensional, most imaging algorithms saturate available computer power long before they can deal with complete data sets. We have developed an algorithm to directly invert large multi-dimensional magnetotelluric data sets that is orders of magnitude faster than competing methods. In the past year, we have extended the two- dimensional (2D) version to permit incorporation of geological constraints, have developed ways to assess model resolution and have completed work on an accurate and fast three-dimensional (3D) forward algorithm. We are proposing to further enhance the capabilities of the 2D code and to incorporate the 3D forward code in a fully 3D inverse algorithm. Finally, we will embark on an investigation of related EM imaging techniques which may have the potential for further increasing resolution.

  7. Collimation and Stability of Three Dimensional Jets

    NASA Astrophysics Data System (ADS)

    Hardee, P. E.; Clarke, D. A.; Howell, D. A.

    1993-12-01

    Three-dimensional numerical simulations of cylindrical jets established in equilibrium with a surrounding uniform medium have been performed. Large scale structures such as helical twisting of the jet, elliptical distortion and bifurcation of the jet, and triangular distortion and trifurcation of the jet have been seen in the simulations. The grid resolution has been sufficient to allow the development of structures on smaller scales and has revealed higher order distortions of the jet surface and complex structure internal to the jet. However, smaller scale surface distortion and internal jet structure do not significantly modify the large scale dynamics. It is the large scale surface distortions and accompanying filamentation that dominate the jet dynamics. Decollimation occurs as the jet bifurcates or trifurcates. Jets with density less than the immediately surrounding medium rapidly decollimate and expand as the jet filaments into multiple streams leading to shock heating and mass entrainment. The resulting morphology resembles a turbulent plume and might be relevant to some FRI type radio sources. Jet densities higher than the immediately surrounding medium are required to produce FRII type radio source jet morphology and protostellar jet morphology. Thus, while jets may be denser or lighter than the external medium through which they propagate, it is the conditions in the cocoon or lobe around the jet that governs the dynamics far behind the jet front. This work was supported by NSF grant AST-8919180, EPSCoR grant EHR-9108761 and NSF-REU grant AST-9300413.

  8. Three-dimensional modeling equatorial spread F

    NASA Astrophysics Data System (ADS)

    Huba, J. D.; Krall, J.; Joyce, G.

    2008-12-01

    Equatorial spread F (ESF) is a low-latitude ionospheric phenomenon that leads to the development of large scale electron density depletions that adversely affect communications and navigation systems. The development of models to understand and predict the onset and evolution of ESF is therefore critically important to a number of space-based systems. To this end, NRL has developed a three-dimensional model of ESF. The global NRL ionosphere model SAMI3 has been modified to simulate a narrow wedge of the post-sunset ionosphere to capture the onset and evolution of ESF. Preliminary results indicate that (1) bubbles can rise to ~ 1600 km, (2) extremely steep ion density gradients can develop in both longitude and latitude, (3) upward plasma velocities approach 1 km/s, and (4) the growth time of the instability is ~eq 15 min. We will also report the effects of meridional and zonal winds on bubble development, as well as ion composition (both atomic and molecular). The simulations will focus on current, low solar activity conditions, and results will be compared to C/NOFS data where available. Research supported by ONR

  9. Three-dimensional null point reconnection regimes

    SciTech Connect

    Priest, E. R.; Pontin, D. I.

    2009-12-15

    Recent advances in theory and computational experiments have shown the need to refine the previous categorization of magnetic reconnection at three-dimensional null points--points at which the magnetic field vanishes. We propose here a division into three different types, depending on the nature of the flow near the spine and fan of the null. The spine is an isolated field line which approaches the null (or recedes from it), while the fan is a surface of field lines which recede from it (or approach it). So-called torsional spine reconnection occurs when field lines in the vicinity of the fan rotate, with current becoming concentrated along the spine so that nearby field lines undergo rotational slippage. In torsional fan reconnection field lines near the spine rotate and create a current that is concentrated in the fan with a rotational flux mismatch and rotational slippage. In both of these regimes, the spine and fan are perpendicular and there is no flux transfer across spine or fan. The third regime, called spine-fan reconnection, is the most common in practice and combines elements of the previous spine and fan models. In this case, in response to a generic shearing motion, the null point collapses to form a current sheet that is focused at the null itself, in a sheet that locally spans both the spine and fan. In this regime the spine and fan are no longer perpendicular and there is flux transfer across both of them.

  10. Surface fitting three-dimensional bodies

    NASA Technical Reports Server (NTRS)

    Dejarnette, F. R.

    1974-01-01

    The geometry of general three-dimensional bodies is generated from coordinates of points in several cross sections. Since these points may not be smooth, they are divided into segments and general conic sections are curve fit in a least-squares sense to each segment of a cross section. The conic sections are then blended in the longitudinal direction by fitting parametric cubic-spline curves through coordinate points which define the conic sections in the cross-sectional planes. Both the cross-sectional and longitudinal curves may be modified by specifying particular segments as straight lines and slopes at selected points. Slopes may be continuous or discontinuous and finite or infinite. After a satisfactory surface fit has been obtained, cards may be punched with the data necessary to form a geometry subroutine package for use in other computer programs. At any position on the body, coordinates, slopes and second partial derivatives are calculated. The method is applied to a blunted 70 deg delta wing, and it was found to generate the geometry very well.

  11. Three Dimensional Numerical Analysis on Discharge Properties

    NASA Astrophysics Data System (ADS)

    Takaishi, Kenji; Katsurai, Makoto

    2003-10-01

    A three dimensional simulation code with the finite difference time domain (FDTD) method combined with the two fluids model for electron and ion has been developed for the microwave excited surface wave plasma in the RDL-SWP device. This code permits the numerical analysis of the spatial distributions of electric field, power absorption, electron density and electron temperature. At low gas pressure of about 10 mTorr, the numerical results compared with the experimental measurements that shows the validity of this 3-D simulation code. A simplified analysis assuming that an electron density is spatially uniform has been studied and its applicability is evaluated by 3-D simulation. The surface wave eigenmodes are determined by electron density, and it is found that the structure of the device strongly influences to the spatial distribution of the electric fields of surface wave in a low density area. A method to irradiate a microwave to the whole surface area of the plasma is proposed which is found to be effective to obtain a high uniformity distribution of electron density.

  12. Three-Dimensional Tomography of Interplanetary Disturbances

    NASA Astrophysics Data System (ADS)

    Jackson, Bernard V.; Hick, P. Paul

    2004-09-01

    We have developed a Computer Assisted Tomography (CAT) program that modifies a three-dimensional kinematic heliospheric model to fit interplanetary scintillation (IPS) or Thomson scattering observations. The tomography program iteratively changes this global model to least-squares fit the data. Both a corotating and time-dependent model can be reconstructed. The short time intervals of the time-dependent modeling (to shorter than 1 day) force the heliospheric reconstructions to depend on outward solar wind motion to give perspective views of each point in space accessible to the observations, allowing reconstruction of interplanetary Coronal Mass Ejections (CMEs) as well as corotating structures. We show these models as velocity or density Carrington maps and remote views. We have studied several events, including the 2000 July 14 Bastille-Day halo CME and several intervals using archival Cambridge IPS data, and we have also used archival Helios photometer data to reproduce the heliosphere. We check our results by comparison with additional remote-sensing observations, and in-situ observations from near-Earth spacecraft. A comparison of these observations and the Earth forecasts possible using them is available in real time on the World Wide Web using IPS data from the Solar Terrestrial Environment Laboratory, Japan.

  13. Compact integral three-dimensional imaging device

    NASA Astrophysics Data System (ADS)

    Arai, J.; Yamashita, T.; Hiura, H.; Miura, M.; Funatsu, R.; Nakamura, T.; Nakasu, E.

    2015-05-01

    A compact integral three-dimensional (3D) imaging device for capturing high resolution 3D images has been developed that positions the lens array and image sensor close together. Unlike the conventional scheme, where a camera lens is used to project the elemental images generated by the lens array onto the image sensor, the developed device combines the lens array and image sensor into one unit and makes no use of a camera lens. In order to capture high resolution 3D images, a high resolution imaging sensor and a lens array composed of many elemental lenses are required, and in an experimental setup, a CMOS image sensor circuit patterned with multiple exposures and a multiple lens array were used. Two types of optics were implemented for controlling the depth of 3D images. The first type was a convex lens that is suitable for compressing a relatively large object space, and the second was an afocal lens array that is suitable for capturing a relatively small object space without depth distortion. The objects captured with the imaging device and depth control optics were reconstructed as 3D images by using display equipment consisting of a liquid crystal panel and a lens array. The reconstructed images were found to have appropriate motion parallax.

  14. A three-dimensional human walking model

    NASA Astrophysics Data System (ADS)

    Yang, Q. S.; Qin, J. W.; Law, S. S.

    2015-11-01

    A three-dimensional human bipedal walking model with compliant legs is presented in this paper. The legs are modeled with time-variant dampers, and the model is able to characterize the gait pattern of an individual using a minimal set of parameters. Feedback control, for both the forward and lateral movements, is implemented to regulate the walking performance of the pedestrian. The model provides an improvement over classic invert pendulum models. Numerical studies were undertaken to investigate the effects of leg stiffness and attack angle. Simulation results show that when walking at a given speed, increasing the leg stiffness with a constant attack angle results in a longer step length, a higher step frequency, a faster walking speed and an increase in both the peak vertical and lateral ground reaction forces. Increasing the attack angle with a constant leg stiffness results in a higher step frequency, a decrease in the step length, an increase in the total energy of the system and a decrease in both the peak vertical and lateral ground reaction forces.

  15. Automatic creation of three-dimensional avatars

    NASA Astrophysics Data System (ADS)

    Villa-Uriol, Maria-Cruz; Sainz, Miguel; Kuester, Falko; Bagherzadeh, Nader

    2003-01-01

    Highly accurate avatars of humans promise a new level of realism in engineering and entertainment applications, including areas such as computer animated movies, computer game development interactive virtual environments and tele-presence. In order to provide high-quality avatars, new techniques for the automatic acquisition and creation are required. A framework for the capture and construction of arbitrary avatars from image data is presented in this paper. Avatars are automatically reconstructed from multiple static images of a human subject by utilizing image information to reshape a synthetic three-dimensional articulated reference model. A pipeline is presented that combines a set of hardware-accelerated stages into one seamless system. Primary stages in this pipeline include pose estimation, skeleton fitting, body part segmentation, geometry construction and coloring, leading to avatars that can be animated and included into interactive environments. The presented system removes traditional constraints in the initial pose of the captured subject by using silhouette-based modification techniques in combination with a reference model. Results can be obtained in near-real time with very limited user intervention.

  16. Three-dimensional Printing in the Intestine.

    PubMed

    Wengerter, Brian C; Emre, Gulus; Park, Jea Young; Geibel, John

    2016-08-01

    Intestinal transplantation remains a life-saving option for patients with severe intestinal failure. With the advent of advanced tissue engineering techniques, great strides have been made toward manufacturing replacement tissues and organs, including the intestine, which aim to avoid transplant-related complications. The current paradigm is to seed a biocompatible support material (scaffold) with a desired cell population to generate viable replacement tissue. Although this technique has now been extended by the three-dimensional (3D) printing of geometrically complex scaffolds, the overall approach is hindered by relatively slow turnover and negative effects of residual scaffold material, which affects final clinical outcome. Methods recently developed for scaffold-free 3D bioprinting may overcome such obstacles and should allow for rapid manufacture and deployment of "bioprinted organs." Much work remains before 3D bioprinted tissues can enter clinical use. In this brief review we examine the present state and future perspectives of this nascent technology before full clinical implementation. PMID:27189913

  17. Three-dimensional assessment of hand outcome

    PubMed Central

    Belcher, HJCR

    2013-01-01

    Introduction Patient reported outcome measures are central to National Health Service quality of care assessments. This study investigated the benefit of elective hand surgery by the simultaneous analysis of pain, function and appearance, using a three-dimensional (3D) graphical model for evaluating and presenting outcome. Methods A total of 188 patients scheduled for surgery completed pre- and postoperative questionnaires grading the severity of their pain, dysfunction and deformity of their hand(s). Scores were plotted on a 3D graph to demonstrate the degree of ‘normalisation’ following surgery. Results Surgical groups included: nerve compression (n=53), Dupuytren’s disease (n=51), trigger finger (n=20), ganglion (n=17) or other lump (n=21), trapeziometacarpal joint osteoarthritis (n=10), rheumatoid disease (n=5) and other pathology (n=13). A significant improvement towards normality was seen after surgery in each group except for patients with rheumatoid disease. Conclusions This study provides a simple, visual representation of hand surgery outcome by plotting patient scores for pain, function and appearance simultaneously on a 3D graph. PMID:24025292

  18. Three dimensional characterization and archiving system

    SciTech Connect

    Sebastian, R.L.; Clark, R.; Gallman, P.

    1995-10-01

    The Three Dimensional Characterization and Archiving System (3D-ICAS) is being developed as a remote system to perform rapid in situ analysis of hazardous organics and radionuclide contamination on structural materials. Coleman Research and its subcontractors, Thermedics Detection, Inc. (TD) and the University of Idaho (UI) are in the second phase of a three phase program to develop 3D-ICAS to support Decontamination and Decommissioning (D&D) operations. Accurate physical characterization of surfaces and the radioactive and organic is a critical D&D task. Surface characterization includes identification of potentially dangerous inorganic materials, such as asbestos and transite. The 3D-ICAS system robotically conveys a multisensor probe near the surface to be inspected. The sensor position and orientation are monitored and controlled by Coherent laser radar (CLR) tracking. The ICAS fills the need for high speed automated organic analysis by means of gas chromatography-mass spectrometry sensors, and also by radionuclide sensors which combines alpha, beta, and gamma counting.

  19. S-Nitrosylation in Organs of Mice Exposed to Low or High Doses of γ-Rays: The Modulating Effect of Iodine Contrast Agent at a Low Radiation Dose

    PubMed Central

    Nicolas, Fadia; Wu, Changgong; Bukhari, Salwa; de Toledo, Sonia M.; Li, Hong; Shibata, Masayuki; Azzam, Edouard I.

    2015-01-01

    The covalent addition of nitric oxide (NO•) onto cysteine thiols, or S-nitrosylation, modulates the activity of key signaling proteins. The dysregulation of normal S-nitrosylation contributes to degenerative conditions and to cancer. To gain insight into the biochemical changes induced by low-dose ionizing radiation, we determined global S-nitrosylation by the “biotin switch” assay coupled with mass spectrometry analyses in organs of C57BL/6J mice exposed to acute 0.1 Gy of 137Cs γ-rays. The dose of radiation was delivered to the whole body in the presence or absence of iopamidol, an iodinated contrast agent used during radiological examinations. To investigate whether similar or distinct nitrosylation patterns are induced following high-dose irradiation, mice were exposed in parallel to acute 4 Gy of 137Cs γ rays. Analysis of modulated S-nitrosothiols (SNO-proteins) in freshly-harvested organs of animals sacrificed 13 days after irradiation revealed radiation dose- and contrast agent-dependent changes. The major results were as follows: (i) iopamidol alone had significant effects on S-nitrosylation in brain, lung and liver; (ii) relative to the control, exposure to 0.1 Gy without iopamidol resulted in statistically-significant SNO changes in proteins that differ in molecular weight in liver, lung, brain and blood plasma; (iii) iopamidol enhanced the decrease in S-nitrosylation induced by 0.1 Gy in brain; (iv) whereas a decrease in S-nitrosylation occurred at 0.1 Gy for proteins of ~50 kDa in brain and for proteins of ~37 kDa in liver, an increase was detected at 4 Gy in both organs; (v) mass spectrometry analyses of nitrosylated proteins in brain revealed differential modulation of SNO proteins (e.g., sodium/potassium-transporting ATPase subunit beta-1; beta tubulins; ADP-ribosylation factor 5) by low- and high-dose irradiation; and (vi) ingenuity pathway analysis identified major signaling networks to be modulated, in particular the neuronal nitric oxide

  20. The Effect of Flattening Filter Free on Three-dimensional Conformal Radiation Therapy (3D-CRT), Intensity-Modulated Radiation Therapy (IMRT), and Volumetric Modulated Arc Therapy (VMAT) Plans for Metastatic Brain Tumors from Non-small Cell Lung Cancer.

    PubMed

    Shi, Li-Wan; Lai, You-Qun; Lin, Qin; Ha, Hui-Ming; Fu, Li-Rong

    2015-07-01

    Flattening filter free (FFF) may affect outcome measures of radiotherapy. The objective of this study is to compare the dosimetric parameters in three types of radiotherapy plans, three-dimensional conformal radiation therapy (3D-CRT), intensity-modulated radiation therapy (IMRT), and volumetric modulated arc therapy (VMAT), with or without the flattening filter (FF), developed for the treatment of metastatic brain tumors from non-small cell lung cancer (NSCLC). From July 2013 to October 2013, 3D-CRT, IMRT, and VMAT treatment plans were designed using 6 MV and 10 MV, with and without FF, for 10 patients with brain metastasis from NSCLC. The evaluation of the treatment plans included homogeneity index (HI), conformity index (CI), monitor units (MU), mean dose (Dmean), treatment time, and the influence of FFF on volumes. There was no difference in CI or HI between FFF and FF models with 3D-CRT, IMRT, and VMAT plans. At 6 MV, a lower Dmean was seen in the FFF model of 3D-CRT and in the VMAT plan at 10 MV. In the IMRT 6 MV, IMRT 10 MV, and VMAT 10 MV plans, higher MUs were seen in the FFF models. FFF treatments are similar in quality to FF plans, generally lead to more monitor units, and are associated with shorter treatment times. FFF plans ranked by the order of superiority in terms of a time advantage are VMAT, 3D-CRT, and IMRT. PMID:26011493

  1. Value of Combined PET/CT for Radiation Planning in CT-Guided Percutaneous Interstitial High-Dose-Rate Single-Fraction Brachytherapy for Colorectal Liver Metastases

    SciTech Connect

    Steffen, Ingo G.; Wust, Peter; Ruehl, Ricarda

    2010-07-15

    Purpose: To determine the additional value of fluorodeoxyglucose-positron emission tomography (PET) for clinical target volume definition in the planning of computed tomography (CT)-guided interstitial brachytherapy for liver metastases. Patients and Methods: A total of 19 patients with liver metastases from colorectal cancer treated in 25 sessions were included in the present study. All patients had undergone fluorodeoxyglucose-PET for patient evaluation before interstitial CT-guided brachytherapy. A contrast-enhanced CT scan of the upper abdomen was obtained for radiation planning. The clinical target volume (CTV) was defined by a radiation oncologist and radiologist. After registration of the CT scan with the PET data set, the target volume was defined again using the fusion images. Results: PET revealed one additional liver lesion that was not visible on CT. The median CT-CTV (defined using CT and magnetic resonance imaging) was 68 cm{sup 3} (range 4-260). The PET/CT-CTV (median, 78 cm{sup 3}; range, 4-273) was significantly larger, with a median gain of 24.5% (interquartile range, 2.1-71.5%; p = .022). An increased CTV was observed in 15 cases and a decrease in 6; in 4 cases, the CT-CTV and PET/CT-CTV were equal. Incomplete dose coverage of PET/CT-CTVs was indicative of early local progression (p = .004); however, CT-based radiation plans did not show significant differences in the local control rates when stratified by dose coverage. Conclusion: Retrospective implementation of fluorodeoxyglucose-PET for CTV specification for CT-guided brachytherapy for colorectal liver metastases revealed a significant change in the CTVs. Additional PET-positive tumor regions with incomplete dose coverage could explain unexpected early local progression.

  2. Comparison of F ratios generated from interphase and metaphase chromosome damage induced by high doses of low- and high-LET radiation

    NASA Technical Reports Server (NTRS)

    Wu, H.; George, K.; Willingham, V.; Kawata, T.; Cucinotta, F. A.

    2001-01-01

    Although biophysical models predict a difference in the ratio of interchromosomal to intrachromosomal interarm exchanges (F ratio) for low- and high-LET radiations, few experimental data support this prediction. However, the F ratios in experiments to date have been generated using data on chromosome aberrations in samples collected at the first postirradiation mitosis, which may not be indicative of the aberrations formed in interphase after exposure to high-LET radiations. In the present study, we exposed human lymphocytes in vitro to 2 and 5 Gy of gamma rays and 3 Gy of 1 GeV/nucleon iron ions (LET = 140 keV/micrometer), stimulated the cells to grow with phytohemagglutinin (PHA), and collected the condensed chromosomes after 48 h of incubation using both chemically induced premature chromosome condensation (PCC) and the conventional metaphase techniques. The PCC technique used here condenses chromosomes mostly in the G(2) phase of the cell cycle. The F ratio was calculated using data on asymmetrical chromosome aberrations in both the PCC and metaphase samples. It was found that the F ratios were similar for the samples irradiated with low- and high-LET radiation and collected at metaphase. However, for irradiated samples assayed by PCC, the F ratio was found to be 8.2 +/- 2.0 for 5 Gy gamma rays and 5.2 +/- 0.9 for 3 Gy iron ions. The distribution of the aberrations indicated that, in the PCC samples irradiated with iron ions, most of the centric rings occurred in spreads containing five or more asymmetrical aberrations. These heavily damaged cells, which were either less likely to reach mitosis or may reach mitosis at a later time, were responsible for the difference in the F ratios generated from interphase and metaphase analysis after exposure to iron ions.

  3. High-Dose 131I-Tositumomab (Anti-CD20) Radioimmunotherapy for Non-Hodgkin's Lymphoma: Adjusting Radiation Absorbed Dose to Actual Organ Volumes

    SciTech Connect

    Rajendran, Joseph G.; Fisher, Darrell R.; Gopal, A K.; Durack, L. D.; Press, O. W.; Eary, Janet F.

    2004-06-01

    Radioimmunotherapy (RIT) using 131I-tositumomab has been used successfully to treat relapsed or refractory B-cell non-Hodgin's lymphoma (NHL). Our approach to treatment planning has been to determine limits on radiation absorbed close to critical nonhematopoietic organs. This study demonstrates the feasibility of using CT to adjust for actual organ volumes in calculating organ-specific absorbed dose estimates. Methods: Records of 84 patients who underwent biodistribution studies after a trace-labeled infusion of 131I-tositumomab for RIT (January 1990 and April 2003) were reviewed. Serial planar -camera images and whole-body Nal probe counts were obtained to estimate 131I-antibody source-organ residence times as recommended by the MIRD Committee. The source-organ residence times for standard man or woman were adjusted by the ratio of the MIRD phantom organ mass to the CT-derived organ mass. Results: The mean radiation absorbed doses (in mGy/MBq) for our data using the MIRD model were lungs= 1.67; liver= 1.03; kidneys= 1.08; spleen= 2.67; and whole body= 0.3; and for CT volume-adjusted organ volumes (in mGy/MBq) were lungs= 1.30; liver= 0.92; kidneys= 0.76; spleen= 1.40; and whole body= 0.22. We determined the following correlation coefficients between the 2 methods for the various organs; lungs, 0.49; (P= 0.0001); liver, 0.64 (P= 0.004); kidneys, 0.45 (P= 0.0001), for the residence times. For therapy, patients received mean 131I administered activities of 19.2 GBq (520 mCi) after adjustment for CT-derived organ mass compared with 16.0 GBq (433 mCi) that would otherwise have been given had therapy been based only using standard MIRD organ volumes--a statistically significant difference (P= 0.0001). Conclusion: We observed large variations in organ masses among our patients. Our treatments were planned to deliver the maximally tolerated radiation dose to the dose-limiting normal organ. This work provides a simplified method for calculating patient-specific radiation

  4. RADIAL STELLAR PULSATION AND THREE-DIMENSIONAL CONVECTION. IV. FULL AMPLITUDE THREE-DIMENSIONAL SOLUTIONS

    SciTech Connect

    Geroux, Christopher M.; Deupree, Robert G.

    2015-02-10

    Three-dimensional hydrodynamic simulations of full amplitude RR Lyrae stars have been computed for several models across the instability strip. The three-dimensional nature of the calculations allows convection to be treated without reference to a phenomenological approach such as the local mixing length theory. Specifically, the time-dependent interaction of large-scale eddies and radial pulsation is controlled by conservation laws, while the effects of smaller convective eddies are simulated by an eddy viscosity model. The light amplitudes for these calculations are quite similar to those of our previous two-dimensional calculations in the middle of the instability strip, but somewhat lower near the red edge, the fundamental blue edge, and for the one first overtone model we computed. The time-dependent interaction between the radial pulsation and the convective energy transport is essentially the same in three dimensions as it is in two dimensions. There are some differences between the light curves of the two- and three-dimensional simulations, particularly during decreasing light. Reasons for the differences, both numerical and physical, are explored.

  5. X-ray induced Sm3+ to Sm2+ conversion in fluorophosphate and fluoroaluminate glasses for the monitoring of high-doses in microbeam radiation therapy

    NASA Astrophysics Data System (ADS)

    Vahedi, Shahrzad; Okada, Go; Morrell, Brian; Muzar, Edward; Koughia, Cyril; Edgar, Andy; Varoy, Chris; Belev, George; Wysokinski, Tomasz; Chapman, Dean; Kasap, Safa

    2012-10-01

    Fluorophosphate and fluoroaluminate glasses doped with trivalent samarium were evaluated as sensors of x-ray radiation for microbeam radiation therapy at the Canadian Light Source using the conversion of trivalent Sm3+ to the divalent form Sm2+. Both types of glasses show similar conversion rates and may be used as a linear sensor up to ˜150 Gy and as a nonlinear sensor up to ˜2400 Gy, where saturation is reached. Experiments with a multi-slit collimator show high spatial resolution of the conversion pattern; the pattern was acquired by a confocal fluorescence microscopy technique. The effects of previous x-ray exposure may be erased by annealing at temperatures exceeding the glass transition temperature Tg while annealing at TA < Tg enhances the Sm conversion. This enhancement is explained by a thermally stimulated relaxation of host glass ionic matrix surrounding x-ray induced Sm2+ ions. In addition, some of the Sm3+-doped glasses were codoped with Eu2+-ions but the results show that there is no marked improvement in the conversion efficiency by the introduction of Eu2+.

  6. Isotropic three-dimensional MRI-Fricke-infused gel dosimetry

    SciTech Connect

    Cho, Nai-Yu; Chu, Woei-Chyn; Huang, Sung-Cheng; Chung, Wen-Yuh; Guo, Wan-Yuo

    2013-05-15

    Purpose: Fricke-infused gel has been shown to be a simple and attainable method for the conformal measurement of absorbed radiation dose. Nevertheless, its accuracy is seriously hindered by the irreversible ferric ion diffusion during magnetic resonance imaging, particularly when three-dimensional (3D) dose measurement in radiosurgery is considered. In this study, the authors developed a fast three-dimensional spin-echo based Fricke gel dosimetry technique to reduce the adverse effects of ferric ion diffusion and to obtain an accurate isotropic 3D dose measurement. Methods: A skull shaped phantom containing Fricke-infused gel was irradiated using Leksell Gamma Knife. The rapid image-based dosimetry technique was applied with the use of a 3D fast spin-echo magnetic resonance imaging sequence. The authors mathematically derived and experimentally validated the correlations between dose-response characteristics and parameters of the 3D fast spin-echo MR imaging sequence. Absorbed dose profiles were assessed and compared to the calculated profiles given by the Gamma Knife treatment planning system. Coefficient of variance (CV%) and coefficient of determination (R{sup 2}) were used to evaluate the precision of dose-response curve estimation. The agreement between the measured and the planned 3D dose distributions was quantified by gamma-index analysis of two acceptance criteria. Results: Proper magnetic resonance imaging parameters were explored to render an accurate three-dimensional absorbed dose mapping with a 1 mm{sup 3} isotropic image resolution. The efficacy of the dose-response estimation was approved by an R{sup 2} > 0.99 and an average CV% of 1.6%. Average gamma pass-rate between the experimentally measured and GammaPlan calculated dose distributions were 83.8% and 99.7% for 2%/2 and 3%/3 mm criteria, respectively. Conclusions: With the designed MR imaging sequence and parameters, total 3D MR acquisition time was confined to within 20 min postirradiation

  7. Three-Dimensional Tectonic Model of Taiwan

    NASA Astrophysics Data System (ADS)

    Wu, Francis; Kuo-Chen, Hao; McIntosh, kirk

    2014-05-01

    We built a three-dimensional model of the interactions of the Eurasian plate (EUP) the Philippine Sea plate (PSP) and the collisional orogen, in and around Taiwan. The model is based on the results of comprehensive, milt-prong TAIGER experiments on land and at sea as well as other existing data. The clockwise rotating PSP moves NWW at ~8 cm/year relative to the Taiwan Strait. Under northern Taiwan the northward subducting PSP terminates near the edge of eastern Taiwan and collides with EUP at in increasing depth toward the north. Mountain building due to collision of EUP and PSP tapers off where the PSP goes below about 60 km. The PSP in the asthenosphere continues to advance NWW-ward. In central Taiwan PSP and EUP collide fully, lithosphere against lithosphere in the upper 60 km or so, leading to significant thickening of the crust to about 55 km on the Central Range side and about 35 km on the Coastal Range/Arc side. In between these "roots" a high velocity rise is found. Although a clear, steep dipping high velocity zone under Central Taiwan is detected, it is found not to be associated with seismicity. In southern Taiwan, mountains form over well-defined, seismically active subduction zone. The upper mantle high velocity anomaly appears to be continues with that under central Taiwan, but here an inclined seismic zone is found. In this area the Luzon Arc has not yet encountered the continental shelf - thus arc-continental collision has not yet occurred. The orogeny here may involve inversion of the subducted South China Sea lithosphere, rifted Eurasian continent, and/or escape of continental material from central Taiwan. GPS and Leveling data reflect well the 3-D plate collision model.

  8. Three-dimensional ring current decay model

    NASA Astrophysics Data System (ADS)

    Fok, Mei Ching; Moore, Thomas E.; Kozyra, Janet U.; Ho, George C.; Hamilton, Douglas C.

    1995-06-01

    This work is an extension of a previous ring current decay model. In the previous work, a two-dimensional kinetic model was constructed to study the temporal variations of the equatorially mirroring ring current ions, considering charge exchange and Coulomb drag losses along drift paths in a magnetic dipole field. In this work, particles with arbitrary pitch angle are considered. By bounce averaging the kinetic equation of the phase space density, information along magnetic field lines can be inferred from the equator. The three-dimensional model is used to simulate the recovery phase of a model great magnetic storm, similar to that which occurred in early February 1986. The initial distribution of ring current ions (at the minimum Dst) is extrapolated to all local times from AMPTE/CCE spacecraft observations on the dawnside and duskside of the inner magnetosphere spanning the L value range L=2.25 to 6.75. Observations by AMPTE/CCE of ring current distributions over subsequent orbits during the storm recovery phase are compared to model outputs. In general, the calculated ion fluxes are consistent with observations, except for H+ fluxes at tens of keV, which are always overestimated. A newly invented visualization idea, designated as a chromogram, is used to display the spatial and energy dependence of the ring current ion diifferential flux. Important features of storm time ring current, such as day-night asymmetry during injection and drift hole on the dayside at low energies (<10 keV), are manifested in the chromogram representation. The pitch angle distribution is well fit by the function, j0(1+Ayn), where y is sine of the equatorial pitch angle. The evolution of the index n is a combined effect of charge exchange loss and particle drift. At low energies (<30 keV), both drift dispersion and charge exchange are important in determining n. ©American Geophysical 1995

  9. Remote Dynamic Three-Dimensional Scene Reconstruction

    PubMed Central

    Yang, You; Liu, Qiong; Ji, Rongrong; Gao, Yue

    2013-01-01

    Remote dynamic three-dimensional (3D) scene reconstruction renders the motion structure of a 3D scene remotely by means of both the color video and the corresponding depth maps. It has shown a great potential for telepresence applications like remote monitoring and remote medical imaging. Under this circumstance, video-rate and high resolution are two crucial characteristics for building a good depth map, which however mutually contradict during the depth sensor capturing. Therefore, recent works prefer to only transmit the high-resolution color video to the terminal side, and subsequently the scene depth is reconstructed by estimating the motion vectors from the video, typically using the propagation based methods towards a video-rate depth reconstruction. However, in most of the remote transmission systems, only the compressed color video stream is available. As a result, color video restored from the streams has quality losses, and thus the extracted motion vectors are inaccurate for depth reconstruction. In this paper, we propose a precise and robust scheme for dynamic 3D scene reconstruction by using the compressed color video stream and their inaccurate motion vectors. Our method rectifies the inaccurate motion vectors by analyzing and compensating their quality losses, motion vector absence in spatial prediction, and dislocation in near-boundary region. This rectification ensures the depth maps can be compensated in both video-rate and high resolution at the terminal side towards reducing the system consumption on both the compression and transmission. Our experiments validate that the proposed scheme is robust for depth map and dynamic scene reconstruction on long propagation distance, even with high compression ratio, outperforming the benchmark approaches with at least 3.3950 dB quality gains for remote applications. PMID:23667417

  10. Three Dimensional Printing in Orthopaedic Surgery

    PubMed Central

    Mulford, Jonathan; MacKay, N; Babazadeh, S

    2016-01-01

    Objectives: Three dimensional (3D) printing technology has many current and future applications in orthopaedics. The objectives of this article are to review published literature regarding applications of 3D technology in orthopaedic surgery with a focus on knee surgery. Methods: A narrative review of the applications of 3D printing technology in orthopaedic practice was achieved by a search of computerised databases, internet and reviewing references of identified publications. Results: There is current widespread use of 3D printing technology in orthopaedics. 3D technology can be used in education, preoperative planning and custom manufacturing. Custom manufacturing applications include surgical guides, prosthetics and implants. Many future applications exist including biological applications. 3D printed models of anatomy have assisted in the education of patients, students, trainees and surgeons. 3D printed models also assist with surgical planning of complex injuries or unusual anatomy. 3D printed surgical guides may simplify surgery, make surgery precise and reduce operative time. Computer models based on MRI or CT scans are utilised to plan surgery and placement of implants. Complex osteotomies can be performed using 3D printed surgical guides. This can be particularly useful around the knee. A 3D printed guide allows pre osteotomy drill holes for the plate fixation and provides an osteotomy guide to allow precise osteotomy. 3D printed surgical guides for knee replacement are widely available. 3D printing has allowed the emergence of custom implants. Custom implants that are patient specific have been particularly used for complex revision arthroplasty or for very difficult cases with altered anatomy. Future applications are likely to include biological 3D printing of cartilage and bone scaffolds. Conclusion: 3D printing in orthopaedic surgery has and will continue to change orthopaedic practice. Its role is to provide safe, reproducible, reliable models with

  11. Three-dimensional ring current decay model

    NASA Technical Reports Server (NTRS)

    Fok, Mei-Ching; Moore, Thomas E.; Kozyra, Janet U.; Ho, George C.; Hamilton, Douglas C.

    1995-01-01

    This work is an extension of a previous ring current decay model. In the previous work, a two-dimensional kinetic model was constructed to study the temporal variations of the equatorially mirroring ring current ions, considering charge exchange and Coulomb drag losses along drift paths in a magnetic dipole field. In this work, particles with arbitrary pitch angle are considered. By bounce averaging the kinetic equation of the phase space density, information along magnetic field lines can be inferred from the equator. The three-dimensional model is used to simulate the recovery phase of a model great magnetic storm, similar to that which occurred in early February 1986. The initial distribution of ring current ions (at the minimum Dst) is extrapolated to all local times from AMPTE/CCE spacecraft observations on the dawnside and duskside of the inner magnetosphere spanning the L value range L = 2.25 to 6.75. Observations by AMPTE/CCE of ring current distributions over subsequent orbits during the storm recovery phase are compared to model outputs. In general, the calculated ion fluxes are consistent with observations, except for H(+) fluxes at tens of keV, which are always overestimated. A newly invented visualization idea, designated as a chromogram, is used to display the spatial and energy dependence of the ring current ion differential flux. Important features of storm time ring current, such as day-night asymmetry during injection and drift hole on the dayside at low energies (less than 10 keV), are manifested in the chromogram representation. The pitch angle distribution is well fit by the function, J(sub o)(1 + Ay(sup n)), where y is sine of the equatorial pitch angle. The evolution of the index n is a combined effect of charge exchange loss and particle drift. At low energies (less than 30 keV), both drift dispersion and charge exchange are important in determining n.

  12. Three-dimensional kinematics of hummingbird flight.

    PubMed

    Tobalske, Bret W; Warrick, Douglas R; Clark, Christopher J; Powers, Donald R; Hedrick, Tyson L; Hyder, Gabriel A; Biewener, Andrew A

    2007-07-01

    Hummingbirds are specialized for hovering flight, and substantial research has explored this behavior. Forward flight is also important to hummingbirds, but the manner in which they perform forward flight is not well documented. Previous research suggests that hummingbirds increase flight velocity by simultaneously tilting their body angle and stroke-plane angle of the wings, without varying wingbeat frequency and upstroke: downstroke span ratio. We hypothesized that other wing kinematics besides stroke-plane angle would vary in hummingbirds. To test this, we used synchronized high-speed (500 Hz) video cameras and measured the three-dimensional wing and body kinematics of rufous hummingbirds (Selasphorus rufus, 3 g, N=5) as they flew at velocities of 0-12 m s(-1) in a wind tunnel. Consistent with earlier research, the angles of the body and the stroke plane changed with velocity, and the effect of velocity on wingbeat frequency was not significant. However, hummingbirds significantly altered other wing kinematics including chord angle, angle of attack, anatomical stroke-plane angle relative to their body, percent of wingbeat in downstroke, wingbeat amplitude, angular velocity of the wing, wingspan at mid-downstroke, and span ratio of the wingtips and wrists. This variation in bird-centered kinematics led to significant effects of flight velocity on the angle of attack of the wing and the area and angles of the global stroke planes during downstroke and upstroke. We provide new evidence that the paths of the wingtips and wrists change gradually but consistently with velocity, as in other bird species that possess pointed wings. Although hummingbirds flex their wings slightly at the wrist during upstroke, their average wingtip-span ratio of 93% revealed that they have kinematically ;rigid' wings compared with other avian species. PMID:17575042

  13. External-Beam Radiation Therapy and High-Dose Rate Brachytherapy Combined With Long-Term Androgen Deprivation Therapy in High and Very High Prostate Cancer: Preliminary Data on Clinical Outcome

    SciTech Connect

    Martinez-Monge, Rafael; Moreno, Marta; Ciervide, Raquel; Cambeiro, Mauricio; Perez-Gracia, Jose Luis; Gil-Bazo, Ignacio; Gaztanaga, Miren; Arbea, Leire; Pascual, Ignacio; Aristu, Javier

    2012-03-01

    Purpose: To determine the feasibility of combined long-term androgen deprivation therapy (ADT) and dose escalation with high-dose-rate (HDR) brachytherapy. Methods and Materials: Between 2001 and 2007, 200 patients with high-risk prostate cancer (32.5%) or very high-risk prostate cancer (67.5%) were prospectively enrolled in this Phase II trial. Tumor characteristics included a median pretreatment prostate-specific antigen of 15.2 ng/mL, a clinical stage of T2c, and a Gleason score of 7. Treatment consisted of 54 Gy of external irradiation (three-dimensional conformal radiotherapy [3DCRT]) followed by 19 Gy of HDR brachytherapy in four twice-daily treatments. ADT started 0-3 months before 3DCRT and continued for 2 years. Results: One hundred and ninety patients (95%) received 2 years of ADT. After a median follow-up of 3.7 years (range, 2-9), late Grade {>=}2 urinary toxicity was observed in 18% of the patients and Grade {>=}3 was observed in 5%. Prior transurethral resection of the prostate (p = 0.013) and bladder D{sub 50} {>=}1.19 Gy (p = 0.014) were associated with increased Grade {>=}2 urinary complications; age {>=}70 (p = 0.05) was associated with Grade {>=}3 urinary complications. Late Grade {>=}2 gastrointestinal toxicity was observed in 9% of the patients and Grade {>=}3 in 1.5%. CTV size {>=}35.8 cc (p = 0.007) and D{sub 100} {>=}3.05 Gy (p = 0.01) were significant for increased Grade {>=}2 complications. The 5-year and 9-year biochemical relapse-free survival (nadir + 2) rates were 85.1% and 75.7%, respectively. Patients with Gleason score of 7-10 had a decreased biochemical relapse-free survival (p = 0.007). Conclusions: Intermediate-term results at the 5-year time point indicate a favorable outcome without an increase in the rate of late complications.

  14. Electromagnetic scattering from three dimensional periodic structures

    NASA Astrophysics Data System (ADS)

    Barnes, Andrew L.

    We have developed a numerical method for solving electromagnetic scattering problems from arbitrary, smooth, three dimensional structures that are periodic in two directions and of finite thickness in the third direction. We solve Maxwell's equations via an integral equation that was first formulated by Claus Muller. The Muller integral equation is Fredholm of the second kind, so it is a well-posed problem. The original Muller formulation was for compact scatterers and it used a free space Green's function for the Helmholtz equation. We solve a periodic problem with a periodic Helmholtz Green's function. This Green's function has the same degree of singularity as the free space Helmholtz Green's function, but it is an infinite sum that converges very slowly. We use a resummation technique (due to P. P. Ewald) to perform an efficient calculation of the periodic Green's function. We solve the integral equation by a Galerkin method and use RWG vector basis functions to discretize surface currents on the scatterer. We perform a careful extraction of all singularities from the integrals that we compute. We use a triangular Gaussian quadrature method for calculation of the non-singular parts of the integrals. We analytically compute the remaining singular and nearly singular integrals. We also perform an acceleration technique that treats several frequencies simultaneously and leads to decreased computational times. In addition to the numerical code, we present an alternative way of looking at electromagnetic scattering in terms of Calderon projection operators. We have validated our computer code by comparing the numerical results with results from two separate cases. The first case is that of a flat dielectric slab of finite thickness, for which exact formulae are available. The second case is a periodic array of a row of infinite cylinders. In this case, we compare our results with those obtainedv from a two dimensional code developed by S. P. Shipman, S. Venakides

  15. Airway branching morphogenesis in three dimensional culture

    PubMed Central

    2010-01-01

    Background Lungs develop from the fetal digestive tract where epithelium invades the vascular rich stroma in a process called branching morphogenesis. In organogenesis, endothelial cells have been shown to be important for morphogenesis and the maintenance of organ structure. The aim of this study was to recapitulate human lung morphogenesis in vitro by establishing a three dimensional (3D) co-culture model where lung epithelial cells were cultured in endothelial-rich stroma. Methods We used a human bronchial epithelial cell line (VA10) recently developed in our laboratory. This cell line cell line maintains a predominant basal cell phenotype, expressing p63 and other basal markers such as cytokeratin-5 and -14. Here, we cultured VA10 with human umbilical vein endothelial cells (HUVECs), to mimic the close interaction between these cell types during lung development. Morphogenesis and differentiation was monitored by phase contrast microscopy, immunostainings and confocal imaging. Results We found that in co-culture with endothelial cells, the VA10 cells generated bronchioalveolar like structures, suggesting that lung epithelial branching is facilitated by the presence of endothelial cells. The VA10 derived epithelial structures display various complex patterns of branching and show partial alveolar type-II differentiation with pro-Surfactant-C expression. The epithelial origin of the branching VA10 colonies was confirmed by immunostaining. These bronchioalveolar-like structures were polarized with respect to integrin expression at the cell-matrix interface. The endothelial-induced branching was mediated by soluble factors. Furthermore, fibroblast growth factor receptor-2 (FGFR-2) and sprouty-2 were expressed at the growing tips of the branching structures and the branching was inhibited by the FGFR-small molecule inhibitor SU5402. Discussion In this study we show that a human lung epithelial cell line can be induced by endothelial cells to form branching

  16. Three-dimensional carbon nanotube based photovoltaics

    NASA Astrophysics Data System (ADS)

    Flicker, Jack

    2011-12-01

    Photovoltaic (PV) cells with a three dimensional (3D) morphology are an exciting new research thrust with promise to create cheaper, more efficient solar cells. This work introduces a new type of 3D PV device based on carbon nanotube (CNT) arrays. These arrays are paired with the thin film heterojunction, CdTe/CdS, to form a complete 3D carbon nanotube PV device (3DCNTPV). Marriage of a complicated 3D structure with production methods traditionally used for planar CdTe solar cell is challenging. This work examines the problems associated with processing these types of cells and systematically alters production methods of the semiconductor layers and electrodes to increase the short circuit current (Isc), eliminate parasitic shunts, and increase the open circuit voltage (Voc). The main benefit of 3D solar cell is the ability to utilize multiple photon interactions with the solar cell surface. The three dimensionality allows photons to interact multiple times with the photoactive material, which increases the absorption and the overall power output over what is possible with a two dimensional (2D) morphology. To quantify the increased power output arising from these multiple photon interactions, a new absorption efficiency term, eta3D, is introduced. The theoretical basis behind this new term and how it relates to the absorption efficiency of a planar cell, eta 2D, is derived. A unique model for the average number of multiple photon impingements, Gamma, is proposed based on three categories of 3D morphology: an infinite trench, an enclosed box, and an array of towers. The derivation of eta3D and Gamma for these 3D PV devices gives a complete picture of the enhanced power output over 2D cells based on CNT array height, pitch, radius, and shape. This theory is validated by monte carlo simulations and experiment. This new type of 3D PV devices has been shown to work experimentally. The first 3DCNTPV cells created posses Isc values of 0.085 to 17.872mA/cm2 and Voc values

  17. Three-dimensional optofluidic device for isolating microbes

    NASA Astrophysics Data System (ADS)

    Keloth, A.; Paterson, L.; Markx, G. H.; Kar, A. K.

    2015-03-01

    Development of efficient methods for isolation and manipulation of microorganisms is essential to study unidentified and yet-to-be cultured microbes originating from a variety of environments. The discovery of novel microbes and their products have the potential to contribute to the development of new medicines and other industrially important bioactive compounds. In this paper we describe the design, fabrication and validation of an optofluidic device capable of redirecting microbes within a flow using optical forces. The device holds promise to enable the high throughput isolation of single microbes for downstream culture and analysis. Optofluidic devices are widely used in clinical research, cell biology and biomedical engineering as they are capable of performing analytical functions such as controlled transportation, compact and rapid processing of nanolitres to millilitres of clinical or biological samples. We have designed and fabricated a three dimensional optofluidic device to control and manipulate microorganisms within a microfluidic channel. The device was fabricated in fused silica by ultrafast laser inscription (ULI) followed by selective chemical etching. The unique three-dimensional capability of ULI is utilized to integrate microfluidic channels and waveguides within the same substrate. The main microfluidic channel in the device constitutes the path of the sample. Optical waveguides are fabricated at right angles to the main microfluidic channel. The potential of the optical scattering force to control and manipulate microorganisms is discussed in this paper. A 980 nm continuous wave (CW) laser source, coupled to the waveguide, is used to exert radiation pressure on the particle and particle migrations at different flow velocities are recorded. As a first demonstration, device functionality is validated using fluorescent microbeads and initial trials with microalgae are presented.

  18. Visualization of Three-Dimensional Nephron Structure With Microcomputed Tomography

    SciTech Connect

    Bentley,M.; Jorgensen, S.; Lerman, L.; Ritman, E.; Romero, J.

    2007-01-01

    The three-dimensional architecture of nephrons in situ and their interrelationship with other nephrons are difficult to visualize by microscopic methods. The present study uses microcomputed X-ray tomography (micro-CT) to visualize intact nephrons in situ. Rat kidneys were perfusion-fixed with buffered formalin and their vasculature was subsequently perfused with radiopaque silicone. Cortical tissue was stained en bloc with osmium tetroxide, embedded in plastic, scanned, and reconstructed at voxel resolutions of 6, 2, and 1 {mu}m. At 6 {mu}m resolution, large blood vessels and glomeruli could be visualized but nephrons and their lumens were small and difficult to visualize. Optimal images were obtained using a synchrotron radiation source at 2 {mu}m resolution where nephron components could be identified, correlated with histological sections, and traced. Proximal tubules had large diameters and opaque walls, whereas distal tubules, connecting tubules, and collecting ducts had smaller diameters and less opaque walls. Blood vessels could be distinguished from nephrons by the luminal presence of radiopaque silicone. Proximal tubules were three times longer than distal tubules. Proximal and distal tubules were tightly coiled in the outer cortex but were loosely coiled in the middle and inner cortex. The connecting tubules had the narrowest diameters of the tubules and converged to form arcades that paralleled the radial vessels as they extended to the outer cortex. These results illustrate a potential use of micro-CT to obtain three-dimensional information about nephron architecture and nephron interrelationships, which could be useful in evaluating experimental tubular hypertrophy, atrophy, and necrosis.

  19. Numerical investigations in three-dimensional internal flows

    NASA Technical Reports Server (NTRS)

    Rose, William C.

    1991-01-01

    The present study is a preliminary investigation into the behavior of the flow within a 28 degree total geometric turning angle hypothetical Mach 10 inlet as calculated with the full three-dimensional Navier-Stokes equations. Comparison between the two-dimensional and three-dimensional solutions have been made. The overall compression is not significantly different between the two-dimensional and center plane three dimensional solutions. Approximately one-half to two-thirds of the inlet flow at the exit of the inlet behave nominally two-dimensionally. On the other hand, flow field non-uniformities in the three-dimensional solution indicate the potential significance of the sidewall boundary layer flows ingested into the inlet. The tailoring of the geometry at the inlet shoulder and on the cowl obtained in the two-dimensional parametric design study have also proved to be effective at controlling the boundary layer behavior in the three-dimensional code. The three-dimensional inlet solution remained started indicating that the two-dimensional design had a sufficient margin to allow for three-dimensional flow field effects. Although confidence is being gained in the use of SCRAM3D (three-dimensional full Navier-Stokes code) as applied to similar flow fields, the actual effects of the three-dimensional flow fields associated with sidewalls and wind tunnel installations can require verification with ground-based experiments.

  20. Structured image reconstruction for three-dimensional ghost imaging lidar.

    PubMed

    Yu, Hong; Li, Enrong; Gong, Wenlin; Han, Shensheng

    2015-06-01

    A structured image reconstruction method has been proposed to obtain high quality images in three-dimensional ghost imaging lidar. By considering the spatial structure relationship between recovered images of scene slices at different longitudinal distances, orthogonality constraint has been incorporated to reconstruct the three-dimensional scenes in remote sensing. Numerical simulations have been performed to demonstrate that scene slices with various sparse ratios can be recovered more accurately by applying orthogonality constraint, and the enhancement is significant especially for ghost imaging with less measurements. A simulated three-dimensional city scene has been successfully reconstructed by using structured image reconstruction in three-dimensional ghost imaging lidar. PMID:26072814

  1. Advanced Three-Dimensional Display System

    NASA Technical Reports Server (NTRS)

    Geng, Jason

    2005-01-01

    A desktop-scale, computer-controlled display system, initially developed for NASA and now known as the VolumeViewer(TradeMark), generates three-dimensional (3D) images of 3D objects in a display volume. This system differs fundamentally from stereoscopic and holographic display systems: The images generated by this system are truly 3D in that they can be viewed from almost any angle, without the aid of special eyeglasses. It is possible to walk around the system while gazing at its display volume to see a displayed object from a changing perspective, and multiple observers standing at different positions around the display can view the object simultaneously from their individual perspectives, as though the displayed object were a real 3D object. At the time of writing this article, only partial information on the design and principle of operation of the system was available. It is known that the system includes a high-speed, silicon-backplane, ferroelectric-liquid-crystal spatial light modulator (SLM), multiple high-power lasers for projecting images in multiple colors, a rotating helix that serves as a moving screen for displaying voxels [volume cells or volume elements, in analogy to pixels (picture cells or picture elements) in two-dimensional (2D) images], and a host computer. The rotating helix and its motor drive are the only moving parts. Under control by the host computer, a stream of 2D image patterns is generated on the SLM and projected through optics onto the surface of the rotating helix. The system utilizes a parallel pixel/voxel-addressing scheme: All the pixels of the 2D pattern on the SLM are addressed simultaneously by laser beams. This parallel addressing scheme overcomes the difficulty of achieving both high resolution and a high frame rate in a raster scanning or serial addressing scheme. It has been reported that the structure of the system is simple and easy to build, that the optical design and alignment are not difficult, and that the

  2. Three dimensional Visualization of Jupiter's Equatorial Region

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Frames from a three dimensional visualization of Jupiter's equatorial region. The images used cover an area of 34,000 kilometers by 11,000 kilometers (about 21,100 by 6,800 miles) near an equatorial 'hotspot' similar to the site where the probe from NASA's Galileo spacecraft entered Jupiter's atmosphere on December 7th, 1995. These features are holes in the bright, reflective, equatorial cloud layer where warmer thermal emission from Jupiter's deep atmosphere can pass through. The circulation patterns observed here along with the composition measurements from the Galileo Probe suggest that dry air may be converging and sinking over these regions, maintaining their cloud-free appearance. The bright clouds to the right of the hotspot as well as the other bright features may be examples of upwelling of moist air and condensation.

    This frame is a view from above and to the south of the visualized area, showing the entire model. The entire region is overlain by a thin, transparent haze. In places the haze is high and thick, especially to the east (to the right of) the hotspot.

    Galileo is the first spacecraft to image Jupiter in near-infrared light (which is invisible to the human eye) using three filters at 727, 756, and 889 nanometers (nm). Because light at these three wavelengths is absorbed at different altitudes by atmospheric methane, a comparison of the resulting images reveals information about the heights of clouds in Jupiter's atmosphere. This information can be visualized by rendering cloud surfaces with the appropriate height variations.

    The visualization reduces Jupiter's true cloud structure to two layers. The height of a high haze layer is assumed to be proportional to the reflectivity of Jupiter at 889 nm. The height of a lower tropospheric cloud is assumed to be proportional to the reflectivity at 727 nm divided by that at 756 nm. This model is overly simplistic, but is based on more sophisticated studies of Jupiter's cloud structure. The upper

  3. Three dimensional Visualization of Jupiter's Equatorial Region

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Frames from a three dimensional visualization of Jupiter's equatorial region. The images used cover an area of 34,000 kilometers by 11,000 kilometers (about 21,100 by 6,800 miles) near an equatorial 'hotspot' similar to the site where the probe from NASA's Galileo spacecraft entered Jupiter's atmosphere on December 7th, 1995. These features are holes in the bright, reflective, equatorial cloud layer where warmer thermal emission from Jupiter's deep atmosphere can pass through. The circulation patterns observed here along with the composition measurements from the Galileo Probe suggest that dry air may be converging and sinking over these regions, maintaining their cloud-free appearance. The bright clouds to the right of the hotspot as well as the other bright features may be examples of upwelling of moist air and condensation.

    This frame is a view to the northeast, from between the cloud layers and above the streaks in the lower cloud leading towards the hotspot. The upper haze layer has some features that match the lower cloud, such as the bright streak in the foreground of the frame. These are probably thick clouds that span several tens of vertical kilometers.

    Galileo is the first spacecraft to image Jupiter in near-infrared light (which is invisible to the human eye) using three filters at 727, 756, and 889 nanometers (nm). Because light at these three wavelengths is absorbed at different altitudes by atmospheric methane, a comparison of the resulting images reveals information about the heights of clouds in Jupiter's atmosphere. This information can be visualized by rendering cloud surfaces with the appropriate height variations.

    The visualization reduces Jupiter's true cloud structure to two layers. The height of a high haze layer is assumed to be proportional to the reflectivity of Jupiter at 889 nm. The height of a lower tropospheric cloud is assumed to be proportional to the reflectivity at 727 nm divided by that at 756 nm. This model is overly

  4. Three dimensional Visualization of Jupiter's Equatorial Region

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Frames from a three dimensional visualization of Jupiter's equatorial region. The images used cover an area of 34,000 kilometers by 11,000 kilometers (about 21,100 by 6,800 miles) near an equatorial 'hotspot' similar to the site where the probe from NASA's Galileo spacecraft entered Jupiter's atmosphere on December 7th, 1995. These features are holes in the bright, reflective, equatorial cloud layer where warmer thermal emission from Jupiter's deep atmosphere can pass through. The circulation patterns observed here along with the composition measurements from the Galileo Probe suggest that dry air may be converging and sinking over these regions, maintaining their cloud-free appearance. The bright clouds to the right of the hotspot as well as the other bright features may be examples of upwelling of moist air and condensation.

    This frame is a view to the southeast, from between the cloud layers and over the north center of the region. The tall white clouds in the lower cloud deck are probably much like large terrestrial thunderclouds. They may be regions where atmospheric water powers vertical convection over large horizontal distances.

    Galileo is the first spacecraft to image Jupiter in near-infrared light (which is invisible to the human eye) using three filters at 727, 756, and 889 nanometers (nm). Because light at these three wavelengths is absorbed at different altitudes by atmospheric methane, a comparison of the resulting images reveals information about the heights of clouds in Jupiter's atmosphere. This information can be visualized by rendering cloud surfaces with the appropriate height variations.

    The visualization reduces Jupiter's true cloud structure to two layers. The height of a high haze layer is assumed to be proportional to the reflectivity of Jupiter at 889 nm. The height of a lower tropospheric cloud is assumed to be proportional to the reflectivity at 727 nm divided by that at 756 nm. This model is overly simplistic, but is based on

  5. Three dimensional Visualization of Jupiter's Equatorial Region

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Frames from a three dimensional visualization of Jupiter's equatorial region. The images used cover an area of 34,000 kilometers by 11,000 kilometers (about 21,100 by 6,800 miles) near an equatorial 'hotspot' similar to the site where the probe from NASA's Galileo spacecraft entered Jupiter's atmosphere on December 7th, 1995. These features are holes in the bright, reflective, equatorial cloud layer where warmer thermal emission from Jupiter's deep atmosphere can pass through. The circulation patterns observed here along with the composition measurements from the Galileo Probe suggest that dry air may be converging and sinking over these regions, maintaining their cloud-free appearance. The bright clouds to the right of the hotspot as well as the other bright features may be examples of upwelling of moist air and condensation.

    This frame is a view to the northeast, from between the cloud layers and above the streaks in the lower cloud leading towards the hotspot. The hotspot is clearly visible as a deep blue feature. The cloud streaks end near the hotspot, consistent with the idea that clouds traveling along these streak lines descend and evaporate as they approach the hotspot. The upper haze layer is slightly bowed upwards above the hotspot.

    Galileo is the first spacecraft to image Jupiter in near-infrared light (which is invisible to the human eye) using three filters at 727, 756, and 889 nanometers (nm). Because light at these three wavelengths is absorbed at different altitudes by atmospheric methane, a comparison of the resulting images reveals information about the heights of clouds in Jupiter's atmosphere. This information can be visualized by rendering cloud surfaces with the appropriate height variations.

    The visualization reduces Jupiter's true cloud structure to two layers. The height of a high haze layer is assumed to be proportional to the reflectivity of Jupiter at 889 nm. The height of a lower tropospheric cloud is assumed to be proportional

  6. Three dimensional Visualization of Jupiter's Equatorial Region

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Frames from a three dimensional visualization of Jupiter's equatorial region. The images used cover an area of 34,000 kilometers by 11,000 kilometers (about 21,100 by 6,800 miles) near an equatorial 'hotspot' similar to the site where the probe from NASA's Galileo spacecraft entered Jupiter's atmosphere on December 7th, 1995. These features are holes in the bright, reflective, equatorial cloud layer where warmer thermal emission from Jupiter's deep atmosphere can pass through. The circulation patterns observed here along with the composition measurements from the Galileo Probe suggest that dry air may be converging and sinking over these regions, maintaining their cloud-free appearance. The bright clouds to the right of the hotspot as well as the other bright features may be examples of upwelling of moist air and condensation.

    This frame is a view to the west, from between the cloud layers and over the patchy white clouds to the east of the hotspot. This is probably an area where moist convection is occurring over large horizontal distances, similar to the atmosphere over the equatorial ocean on Earth. The clouds are high and thick, and are observed to change rapidly over short time scales.

    Galileo is the first spacecraft to image Jupiter in near-infrared light (which is invisible to the human eye) using three filters at 727, 756, and 889 nanometers (nm). Because light at these three wavelengths is absorbed at different altitudes by atmospheric methane, a comparison of the resulting images reveals information about the heights of clouds in Jupiter's atmosphere. This information can be visualized by rendering cloud surfaces with the appropriate height variations.

    The visualization reduces Jupiter's true cloud structure to two layers. The height of a high haze layer is assumed to be proportional to the reflectivity of Jupiter at 889 nm. The height of a lower tropospheric cloud is assumed to be proportional to the reflectivity at 727 nm divided by that at 756

  7. Three dimensional Visualization of Jupiter's Equatorial Region

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Frames from a three dimensional visualization of Jupiter's equatorial region. The images used cover an area of 34,000 kilometers by 11,000 kilometers (about 21,100 by 6,800 miles) near an equatorial 'hotspot' similar to the site where the probe from NASA's Galileo spacecraft entered Jupiter's atmosphere on December 7th, 1995. These features are holes in the bright, reflective, equatorial cloud layer where warmer thermal emission from Jupiter's deep atmosphere can pass through. The circulation patterns observed here along with the composition measurements from the Galileo Probe suggest that dry air may be converging and sinking over these regions, maintaining their cloud-free appearance. The bright clouds to the right of the hotspot as well as the other bright features may be examples of upwelling of moist air and condensation.

    This frame is a view from the southwest looking northeast, from an altitude just above the high haze layer. The streaks in the lower cloud leading towards the hotspot are visible. The upper haze layer is mostly flat, with notable small peaks that can be matched with features in the lower cloud. In reality, these areas may represent a continuous vertical cloud column.

    Galileo is the first spacecraft to image Jupiter in near-infrared light (which is invisible to the human eye) using three filters at 727, 756, and 889 nanometers (nm). Because light at these three wavelengths is absorbed at different altitudes by atmospheric methane, a comparison of the resulting images reveals information about the heights of clouds in Jupiter's atmosphere. This information can be visualized by rendering cloud surfaces with the appropriate height variations.

    The visualization reduces Jupiter's true cloud structure to two layers. The height of a high haze layer is assumed to be proportional to the reflectivity of Jupiter at 889 nm. The height of a lower tropospheric cloud is assumed to be proportional to the reflectivity at 727 nm divided by that at 756

  8. Three-Dimensional Gear Crack Propagation Studied

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.

    1999-01-01

    Gears used in current helicopters and turboprops are designed for light weight, high margins of safety, and high reliability. However, unexpected gear failures may occur even with adequate tooth design. To design an extremely safe system, the designer must ask and address the question, "What happens when a failure occurs?" With gear-tooth bending fatigue, tooth or rim fractures may occur. A crack that propagates through a rim will be catastrophic, leading to disengagement of the rotor or propeller, loss of an aircraft, and possible fatalities. This failure mode should be avoided. A crack that propagates through a tooth may or may not be catastrophic, depending on the design and operating conditions. Also, early warning of this failure mode may be possible because of advances in modern diagnostic systems. One concept proposed to address bending fatigue fracture from a safety aspect is a splittooth gear design. The prime objective of this design would be to control crack propagation in a desired direction such that at least half of the tooth would remain operational should a bending failure occur. A study at the NASA Lewis Research Center analytically validated the crack-propagation failsafe characteristics of a split-tooth gear. It used a specially developed three-dimensional crack analysis program that was based on boundary element modeling and principles of linear elastic fracture mechanics. Crack shapes as well as the crack-propagation life were predicted on the basis of the calculated stress intensity factors, mixed-mode crack-propagation trajectory theories, and fatigue crack-growth theories. The preceding figures show the effect of the location of initial cracks on crack propagation. Initial cracks in the fillet of the teeth produced stress intensity factors of greater magnitude (and thus, greater crack growth rates) than those in the root or groove areas of the teeth. Crack growth was simulated in a case study to evaluate crack-propagation paths. Tooth

  9. Three-dimensional Model of Tissue and Heavy Ions Effects

    NASA Technical Reports Server (NTRS)

    Ponomarev, Artem L.; Sundaresan, Alamelu; Huff, Janice L.; Cucinotta, Francis A.

    2007-01-01

    A three-dimensional tissue model was incorporated into a new Monte Carlo algorithm that simulates passage of heavy ions in a tissue box . The tissue box was given as a realistic model of tissue based on confocal microscopy images. The action of heavy ions on the cellular matrix for 2- or 3-dimensional cases was simulated. Cells were modeled as a cell culture monolayer in one example, where the data were taken directly from microscopy (2-d cell matrix), and as a multi-layer obtained from confocal microscopy (3-d case). Image segmentation was used to identify cells with precise areas/volumes in an irradiated cell culture monolayer, and slices of tissue with many cell layers. The cells were then inserted into the model box of the simulated physical space pixel by pixel. In the case of modeled tissues (3-d), the tissue box had periodic boundary conditions imposed, which extrapolates the technique to macroscopic volumes of tissue. For the real tissue (3-d), specific spatial patterns for cell apoptosis and necrosis are expected. The cell patterns were modeled based on action cross sections for apoptosis and necrosis estimated from current experimental data. A spatial correlation function indicating a higher spatial concentration of damaged cells from heavy ions relative to the low-LET radiation cell damage pattern is presented. The spatial correlation effects among necrotic cells can help studying microlesions in organs, and probable effects of directionality of heavy ion radiation on epithelium and endothelium.

  10. Micelle hydrogels for three-dimensional dose verification

    NASA Astrophysics Data System (ADS)

    Babic, S.; Battista, J.; Jordan, K.

    2009-05-01

    Gelatin hydrogels form a transparent and colourless matrix for polymerization or chromic reactions initiated by absorption of ionizing radiation. Generally, hydrogel chemistries have been limited to water soluble reactants. Work to adapt a water insoluble colourless leuco dye to coloured dye conversion reaction in hydrogels, led to the idea that micelles (i.e. tiny aggregates of surfactant molecules) may provide the necessary polar and nonpolar hybrid environment. Both leucomalachite green and leuco crystal violet radiochromic gels have been developed as three-dimensional (3-D) radiochromic dosimeters for optical computed tomography (CT) scanners. It has been found that the post-irradiation diffusion rates strongly correlate with the solubility of the leuco dyes. Since the crystal violet dye is more soluble in the micelle than in the surrounding water, the dose distribution degrades at the slower rate of micelle diffusion, thus yielding stable images of dose. A dosimetric characterization of leucomalachite green and leuco crystal violet gels, respectively, reveals that tissue equivalent micelle hydrogels are promising dosimeters for radiation therapy 3-D dose verification.

  11. Three-dimensional imaging of the myocardium with isotopes

    NASA Technical Reports Server (NTRS)

    Budinger, T. F.

    1975-01-01

    Three methods of imaging the three-dimensional distribution of isotopes in the myocardium are discussed. Three-dimensional imaging was examined using multiple Anger-camera views. Longitudinal tomographic images with compensation for blurring were studied. Transverse-section reconstruction using coincidence detection of annihilation gammas from positron emitting isotopes was investigated.

  12. Pathogen Propagation in Cultured Three-Dimensional Tissue Mass

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas J. (Inventor); Spaulding, Glenn F. (Inventor); Wolf, David A. (Inventor)

    2000-01-01

    A process for propagating a pathogen in a three-dimensional tissue mass cultured at microgravity conditions in a culture vessel containing culture media and a culture matrix is provided. The three-dimensional tissue mass is inoculated with a pathogen and pathogen replication in the cells of the tissue mass achieved.

  13. Using Three-Dimensional Interactive Graphics To Teach Equipment Procedures.

    ERIC Educational Resources Information Center

    Hamel, Cheryl J.; Ryan-Jones, David L.

    1997-01-01

    Focuses on how three-dimensional graphical and interactive features of computer-based instruction can enhance learning and support human cognition during technical training of equipment procedures. Presents guidelines for using three-dimensional interactive graphics to teach equipment procedures based on studies of the effects of graphics, motion,…

  14. Pathogen propagation in cultured three-dimensional tissue mass

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas J. (Inventor); Spaulding, Glenn F. (Inventor); Wolf, David A. (Inventor)

    2000-01-01

    A process for propagating a pathogen in a three-dimensional tissue mass cultured at microgravity conditions in a culture vessel containing culture media and a culture matrix is provided. The three-dimensional tissue mass is inoculated with a pathogen and pathogen replication in the cells of the tissue mass achieved.

  15. Satellite microwave rainfall simulations with a three-dimensional dynamical cloud model

    NASA Technical Reports Server (NTRS)

    Adler, Robert F.; Simpson, Joanne; Tao, Wei-Kuo; Prasad, N.; Yeh, Hwa-Young

    1988-01-01

    The three-dimensional, multicloud model of Tao and Soong (1986) is used to generate three-dimensional distribution of pertinent microphysical and state parameters which are used as input into a microwave radiative transfer model. The model is used to calculate upwelling radiance (brightness temperature) at microwave frequencies from 10 to 183 GHz with an ocean background. The model is used to study the relationship between simulated upwell brightness temperature and the cloud-model-generated rain rate at the surface. It is suggested that these calculations can be used to simulate satellite observed brightness temperature values and to make area-averaged rain rates.

  16. Virtual three-dimensional blackboard: three-dimensional finger tracking with a single camera

    NASA Astrophysics Data System (ADS)

    Wu, Andrew; Hassan-Shafique, Khurram; Shah, Mubarak; da Vitoria Lobo, N.

    2004-01-01

    We present a method for three-dimensional (3D) tracking of a human finger from a monocular sequence of images. To recover the third dimension from the two-dimensional images, we use the fact that the motion of the human arm is highly constrained owing to the dependencies between elbow and forearm and the physical constraints on joint angles. We use these anthropometric constraints to derive a 3D trajectory of a gesticulating arm. The system is fully automated and does not require human intervention. The system presented can be used as a visualization tool, as a user-input interface, or as part of some gesture-analysis system in which 3D information is important.

  17. Three-dimensional model for fusion processes

    SciTech Connect

    Olson, A.P.

    1984-01-01

    Active galactic nuclei (AGN) emit unusual spectra of radiation which is interpreted to signify extreme distance, extreme power, or both. The status of AGNs was recently reviewed by Balick and Heckman. It seems that the greatest conceptual difficulty with understanding AGNs is how to form a coherent phenomenological model of their properties. What drives the galactic engine. What and where are the mass-flows of fuel to this engine. Are there more than one engine. Do the engines have any symmetry properties. Is observed radiation isotropically emitted from the source. If it is polarized, what causes the polarization. Why is there a roughly spherical cloud of ionized gas about the center of our own galaxy, the Milky Way. The purpose of this paper is to discuss a new model, based on fusion processes which are not axisymmetric, uniform, isotropic, or even time-invariant. Then, the relationship to these questions will be developed. A unified model of fusion processes applicable to many astronomical phenomena will be proposed and discussed.

  18. High-Dose Hypofractionated Proton Beam Radiation Therapy Is Safe and Effective for Central and Peripheral Early-Stage Non-Small Cell Lung Cancer: Results of a 12-Year Experience at Loma Linda University Medical Center

    SciTech Connect

    Bush, David A.; Cheek, Gregory; Zaheer, Salman; Wallen, Jason; Mirshahidi, Hamid; Katerelos, Ari; Grove, Roger; Slater, Jerry D.

    2013-08-01

    Purpose: We update our previous reports on the use of hypofractionated proton beam radiation therapy for early-stage lung cancer patients. Methods and Materials: Eligible subjects had biopsy-proven non-small cell carcinoma of the lung and were medically inoperable or refused surgery. Clinical workup required staging of T1 or T2, N0, M0. Subjects received hypofractionated proton beam therapy to the primary tumor only. The dose delivered was sequentially escalated from 51 to 60 Gy, then to 70 Gy in 10 fractions over 2 weeks. Endpoints included toxicity, pulmonary function, overall survival (OS), disease-specific survival (DSS), and local control (LC). Results: One hundred eleven subjects were analyzed for treatment outcomes. The patient population had the following average characteristics; age 73.2 years, tumor size 3.6 cm, and 1.33 L forced expiratory volume in 1 second. The entire group showed improved OS with increasing dose level (51, 60, and 70 Gy) with a 4-year OS of 18%, 32%, and 51%, respectively (P=.006). Peripheral T1 tumors exhibited LC of 96%, DSS of 88%, and OS of 60% at 4 years. Patients with T2 tumors showed a trend toward improved LC and survival with the 70-Gy dose level. On multivariate analysis, larger tumor size was strongly associated with increased local recurrence and decreased survival. Central versus peripheral location did not correlate with any outcome measures. Clinical radiation pneumonitis was not found to be a significant complication, and no patient required steroid therapy after treatment for radiation pneumonitis. Pulmonary function was well maintained 1 year after treatment. Conclusions: High-dose hypofractionated proton therapy achieves excellent outcomes for lung carcinomas that are peripherally or centrally located. The 70-Gy regimen has been adopted as standard therapy for T1 tumors at our institution. Larger T2 tumors show a trend toward improved outcomes with higher doses, suggesting that better results could be seen with

  19. Coherent diffraction imaging: consistency of the assembled three-dimensional distribution.

    PubMed

    Tegze, Miklós; Bortel, Gábor

    2016-07-01

    The short pulses of X-ray free-electron lasers can produce diffraction patterns with structural information before radiation damage destroys the particle. From the recorded diffraction patterns the structure of particles or molecules can be determined on the nano- or even atomic scale. In a coherent diffraction imaging experiment thousands of diffraction patterns of identical particles are recorded and assembled into a three-dimensional distribution which is subsequently used to solve the structure of the particle. It is essential to know, but not always obvious, that the assembled three-dimensional reciprocal-space intensity distribution is really consistent with the measured diffraction patterns. This paper shows that, with the use of correlation maps and a single parameter calculated from them, the consistency of the three-dimensional distribution can be reliably validated. PMID:27357847

  20. ATTILA: A three-dimensional, unstructured tetrahedral mesh discrete ordinates transport code

    SciTech Connect

    Wareing, T.A.; McGhee, J.M.; Morel, J.E.

    1996-12-31

    Many applications of radiation transport require the accurate modeling of complex three-dimensional geometries. Historically, Monte Carlo codes have been used for such applications. Existing deterministic transport codes were not applied to such problems because of the difficulties of modeling complex three-dimensional geometries with rectangular meshes. The authors have developed a three-dimensional discrete ordinates (S{sub n}) code, ATTILA, which uses linear-discontinuous finite element spatial differencing in conjunction with diffusion-synthetic acceleration (DSA) on an unstructured tetrahedral mesh. This tetrahedral mesh capability enables the authors to efficiently model complex three-dimensional geometries. One interesting and challenging application of neutron and/or gamma-ray transport is nuclear well-logging applications. Nuclear well-logging problems usually involve a complex geometry with fixed sources and one or more detectors. Detector responses must generally be accurate to within {approx}1%. The combination of complex three-dimensional geometries and high accuracy requirements makes it difficult to perform logging problems with traditional S{sub n} differencing schemes and rectangular meshes. Hence, it is not surprising that deterministic S{sub n} codes have seen limited use in nuclear well-logging applications. The geometric modeling capabilities and the advanced spatial differencing of ATTILA give it a significant advantage, relative to traditional S{sub n} codes, for performing nuclear well-logging calculations.